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Many-body phases from effective
geometrical frustration and long-range
interactions in a subwavelength lattice
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D. Burba 1, G. Juzeliūnas 1, I. B. Spielman 2,3 & L. Barbiero 4

Geometrical frustration and long-range couplings are key contributors to create quantumphaseswith
different properties throughout physics. We propose a scheme where both ingredients naturally
emerge in a Raman induced subwavelength lattice. We first demonstrate that Raman-coupled
multicomponent quantum gases can realize a highly versatile frustrated Hubbard Hamiltonian with
long-range interactions. The deeply subwavelength lattice period leads to strong long-range
interparticle repulsion with tunable range and decay. We numerically demonstrate that the
combination of frustration and long-range couplings generates many-body phases of bosons,
including a range of density-wave and superfluid phases with broken translational and time reversal
symmetries, respectively. Our results thus represent a powerful approach for efficiently combining
long-range interactions and frustration in quantum simulations.

In a diverse range of systems fromneutron stars1 to nuclei2,3 and electrons4,5,
intrinsic strong long-range interactions are essential for stabilizing strongly
correlated states6. Large scale quantum correlations are an essential element
in a wide variety of phenomena7. These couplings between far-spaced ele-
mentary constituents can lead to interesting properties such as static
entanglement8,9 and symmetry breaking10–12, as well as efficient spreading of
highly non-local correlations in out-of-equilibrium configurations13,14. In
condensed matter systems this situation is further enriched by geometric
frustrationwhich can compete with the electrons’ native screenedCoulomb
interaction15. Under these conditions, a large ground state degeneracy can
occur, topological16–18 and spontaneously-symmetry-broken phases19,20 can
take place. Here we describe a 1D lattice for ultracold atoms with effective
geometric frustration, and interactions extending over several lattice sites.

Our analysis is particularly relevant because the simultaneous presence
of long-range couplings, geometrical frustration and quantum fluctuations
challenge all current theoretical treatments21,22; it is, therefore, crucial to back
theoretical predictions with accurate experiments. While very recent solid
state experiments tackle configurations where long-range couplings coexist
with kinetic frustration23, the injection of geometrical frustration remains a
distant goal. In this respect, promising initial results in specific geometries of
tweezer-arrays of Rydberg atoms have been obtained24,25, however, com-
plimentary experimental realizations for itinerant systems such as neutral
atoms in optical lattices26,27 are lacking.Without frustration, the role of long-
range interactions have been explored for magnetic-atom28,29, polar
molecules30, and cavity QED31 systems. Without long-range interactions,

geometrical frustration has also been experimentally investigated only in
weakly interacting regime32–37, while strong interactions have never been
explored. Even theoretical proposals to engineer geometrically frustrated
strongly correlated phases mainly concentrate on systems with contact
interactions38–44 or, very recently, nearest-neighbor repulsion45. This work
provides a significant step forward by describing quantum gases in strongly
interacting regimes where quantum fluctuations, geometrical frustration
and long-range couplings strongly compete.

We consider the many-body physics of a recently realized class of
subwavelength 1D optical lattices46–55 and show that they are a suitable
platform for combining geometric frustration and finite-ranged interactions.
These lattices use Raman transitions to couple N internal atomic states with
lasers of wavelength λ slightly detuned from the Raman resonance condition
[Fig. 1a]. This setup is described by an extendedHubbardHamiltonian (Bose
orFermi)where the latticeperiod is reduced fromλ/2 toλ/(2N). In contrast to
existing optical lattice systems—such as magnetic atoms56,57, weakly dressed
Rydberg atoms58, and polar molecules59,60—where the spatial decay of the
interaction isfixedand tunnelingprocesses occurbetweenneighboring lattice
sites, our lattice allows for interactions and tunneling with a tunable range. In
particular, we show that: (1) the range and sign of tunneling processes can be
controlled giving rise to effective geometric frustration [see Fig. 1b]; and
(2) the interactions can be approximated by a power lawwhose exponent is a
function of the Raman coupling strength.

We then turn to a specific implementation based on bosonic 87Rb and
identify a range of strongly correlated regimes through a matrix-product-
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states (MPS) analysis61.When theN = 3 states of the F = 1 hyperfine ground
state are considered, wefind a normal superfluid (SF) phase in the regime of
weak interaction and short range tunneling. Detuning from Raman reso-
nance introduces geometrical frustration leading to a chiral superfluid (CSF)
phase with broken time-reversal (TR) symmetry; similar CSFs have been
predicted in far ranging systems from cold atoms in p-orbitals62–64 to
hadrons65. Extending the interaction rangedestabilizes the SFphases in favor
of a spontaneous symmetry broken (SSB) density wave (DW1/2) insulator
consisting of alternating occupied and empty sites. These phases persist for
N = 5 internal states (modeling the F = 2 hyperfine manifold of 87Rb). The
effective lattice perioddecreases asN increases,making long-range repulsion
more significant. At filling factor 1/3 this stabilizes a period-3 density wave
(DW1/3) never achieved in cold atoms setups with individual bosons always
separated by two empty lattice sites. Finally, we provide a detailed protocol
for state preparation and detection, providing complete experimental access
to all the interesting many-body regimes. Our results provide a solid and
alternative route to explore geometrically frustrated quantum matter in
presence of strong long-range correlations.

Results
Physical setup
We consider the one dimensional sample of ultracold bosons of mass ma

illuminated by a pair of counterpropagating lasers of wavelength λ. This
geometry serves to define the two photon recoil wavenumber kR = 2π/λ and
energy ER ¼ _2k2R=ð2maÞ. The optical fields induce two photon Raman
transitions that cyclically couple N internal atomic states (labeled by the
indexm = 0, 1,…,N− 1) with strengthΩ. The cyclic coupling condition is
fulfilled by Raman-coupling the m = 0 and the m =N− 1 states [show for
N = 3 in Fig. 1a]. We explore the configuration of nearly-resonant
Raman coupling, where each transition is detuned by a small amount
δm = ϵm−1− ℏδωm−1 from resonance; as shown in Fig. 1a, ϵm is the energy
difference between consecutive states m and m+ 1, and δωm is the corre-
sponding Raman frequency-difference.

