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Abstract
Much of our knowledge of quantum systems is encapsulated in the expectation value of Hermitian
operators, experimentally obtained by averaging projective measurements. However, dynamical
properties are often described by products of operators evaluated at different times; such
observables cannot be measured by individual projective measurements, which occur at a single
time. For example, the dynamical structure factor (DSF) describes the propagation of density
excitations, such as phonons, and is derived from the spatial density operator evaluated at different
times. In equilibrium systems this can be obtained by first exciting the system at a specific
wavevector and frequency, then measuring the response. Here, we describe an alternative approach
using a pair of time-separated weak measurements, and analytically show that their
cross-correlation function directly recovers the DSF, for all systems, even far from equilibrium.
This general schema can be applied to obtain the cross-correlation function of any pair of weakly
observable quantities. We provide numerical confirmation of this technique with a matrix product
states simulation of the one-dimensional Bose–Hubbard model, weakly measured by phase
contrast imaging. We explore the limits of the method and demonstrate its applicability to real
experiments with limited imaging resolution.

The properties of many body quantum systems are often encoded in response functions that quantify the
reaction of the system to weak external perturbations. The dynamical structure factor (DSF) S(q,ω),
describing a system’s response to density perturbations with wavenumber q and frequency ω, derives from
the expectation value ⟨n̂(0,0)n̂(x, t)⟩ of the spatial density operator n̂(x, t) at different times and
positions [1]. For equilibrium systems, such quantities are experimentally obtained by observing the system’s
response to a suitable perturbation. For example neutron scattering gives access to S(q,ω) (possibly in a
spin-dependent way) in materials [2], where it has contributed to the understanding of high temperature
superconductivity [3], and topological spin systems [4, 5] to name a few. Analogously for ultracold atoms,
S(q,ω) can be obtained by Bragg scattering far-detuned laser light off atomic ensembles [6]; this has shed
light on weak- and strongly-interacting Bose–Einstein condensates [7, 8], structural phase transitions [9],
and unitary Fermi gases [10]. The spectral function, a related response function correlating fields rather than
densities, can be measured using similar techniques [11–13]. By contrast, we focus on measuring
density-density correlations ⟨n̂(0,0)n̂(x, t)⟩, and thereby S(q,ω), by weak quantummeasurements alone [14].

Unlike the methods described above, this technique is not limited to equilibrium systems, and is
applicable to any state, pure or mixed, undergoing Hamiltonian dynamics. This connects to previous
work [15], that showed the static structure factor S(q) can be obtained from the same-time density-density
correlation function ⟨n̂(0)n̂(x)⟩ computed from simple projective measurements of density. Because
projective measurements collapse the wavefunction at a well-defined time, they prevent access to the
two-time correlations we require.
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Figure 1. System and measurement schema. (a) PCI as an example of homodyne detection. Probe light is first phase shifted by the
atomic ensemble (light scattered by more than the acceptance angle θ is not detected); the un-scattered light is further phase
shifted by a phase dot; and the resulting interference between the scattered and the un-scattered light is imaged. The detected
signal (histogram) has contributions from the operator expectation value (dashed line) as well as projection noise. (b) A pair of
time-separated weak measurements. The first measurement creates excitations that are correlated with the measurement outcome
and propagate for a time δt prior to a second measurement.

Generalized quantum measurements, however, allow for weak measurements that minimally disturb the
system, but in exchange provide only limited information. These have long been associated with continuous
monitoring of both open and closed quantum systems [16, 17], and are essential for closed loop quantum
control [18]. Here, we make use of weak measurements in a many-body context, where they will allow the
extraction of multi-time correlation functions, valid independent of quantum statistics and dimensionality.
We specifically focus on homodyne weak measurement schemes (for example, realized by phase-contrast
imaging (PCI) as shown in figure 1(a)) of atoms in a 1D lattice that report nj(t), a noisy estimate of number
at lattice site j density, and yield post-measurement wavefunctions that incorporate density fluctuations
inferred from the measurement. The excitations resulting from the first weak measurement at time t= 0
propagate for a time delay δt prior to a second weak measurement of density giving nj ′(δt), as in figure 1(b).
Intuitively the second measurement outcome includes a contribution from the system’s response to the first
measurement, and we analytically confirm that the ensemble averaged [19] cross-correlations between these
observations nj(0)nj ′(δt), converges to the real part of the un-equal time expectation value:
Re

