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This dissertation is based on two independent projects and is therefore divided into two

parts. The first half of this dissertation summarizes a series of investigations, both experimental

and theoretical, that culminates in the realization of an optical lattice with a subwavelength

spacing of λ/4, where λ is the wavelength of light used to create the lattice. The second half

of this thesis presents details on the design and construction of an apparatus for dual-species

optical tweezer arrays of Rb and Yb for Rydberg-interaction-mediated quantum computation and

simulation.



Ultracold atoms trapped in optical lattices have proven to be a versatile, highly controllable,

and pristine platform for studying quantum many-body physics. However, the characteristic

single-particle energy scale in these systems is set by the recoil energy ER = h2/ (8md2). Here,

m is the mass of the atom, and d, the spatial period of the optical lattice, is limited by diffraction

to λ/2, where λ is the wavelength of light used to create the optical lattice. Although the

temperatures in these systems can be exceedingly low, the energy scales relevant for investigating

many-body physics phenomena, such as superexchange or magnetic dipole interactions, can

be lower yet. This limitation can be overcome by raising the relevant energy scales of the

system (Eeff
R = h2/ (8md2eff)) by engineering optical lattices with spatial periodicities below

the diffraction limit (deff < λ/2).

To realize this subwavelength-spaced lattice, we first generated a Kronig-Penney-like optical

lattice using the nonlinear optical response of three-level atoms in spatially varying dark states.

This conservative Kronig-Penney-like optical potential has strongly subwavelength barriers that

can be less than 10 nm (≡ λ/50) wide and are spaced λ/2 apart, where λ is the wavelength of

light used to generate the optical lattice. Using the same nonlinear optical response, we developed

a microscopy technique that allowed the probability density of atoms in optical lattices to be

measured with a subwavelength resolution of λ/50. We theoretically investigated the feasibility

of stroboscopically pulsing spatially shifted 1D Kronig-Penney-like optical lattices to create

lattices with subwavelength spacings. We applied the lattice pulsing techniques developed in

this theoretical investigation to realize a λ/4-spaced optical lattice. We used the subwavelength

resolution microscopy technique to confirm the existence of this λ/4-spaced optical lattice by

measuring the probability density of the atoms in the ground band of the λ/4-spaced optical

lattice.



Single neutral atoms trapped in optical tweezer arrays with Rydberg interaction-mediated

entangling gate operations have recently emerged as a promising platform for quantum computation

and quantum simulation. These systems were first realized using atoms of a single species,

with alkali atoms being the first to be trapped in optical tweezers, followed by alkaline-earth

(like) atoms, and magnetic lanthanides. Recently, dual-species (alkali-alkali) optical tweezer

arrays were also realized. Dual-species Rydberg arrays are a promising candidate for large-scale

quantum computation due to their capability for multi-qubit gate operations and crosstalk-free

measurements for mid-circuit readouts. However, a dual-species optical tweezer array of an

alkali atom and an alkaline-earth (like) atom, which combines the beneficial properties of both

types of atoms, has yet to be realized. In this half of the thesis, I present details on the design

and construction of an apparatus for dual-species Rydberg tweezer arrays of Rb (alkali) and Yb

(alkaline-earth like).
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Part I

Engineering optical lattices for ultracold atoms with spatial features and periodicity below the

diffraction limit
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Chapter 1: Introduction

The first half of this dissertation summarizes a series of investigations, both experimental

and theoretical, that culminate in the realization of an optical lattice with a subwavelength spacing

of λ/4. To realize this lattice, we first generated a Kronig-Penney-like optical lattice using the

nonlinear optical response of three-level atoms in spatially varying dark states. This conservative

Kronig-Penney-like optical potential has strongly subwavelength barriers that can be less than

10 nm (≡ λ/50) wide and are spaced λ/2 apart, where λ is the wavelength of light used

to generate the optical lattice. Using the same nonlinear optical response, we developed a

microscopy technique that allowed the probability density of atoms in optical lattices to be

measured with a subwavelength resolution of λ/50. We theoretically investigated the feasibility

of stroboscopically pulsing spatially shifted 1D Kronig-Penney-like optical lattices to create

lattices with subwavelength spacings. We applied the lattice pulsing techniques developed in

this theoretical investigation to realize a λ/4-spaced optical lattice. We used the subwavelength

resolution microscopy technique to confirm the existence of this λ/4-spaced optical lattice by

measuring the probability density of the atoms in the ground band of the λ/4-spaced optical

lattice.

The first half of the thesis is organized around four published papers, each chapter summarizing

the results of a paper:
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• Chapter 2: Y. Wang, S. Subhankar, P. Bienias, and M. Łacki, T.-C. Tsui, M. A. Baranov,

A. V. Gorshkov, P. Zoller, J. V. Porto, and S. L. Rolston, Dark State Optical Lattice with a

Subwavelength Spatial Structure, Phys. Rev, Lett, 120, 083601 (2018).

• Chapter 3: S. Subhankar, Y. Wang, T.-C. Tsui, S. L. Rolston, and J. V. Porto, Nanoscale

Atomic Density Microscopy, Phys. Rev. X 9, 021002 (2019).

• Chapter 4: S. Subhankar, P. Bienias, P. Titum, T.-C. Tsui, Y. Wang, A. V. Gorshkov, S.

L. Rolston, and J. V. Porto, Floquet engineering of optical lattices with spatial features and

periodicity below the diffraction limit, New J. Phys. 21, 113058 (2019).

• Chapter 5: T.-C. Tsui, Y. Wang, S. Subhankar, J. V. Porto, and S. L. Rolston, Realization

of a stroboscopic optical lattice for cold atoms with subwavelength spacing, Phys. Rev. A

101,041603(2020).

Each chapter shares the title of the paper it summarizes. The published papers can be found

in their entirety in the appendix. Other publications that did not make it to the first half of the

dissertation:

• S. Subhankar, A. Restelli, Y. Wang, S. L. Rolston, J. V. Porto, Microcontroller based

scanning transfer cavity lock for long-term laser frequency stabilization, Rev. Sci. Instrum.

90, 043115 (2019).

• P. Bienias, S. Subhankar, Y. Wang, T-C. Tsui, F. Jendrzejewski, T. Tiecke, G. Juzeliūnas,

L. Jiang, S. L. Rolston, J. V. Porto, and A. V. Gorshkov, Coherent optical nanotweezers for

ultracold atoms, Phys. Rev. A 102, 013306 (2020)
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Chapter 2: Dark State Optical Lattice with a Subwavelength Spatial Structure

Coherent control of the position and motion of atoms with light has been a primary enabling

technology in the physics of ultracold atoms. The paradigmatic examples of conservative optical

potentials are the optical dipole trap and optical lattices, generated by far off-resonant laser fields,

with the ac-Stark shift of atomic levels as the underlying mechanism. The spatial resolution for

such optical potential landscapes is determined by the diffraction limit, which is of the order of

the wavelength of light λ. This fundamentally limits optical manipulation of atoms. For example,

in quantum simulation with atoms in optical lattices, the minimum lattice constant is λ/2, setting

the energy scale for Hubbard models for both hopping (kinetic energy) and interaction of atoms,

with challenging temperature requirements to observe quantum phases of interest [5]. Developing

tools to overcome the diffraction limit, allowing coherent optical manipulation of atoms on the

subwavelength scale, is thus an outstanding challenge.

In this chapter, I summarize the results of our paper, in which we report first experiments

demonstrating coherent optical potentials with subwavelength spatial structure, by realizing a

Kronig Penney-type optical lattice with barrier widths less than 10 nm ≡ λ/50, where λ is the

wavelength of light used to create the potential. These strongly subwavelength spatial structures

arise from the non-linear optical response of three-level atoms in dark states to spatially varying

light fields. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as
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Figure 2.1: Level structures and experimental geometry. (a) The three levels in 171Yb used to
realize the dark state are isolated from the fourth 3P1,mF = +1/2 state by a large magnetic
field. They are coupled by a strong σ−polarized control field Ωc (green) and a weak π polarized
probe field Ωp (orange). The resulting dark state is a superposition of the ground states |g1⟩ and
|g2⟩, with relative amplitudes determined by Ωc(x)/Ωp. (b) Spatial dependence of the dark state
composition is created using a standing wave control field Ωc(x) and a traveling wave probe field
Ωp. The geometric potential V (x) (black) arises as the dark state rapidly changes its composition
near the nodes of the standing wave. (c) The two counter-propagating σ−beams creating the
standing wave are aligned with a strong magnetic field along x, while the π beam travels along y.

44 ms, nearly 105 times the excited state lifetime, and could be further improved with more laser

intensity. The potential is readily generalizable to higher dimensions and different geometries,

allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications,

and dynamically generated lattices with subwavelength spacings.

The paper can be found in its entirety in Appendix A. At the end of the chapter, I summarize

the details on some of the hardware development that I did to help realize this project.
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2.1 Summary

The main ingredient for realizing a Kronig-Penney-like optical lattice is a three-level system

in a Λ configuration: two ground states |g1⟩, |g2⟩ and an excited state |e⟩ (Fig. 2.1a). A spatially

varying strong control field Ωc(x) = Ωc sin(kx) couples the |g2⟩ ↔ |e⟩ transition and a constant

amplitude weak probe field Ωp couples the |g2⟩ ↔ |e⟩ transition. Within the Born-Oppenheimer

(BO) approximation, slowly moving atoms in the dark state |E0(x)⟩ are decoupled from the

excited state |e⟩, where |E0(x)⟩ = sin(α) |g1⟩−cos(α) |g2⟩ and α(x) = arctan (Ωc(x)/Ωp).

The two bright states E±(x) have excited state component |e⟩, leading to light scattering. Given

this light field arrangement, the dark state changes composition over a narrow region, depending

on the ratio ϵ = Ωp/Ωc. The kinetic energy associated with this large gradient in the spin wave

function gives rise to a conservative optical potential V (x) for atoms in |E0(x)⟩ (Fig. 2.1b),

V (x) =
ℏ2

2m

(
dα

dx

)2

= ER
ϵ2 cos2(kx)

(
ϵ2 + sin2(kx)

)2 , (2.1)

where k = 2π/λ,ER = ℏ2k2/2m is the recoil energy, and m is the mass of the atom. The

potential V (x) can be viewed as arising from nonadiabatic corrections to the BO potential or

artificial scalar gauge potential. When ϵ ≪ 1, this creates a lattice of narrow barriers spaced

by λ/2, with the barrier height scaling as 1/ϵ2 and the full width at half maximum scaling as

0.2λϵ. Unlike ac-Stark shift potentials, this twist-induced potential is a quantum effect, with its

magnitude proportional to ℏ2.

We realize the Λ configuration using three states selected from the |1S0, F = 1/2⟩ and

|3P1, F = 1/2⟩ hyperfine manifolds in 171Yb cooled to a temperature of ≃ 300 nK (T/TF = 1.10 ,
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where TF is the Fermi temperature). The two 1S0 ground states mF = ±1/2 comprise the

lower two states |g1⟩ and |g2⟩ (see Fig. 2.1a). The |3P1, mF = −1/2⟩ state, with inverse

lifetime Γ = 2π × 182 kHz, makes up the third state |e⟩ in the Λ configuration. The |gi⟩ → |e⟩

transitions are isolated from the transition to the other |3P1,mF = +1/2⟩ state by applying a

12 mT magnetic field
−→
B to Zeeman split the two 3P1 states by ∆B = 1.8× 103Γ. The same field

slightly splits the 1S0 ground states by −0.5Γ due to the small nuclear magnetic moment. The

standing-wave control field Ωc(x), traveling along
−→
B , is produced by two counterpropagating

σ−laser beams that couple the |g2⟩ and |e⟩ states with amplitudes Ωc1e
ikx and Ωc2e

−ikx. A third

beam, π polarized and traveling normal to
−→
B , couples the |g1⟩ and |e⟩ states with amplitude

Ωpe
iky (see Fig. 2.1c). The frequency of the control and probe beams can be chosen to set the

single and two-photon detunings, ∆ and δ. We define δ = 0 as the dark state condition for the

isolated three-level system, accounting for the Zeeman splitting. Off-resonant couplings to other

states can introduce light shifts, which require nonzero δ to maintain the dark state condition.

In order to confirm the creation of the dark state optical lattice, we probe its bandstructure.

For small ϵ, this lattice maps to a ID KP model. One characteristic feature of the KP lattice is that

the energy of the n th-band scales as n2ER, such that the band spacing increases with n, which

we confirm experimentally. In contrast, in a deep sinusoidal lattice, the band spacing decreases

with n. To map out the bandstructure, we excite atoms from the ground (s) band into the higher

bands by shaking the lattice by phase modulating of one of the σ−beams. After band mapping,

we measure the band populations, which become separated after time-of-flight (TOF).

Finally, we study dissipation in the dark state optical lattice. The nonadiabatic corrections

to the BO potential that give rise to V (x) also weakly couple the dark state with the bright states,

which leads to light scattering, heating the atoms out of the trap. We measure the lifetime τ in
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a dark state lattice for different ∆ and find it significantly longer for ∆ > 0 than for ∆ < 0.

This is in contrast to an optical lattice based on ac-Stark shifts, where heating is independent

of the sign of ∆. To intuitively understand this asymmetry, we note that the coupling to the

bright states takes place inside the barrier. An atom can scatter light by admixing with the bright

states E±(x) (approximately ∆ independent) or exiting into the energetically-allowed E−(x)

state via nonadiabatic couplings (strongly ∆ dependent). The E−(x) state contributes more

to the loss, explaining the ∆ asymmetry. The nonadiabatic bright state coupling also leads to

a counterintuitive dependence of the dissipation on the laser power. Remarkably, the lifetime

increases with Rabi frequency. In contrast, for a regular optical lattice at a fixed detuning, the

lifetime does not improve with more laser power. For the dark state lattice, larger Ωc,p increases

the separations between BO potentials, resulting in decreased scattering. In general, the lifetime

improves with more laser power and at blue detuning. With realistic increase in laser intensity, we

can potentially improve the lifetime by an order of magnitude, while maintaining the ultranarrow

barriers.

The conservative nanoscale optical potential demonstrated here adds to the toolbox of

optical control of atoms, enabling experiments requiring subwavelength motional control of

atoms. Such sharp potential barriers could be useful for the creation of narrow tunnel junctions

for quantum gases or for building sharp-wall box-like traps. In addition, spin and motional

localization on small length scales can enhance the energy scale of weak, long range interactions.

The dark state lattice can be generalized to 2D and, for example, can be used to study Anderson

localization with random strength in the barrier height. By stroboscopically shifting the lattice,

the narrow barriers should enable optical lattices with spacings smaller than the λ/2 spacing

set by the diffraction limit, which would significantly increase the characteristic energy scales
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relevant for interacting many-body atomic systems.

2.2 Hardware development

I, along with the post-doc on the experiment, Yang Wang, built the hardware for all the

experiments presented in the first half of this thesis. For example, we upgraded the high-current

supply circuits. The current in the bias coils needed to be go as high as 300 A as large magnetic

fields (as large as 360 G) were needed to create a well-isolated three-level system. We built the

optics for the three 556 nm laser beams (Ωc1, Ωc2, and Ωp) used in the experiments. I built the

rf drivers for controlling the phase and amplitude pulsing of the 556 nm laser beams. Here are a

few more things that were important in realizing the experiments in the first half of this thesis:

• Building the fiber-based Yb 2D MOT source: The original Yb 2D MOT source delivered

399 nm cooling light via free-space optics. The atom number was highly sensitive to drifts

in the alignment of the free-space optics. We had to re-align the 2D MOT optics often,

sometimes once or twice a week. We knew that a fiber-based 2D MOT source would be

much more stable but did not have sufficient power to overcome the losses associated with

fiber-coupling.

