Much of our knowledge of quantum systems is encapsulated in the expectation value of Hermitian operators, experimentally obtained by averaging projective measurements. However, dynamical properties are often described by products of operators evaluated at different times; such observables cannot be …

Dynamical structure factor from weak measurements Read more »

Weak measurement enables the extraction of targeted information from a quantum system while minimizing decoherence due to measurement backaction. However, in many-body quantum systems, backaction can have unexpected effects on wave-function collapse. We theoretically study a minimal many-particle model consisting …

Measurement resolution enhanced coherence for lattice fermions Read more »

We consider solitary wave excitations above the ground state of 𝐹=1 spin-orbit-coupled Bose-Einstein condensates (SOBECs). The low-energy properties of SOBECs in any of the three branches of the single-particle dispersion relation can be described by suitable scalar nonlinear Schrödinger (NLS) equations which we …

Stationary solitary waves in F=1 spin-orbit-coupled Bose-Einstein condensates Read more »

Continuously measured interacting quantum systems almost invariably heat, causing loss of quantum coherence. Here, we study Bose-Einstein condensates (BECs) subject to repeated weak measurement of the atomic density and describe several protocols for generating a feedback signal designed to remove …

Feedback-cooled Bose-Einstein condensation: Near and far from equilibrium Read more »

We describe a two-dimensional optical lattice for ultracold atoms with spatial features below the diffraction limit created by a bichromatic optical standing wave. At every point in space these fields couple the internal atomic states in a three-level Lambda coupling …

Interference induced anisotropy in a two-dimensional dark state optical lattice Read more »

Recent experiments demonstrated deeply subwavelength lattices using atoms with N internal states Raman coupled with lasers of wavelength λ. The resulting unit cell was λ/2N in extent, an N-fold reduction compared to the usual λ/2 periodicity of an optical lattice. For resonant Raman coupling, this lattice consists of N independent …

Topological charge pumping with subwavelength Raman lattices Read more »

The implementation of a combination of continuous weak measurement and classical feedback provides a powerful tool for controlling the evolution of quantum systems. In this paper, we investigate the potential of this approach from three perspectives. First, we consider a …

Feedback-stabilized dynamical steady states in the Bose-Hubbard model Read more »