Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation …

Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates Read more »

We demonstrate partial-transfer absorption imaging as a technique for repeatedly imaging an ultracold atomic ensemble with minimal perturbation. We prepare an atomic cloud in a state that is dark to the imaging light. We then use a microwave pulse to …

Repeated measurements with minimally destructive partial-transfer absorption imaging Read more »

Newly minted Ph.D.,  Dr. Lauren M. Aycock has been award the 2017-2018 APS Congressional Science Fellowship! She will be spending a year working with members of Congress on issues where her experience can support the legislative and political process! Way …

Dr. Lauren M. Aycock awarded the APS Congressional Science Fellowship for 2017-2018 Read more »

Solitons, spatially localized, mobile excitations resulting from an interplay between nonlinearity and dispersion, are ubiquitous in physical systems from water channels and oceans to optical fibers and Bose–Einstein condensates (BECs). From our pulse throbbing at our wrists to rapidly moving …

Brownian motion of solitons in a Bose–Einstein condensate Read more »

Synthetic gauge fields for ultracold neutral atoms—engineered using the interaction between laser fields and the atoms’ internal ‘spin’ degrees of freedom—provide promising techniques for generating the large (synthetic) magnetic fields required to reach the fractional quantum Hall (FQH) limit in …

Tutorial: Synthetic gauge potentials for ultracold neutral atoms Read more »

We directly measured the normalized s-wave scattering cross-section of ultracold 40K atoms across a magnetic-field Feshbach resonance by colliding pairs of degenerate Fermi gases (DFGs) and imaging the scattered atoms. We extracted the scattered fraction for a range of bias …

Feshbach enhanced s-wave scattering of fermions: direct observation with optimized absorption imaging Read more »