In September 2016, we upgraded the TA chip on the 399 nm TA–DL SHG Pro system.

This upgrade increased the 399 nm laser output power from 200 mW to 570 mW and made

a fiber-based 2D MOT setup for Yb feasible. The new setup had much higher passive

stability on the order of months in comparison to the free-space 2D MOT setup. I designed

and built the fiber-based Yb 2D MOT setup.

• Building the scanning transfer cavity lock setup for locking the frequency of the
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399 nm laser: Before I joined the lab, we used a DAVLL (Dichroic Atomic Vapour

Laser Lock) [6, 7] in a hollow cathode cell for locking the frequency of the 399 nm laser

frequency to the (6s2)1S0 −→ (6s6p)1P1 atomic transition in Yb. However this lock was

unstable. It would break every few hours. The error signal would randomly jitter up and

down at amplitudes much greater than the capture range of the lock, despite using clean

polarized light in the setup. We were never able to isolate the source of this jitter and hence

efforts were made to lock the laser in different ways, specifically the scanning transfer

cavity lock (STCL) (Appendix. B). I suggested using the 780 nm master laser [8, 9] that

was locked to the 85Rb, F = 3 ↔ F ′ = 3−4 crossover resonance via saturation-absorption

spectroscopy as the frequency reference, and the 399 nm laser fundamental at 798 nm as

the slave laser for the STCL lock. I designed and built the STCL setup, which we have used

ever since. We wrote a paper about this setup and the details can be found in Appendix B.

• Building the OPLL lock for the NKT seed: Before I joined the lab, we had an OrangeOne

laser operating at 1112 nm from Menlo Systems which pumped a periodically-poled lithium

niobate (PPLN) wave-guided doubling crystal in order to generate 556 nm laser light. This

laser system was locked to the 6s2 1S0 ↔ 6s6p3 P1 via saturation absorption spectroscopy [8,

9]. However, this laser system was the bane of my predecessors and malfunctioned multiple

times, including one time after I joined the lab [8, 9]. Each repair took approximately two

months as the laser or the doubling crystal had to be shipped back to Germany. We bought

a second laser system (see 7.5.2.2) to serve as a back up. For the experiments presented in

this thesis, this second laser system proved to be invaluable as it was used to generate all the

three laser beams used in the experiments presented in the first half of the thesis: Ωc1, Ωc2,
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and Ωp. In order to tune the frequency of the new 556 nm laser, I built a setup for optical

phased-locked loop [10] locking of the frequency of the new laser to the old laser. We used

Neal Pisenti’s high voltage piezo-driver [11] for driving the piezoelectric transducer of the

NKT seed. The OPLL circuit board—based on the design in Ref. [11]—was replicated

here at JQI (https://github.com/JQIamo/beatnote-pll.git). We used 1112 nm light from the

monitor port of both lasers for this beatnote lock.

• Demagnetizing the chamber after each experimental shot: Large magnetic fields in

the range of 120 G to 360 G were needed to create the well isolated three-level system

used in these experiments. However, this large magnetic field magnetized parts of the

chamber at the end of every experimental sequence. The residual magnetization would

then generate a weak bias field that shifted the position of the green Yb 3D MOT at the

start of the subsequent sequence leading to fewer atoms in the Yb Fermi gas. Every

subsequent experimental shot enhanced the strength of this residual magnetic field and

eventually led to the complete annihilation of the Yb Fermi gas. I devised and implemented

a simple protocol at the end of every experimental sequence where we would rapidly flip

the orientation of the quadrupole magnetic field while ramping its amplitude down to zero.

This oscillating and damped magnetic field removed the problematic magnetization.
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Chapter 3: Nanoscale Atomic Density Microscopy

High spatial and temporal resolution microscopy can reveal the underlying physics, chemistry,

and biology of a variety of systems. Examples range from the study of atoms on surfaces with

atomic resolution scanning tunneling microscopy [12] to the use of superresolution microscopy

to observe the dynamics of individual molecules within living cells [13]. The field of quantum

simulation with ultracold atoms has emerged to study strongly correlated mAOMtems using

precise control with light-atom interactions [5]. This entails confining atoms, engineering their

interactions and potentials, and measuring their states with laser light. Based on fluorescence and

absorption, the inherent imaging resolution is limited by diffraction. Bringing superresolution

microscopy to the field of quantum simulation of condensed-matter systems with ultracold atoms

will allow new direct probes of the wave function in a variety of many-body systems

In this chapter, I summarize the results of our paper on a technique that uses the nonlinear

optical response of atoms to spatially and temporally varying laser fields introduced in the last

chapter for superresolution imaging of the probability density of atoms with a spatial resolution

of λ/50 and temporal resolution of 500 ns. We characterize our microscope’s performance by

measuring the ensemble-averaged probability density of atoms within the unit cells of an optical

lattice and observe the dynamics of atoms excited into motion.

The paper can be found in its entirety in Appendix C. At the end of this chapter, I elaborate
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on the arbitrary waveform generator (AWG) that was critical in realizing the results presented in

this chapter and chapter 5.

3.1 Summary

The basic principle of our approach is as follows (illustrated in Fig. 3.1). The dark state of

a three-level atom in a Λ configuration (ground states |g1⟩, |g2⟩ and excited state |e⟩ ) coupled by

a standing-wave control field Ωc(x) = Ωc sin(kx) and homogeneous probe field Ωp is:

|D(x)⟩ = 1√
Ωc(x)2 + Ω2

p

[Ωc(x) |g1⟩ − Ωp |g2⟩] , (3.1)

where k = 2π/λ, and λ is the wavelength of the light. For Ωc ≫ Ωp, the resulting dark-state

composition is predominantly |g1⟩ away from the nodes of Ωc(x), and |g2⟩ near the nodes where

Ωp ≫ |Ωc(x)|. The probability density of |g2⟩ coming from this nonlinear dependence on the

Rabi frequencies (Eq. 3.1) is periodic and has narrow peaks near the nodes

f(x) =
ϵ2

ϵ2 + sin2(kx)
,

where ϵ = Ωp/Ωc. The full width at half maximum (FWHM) σ of the peaks provides a good

metric for the resolution within the unit cell λ/2. For Ωc ≫ Ωp (small ϵ ), σ depends linearly on

ϵ : σ ≃ ϵλ/π, allowing resolution that greatly exceeds the diffraction limit. Starting with atoms

in |g1⟩ with wave function ψ(x), we can adiabatically transfer a narrow slice of atoms into |g2⟩.

The wave-function probability density |ψ(x)|2 can be determined by measuring the population
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Figure 3.1: Principle of a wavefunction microscope. (a) Configuration of the control field Ωc(x)
and probe field Ωp. (b) Wavefunction ψ(x) in |g1⟩ in the lattice of interest V (x). (c) The spin
state composition is transferred to |g2⟩ near the nodes of Ωc(x − x0) with probability density
given by f(x−x0) (narrow red peaks), and |g1⟩ elsewhere. The width of f(x−x0) is determined
by the relative strength of the two light fields ϵ = Ωp/Ωc. (d) f(x − x0) maps |ψ(x)|2 onto
the population in |g2⟩, n(x0), which can be selectively measured via state-dependent imaging.
By stepping through different positions x0 and measuring n(x0), we can reconstruct |ψ(x)|2
(indicated by the dashed curve).
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transferred to |g2⟩ at different locations x, yielding a signal

n(x) =

∫
|ψ (x′)|2 f (x′ − x) dx′. (3.2)

By deconvolving this signal with the probing function f(x), we can reconstruct |ψ(x)|2.

We use stimulated Raman adiabatic passage (STIRAP) to transfer the selected slices of the

wave function from the state |g1⟩ into |g2⟩. In order to accurately measure the shape of the wave

function, the STIRAP process must be adiabatic with respect to the spin degree of freedom (d.o.f.)

(i.e., the dark-state composition given by Eq. 3.1) but diabatic with respect to the motional d.o.f.

For small ϵ, the shortest duration of the STIRAP is inversely proportional to the Rabi frequencies.

For typical trapped atoms experiments, Rabi frequencies can be tens of MHz, while the motional

dynamics is on the order of tens of kHz.

We work with the three-level system in 171Yb cooled to a temperature of ≃ 300nK (T/TF = 1.10 ,

where TF is the Fermi temperature), consisting of |g1⟩ =
∣∣1S0, F = 1

2
,mF = −1

2

〉
, |g2⟩ =|

1S0, F = 1
2
,mF = +1

2

〉
, and |e⟩ =

∣∣3P1, F = 1
2
,mF = −1

2

〉
, coupled by λ = 556 nm light.

The control field Ωc(x) is formed by two counterpropagating σ−-polarized beams Ωc1e
ikx and

Ωc2e
−ikx in the direction of the quantization axis defined by a magnetic field along x̂, while the

probe field Ωp is a π-polarized traveling wave normal to the control beams. The Yb atoms are

optically pumped into |g1⟩ with a final population approximately equal to 2 × 105. We measure

|ψ(x)|2 of spin-polarized Yb atoms loaded into either a Kronig-Penney- (KP) type lattice of

thin barriers, or a regular sinusoidal lattice based on the ac Stark shift of Ωc1,2 off-resonantly

coupled to the |g1⟩ ↔
∣∣3P1, F = 3

2
,mF = −3

2

〉
transition, which lies outside the three-level

system making up the dark state.
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Our microscope is implemented as follows. We first suddenly turn off the lattice potential

V (x) that supports the wave function to be probed by switching off the Ωc2 beam. Next, we ramp

on Ωp followed by Ωc2 with a different phase, which adiabatically flips the spin from |g1⟩ to |g2⟩

in the region tightly localized near the nodes of the shifted Ωc (x
′ − x) = Ωc sin (k (x

′ − x)). The

intensity profiles for ramping these two beams are calculated to preserve adiabaticity, ensuring

atoms follow the spatio-temporal dark state at all times. We then rapidly ramp off all beams

simultaneously in order to preserve the dark-state composition. We measure the |g2⟩ population

via state-selective absorption imaging. Scanning x in fine steps at small ϵ allows us to map out

the |ψ(x)|2 with high resolution.

We use our wave-function microscope to investigate atoms in sinusoidal and Kronig-Penney

lattices. We measure the ground-state wave functions of these atoms within the unit cell of these

optical lattices. We also study the dynamics of the wavefunction after a sudden quench in the

position and depth of the sinusoidal optical lattices. The fast STIRAP slicing process allows for

observing the wave-function dynamics. At our maximum Rabi frequency of Ωc = 2π × 90MHz

and ϵ = 0.05, we can maintain the adiabaticity condition for a STIRAP time of 500 ns, which

sets the temporal resolution.

We estimate the spatial resolution of our microscope by measuring the narrowest wave

function |ψ(x)|2 that we can create with the breathing-mode excitation from quenching the depth

of the sinusoidal optical lattice from 6 ER to 140 ER. This narrowest wave function |ψ(x)|2 has a

calculated FWHM of w0 = 26.2+1.6
−0.6 nm, where the uncertainty arises from the uncertainty in the

Rabi-frequency calibrations used to determine the lattice depth for small ϵ. Following Eq. 3.2,

by deconvolving the measured n(x) with the calculated wave function (|ψ(x)|2) and taking into

account the 800ns expansion time, we estimate the intrinsic resolution σ for different ϵ. The
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smallest measured σ reaches 11.4+2.0
−4.4 nm.

The ultimate resolution is possibly limited by mechanical effects arising from the sharp

potential associated with the dark state. As the slice width σ decreases, the total population in

|g2⟩ also decreases, setting a practical limit on the usable resolution. Both the temporal and spatial

could be improved with higher Rabi frequencies and signal-to-noise ratio.

The dark-state-based technique can be applied to image any atomic or molecular system

as long as they host a three-level system, including the alkali atoms that are used in many

experiments. Our subwavelength resolution already allows us to distinguish the different atomic

wave functions trapped in lattices with different subwavelength structure. Such a resolution will

be critical in the study of optical lattices with lattice constants λ/2N created through stroboscopic

techniques, which is the subject of the next two chapters. These subwavelength-spaced lattices

are advantageous for studying many-body physics, since the energy scale is N2 times larger than

a typical λ/2 lattice.

SAM3X8E
(micrcontroller)

AD9910
(DDS)

AD5790
(DAC)

ADL5391
(Multiplier)

SDRAM

SPI 

Parallel Port 

AWG RAM

LTC2387-18
(ADC)

LTC2378-20
(ADC)

Host PC

SPI

8 

18

20

16+2 

20 

Analog in

Analog in

TTL trigger

Output

SPARTAN 6
(FPGA)

Figure 3.2: Arbitrary waveform generator hardware schematic
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3.2 Hardware and software development

Here, I will elaborate on the arbitrary waveform generator (AWG), which was central to

realizing the results presented in this chapter and chapter 5, particularly due to its ability to

generate high-speed arbitrary waveforms. I was aware of the fact that Carlos (with help from

Alessandro) had built an entire AWG from the ground up for Trey’s Rb I experiment. He had

designed and built the hardware as well as the associated firmware. I suggested modifying

this AWG to fit our specific application and it turned out to be a success. The schematic of

the modified device is shown in Fig. 3.2. I designed the fast AWG software architecture and

Carlos and I made numerous modifications to the FPGA firmware to implement this architecture.

The fast AWG software architecture was designed around the memory hierarchies and latencies

inherent to the AWG hardware.

The AWG hardware is centered around the AD9910 Direct Digital Synthesizer controlled

by a Xilinx Spartan 6 FPGA. The SAM3X8E interfaces the FPGA with the host PC via USB

or ethernet. Slow amplitude, phase, and frequency profiles, as well as digital logic, are stored

in the SDRAM as a table of values. The phase and frequency table of values—provided by

SetList (https://github.com/JQIamo/SetList.git) on the host PC—are passed on

to the DDS module over SPI upon receiving a trigger from the Pulseblaser (from SpinCore

Technologies) every 2 µs, which would then update the relevant DDS parameter. As for the

amplitude table of values stored on the SDRAM, the digital data is reconstructed as an analog

signal (using an external DAC: AD5790 from Analog Devices) and is mixed with the waveform

generated by the DDS using an analog multiplier (ADL5391 from Analog Devices) to adjust the

amplitude of the waveform. A higher resolution and slower DAC at 20 bits is used instead of
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the native 14-bit DAC on AD9910 as it helps better resolve small amplitudes at the start and end

of amplitude ramps. However, this SDRAM-based arbitrary waveform generation is not fast. In

order to boost the speed of the AWG, many modifications had to be made.

Ωc1 (Γ)

Ωc2 (Γ)

Ωp (Γ)

ϕ (°)

50

150

250

time

I II III

Figure 3.3: A typical sequence for the Rabi frequencies of the different light fields and the relative
phase ϕ between Ωc1 and Ωc2 for generating λ/4 subwavelength-spaced lattices. The stage III is
when the wavefunction microscope is implemented.

The fast software AWG architecture relies heavily on the concept of memory hierarchy

in computer architecture [14]. For fast computations, the instructions and data must be spatially

located close to the processor. The capacity and access time of a memory typically increases with

decreasing proximity to the processor. Fast and small-capacity memory is therefore placed closer

to the processor, and slow and large-capacity memory is placed further away. Only in the event

of an instruction miss (or a data miss), does the processor search for the instruction (or data) in

a memory lower in the memory hierarchy. Therefore, high-resolution slow ramps that are long

and need larger storage space and do not require fast update rates are stored in the SDRAM. On

the other hand, the fast rf amplitude modulation profile is stored in the RAM of the FPGA. This

arrangement respects the memory hierarchy.

