Quantum simulators are a promising technology on the spectrum of quantum devices from specialized quantum experiments to universal quantum computers. These quantum devices utilize entanglement and many-particle behavior to explore and solve hard scientific, engineering, and computational problems. Rapid development …

Quantum Simulators: Architectures and Opportunities Read more »

Topological order can be found in a wide range of physical systems, from crystalline solids, photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic systems. Topological systems are a robust foundation for creating quantized channels for transporting electrical …

Topological features without a lattice in Rashba spin-orbit coupled atoms Read more »

Weak measurement in tandem with real-time feedback control is a new route toward engineering novel nonequilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with …

Feedback induced magnetic phases in binary Bose-Einstein condensates Read more »

Anderson localization is a single-particle localization phenomena in disordered media that is accompanied by an absence of diffusion. Spin-orbit coupling (SOC) describes an interaction between a particle’s spin and its momentum that directly affects its energy dispersion, for example, creating …

Enhanced transport of spin-orbit-coupled Bose gases in disordered potentials Read more »

Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation …

Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates Read more »

We propose and describe our realization of a deeply subwavelength optical lattice for ultracold neutral atoms using N resonantly Raman-coupled internal degrees of freedom. Although counterpropagating lasers with wavelength λ provided two-photon Raman coupling, the resultant lattice period was λ/2N, an N-fold reduction as compared to …

Realization of a deeply subwavelength adiabatic optical lattice Read more »