Zitterbewegung, a force-free trembling motion first predicted for relativistic fermions like electrons, was an unexpected consequence of the Dirac equation’s unification of quantum mechanics and special relativity. Though the oscillatory motion’s large frequency and small amplitude have precluded its measurement with electrons, zitterbewegung is …

Direct observation of zitterbewegung in a Bose–Einstein condensate Read more »

Spin–orbit coupling links a particle’s velocity to its quantum-mechanical spin, and is essential in numerous condensed matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin–orbit coupling originates from the movement of electrons in a crystal’s intrinsic electric …

Review: Spin-orbit coupling in atomic gases Read more »

Spin–orbit (SO) coupling—the interaction between a quantum particle’s spin and its momentum—is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such …

Spin-orbit-coupled Bose-Einstein condensates Read more »

We experimentally investigate diffraction of a 87Rb Bose-Einstein condensate from a one-dimensional optical lattice. We use a range of lattice periods and timescales, including those beyond the Raman-Nath limit. We compare the results to numerical solutions of the Gross-Pitaevskii equation …

Quantum and classical dynamics of a Bose-Einstein condensate in a large-period optical lattice Read more »

We describe an apparatus for quickly and simply producing 87Rb Bose-Einstein condensates. It is based on a magnetic quadrupole trap and a red-detuned optical dipole trap. We collect atoms in a magneto-optical trap (MOT) and then capture the atoms in …

Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential Read more »