The table of values for the fast amplitude modulation profile is pre-generated on the host

PC and subsequently saved in the FPGA RAM. The amplitude data is transmitted from this RAM

to the DDS module by the FPGA using the parallel data port modulation mode on the AD9910,
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where it is reconstructed as an analog signal by its native 14-bit DAC. This architecture allows

arbitrary waveform data to be updated every 8 ns.The maximum length of the arbitrary waveform

pulse is approximately 256 µs when updated every 8 ns. This fast AWG profile is then mixed

with the slow amplitude profile saved in the SDRAM. The slow envelope is reconstructed by the

AD5790 every Pulseblaster trigger. Note that the fast amplitude modulation table of values is

clocked every 8 ns by the FPGA while the slow envelope table of values is clocked every 2 µs by

the Pulseblaster trigger. A typical rf amplitude profile—green trace—that was used to generate a

sub-wavelength spaced λ/4 lattice is shown in Fig. 3.3. This rf amplitude profile is imprinted on

the laser electric field via an AOM. Stage III in Fig. 3.3 is when the wavefunction microscope is

implemented.

The rf phase ramps are implemented by the digital ramp generator under the digital ramp

modulation mode on the AD9910. The phase ramps are step functions with discrete phase

values. The phase is intimately tied to the fast amplitude waveform. The phase of the rf is

held constant when the amplitude of the rf is modulated. The transition between the phase steps

is only performed when the amplitude of the waveform is 0 i.e. when the associated dark state is

spatially homogeneous. The phase can be updated in 4 ns. The black trace in Fig. 3.3 shows the

rf phase profile imprinted on the laser electric field via an AOM to generate a λ/4-spaced lattice.
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Chapter 4: Floquet engineering of optical lattices with spatial features and

periodicity below the diffraction limit

Time-periodic driving of quantum systems is ubiquitous in quantum mechanics. Small

amplitude driving of a quantum system probes its linear response [15], while strong driving

allows for Hamiltonian engineering [16, 17, 18, 19, 20]. Optical potentials and in particular

optical lattices have proven to be a powerful tool for manipulating ultracold atomic systems

and are used in a wide range of experiments [5, 21, 22]. However, the spatial features and

periodicity of these potentials (generally arising from the second order ac-Stark shift) in the far

field are constrained by the diffraction limit to be of order the wavelength of light used to create

them. In particular, the Fourier decomposition of these far-field optical potentials cannot have

components with wavelength less than λ/2, and thus the minimum lattice spacing is λ/2. As

the lattice spacing determines many of the energy scales in cold-atom lattice systems, it has been

of interest to produce optical lattices with smaller spacings in order to increase relevant energy

scales [23, 24].

In this chapter, I summarize the results of a paper where I present a Floquet-based framework

to stroboscopically engineer Hamiltonians with spatial features and periodicity below the diffraction

limit of light used to create them by time-averaging over various configurations of a 1D optical

Kronig-Penney (KP) lattice. Stroboscopic control over the strength and position of this lattice
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requires time-dependent adiabatic manipulation of the dark-state spin composition. I investigate

adiabaticity requirements and shape our time-dependent light fields to respect the requirements.

I apply this framework to show that a λ/4-spaced lattice can be synthesized using realistic

experimental parameters as an example, discuss mechanisms that limit lifetimes in these lattices.

The paper can be found in its entirety in Appendix D.

4.1 Summary

Time averaging a stroboscopically applied lattice potential with high spatial frequency

Fourier components can give rise to an average potential with periodicity and spatial features

smaller than λ/2. Since the dark-state KP lattice has high spatial frequency Fourier components,

it is a candidate progenitor lattice with which to realize such a time-averaged, subwavelength-

featured lattice. In the time-averaged approach, a time-periodic progenitor potential W0(x, t) is

applied such that the atoms experience the time-averaged potential Wavg (x) :

Wavg (x) =
1

T

∫ T/2

−T/2

W0(x, t)dt, (4.1)

where T = 2π/ωT is the period of W0(x, t) and ωT is the Floquet frequency. In order to

successfully realize Wavg (x) while avoiding heating, ωT must be much faster than the timescale

associated with the motional degree of freedom in the lattice, which is set by the energy gaps

between bands in the lattice. This requirement suggests that ωT be as large as possible. The

particular realization of W0(x, t) using a dark-state lattice has an additional requirement of spin

adiabaticity that limits the maximum allowable ωT .

The dark-state lattice is an artificial scalar gauge potential experienced by an atom in the
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Figure 4.1: (a) An ideal Λ-system with inverse lifetime Γ and single-photon detuning ∆. One
leg of the Λ-system is coupled by a spatially homogeneous and temporally varying probe light
field Ωp(t) and the other leg by a spatially inhomogeneous and temporally varying control light
field Ωc(x, t). (b) The geometry of the light fields with arbitrary control over the envelope, Ωc1(t),
Ωc2(t), Ωp(t) and phase, ϕ1(t), ϕ2(t) of each light field. (c) (i) The instantaneous (at t = 0) spatial
dependence of the light fields Ωc(t)| cos(kx+ϕ(t))| and Ωp(t), (ii) the probability densities of the
spin composition of the dark-state eigenfunction |ψ(x, t)⟩ i.e. |⟨1|ψ(x, t)⟩|2 and |⟨2|ψ(x, t)⟩|2,
and (iii) the instantaneous shape of WDS(x, t). (d) Typical pulse shapes considered here for
the control beams Ωc(i)(t) = 2Ωc1(i)(t) = 2Ωc2(i)(t), probe beam Ωp(i)(t), and phase ϕi(t) for
the ith sub-Floquet period where −Ti/2 ≤ t ≤ Ti/2 that determines the time-averaged potential
Wavg(x).

dark-state eigenfunction of a three-level Λ-system with a spatially dependent spin composition.

Dynamically manipulating the height, barrier width, and position of the lattice requires time-

dependent manipulation of the spin composition of the dark-state eigenfunction. This spin manipulation

can be seen as a stimulated Raman adiabatic passage (STIRAP) process and adiabaticity requirements

set an upper bound on the window for usable ωT within which the atoms are simultaneously

motionally diabatic and spin adiabatic.

I consider the creation of time-periodic potentials for the dark-state channel, WDS(x, t)

(which serves as W0(x, t ) in Eq. 4.1), by coupling the three atomic levels in a Λ-system with a

spatially homogeneous probe light field Ωp(t), and a spatially inhomogeneous control light field.
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The inhomogeneous control light field is composed of two counter propagating fields with equal

magnitudes driven simultaneously, Ωc(x, t) = Ωc(t) cos(kx + ϕ(t)) where k = 2π/λ, as shown

in Fig. 4.1a. The spin composition of the dark-state eigenfunction for the Λ-system in Fig. 4.1a

is |DS(x, t)⟩ = − cosα(x, t)|1⟩ + sinα(x, t)|2⟩ where α(x, t) = tan−1 [Ωp(t)/Ωc(x, t)]. The

non-adiabatic correction to the dark-state BO potential that gives rise to WDS(x, t) is determined

by the spatial gradient of the spin composition (Fig. 4.1c),

WDS(x, t) =
ℏ2

2m

(
∂

∂x
α(x, t)2

)
, (4.2)

which for the light-field configuration considered here is a lattice of narrow repulsive barriers

with temporally modulated strength and position. I take here a stroboscopic approach, where

WDS(x, t) is repeatedly pulsed on and off in magnitude at N different positions for time Ti

with the position of WDS(x, t) being shifted in between the lattice pulses (here T =
∑
Ti). In

addition, WDS(x, t) can be held on and off for ton,i and toff ,i (Fig. 4.1d). Time averaging over

the N different pulsed KP lattice potentials with arbitrary strength and position can produce

an arbitrary time-averaged potential Wavg (x). The stroboscopic approach to creating a time-

averaged effective potential with a lattice spacing of λ/4 by dynamically pulsing KP potentials

with λ/2 spacing is illustrated in Fig. 4.2.

The ability to paint potentials requires real-time control over the position, strength and

width of the barriers (Eq. 4.2). The strength of the barriers can be controlled via the Rabi

frequencies Ωp(t) and Ωc(t) (Figs. 4.1b, 4.1c) with the height and width of the barriers being

proportional to 1/ϵ2(t) and ϵ(t) respectively where ϵ(t) = Ωp(t)/Ωc(t)( for ϵ(t) ≪ 1). The

barriers are located at the nodes/minimums of Ωc(x, t) (Fig. 4.1c), and their positions can be
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Figure 4.2: The stroboscopic approach to creating a time-averaged effective potential with a
lattice spacing of λ/4 by dynamically pulsing KP potentials with λ/2 spacing.

controlled by the control beam phases ϕ1(t) and ϕ2(t) (Figs. 4.1b, 4.1c). Stitching N different

sub-Floquet periods together (while ensuring continuity in the Rabi pulses between the sub-

Floquet periods) into one Floquet period allows for the versatility in the time-averaged potential

Wavg (x) that can be generated. Each sub-Floquet period of duration Ti pulses a KP potential

at a different position x0i (determined by the phase ϕ0i ) with a strength and width determined

by ϵi. Fig. 4.1d shows the pulses Ωp(i)(t), Ωc(i)(t) and ϕ(i)(t) for the i th sub-Floquet period

−Ti/2 ⩽ t ⩽ Ti/2.

My goal is to design the pulse shape for Ωp(t) and Ωc(x, t) for simultaneous motional

diabaticity and spin adiabaticity. In order to design pulses that are spin adiabatic, I consider

the three inequalities that quantify the sufficiency requirements for adiabaticity defined at single
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photon resonance ∆ = 0:

∣∣∣∣
∂

∂t
α(x, t)

∣∣∣∣≪ Ωrms(x, t) (4.3)

∫ π/ωT

−π/ωT

∣∣∣∣
∂

∂t

(
∂α(x, t)/∂t

Ωrms(x, t)

)∣∣∣∣ dt≪ 1, (4.4)

∫ π/ωT

−π/ωT

|∂α(x, t)/∂t|2
Ωrms(x, t)

dt≪ 1 (4.5)

where Ωrms(x, t) =
√

|Ωc(x, t)|2 + |Ωp(t)|2. Eq. 4.3, called the local adiabatic criterion, states

that to ensure adiabaticity during pulsing, the energy gap between the dark and bright eigenstates

(set by Ωrms(x, t) ) must be much greater than the off-diagonal couplings between them (|∂α(x, t)/∂t).

Eq. 4.4 forces the pulses to be smooth while both equations 4.4 and 4.5 set bounds on their rise

time and fall times.

I solve the Bloch-Floquet bandstructure for the full Hamiltonian using the engineered pulse

shapes Ωp(t) and Ωc(x, t):

Ĥ(x, t) =
p̂2

2m
+

ℏ
2




δ1(x, t) 0 Ωp(t)

0 δ2(x, t) Ωc(x, t)

Ωp(t) Ωc(x, t) −(2∆(t) + iΓ)




︸ ︷︷ ︸
Ω̂(x,t)

, (4.6)

where Ω̂(x+λ, t) = Ω̂(x, t+T ) = Ω̂(x, t) with ∆(t) = 0 and Γ = 48.2ωR ( for the (6s2)1 S0 ↔

(6s6p)3P1 transition in 171Yb). δ1(x, t) and δ2(x, t) are complex-valued ac-Stark shifts of the

ground states |g1⟩ and |g2⟩ that account for the effect of states outside the three-level system.

These calculations helped us validate the choice of the calculated pulse shapes as well as identify
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the range of Floquet frequencies over which the λ/4-spaced lattices would be feasible given

the laser power available at our disposal. These calculations also showed that Rabi frequency

requirements needed to generate λ/2N -spaced lattices increase dramatically with N .

While working with large Rabi frequencies reduces losses, a potential disadvantage is

that the Λ-system approximation may break down. Perfect Λ-systems are rare in nature, and

Ωp(t) and Ωc(t) can couple off resonantly to states outside of the Λ-system. These off-resonant

couplings manifest as effective two-photon detunings δ1(x, t) and δ2(x, t) for the approximate

Λ-system (see Eq. 4.6). Non-zero two-photon detunings are detrimental to STIRAP, although

spatially homogeneous detuning could in principle be compensated with time-dependent laser

detuning. Two-photon detunings originating from Ωc(x, t), however, are temporally and spatially

modulated and may not be completely compensated without the significant experimental overhead

of adding more spatially dependent compensating laser fields. In addition to added two-photon

detuning, the lifetime in the time-averaged lattices is further limited due to admixing of excited

states outside the Λ-system. Hence, there are trade-offs when increasing the magnitude of

the Rabi frequencies: while the dark-state evolution is more adiabatic with less bright-state

admixture, the off-resonant scattering from states outside the Λ-system also increases.

The calculations ruled out the possibility of achieving λ/6-spaced (or smaller-spaced)

lattices given our choice of atom and the laser power at our disposal. We experimentally verified

the effect of the engineered pulses and found a multi-fold increase (at least 4×) in the lifetime of

the atoms in the λ/4-spaced lattice generated by stitching together pulses that were used for the

wavefunction microscope (Chap. 3 and Appendix C). I report on the realization of the λ/4-spaced

lattice in the next chapter.
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Chapter 5: Realization of a stroboscopic optical lattice for cold atoms with

subwavelength spacing

Ultracold atoms trapped in periodic optical potentials provide wide-ranging opportunities

to study many-body physics in highly controllable systems. In all cases, the characteristic single-

particle energy scale is set by the recoil energy, ER = h2/ (8md2), where m is the mass of the

atom and d is the spatial period of the lattice. Although temperatures in such systems can be

quite low, it is still challenging to reach temperatures well below the relevant many-body physics

energy scales, which can be exceedingly small. Increasing the recoil energy can potentially

increase both single-particle and many-body energy scales through tighter confinement, which

may aid in creating systems well into the regime where many-body ground-state physics is

observable. An inherent obstacle to smaller lattice spacing is the optical diffraction limit, which

prevents lattice periodicities below d = λ/2, where λ is the wavelength of the light forming the

lattice.

In this chapter, I summarize the results of our paper, where we demonstrate a λ/4-spaced

lattice by stroboscopically applying optical Kronig-Penney-like potentials which are generated

using spatially dependent dark states (see chapters 2 and 4). We directly probed the periodicity of

the λ/4-spaced lattice by measuring the average probability density of the atoms loaded into the

ground band of the lattice using the nanoscale atomic density microscopy technique presented in
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chapter 3. We measure lifetimes of atoms in this lattice and discuss the mechanisms that limit the

applicability of this stroboscopic approach.

The paper can can be found in its entirety in Appendix E.

5.1 Summary

To realize the λ/4-spaced lattice, KP potentials are stroboscopically applied to atoms to

create potential landscapes with subwavelength spacings specifically λ/4. Atoms are subjected

to a KP potential for half of the Floquet cycle T/2; the potential is then ramped down to zero and

its position is shifted by half of the lattice spacing λ/4; the shifted potential is ramped on again

and held for another half cycle, before being ramped off and its position is restored. It is important

to note that time-averaging a dynamically applied lattice potential cannot create an effective

potential landscape with higher spatial Fourier components than the underlying progenitor lattice.

This implies that in order to create landscapes with subwavelength periodicity, one must time

average a potential that itself has subwavelength features, and hence the choice for the KP lattice

as the progenitor lattice.

Two more factors must be considered to ensure that time-averaging is an effective description

of the system. First, motional diabaticity sets a lower bound on the Floquet frequency ωF , beyond

which the band structure becomes unstable and severe heating limits the lifetime. Second, the

dark-state nature of the KP lattice sets an upper bound to ωF . As the KP potential is a scalar

gauge potential arising from a spatially varying dark state, switching on and off such a potential

requires atoms to adiabatically follow the spatiotemporal dark state at all times. We ensure this

adiabatic following by carefully designing the pulse shapes of our light fields (see chapter 4).
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Losses occur at high ωF , as the atom’s dark-state spin composition fails to adiabatically follow

the rapid changes in the light fields.