This scheme can be described by the light-matter Hamiltonian density
ĤLMðxÞ ¼ ĤRðxÞ þ ĤdðxÞ, with contributions from Raman coupling

ĤRðxÞ ¼ �Ω
XN�1

m¼0

e2ikRxϕ̂
y
mþ1ðxÞϕ̂mðxÞ þH:c:; ð1Þ

and detunings

ĤdðxÞ ¼
XN�1

m¼0

δmϕ̂
y
mðxÞϕ̂mðxÞ; ð2Þ

both expressed in terms of bosonic field operators ϕ̂
y
mðxÞ and ϕ̂mðxÞ. These

describe the creation and annihilation of a particle in internal state

m = 0, 1, . . . ,N− 1 at position x. Owing to the cyclic coupling, we label the

internal states periodically so that ϕ̂
y
mðxÞ ¼ ϕ̂

y
mþN ðxÞ, and we adopt an

energy zero such that the detunings sum to zero,
P

mδm ¼ 0. The operator

ĤR effects a tight-binding lattice in a synthetic dimensional space where
each internal statem corresponds to a synthetic lattice site66. In this synthetic
dimension picture, the Raman coupling in ĤR includes a Peierls phase 2kRx
on each hopping term, while the detuning term Ĥd captures on-site
energies. In analogy with conventional tight-binding lattices in real space,
we rewrite ĤLM in a dressed state representation using the synthetic-
dimension momentum states basis

ψ̂y
nðxÞ ¼

1ffiffiffiffi
N

p
XN�1

m¼0

e2πinm=N ϕ̂
y
mðxÞ; ð3Þ

with n ∈ {0, 1, ⋯ , N− 1}. This transformation diagonalizes the Raman
coupling operator

ĤRðxÞ ¼
XN�1

n¼0

εnðxÞψ̂y
nðxÞψ̂nðxÞ ð4Þ

with energies

εnðxÞ ¼ �2Ω cos 2kRx � 2πn=N
� � ð5Þ

describing the usual cosinusoidal tight-binding dispersion with minima
shifted fromzero “crystalmomentum”by thePeierls phase 2kRx. In termsof
the real-space coordinate x, ĤRðxÞ defines a set ofN cosinusoidal adiabatic
potentials with period λ/2. The potentials corresponding to neighboring
dressed states are separated from each other by a subwavelength spacing
a = λ/(2N), as illustrated inFig. 2. Thepotentialminimaare located at spatial
positions xj = aj given by the subwavelength lattice site index j = n+Nℓ,
itself defined by both the unit cell ℓ of the underlying λ/2 lattice as well as the
dressed state n.

In the synthetic-dimension momentum representation the detuning
Hamiltonian density

ĤdðxÞ ¼
XN�1

n;Δn¼0

γΔnψ̂
y
nþΔnðxÞψ̂nðxÞ ð6Þ

has off-diagonal terms that induce long-range tunneling. For oddN this can
be expressed in a conventional tunneling form

ĤdðxÞ ¼
XN�1

n¼0

XðN�1Þ=2

Δn¼1

γΔnψ̂
y
nþΔnðxÞψ̂nðxÞ þH:c: ð7Þ

Fig. 1 | Experimental concept. a Lasers induce two-
photon Raman transitions of intensity Ω that
cyclically couple N = 3 consecutive internal states
(labeled by m) with energy difference ϵm.
b Subwavelength lattice with long-range tunneling;
all links emanating from the j = 0 site (with dressed
state index n = 0 and unit cell ℓ = 0) have their tun-
neling strength labeled. Top: synthetic dimension
picture with triangular plaquettes and the potential
for geometric frustration, with representative tun-
neling strengths labeled. Bottom: corresponding 1D
lattice with explicit long-range links.
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with matrix elements

γΔn ¼
1
N

XN�1

m¼0

δme
2πimΔn=N ð8Þ

given by a discrete Fourier transform of the detunings. For even N the Δn
sum runs from 1 toN/2; forΔn =N/2 the tunnelingmatrix elementmust be
divided by 2 to avoid double counting. In any case, these complex valued
tunneling matrix elements can be expressed as the product γΔn ¼
jγΔnj expðiϕΔnÞ of a strength j~γΔnjwithγ0 = 0 (since∑mδm = 0) and aPeierls
phase ϕΔn with ϕΔn =−ϕ−Δn (since δm is real valued). We focus on sym-
metric patterns of detuning (i.e., δm = δ−m), inwhich case γΔn is additionally
real-valued, but still can be long-ranged with a combination of positive and
negative contributions.

Band structure and tight binding description
The preceding discussion concluded with a continuum description of our
sub-wavelength lattice; to describe the many-body physics of this config-
urationwe now construct the 1D latticemodel for atoms in the lowest Bloch
band. Without interactions this provides an exact description of the low-
energy physics, and for large enoughRaman coupling interaction-mixing of
higher bands can be neglected.

In the absence of detuning, the lattice consists of N independent
sinusoidal potentials each with the ground-band Wannier states shown in
Fig. 2. In general the operator

b̂
y
r;n;‘ ¼

Z
dx w�

r ðx � ajÞψ̂y
nðxÞ ð9Þ

describes the creationof anatom in the r-thBlochbandof then-th sublattice
with Wannier amplitudes wr(x) computed for a sinusoidal-lattice67, and as
above j = n+Nℓ. In what follows we focus on the lowest (r = 0) band and
succinctly label these operators via b̂

y
j , using the subwavelength lattice index

j alone.

The native tunneling strength within these independent lattices

JΩN ¼ �
Zþ1

�1

dx w�ðxÞ � _2∂2x
2m

þ ε0ðxÞ
� �

wðx � aNÞ ð10Þ

couples states separated by ∣Δj∣ =N sublattice sites, depends only on the
Raman coupling strength Ω, and is defined to be zero for ∣Δj∣ ≠N.

Additional couplings, which are significant for distances Δj <N, are
provided by detuning induced tunneling

JδΔj ¼ �γΔj

Zþ1

�1

dx w�ðxÞwðx � aΔjÞ ð11Þ

that is proportional to the overlap integral between Wannier functions
associated with different atomic dressed states.

Figure 3 demonstrates that the combined tunneling JΔj ¼ JΩN þ JδΔj has
a variable sign and significant long-ranged contributions; markers are
computed directly from Wannier functions and curves use the Gaussian
approximation and γΔj (see “Methods” for details). Panel (a) illustrates the
simpleN = 3 case for three different values of γ1 (as we note inMethods, this
suffices to fully quantify the detuning induced tunneling in this case), with
fixed native tunneling. This case illustrates both the long-range character of
JΔj as well as the sign-inversion between short and long range. Panel (b)
turns to the case of N = 5 internal states—specified by both γ1 and γ2—
enabling more complicated tunneling configurations, such as shown where
γ1 and γ2 have opposite sign.

Fig. 2 | Subwavelength Raman lattice. a, b Lattice forN = 3 andN = 5 internal states
respectively, both computed for Raman coupling Ω = 3.5ER. In both cases the top
panel plots the adiabatic potentials and the bottom panel displays representative
Wannier functions w(x− ja); colors mark the dressed state index. Fig. 3 | Subwavelength tunneling JΔj as a function of distance d.Computed directly

fromWannier functions (markers, including native tunneling as marked), or from a
Gaussian variational ansatz presented in Methods (curves, excluding native tun-
neling). aN = 3 internal state case, computed for Raman couplingΩ = 3.0ER andfirst
detuning Fourier component γ1/ER∈ {0.02, 0.1, 0.18}. b N = 5 internal state case,
computed for Raman coupling Ω = 3.5ER, first detuning Fourier component
γ1 =−0.06ER and second detuning Fourier component γ2/ER ∈ {0.03, 0.06, 0.09}.
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Contrary to atoms in the ground-band of an optical lattice, where the
tunneling strength—fixed by the shape of the Wannier function w(x)—is
strictly positive and the nearest-neighbor contribution dominates, Eq. (11)
along with Eq. (7) show that proper selection of detuning parameters δm
allows for long-range tunneling with a combination of positive and negative
contributions. This enables effective geometric frustration even in 1D, and
in the following sections we explore the many-body interplay between
effective geometric frustration and interaction processes.