[
⟨n̂j(0)n̂j ′(δt)⟩

]
. This interpretation is similar to that presented [14] in the context of photodetection

theory.
We numerically study an implementation of this approach for the 1D Bose–Hubbard (BH) model, and

show that in the limit of vanishing measurement strength S(q,ω) obtained by the weak measurement process
converges to that directly computed from the underlying wavefunctions. We conclude by showing that this
method robustly captures long wavelength excitations even with realistic imaging limitations included.

Homodyne detection—Our weak measurement protocol is based on homodyne detection, which could be
experimentally implemented using PCI as schematically depicted in figure 1(a). When illuminated with
coherent light of wavelength λ, an atomic ensemble in the object plane diffracts part of the probe laser by
imprinting a position-dependent phase shift onto it. PCI is usually operated in the far-detuned limit, where
absorption can be ignored, so the intensity of the probe laser just after having traversed the atomic ensemble
is unchanged. By design, PCI is sensitive to changes in the phase quadrature: a phase dot at the Fourier plane
of a Keplerian telescope phase shifts the unscattered light by a known phase value (typically π/2) while
leaving the scattered light unchanged [20]. PCI is an interferometric method in which the unscattered probe
serves as the reference beam (i.e. local oscillator), while the scattered component carries information about
the atomic ensemble. In the image plane, the interference between scattered light and the phase-shifted probe
changes the detected intensity by an amount proportional to the atomic density. The usual ‘photon shot
noise’ in this image is the projection noise associated with detecting the intensity of a coherent state. For a
bright beam, this leads to backaction described by a Kraus operator that is a Gaussian function of the atomic
density operator.

Analytical derivation—To be concrete, we consider bosonic atoms in a 1D lattice with an arbitrary native
system Hamiltonian Ĥ, responsible for coherent dynamics. These dynamics are interjected by brief
homodyne measurements of the atomic density, with durations short compared to the time scale for
coherent evolution. Each measurement, at a discrete time t, gives an outcome

nj,t = ⟨n̂j (t)⟩+
mj,t

2Γ1/2
, (1)
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where Γ is the measurement strength; n̂j is the number operator at position j; and ⟨n̂j(t)⟩ ≡ ⟨ψ(t)|n̂j|ψ(t)⟩ is
the Schrödinger picture expectation value of number. The random variablemj,t, with variancemj1,t1mj2,t2

= δj1,j2δt1,t2 , describes spatially and temporally uncorrelated quantum projection noise. For small Γ, the state
conditioned on this measurement outcome [21] is

|ψ ′ (t)⟩=

1+Γ1/2
∑
j

δn̂j,tmj,t −
Γ

2

∑
j

δn̂2j,t

|ψ (t)⟩ (2)

in terms of the difference operator δn̂j,t ≡ n̂j −⟨n̂j(t)⟩. In following expressions we adopt a notation where
expectation values with a prime

⟨n̂j ′ (δt)⟩ ′ = ⟨ψ ′ (0)|Û† (δt) n̂j ′Û(δt) |ψ ′ (0)⟩ (3)

are with respect to the post measurement initial state.
In our protocol (illustrated in figure 1(b)), we (1) perform an initial measurement at time t= 0; (2) allow

the system to undergo unitary evolution described by Û(δt) = exp
(
− iĤδt/h̄

)
for a time δt; and (3) perform

a second measurement. We focus on the cross-correlation of the measurement results

nj,0nj ′,δt =
1

2Γ1/2
mj,0⟨n̂j ′ (δt)⟩ ′ + ⟨n̂j (0)⟩⟨n̂j ′ (δt)⟩ ′. (4)

Terms such asmj ′,δt⟨n̂j(0)⟩ are absent in this expression because the number at earlier times is uncorrelated
with measurement noise at later times. By contrast, ⟨n̂j ′(δt)⟩ can be correlated with the noisemj,0. Both
terms in equation (4) have clear physical meaning: the first term identifies excitations created by
measurement backaction, while the second term is simply the correlation between the initial density and the
averaged final density that one might naively expect.