The spin adiabaticity condition significantly depends on the pulse shape and the Floquet

frequency. Controlling the pulse shape within a Floquet period is critical. This was explored in

the chapter 4. We use the arbitrary waveform generators discussed in chapter 3 to control the rf

amplitude and phase with a resolution of 8 ns and 4 ns, respectively. However, we are limited by

the bandwidth of the AOMs, which we measure to be 50 ns. This is a factor of 8 times smaller

than the smallest half-period of 400 ns that we have used in this work.

Just like in the other chapters, we work with ≈ 2 × 105 171Yb atoms that have a well-

isolated Λ system, consisting of two ground states |g1⟩ , |g2⟩ and an excited state |e⟩ coupled by

laser light with λ = 556 nm. The atoms have an initial temperature of 0.3µK. A control field

Ωc(x, t) = Ωc1e
ikx+ Ωc2(t)e

−i[kx+ϕ(t)], where k = 2π/λ and ϕ(t) is the relative phase difference

between the two fields, which couples |g2⟩ and |e⟩, is composed of two counterpropagating lattice

beams. The maximum value of Ωc2(t) is constrained to be equal to Ωc1 = Ωc0/2, in which

case it gives rise to a standing wave Ωc0e
−iϕ(t)/2 cos(kx + ϕ(t)/2). We control the strength and

position of the KP potential using Ωc2(t) and ϕ(t). A homogeneous probe field Ωpe
iky, coupling

|g1⟩ and |e⟩, travels perpendicular to the control beams. The resulting spatially dependent dark

state gives rise to a KP lattice of narrow subwavelength barriers, plus an additional sinusoidal

potential owing to the light shifts caused by states outside the three-level system. For typical

experimental values of Ωc0 = 500Γ and Ωp = 50Γ, where Γ = 2π × 182kHz is the inverse

lifetime of |e⟩, the KP barrier has a minimum width of 0.02λ and a maximum height ≈ 100ER,

where ER/h = h/ (2mYbλ
2) = 3.7kHz,mYb is the mass of a 171Yb atom, and the sinusoidal

potential has a depth ≈ 145ER.
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To load the atoms into the ground band of Veff (x), we adiabatically increase the depth

of the stroboscopically applied lattices in 200µs (typically ∼ 80 Floquet cycles) (see Fig. 3.3).

To confirm the realization of the λ/4 subwavelength-spaced lattice, we measure the ensemble-

averaged probability density |ψ(x, t)|2 of atoms in the ground band of Veff(x) using the subwavelength

resolution microscopy technique with FWHM resolution of 25 nm (see Fig. 5.1).

We also measure the momentum distribution of the atoms via absorption imaging after time

of flight (TOF) to probe the momentum-dependent loss channels. A characteristic feature of a

Bloch-Floquet band structure is the existence of avoided crossings at particular lattice momenta

arising from coupling with high-lying states, which for large Floquet frequency are approximately

plane waves with high momenta. We measure the momentum distribution of the atoms in Veff (x)

at different ωF by taking an absorption image after ramping down the lattice in 100µs followed by

a TOF of 3 ms. In order to determine the range of usable Floquet frequencies for the stroboscopic

scheme, we also study the lifetime at different ωF under different Rabi frequency configurations.

We measure the lifetime of the atoms in the λ/4-spaced lattice to be no more than 2 ms. The

short lifetimes in the stroboscopically applied KP lattices are expected as a result of a few

factors. First, couplings to the spatially and temporally dependent bright states reduce lifetimes

in subwavelength-spaced lattices even for a perfect three-level system, through couplings with

higher Floquet bands and off-resonant couplings with bright states. In principle, these couplings

can be reduced by using larger Rabi frequencies. However, lifetimes are also limited by the

breakdown of the three-level approximation at large Rabi frequencies due to admixing of states

outside the three-level system. This manifests as a dynamically varying and spatially dependent

two-photon detuning (arising from Ωc(x, t)), which reduces the fidelity of STIRAP. This competing

requirement prevents us from benefiting from larger Rabi frequencies.
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Figure 5.1: (a) The stroboscopically applied potential, shown here for Ωc0 = 500Γ and Ωp =
50Γ, is composed of KP barriers on top of a sinusoidal potential. The dotted line represents
the potential shifted by λ/4. (b) The time-averaged effective potential Veff(x). (c) The black
points are the measured |ψavg(x)|2 of atoms in Veff(x). Number fluctuations between realizations
result in number uncertainties of 5%. The black line is the calculation based on independently
measured lattice parameters. The grey line is the calculated |ψavg(x)|2 in the lattice before the
relaxation during the measurement. (d) The micromotion dynamics at different time within a
Floquet period. The blue(red)-shaded areas represent regions in which |ψ(x, t)|2 is higher(lower)
than |ψavg(x)|2, which is shown as a solid black line.

In conclusion, we demonstrate the creation of a time-averaged λ/4-spaced lattice using a

stroboscopic technique based on dynamically modulated dark states in a three-level system. The

subwavelength structure of the lattice is confirmed by measuring the probability density of the

atoms averaged over the ground band of the lattice. We measure the loss rate of atoms in the

lattice and observe high-momentum excitation arising from Floquet-induced coupling to higher

bands.The lifetime of the atoms in the λ/4-spaced lattice is 2 ms, which is not long enough

compared to the tunneling time to allow for many-body studies in the current realization.
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Part II

Dual-species optical tweezer arrays for Rubidium and Ytterbium for

Rydberg-interaction-mediated quantum simulations
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Chapter 6: Introduction

Individual neutral atoms trapped in optical tweezer arrays with controlled Rydberg interactions

have recently emerged as a promising platform for quantum computation and quantum simulation [25,

26, 27, 28, 29, 30, 31, 32, 33]. Tweezer arrays of individually trapped atoms were first realized

using alkali atoms, the workhorse for laser cooling and trapping experiments [34]. Single-

species tweezer arrays were subsequently realized with alkaline-earth (like) atoms [35, 36, 37]

and more recently with magnetic lanthanide atoms [38]. These single-species experiments have

demonstrated an impressive level of control [39, 40], each species having its advantages and

disadvantages. Dual-species arrays are an even more attractive platform for large-scale quantum

computation and simulation, due to the flexibility they provide for controlled interaction and

measurement. Recently, dual-species (alkali-alkali) optical tweezer arrays have been realized [41,

42]. However, a dual-species optical tweezer array of an alkali atom and an alkaline-earth (like)

atom, which combines the beneficial properties of both types of atoms [32], has yet to be realized.

In this half of the thesis, I present details on the design and construction of an apparatus for

dual-species optical tweezer arrays of Rb and Yb for Rydberg-interaction-mediated quantum

computation and simulation.

In addition to the capabilities of the single-species systems, dual-species Rydberg arrays

are a promising candidate for large-scale quantum computation due to their increased capability
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for multi-qubit gate operations [40, 43], and crosstalk-free measurements [30, 44, 45, 46] for

mid-circuit readouts [40, 47, 48, 49, 50, 51]. Native multi-qubit gate operations can yield large

improvements in efficiency and error tolerance over an equivalent set of single- and two-qubit

gates [30, 52]. For example, CNOTk fan-out gates can be implemented with heteronuclear Förster

dipole-dipole interactions between the control atom of one atomic species and the target atoms

of the other species, where the Förster enhanced heteronuclear interaction is much stronger than

the van der Waals interactions between the target atoms. Similarly, CkZ asymmetric blockade

gates can be realized using asymmetric interactions with the role of control and target atoms

reversed. [41, 44, 53, 54]. Multi-qubit gates can also be used to transfer quantum information

from “computational” qubits of one atomic species to “measurement” qubits of the other atomic

species. The measurement qubits can then be detected by resonance fluorescence, avoiding

crosstalk errors since the scattered light of one atomic species is not resonant with the other

atomic species [30, 44]. This crosstalk error mitigation is also enabled by the asymmetry in the

strength of the heteronuclear Förster dipole-dipole interaction vs. the homonuclear van der Waals

interaction. In particular, the Rb Yb combination of atoms is predicted to have anomalously weak

van der Waals interaction between the Yb atoms in the (6sns)1S0 Rydberg series [55, 56], while

the heteronuclear Förster dipole-dipole interaction is expected to be much stronger, which should

allow for simple and efficient implementation of multi-qubit gates.

Building a dual-species Rydberg tweezer array—especially an alkali-alkaline earth (like)—

is challenging. The complexity of the requirements for a single-species Rydberg array is at least

doubled for a dual-species apparatus, which must now simultaneously satisfy the requirements

for both species. Fig. 6.1 shows the broad range of required laser wavelengths (ultraviolet B to

near infra-red) for our apparatus. To motivate and provide context for the following chapter, I
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(a) Rb (b) Yb

Figure 6.1: Relevant electronic level structure for (a) Rb and (b) Yb
.

outline the physical requirements for a dual-species tweezer array:

• Cooling, trapping, and imaging single atoms:

Optical tweezers are tightly focused far-off resonant optical traps that use the dipole force to

trap particles such as single atoms, molecules, nanoparticles, etc. [32, 57, 58]. Diffraction

sets a lower limit to the smallest feature that can be created (or imaged), which is on the

order of the wavelength of light used [59]. The size of the feature that can be created (or

imaged) is inversely proportional to the numerical aperture (NA) of the optics used [59].

Therefore, creating optical tweezers and imaging single atoms confined in these tweezers

requires high-NA optics [34, 60]. Diffraction-limited resolution can be degraded by aberrations

in the optical system, which grow polynomially with the NA [2, 61]. In addition to the

physical space required to deploy high NA objectives, great care must be taken to avoid

adding aberrations to the system, and the optics must be diffraction limited at multiple

wavelengths.

In order to trap single atoms in optical tweezers, the atoms are laser cooled [62, 63] to
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temperatures ranging from hundreds of nK to tens of µK. Cooling the atoms reduces the

tweezer laser power requirements, which helps with system size scalability [28, 64]. It also

helps mitigate the Doppler-induced decoherence process that limits ground-to-Rydberg

excitation fidelity [28, 64]. Furthermore, the vacuum-limited lifetime of the atoms trapped

in optical tweezers imposes a limitation to scaling up to large atom numbers [28, 64].

Ultra-high vacuum conditions are necessary for long vacuum-limited lifetimes. Recently, a

vacuum-limited lifetime of up to 6000 s has been demonstrated for single atoms in tweezer

arrays in a cryogenic environment [65].

Dual-species laser cooling of Rb and Yb in a UHV chamber with simultaneous high-NA

optical access over a broad wavelength range is therefore necessary. We have designed and

built such a room temperature UHV chamber. Rb and Yb atoms have been laser cooled to

temperatures in the tens of µK range. We have also designed and built high-NA optics for

projecting optical tweezers and imaging single Rb and Yb atoms.

• Narrow linewidth high-power lasers for high-fidelity Rydberg excitation:

Two-photon transitions are typically used to excite atoms to Rydberg states, which induces

the interactions needed for two-qubit and multi-qubit entangling gate operations [66]. Large

two-photon Rabi frequencies allow for fast gates operations, necessitating the use of high-

power lasers. The power requirements become especially stringent if one or both of the

Rydberg excitation beams address atoms globally [41, 67, 68]. The power requirements are

relaxed when the atoms are addressed locally [40], but this comes at the cost of increased

complexity and sensitivity to beam alignment.

The lifetime of atoms in Rydberg states is typically in the tens to hundreds µs regime [26,
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66]. Therefore, narrow linewidth lasers are also required to address these transitions. The

Pound-Drever-Hall (PDH) locking technique is typically used to spectrally narrow the

linewidth of the lasers using an ultralow expansion (ULE) cavity as a reference [69, 70, 71].

We have implemented PDH locks for our four high-power Rydberg lasers (a pair of lasers

for each species) with each laser locked to its own ULE reference cavity. The four cavities

are built into a single cylinder of ULE glass. The frequency of each laser can be tuned by

a large fraction of the free spectral range of its reference cavity while staying locked to it.

We have built and aligned the optics for exciting both atoms to their Rydberg states via

global addressing.

• Dynamic control over the positions of trapped single atoms:

Due to the stochastic nature of the loading of a single atom in an optical tweezer [34, 72, 73,

74], rearrangement of the tweezers is typically performed to create a defect-free array of

single atoms from larger, stochastically loaded arrays with defects [39, 75, 76]. Defect-free

arrays are routinely used in quantum computation and quantum simulation [47, 77, 78, 79,

80, 81]. Controlled motion of the tweezers is also critical for parallel entangling gates with

programmable non-local connectivity [82]. Therefore, we have integrated the capability

for rapid real-time rearrangement/motion of the tweezers for both atomic species in our

setup: an acousto-optic deflector [83] and a phase-only spatial light modulator designated

for Rb, and another set of acousto-optic deflector and phase-only spatial light modulator

for Yb.

• Electric field control for high-fidelity Rydberg excitation and tuning Förster defects:

The polarizability of atoms in Rydberg states scales as n7, where n is the principal quantum
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number [26, 30]. Therefore, atoms in Rydberg states are extremely sensitive to electric

fields. Stray electric fields shift the energy of the Rydberg state and introduce decoherence

mechanisms that reduce gate fidelities, and electrodes are used to cancel out stray electric

fields [40]. Ultraviolet light can also used to desorb charge build-up on the vacuum chamber

surfaces during Rydberg excitation [84, 85]. Electric field control also allows for tuning

the strength of Förster resonances [86, 87, 88, 89]. A challenge in electrode design is the

requirement to preserve the high-NA performance of the objectives. We have implemented

a high-NA compatible in-vacuum electrode solution in our apparatus.

• Single qubit gates:

Typically, the states in the hyperfine ground state manifold are used to store quantum

information [40, 47, 90, 91]. Single-qubit rotations between the two hyperfine ground

states are performed using Raman transitions in Rb [40, 47, 92] and Yb [48, 49, 90, 91, 93].

At the time of writing this thesis, we are in the process of building these Raman laser setups

and beam-delivery systems.

The electronic level structure for Rb and Yb atoms relevant to the experimental apparatus

is shown in Fig. 6.1. The following chapter presents details on the design and construction of

the RbYb Rydberg tweezer array apparatus, the first of its kind at JQI, for which we had no

tried-and-tested recipe.
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Chapter 7: Design and construction of a dual-species Rydberg tweezer array

apparatus

This chapter describes the design and construction of a new apparatus to simultaneously

control arrays of individually trapped Rb and Yb atoms, including controlled excitation of these

atoms to Rydberg states. Although this new apparatus inherited components from the previous

RbYb mixtures experiment (in particular, the Rb/Yb cooling lasers and the Yb 2D MOT cold

atom source), meeting the challenging demands outlined in Chapter 6 required a completely

new integrated design of essentially all other aspects of the apparatus. I designed the entire

experimental apparatus and led its construction from the ground up. We started building the

lab the week before the university entered lockdown in response to the COVID-19 pandemic

(Fig. 7.1). I would like to thank Trey, Steve, and Ian immensely for their patience, guidance, and

the freedom they gave me. I am also extremely grateful to Kevin for helping build this apparatus.

I used several software tools to integrate the vacuum, opto-mechanical and electrical aspects

of the design with the physics requirements. For CAD design, I used Onshape, a cloud-based

CAD design platform1. In addition, I regularly used the Design for Manufacturing (DFM)

analysis available on the website of the machining vendor, Protolabs Network by Hubs. I used

1The links to the CAD designs can be found here: https://github.com/ssubhankar/
Experiment-CAD-design.git.

40

https://github.com/ssubhankar/Experiment-CAD-design.git
https://github.com/ssubhankar/Experiment-CAD-design.git


(a) Lab at the start of the COVID-19 lockdown (b) Lab at the time of writing the thesis

(c) Science chamber optical table at the time of
writing the thesis

(d) Optics around the science chamber at the time of
writing the thesis

Figure 7.1: Evolution of the lab over the years.

