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Weak measurement enables the extraction of targeted information from a quantum system while minimizing
decoherence due to measurement backaction. However, in many-body quantum systems, backaction can have
unexpected effects on wave-function collapse. We theoretically study a minimal many-particle model consisting
of weakly measured noninteracting fermions in a one-dimensional lattice. Repeated measurement of the on-site
occupation number with single-site resolution stochastically drives the system toward a Fock state, regardless
of the initial state. This need not be the case for measurements that do not, even in principle, have single-site
spatial resolution. We numerically show for systems with up to 16 sites that decreasing the spatial resolution
strongly affects both the rate of stochastic evolution for each quantum trajectory and the allowed final states.
The full Hilbert space can be partitioned into backaction-free subspaces (BFSs), the elements of which are
indistinguishable for these measurements. Repeated measurements will drive any initial state into a single BFS,
leading to a steady state that is a fixed point of the measurement process. We exactly calculate the properties of
these BFSs for systems up to 32 sites, and we find that even for moderate reductions in measurement resolution,
they yield nontrivial steady-state entanglement and coherence.
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I. INTRODUCTION

The interaction of a quantum system with its environment
generally disturbs its evolution, leading to an unavoidable
loss of information. Repeated quantum measurements act as
a special type of environment where the observer retains a
measurement record, and thereby obtains information about
individual quantum systems over time. These “measurement
environments” offer intriguing possibilities for exploring new
phenomena in quantum systems. For example, when com-
bined with feedback, measurement can support reservoir
engineering by steering a system into some specific de-
sired state [1]. Even without feedback, the recently identified
measurement induced entanglement phase transitions (EPTs)
illustrate the potential for creating nontrivial (but not tar-
geted) quantum states by combining entangling operations
with decoherence processes in the form of partial quantum
measurements [2–5]. In loose analogy with measurement
based quantum computation [6], here we focus on the yet
more simplified case of an initially entangled state of spinless
fermions subject to repeated weak and partial measurement
of the spatial density distribution. Even with no additional
dynamics, we find that the final state conditioned on the
measurement record can retain significant coherence. This
minimal model is ideally suited for implementation using an
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ultracold atomic Fermi gas in a one-dimensional (1D) optical
lattice: the initial entangled state is no more than the Fermi
sea in a half-filled lattice. Weak global measurements can be
implemented using established techniques [7–11], and these
measurements are made partial by the natural resolution limit
governed by the optical wavelength.

Fermions provide a very unusual setting in which to ex-
plore measurement-based quantum control. Typically these
ideas arise in a quantum information context, and they are
most developed for quantum circuits [3–5,12,13] and spin
systems [14–17]. A handful of results discuss EPTs for quan-
tum gases [18–21], but those proposals require the usual
combination of measurement and entangling dynamics. Other
quantum control protocols developed for ultracold atoms have
focused on feedback cooling and many-body state preparation
[22–27]. Fermionic systems remain relatively unexplored, in
part because measurement is complicated by Fermi statistics:
a measurement cannot drive a fermion into a state that is
already filled [28–31].

We explore the question of residual spatial coherence in
a minimal model of immobile, noninteracting fermions on a
1D lattice undergoing weak quantum measurements of atomic
density. We show that the effect of the optical resolution
limit on an initial Fermi sea is evident both in the time to
achieve steady state and the nature of that state. For higher
resolutions, the steady states are simple Fock states with
no spatial entanglement, but at a critical resolution limit,
nontrivial superpositions begin to appear. In this way, the mea-
surement resolution can tune between regimes with remnant
coherence and those without, indicating a type of coher-
ence transition. We uncover how the measurement protocol
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partitions the full Hilbert space into smaller backaction-free
subspaces (BFSs), which can allow the steady states to pre-
serve remnant coherence and entanglement. These results
bridge quantum information theory and experimental imple-
mentations of measurement based control, providing a way
forward for conditional quantum state engineering and control
in Fermi systems.

The paper is organized as follows: In Sec. II, we augment
a model of weak homodyne measurements [32] to include
finite spatial resolution, and we introduce our approach for
numerically exact simulations of this measurement process. In
Sec. III, we consider the analytically solvable case of two sites
and one atom. We show that numerical simulations recover the
Born rule as the number of measurements N → ∞ (establish-
ing the projective measurement limit). We further show that
the measurement dynamics can be mapped to a classical dif-
fusion equation. Section IV presents the main results for larger
system sizes, namely the effect of measurement resolution on
the collapse dynamics and steady states, the emergence of
nontrivial BFSs, and how the BFSs scale with system size.
We conclude in Sec. V.

II. MODEL

We consider a system of spinless, noninteracting fermions
confined to a one-dimensional lattice potential. We assume
the lattice is deep enough that the system Hamiltonian is well
described by a tight-binding model,

H = −J
∑

j

(ĉ†
j+1ĉ j + H.c.). (1)

Here the integer j indicates the site index (thereby measuring
length in units of the lattice constant), J parametrizes nearest-
neighbor tunneling strength, and ĉ†

j , ĉ j are the anticommuting
fermionic creation and annihilation operators. We consider
systems with periodic boundary conditions.

The ground state of Hamiltonian (1) is the Fermi sea. The
Fermi sea is described by the state |FS〉 = ∏

k�kF
ĉ†

k|00 · · · 0〉,
where ĉ†

k creates a fermion of momentum k, and kF indi-
cates the Fermi momentum. The Fermi sea is bounded by
the Fermi surface at |k| = kF and is, by definition, a su-
perposition over all possible number states. In practice, we
consider systems with M sites and N fermions, where N � M.
When N is an odd number, there is a well-defined k = 0
state and a sharp Fermi surface; the momentum distribution is
n(k) = �(kF − |k|), where � is the Heaviside function. In
one dimension, the Fermi “surface” is simply a pair of zero-
dimensional points at k = ±kF. We note that the system is
always an eigenstate of the total number operator N̂ as we do
not consider fluctuations in the total number of particles.