Interacting processes
The preceding section defined the single-particle tunneling contribution to
our system’s Hubbard model description. Here we continue by computing
the two-body bosonic interactions with strength given by the overlap
integral of atomic densities

VΔj ¼ g1D

Z þ1

�1
dx ∣wðxÞ∣2∣wðx � aΔjÞ∣2; ð12Þ

where the pre-factor g1D describes the strength of the contact interaction
that does not depend on the atomic internal state (a good approximation for
ultracold 87Rb atoms in their ground electronic state68). Even for such simple
underlying interactions, effective interactions between laser-dressed atoms
generally include additional non-local contributions such as density assisted
tunneling and pair tunneling (see refs. 69,70 for examples in the
continuum). However, in the present case such terms are absent because
the transformation in Eq. (3) is independent of the spatial coordinate and
therefore leaves density-density interactions in Eq. (12) unchanged. As
suggested by theWannier orbitals in Fig. 2, the overall strength and range of
VΔj can be tuned by modifying the effective lattice depth 2Ω which
predominately affects the width of Wannier functions.

Thedetailedproperties ofVΔj are summarized inFig. 4 (withnumerical
values suitable for 87Rb; see “Methods” for details), with markers denoting
explicit numerical evaluation of Eq. (12) for N = 3 (red circles) and N = 5
(blue stars) internal states. The solid curves plot the result of a variational
calculation using a Gaussian ansatz for the Wannier functions (see
“Methods” for details). Panel (a) confirms that VΔj can be a significant
fraction of V0 over the range of a few subwavelength lattice sites, and the
inset shows that, as expected for the underlying sinusoidal lattice, the overall
strength dependsweakly on the Raman coupling strengthΩwith a nominal
V0 ~Ω1/4 scaling.

Comparison to other long-range interactions
For the usual case of ultracold atoms in the ground band of an optical lattice,
the on-site interaction V0 greatly exceeds longer ranged contributions
becauseWannier functions are highly localized to individual lattice sites. As
a result, additional contributions such as dipolar interactions are required to
induce long-range interactions in cold-atom systems.

In conjunction with local interactions, long-ranged interactions can be
modeled by the power-law interaction potential

VΔj ¼ δΔj;0V0 þ ð1� δΔj;0ÞVαΔj
�α: ð13Þ

In the dipolar case an applied electric or magnetic field induces interactions
with α = 328; this limits the range of many-body phenomena that can be
realized. Our scheme is not subject to this limitation and α is not fixed a
priori.

For many-body physics, the very long-ranged tail of this interaction
is often unimportant, making the interaction strengths at Δj = 0, 1 and 2
the only relevant contributions71. These can be quantified by the relative
strength Vα/V0 of the power-law to local potentials, as well as the power
law exponent α ¼ log2ðV1=V2Þ. The relative strength Vα/V0, shown in
Fig. 4(b-top), confirms that for both N = 3 and N = 5 the long-range
contribution can be significant; because the interactions ultimately derive
from overlap integrals, we have 1 >Vα/V0≥ 0. Owing to the reduced
spacing between subwavelength lattice sites for increasing N, Vα/V0 is

larger for N = 5 than N = 3. Figure 4(b-bottom) shows that the power law
exponent is not fixed (as it would be for dipolar or Van der Waals
systems), but crucially it can be tuned simply by varying Ω; for our
parameters α approximately resides in 5≲ α≲ 8 for N = 3 and 2≲ α≲ 3
for N = 5. This highlights the flexibility of our setup compared to con-
ventional optical lattice realizations, and provides an avenue for realizing
interesting many-body phases.

More broadly speaking, tunable power-law like scaling of the
interaction’s range in two-level systems has been realized for spin-spin
couplings in trapped ion systems72 and predicted for transversely con-
fined hard-core dipolar bosons71. In contrast, our construction is
applicable to itinerant gases of both bosonic and fermionic ultracold
atoms, and, as we focus on below, it combines effective geometrical
frustration in the single-particle degrees of freedom with power-law like
scaling of the interactions.

Table 1 summarizes the interaction strengths V0,1,2 for the range of
Raman coupling Ω that we focus on. As compared to the typical ≲kB × 5
nK = h × 100Hz thermal energy scales for ultracold atoms inoptical lattices,
this shows that forN = 3 interactions are relevant forΔj = 0 and 1; forN = 5
the Δj = 2 interaction is also appreciable. The Δj = 1 nearest neighbor
interaction strengths largely exceed those of magnetic lanthanide atoms56,57,
and instead are comparable those predicted for polar molecules59.

Fig. 4 | Long-range interactions. Computed directly from Wannier functions
(markers), or from aGaussian variational ansatz (curves). In both cases, red and blue
mark N = 3 and N = 5 internal states, respectively. a Dependence of interaction
strength VΔj on distance d for Raman intensity Ω/ER = 2.5. (Inset) On-site interac-
tion strength. bTop: Relative strength of long-range interactionsV1/V0 as a function
of Raman coupling Ω. Bottom: Effective power law exponent α versus Raman
coupling Ω.
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Many-body phase diagram
The combination of terms derived in the previous section can be assembled
into an extended 1D Bose-Hubbard (BH) Hamiltonian

Ĥ ¼�
X
j

X
Δj≥ 0

JΔjðb̂
y
j b̂jþΔj þ b̂

y
jþΔjb̂jÞ

þ
X
j

V0

2
n̂jðn̂j � 1Þ þ

X
Δj>0

VΔjn̂jn̂jþΔj

" #
;

ð14Þ

where n̂j ¼ b̂
y
j bj, off resonant couplings to higher bands can be neglected

in the regime of large Raman coupling (Ω≳ 3 for 87Rb, see “Methods” for
details. For smaller Raman couplings, one would need to calculate
renormalized Hamiltonian matrix elements, which arise due to higher
bands73. While extended BH models including either geometric frustra-
tion or long ranged interactions have been widely studied74–83, our rea-
lization embodied by Eq. (14) is the first proposal to include both long-
range interactions and effective geometrical frustration. In what follows,
we use MPS calculations61 to obtain the resulting ground state phases for
N = 3 and N = 5, and then we quantify the resulting phases using three
quantities.

First, the staggered density

δN ¼ 1
L

X
j

ð�1Þ jðhn̂ji � �nÞ; ð15Þ

where �n ¼ L�1P
jhn̂ji, signals period-2 density modulations, and serves as

an indicator of spontaneously broken translational symmetry. In the
thermodynamic limit a true period-2 SSB ground state would generally be
an equally weighted superposition of these two symmetry broken
configurations, making δNj = 0; in this case a higher order correlation
function would be required to extract this order. When studying this order
parameter we use an odd number of lattice sites which serves to explicitly
break the degeneracy between the two configurations. This order parameter
would be non-zero for either density-wave solids.

