Spielman group alumna Dr. Dina Genkina has composed a high level write-up of Dr. Ana Valdés-Curiel’s Rashba paper! https://jqi.umd.edu/news/researchers-comb-atoms-into-novel-swirl Topological features without a lattice in Rashba spin-orbit coupled atoms; A. Valdés-Curiel, D. Trypogeorgos, Q.-Y. Liang, R. P. Anderson, and I. …

JQI writeup of: Topological features without a lattice in Rashba spin-orbit coupled atoms Read more »

Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical …

Topological features without a lattice in Rashba spin-orbit coupled atoms Read more »

Weak measurement in tandem with real-time feedback control is a new route toward engineering novel nonequilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with …

Feedback induced magnetic phases in binary Bose-Einstein condensates Read more »

Anderson localization is a single-particle localization phenomena in disordered media that is accompanied by an absence of diffusion. Spin-orbit coupling (SOC) describes an interaction between a particle’s spin and its momentum that directly affects its energy dispersion, for example, creating …

Enhanced transport of spin-orbit-coupled Bose gases in disordered potentials Read more »

Weakly measuring many-body systems and allowing for feedback in real time can simultaneously create and measure new phenomena in quantum systems. We theoretically study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall and …

Measurement-induced dynamics and stabilization of spinor-condensate domain walls Read more »

In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state systems. …

Emergent gauge field and the Lifshitz transition of spin-orbit coupled bosons in one dimension Read more »

The multiscale entanglement renormalization ansatz (MERA) postulates the existence of quantum circuits that renormalize entanglement in real space at different length scales. Chern insulators, however, cannot have scale-invariant discrete MERA circuits with a finite bond dimension. In this Letter, we …

Scale-Invariant Continuous Entanglement Renormalization of a Chern Insulator Read more »