41



Zemax to design the high-NA optical systems: the AOD-based tweezer projection systems, the

SLM-based tweezer projection systems, and the single-atom imaging systems. All of my optical

layouts can be found in this chapter.

7.1 Design and construction of the Ultra-High Vacuum (UHV) chamber assembly

7.1.1 The science chamber

At the heart of the experimental setup is the glass cell (see Fig. 7.2), and a pair of out-of-

vacuum 0.6 NA infinity corrected objectives (see Fig. 7.44) that project the optical tweezers and

image the single atoms. We chose this geometry over an in-vacuum objective lens in a stainless

steel (SS) chamber because our objectives must be diffraction-limited for many colors: 399 nm,

420 nm, 532 nm, 556 nm, 780 nm, 840 nm (Fig. 6.1), and an in-vacuum objective lens of this

caliber would be expensive. Additionally, housing and aligning such an objective under vacuum

would be challenging. The wide range of high power lasers we need for our experiment—308

nm, 399 nm, 420 nm, 532 nm, 556 nm, 780 nm, 850 nm, 1013 nm (Fig. 6.1)— constrained

the design of the vacuum chamber, which must in addition work well with the out-of-vacuum

objectives.

The diffraction-limited Airy spot size (1.22λ/NA) [94, 95, 96] at the focus of the objective

lens is inversely proportional to its NA [97]. A high NA infinity-corrected objective with a large

working distance implies a large collimated beam size at the entrance aperture of the objective.

The large size of the beams forces the optical elements that constitute the objective lens assembly

as well as the optics involved in light projection and collection to be large to accommodate such

large beams. High-quality large optical elements (surface figure, flatness, parallelism, scratch-
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Figure 7.3: Anti-reflection properties of the RAR nanotextured surfaces.

dig, etc.) come with an increased price tag [98, 99]. Big beams also make it difficult to stay

within the paraxial limit and therefore need careful optical design that adds minimal aberrations

during beam shaping2. A small working distance is therefore highly desirable, which, for out-of-

vacuum lens designs, favors a glass cell-based vacuum chamber instead of a SS chamber. Glass

cells are typically smaller and provide more optical access than a SS chamber. Furthermore, we

needed the flexibility to change the geometry of the paths of the optical beams to the atoms given

the wide range of high-power laser light colors in our experiment: 308 nm to 1013 nm. For these

reasons, we chose a dodecagonal glass cell with Random-type Anti-Reflective (RAR) plasma

etched nanostructured windows [100, 101] from Precision Glassblowing (see Figs. 7.2 and 7.7b

). The circular fused silica windows are glass-frit bonded 3 to circular counterbored holes in a

2The power of the lens will need to change with the beam size to preserve the NA. This makes optical paths long
and can introduces drifts.

3Typically, glass vendors offer epoxy bonding or optically contact bonding. Epoxy bonding does not yield the
best base pressure under UHV conditions.
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fused silica frame. Our glass cell has 11 small windows with a clear aperture of 14.5 mm and two

large high-quality objective windows with a clear aperture of 76.2 mm. The objective windows

were held to typical high-NA optics standards: λ/10 surface flatness @ 633 nm, parallelism<1

arcmin, and 20:10 scratch-dig [102].

RAR nanostructures are similar in spirit to Moth-eye AR nanostructures [103, 104]. Moth-

eye AR nanostrutures are a subwavelength-spaced periodic array of cone-like nanopillars etched

onto a substrate. These Moth-eye nanostructures form an effective refractive index gradient at

the substrate boundary for the impinging light, which suppresses Fresnel reflections via effective

impedance matching4. This RAR nanotexturing leads to an optical performance (minimal reflection

up to ±60◦ AOI) that is far superior to thin-film AR coatings that rely on interference effects,

especially over the broad wavelength range in our experiment: 308 − 1013 nm (see Fig. 7.3).

RAR nanotexturing is not without its limitations as these nanopillars are fragile and touching the

windows damages them, which degrades the AR properties. Therefore, I had to be extremely

careful when handling and mounting the glass cell during assembly of the UHV chamber (see

Appendix H for details on cleaning and handling the glass cell).

A primary reason for choosing a glass cell was so that we could use an out-of-vacuum

objective. However, even a perfectly spherical wavefront gets aberrated upon transmission through

a glass plate, i.e. the objective window 5 (see Fig. 7.4). The magnitude of these aberrations

4An alternate explanation for the anti-reflection behavior of the Moth-eye AR nanostrutures is that this periodic
array acts like a zero-order grating where all the higher diffraction orders are evanescently suppressed due to the
subwavelength grating period [103, 104]. Suppressing the higher order diffraction orders works better for light at
longer wavelengths: it is easier to fabricate subwavelength arrays with large grating periods. However, randomizing
the spacings between the nanopillars suppresses any constructive interference at lower wavelengths without the need
to go to smaller lattice spacings [105]. The height of these nanopillars is typically 40% of the longest wavelength in
the optical band of interest.

5This issue is non-existent for in-vacuum objectives as there are no aberrations imprinted on a flat wavefront
upon transmission through a window with perfectly flat surfaces. However, actual windows do induce aberrations
due to manufacturing defects.
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Figure 7.4: Aberrations induced in a perfectly spherical wavefront upon transmission through a
glass plate [2, 3, 4]. Notice that the primary wavefront aberrations follow the typical wavefront
aberration polynomial structure NAmθ4−m.

depends on the thickness of the glass cell window, the NA of the objective lens, and the angle of

the window with respect to the focused cone of light (θ). The objective lens needs to compensate

for these intrinsic aberrations in order to guarantee diffraction-limited performance over a large

field of view (FOV). Due to the higher-order polynomial dependence of wavefront aberrations

on the NA [2, 102], poor tolerances associated with the objective window thickness can increase

wavefront aberrations well beyond the diffraction-limited operation regime of the objective [106,

107, 108]. Therefore, the glass cell vendor (Precision Glassblowing), the objective lens vendor

(Special Optics), and I worked closely together to ensure that the glass cell designs and the

objective designs were compatible with each other.

In the final design, the working distance (WD) for our objective lenses is

WD = 21.025 mm (7.1)

= 9.525 mm︸ ︷︷ ︸
dUHV

+9.5 mm︸ ︷︷ ︸
dwindow

+2 mm︸ ︷︷ ︸
dair

,
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where dUHV is the distance in UHV from the inner surface of the objective window to the center of

the glass cell, dwindow is the thickness of the fused silica objective windows, and dair is the air space

between the outer surface of the objective window and objective lip. Special Optics determined

that the 9.5 mm thick fused silica objective window thickness needed to be held to a tolerance

of ±0.025 mm [106, 107, 108] (a very tight tolerance as stated by Precision Glassblowing), for

diffraction-limited performance from the objectives. However, Precision Glassblowing’s window

vendor TelAztec managed to meet these tolerances. Most of the vendors offered windows that

were 6 mm thick or less. From the previous paragraph, it might seem counterintuitive as to why

we chose a thicker window. A few factors led us to this decision.

We needed objective windows with large enough clear apertures in order to accommodate

shallow-angle MOT beams, since we did not want to project MOT beams through the objectives

(see Fig. 7.29 and Fig. 7.13c). Projecting MOT beams through the objectives would lead to

substantial background scattered light at the EMCCD camera. Additionally, generating a few mm

collimated MOT beam through the objective is extremely challenging for high NA objectives (I

know this from a failed attempt). The 0.6 NA requirement from our objectives and the fact that

the glass cell frame cannot be made too thin pushed the OD of the Ultem (PEI Ultem 2300

30% glass filled) housing for the objectives to a large value of 50.8 mm OD. Unfortunately, the

typical objective windows on Precision Glassblowing glass cells were also 50.8 mm OD and 6.35

mm thick. Therefore, in order to accommodate the MOT beams, we needed a larger objective

window. However, keeping the window thickness at 6.35 mm would exacerbate the bowing of

the windows because there is atmospheric pressure on one side and UHV on the other side6.

6Bowing of circular windows is circularly symmetric, and the aberrations associated with this bowing can be
compensated relatively easily. Typical glass cells on the market are cuboid in shape. This makes the bowing problem
rectangular, which introduces cylindrical aberrations that are harder to compensate. In addition, vendors that offered
cuboid cells did not offer RAR nanotexturing at the time.
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The bowing problem is mathematically equivalent to the deflection of a circular plate that is

subjected to a uniform load while being clamped at the circumference. The maximum stress and

maximum deflection at the center of the circular plate scales as (clear aperture)2/(plate thickness)2

and (clear aperture)4/(plate thickness)3 respectively 7 [109]. To determine the required thickness

for our 76.2 mm clear aperture objective window to match the performance of a standard 50.8 mm OD

and 6.35 mm thick window, I computed the scaled thickness value that equalizes the maximum

stress at the center of the objective windows: For a 76.2 mm clear aperture, the thickness must

be 9.5 mm (76.2 mm/9.5 mm = 50.8 mm/6.35 mm = 8.0) 8.

While increasing the thickness of the objective windows lessens bowing, it increases the

working distance of the objective (Eq. 7.1). To reduce the working distance, we decreased the

thickness of the glass cell frame. However, there is a lower limit to the thickness of the glass

frame, as thinner frames imply smaller holes in the frame body for connecting a glass-to-metal

tube adapter. Since we wanted to not project the MOT beams through the objectives (see Fig. 7.29

and Fig. 7.13c), we needed enough clearance on the tube adapter side to fold the MOT beams

out. A small hole in the frame with a long tube adapter reduces the UHV conductance to the

glass cell, as the conductance scales as (tube adapter inner diameter)3/(tube adapter length) in the

molecular flow regime [110]. This limits the ultimate base pressure achievable in the glass cell,

affecting the vacuum-limited lifetime of the atoms. The mechanical fragility of the tube adapter

connection to the frame also increases with its length. Precision Glassblowing recommended

against going below a frame hole size of 14.7 mm (Fig. 7.2). These requirements set the distance

in UHV from the inner surface of the objective window to the center of the glass cell to 9.525

7https://www.engineersedge.com/material_science/circular_plate_uniform_
load_13638.htm

8We have interferometrically measured the bowing of the objective windows (Sec. 7.6.3.1).
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mm (Eq. 7.1).

7.1.2 The rest of the UHV chamber assembly

7.1.2.1 Vacuum firing parts of the UHV chamber assembly

A wide variety of custom-machined parts constitute the innards of our UHV chamber. I was

very careful in verifying the UHV compatibility of the part materials using this reference [111].

All custom stainless steel parts (304L and 316L) for in-vacuum operation were brushed and

electropolished to reduce outgassing [112]. We used UHV-compatible ceramics such as MACOR

and alumina and metals such as tungsten. For the UHV-compatible plastics, we used machined

PEEK and Kapton. We also used a UHV-compatible epoxy to bond the parts together. Special

attention was paid to the threaded holes in the machined parts to avoid virtual leaks. We only used

vented screws to connect the in-vacuum parts to minimize the chances of a virtual leak [112].

Usually, hydrogen trapped in the bulk of the austenitic stainless steel parts (we use 304L and

316L SS parts) limits the ultimate base pressure that can be achieved in a vacuum system.

Vacuum firing helps remove hydrogen from the bulk of the austenitic steel parts [112,

113, 114]. Vacuum firing is baking parts at elevated temperatures (typically at 950◦C) in a

furnace that is under vacuum. Elevated temperatures greatly increase the solubility of hydrogen

(Arrhenius-type dependence on the temperature) in the bulk of steel parts, as given by the Sieverts

law [112]. The vacuum environment of the furnace pumps out the hydrogen molecules desorbed

from the surface of the SS part after diffusing to the surface from the bulk. Vacuum firing also

reduces other contaminants such as hydrocarbons. Vacuum firing [112] of thoroughly cleaned

(Appendix F) UHV metal and ceramic chamber components was performed in a furnace under
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(a) Vacuum firing of the UHV parts. (b) In situ bake-out of the assembled UHV chamber.

Figure 7.5

vacuum for 2 weeks at 400◦C (see Fig. 7.5a). After two weeks, the furnace pressure was at

the base pressure of the turbomolecular pump (Pfeiffer HiCube). The heating of the furnace

was accomplished by creating a support structure with chicken wire on the outer surface of the

furnace. We draped fiber glass insulation on the outside of the support structure. Heater tapes

were threaded on the chicken wire support structure and thermocouples were placed at random

locations. The vacuum firing setup was based on these references [115, 116].

We did not vacuum fire any UHV chamber parts that weren’t rated for 400 ◦C or had

constituents that could differentially expand, like viewports or feedthroughs. These parts were

later baked in situ after the chamber was assembled. Despite vacuum firing the stainless steel

parts, they had an oxide layer on them, as evidenced by a yellowish sheen (a signature of air

bake). The oxide layer on air-baked parts prevents the recombination of atomic hydrogen into

hydrogen molecules and therefore suppresses the hydrogen desorption process [112]. Later, we

will perform an in situ bake of the assembled UHV chamber (see Fig. 7.5b).
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7.1.2.2 Assembling the UHV chamber assembly

After two weeks of vacuum firing, we assembled the UHV chamber. The entire chamber

was assembled by strictly using the torque wrench values for the screws (tightened in a star-

pattern) recommended for each flange size [117]. This helped us minimize leaks in the setup,

which we verified quite frequently using a leak detector (Agilent VS PD031 Helium Leak Detector).

We religiously followed and enforced on each other the UHV assembly guidelines I got from

these references [118, 119]. I was the “clean” helper, and Tsz-Chun and Kevin were the “dirty”

helpers according to the guidelines in this reference [118].

At the heart of the UHV chamber assembly (see Fig. 7.6) is a 2.75” multi-CF expanded

spherical cube 316L stainless steel chamber (Kimball Physics, P/N: MCF275-ExpCube-C6A8).

This miniature SS chamber has eight 1.33” CF sealing surfaces and six 2.75” CF sealing surfaces

with one pair of grabber grooves per sealing surface. The SS chamber is supported by black

anodized aluminum mounting brackets (Kimball physics, MCF275-ExtBrkt-R). The brackets

clamp on to a double-sided mounting flange (Kimball physics, MCF275-MtgFlg-C2), which is

hidden under the bracket in Fig 7.6. On one side of the chamber, the double-sided flange is

sandwiched between a viewport (Kurt J. Lesker, P/N: VPZL-275DUNM) and a non-rotatable

closed coupler (Kimball physics, P/N: MCF275-ClsCplr-C2-1400). On the other side of the

chamber, the double-sided flange is sandwiched between another closed coupler and a five-way

cross (Kurt J. Lesker, C5-0275). We used closed couplers to minimize the overall length of the

chamber supports (and therefore the chamber cantilever between the two bracket locations). The

mounting brackets are connected to large right-angle mounting brackets (Thorlabs AP90RL),

which are then bolted to an anodized Thorlabs MB2424 breadboard. The top 2.75” sealing
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(a)

(b)

19C-275

MCF275-ExpCube-C6A8 NOR-CAL CSV-1502-CF

EFT0343052

EFT0344052

MCF275-ClsCplr-C2-1400

Custom flange adapter

RF275X133

Custom post

C5-0275

G8130T

75SCV4VSCNN

AP90RL

VPZL-275DUNM

MCF275-ExtBrkt-R

VPZL-133DUNM

CapaciTorr Z100

L-0275 P/N:200561, 
Accu-Glass Products

Glass Cell

Figure 7.6: CAD design of the UHV chamber assembly
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surface of the SS chamber is connected to an ion Pump (Kurt J. Lesker, P/N: 75SCV4VSCNN

with a 75 l/s pumping speed and a 4.5” rotatable flange) via a 4.50” to 2.75” CF conical reducer

flange (Accu-Glass Products, P/N:200561). On the bottom 2.75” sealing surface, we mount a

2.75” CF flange that hosts a 19 pin Mil-C-26482 circular feedthrough (Accu-Glass Products,

19C-275). This flange provides the electrical connections to the internal electrodes. The Yb

2D MOT source is connected to the rear 2.75” sealing surface of the SS chamber via a bellows

(Kurt J. Lesker, P/N: MEW0750251C1) and a zero-length reducer flange (Kurt J. Lesker, P/N:

RF275X133). The reducer flange was mounted to a 2.75” sealing surface using a custom adapter

plate (made of stainless steel 304/304L). The adapter plate was connected to a custom post

(made of aluminum 6061-T6) (see Fig. G.3), which was then bolted to the Thorlabs MB2424

breadboard. This adapter flange and custom post assembly prevents the entire vacuum chamber

from rotating about the mounting brackets9. The glass cell was mounted to the front 2.75” sealing

surface of the SS chamber10. The internal annular grabber grooves of the front sealing surface

were also used to mount the electrode assembly (Sec. 7.1.4). Six of the 1.33” sealing surfaces

were used to mount the viewports (Kurt J. Lesker, P/N: VPZL-133DUNM). The last two 1.33”

sealing surfaces were used to mount Rb dispenser modules (Sec. 7.1.3.1) that are electrically

connected to the air side through feedthroughs (Kurt J. Lesker, Part numbers: EFT0343052,

EFT0344052)11.
9Initially, the rear CF sealing surface had leaks when it was inspected with the leak detector. The standard torque

values used for tightening the screws at this sealing surface was surprisingly inadequate. Using a higher torque value
fixed the leaks.