The system can be weakly measured using phase-contrast
imaging, in which the atoms interact with a far-detuned beam
of laser light of wavelength λ. A single measurement of the
many-body fermionic state |�〉 is described by the application
of a Kraus operator K̂ , leading to the postmeasurement state
|� ′〉 = K̂|�〉 [33]. The Kraus operator for a specific measure-
ment process can be derived from the light-matter interaction
Hamiltonian [22,24,32].

For a phase-contrast measurement with perfect single-site
spatial resolution, the unnormalized Kraus operator can be
expressed as

K̂ = exp

⎡
⎣−ϕ2

2

∑
j

(n̂ j − n j )
2

⎤
⎦

= exp

[
−ϕ2

2

∑
k

| ˆ̃nk − ñk|2
]
, (2)

in terms of coordinate- or momentum-space operators, respec-
tively. Here n̂ j = ĉ†

j ĉ j is the usual spatial number operator,
however

ˆ̃nk = 1√
M

M−1∑
j=0

n̂ je
−ik j (3)

is the Fourier transform of n̂ j (not the momentum space num-
ber operator c†

kck). In either case, K̂ has a Gaussian form
with width governed by ϕ, the dimensionless measurement
strength. The quantity n j = 〈n̂ j〉 + mj/ϕ, a real number, in-
dicates the coordinate-space measurement outcome for site j.
The random variable mj quantifies projection noise with zero
average (mj = 0) and no spatial correlations (mjmj′ = δ j j′/2).
(In this work, we use · to denote a statistical average and
〈·〉 to denote a quantum-mechanical expectation value.) This
implies Fourier domain statistics m̃k = 0, and m̃km̃∗

k′ = δkk′/2,
where m̃k denotes the Fourier transform of mj . Thus, the
Kraus operator equivalently describes measurements of the
operators ˆ̃nk , with strength ϕ and measurement outcomes
ñk = 〈 ˆ̃nk〉 + m̃k/ϕ.

In reality, the physical measurement process cannot—even
in principle—access information on a lengthscale smaller
than k−1

c ≈ λ/(2π ). This physical cutoff can be expressed as
a momentum-dependent measurement strength ϕ → ϕ

√
fk ,

where fk is a filtering function with f0 = 1. In this work,
we model measurements with a hard cutoff at kc given by
fk = �(kc − |k|). Thus, the operators ˆ̃nk are not measured for
k > kc; in real space, the resulting backaction and measure-
ment outcomes are correlated below the ∼1/kc length scale.

After implementing a cutoff, the Fourier space Kraus oper-
ator is

K̂ = exp

[
−ϕ2

2

∑
k

∣∣∣∣√ fk ( ˆ̃nk − 〈 ˆ̃nk〉) − m̃k

ϕ

∣∣∣∣
2
]

; (4)

a detailed derivation connecting Eq. (2) to (4) is provided in
Appendix B. This expression shows that when only the k = 0
state is measured, this problem reduces to a measurement of
the total number since ˆ̃n0 ∝ N̂ . Since we work in a system
with a fixed atom number, this corresponds to a quantum
nondemolition measurement, i.e., a measurement that does
not impart any backaction onto the system.

The central aim of this work is to explore the effect of the
cutoff kc on the collapse dynamics and steady-state proper-
ties of a many-body fermionic state subject to consecutive
weak measurements. We investigate the collapse dynamics
between two limits of the measurement resolution, where
kc = 0 measures only N̂ , and kc = π corresponds to no res-
olution cutoff. Although a ground-state Fermi sea has no
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momentum components above the Fermi momentum kF, spa-
tially resolved measurements readily populate these states.

The weak measurement process described by repeated ap-
plication of the Kraus operator causes a pure state to evolve
along a stochastic trajectory, eventually collapsing into an
eigenstate of the observable being measured [34]. For ex-
ample, with no cutoff (kc = π ), repeated measurements steer
the many-body fermionic system toward eigenstates of n̂ j ,
denoted |n〉 in the Fock basis, where each n corresponds
to a specific spatial configuration of fermions, for example
(0110 · · · 1). The Hamiltonian (1) is not diagonal in the Fock
basis, so our initial state—the ground state—is not a Fock
state. It is not clear how the collapse process proceeds even
starting from the simplest ground state: the Fermi sea. This
starting point will be the basis of our investigations.

We do not consider the effects of unitary time evolution
[e.g., from Eq. (1)] between measurements, i.e., we assume
the measurement rate is much faster than the timescale ∼h̄/J
for internal dynamics. We map out the dynamics of state
collapse over many measurements and we examine the final
state of the system, i.e., the state that would be determined
from a single projective measurement.

Numerical implementation

We approach this problem with a combination of analytic
and numerical approaches. To avoid any dependence on an
approximation scheme, the numerical approach exactly rep-
resents states in the full Hilbert space. The measurement
operators K̂ are approximately local in coordinate space, so
we express the many-body wave function as

|�〉 =
∑

n

ψn|n〉 (5)

in the Fock basis of dimension D = dim({|n〉}). Our simu-
lations record the measurement outcomes nj = 〈n̂ j〉 + mj/ϕ,
the wave function after each measurement, and the final wave
function after the system reaches a steady state.

Equation (4) is numerically expensive to implement even
for modest system sizes, both in terms of CPU time (compu-
tation of the matrix exponential) and storage (from the size of
the Hilbert space). The Kraus operator can be approximated
in real space using a series expansion

K̂ ≈ Î + ϕ
∑

j

η jδn̂ j − ϕ2

4

∑
j, j′

f j− j′√
M

δn̂ jδn̂ j′ , (6)

where we introduced the relative density operator
δn̂ j = n̂ j − 〈n̂ j〉 and the identity matrix Î. The momentum-
space filtering function fk leads to a new effective noise term
η j with statistics η j = 0, and

η jη j′ = f j− j′ = 1√
M

∑
k

ei( j− j′ )k fk . (7)

In deriving Eq. (6), we replaced the second-order noise terms
with their statistical average, i.e., η jη j′ → η jη j′ , which cor-
responds to the standard replacement of products of Wiener
increments with their variance in stochastic calculus (for finite
intervals, this is an approximation); full details are provided
in Appendix B. Wave-function evolution under repeated weak

measurements is therefore completely described by successive
application of the Kraus operator, i.e., after 
 measurements
|�
〉 = K̂
 · · · K̂2K̂1|FS〉. Note that since each K̂ depends on
the expectation values 〈n̂ j〉, the Kraus operator must be calcu-
lated after each measurement.

