Category: RbK

Dr. Lauren M. Aycock awarded the APS Congressional Science Fellowship for 2017-2018

Newly minted Ph.D.,  Dr. Lauren M. Aycock has been award the 2017-2018 APS Congressional Science Fellowship! She will be spending a year working with members of Congress on issues where her experience can support the legislative and political process! Way

Brownian motion of solitons in a Bose–Einstein condensate

Solitons, spatially localized, mobile excitations resulting from an interplay between nonlinearity and dispersion, are ubiquitous in physical systems from water channels and oceans to optical fibers and Bose–Einstein condensates (BECs). From our pulse throbbing at our wrists to rapidly moving

Dr. Lauren M. Aycock defended her thesis today.

Lauren defended her thesis titled “Topological excitations in a Bose gas & sexual harassment reported by undergraduate physicists” today to a bumper audience in Ithaca.  And it rocked!

Tutorial: Synthetic gauge potentials for ultracold neutral atoms

Synthetic gauge fields for ultracold neutral atoms—engineered using the interaction between laser fields and the atoms’ internal ‘spin’ degrees of freedom—provide promising techniques for generating the large (synthetic) magnetic fields required to reach the fractional quantum Hall (FQH) limit in

Geometrical Pumping with a Bose-Einstein Condensate

We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice [JQI writeup]. Topological charge pumps in filled bands yield quantized pumping set by the global—topological—properties of the

Feshbach enhanced s-wave scattering of fermions: direct observation with optimized absorption imaging

We directly measured the normalized s-wave scattering cross-section of ultracold 40K atoms across a magnetic-field Feshbach resonance by colliding pairs of degenerate Fermi gases (DFGs) and imaging the scattered atoms. We extracted the scattered fraction for a range of bias

Published in Science: Visualizing edge states with an atomic Bose gas in the quantum Hall regime

Bringing ultracold atomic gases into the quantum Hall regime is challenging. We engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip geometry, consisting of the sites of an optical lattice in the long direction and of three

Abigail Perry defends her thesis!

Abby defended her thesis titled “An apparatus for light-less artificial gauge fields and new imaging techniques” today. Way to go!

Gauge matters: observing the vortex-nucleation transition in a Bose condensate

The order parameter of a quantum-coherent many-body system can include a phase degree of freedom, which, in the presence of an electromagnetic field, depends on the choice of gauge. Because of the relationship between the phase gradient and the velocity,

Tunable Spin-Orbit Coupling via Strong Driving in Ultracold-Atom Systems

Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems—unique in their experimental control and measurement opportunities—provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and