To lowest order in Γ, the expectation value of the number at time δt is

⟨n̂j ′ (δt)⟩ ′ = ⟨n̂j ′ (δt)⟩+Γ1/2
∑
j

mj,0

[
⟨n̂j (0) n̂j ′ (δt)⟩

+ ⟨n̂j ′ (δt) n̂j (0)⟩− 2⟨n̂j (0)⟩⟨n̂j ′ (δt)⟩
]
. (5)

Substituting this expression into equation (4) yields nj,0nj ′,δt = Re
[
⟨n̂j(0)n̂j ′(δt)⟩

]
, equal to the expectation

value of the Hermitian part of n̂j(0)n̂j ′(δt). This gives direct access to the spatially averaged correlation
function

Gδj (δt) =
1

N

∑
j

Re
[
⟨n̂j (0) n̂j+δj (δt)⟩

]
, (6)

as a function of spatial displacement δj, known as the Van Hove function [22] in x-ray and neutron
scattering. This demonstrates our central observation: for Γ≪ 1, correlating subsequent measurement
results yields time-separated correlation functions (the appendix comments on the consequence of stronger
measurements). This is a generic observation valid for pairwise combinations of weak measurements
(potentially of different observables) with the general structure in equations (1) and (2).

The DSF

S(q,ω) =
∑
δj

ˆ ∞

0
Gδj (δt)e

i(ωδt−qδj)dδt (7)

is the Fourier transform of the correlation function. In the subsequent sections, we present concrete
numerical examples as to how accurately this quantity can be captured with a realistic measurement strength.

Weakly measured BH system—We now turn to the BH model with Hamiltonian

ĤBH =−J
∑
j

(
â†j âj+1 +H.c.

)
+

U

2

∑
j

n̂j
(
n̂j + 1

)
,

where â†j describes the creation of a boson on sitem and n̂j = â†j âj is the associated number operator. We
limit the numerical study to 1D and simulate the dynamics using the time-dependent variational principle
applied to matrix product states (MPS) [23].
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Figure 2. Averaged correlation function and DSF of a 51-site 1D BH chain with measurement strength Γ = 0.1, 50 trajectories,
and the noise contribution removed from the second measurement. Statistical uncertainties and spatial resolution limits are
detailed in the text and presented in figures 3 and 4 respectively. (a), (b) Correlation signal with U/J= 2 at: (a) fixed δj = 2, and
(b) at fixed δt× J= 1.17. The black curves were computed directly from MPS wavefunctions, while the red curves employed
equation (6) (red bands reflect the single-σ uncertainties derived from our 50 trajectories). (c), (d) DSF computed for U/J= 2, 4,
and 5 (top to bottom); (c) DSF fromMPS wavefunctions, and (d) DSF obtained from equation (7).

We numerically obtain the ground state |ψ(0)⟩, and then initiate a specific trajectory by stochastically
selecting a realization of the projection noisemj,t=0. This allows us to compute the associated
post-measurement state |ψ ′(0)⟩ using equation (2) and measurement outcome nj,0. The next step is to evolve
the resulting state according to ĤBH for a time δt, obtain ⟨n̂j(δt)⟩, select a second noise realizationmj,δt, and
thereby obtain the second measurement outcome nj,δt. We then average the correlation signal (equation (4))
over trajectories. To increase sampling efficiency in the numerical simulations, we use each initial noise
realizationmj,t=0 to generate the full collection of second measurement outcomes, by computing ⟨n̂j(δt)⟩
andmj,δt at every desired time increment. When reporting correlation functions, we further enhance the
sampling efficiency by omitting the noise contribution to the second measurement, giving nj,δt = ⟨n̂j(δt)⟩.
The number of trajectories quoted in the figure captions reflects the number of distinct initial noise
realizations.