Second, the single particle Green function

gð1Þj ðΔjÞ ¼ hb̂yjþΔjb̂ji ð16Þ

quantifies the degree of spatial phase coherence; in 1D, an algebraic decay of
this quantity at long-range (i.e., quasi long-range off-diagonal order) reveals
the presence of gapless phases with SF properties.

Lastly we consider the correlation function

κ2j ðΔjÞ ¼ hκ̂jþΔjκ̂ji; ð17Þ

where κ̂j ¼ iðb̂jb̂
y
jþ1 � b̂

y
j b̂jþ1Þ is the local current operator for the link

between j and j+ 1. The long-range order of κ2j ðΔjÞ indicates correlations
between currents on links a distance Δj apart, and is associated with
spontaneous breaking of TR symmetry. The same conclusions can be
derived by calculating directly the order parameter κ̂j. Importantly, this
strategy requires the addition of a weak term κ̂j in Eq. (14) which allows
breaking the ground state degeneracy associated to the currents going from
left to right and vice versa with the same amplitude.

Our MPS calculations were performed on large systems with L ≈ 180
sites (figure captions provide exact details), and all reported quantities were
evaluated in the Lcen = 100 central sites to minimize boundary effects (from
open boundary conditions). In all cases truncation errors <10−7 were
achieved by using bond-dimensions up to 1000. We check for quasi-long
range order (LRO) by evaluating correlation functions at this maximum
possible range with jmin ¼ ðL� LcenÞ=2 and Δj = Lcen, for example, one
would quantify long range phase coherence and current correlations in
terms of

gð1Þcen � gð1Þjmin
ðLcenÞ; and κ2cen � κ2jmin

ðLcenÞ: ð18Þ

N = 3 internal states
We begin ourMPS analysis withN = 3 internal states and at a fixed particle
density of �n ¼ 1=2 atoms per subwavelength lattice site. Geometric frus-
tration is inducedby selecting theFourier transformeddetuning γ1 of Eq. (8)
to be positive, which makes both Jδ1; J

δ
2 < 0 while the bare tunneling JΩ3

remains, as always, positive [see Fig. 3a]. In this case, the extended BH in
Eq. (14) models a triangular ladder with both ferromagnetic and anti-
ferromagnetic tunnel couplings [see Fig. 1b, top panel] and long-range
interactions. Figure 5a shows that staggered density order (with δN > 0) is
present for small γ1 and range of coupling strengths Ω (different curves).
This indicates the presence of a SSB phase, but does not yet distinguish
between supersolid and density wave (DW) insulating phases. Next, Fig. 5b
shows that, by quantifying off-diagonal order, the one-body Green’s

Table 1 | Interaction strength values

N = 3 N = 5

V0 V1 V2 V0 V1 V2

Ω/ER ER h ×Hz ER h ×Hz ER h × Hz ER h × Hz ER h × Hz ER h × Hz

3.0 0.236 867 0.047 172 0.001 3 0.236 867 0.130 479 0.024 87

3.5 0.247 908 0.042 155 0.000 2 0.247 908 0.129 474 0.020 74

4.0 0.257 944 0.038 140 0.000 1 0.257 944 0.127 469 0.017 63

Exact form of interaction strengths is given by Eq. (12). Approximate analytical expression for interaction strengths is given by Eq. (41).

Fig. 5 | Asymptotic correlation functions forN= 3 internal states as a function of
detuning Fourier component γ1. a Staggered density δN(1); b One-body Green’s
function gð1Þcen; and c vector order parameter κ2cen. g

ð1Þ
cen and κ

2
cen are defined in Eq. (18).

All three cases include Raman couplingsΩ/ER = 3.0 (emptymarkers) andΩ/ER = 3.5
(filled markers). These were obtained in a L = 181 lattice site chain with 91 particles.
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function gð1Þcen delineates these cases. At small γ1 there is no phase coherence,
implying that the system is aDW1/2 insulator.Changes toγ1 proportionately
change the detuning induced tunneling amplitudes (here J1 and J2), but have
no impact on the native tunneling (given by J3) nor the interaction strengths
VΔj. Therefore increasing γ1 increases the kinetic contribution to the
Hamiltonian, ultimately melting the DW insulator. Comparing (a) and (b)
shows that gð1Þcen becomes non-negligible concurrently with the vanishing of
δN; as a result we conclude that no supersolid is present and the transition is
from DW1/2 to conventional SF.

Lastly, Fig. 5c shows that the current-current correlation function κ2cen
becomes non-zero for a range of γ1 and smaller Ω (empty markers).
Comparing (b) and (c) shows that while this order parameter is only non-
zero when gð1Þcen > 0, the reverse is not true. This allows us to disambiguate a
conventional SF phase [gð1Þcen > 0 and κ2cen ¼ 0] from a TR broken CSF
[gð1Þcen > 0 and κ2cen > 0].

In the next section, we show that by increasing the number of possible
internal states fromN = 3 toN = 5, CSF andmore intriguing SSB phases can
be engineered.

N = 5 internal states
Increasing toN = 5 internal states offersmore control over the extended BH
owing to the independent tunneling parameters γ1 and γ2 (see “Methods”
for details). Consequently, more complex configurations of tunneling
amplitudes are possible. Here,we consider γ1 < 0 and γ2 > 0 so that Jδ1; J

δ
4 > 0

and Jδ2; J
δ
3 < 0 [see Fig. 3b]; this directly yields a geometrically frustrated

lattice structure. Inwhat followswe fixΩ/ER = 3.5, however, we verified that
for 3.0 <Ω/ER < 4.5 the simulation results change only quantitatively.

We first connect to ourN = 3 results by obtaining the phase diagram in
the γ1-γ2 plane at half filling (�n ¼ 1=2) shown in Fig. 6a, and representative
values of the correlation functions are shown in (b) evaluated at γ2 =−0.06.
Individual phases are identified using the logic employed in the preceding
section.

For small γ1 and γ2 all tunneling coefficients JΔj are small compared to
the long-range repulsion VΔj, at half filling this stabilizes a DW1/2 phase.

Making γ1 increasingly negative has the predominant effect of introducing a
proportionally negative J1. As with the N = 3 case, this simply reduces the
ratioVΔj=J

δ
1 of interaction to kinetic energy andmelts the DW1/2 insulator.

The resulting conventional SF phase restores the bulk translational sym-
metry andhas quasi-LROonly in gð1Þcen [see Fig. 6b]. In contrast, increasing γ2
introduces significant effective geometrical frustration [see Fig. 3b]. The
associated increased kinetic energy still destabilizes theDW1/2 insulator, but
favors a CSF where both gð1Þcen and κ2cen are non-zero. As a result this lattice
provides a unique opportunity for controlled studies of CSFs.

