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We investigated turbulence in 2D atomic Bose-Einstein condensates (BECs) using a minimally destructive,
impurity injection technique analogous to particle image velocimetry in conventional fluids. Our approach
transfers small regions of the BEC into a different hyperfine state and tracks their displacement, ultimately
yielding the velocity field. This allows us to quantify turbulence in the same way as is conventional in fluid
dynamics in terms of velocity-velocity correlation functions, called velocity structure functions, that obey
Kolmogorov scaling laws. Furthermore, the velocity increments show a clear fat-tail non-Gaussian
distribution that results from intermittency corrections to the initial “K41” Kolmogorov theory. Our
observations are fully consistent with the later “KO62” description. These results are validated by a 2D
dissipative Gross-Pitaevskii simulation.
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Turbulence is a fundamental phenomenon encountered
in a wide range of fluids at all scales: from classical systems
such as oceans and atmospheres [1,2], confined and solar
plasmas [3,4], and the self-gravitating media of the large-
scale Universe [5] to quantum fluids such as neutron stars
[6], superfluid 4He [7], and atomic Bose-Einstein conden-
sates (BECs) [8,9]. In all of these cases, turbulence is
characterized by complex patterns of fluid motion spanning
a wide range of length scales. While the understanding of
classical turbulence has matured in the past century [10],
that of quantum systems has many open questions [11].
For example, in BECs, does there exist a range of length
scales—the inertial scale—in which kinetic energy
cascades from large to small scale (“direct,” as in 3D
classical fluids) or from small scale to large (“inverse,” as
for 2D classical fluids) in accordance with a Kolmogorov
scaling law? Although Kolmogorov scaling was predicted
only for incompressible fluids, it has been observed in
virtually all turbulent fluids [10]. Kolmogorov scaling is
generally quantified in terms of velocity structure functions
(VSFs) that require knowledge of the fluid’s velocity field,
which is difficult to measure in quantum gas experiments.
In this Letter we present a particle image velocimetry (PIV)
technique [12–15] employing spinor impurities as tracer
particles, obtain VSFs in 2D turbulent atomic BECs, and
experimentally observe Kolmogorov scaling.
Existing experimental evidence for turbulence in atomic

BECs relies on time of flight (TOF) measurements are
either dominated by interaction driven expansion [8] or
yield momentum distributions [9,16]. Such observations
have no clear connection to the VSFs SpðlÞ which describe

various order-p moments of the distribution of velocity
increments

δvðx; lÞ ¼ vðxþ lÞ − vðxÞ ð1Þ

as a function of displacement l. Without access to VSFs,
turbulence in atomic gases lacks a direct point of com-
parison to other fluids.
Unlike classical fluid flow, superfluid flow is irrotational

(with vorticity confined to the cores of quantized vortices,
where the superfluid density is zero) with a velocity field
governed by the phase of the superfluid order parameter ϕ
via v ¼ ℏ∇ϕ=m. Despite this, it is generally believed that
superfluid turbulence obeys the same SpðlÞ ∝ lðp=3Þ scaling
as classical fluids, described by the initial K41 Kolmogorov
theory [17–19]; in the case of 4He this has been exper-
imentally verified [20,21] for p ≤ 3. The more complete
KO62 theory [22,23] adds an intermittency correction that
becomes important for large p and also predicts that the
ensemble probability density function of velocity incre-
ments (PDF) is non-Gaussian, with “fat tails.” Power-law
scaling behavior and energy cascade have been observed in
the momentum distribution of homogeneously trapped
BECs undergoing relaxation [9]; the observed exponent
departed from the −5=3 prediction of K41 theory for
energy cascade [related to the Fourier transform of the
S2ðlÞ structure function] and was instead accurately inter-
preted using a wave turbulence model.
Our cold-atom PIV technique allows us to directly

measure the velocity field and thereby both SpðlÞ and
the underlying PDF. As illustrated in Fig. 1(a), we prepare
an initial velocity distribution, then create localized “tracer
particles” consisting of atoms in a different hyperfine state*Contact author: ian.spielman@nist.gov
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using a spatially resolved technique and, after a Δt delay,
measure the tracers’ displacement. This then directly leads
to the local fluid velocity.
Experimental method—We used 87Rb BECs with