10A 12 point head 1/4 − 28 machine screw broke off on the glass cell side sealing surface of the steel chamber
during the assembly. Fortunately, we were saved by the double density nature of the circumferential array of threaded
holes on the sealing surfaces, as well as the fact that the glass cell flange was rotatable. We used a dremel tool with a
mounted grinding wheel to grind down the screw head. This was done with extreme care to avoid contaminating the
UHV chamber. As a rule of thumb, one should use silver-plated machine screws as the low friction associated with
the silvered surface helps avoid these kinds of issues.

11I advise against using ball end hex heads to tighten #8−32 screws (to their recommended torque value) despite
their ease of use. We have a broken ball end lodged in the socket of an #8− 32 screw.
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The five-way cross (Fig. 7.6) hosts a NEG pump (CapaciTorr Z100 from SAES Getter).

The NEG pump was housed in the five-way cross, instead of the ion pump, because of its much

higher pumping speed of 150 l/s (for some active gases). The effective pumping speed of the

NEG pump, taking into account the conductance of the five-way cross, is similar to that of the

ion pump. The five-way cross hosts a Bayard-Alpert nude UHV ionization gauge (G8130T from

Kurt J. Lesker) to measure chamber pressure independently of the ion pump controller [112].

It also houses a NOR-CAL CSV-1502-CF gate valve, which we use to pump down the entire

chamber using a turbomolecular pump.

After the UHV chamber was assembled (Fig. 7.7a), we performed a second bake of the

chamber under vacuum at a lower temperature of ≲ 200◦C (see Fig. 7.5b) to remove water

vapor, nitrogen, and oxygen adsorbed on the surfaces of the vacuum parts from being exposed

to air. I designed a clamshell protector (Figs. G.1, G.2, 7.7a, 7.7b) to protect the glass cell

during baking. The clamshell protectors were vacuum fired to ensure clean inner surfaces so as

not to dislodge impurities that could bond to the glass cell surfaces during the in situ bakeout.

Fiberglass insulated heating tapes were wound around the clamshell protectors, the steel chamber,

the mounting brackets, and the large right-angle brackets12. Thermocouples were inserted in

strategic locations to monitor temperature during the bakeout.

Glass-to-metal seals in viewports are susceptible to leaks when the viewport temperature

changes rapidly or if there is a large thermal gradient across the viewport. Therefore, we raised

the temperature of the entire chamber assembly to ≲ 200◦ C (the maximum rated temperature

for the viewports) at a rate much slower than the 2◦C/min recommended by Kurt J. Lesker for

12We used silicone rubber heating tapes (instead of fiberglass insulated heating tapes as they flake fibers and can
contaminate the glass cell surfaces) for the first bake. However, these silicone heater tapes burned at about 100◦C
due to local temperatures likely exceeding their rated temperature of 232◦C.
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temperature changes in viewports. Large thermal gradients were a particular concern for one

2.75” viewport that was located at a AP90RL aluminum mounting bracket. The two AP90RL

mounting brackets were connected to the aluminum breadboard, a large heat sink. Therefore, we

heated the AP90RL mounting brackets to provide a gradual temperature gradient from the hot

chamber to the cold breadboard13. We baked the chamber at ≲ 200◦C for more than two weeks.

We achieved a UHV chamber pressure of 1 × 10−11 Torr, as measured at the ion pump,

which is the base pressure of the ion pump14. The pressure is likely lower due to leakage currents

that overestimate the pressure measurement [120, 121]. Such a low UHV pressure was achieved

despite the many in-vacuum parts, some of which are epoxy-bonded and others that are made out

of plastic like PEEK or Kapton. To protect the UHV conditions inside the chamber, the region

between the closed gate valve and a copper pinch off adapter gasket (Ideal Vacuum Products LLC,

P/N:P108190) was pumped down to the base pressure of the turbomolecular pump (1×10−9 Torr).

We then pinched off the gasket.

One last thing to note, during the in situ bakeouts with the turbomolecular pump, we also

conditioned the Rb dispensers at 3 A per dispenser for a day. The dispenser conditioning was

performed every time we broke the vacuum. We also conditioned the NEG pump during the in

situ bakeout with the turbomolecular pump. The ion pump was off during the dispenser and NEG

pump conditioning and was only turned on after the conditioning was complete. We did not in

situ bake the Yb 2D MOT source.
13One of the heater tapes on the mounting bracket failed mid-way during the bake. Fortunately, the vacuum was

not compromised.
14Once we noticed a large spike in the measured ion pump pressure that we now attribute to an argon

instability [112].
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(a) (b)

Figure 7.7: (a) The UHV chamber assembly (b) The glass cell.

7.1.3 Atomic sources

7.1.3.1 Design and construction of the Rb dispensing modules

We use Rb getters (RB/NF/4.8/17) from SAES Getters to dispense Rb. The dispensers

have an active length of 17 mm with a total nominal yield of 4.8 mg of Rb. Each dispenser has

a 9.5 mm×2.7 mm×0.15 mm terminal connection tab on both ends for electrical connections.

I designed (Fig. 7.8a) and assembled (Fig. 7.8b) two Rb dispensing modules. Each module

consists of two pairs of dispensers in series that are connected in parallel to each other. These

modules are then connected to two separate electrical feedthroughs with different conducting

materials: Copper and Molybdenum (Kurt J. Lesker, Part numbers: EFT0343052, EFT0344052).

The dispenser modules are installed in a way that the dispensing solid angle overlaps with the

glass cell entrance.

For the purposes of designing the electrical connectors for the dispenser modules and a

current supply for driving the module, it is imperative to consider the conductance (and thermal)
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EFT0343052

RB/NF/4.8/17

Adapter

Sleeve

EFT0344052

(a) (b)

Figure 7.8: Rb dispensers modules: (a) CAD design (b) Assembling the modules.

properties of the dispensers. The power dissipated in each dispenser follows the typical P =

I2R relation. The NiCr terminals have a resistance of 0.03 Ohm each. The resistance of the

dispensing region is 0.0026 Ohm/mm. This gives a total resistance of 0.104 Ohms per dispenser.

We measure a total resistance of 0.247 Ohms for our dispenser assembly setup, as measured from

the Cu feedthrough ends. The extra resistance comes from the connectors used to construct the

dispenser assembly. As the dispensers can reach temperatures between 550°C and 850°C when

driven at currents from 4.5 Amps to 7.5 Amps, I used stainless steel connectors in the dispenser

assembly for the electrical connections between the dispenser elements and the feedthroughs

given its high melting point, high corrosion resistance, and low thermal expansion coefficient. An

additional reason was that I used socket-head vented #0-80×1/16 flat-tip stainless steel setscrews

from Accu-Glass products for secure connections between dispenser flat terminals and electrical

connections. Having the same material for the screws and electrical connections might mitigate

the loosening of the screws from repeated thermal cycling. The connectors (Figs. G.4, G.5) were

machined from stainless steel 304 / 304L, which were then brushed and electropolished for UHV

57



Yb 2D MOT source

TGN160

MEW0750251C1

Figure 7.9: CAD design for the Yb 2D MOT source

operating conditions.

For the purposes of driving current through the dispensers, Alessandro and I came up

with a MOSFET and microcontroller-based (Teensy 3.2) circuit design. This circuit was built,

assembled, boxed, and debugged by Kevin. The link to the Github project folder is https://

github.com/JQIamo/Rb-Dispenser-pwr-supp.git. We have added a few protections

so as not to overdrive the dispensers: (a) Software current limits have been set by the Teensy and

BLACS [122] at 8 A at the code level (b) Hardware current limit of 9A is set on the CSI3020X

current supply (from Circuit Specialists) (c). Pulldown resistors were added to the PCB so that

the current supply never turns on at the set/max current, but at 0 A.

7.1.3.2 Yb cold atom source

We recycled the Yb 2D MOT source from the previous experiment. More details on the

source can be found in Creston’s and Varun’s thesis [8, 9]. In the new experiment, I decided

58

https://github.com/JQIamo/Rb-Dispenser-pwr-supp.git
https://github.com/JQIamo/Rb-Dispenser-pwr-supp.git


As viewed from the push beam end

C40APC-A (40mm)

2D MOT 1

QWP

GBE02-A

QWP

C40APC-A (40mm)

2D MOT 2

QWP

GBE02-A

QWP

RCP

RCP

LCP

LCP

permanent magnet permanent magnet

z

y

x

PAF2-A7A (7.5mm)
ST1XY-D

S405-XP

BST10400nm
bandpass

x

y

z

(a) (c)

B field direction

C260TMD-A

BB1-E01

DMSP490

PAF2P-A15A
f=15 mm

S405-XP

BB1-E02 BB1-E02

PM460-HP

A240TM-A
f=8 mm

(b)

556 nm

P-FAknsFAns-3.5cx/125/3-5
from Coastal Connections

Push beam output

Push beam input

 P-FAknsFAns-3.5cx/125/3-5
from Coastal Connections

399nm

BB1-E01

f=15.3 mm P5-405BPM-FC-5

CS165MU

Figure 7.10: schematic of the optical layout for the Yb 2D MOT source

to mount the 2D MOT chamber on a tilt platform (Newport TGN160) and attach it to the steel

chamber via a stainless steel bellows (Kurt J. Lesker MEW0750251C1) (see Fig. 7.9). Given

the small diameter (2 mm) of the differential pumping tube hole, this tilt platform plus bellows

arrangement would allow for additional flexibility in directing the Yb cold atomic beam to the

science chamber. This tilt ability was useful in achieving the first Yb 3D MOT signal.

The optics for generating a Yb cold atomic beam in the previous setup is detailed in

Creston’s and Varun’s thesis [8, 9]. While they took great care to minimize the coating of the

2D MOT windows with Yb, the windows have undergone some coating over the many years of

operation. In the previous experiment, we used a green push beam and green 3D MOT beams to
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capture Yb atoms [8, 9]. This method would fail in the new setup due to the increased distance of

380 mm between the center of the glass cell and the 2D MOT region, as well as a reduction in the

size of the 3D MOT beams to 5.5 − 10.5 mm range at the glass cell, which directly affected the

loading rate of the atoms in the 3D MOT as well as their capture velocity [123]. Furthermore, the

maximum total green light power was limited to 100 mW at the science chamber. Using a large

green push beam power (∼ 40 mW) accelerated atoms to velocities that exceeded the capture

velocity of the 3D MOT. In contrast, lowering the push beam power resulted in the atomic beam

drooping and blooming, preventing the atoms from ever reaching the 3D MOT region.

I realized that we needed to use a blue push beam paired with blue 3D MOT beams (see

Figs. 7.34, 7.10, 7.28 and 7.29) at the science chamber to form a Yb 3D MOT in our setup. Atoms

in this blue Yb 3D MOT would then be time-transferred to a green 3D MOT to realize a colder

cloud of Yb atoms (Fog. 7.65). The required blue push beam power was less than 200 µW, which

is significantly more power efficient than the 40 mW needed for the green push beam. The 2D

MOT optics underwent a few rounds of revision before the setup was robust and low drift. In its

final incarnation (see Fig. 7.10), we do not touch the 2D MOT optics for one year at a time. Here

were my design choices:

• Improving the 2D MOT beam quality and uniformity: Thorlabs large beam collimators

(C40APC-A) and Thorlabs Galilean beam expanders (GBE02-A) were used to collimate

and shape the light from the fiber (see Fig. 7.10c). Using aberrated 2D MOT beams yielded

serpentine-looking 2D MOT clouds. These 2D MOT clouds were especially sensitive to

force imbalances at the edges of the 2D MOT beams as the atoms exit the trapping region.

• Boosting the passive structural stability: The size of the 2D MOT arms and the push beam
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Figure 7.11: Yb 2D MOT cloud

launch arm was reduced. Reducing the mass of the optical mounts and optical elements, as

well as their spatial extents, minimized the cantilever.

• Large push beam size: A large push beam helped reduce the sensitivity of its alignment

to the Yb 2D MOT cloud. We used a Thorlabs achromatic fiber port (PAF2-A7A) that

produced collimated beams for 556 nm and 399 nm with minimal chromatic shifts (see

Fig. 7.10a). The 1/e2 beam diameter was slightly larger than 1 mm. When we used a green

push beam (at maximum power) to get the initial signal for the 3D MOT, the blue push

beam was automatically aligned.

• Continuous head-on visualization of the Yb 2D MOT cloud with a camera: A beam sampler

was used as the last folding element in the push beam launch arm (see Fig. 7.10a) for head-

on visualization of the Yb 2D MOT cloud.

My strategy to achieve the blue 3D MOT of Yb relied heavily on the ability to view the

2D MOT cloud of Yb head-on (see Fig. 7.10a). The differential pumping tube hole was used as

a guide on the camera. The center of intensities of the 2D MOT beams fluorescing in the Yb
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vapor were aligned to the differential pumping hole on the camera. This alignment led to tube-

shaped Yb 2D MOT clouds that looked like bright circles when viewed head-on (see Fig. 7.11)

(instead of serpentine-shaped clouds that extended transversely). Any residual offset between the

2D MOT cloud and the differential pumping tube hole was removed by moving the permanent

magnets (see Fig. 7.10c). A 400 nm bandpass filter was mounted in front of the camera. The 40

mW green push beam was aligned to overlap with the Yb 2D MOT cloud (see Fig. 7.10a). The

signature of this overlap and efficient pushing action was determined by slowly modulating the

green laser frequency around the resonant frequency of the trapped Yb 2D MOT isotope. When

the green push beam was well aligned, the integrated fluorescence from the Yb 2D MOT cloud

would blink in and out. The effect of the push beam could not be discerned when the cloud was

viewed from the side. Using this alignment method, we were able to achieve a Yb 3D MOT

with a high-intensity green push beam, and consequently a blue push beam as well, due to the

achromatic fiberport setup. Lastly, we noticed the robustness of the blue 3D MOT to alignment of

the 2D MOT beams and the blue push beam. The blue push beam is far superior at overcoming

the edge effects arising from 2D MOT force imbalances, which kick the atoms off axis, when

compared with a green push beam of the same intensity.