Period-3 order at 1/3 filling
As is visible in Fig. 4b, theN = 5 long-range interactions are significant even
beyond the Δj = 1 nearest neighbor scale. Repulsive interactions that are
significant up to VΔj tend to favor ordered phases with a period of Δj+ 1.
We search for the impact of Δj = 2 next nearest neighbor interactions by
reducing the particle density to �n ¼ 1=3, where these interactions would
favor a DW1/3 insulator in the limit of zero tunneling. This expectation is
confirmed in Fig. 7a where, at small γ2 and for three values of γ1, the
expectation value of the on-site number operator has a period-3 oscillatory
contribution.

Rather than quantify this structure in terms of a specific correlation
function suited only to period-3 density order, we turn to the density-
density correlation function CjðΔjÞ ¼ hn̂jþΔjn̂ji � hn̂jþΔjihn̂ji that is sen-
sitive to density fluctuations at a range of Δj and its Fourier transform

SðkÞ ¼ 1
L

X
Δj

eikΔjCjðΔjÞ; ð19Þ

the static structure factor. Figure 7b shows that in this parameter regime the
structure factor has peaks at k = ±2π/3 indicative of local order associated
with spontaneously broken translational symmetry. The sharp peaks pre-
sent for γ1 =−0.01 are indicative of quasi-LRO,while the broad Lorentzian-
like peaks for more negative γ1 suggest an exponential decay of density-
density correlations and a lack of SSB. Finally, Fig. 7(c) shows that in the
small-negative γ1 SSB case gð1Þj ðΔjÞ vanishes exponentially, thereby
confirming the presence of a DW1/3 phase. For more negative γ1 long-

Fig. 6 | Extended Bose-Hubbard model phase diagram and extracted values of
Eqs. (15)-(18). Both subplots were computed for N = 5 internal states at �n ¼ 1=2
filling, Raman coupling Ω/ER = 3.5, a system size of L = 181 sites, and 91 particles.
a Phase diagram as a function of detuning Fourier components γ1 and γ2.
b Asymptotic correlation functions' (one-body Green’s function gð1Þcen, staggered
density δN and asymptotic vector order parameter κ2cen) dependence on γ2 for fixed
γ1/ER =−0.06, corresponding to the dashed black line in (a).

Fig. 7 | Period-3 density wave order.Computed forN = 5 internal states at �n ¼ 1=3
filling, Raman coupling Ω/ER = 3.5, detuning Fourier component γ2/ER = 0.01, a
system size of L = 175, and 59 particles. a Local density hn̂ji; b structure factor S(k);
and c asymptotic single particle Green function gð1Þcen.
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range off-diagonal order is established suggesting a normal SF. Thus this
transition (as a function of γ1 and for small γ2) fromDW1/3 to SF at �n ¼ 1=3
filling is analogous to theDW1/2 to SF transition at �n ¼ 1=2 filling in Fig. 6a.
This analysis rigorously proves that the strong long-range repulsion present
in our model enables the realization of period three DW insulators,
resemblingZ3 Mott insulators predicted in chiral clock models84.

State preparation and detection
The previous sections identified a wide array of quantum states of matter
that our setup can access. Although these phases are described by a spinless
single band extended BH model, the constituent atoms exist in a dressed
state representation, therefore conventional detection and measurement
techniques are not effective here. In the following sections we therefore
present alternative approaches to detect and prepare low energy states of
our model.

Measurement opportunities
This work has focused on distinguishing between conventional SFs, CSFs,
andDWsolids (where the unit-filledMott insulator would beDW1) using a
range of correlation functions: the spatial density hn̂ii, the static structure
factor S(k), the single particleGreen’s function gð1Þj ðΔjÞ, and the vector order
parameter κ2j ðΔjÞ. Given the deeply subwavelength nature of these lattices—
λ/6 forN = 3 and λ/10 forN = 5—even today’s highest resolution quantum
gas microscopes85–87 are unable to directly resolve DW order in hn̂ii. For-
tunately, the underlying physical structure of our system offers a unique
opportunity to experimentally access our target observables.

Standard time-of-flight
In this section,we relatemomentumdistributions observed in time-of-flight
(ToF) images with the crystal momentum distribution n(k) characterizing
states in the subwavelength lattice. The crystal momentum distribution is
directly related to the Fourier transformed total one-body Green’s function
gð1ÞðΔjÞ ¼Pjg

ð1Þ
j ðΔjÞ via

nðkÞ ¼ hb̂yðkÞb̂ðkÞi ¼
X
Δj

eikΔjgð1ÞðΔjÞ; ð20Þ

where b̂
y
r ðkÞ is the creation operator for a particle with crystal momentum k

occupying the r-th band of the subwavelength lattice. Notice that k is
dimensionless and the Brillouin zone (BZ) extends over a range of 2π.

By employing the Stern-Gerlach effect during ToF the final observed
quantities are the internal state resolved momentum distributions

ρmðqÞ ¼ hϕ̂ymðqÞϕ̂mðqÞi;
where ϕ̂

y
mðqÞ describes the creation of a boson with wavevector q in internal

state m. In this expression q has dimensions of inverse length and the
subwavelength lattice BZ has an extent of 2NkR; therefore we introduce a
factor c = (2π)/(2NkR) to convert from these physical units to the dimen-
sionless units of the discrete lattice.

As we show inMethods, the state resolvedmomentum distributions are

ρmðqÞ ¼
j~wðqÞj2
N

n cðq� 2kRmÞ� �
; ð21Þ

where ~wðqÞ is the Fourier transformed Wannier function. As such, the
crystal momentum distribution, and therefore the single body Green’s
function g(1)(Δj), can be obtained from the internal state resolved momen-
tum distributions, but not from the total momentum den-
sity ^ρðqÞ ¼PmρmðqÞ.

Accessing n(k) provides a powerful tool for distinguishing the many-
body phases described in the previous section. Figure 8 shows that, owing to
quasi LRO in g(1)(Δj), SF phases (light and dark blue) give rise to sharp peaks
that vanish in insulating DW phases (red) where g(1)(Δj) decays exponen-
tially. More specifically the normal SF exhibits a single sharp peak at k = 0,

while the CSF has two peaks. The two peaks at incommensurate k in the
momentum distribution signal two minima in the dispersion relation. The
interaction favors the predominant population of one of theminima and, as
a consequence, the system enters a CSF phase with a non-zero local boson
current characterized by a finite chirality hκ̂ji.

These crystal momentum distributions provide little information
regarding the structure of DW solids, however, higher order correlation
functions do. For example, the second order function

nð2ÞðΔkÞ ¼
Z

dk
2π

hn̂ðkþ ΔkÞn̂ðkÞi � hn̂ðkþ ΔkÞihn̂ðkÞi½ � ð22Þ

provides direct information regarding density order in gapped solids88–90.