III. MINIMAL TWO-SITE MODEL

We begin by benchmarking our numerical approach against
the analytically solvable case of two sites with one atom. In
what follows, we first identify a basis for the resulting vector
space, and we express the number operators in that basis. This
gives a direct matrix representation of the Kraus operator from
which we obtain a stochastic equation of motion.

The orthonormal states ĉ†
0|00〉 = |10〉 ≡ |↓〉 and ĉ†

1|00〉 =
|01〉 ≡ |↑〉 fully span the one-atom two-site Hilbert space. In
this basis, the number operators

n̂0 = 1
2 (Î − σ̂z ) and n̂1 = 1

2 (Î + σ̂z ) (8)

can be written in terms of the Pauli operators σ̂x,y,z and the
2 × 2 identity Î . In this representation, the Kraus operator in
Eq. (2) becomes

K̂ = exp

⎛
⎝ϕ2

∑
j

n̂ jn j

⎞
⎠, (9)

where we used the identity
∑1

j=0 n̂2
j = Î; this simplifies to

K̂ ∝ cosh

(
ϕ2�n

2

)
Î + sinh

(
ϕ2�n

2

)
σ̂z. (10)

As expected, K̂ depends only on the measured number differ-
ence �n = 〈n̂1〉 − 〈n̂0〉 + �m/ϕ, where �m ≡ m0 − m1 is a
new random variable with variance 1.

To see how this changes a generic state in Hilbert space, we
consider |�〉 = cos(θ/2)|↑〉 + sin(θ/2)|↓〉, where we omit
the azimuthal angle φ since K̂ leaves it unchanged. The un-
normalized postmeasurement state is

K̂|�〉 = eϕ2�n/2 cos

(
θ

2

)
|↑〉 + e−ϕ2�n/2 sin

(
θ

2

)
|↓〉.

We use the ratio of these amplitudes to obtain the polar angle
θ after one measurement,

tan

(
θ ′

2

)
= e−ϕ2�n tan

(
θ

2

)
. (11)

We now introduce a mapping

x = ln[tan(θ/2)] (12)

to recast the measurement dynamics as a random walk for a
classical stochastic variable x, which runs from x → −∞ for
θ → 0 to x → ∞ as θ → π , with x = 0 corresponding to θ =
π/2 and the domain θ ∈ (0, π ). Equation (11) now takes the
form of a diffusion model with a drift term

x′ = x + ϕ2 tanh x − ϕ�m, (13)

where we used 〈n̂1〉 − 〈n̂0〉 = cos θ = − tanh x [35].
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FIG. 1. Emergence of the Born rule for 512 trajectories after 1000 weak measurements. (a.i) Trajectories starting with P↑0 = 0.7 show P↑
evolving as a function of the number of measurements; for clarity, only 24 trajectories are shown. The thick curves show the average for all
trajectories, grouped by the final state assignment. (a.ii) Histogram of final values for all trajectories. (b) Fraction of trajectories with final
assignment |↑〉 as a function of the initial probability P↑0 potted along with the Born rule prediction (dashed line). The gray band indicates the
single-sigma statistical uncertainty associated with the 512 trajectories. Symbols compare simulations directly using Eq. (10) (green crosses)
with diffusion model simulations from Eq. (13) (black circles). The pink vertical line marks P↑0 = 0.7 as used in (a), (c). (c) Diffusion model
trajectories for the same parameters as in (a). In (c.ii) the red curve plots the expected distribution for stochastic variable x as defined in the
text. (d) I computed for the same values of P↑0 as in (b); gray horizontal lines mark the I of the initial superposition state.

A. Numerical confirmation

We employ these analytic relations in a direct quantum
trajectories simulations of the two-site measurement process.
Throughout the manuscript, our simulations employ exact
numerical techniques, fully expressing the initial state in the
Fock basis. The ensuing dynamics are generated entirely by
the repeated application of the Kraus operator in Eq. (4) with
measurement strength fixed at ϕ = 0.1.

Figure 1(a.i) plots the occupation probability P↑ of repre-
sentative individual trajectories (color) along with the average
(black curves) as a function of the number of measurements
N , which serves as a proxy for time in these results. The
initial state for this simulation is a superposition between the
two basis states |�0〉 = √

P↑0|↑〉 + √
1 − P↑0|↓〉 with initial

probability P↑0 = 0.7. The histograms in Fig. 1(a.ii) show the
final distribution of probabilities, with a fraction N↑/Ntotal =
0.683(20) of trajectories collapsing to |↑〉.

This is consistent with our expectation that after many
weak measurements, the state will collapse into one of the
two basis states (|↑〉, |↓〉), with probabilities given by the
usual Born rule. The green crosses in Fig. 1(b) confirm this
expectation by plotting the final probabilities after 1000 mea-
surements as a function of the occupation probability P↑0. The

black dashed line plots the expectation that N↑/Ntotal = P↑0,
and the gray band marks the expected single-σ statistical
uncertainty for 512 trajectories.

As a second numerical benchmark, we turn to the diffusion
model in Eq. (13) in which the stochastic variable is a sim-
ple linear contribution to the update rule for x. Figure 1(c.i)
plots the “position” x as a function of measurement number
using the same random seed as in (a), thereby yielding the
same measurement history. As expected, we observe a 1-to-1
correspondence between traces in the two plots, however the
mapping shows its utility in that the histograms in Fig. 1(c.ii)
are normally distributed in contrast with those of final proba-
bility in Fig. 1(a.ii).