Figure 2 plots the results of these simulations (see caption for simulation parameters); (a) and (b) show
δt and δj cross-sections of the correlation function Gδj(δt) with quantities extracted directly from MPS
wavefunctions (black), and those obtained using equation (6) (red) agreeing within the statistical
uncertainty (error bands). The duration of the MPS simulations are limited to the short times— δt× J≲ 3
for current parameters—for which they are numerically exact (i.e. converged in truncation error
per-timestep); this blocks numerical access to small ω when computing S(q,ω). Longer times (and therefore
smaller ω) are experimentally accessible, however, finite size effects will appear for large δt. For example, at
U/J= 2 the correlation signal nominally spreads by approximately two lattice sites per time increment of
δt× J. Then, in a 51-site 1D BH chain, an excitation initially located at the center of the system will reach the
boundary in≈12 tunneling times.

Panels (c) and (d) confirm that S(q,ω) extracted from the MPS wavefunction (left) is in correspondence
with that obtained from the correlation signal (right). The key features of the excitation spectrum [24] are
present: in the superfluid phase (U/J= 2) a gapless phonon mode (linear for small ω) is present; and in the
Mott insulating phase (U/J= 4,5) a energy gap clearly appears. In both cases the DSF contains sharp spectra
features derived from well defined quasiparticle excitations: phonons in the superfluid phase giving way to
particle-like excitations in the Mott phase. The artifacts present in the correlations signal in figure 2(d) arise
from a hybrid term that combines both statistical and systematic uncertainties (see appendix).

Systematic and statistical uncertainties—Any determination of S(q,ω) will have statistical uncertainties
resulting from employing only a finite number of trajectories given the noise inherent in the measurement
process. In addition, our expressions for spatial correlations and the DSF are only strictly valid when Γ→ 0,

4
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Figure 3. Statistical and systematic uncertainties using 50 trajectories and U/J= 2. (a), (b) Comparison of statistical uncertainty
(green) and total error (purple) in∆Gδj=0(δt) for Γ = 0.05 and Γ = 0.5. (c) Statistical (green) and total (purple) uncertainties
averaged over δt and δj along with fits (curves) to the scaling behavior described in the text. The statistical uncertainties
associated with these averages are smaller than the plotted markers.

giving corrections to equation (4) at order Γ1/2, i.e. systematic uncertainties. Both measurements
(equation (1)) have statistically independent noise contributions∝ Γ−1/2. (While noise on the second
measurement can be neglected when computing averaged quantities, it must be included when computing
uncertainties.) Together these contribute a∝ Γ−1 statistical uncertainty to the correlation function Gδj(δt).
In the strong-measurement limit the noise contribution of the second measurement can be neglected, and
the remaining statistical uncertainty becomes independent of Γ.

Figures 3(a) and (b) quantify the statistical and total uncertainties at small and large Γ respectively. The
green curves plot the standard error of the mean across 50 trajectories (i.e. statistical uncertainty), and the
purple curves plot the difference between Gδj(δt) determined exactly from MPS wavefunctions and from our
weak measurement approach (with contributions from both statistical and systematic sources). At small Γ,
statistical uncertainties exceed systematic effects, making the total and statistical uncertainties comparable;
for large Γ the relative importance reverses, so the total uncertainty exceeds the statistical contribution. This
is summarized in (c) which plots the overall uncertainties∆GRMS, the quadratic mean averaged across all δt
and the spatial range δj =−10 to 10, where there is significant signal. As expected, the statistical uncertainty
(green) initially decreases as Γ−1 before beginning to saturate at large Γ. As suggested by (a) and (b), the
combined uncertainty (purple) is dominated by statistical effects for small Γ and systematic effects for large
Γ, where it scales as∝ Γ1/2. The solid curves in figure 3(c) confirm these observations with fits to the

quadratic mean of the asymptotic scaling behaviors:
[(
AΓ−1

)2
+B2

]1/2
and

[(
AΓ−1

)2
+
(
CΓ1/2

)2 ]1/2
for

statistical and total uncertainties respectively (with fit parameters A,B, and C). In practice an optimal
measurement strategy balances these two sources of uncertainty; in our 50-trajectory simulations these
contributions are comparable at Γ = 0.1.