N ≈ 2 × 105 atoms in the jF ¼ 1; mF ¼ 1i hyperfine
ground state with strong vertical confinement [trap fre-
quency ωz=ð2πÞ ¼ 220 Hz] provided by a 1064 nm laser
with an elliptical cross section, traveling along ex.
Additionally, a digital micromirror device (DMD) patterned
a 638 nm multimode laser traveling along −ez to provide
dynamical (≈3 kHz update rate) in-plane potentials Vðr; tÞ.
An ≈ 0.14 mT bias magnetic along ey created a Δf ¼
1 MHz Zeeman splitting between consecutive mF states.
Figure 1(b) schematically shows the spatially resolved

Raman setup used to create localized tracer particles.
A circularly polarized bichromatic ≈790 nm laser beam
traveling along ez with frequencies spaced by Δf drove
mF-changing Raman transitions with a 50 kHz Rabi
frequency. The beam was patterned by a second DMD,
enabling the placement of arbitrary patterns of tracer atoms
in jF ¼ 1; mF ¼ 0i. The inter- and intrastate interaction
strengths for these hyperfine states differ only at the 0.5%
level [24]; as a result, tracers comove with the underlying
fluid [25]. Tracer atoms were selectively measured
using partial transfer absorption imaging (PTAI), in which
≈6.8 GHz microwaves transferred the tracers to jF ¼ 2;
mF ¼ 0i where they were detected using resonant absorp-
tion imaging. Our imaging system had a nominal 1 μm
resolution, allowing us create and then detect tracers with
1=e radius down to 1.6 μm.
In our experimental sequence we first initialized the

velocity field of interest and then created a set of N tracers,

at positions rj0 in the ex-ey plane using an ≈π=2 Raman
pulse, with j ¼ 1;…; N [these positions were directly
verified by PTAI measurement, as shown for N ¼ 2 in
Fig. 1(c), top)]. After a Δt evolution time, we imaged the
tracers to obtain the final positions rj [Fig. 1(c), bottom)].
The velocity at each rj0 was taken as the first-order finite-
difference vj ¼ ðrj − rj0Þ=Δt.
Validation in a rotating BEC—Before applying PIV to

turbulent systems, we validated the method with harmoni-
cally trapped BECs rotating with angular frequency Ω
about ez. The confining DMD generated a rotating in-plane
harmonic potential with ðωx;ωyÞ ¼ 2π × ð40; 50Þ Hz. For
slowly rotating systems, such that no vortices are present,
the superfluid velocity is expected to exhibit an irrotational
pattern v ¼ aðyex þ xeyÞ with a ∝ Ω for small Ω [26].
At higher rotation frequencies, when Ω becomes compa-
rable to the trap frequencies ωx;y, this becomes a metastable
configuration with a range of possible instability condi-
tions, the details of which must be obtained numerically
[27,28]. In our case these conditions would limit the
rotation frequency to Ω≲ 2π × 40 Hz, leading to typical
speeds jvj≲ 0.25 mm=s. To obtain increased signal, we
focused on overcritical systems with Ω ¼ 2π × 50 Hz, for
which jvj ≈ 0.7 mm=s.
Experimentally we began with static systems, then

linearly increased the angular frequency from zero to Ω
in 15 ms, held Ω constant for 2 ms (at which time the BEC
rotated by an angle θ ¼ π=2), and then performed PIV. In
this demonstration, we sampled the velocity field on three
concentric circles (with radii of 1, 2.5, and 5 μm) with an
angular resolution of π=12 and used an evolution time

FIG. 1. Concept. (a) Top: representative velocity field with tracer particles (bright pink). Bottom: at t ¼ Δt, tracer particles move from
their initial position (dark pink). (b) Schematic of spatially resolved Raman apparatus used to create tracers. (c) PTAI imaged tracers
before (top) and after (bottom) evolution, with initial and final positions shown by crosses and circles, respectively. Red circles mark the
1-σ widths of the tracers. (d) Velocity fields in a rotating harmonic trap (red arrows) along with atomic density in gray scale with blue
ellipses placed at 0.75× of the Thomas-Fermi radius. Top and bottom panels display experimental data and GPE simulations,
respectively.
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Δt ¼ 1.5 ms. To increase the signal we used tracers with a
2.2 μm diameter and for the smallest circle the tracer size
limited the number of tracers to N ¼ 1, otherwise we used
N ¼ 2. Figure 1(d), top, shows both the atomic density (gray
scale) and associated velocity field (red) with the irrotational
quadrupole pattern clearly visible. The data are in good
agreement with our Gross-Pitaevskii equation (GPE) simu-
lations in Fig. 1(d), bottom. This validation of our PIV
method also marks the first direct visualization of the
irrotational flow pattern in a rotating atomic superfluid [29].
Structure function—Because Kolmogorov theory is valid

