Zitterbewegung, a force-free trembling motion first predicted for relativistic fermions like electrons, was an unexpected consequence of the Dirac equation’s unification of quantum mechanics and special relativity. Though the oscillatory motion’s large frequency and small amplitude have precluded its measurement with electrons, zitterbewegung is …

Direct observation of zitterbewegung in a Bose–Einstein condensate Read more »

Citation:  For innovative and pioneering work in quantum phenomena at the intersection of atomic and condensed matter physics, using quantum simulation with ultracold atoms, including the use of optical interactions to create artificial electromagnetic fields and spin-orbit coupling.

Spin–orbit coupling links a particle’s velocity to its quantum-mechanical spin, and is essential in numerous condensed matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin–orbit coupling originates from the movement of electrons in a crystal’s intrinsic electric …

Review: Spin-orbit coupling in atomic gases Read more »