Staggered readout
An alternate measurement protocol that is unique to this specific type of
subwavelength lattice transforms each dressed state into a specific internal
atomic state just prior to ToF; as above, this yields N independent
momentum distributions, each of which samples every N-th site of the
subwavelength lattice (recall that j = n+ ℓN, where n is the dressed state
index and ℓ is the λ/2 unit cell).

In order to implement this mapping we introduce two new degrees of
freedom: (1) a new couplingΩrf nearly identical with the Raman coupling in
Eq. (1) except that it lacks any spatial dependence [thismight be implemented
with a radio frequency (rf) magnetic field, or with Raman transitions in a co-
propagating geometry]; and (2) a detuning proportional to the internal state
index, i.e., δm =ΔFm, as would be given by the usual linear Zeeman effect.

Our protocol adiabatically transforms dressed states into internal atomic
states,where the adiabatic timescaleT is selected tobe rapid as compared to the
ground-bandatomicdynamics, but slowcompared to thebandsplitting. In the
following, each step is correspondingly marked in Fig. 9a:
(i) In the first step we quench to zero the detunings δm (used to generate

long-range tunneling) in a timescale τ, which is rapid compared to the
adiabatic timescale T used for the following steps. An adiabatic
timescale would cause detuning-induced Rabi oscillations, which
would ruin the one-to-one mapping between dressed and bare states.
Since the detuning quench is fast, it is not shown in Fig. 9a. This step
returns the system to N interpenetrating but decoupled lattices.

(ii) Next, the spatially uniform coupling Ωrf is ramped on while the the
Raman couplingΩ is simultaneously ramped off. This transforms each
independent Raman lattice with energy �2Ω cosð2πn=N � 2kRxÞ
into a spatially uniform dressed state with energy�2Ωrf cosð2πn=NÞ.

(iii) Lastly,Ωrf is rampedoffwhile the conventional detuning is ramped to a
final value of Δ.
We therefore conclude that this process transforms states in the ∣ni

dressed state into the ∣j ¼ n
	
internal atomic state.

Fig. 8 | Crystal momentum distributions n(k). Computed for Raman coupling
Ω/ER = 3.5, a system size of L = 181, 91 particles and fixed first detuning Fourier
component γ1/ER =−0.06 in superfluid (second detuning Fourier component γ2/
ER = 0.03), period-2 density wave (γ2/ER = 0.066) and chiral superfluid (γ2/
ER = 0.085) phases.
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Furthermore, reversing this protocol allowsus to transforma1Dquasi-
condensate prepared in a single internal atomic state into a corresponding
SF state in the subwavelength lattice. Finally, once the SF state is prepared,
the CSF and density wave (DW1/2, DW1/3) states can be accessed through
adiabatic ramps thatmodify the system parameters to the required regimes.

Conclusions
In this manuscript, we showed that a recently realized class of 1D sub-
wavelength optical lattices46–50 lead to extended BH models with effective
geometric frustration and long-ranged interactions. These lattices Raman
couple internal atomic states, and a lattice potential emerges in a dressed
state basis whose spacing is reduced by a factor equal to the number of
coupled internal states. This configuration features significant interparticle
repulsion over the scale of several lattice sites, in the absence of dipolar or
Coulomb couplings. On short scales the functional form can be approxi-
mated as local repulsion combined with a power-law tail, the exponent of
which can range from −2 to −8 depending on the Raman coupling
strength and the number of internal states. Tunneling on the subwavelength
scale is induced by small deviations from the Raman resonance condition;
specifically, tuning the detuning parametersmodifies the sign, Peierls phase,
and strength of tunneling connecting lattice sites spaced by distances equal
to number of coupled internal states.

Controlling the relative sign of the tunneling amplitude at different
ranges leads to regimes of effective geometrical frustration. This is in con-
trast with conventional optical lattice platforms where the range and sign of
hopping processes are fixed. Other approaches inducing geometric frus-
tration by periodically modulating one or more parameter in the single
particle Hamiltonian91 with interactions, this process induces many-body
dephasing which manifests as heating and then atom loss. In the present
work, spontaneous emission from the Raman lasers is the only intrinsic
heating process; for the example presented here, the associated 1/e lifetimes
would be about 500ms or � 400× ðhV0Þ�192, enabling quantum fluctua-
tions to remain stable for long times.

We explored the many-body potentialities offered by this setup with a
detailed numerical analysis using matrix product states across a range of
interactions and frustration. We found that geometrical frustration favors
CSFs with spontaneously broken TR symmetry; these are of great interest
both in condensed matter62 and high energy65 physics. The competing
presence of strong long-range repulsion favored insulating DWs1,93,94 with
spontaneous spatial symmetry breaking.

Although the parameters used in matrix product states analysis are
specific to 87Rb, our laser-coupling schemecanbe applied to a large variety of

atomic species including both bosons and fermions. In the case of fermions,
the extended Hubbard model analogous to Eq. (14) still describes spinless
particles; owing toPauli repulsion, only long-range interactionswith p-wave
(andhigherorder) character are present70. Embedding sucha fermionic sub-
wavelength system in a Bose-Einstein condensate would be an intriguing
next step. In analogy with materials with phonon mediated interactions
between electrons, we expect the emergence of an oscillating bosonic-
mediated interactionbetween fermions ofRuderman-Kittel-Kasuya-Yosida
(RKKY)-type95–97. Noticeably, cold atomic systems have only been able to
present preliminary results on the possible appearance of fermionic-
mediated RKKY-type interactions between bosons98,99. Our proposed setup
thus poses itself as a relevant source to engineer complex interacting pro-
cesses analogous of real materials.

Figure 4 modeled interactions in our lattice as an effective power-law,
valid for the first three subwavelength lattice sites. A similar procedure can
be followed to instead frame these interaction terms as a screened Coulomb
interaction, for example, of the repulsive Yukawa form, Vj ¼ Vye

�γy j=j
with γy ¼ ln½V1=ð2V2Þ�. Therefore, our lattice might be applicable for
quantumsimulationof plasmaphysics100 and screened electronic systems101.
We considered interactions of the SU(N) that were the same for all atomic
internal states.This canbe a goodapproximation in somecases (such as 87Rb
atoms) and nearly exact in others (such as 87Sr and 173Yb)102. In other cases
the interaction strengths can differ greatly; for example, Feshbach reso-
nances can induce significant differences103. This would result in non-local
interaction driven tunneling processes like pair hopping that give rise to pair
superfluids (PSFs) in bosonic models104–106.

In conclusion, our results represent an alternative proposal which can
finally shed light on the investigation of long-range frustrated quantum
systems.

Methods
Physical parameters
Herewe summarize the explicit numerical values of the physical parameters
used in our many-body calculations (all taken for 87Rb).

The one-dimensional interaction strength107 is

g1D ¼ 4_2a22
ma2?

1� C
a22
a?