For large |x|, where tanh x → ±1, Eq. (13) predicts a
constant drift velocity of ±ϕ2, along with a stochastic contri-
bution that leads to a variance ϕ2N after many measurements.
The competition between drift and diffusive spreading deter-
mines both the rate of wave-function collapse and the final
probabilities. Using these parameters, the solid red curve plots
the expected bimodal distribution consisting of a sum of nor-
mal distributions with no free parameters, showing excellent
agreement with the simulated histograms.

A cursory inspection of (a) might indicate that the wave-
function collapse process is complete—in the sense that
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ensemble-averaged dynamics have ceased—after about 600
measurements, as the trajectories appear to be static in the
plot of P↑. However, (c) shows that this is not the case. We
confirmed that applying the transformation in Eq. (12) to
the trajectories in (a) recovers the full evolution in (c); this
validates the numerical stability of our Kraus operator method
even with very small amplitudes and at long times.

B. Metric of wave-function collapse

In the two-site example, it is straightforward to directly
track the probability of finding the system in |↓〉 or |↑〉 dur-
ing the collapse process. However, tracking probabilities is
impractical in larger systems since the number of possible
projective measurement outcomes—equal to the Hilbert space
dimension D—grows exponentially with system size.

For this reason, we instead quantify state collapse using a
single aggregate quantity, the inverse participation ratio (IPR)
often used to study localization phenomena [36,37]:

I =
∑

n

|ψn|4. (14)

The IPR is minimized at I = 1/D for states that are fully
delocalized in the Fock basis, and maximized at I = 1 for
each possible Fock state |n〉. For the two-site system, the IPR
can be expressed as a function of the real-space occupation
probabilities, I = 2P↑(P↑ − 1) + 1. As expected, this reduces
to I = 1/2 for the fully delocalized states (P↑ = 1/2) and
I = 1 for Fock states (P↑ = 0 or 1).

The average evolution of the IPR under repeated weak
measurement is summarized in Fig. 1(d), which plots I (i.e.,
I averaged over 512 trajectories) for the same nine initial
probabilities P↑0 as in Fig. 1(b), the gray lines mark the
expected initial I. Because I is symmetric about P↑0 = 1/2,
only five curves are visible. These results confirm that the IPR
is a suitable metric for wave-function collapse driven by local
measurements of the atomic density.

IV. LARGE-SYSTEM RESULTS

Having established our approach with the two-site one-
atom case, we now turn to state evolution and the concomitant
wave-function collapse for a larger system of M = 16 sites
near half-filling with N = 7 fermions. The larger system size
allows us to explore the effect of the cutoff kc, introduced
in Eq. (4), which limits the spatial resolution of the mea-
surement. The repeated application of the Kraus operator
K̂|�〉 → |� ′〉 can be understood as a stochastic map between
different points in Hilbert space; we therefore define a “col-
lapsed” wave function as a fixed point of the map where
K̂|� f 〉 = |� f 〉, up to normalization and overall phase fac-
tors. Since the operators K̂ ∝ exp(Ô) are the exponential of
some observable Ô (a Hermitian operator), the fixed points
are eigenvectors of the exponentiated observable. Our results
show that reducing kc profoundly influences the structure of
the fixed points |� f 〉 as well as increasing the number of
measurements required to achieve them.

It seems reasonable that the rate of wave-function collapse
decreases with decreasing kc since the information extracted
per measurement is reduced. However, it is less obvious how
kc changes the possible final states. For example, from a

physical perspective it is plausible that even with decreased
spatial resolution (smaller kc), the wave function would even-
tually collapse to some Fock state that could be known with
a sufficiently large number of measurements, akin to “split-
ting the line” in atomic spectroscopy [38]. Our results show
that this is not the case. For reduced kc, many final states
are superpositions of Fock states, resulting from unresolved
degeneracies in the measurement operators’ spectrum.

In the following sections, we show that for a given mea-
surement protocol, the entire Hilbert space can be partitioned
into a nonoverlapping set of BFSs. Each fixed point of the
measurement map resides within a single BFS. Here, we are
particularly interested in the BFS resulting from degeneracies,
which can be nontrivial in the sense that the BFS correspond-
ing to a degeneracy can contain many Fock states. Thus,
even after wave-function collapse, the coherence in a nontriv-
ial BFS can be significant, leading to I < 1. This behavior
emerges for individual trajectories and also in the ensemble
average.

A. State collapse on average: Ensemble behavior

We vary the cutoff from kc = π (i.e., no cutoff) to kc = 0+
(i.e., admitting only the k = 0 mode), and we explore the
effect on measurement induced dynamics. For the case of
ideal position-resolved measurements with kc = π , the state
collapses to a Fock state with atoms randomly distributed
throughout the lattice. By contrast, kc = 0+ corresponds a
measurement of the total number operator N̂ , and the state
undergoes no collapse because we consider a system with a
fixed total particle number.

As motivated above, Fig. 2(a) quantifies wave-function
collapse in terms of the ensemble-averaged IPR, denoted I,
where each data point represents an average over 64 trajecto-
ries. For each value of kc, the IPR starts at I0 = 5.034 × 10−4,
that of the initial Fermi-sea ground state [39], and asymp-
totes to a final value I∞ as N → ∞. For kc = π (red), the
I rapidly rises to its asymptotic value I∞ = 1, indicating
that every trajectory collapses to a Fock state. The remaining
traces in Fig. 2(a) (for kc < π ) show that while the IPR ex-
hibits the same qualitative behavior, it increases more slowly
and in some cases saturates to I∞ < 1 (implying the existence
of nontrivial BFSs).