for isotropic homogeneous systems, we turned our atten-
tion to near-ground-state BECs with uniform atomic
density. We employed the confining DMD to create a
time-independent 2D disk-shaped potential VðrÞ ¼
V trΘðjrj − rtrÞ with radius rtr¼22 μm and depth V tr≫μ,
where μ≈h×550Hz is the BEC’s chemical potential [30].
We then initialized turbulence with a pair of counter-

rotating stirring “rods” with 3.5 μm radii (also created
by the confining DMD) that locally depleted the atomic
density. As shown in Fig. 2(a), the initially overlapping
rods followed nominally circular trajectories (red curves,
with a 25 Hz rotational frequency), the radius of which
changed every 400 μs to a random value in the interval
½12; 15� μm. The stirring potential was applied for 16 ms;
the system was then allowed to relax for 40 ms prior to PIV
measurement (with Δt ¼ 0.3 ms evolution time).
We used tracer patterns consisting of N ¼ 4 tracers

arrayed in a square with three different side lengths: 10.6,
11.4, and 12.6 μm. Together these patterns gave access to
six tracer separations l comprising the side as well as the
diagonal lengths. The measured tracer positions rj were

then identified by the center of mass ρjr=ρj of the trans-
ferred atoms. To first order inΔt the resulting velocity is the

density-weighted (i.e., Favre-averaged [31]) velocity
ṽ ¼ ρv=ρ, used when applying Kolmogorov theory to
compressible fluids [32–34] (we omit the tilde in what
follows). Each measurement yielded 12 velocity incre-
ments δvðrj; lijÞ, with rj associated with each tracer and the
difference vector lij ¼ ri0 − rj0 to each of the remaining
tracers. Figure 2(b) displays the resulting longitudinal
PDFs both with (red symbols) and without (black symbols)
stirring, PDFsðΔvLÞ and PDFnsðΔvLÞ, respectively. A
ground-state BEC’s PDF should resemble a Kronecker-δ
function centered at 0; here the observed nonzero width
σ ¼ 0.55ð1Þ mm=s provides a measure of the instrumental
noise and is well described by a Gaussian (black curve).
Although the distribution with stirring (red) is broadened
and acquires a fat tail, any VSFs computed directly from
these data will be significantly contaminated by instru-
mental noise.
We therefore employed quadratic programming

based deconvolution [35] to approximate the underlying
PDF0ðΔvÞ from raw data [Fig. 2(c)]. This process mini-
mizes the L2 distance jPDFsðΔvÞ − ðPDFns∘PDF0ÞðΔvÞj2
between the measured distribution and the convolution
(denoted by ∘) of the reconstruction with the instrument
noise distribution, subject to the constraints that PDF0ðΔvÞ
is normalized, non-negative, and contains a single maxi-
mum. Because “fancy” analysis procedures may introduce
unknown artifacts, in what follows we present data derived
from the PDF both with and without deconvolution.
Using PDFs such as these, we obtained the longitudinal

SLpðlÞ¼hjδvðx;lÞ ·eljpi, transverse STpðlÞ¼hjδvðx;lÞ ·e⊥jpi,
and scalar SSpðlÞ ¼ hjδvðx; lÞjpi VSFs [36]. All three
second-order VSFs derived from this procedure are shown
in Fig. 3(a) with and without deconvolution. The primary
impact of deconvolution on these data is to reduce the
amplitude of the VSFs, as would be expected from the
PDF’s reduced width. In both cases the data are compatible
with the S2ðlÞ ¼ s2l2=3 power law expected in the K41
assumption, with fits shown by the solid curves (coeffi-
cients shown in Table I). In general, transverse VSFs
are expected to be larger than their longitudinal counter-
parts; for homogenous and isotropic turbulence the second-
order structure functions have the exact relation
ST2 ðlÞ=SL2 ðlÞ ¼ 4=3, and indeed we find sT2=s