 ��1

¼ 1:05× 10�37 Jm;

ð23Þ

having used the constant C ≈ 1.4603107, the reduced Planck’s constant
ℏ = 1.05 × 10−34 m2kg/s, the atomic mass m = 86.9AMU= 1.44 × 10−25 kg,

Fig. 9 | Temporal dependence of various quan-
tities during staggered readout. Mapping from
dressed state to bare state is performed for times
t ∈ [0, 2T]. a Ramping of different system para-
meters: (i) Raman coupling Ω, (ii) Position inde-
pendent couplingΩrf, (iii) Detuning ΔF. bDynamics
of dressed state population. cDynamics of bare state
population.
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the F = 2manifold s-wave scattering length a22 = 95aBohr = 5.02 × 10−9 m108

and transverse confinement length a⊥ = 1.25 × 10−7 m. We used the afore-
mentioned value of g1D for both N = 3 and N = 5. This is reasonable since
a11 = 100aBohr and a22 = 95aBohr are fairly close to one another and thus the
presented results will not qualitatively change.

The single photon recoil energy

ER ¼ _2k2R
2m

¼ 2:437 × 10�30 J ð24Þ

¼ h× 3678Hz; ð25Þ

and wavevector kR = 2π/λ both require additional knowledge of the optical
wavelength (here λ = 790 nm) used to create the lattice potential.

Interaction Hamiltonian
Here we consider properties of the interaction Hamiltonian for the case of
state independent [sometimes called SU(N)] interactions. This makes the
interaction Hamiltonian a function of the total local density
n̂totðxÞ ¼

P
mϕ̂

y
mðxÞϕ̂mðxÞ ¼

P
nψ̂

y
nðxÞψ̂nðxÞ, which takes the same form

in the bare atomic basis (with creation operators ψy
nðxÞ) and the dressed

basis (with creation operators ϕymðxÞ). As a result, the interaction Hamil-
tonian is also unchanged with

Ĥint ¼
g
2

Z
dx : n̂2totðxÞ :

¼ g
2

X
m;m0

Z
dx ϕ̂

y
mðxÞϕ̂

y
m0 ðxÞϕ̂m0 ðxÞϕ̂mðxÞ

ð26Þ

¼ g
2

X
n;n0

Z
dx ψ̂y

nðxÞψ̂y
n0 ðxÞψ̂n0 ðxÞψ̂nðxÞ; ð27Þ

where :⋯ : denotes the normal ordering operation.
Expanding thedressedfield operators in termsof lowest bandWannier

functions

ψ̂y
nðxÞ ¼

X
l

wðx � la0 � naÞb̂yNlþn ð28Þ

leads directly to the density-density interaction

Ĥint ¼
X
j

V0

2
n̂jðn̂j � 1Þ þ

X
Δj>0

VΔjn̂jn̂jþΔj

" #
ð29Þ

that appeared in the Hubbard model [Eq. (14)], where j =Nl+ n denotes
lattice site index and Δj denotes distance between lattice sites.

Additional terms, suchas density-induced tunneling (DIT), can appear
when interaction strength gj;j0 becomes a function j and j0. In this case the
interaction Hamiltonian

Ĥ
0
int ¼

1
2

X
gjj0

Z
dx ϕ̂

y
j ðxÞϕ̂

y
j0 ðxÞϕ̂j0 ðxÞϕ̂jðxÞ ð30Þ

is no longer invariant with respect to a change of basis, and the dressed state
Hamiltonian

Ĥ
0
int ¼

1
2

X
gnn0mm0

Z
dx ψ̂y

nðxÞψ̂y
n0 ðxÞψ̂m0 ðxÞψ̂mðxÞ ð31Þ

contains every possible combination of field operators, where

gnn0mm0 ¼
X

gjj0 ×U
y
njU

y
n0 j0Uj0m0Ujm: ð32Þ

Once again expanding the field operators in the Wannier basis, one
obtains

Ĥ
0
int ¼

1
2

X
Vi;j;k;l b̂

y
i b̂

y
j b̂kb̂l; ð33Þ

where the sum is over all subwavelength lattice sites and interaction
strengths

Vijkl ¼ gi;j;k;l

Z
dx w�

i ðxÞw�
j ðxÞwkðxÞwlðxÞ: ð34Þ

Coefficients such as Vijki lead to DIT.
In the considered experimental situation, i.e., National Institute of

Standards and Technology (NIST) 87Rb cyclic coupling experiment47,
interactions are homogeneous at the 0.995 fractional level making DIT
terms negligible.

Detuning induced tunneling
As mentioned previously, the synthetic dimension tunneling parameters
γΔn ¼ jγΔnj expðiϕΔnÞ are significantly constrained by the properties of the
discrete Fourier transform, as well as our restrictions on the allowed
detunings:
1. γΔn = γΔn+N owing to the periodicity of Fourier transforms.
2. γ0 = 0, because

P
mδm ¼ 0.

3. ϕΔn =−ϕ−Δn, because the detunings δm are real valued.
4. For our current subwavelength lattice we focus on the simplification

δm = δ−m, making γΔn real-valued and symmetric. Note that this
condition is violated for our staggered readout procedure for mapping
dressed states to bare states.

For example, for theN=3case, the twodetuning constraints reduce the
number of free degrees of freedom to one, implying that γ1 alone quantifies
the detuning induced tunneling. Similarly the N = 5 configuration has two
independent degrees of freedom, γ1 and γ2.

For odd N these constraints allow Eq. (8) to be simplified as

γΔn ¼
1
N

XN�1

m¼0

δme
2πimΔn=N

¼ 2
N

�
XN�1

m¼1

δm

 !
þ

XN�1

m¼1

δm cosð2πmΔn=NÞ
" #( )

;

ð35Þ

where we reindexed the sum to run from − (N− 1)/2 to (N− 1)/2 and
combined exponentials at positive and negative m into cosine terms. This
shows that δ1, ⋯ , δ(N−1)/2 are the independent degrees of freedom. This
expression can be inverted to provide a relation between a desired set of γΔn
and the experimental parameters δm.

Variational Gaussian Wannier approximation
Herewe derive the approximateWannier functions yielding the continuous
curves in Fig. 4. In brief, these begin with a simple Gaussian approximation
for a wavepacket centered on a single lattice site, and then we use a varia-
tional ansatz to optimize the width.