We quantify this behavior by fitting I to an empirically
selected monotonically increasing function

I(N ) = I∞
1/ f (N ) + 1

,

f (N ) =
( N
Nα

)α

+ I0

I∞ − I0
, (15)

which takes on the desired limiting values. In these fits, neither
I0 nor I∞ are free parameters; instead I0 is computed from
|FS〉, and I∞ is determined directly from the projection of
|FS〉 onto the BFS, indicated by the black horizontal lines at
N → ∞, which will be described further in Sec. IV B. The
remaining parameters Nα and α quantify the overall shape
of I(N ) during wave-function collapse; roughly speaking,
Nα determines when I has achieved half of its asymptotic
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FIG. 2. Dependence of average IPR on cutoff momentum for
M = 16 sites and N = 7 fermions. (a) I as a function of number of
measurements for every allowed kc. The average was taken over 64
trajectories, except for kc = 0+, which used eight trajectories. The
horizontal black lines indicate the computed value of I∞, and the
gray bands indicate the single-sigma statistical uncertainty for 64
trajectories. Solid curves are fits as described in the main text, with
resulting fit parameters Nα and α as a function of kc shown in (b),(c).

value, and α captures the fractional duration of the collapse
dynamics.

Figures 2(b) and 2(c) summarize the result of the fits for
the full gamut of cutoffs. Panel (b) clearly shows the delayed
onset of collapse with decreasing kc, with Nα diverging as
kc → 0 (at kc = 0+ the IPR is unchanged from its initial value,
so Nα → ∞). In addition, panel (c) indicates that for large
kc, the collapse dynamics is fairly abrupt (larger α), and it
becomes increasingly gradual (smaller α) for smaller kc.

These parameters give us a picture of how systems collapse
on average during a weak measurement protocol. For smaller
kc, the asymptotic IPR I∞ [horizontal black lines in panel (a)]
is less than 1; this indicates that some fixed points |� f 〉 of the
Kraus operator K̂ are not Fock states. To better understand this
behavior, we now turn our attention to individual trajectories.

B. Emergence of backaction-free subspaces

Figure 3 plots the individual trajectories associated with the
averages shown in Fig. 2 for three cutoff values. Individual
trajectories show qualitatively similar behavior as the aver-
age, rising from I0 before saturating to an asymptotic value.
Similar to the two-site case in Fig. 1, the stochastic nature of
the measurement process causes some trajectories to collapse
more rapidly than others. However, unlike the two-site case,
individual trajectories can arrive at different asymptotic values

FIG. 3. Behavior of individual trajectories for three values of
kc/π . (a) 64 representative trajectories contributing to the averages
in Fig. 2, for kc/π = 11/16, 7/16, and 3/16 (top to bottom). (b) Ex-
pected probability distribution of I∞ derived from a spectral analysis
of { ˆ̃nk}|k|�kc for the |FS〉 initial state for each cutoff value in (a).

of the IPR as shown in the left column of Fig. 3. For example,
for kc/π = 7/16 and 3/16, some trajectories collapse to a
Fock state with I = 1, however a significant fraction reach
fixed points with I < 1. In contrast, for kc/π = 11/16, all
trajectories eventually collapse to a Fock state with I = 1. In
all cases, the evolution during each trajectory is stochastic,
however asymptotically I only arrives at specific, discrete
values that are determined by the cutoff.

To further understand and quantify this behavior, we re-
turn to the Kraus operator including the cutoff kc in Eq. (4).
Recall that kc inhibits the measurement of operators with
k > kc. In our model, the operators of interest are the Fourier-
transformed number operators, e.g., ˆ̃nk in Eq. (3). It is
straightforward to show that these operators commute and
therefore form a set of compatible observables (one for each
value of k), which is complete when every BFS has dimension
Ds = 1, i.e., there are no degeneracies. As a result, the Kraus
operator can be decomposed as K̂ = ∏

|k|�kc
K̂k with

K̂k = exp

(
−ϕ2

2

∣∣∣∣ ˆ̃nk − 〈 ˆ̃nk〉 − m̃k

ϕ

∣∣∣∣
2
)

. (16)

Every eigenstate of ˆ̃nk is an attractor of the associated Kraus
map K̂k (see Appendix A for details). Furthermore, any wave
function that is a simultaneous eigenstate of the set of mea-
sured operators { ˆ̃nk}|k|�kc is an attractor of the overall Kraus
operator K̂ . In this sense, the BFSs are attractors, and any
coherences within the nontrivial BFSs are invariant under K̂ .

As N → ∞, each trajectory arrives at one of the attractors.
In other words, the system recovers the projective measure-
ment limit, i.e., collapse to a eigenstate of the operators being
measured. In this case, |� f 〉 can be any eigenstate of the
measurement operators { ˆ̃nk}|k|�kc . Once the system reaches an
eigenstate, additional application of K̂ no longer affects it,
making subsequent measurements backaction-free. In other
words, with respect to the BFSs, the measurement operators
constitute a quantum nondemolition measurement.

Because any coherence that exists within each BFS is un-
changed by K̂ , the measurement protocol can drive the system
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into a BFS where the final state is a linear combination of Fock
states. Importantly, the remaining coherence is governed by
whatever coherences were present in the initial state. Given
an ensemble of trajectories, any trajectory that saturates to
I∞ < 1 has been driven into a nontrivial BFS.

With this understanding, we can predict the fixed points
|� f 〉 of the measurement protocol by directly computing the
measurement operators’ spectrum. Then, we use the projec-
tion of the Fermi-sea initial state |FS〉 onto |� f 〉 to obtain
both the set of allowed I∞ and their probabilities, shown in
the histograms on the right side of Fig. 3. As kc decreases,
the spectrum of { ˆ̃nk}|k|�kc becomes highly degenerate and
the probability of the system collapsing to a nontrivial BFS
becomes very large, up to ≈90% for the system size studied
here.

Although these exact values of I∞ are specific to the |FS〉
initial state, they suggest our concluding question: for increas-
ing system size, at what value of kc do BFSs with Ds > 1 first
appear, and how do they partition the full Hilbert space?

