Resonant absorption imaging is a common technique for detecting the two-dimensional column density of ultracold atom systems. In many cases, the system’s thickness along the imaging direction greatly exceeds the imaging system’s depth of field, making the identification of the …

Optimally focused cold atom systems obtained using density-density correlations Read more »

We present a new technique for producing two- and three-dimensional Rashba-type spin-orbit couplings for ultracold atoms without involving light. The method relies on a sequence of pulsed inhomogeneous magnetic fields imprinting suitable phase gradients on the atoms. For sufficiently short …

Magnetically Generated Spin-Orbit Coupling for Ultracold Atoms Read more »

Ultracold gases of interacting spin-orbit-coupled fermions are predicted to display exotic phenomena such as topological superfluidity and its associated Majorana fermions. Here, we experimentally demonstrate a route to strongly interacting single-component atomic Fermi gases by combining an s-wave Feshbach resonance (giving …

Raman-Induced Interactions in a Single-Component Fermi Gas Near an s-Wave Feshbach Resonance Read more »

Creating and measuring topological matter – with non-local order deeply embedded in the global structure of its quantum mechanical eigenstates – presents unique experimental challenges. Since this order has no signature in local correlation functions, it might seem experimentally inaccessible …

Review article: Detection of topological matter with quantum gases Read more »