7.1.4 Design and construction of electrodes for electric field control

Large electric dipole moments of atoms in Rydberg states makes them very sensitive to

stray electric fields. It is therefore imperative to locally control the electric fields in the vicinity

of the atoms. Eight tungsten rods mounted to a custom ceramic assembly (Fig. 7.12a) provide us

with arbitrary 3D electric field control in the vicinity of the atoms at the center of the glass cell.
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Figure 7.12: Design, assembly, and installation of the electrode assembly
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The electrode assembly must satisfy a few constraints. Given that the dispensed Rb must

flood the glass cell to create the Rb MOT, the electrode assembly, which extends all the way

from the steel chamber and into the glass cell, must not obstruct this flooding. The assembly

also must not obstruct the cold atomic Yb beam directed towards the center of the glass cell.

Furthermore, the assembly must not hinder the vacuum pumps in our setup from continuously

and efficiently pumping out the glass cell, to maintain good UHV conditions at the location of the

atoms. Last but not least, the electrodes at the glass cell must not block optical access for high

NA projection (0.6 NA for our objectives) of optical tweezers as well as imaging of the single

fluorescing atoms. Therefore, the entire electrode assembly must be as compact as possible. To

do this, we used 0.02 ” diameter Tungsten rods as the material for our electrodes. However, using

such small diameter tungsten rods can cause cantilevering issues, which needs to be mitigated

by appropriately designing the rest of the electrode assembly. A simple solution is to reduce the

length of the rods that must cantilever.

Designing the electrode assembly (Fig. 7.12a and Fig. 7.12b) and assembling it using jigs

(Fig. 7.12c and Fig. 7.12d) was one of my more complicated tasks. The frame of the electrode

assembly is made up of ceramic parts (Fig. 7.12b), which were machined by Precision Ceramics.

I worked closely with the ceramic vendor to machine these parts. Given the tight tolerances for

these parts, machining them posed quite a challenge on the part of the vendor.

The tungsten electrode rods (from Midwest Tungsten Service) are guided by the holes in

(and epoxied to) the small ring and the large ring (Fig. 7.12b). The rings were machined out of

MACOR because they had many features (Fig. G.9 and Fig. G.8). The short rods (Fig. G.11)

and the long rods (Fig. G.10) were machined from Alumina. The short alumina rods connect the

small MACOR ring to the large MACOR ring (Fig. 7.12b). The long alumina rods connect to the
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large MACOR ring. These long rods support the entire assembly. The long rods were clamped

to the electrode holder (Fig. G.6) using electrode clamps (Fig. G.7).

The only feature on each of the Alumina rods was a lap joint. Given this simple feature and

the need for large flexural strength and hardness to minimize the ceramic assembly cantilever, I

chose to machine the rods out of Alumina instead of MACOR, despite Alumina’s lesser machinability.

The electrode holder contains two V grooves (included angle of 105 degrees) on its body (Fig. G.6).

The long rods are placed in the V groove and pressed against the body of the electrode holder

via electrode clamps (Fig. 7.12d). The electrode holder and electrode clamp were machined from

304/304L stainless steel and were brushed and electropolished. The electrode holder is held in

place and connected to the steel chamber body via groove grabbers (MCF275-GrvGrb-CB03)

(Fig. 7.12d and Fig. 7.12e). All connections between the ceramic parts and between the rings and

the electrodes were made with UHV-compatible epoxy (Accu-Glass Products Inc., P/N: 111785).

The rings were connected to their respective Alumina rods via lap joints. A heat lamp was used to

cure the epoxy, which turned a deep amber color upon curing. I assembled the electrode assembly

using a jig made out of HDPE (High Density Polyethylene) plastic as epoxy does not bond to it

(Fig. 7.12c).

In the electrode assembly, four tungsten rods are longer (red rods) than the other four by

1 cm at the glass end (Fig. 7.12b and Fig. 7.12f). The ends of the shorter rods (gray rods) were

aligned roughly with the center of the glass cell. Each pair of rods (red and gray) were bent away

from each other in situ to avoid any electrical shorts. The electrodes were electrically connected

to a 19-way UHV-compatible PEEK connector cable assembly (Accu-Glass Products, Inc., P/N:

110230) via Be/Cu inline barrel connectors (Kurt J. Lesker, P/N: FTAIBC041). The Kapton

insulation on the wires was removed in order to make the connection. I compacted this electrical
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connection by switching the standard slotted head screws in the inline barrel connectors with the

vented #0 − 80 setscrews. The 19-way UHV-compatible PEEK connector cable assembly was

connected to a 19-pin feedthrough flange (Accu-Glass Products, Inc., P/N: 19C-275) (Fig. 7.12f

and Fig. 7.12g).

Before mounting the actual glass cell, I ensured that the ceramic assembly was centered to

the neck of the glass cell and would not snag on it when I installed the actual glass cell. I verified

these centration and clearance requirements using an exact replica of just the neck and flange of

the glass cell from Precision Glassblowing that was installed and removed a few times. Despite

taking care to ensure that there were no shorts prior to the in situ chamber bakeout, we ended up

with two pairs of rods that were shorted to each other after the bake.

7.2 Design and construction of the magnetic field coils and their housing

We wound our own magnetic field (solenoid) coils. There are 6 solenoid coils in total for

arbitrary magnetic field control in 3D (see Figs. 7.13a, 7.13b). Each solenoid coil is helically [124]

wound to the lip of a machined PEEK (polyetheretherketone) frame. PEEK is a high-performance

machinable thermoplastic. It has high strength and is thermally resistant. The six coil frames are

assembled into the coil housing. All PEEK frames are bolted to the housing frame (purple part

in Fig. 7.13a) (see Figs. G.12). This design also facilitates easy future modifications. Winding

solenoid coils on plastic frames immediately resolves any eddy current issues during rapid switching

of currents in the coils. The downside to using PEEK frames is that the heat generated from the

coils cannot be dissipated easily into the body of the frames as a result of PEEK’s low thermal

conductivity (0.24 - 0.26 W/(mK)).
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(a) (b)

(c)
Shallow-angle MOT beam

Shallow-angle MOT beam

MOT coil 1

MOT coil 2

Shim coil 6

Shim coil 3

Shim coil 4

Shim coil 5

Objective 1

Glass cell

Objective 2

Figure 7.13: (a) CAD design for the housing for the magnetic field coils i.e. the coil housing (b)
The fully assembled coil housing (c) Cross-section of the coil housing showing the shallow angle
MOT beam paths

We did not want to form our MOTs with one pair of MOT beams being sent through the

objectives. To do this, we made slots in the coil housing that would accommodate the shallow-

angle MOT beams (Fig. 7.13c). However, a beam of light is displaced when it passes through a

flat glass plate—the objective windows of the glass cell—at a non-zero angle of incidence. This

displacement is 11.6 mm for a laser beam that passes through both glass cell objective windows

at 67.5◦ angle of incidence. Given that the shallow-angle beam size is ∼ 5 mm, determined by the
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OD of the objective window, it was crucial that I considered this displacement when designing

the coil housing. If the beam displacement is not considered, the shallow-angle beam will not exit

the coil housing, which we have confirmed. Only when the vacuum chamber assembly was rolled

in did the shallow-angle beam make its way out of the coil housing. The compactness of the coil

housing and the need for considering the shallow-angle beam displacement was also driven by

the fact that the MOT solenoid coils had to be placed at a certain distance from each other for

optimal field gradient when driven in the anti-Helmholtz arrangement. The spacing between the

coils is intimately related to the radius of the solenoid coils for the optimal field gradient [125].

In the case of thin solenoid coils, the gradient is maximal when the spacing between the

coils is equal to the radius of the solenoid coils. The spacing is usually increased to
√
3 times the

radius of the coil [125]. This increases the homogeneity of the field gradient as well as the volume

between the coils. However, this comes at a cost of reduced magnitude for the field gradient.

The field gradient is proportional to (current × no. of solenoid turns)/(radius)2. However, the

inductance of the coils is proportional to (no. of solenoid turns)2, and high inductive loads are

undesirable15. Therefore, it is important to strike a balance between the current 16, the number of

turns, and the radius of the thin solenoid coils for optimal magnetic field gradient.

We construct our thick solenoid coils from enamel-coated 12 AWG magnet wire (Essex

GP/MR-200®, Magnet Wire/ Winding Wire) (see Fig. 7.14d and 7.13b). We helically wind our

coils onto the lip of each PEEK frame for good fill factor [124]. In order to maximize heat transfer

in the coils (by removing air gaps) and to give the coils form, we applied a thermally conductive

but electrically insulating epoxy (Cotronics Corp. DURAPOT 865) to each radial layer before

15For a thick solenoid coil, the inductance can be determined easily using this web calculator: https://www.
66pacific.com/calculators/coil-inductance-calculator.aspx

16Heat dissipated in the coils scales as current2 and low-noise high current supplies with fast switching are
expensive.
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Coil Layers Turns/layer Total Turns Measured inductance (mH)

MOT 1 5 9 45 0.33

MOT 2 5 9 45 0.33

Shim 3 3 8 24 0.08

Shim 4 3 8 24 0.08

Shim 5 4 5 20 0.04

Shim 6 4 5 20 0.05

Table 7.1: Electrical and mechanical specifications of our solenoid coils

winding a subsequent radial layer. This epoxy also binds the innermost radial layer of the solenoid

coil to the PEEK frame lip. The jig I designed to wind the coils is based on a turntable where the

PEEK frame is mounted to the turntable via a turntable adapter (see Figs. 7.14a and 7.14b). The

height of the coils is defined by a 3D printed plastic that is also bolted to the turntable adapter.

The 3D printed plastic presses onto the PEEK frame from the top, forming a tight seal. The coils

are axially wound from the L notch in the 3D printed plastic (HP PA 12) down to the body of the

PEEK frame by rotating the turntable, all the while maintaining tension in the wire. The inner

surface of the 3D printed plastic was layered with Kapton tape to prevent the solenoid coil from

bonding to its body. To wind the rectangular coils, we used an adjustable-angle handscrew clamp

on the long rectangular sides of the coils (see Figs. 7.14c). If clamps were not used, the coils

would bow outward and will not bond to the PEEK frame lip. Lastly, we apply layers of Kapton

tape on the exposed surfaces of the coils to seal all the dry epoxy crumbs that may shed after the

curing process (see Fig. 7.13b).

Tsz-Chun simulated the magnetic fields using a free Mathematica add-on (Radia) from

European Synchrotron Radiation Facility (ESRF) and determined the number of axial and radial

turns (Table 7.1) needed for optimal magnetic field gradient for Rb and Yb MOTs. He also
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3D printed plastic

(a)

Turntable adapter plate
P/N:9443T21, Turntable

(b)

(c) (d)

Figure 7.14: (a) The coil winding jig for the rectangular/shim coils (b) The coil winding jig for
the MOT coils (c) Using handscrew clamp to prevent the shim coils from bowing outward during
winding (d) The potted MOT coils wound to their PEEK frames

determined the number of axial and radial turns needed for the shim coils. The quadrupole

magnetic field (for MOTs) is generated by the two MOT coils in an anti-Helmoholtz arrangement.

20 A current in each of the MOTs coils yields a 4.4 mT/cm magnetic field gradient at the center

of the glass cell.

7.2.1 Mitigating coil heating

We noticed that during the steady state operation of the MOT coils at the typical MOT

current values of ±8 − 12A, the temperature of the coils would increase enough to misalign

the objectives. Steady-state operation of the MOT coils is needed for MOT optimization and

debugging. Because the coils are epoxied to a PEEK frame, which has low thermal conductivity,

the heat generated by the coils was not easily dissipated into the body of the PEEK frame.

Furthermore, the spacing between the inner surface of the PEEK frame lip and the objective is 2
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(a) (b) (c)

Figure 7.15: Manifold for cooling the MOT coils with pressurized and filtered dry nitrogen

mm. This meant that the heat generated by the MOT coil was being convectively transferred to

the objective. This misalignment of the objectives due to heat from the steady-state operation of

the MOT coils was interferometrically measured using the Twyman-Green-Fizeau interferometer

(see Sec. 7.6.3.1). The collimated back-reflection from the objective was first aligned with a

stable reference beam to yield one tilt fringe. Upon increasing the temperature of the coils, we

would notice that the number of tilt fringes increases. When the coils were cooled down, the

initial one-tilt fringe alignment would not recover.

The first change we made to mitigate this heating-induced misalignment was to lower the

magnitude of the currents used to drive the MOT coils while still being able to form MOTs

of both atomic species. The second thing I did was redesign the objective mount to improve

recovery upon cool down after the objectives were misaligned by being exposed to heat (see

Sec. 7.6.1.1). The last thing we did was air-cool the coils as suggested by Steve. I designed a

filtered dry nitrogen delivery system that Kevin, Oliver, and I built together. Bend-and-Stay air

nozzles (McMaster Carr part no. 3390K22) and anodized aluminum right-angle flow manifold
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(McMaster Carr part no. 5469K121 and 5469K151) are used to deliver the filtered dry nitrogen

to the coils (see Fig. 7.15). Thermocouples are also taped to the body of the MOT coils and

connected to Raspberry Pis to monitor the temperature of the coils. With these changes, we

were able to run the MOT coils for extended periods of time (30 mins and more) without fear of

misaligning the objectives.

For a possible future iteration of this coil housing, I recommend using ceramics such as

Boron Nitride instead of PEEK as its thermal conductivity is two orders of magnitude greater

than that of PEEK. I also recommend manufacturing unsupported coils instead of winding the

coils to the lip of the frame. In the case of a ceramic lip, the shear forces during coil winding may

shatter the lip because ceramics are brittle. An unsupported coil helps with that. An unsupported

coil also allows for the insertion of custom thermal insulation layers between the coil and the

objective. Custom Coils, Inc. manufactured unsupported potted coils for us (see Fig. 7.16).

These coils are orthocyclically wound instead of being helically wound for an even better fill

factor [124]. The coil structure was held in place with DOWSIL™ 3-6752 thermally conductive

adhesive.

Figure 7.16: Orthocyclically-wound unsupported potted coils
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7.2.2 Driving the coils

We use 6 independent bipolar power supplies (BOPs) from Kepco, Inc. to drive our 6

magnetic field coils for arbitrary magnetic field control at the atoms (Table 7.2). The BOPs are

operated in current mode with the control voltage inputs provided by a National Instruments card

(USB-6363). Given that our cycle times need to be short, we require fast switching of magnetic

fields. However, due to the inductive nature of the load (0.32 mH for the MOT coils in table 7.1),

oscillations in the current loop are to be expected when the current is rapidly turned on and off.

Current oscillations (and therefore magnetic field oscillations), are especially detrimental during

the sub-Doppler cooling stage of Rb and during the transfer of Yb atoms from the blue MOT to

the green MOT.

We noticed jitters and wiggles in the positions of the Rb and Yb 3D MOTs that were partly

due to these current oscillations. In order to diagnose (and remedy) the oscillatory behavior of

the current in the coils, the control voltage input of the BOPs was driven with a 0-10 V Vpp 100

Hz square wave. The yellow trace is the control voltage signal and the clearly oscillating cyan

trace is the voltage across the BOP output (Fig. 7.17a). To eliminate these oscillations (according

to the vendor), we added a series-connected resistor-capacitor network (102 Ω and 390 nF) in

parallel to the MOT coil at the BOP output ports, and a capacitor in the range of 10-100 nF was

connected between pin 16 and pin 18 on the rear programming card connector, with the values

for the capacitors and resistors empirically determined from within the vendor-specified range.

