Category: Theory

Position-dependent spin–orbit coupling for ultracold atoms

We theoretically explore atomic Bose–Einstein condensates (BECs) subject to position-dependent spin–orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position.

Light-induced gauge fields for ultracold atoms

Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length

Measuring Topology featured as a NJP “Highlight of 2013”

Nathan Goldman et al‘s result describing techniques for measuring topology in a laser-coupled honeycomb lattice has been featured as a “Highlight of 2013” by The New Journal of Physics! This rocks! Highlights page: Article:

Synthetic gauge fields in synthetic dimensions

We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the “dimension” provided by the internal atomic degrees of freedom, yielding a synthetic two-dimensional

Magnetically Generated Spin-Orbit Coupling for Ultracold Atoms

We present a new technique for producing two- and three-dimensional Rashba-type spin-orbit couplings for ultracold atoms without involving light. The method relies on a sequence of pulsed inhomogeneous magnetic fields imprinting suitable phase gradients on the atoms. For sufficiently short

Review article: Detection of topological matter with quantum gases

Creating and measuring topological matter – with non-local order deeply embedded in the global structure of its quantum mechanical eigenstates – presents unique experimental challenges. Since this order has no signature in local correlation functions, it might seem experimentally inaccessible

Review: Spin-orbit coupling in atomic gases

Spin–orbit coupling links a particle’s velocity to its quantum-mechanical spin, and is essential in numerous condensed matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin–orbit coupling originates from the movement of electrons in a crystal’s intrinsic electric