C. Scaling of backaction-free subspaces

Simulating measurement trajectories for larger system
sizes is prohibitively costly due to computing time and
memory limitations. Because the measurement operators are
diagonal in the Fock basis, it is straightforward to exactly
compute their eigenvalues—and thereby identify the BFSs—
for systems up to 32 sites, i.e., D ∼ 108, before again
becoming memory-limited. This gives us generic insight into
the possible end points of any given measurement trajectory,
keeping in mind that the final distribution of fixed points is
also dependent on the initial state. In this section, we obtain
the eigenvalues of ˆ̃nk for every allowed k, and we identify the
BFSs as a function of kc and the number of sites M. The BFS
properties also depend on the fermion number, and for brevity
we focus only on half-filled systems with N = M/2.

We quantify the structure of the BFSs in terms of the two
metrics shown in Fig. 4: (i) the average BFS dimension de-
noted Ds [40], and (ii) the fraction of states in the Hilbert space
that are part of a nontrivial BFS (i.e., a BFS with dimension
Ds > 1). Figure 4(a) shows that Ds/D starts at 1 for kc = 0+
(where the entire spectrum is degenerate) and drops sharply as
the cutoff momentum is increased. This drop indicates that for
kc > 0, only a handful of states participate in a typical BFS.
All of these examples converge to 1/D by kc = π where every
fixed point is a Fock state.

Figure 4(b) shows that the fraction of states belonging to
a BFS with dimension Ds > 1 can be high—even above 90%
for smaller cutoffs. In such cases, only a small fraction of the
Hilbert space is in a Ds = 1 subspace spanned by a single
Fock state. This implies that there is a high probability that
any given trajectory arrives in a nontrivial BFS at the end of
the measurement protocol. For the system sizes we studied,
this metric is always below 1 for kc > 0, so some fraction
of the Hilbert space resides in nondegenerate BFSs. Physically
this implies that some trajectories will collapse to a Fock state
even in the face of highly limited measurement resolution.

In the specific case of 32 sites, 16 fermions (Hilbert space
dimension D = 601 080 390), and cutoff kc/π = 1/16 (see
cyan star markers in Fig. 4), 99.990% of the Hilbert space

FIG. 4. (a) Average BFS dimension as a function of kc/π , nor-
malized by the Hilbert space size for systems of up to 32 sites at
half-filling. The dashed horizontal lines show the asymptotic value
of 1/D, where there are no nontrivial BFS present. Numbers to the
right of the traces indicate the number of sites. (b) Fraction of states
in a nontrivial BFS as a function of kc and system size. Inset: Largest
value of kc at which at least one BFS of dimension Ds > 1 is present
for different system sizes.

is in a nontrivial BFS, however a typical BFS is relatively
small with an average dimension of D̄s = 27.9. A typical
“resolvable” Fock state (i.e., in a nondegenerate BFS) contains
a large number of adjacent filled sites, e.g., |1 · · · 10 · · · 0〉 and
|0 · · · 01 · · · 1〉 are extreme examples. It is not clear how these
quantities scale with increasing system size. For example, it
remains possible that, for a fixed cutoff in the thermodynamic
limit, the fraction of Hilbert space in a nontrivial BFS may
tend to zero, meaning that the BFS could formally exist but
only in a set of measure zero.

The inset to Fig. 4(b) plots kBFS, the maximum value of
kc for which least one BFS is nontrivial, as a function of
system size. Although the Hilbert space dimension grows
exponentially with system size, we find that kBFS is nominally
constant, and even appears to approach kBFS ≈ 0.5π for large
systems.

We believe that analytic methods are the correct way to
resolve both of these final questions. We spent some ef-
fort studying the measurement operators, and we identified
an interesting combinatoric structure. However, more work
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is needed to understand the consequences of this structure,
particularly for larger systems that are inaccessible by the
numerical methods employed here.

V. CONCLUSION AND OUTLOOK

We established a framework for describing fermionic lat-
tice models subject to repeated weak measurements of on-site
atomic density. We showed that the spatial measurement res-
olution affects both the time to collapse and the final state of
the system, as measured by the inverse participation ratio.

It is somewhat surprising that these weak measurements
do not always cause the system to collapse to a Fock state
at the end of a trajectory. Rather, if the measurement res-
olution is low enough, the system can also collapse into a
nontrivial backaction free subspace (BFS) spanned by mul-
tiple Fock states. A single trajectory will arrive at a specific
BFS stochastically, with probability given by the generalized
Born rule, and therefore it can still retain some coherence and
entanglement.

Even without conditioning on the measurement outcomes
(i.e., averaging over trajectories and assuming a generic initial
state), the von Neumann entropy of the final density matrix
scales as S ∼ log(D) − ∑

s Ds log(Ds)/D, where s indicates
a sum over BFSs. We see from this expression that any BFS
with Ds > 1 decreases the von Neumann entropy. In our 32-
site case, this yields a fractional reduction of the entropy
by ≈20% as compared to a maximally mixed state with
S = log(D).

A. Experimental considerations

On the experimental side, weak measurements with a
variable resolution cutoff could be implemented using the
transverse mode structure of a multimode optical cavity,
which naturally introduces spatial filtering in the light-matter
interaction. The ability to tune the resolution of atomic density
measurements in this manner would allow direct explo-
ration of how measurement induced backaction shapes system
dynamics.

A practical approach to confirming the existence of back-
action free subspaces involves correlating weak measurement
records with time-of-flight (TOF) distributions resulting from
a 1D expansion. A realistic implementation would begin with
a single spin 1D Fermi gas confined in a deep optical lattice
(negligible tunneling), with size given by a longitudinal con-
fining potential, where it would undergo a period of repeated
weak measurement.