Resolution limits—Even aside from technical considerations associated with imperfect imaging system
design, realistic imaging systems only capture light scattered at angles below an angular acceptance θ; this
introduces a momentum-space cutoff kmax = 2π sinθ/λ [25]. As a result, far-field imaging such as PCI
provides no information for wavenumbers above kmax, and for this reason the current generation of PCI
experiments cannot perfectly resolve individual lattice sites.

Given the inevitability of such resolution limits, we numerically simulated the impact of finite resolution
by applying Fourier cutoffs (removing all Fourier components beyond some kmax) to the measurement
outcomes nj,t prior to computing correlation functions. Figure 4(a) shows the DSF obtained in this way is
largely unchanged for |k|< kmax (vertical magenta dashed lines) but is abruptly cutoff at kmax. Panels (b) and
(c) continue by plotting cross sections taken at ω/J= 1.57 and ω/J= 3.46 (horizontal dashed lines in(a))
both with (blue) and without (red) this cutoff. In (b) the sharp spectral feature is clearly resolved and the
DSF is essentially unchanged for |k|< kmax. In (c) the cutoff intersects the spectral feature and additional
deviations appear: for smaller k the DSF differs from the no-cutoff case, and the |k|> kmax signal (inset)
oscillates around zero. Taken together these data confirm that experimentally realistic imaging systems can
obtain the DSF associated with long-wavelength excitations up to their kmax, with worse-case artifacts at the
≈5% level.

5
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Figure 4. DSF derived from measurements with imaging resolution effects (kmax = 0.5, vertical dashed lines) computed for
U/J= 2. As in figure 2, the noise contribution is removed from the second measurement. The resolution-limited DSF is plotted
in (a) using the same color scale as in figure 2, while (b) and (c) show cross sections taken at ω/J= 1.57 and ω/J= 3.46 and with
(blue) and without (red, offset for clarity) resolution limits. The inset in (c) is vertically expanded to show artifacts outside kmax.

Conclusion and outlook—Here, we described an experimentally realistic technique employing a pair of
weak measurements to extract S(q,ω), a four-field correlation function; although our study focused on
degenerate Bose gases, this method is equally applicable to Fermi gases, Bose–Fermi mixtures, and spin
systems. Other techniques for measuring S(q,ω), such as Bragg spectroscopy, detect the system’s response to
experimentally induced perturbations. Therefore, separate technical infrastructure is required to create
excitations at each desired q and ω, and then to measure the response. From this practical perspective, our
method reduces experimental complexity as it relies on measurements alone. We note that systems described
by non-Hermitian evolution can also provide access to correlation functions of this type [26, 27].

As briefly noted above, this approach can be used to obtain two-time correlation functions of any pair of
Hermitian operators that can be weakly measured. Such a process yields the expectation value of the O(Γ1/2)
backaction operator of the first measurement (e.g. δn̂j in equation (2)) multiplied by the measurement
operator of the second measurement (e.g, n̂j ′ in equation (3)). As a straightforward example, in spinor
systems quantities such the ‘spin Van Hove function’ ⟨(n̂↑,j,0 − n̂↓,j,0)(n̂↑,j ′,δt − n̂↓,j ′,δt)⟩ (essentially
correlations in the σ̂z magnetization) could be easily measured by performing PCI with the probe laser
red-detuned with respect to one spin state and blue-detuned with respect to the other [28]. Measuring σx
and σy magnetization requires additional coherent control to transform the desired quantities to and from
the measurement basis. Other examples include spin–spin cross-correlation functions such as ⟨n̂j,↑n̂j ′,↓⟩ in
multi-component (or even multi-species) systems and even hybrid spatial-momentum correlations ⟨n̂jn̂k⟩
that combine the momentum space number density n̂k with the real space density.