Webeginwith the dimensionless (with energy in units ofER and length
in units of k�1

R ) Hamiltonian

Ĥ ¼ k̂
2 � s

2
cosð2x̂Þ � 1½ � ð36Þ

for aparticlemoving ina latticepotential ofdepth s= 4Ω/ER.Thesecondorder
series expansion around x= 0 yields the harmonic oscillator Hamiltonian

Ĥ � k̂
2 þ sx̂2 ð37Þ
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with oscillator frequency ω ¼ 2
ffiffi
s

p
, length ℓ = s−1/4, and ground state

wavefunction

w0ðx; sÞ ¼
s1=8

π1=4
e�x2

ffiffi
s

p
=2: ð38Þ

Changing Eqs. (10), (11) and (12) to dimensionless quantities, this gives
explicit relations for: native tunneling

JΩN
ER

¼ �
Z

dx w�
0ðxÞĤw0ðx � πÞ

¼ � e�π2
ffiffi
s

p
=4

4
2
ffiffi
s

p þ s 2� π2 þ 2e�1=
ffiffi
s

p� h i
;

ð39Þ

detuning induced tunneling

JδΔj
γΔj

¼ �
Z

dx w�
0ðxÞw0ðx � dÞ

¼ �e�d2
ffiffi
s

p
=4;

ð40Þ

and interactions

VΔj

g1DkR
¼
Z

dx ∣w0ðxÞ∣2∣w0ðx � dÞ∣2

¼ s1=4ffiffiffiffiffi
2π

p e�d2
ffiffi
s

p
=2;

ð41Þ

where we have introduced the dimensionless displacement d = πΔj/N
between the centerof theWannier orbitals.We include an expression for the
native tunneling JΩN , but note that the Gaussian ansatz leads a nonphysical
dependency on the zero of energy (because Gaussian wavepackets at
neighboring lattices sites are not orthogonal).

The dashed curves in Fig. 10b plot the on-site interaction computed
using this expression along with the numerically computed points. The
agreement is poor.

We improved the accuracy of wavefunctions of this form using the
variational principle where we replaced s→ β2s and minimized the energy
functional

E ¼
Z

dx w0ðx; β2sÞ �∂2x �
s
2
cosð2xÞ � 1½ �

n o
w0ðx; β2sÞ

¼ s
2

1þ βffiffi
s

p � exp � 1
β
ffiffi
s

p

 �� � ð42Þ

with respect to β. This yields the condition

β2 ¼ e�
1

β
ffi
s

p
; ð43Þ

which is solved by

β ¼ exp W � 1
2
ffiffi
s

p

 �� �

; ð44Þ

whereW(x) is the notorious LambertW function109,110; Fig. 10d plots β as a
function of laser coupling strengthΩ. BecauseW(x) becomes imaginary for
arguments below −1/e, the expression forβ is onlydefined for s > (e/2)2, and
for large s, β approaches unity confirming that the standard Gaussian
approximation is accurate for very deep lattices. The solid curves in Fig. 10b
show the improved on-site interaction energy computed using this
correction factor.

First excited band
One can also accurately compute the first energy gap. To do this, we
approximate the excited state Wannier function with the first excited har-
monic oscillator wavefunction

w1ðx; sÞ ¼
ffiffiffi
2

p s3=8

π1=4
xe�x2

ffiffi
s

p
=2; ð45Þ

and in analogy with Eq. (42) we obtain the excited state energy

Eex ¼
ffiffi
s

p

2

ffiffi
s

p þ 3βþ 2� β
ffiffi
s

p

β
exp � 1

β
ffiffi
s

p

 �� �

:

Subtracting the ground state energy yields the energy gap

ΔE ¼
ffiffi
s

p

β
β2 þ exp � 1

β
ffiffi
s

p

 �� �

: ð46Þ

Our DMRG computations were performed for Ω/ER > 3, where the
impact of higher Bloch bands of the sinusoidal adiabatic potentials are negli-
gible. Using Eq. (46), the first band gap can be approximated as ΔE/ER = 5.8
(direct numerics give ΔE/ER = 5.3ER) which is large compared to the interac-
tion scales (with Vj/ER≲ 0.25, see Table 1), and the tunneling scales [JΔj/
ER≲ 0.5, see Fig. 10a]. Because the many-body physics under study require
temperatures kBT≲ (J1, V0), thermal excitations are also negligible.

Relation to continuum degrees of freedom
Herewe relate themomentumdistribution observed inToF imageswith the
crystal momentum distribution of states in the subwavelength lattice. By
employing the Stern-Gerlach effect during ToF the final observed quantities

Fig. 10 | Model parameters’ dependence on Raman couplingΩ. Plotted quantities
are computed directly from Wannier functions (markers), from Gaussian varia-
tional ansatz (solid curves), or from standard Gaussian ansatz (dotted curves).
a Normalized detuning-induced nearest neighbor tunneling �Jδ1=γ1. b Interaction
strengthVΔj in units of recoil energyER. c First energy gapΔE in units of recoil energy
ER. d Variational parameter β. Dashed vertical lines mark the critical lattice depth
sc = (e/2)2; for arguments below sc the variational parameter β becomes complex.
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are the internal state resolved momentum density operators

ρ̂mðqÞ ¼ ϕ̂
y
mðqÞϕ̂mðqÞ; ð47Þ

where ϕ̂
y
mðqÞ describes the creation of a boson at momentum q in internal

statem. In termsof the continuumdressed statefieldoperators inEq. (3) this
becomes

ϕ̂
y
mðqÞ ¼

1ffiffiffiffi
N

p
X
n

Z
dx eiðqx�2πnmÞψ̂y

nðxÞ; ð48Þ

leading to the final expression in the discrete Wannier basis

ϕ̂
y
mðqÞ ¼

1ffiffiffiffi
N

p
X
r;n;‘

Z
dx eiðqx�2πnm=NÞwr xn;l

� �
b̂
y
r;n;‘ðxÞ ð49Þ

having made use of

ψ̂y
nðxÞ ¼

X
r;‘

wr xn;l
� �

b̂
y
r;n;‘; ð50Þ

where

x‘;n ¼ x � ‘þ n
N

�  λ
2
: ð51Þ

Herewe again assume that only the ground band (r = 0) is relevant and thus
we write

ϕ̂
y
mðqÞ ¼

~wðqÞffiffiffiffi
N

p
X
n;‘

exp iϕ‘;n;mðqÞ
� 

b̂
y
n;‘ðxÞ ð52Þ

¼ ~wðqÞffiffiffiffi
N

p
X
j

exp i q� 2kRm
� � λj

2N

� �
b̂
y
j ðxÞ ð53Þ

where ϕ‘;n;mðqÞ ¼ q nþ N‘ð Þ � 2kRnm and we have made use of
the periodicity of the exponential function expð2πinm=NÞ ¼
expð2πiðnþ N‘Þm=NÞ. Implementing the dressed state transformation
gives

ϕ̂
y
mðqÞ ¼ ~wðqÞb̂y 2π

q� 2kRm
2NkR


 �
: ð54Þ

Because we defined crystal momentum to be dimensionless with a BZ 2π in
extent. We see that this expression links momentum q in state m with a
crystal momentum 2π 2=ð2NkRÞ �m=N

� �
where 2NkR is the extent of the

BZ inphysical units, shiftedby 2πm/Nwhich canbe interpreted as a result of
the recoil kick imparted by each two-photon Raman transition.

This result connects the internal-state resolved momentum density
operator and the crystal momentum density

ρ̂mðqÞ ¼
jwðqÞj2
N

n̂ðq� 2kRmÞ; ð55Þ

and shows that the probability is split equally between theN internal states.

Data availability
Data of the study can be obtained from the corresponding authors upon
request.

Code availability
Code used in the study can be obtained from the corresponding authors
upon request.
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