Nontrivial topology in lattices is characterized by invariants—such as the Zak phase for one-dimensional (1D) lattices—derived from wave functions covering the Brillouin zone. We realize the 1D bipartite Rice-Mele (RM) lattice using ultracold 87Rb and focus on lattice configurations possessing …

Dynamically Induced Symmetry Breaking and Out-of-Equilibrium Topology in a 1D Quantum System Read more »

In ultracold-atom experiments, data often comes in the form of images which suffer information loss inherent in the techniques used to prepare and measure the system. This is particularly problematic when the processes of interest are complicated, such as interactions …

Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons Read more »

In the expanding universe, relativistic scalar fields are thought to be attenuated by “Hubble friction,” which results from the dilation of the underlying spacetime metric. By contrast, in a contracting universe this pseudofriction would lead to amplification. Here, we experimentally …

Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes Read more »

The University of Maryland has been tapped to lead a multi-institutional effort supported by the National Science Foundation (NSF) that is focused on developing quantum simulation devices that can understand, and thereby exploit, the rich behavior of complex quantum systems. The NSF Quantum …

Quantum leap challenge institute for robust quantum simulation: funded! Read more »

Most data in cold-atom experiments comes from images, the analysis of which is limited by our preconceptions of the patterns that could be present in the data. We focus on the well-defined case of detecting dark solitons—appearing as local density …

Machine-learning enhanced dark soliton detection in Bose–Einstein condensates Read more »