A straightforward extension of this scheme to three measurements provides access to a
weak-measurement Leggett–Garg [29, 30] correlation function Bj1,j2 = nj1,t1nj2,t2 + nj1,t2nj2,t3 − nj1,t1nj2,t3 .
Leggett–Garg correlation functions obey Bells inequality-like relations that distinguish between classical and
quantum correlations. Here violations of a Leggett–Garg inequality may identify non-trivial entanglement in
self-equilibrating closed systems, even when the eigenstate thermalization hypothesis is otherwise valid for
local degrees of freedom [31].

Extensions of this approach that directly correlate more than two measurements access higher order
correlation functions, however, the resulting signal derives from higher order moments of the random
variablemj,t and are dwarfed by two-point correlators (with sufficient statistics higher same-time
correlations have been observed [32]). It is possible, therefore, that such extensions may even yield out of
time ordered correlations with their ability to quantify quantum chaos and entanglement spreading [33].

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.
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Appendix. Increased measurement strength

In the main body of the text, we introduced a measurement model (equations (1) and (2)) that is valid up to
second order in Γ1/2. This model describes both measurement outcomes and the associated conditional
change in the system’s wavefunction. We then related the Van Hove function Gδj(t ′) to the cross-correlation
function of measurement outcomes at order O(Γ1/2) in the wavefunction update rule, and performed an
ensemble average in the limit of infinitely many trajectories. In this appendix, we quantify the next-order
contributions to Gδj(t ′), and examine the impact of employing a finite numberM of trajectories.

A.1. Model
In our initial exposition, we considered correlation functions such as nj,0nj′,t ′ , for which the logic of the
argument was most transparent. Here, we instead focus on noise correlations, i.e. δnj,0δnj′,t ′ with
δnj,t ≡ nj,t − nj,t; this choice leaves the underlying reasoning and conclusions unchanged but leads to greatly
simplified expressions.

In terms of noise variables, the measurement model becomes

δnj,t =
(
⟨n̂j,t⟩− ⟨n̂j,t⟩

)
+

mj,t

2Γ1/2
, and |ψ ′ (t)⟩=

1+Γ1/2
∑
j

mj,tδn̂j,t −
Γ

2

∑
j

δn̂2j,t

 |ψ (t)⟩ (A1)

for the weak measurement of atom number n̂j,t at site j and time t with measurement strength Γ≪ 1.
Measurement noise is described by the random variablemj,t, which has zero mean and covariance
mj,tmj′,t ′ = δj,j ′δt,t ′ . Meanwhile, quantum fluctuations about ⟨n̂j,t⟩ are described by the operator
δn̂j,t ≡ n̂j,t −⟨n̂j,t⟩, i.e. ⟨δn̂j,t⟩= 0. These expressions show both how the weak measurement result nj,t differs
from the operator expectation value ⟨n̂j,t⟩ and how |ψ(t)⟩ is conditionally updated to |ψ ′(t)⟩ based on the
measurement outcome.

In general, the existence of time subscript on operators, such as n̂j versus n̂j,t, is used to distinguish
between Schrödinger and Heisenberg picture operators. This convention fails for δn̂j,t which explicitly
depends on t via ⟨n̂j,t⟩ independent of the picture; for example in equation (A1) operators are in the
Schrödinger picture. (Note: as compared to the notation in the main body of the text, here time appears via a
subscript on operators, i.e. n̂j(t)→ n̂j,t; this is to allow expressions such as in equation (A2) to fit on a single
line.)