In a second phase of the experiment, the postmeasurement
system would undergo a 1D time-of-flight expansion with
reduced lattice depth and no longitudinal confining potential,
followed by a projective measurement of density. By correlat-
ing the weak measurement record with TOF distributions over
many realizations, one would expect measurement outcomes
associated with trivial BFSs to yield a single, well-defined
TOF distribution, while those corresponding to nontrivial sub-
spaces would exhibit a range of distinct TOF profiles. This
direct mapping between measurement trajectories and TOF
outcomes provides a viable experimental route to observing
BFSs in ultracold atomic systems.

B. Future directions

Taken in the perspective of measurement induced entan-
glement phase transitions (EPTs), the remnant entanglement
is very interesting because it does not rely on any additional
dynamics or entangling operations (although we note that
these transitions are more often quantified by a bipartite en-
tanglement entropy, not the von Neumann entropy). Typical
EPTs occur in systems that temporally interleave partial pro-
jective measurements and entangling operations (e.g., unitary
evolution or multiqubit gates) [3,20]. In contrast, the protocol
studied here is more akin to a measurement-only EPT scenario
[5]. Future work could investigate whether an EPT exists in
the thermodynamic limit as a function of resolution cutoff or
other measurement parameters that are readily accessible in
experiments.

The emergence of BFSs may, in fact, be an analog of
Hilbert space fragmentation [41,42] in a monitored quantum
system. Hilbert space fragmentation refers to Hamiltonian
systems in which an exponentially large number of discon-
nected subspaces emerge due to dynamical constraints rather
than obvious symmetries. Similarly, in our case, the struc-
ture of BFSs is not dictated by apparent symmetries but
instead arises from the spectral properties of the measurement
operators.

In this context, a natural next step is to explore the impact
of tunneling. In general, the tunneling Hamiltonian in Eq. (1)
will both cause transitions between BFSs and drive dynam-
ics within individual BFSs. Because measurements drive the
system into individual BFSs, combining measurements with
unitary evolution could therefore lead to a quantum Zeno
scenario in which unitary evolution occurs primarily within
a single nontrivial BFS, with the system only occasionally
transitioning to another. The structure of the local hopping
Hamiltonian within a BFS may be quite interesting due to this
emergent measurement-induced Hilbert-space geometry. For
example, as with conventional Hilbert space fragmentation,
it is possible that some of these subspaces exhibit ergodic
dynamics while others are integrable.

Finally, our results point toward the use of weak measure-
ment for engineering new steady states of lattice fermions.
Feedback could be employed to make it more likely for the
system to collapse to a nontrivial BFS. Further characteri-
zation of the BFS steady states, such as their entanglement
structure or nonlocal correlations, can provide insight into
which BFS may be useful for applications. One could
then implement different filtering schemes to change the
measurement operators and therefore the properties of the
corresponding BFSs. A major advantage of this method of
quantum state engineering is that the fixed point states are
unaffected by subsequent measurements, therefore enabling
robust state preparation and characterization.

ACKNOWLEDGMENTS

H.M.H. acknowledges the support of the San José State
University (SJSU) Research, Scholarship, and Creative Ac-
tivity assigned time program. Research activity by Y.H.T.
was supported by the Division of Research and Innovation
at SJSU under Award No. 23-SRA-08-040. H.M.H. was

013206-8



MEASUREMENT RESOLUTION ENHANCED COHERENCE FOR … PHYSICAL REVIEW RESEARCH 7, 013206 (2025)

supported by the National Science Foundation under Award
No. PHY-2309331. I.B.S. was partially supported by the
National Institute of Standards and Technology (NIST), the
National Science Foundation through the Quantum Leap
Challenge Institute for Robust Quantum Simulation (OMA-
2120757), and the Air Force Office of Scientific Research
Multidisciplinary University Research Initiative “RAPSYDY
in Q” (FA9550-22-1-0339). The content is solely the respon-
sibility of the authors and does not necessarily represent the
official views of SJSU or NIST.

APPENDIX A: KRAUS OPERATOR
AS A STOCHASTIC MAP

We consider a general Gaussian Kraus operator

K̂ = exp

⎡
⎣−ϕ2

2

∑
j

(Ô j − Oj )
2

⎤
⎦ (A1)

with measurement outcomes Oj = 〈Ô j〉 + mj/ϕ, measure-
ment strength ϕ, measurement noise mj = 0, and mjmj′ =
δ j, j′/2. We assume that the measurement operators Ô j com-
mute [Eq. (4) is therefore a special case]. The overall operator
K̂ can be written as a product of individual Kraus operators
K̂j , one for each Ô j , which can be studied separately. We now
consider an initial state

|�〉 ≈ |o
〉 +
∑

′ �=


ε
′ |o
′ 〉 (A2)

close to an eigenstate of these operators, expressed in the
eigenbasis {o
} of Ô (the subscript j is suppressed for clarity).
At first order in these ε’s, we have the expectation value
〈Ô〉 = o
, leading to the action of the Kraus operator

K̂|�〉 = e−m2/2|o
〉 +
∑

′ �=


ε
′
e−ϕ2(o
′ −o
−m/ϕ)2/2|o
′ 〉. (A3)

We then factor out the first exponential as it serves only to
changes the overall normalization; this leaves behind quanti-
ties such as

exp

{
−ϕ2

2

[
(o
′ − o
)2 − 2(o
′ − o
)

m

ϕ

]}
. (A4)

To identify the average behavior of this stochastic map, we
take the ensemble average by expanding the contribution of
the exponential with m to second order in ϕ. Renormalizing,
we arrive at

K̂|�〉 → |o
〉 +
∑

′ �=


ε
′
e−ϕ2(o
′ −o
 )2/4|o
′ 〉; (A5)

compared to the initial state, the perturbing terms have each
decreased in amplitude by an exponential factor that is equal
to 1 in the case of degeneracies. Thus each group of degener-
ate eigenstates (i.e., each BFS) is an attractor of this stochastic
map.