L
2 ¼ 1.6ð1Þ

with deconvolution and 1.33(4) without.
Intermittency—Intermittency in turbulence can be quan-

tified by corrections to K41’s lðp=3Þ scaling law. We directly
obtain scaling exponents ap from power-law fits to the
measured p-order scalar VSFs; the resulting differences
εp ¼ ap − p=3 are plotted in Fig. 3(b) for stirred data with
and without deconvolution (blue and red squares, respec-
tively). All three cases show a deviation from p=3 scaling
that grows with increasing p. In detail, the deconvolved
data are consistent with the εp ¼ −χpðp − 3Þ prediction
of KO62 theory (solid curve), with a system specific

FIG. 2. Turbulence. (a) Atomic density measured during the
excitation process. The blue circle marks the edge of the trap and
red arcs indicate the average path of the stirring rods. (b),
(c) Histograms of δvLðl ¼ 10.6 μmÞ with peak value scaled to
1 and error bars derived from standard counting uncertainty.
(b) Raw data for initial BEC (black, along with Gaussian fit) and
with stirring (red). (c) Deconvolved data (blue) and raw data (red,
along with a reconvolved curve).
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intermittency coefficient χ obtained by fitting the decon-
volved data in Table I.
The deviation from K41 predictions indicates scale-

dependent non-Gaussian behavior in the PDFs. Two widely
separated tracers should have uncorrelated motion, result-
ing in Gaussian PDFs for the velocity increments.
However, if correlations develop with decreasing tracer
separation, the resulting PDFs can become non-Gaussian,
as we observe in Figs. 2(b) and 2(c). We describe the non-
Gaussian behavior of these distributions in terms of the
kurtosis K, which quantifies the relative weight of a
distribution’s tail with respect to its center; a Gaussian
distribution hasK ¼ 3. Figure 3(c) plots the excess kurtosis
K − 3, computed from both the transverse (solid markers)
and longitudinal (empty markers) PDFs, as a function
of tracer separation for unstirred data (black), raw data
(red), and deconvolved data (blue); the exponentially
falling curves serves as guides to the eye. As expected,
without stirring, the measured distributions are Gaussian
(K − 3 ≈ 0) and acquire fat tails (K − 3 > 0) in the turbu-
lent case. The transverse excess kurtosis rises with falling l,

as would be expected when intermittency is important
at smaller scales. Unexpectedly, the longitudinal K − 3 is
independent of l, and to gain further insight we turn to
numerical simulations.
Numerical simulation—We conclude by comparing to

numerical simulations of a dissipative Gross-Pitaevskii
equation (dGPE) introduced in Ref. [37] for the study of
turbulent BECs. The dGPE is given by

iℏ∂tψ ¼ e−iκðk̂Þ
�
ℏ2k̂2

2m
þ V þ gjψ j2 − μ

�
ψ ; ð2Þ

where μ is the chemical potential, and κðkÞ ¼ κ0Θðjkj −
kcutÞ introduces dissipation that damps excitations with
wavelengths smaller than 2π=kcut [38]. In our experiment
this is physically motivated by the evaporation process,
which constantly removes high energy excitations. Our
T ≈ 20 nK temperature corresponds to a thermal phonon
wave number kth ≈ 2 μm−1; we set kcut ¼ 5 μm−1, at the
boundary between the highly occupied condensate mode
and the sparsely occupied thermal modes [39], and con-
firmed that the simulation results were unchanged by
factors of 2 increase or decrease of kcut. By contrast, the
dissipation strength κ0 was empirically set to 0.02 to match
that nominal scale of the experimental deconvolved S2.
Each numerical experiment began with a steady-state

system evolving according to Eq. (2) with an added
stochastic noise term selected to give the observed 98%
condensate fraction. The simulation then followed the
experimental stirring-then-evolution protocol and recorded
the density-weighted velocity averaged over the extent of
the ≈6 μm resolvable distance between tracers.
The numerical results in the remainder of Fig. 4 parallels