The density-density correlation function requires knowledge of ⟨n̂j,0⟩ as well as ⟨n̂j′,t ′⟩ ′, which is
influenced by measurement backaction and then by unitary evolution. To order O(Γ), this latter quantity is

⟨n̂j′,t ′⟩ ′ = ⟨ψ (0)|

1+Γ1/2
∑
j1

mj1,0δn̂j1,0 −
Γ

2

∑
j1

δn̂2j1,0

 n̂j′,t ′

1+Γ1/2
∑
j2

mj2,0δn̂j2,0 −
Γ

2

∑
j2

δn̂2j2,0

 |ψ (0)⟩

= ⟨n̂j′,t ′⟩+ 2Γ1/2
∑
j1

mj1,0Re
(
⟨δn̂j1,0n̂j′,t ′⟩

)
−Γ

∑
j1

Re
(
⟨δn̂2j1,0n̂j′,t ′⟩

)
+Γ

∑
j1,j2

mj1,0mj2,0⟨δn̂j1,0n̂j′,t ′δn̂j2,0⟩

≈ ⟨n̂j′,t ′⟩+ 2Γ1/2
∑
j1

mj1,0Re
(
⟨δn̂j1,0n̂j′,t ′⟩

)
−Γ

∑
j1

Re
(
⟨δn̂2j1,0n̂j′,t ′⟩− ⟨δn̂j1,0n̂j′,t ′δn̂j1,0⟩

)
︸ ︷︷ ︸

≡Lj′,t ′

, (A2)

where we defined the O(Γ) term as Lj′,t ′ owing to its formal similarity to the Lindblad term in master
equations. In simplifying Lj′,t ′ , we replacedmj1,0mj2,0 → δj1,j2 as suggested by Itô calculus [a similar
replacement was used when deriving the wavefunction update rule’s O(Γ) term]. In analogy with the
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wavefunction update rule, only the O(Γ1/2) term depends on the random variable, leading to the simple
expression

⟨n̂j′,t ′⟩ ′ −⟨n̂j′,t ′⟩ ′ = 2Γ1/2
∑
j1

mj1,0Re
(
⟨δn̂j1,0δn̂j′,t ′⟩

)
(A3)

for fluctuations, thereby recovering equation (5).

A.2. Statistical uncertainties
With expressions for δnj,0 and δnj′,t ′ in hand, we now examine the cross correlation function

δnj,0δnj′,t ′ =
mj,0

2Γ1/2

[(
⟨n̂j′,t ′⟩ ′ −⟨n̂j′,t ′⟩ ′

)
+

mj′,t ′

2Γ1/2

]
+O

(
Γ1/2

)
=

1

4Γ
mj,0mj′,t ′ +

∑
j1

mj,0mj1,0Re
(
⟨δn̂j1,0δn̂j′,t ′⟩

)
. (A4)

The absence of any systematic artifacts in this un-averaged CCF through order O(Γ1/2) results from the
complete cancellation of the O(Γ) term in equation (A3).

Performing the ensemble average then yields the mean

δnj,0δnj′,t ′ = Re
(
⟨δn̂j,0δn̂j′,t ′⟩

)
, (A5)

and the noise-variance

var=
(
δnj,0δnj′,t ′

)2 − δnj,0δnj′,t ′
2
=

1

16Γ2
+Re

(
⟨δn̂j,0δn̂j′,t ′⟩

)2
+
∑
j1

Re
(
⟨δn̂j1,0δn̂j′,t ′⟩

)2
. (A6)

We used the fact that a zero-mean unit-variance Gaussian random variablem (withm= 0,m2 = 1)
has the higher order momentm4 = 3, som2

j,0mj1,0mj2,0 = 2δj,j1δj1,j2 + δj1,j2 . This recovers the scaling of the
‘statistical’ noise shown in green in figure 3, where the uncertainties are the standard error of the mean, i.e.
[var/(M− 1)]1/2, with noise-variance var defined as above.