APPENDIX B: FOURIER MEASUREMENT OPERATORS

Here we consider an interpretation of the Kraus operator in
Fourier space,

K̂ = exp

⎡
⎣−ϕ2

2

∑
j

(
n̂ j − 〈n̂ j〉 − mj

ϕ

)2
⎤
⎦

= exp

[
−ϕ2

2

∑
k

∣∣∣∣ ˆ̃nk − 〈 ˆ̃nk〉 − mk

ϕ

∣∣∣∣
2
]
, (B1)

as describing measurements of the Fourier transformed den-
sity operator

ˆ̃nk = 1√
M

∑
j

ĉ†
j ĉ je

−ik j = 1√
M

∑
k′

ĉ†
k+k′ ĉk′ ; (B2)

notice that ˆ̃nk is not the same as the fermion momentum
density operator n̂k = ĉ†

k ĉk , and is a non-Hermitian operator.
Since ˆ̃nk is diagonalizable—just with complex eigenvalues—
we decompose it into a pair of Hermitian components ( ˆ̃nk +
ˆ̃n†

k )/2 and ( ˆ̃nk − ˆ̃n†
k )/(2i), respectively, associated with the

real and imaginary parts of the eigenvalues of ˆ̃nk .

Implementation of cutoff

This description provides a natural way to implement a
cutoff in terms of a k-dependent measurement strength ϕk =
ϕ
√

fk , where we take fk to be a real-valued, non-negative
symmetric function with f (0) = 1. For our simple cutoff,
fk = �(kc − |k|), so fk is either 0 or 1. The resulting Kraus
operator

K̂ = exp

[
−ϕ2

2

∑
k

∣∣∣∣√ fk ( ˆ̃nk − 〈 ˆ̃nk〉) − mk

ϕ

∣∣∣∣
2
]

(B3)

provides an equivalent physical interpretation where new op-
erators

√
fk ˆ̃nk are measured with strength ϕ. Our prescription

is to expand the argument of the exponential and factor out∑
k |mk|2/2, which, while zero-order in ϕ, only contributes

an overall change in normalization to the wave function and
therefore does not contribute to measurement backaction. The
remainder of the Kraus operator is

K̂ = exp

[∑
k

(
ϕ
√

fkδ ˆ̃nkm∗
k − ϕ2 fk

2
|δ ˆ̃nk|2

)]
, (B4)

which leads to meaningful changes in the wave function.
Recall that in our notation, δñk = ñk − 〈ñk〉. We used δ ˆ̃nk =
δ ˆ̃n†

−k, mk = m∗
−k , and we reindexed the sum to obtain the

second term. In what follows, we consider the behavior of this
operator in both real and momentum space.

a. Momentum space

We follow the prescription for the series expansion
in the main body and obtain the approximate Kraus
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operator

K̂ ≈ 1 + ϕ
∑

k

√
fkkδ

ˆ̃nkm∗
k

+ ϕ2

2

⎡
⎣(∑

k

√
fkδ ˆ̃nkm∗

k

)2

−
∑

k

fk|δ ˆ̃nk|2
⎤
⎦. (B5)

The second-to-last term can be simplified,

(· · · )2 =
∑
k,k′

√
fk

√
fk′δ ˆ̃nkδ ˆ̃nk′m∗

k m∗
k′

≈ 1

2

∑
k

√
fk

√
f−kδ ˆ̃nkδ ˆ̃n−k = 1

2

∑
k

fk|δ ˆ̃nk|2, (B6)

having replaced the terms m∗
k m∗

k′ with their ensemble average,
using mkm∗

k′ = δk,k′/2 and mkmk′ = δk,−k′/2, from mj being
real-valued.

All together we find the ensemble-averaged second-order
Kraus operator

K̂ ≈ 1 + ϕ
∑

k

√
fkδ ˆ̃nkm∗

k − ϕ2

4

∑
k

fk|δ ˆ̃nk|2. (B7)

Because this expression is written in terms of commuting
density operators, it is valid for both fermionic and bosonic
systems. The key assumptions that go into this expression are
(i) that ϕ is a small parameter, i.e., the series expansion is
valid; and (ii) that we can replace two-noise terms ∝ mkm∗

k′

with their ensemble average, i.e., mkm∗
k′ → mkm∗

k′ .

b. Real space

Here we compute the Fourier transform of the two terms in
Eq. (B4). The first-order term can be simplified by combining√

fk and mk into an effective noise ηk ≡ √
fkmk from which

we find ∑
k

δ ˆ̃nkη
∗
k =

∑
j

δn̂ jη j . (B8)

In real space, the second-order term is

∑
k

fk|δ ˆ̃nk|2 =
∑
j, j′

δn̂ jδn̂†
j′

[
1

M

∑
k

ei( j− j′ )k fk

]

=
∑
j, j′

δn̂ jδn̂ j′

(
f j− j′√

M

)
, (B9)

where f j− j′ is defined in Eq. (7) in the main text. With
these replacements, the complete expression from Eq. (B5)
becomes

K̂ = 1 + ϕ
∑

j

δn̂ jη j

+ ϕ2

2

∑
j, j′

[
η jη j′ −

(
f j− j′√

M

)]
δn̂ jδn̂ j′ , (B10)

and the expression with the ensemble average reduces to

K̂ = 1 + ϕ
∑

j

δn̂ jη j − ϕ2

4

∑
j, j′

f j− j′√
M

δn̂ jδn̂ j′ . (B11)

References [22,24] implemented the cutoff in a mean-field
theory by simply scaling the noise-variance of mk by fk . As
can be seen from Eq. (B7), following this procedure gives the
same first-order contribution, but the algebra leading to the
second-order term in Eq. (B6) differs. In a single-component
mean-field setting, the second-order term serves only to en-
force the normalization condition, and as such scaling the
noise to implement a k-dependent measurement strength
suffices.

The relations between the different mean-field descrip-
tions, as well as the impact of taking the ensemble average or
not—e.g., contrasting Eqs. (B10) and (B11)—are interesting
questions for future study as they address the accuracy of
second-order stochastic wave-function descriptions of open
quantum systems.
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