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Abstract

We present machine learning techniques in conjunction with a varied dataset of laser cooled potassium-39 atoms in vapor fed magneto-optical traps for the prediction of physical parameters (i.e. number of atoms and temperature) of these atomic ensembles using only
scattered light (fluorescence) images. The light emitted from fluorescing clouds provides structural information with known techniques to extract an estimate of atom number, but other internal properties, namely cloud temperature, are currently "hidden" until the trap is
released and a free expansion image is captured, in turn destroying that instance of captured atoms. We collect a wide ranged and balanced dataset of approximately 5 x 10”3 unique parameter groups that have (potentially) captured atoms; the set spans cases of no
discernable captured atoms to large dense groupings of atoms, and a variety of oddly shaped and sized atom clouds betwixt. The data is then distilled into meaningful images with systematic generation of labels, including a label for presence of a cloud in the image and quality
of cloud fitting for trusted calculation of temperature and atom number. Several machine learning models with increasing complexity are then trained to predict the atom number and temperature using only the non-destructive images and labels, with no access to the free
expansion images typically required for such characterization. Trained models include a single layer matrix multiplication, a deep fully connected network (FNN), and a convolutional neural network (CNN).
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