A.3. Systematic uncertainties
In studying the systematic error, we consider fluctuations away from the exact result

⟨n̂j′,t ′⟩ ′ −⟨n̂j′,t ′⟩= 2Γ1/2
∑
j1

mj1,0Re
(
⟨δn̂j1,0δn̂j′,t ′⟩

)
−ΓLj′,t ′ , (A7)

rather than away from the ensemble average as in the preceding section. In this case, the cross-correlation
function

δnj,0δnj′,t ′ =
1

4Γ
mj,0mj′,t ′ +

∑
j1

mj,0mj1,0Re
(
⟨δn̂j1,0δn̂j′,t ′⟩

)
− 2Γ1/2mj,0Lj′,t ′ (A8)

contain a systematic artifact, which, while absent in the mean, contributes a new term to the noise variance

var=
1

16Γ2
+Re

(
⟨δn̂j,0δn̂j′,t ′⟩

)2
+
∑
j1

Re
(
⟨δn̂j1,0δn̂j′,t ′⟩

)2
+ 4ΓL2j′,t ′ . (A9)

This then leads to the observed∝ Γ1/2 scaling in the systematic uncertainty (purple) in figure 3. This is a
hybrid term that mixes systematic and statistical uncertainties, leading to a standard error of the mean that
still goes to zero in the largeM limit. True statistical uncertainties that directly affect the mean therefore
require higher-order expressions in the measurement model, which are beyond the scope of this work.
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References

[1] Ashcroft N W and Mermin N D 1976 Solid State Physics (Harcourt Brace College Publishers)
[2] Sturm K 1993 Z. Naturforsch. A 48 233
[3] Hinkov V, Bourges P, Pailhès S, Sidis Y, Ivanov A, Frost C D, Perring T G, Lin C T, Chen D P and Keimer B 2007 Nat. Phys. 3 780
[4] Yao W, Li C, Wang L, Xue S, Dan Y, Iida K, Kamazawa K, Li K, Fang C and Li Y 2018 Nat. Phys. 14 1011
[5] Banerjee A et al 2018 npj Quantum Mater. 3 8
[6] Birkl G, Gatzke M, Deutsch I H, Rolston S L and Phillips W D 1995 Phys. Rev. Lett. 75 2823
[7] Steinhauer J, Ozeri R, Katz N and Davidson N 2002 Phys. Rev. Lett. 88 120407
[8] Pino J M, Wild R J, Makotyn P, Jin D S and Cornell E A 2011 Phys. Rev. A 83 033615
[9] Landig R, Brennecke F, Mottl R, Donner T and Esslinger T 2015 Nat. Commun. 6 7046
[10] Biss H, Sobirey L, Luick N, Bohlen M, Kinnunen J J, Bruun G M, Lompe T and Moritz H 2022 Phys. Rev. Lett. 128 100401
[11] Brown P T, Guardado-Sanchez E, Spar B M, Huang E W, Devereaux T P and Bakr W S 2020 Nat. Phys. 16 26
[12] Bohrdt A, Demler E, Pollmann F, Knap M and Grusdt F 2020 Phys. Rev. B 102 035139
[13] Bohrdt A, Demler E and Grusdt F 2021 Phys. Rev. Lett. 127 197004
[14] Xu Q, Greplova E, Julsgaard B and Mølmer K 2015 Phys. Scr. 90 128004
[15] Hung C-L, Zhang X, Ha L-C, Tung S-K, Gemelke N and Chin C 2011 New J. Phys. 13 75019
[16] Guerlin C, Bernu J, Deléglise S, Sayrin C, Gleyzes S, Kuhr S, Brune M, Raimond J-M and Haroche S 2007 Nature 448 889
[17] Minev Z K, Mundhada S O, Shankar S, Reinhold P, Gutiérrez-Jáuregui R, Schoelkopf R J, Mirrahimi M, Carmichael H J and

Devoret M H 2019 Nature 570 200
[18] Wiseman HM and Milburn G J 2009 Quantum Measurement and Control (Cambridge University Press)
[19] The ensemble can include trajectories for a single initial pure state, or different initial states sampled from a specified distribution
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