the experimental data in Fig. 3. Figure 4(a) plots the
second-order VSFs where the blue shaded region delineates
the minimum resolvable distance between tracers. The solid
curves are fits to the 2=3 scaling law outside of this regime
with amplitudes shown in Table I. While the simulation
parameter κ0 was selected to match the nominal scale of
these amplitudes with experiment, the close correspon-
dence of their ratios—e.g., sT=sL ¼ 1.22ð1Þ—as well as
the overall scaling behavior are intrinsic outcomes of the
simulation. Figure 4(b) continues by showing the inter-
mittency corrections εp from scalar VSFs (red squares) are
consistent with the KO62 theory (solid curve) with an
intermittency exponent χ about half that of experiment
(Table I). Figure 4(c) shows that, as with experiment, K − 3
increases from zero in the turbulent case, although with a
significant reduction in overall magnitude. As observed
experimentally, the transverse excess kurtosis falls with
increasing l, and the longitudinal K − 3 remains indepen-
dent of l.
Taken together, these numerical results confirm the

presence of vortex driven turbulence in this system and
provide near quantitative agreement with our experiment

TABLE I. Fit parameters.

sL2 sT2 ×10−3 m4=3=s2 sS2 χ

Expt Raw 1.06(7) 1.41(2) 2.47(6) not applicable
Expt Deconv 0.52(4) 0.83(4) 1.34(2) 0.04(1)
Numerics 0.329(1) 0.401(2) 0.730(3) 0.023(1)

FIG. 3. In all panels red and blue denote stirred data with and
without deconvolution, respectively, while black indicates un-
stirred data. (a) Measured S2ðlÞ. Each point results the average of
44 experimental runs, and each run derived S2ðlÞ from about 50
nominally identical experimental repetitions. The uncertainties
are the 2-σ standard error of the mean for the set of 44 runs. As
described in the text, the curves are fits to the data plotted along
with their 2-σ uncertainty band. (b) Intermittency correction with
error bars indicating 2-σ uncertainties. The blue curve represents
a fit to the KO62 model, with 2-σ confidence band. (c) Excess
kurtosis of transverse (solid) and longitudinal (empty) distribu-
tions data each fit to a decaying exponential.
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[this is quite surprising given the ad hoc introduction of
dissipation into Eq. (2)].
Discussion and outlook—Although our observations

demonstrate Kolmogorov scaling behavior, our study
leaves a range of open questions. For example, Ref. [40]
numerically showed a direct energy cascade is expected
under conditions such as ours, rather than the inverse
cascade usually associated with 2D systems. In addition to
energy and particle number, incompressible 2D fluids also
conserve enstrophy (the integrated square of the fluid’s
vorticity field): this leads to an inverse energy cascade and a
direct enstrophy cascade [41]. In 2D superfluids, vorticity
is carried by singly charged quantized vortices, making
enstrophy and vortex-number conservation equivalent.
Both numerical [40,42,43] and experimental [44,45] stud-
ies indicate that vortex number is, in general, not con-
served, and special care is required to avoid vortex
recombination [46–49]. Our numerics (see Supplemental
Material [50]) as well as those of Ref. [40] show that
vortices are rapidly lost in our system, leading to decaying
Kolmogorov scaling with a direct energy cascade [50].
A second question is why—both in experiment and

numerics—does PDFðΔvLÞ have an excess kurtosis that is
independent of separation? What is the relation between
scaling observed from VSFs and that obtained from TOF
momentum distributions [9,16]? Additionally, our studies
focused on decaying turbulence in which a turbulent state
is in the process of relaxing; this is in contrast with
fully developed (i.e., steady-state) turbulence in which
the system is continuously excited at long length scales
and energy is removed at short scales. The recent develop-
ment of BECs undergoing continuous replenishment and
evaporation [57] may enable access to this regime.

On the numerical side, the dGPE introduced dissipation
in an experimentally motivated, but ultimately heuristic
manner. Full 3D simulations including realistic modeling
of the evaporation processes would eliminate the need for
heuristics and also inform more realistic approximate 2D
descriptions. Such simulations would help connect our
results to those inferring turbulence from momentum
distributions [9,58] that found wave turbulence scaling
rather than Kolmogorov scaling.
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