These modifications strongly suppressed the current oscillations (see Fig. 7.17b). However, a

balance between oscillation suppression and switching speed is necessary.
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Coil Power supply part no. Settling time (ms)

MOT 1 KEPCO BOP 20-20M 1.3

MOT 2 KEPCO BOP 20-20M 0.82

Shim 3 KEPCO BOP 20-20D 0.3

Shim 4 KEPCO BOP 72-6M 0.57

Shim 5 KEPCO BOP 20-20M 0.27

Shim 6 KEPCO BOP 20-20M 0.128

Table 7.2: Power supply and current settling time for each solenoid coil

(a) (b)

Figure 7.17: The control voltage input of the BOPs driven with a 0-10 V Vpp 100 Hz square
wave (yellow trace) and the measured voltage across the BOP output (cyan trace) (a) without
damping circuits (b) with damping circuits.

7.3 Designing breadboards and UHV chamber carriage shaft assembly system

When I visited Harvard in 2019, I noticed some glass cell-based experiments that had their

entire vacuum chamber side of the experiment mounted on translation stages. The chambers

could be rolled in and out from the sensitive optical side of the experiment. We implemented

this approach in our experiment. I had heard good things about this design at the time and on a

personal note, we benefited from this design choice a few times.

I followed a few rules of thumb when designing the solid aluminum breadboards for our

experiment (see Figs. 7.18 and 7.19). We got all of our breadboards manufactured from Baselab
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Objective breadboard

Bottom vertical breadboard

SLM breadboard
Upper vertical breadboard

Machined shelf

AOD breadboard

Figure 7.18: CAD design of the breadboard layout

Tools Inc. The most sensitive of optics need the thickest/heaviest of breadboards for high passive

stability. However, one must balance this requirement against the additional machining and

material costs associated with thicker breadboards. To that end, the AOD breadboard (Fig. 7.18)

is the thickest at 1.5 ” because it folds the AOD tweezer beams up from the optical table up

to the objective breadboard (and the SLM tweezer beams down from the SLM breadboard to

the objective breadboard). The objective breadboard and machined shelves host the sensitive

objective optics and are therefore 1 ” thick. The objective breadboard is the heaviest breadboard

in our setup and is supported by ten 1.5 ” thick and 8 ” tall solid stainless steel posts, all secured

to the optical table. All other breadboards are 0.75 ” thick. All breadboards are as monolithic
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Figure 7.19: The assembled breadboards and carriage shaft assembly

as possible, given the cut-out requirements for our breadboards. The SLM breadboard hosts the

SLM optics and is supported on the objective breadboard via seven 1.5 ” thick and 14 ” tall

solid stainless steel posts. The upper vertical breadboard is connected to the SLM breadboard

as well as the objective breadboard via vertical mounting brackets at 4 positions. The bottom

vertical breadboard is secured to the optical table as well as the objective breadboard via mounting

brackets at 5 positions. All breadboards have 1/4 − 20 tapped through-holes (except the AOD

breadboard, which is tapped only 1 ” deep) on a 1”×1” grid. In order to minimize unwanted light

scatter from the breadboards, we anodized as many breadboards as we could.

The above design choices served us well as drifts within a breadboard and between breadboards
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were interferometrically measured to be less than 100 µrad, with little to no vibrations. Furthermore,

tightening mounts to the breadboards do not lead to misalignment of already mounted optics17.

The drawings for all the breadboards are shown in Figs G.13, G.14, G.15, G.17, G.16, and G.18.

Custom L bracket

Hard stop setscrew

Breadboard adapter plate

Back Holder

Front Holder

LinTech-PS062020 - S1 - N1 - F4 - M01 - C000 - E00 - B00 - L47_600

LINTECH-TRCA16-18-P- L1

LINTECH-TRSA16 - 42- E4

Figure 7.20: CAD design for the carriage shaft assembly for translating the mounted UHV
chamber assembly.

The entire vacuum chamber was constructed on an anodized breadboard (Thorlabs MB2424)

that was in turn mounted on carriage shaft assembly from Lintech Motion (see Fig. 7.20). The

17Commercially available 0.25” thick anodized Aluminum breadboards from Thorlabs mounted directly to an
optical table at the counterbored holes distort when optics are mounted to them. Any time I tightened an optic on
to a fastened breadboard flush with the optical table, it would distort the breadboard and misaligned the optics in
its vicinity. This was especially apparent if there were fiber-coupling optics on that breadboard. The mode field
diameter of the fibers is small, typically less than 5.5 µm. So breadboard distortions significantly affect fiber-
coupling efficiencies. The obvious benefit of mounting optics to breadboards is that the optical setup is modular
and movable. However, unfastening and fastening a breadboard to an optical table induces (or relieves) stresses that
can misalign the already mounted optics. I found that never bolting the breadboard down to the optical table is the
optimal solution. This is in addition to making sure that the length of the screws was smaller than the breadboard
thickness. One can see how the screw length being longer than the breadboard thickness can be an even bigger
issue for a fastened breadboard flush with optical table. Thorlabs mentions the distortion problem of 0.25” thick
breadboards on their website.
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breadboard was bolted to a custom pillow block carriage assembly (LINTECH-TRCA16-18-

P-L1) (Fig. G.19). The carriage assembly can translate on a custom pre-aligned dual shaft

assembly (LINTECH-TRSA16-42-E4) (Fig. G.20). The shaft assembly is bolted to the optical

table. Controlled translation of the carriage assembly along the shaft assembly is provided by a

ball screw assembly with mounted end supports (LinTech-PS062020-S1-N1-F4-M01-C000-E00-

B00-L47_600). The end supports— Back holder (Fig. G.21) and Front holder (Fig. G.22)—are

made of 304/304L stainless steel. The holders are both bolted to the optical table. The custom

breadboard adapter plate connects the ball screw’s custom L bracket to the breadboard (and

therefore the carriage assembly). By turning the 4” hand wheel, ball screw L bracket translation is

converted to the translation of the carriage on the shaft assembly. The front holder has a 1/2−13

flat tip setscrew that acts as a hard stop (by pressing against the breadboard) and prevents the

vacuum chamber from going too far in. Once the optimal position of the carriage assembly was

found, we locked the position of the hard stop setscrew using a serrated flange locknut. This

hard stop set screw now serves as a memory for when we pull the chamber out and in. This has

been field tested and works well. During normal operation, the chamber breadboard is bolted

to the optical table via posts at its counter-bore 1/4-20 through-holes. This locks the position of

the breadboard (and the carriage assembly). We do not engage the hand lock on the ball screw

assembly.

Due to the RAR nanotextured surfaces of the glass cell, caution was necessary when rolling

the assembled vacuum chamber into the coil housing. We had to ascertain that there was enough

clearance between the glass cell surfaces and the inner surfaces of the coil housing, and the

glass cell was centered with respect to the coil housing cavity. To do that, we machined a solid

aluminum glass cell mock-up (Fig. 7.21). We then mounted this mock-up to the front sealing
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Figure 7.21: Solid aluminum glass cell mock-up

surface of the stainless steel chamber assembly. We rolled the mock-up chamber assembly in to

the coil housing. Using laser levels mounted on translation stages, we adjusted the position of the

coil housing with respect to the mock-up cell. We tried our best to center the coil housing cavity

to the mock-up cell. This procedure ensured that when the vacuum chamber assembly with the

actual glass cell was rolled in, the coil housing would not scratch the surface of the glass cell. It

also ensured that the magnetic field zero would be close to the center of the glass cell when the

MOT coils were run in an anti-Helmholtz configuration.

7.4 Ultra-Low Expansion (ULE) cavity design, installation, optics, and electronics

7.4.1 Design, installation, and optics

I worked closely with Stable Laser Systems (SLS) to choose the appropriate reference

cavities for PDH locking our Rydberg lasers. A typical reference cavity consists of two ULE glass

(or fused-silica glass) mirror substrates—one plano-plano and the other plano-concave—both of

which are optically contacted to a cylindrical ULE glass spacer with a borehole concentric with

79



the cavity axis [126, 127, 128, 129]. In order to serve as a good reference, this cavity is typically

housed in a high vacuum, temperature-controlled, vibrationally isolated environment. The ULE

glass spacer typically has a thermal expansion zero-crossing temperature in the range 25− 40◦C

and the reference cavity housing is held at this temperature.

In our case, the seed of each Rydberg laser at 840 nm (2 × 420 nm), 1013 nm (1 × 1013

nm), 1112 nm (2 × 556 nm), 1232 nm (4 × 308 nm) is PDH locked to its own reference cavity

(Fig. 6.1). As there are four Rydberg lasers (Fig. 6.1), we need four reference cavities. Instead

of four independent reference cavities, SLS suggested an arrangement where the four reference

cavities share the same ULE glass spacer i.e. there are four bored holes in the ULE glass spacer.

The premium grade ULE glass cavity spacer is a 100 mm OD and 100 mm long cylinder with

four 10 mm diameter bore holes centered on the corners of a 30 mm×30 mm square. The thermal

expansion zero-crossing temperature for the ULE glass is 33.77± 1◦C. Mirror pair (plano-plano

and plano-concave) is constructed out of a premium grade ULE glass substrate that is 1” diameter

×0.25” thick. The cavity mirrors coatings as shown in the table below:

Wavelength (nm) Desired Finesse S2 AR % 0 0◦AOI

841 and 1013 30000 to 90000 < 0.2

1112 and 1232 30000 to 90000 < 0.2

Instead of building our own reference cavity housing, we bought the housing setup and accessories

from SLS (Fig. 7.22a)

Tsz-Chun and I installed the reference cavity. The reference cavity vacuum housing pressure

sits at < 2.7 × 10−7 Torr. Fig. 7.22a is a picture of me holding the four-bored reference cavity
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block prior to installing it. The bore that serves as the reference cavity for the laser of choice is

also depicted in Fig. 7.22b. In the actual setup, the bore 1 reference cavity is for the 1013 nm

laser, the bore 3 reference cavity is for the 841 nm laser, the bore 2 reference cavity is for the

1232 nm laser, and the bore 4 reference cavity is for the 1112 nm laser (Fig. 7.22b).

(a) (b)

Bore 1 Plano in the front; 841, 1013 nm

Bore 2 Concave in the front; 1112, 1232 nm

Bore 3 Plano in the front; 841, 1013 nm

Bore 4 Concave in the front; 1112, 1232 nm

Figure 7.22: (a) Installing the four-bored reference cavity block in its temperature-controlled
high-vacuum housing (b) The arrangement of the reference cavity bores.

After the four-bored reference cavity block was installed, I designed and built the optics for

coupling light into ULE cavities. I devised the alignment strategy with help from Wance Wang

from Joe Britton’s group. I assembled the optics for each seed laser into a cage-system. The

output of a fiber-coupled EOM serves as the input to the cage system. We use fiber EOMs for

phase modulating the laser light: iXblue NIR-MPX-LN-05-00-P-P-FA-FA for 1112 nm, 1232

nm, and 1013 nm; and iXblue NIR-MPX800-LN-10-P-P-FA-FA for 840 nm (Fig. 7.23b). The

schematic for each of the four cage systems is illustrated in Fig 7.23a and the parts used are listed

in the table below.
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(a) Layout for the reference cavity mode-matching optics for PDH locking.

(b) A typical cage system to mode-match light into the reference cavity for
PDH locking.

Figure 7.23
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λ (nm) f0 (mm) f1 (mm) f2 (mm) d(in) PD

840 4.00 (C610TME-B) 175 (KPX103AR.400) 100 (KPX094AR.400) 6.19 PDA8A2

1013 4.51 (C230TMD-B) 175 (KPX103AR.18) 100 (KPX094AR.18) 6.19 PDA10D2

1112 3.10 (C330TMD-C) 125 (KPX097AR.18) 100 (KPX094AR.18) 7.08 PDA20C2

1232 3.10 (C330TMD-C) 125 (KPX097AR.18) 100 (KPX094AR.18) 7.08 PDA10D2

With the designed mode-matching optics [70, 130], I typically coupled 40% of the ∼ 200−

400µW of the seed light into the ULE cavity, measured as dips in the reflected intensity measured

on the photodetector18. Part of the light is delivered to a separate scanning confocal Fabry-Perot

for monitoring laser mode-hops and the status of the fiber EOM phase modulation. Apart from

the 1013 nm laser, all the other lasers go through second harmonic generation stages. So the mode

hop behavior of the seed laser can be monitored on its respective frequency-doubling cavity.

In order to monitor the spatial mode profile of the cavity, I used a Vanxse CCTV 1/3

CCD 1000TVL HD 3.6 mm mini bullet security camera. The laser transmission mode was

monitored on an AUKUYEE 7 inch 1024X600 high-resolution IPS monitor. The camera provides

information on the status of the PDH lock. Using the error signal to determine the status of the

PDH lock is not easy, as a locked and unlocked laser yields zero error signal. However, the cavity

spatial mode profile on the camera can be used to determine the laser lock status as we always

lock to the TEM00 of the cavity.

I dedicate one power strip for powering the laser and its associated PDH lock electronics

to prevent ground loops between the elements. Even the oscilloscopes are powered by the same

18An excellent guide for aligning into the ULE reference cavity can be found here:
https://www.moglabs.com/support/appnotes/an002-pdh-r2.pdf
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power strip. There are 4 power strips in total. I chose to use FALC 110 from Toptica as the servo

for PDH locking the 420 nm, 308 nm, and 1013 nm Rydberg lasers to their respective reference

cavities. For the 556 nm laser, I chose to use PID 110 from Toptica as the servo. The 1112 nm

seed for the 556 nm laser is intrinsically narrow and does not need high-bandwidth feedback.

PDH locks are sensitive to noise in the acoustic frequency range. Therefore, I wanted to

isolate the ULE cavity and the lasers that are locked to the ULE cavity from ambient vibrations.

To that end, the ULE cavity and the associated optics for PDH locking are mounted on a B3036G

Nexus breadboard from Thorlabs. The breadboard itself is placed on super-cushioning polyurethane

rubber sheets (8514K68 and 8514K78 from McMaster Carr) to dampen vibrations from the

optical table. All the diode laser heads that are locked to the ULE cavity were also built on

breadboards that were placed atop polyurethane rubber sheets for vibration isolation from the

optical table. Additionally, we built vibration isolation housing around the ULE cavity breadboard

as well as the diode laser breadboards.

I designed the vibration isolation boxing (see Figs. 7.24a and 7.24b). Each piece or face of

the vibration isolation boxing was built out of a hand-cut acrylic sheet (8505K759 from McMaster

Carr) that was sandwiched between appropriately sized vinyl sound barrier sheets (9345T21

from McMaster Carr) or melamine foam sound barrier sheets (54995T24 and 54995T23 from

McMaster Carr) or a mixture of both. The hard acrylic sheet reflects any sound that is damped

by the sound barrier sheets. These faces are then assembled into a box around the ULE cavity

breadboard and the laser breadboard using cut 80/20 Aluminum extrusions.
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(a) (b)

Figure 7.24: (a) The vibration isolation boxing for the 420 nm laser (b) The vibration isolation
boxing for the ULE cavity and its associated optics

7.4.2 Electronics for generating the PDH error signal

We used the electronic sideband (ESB) locking scheme [131, 132, 133]—a variant of the

the standard PDH lock scheme—to stabilize our Rydberg excitation laser to its corresponding

reference cavity. Using a dimensionally stable cavity as a frequency reference quantizes the

locked laser frequency to integer multiples of the cavity free spectral range (FSR), which in our

case is 1.5 GHz. The ESB PDH locking scheme is a method to bridge the frequency gap between

the quantized cavity resonance frequency and the desired optical frequency.
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The canonical optical electric field used in ESB locking is

E(t) = E0 exp




jΩ0t+ j βc sin[Ωct+ βm sin(Ωmt)]︸ ︷︷ ︸

∝VEOM(t)




, (7.2)

= E0

∑

n

Jn (βc) e
jΩ0t+jnΩct ×

∑

k

Jk (nβm) e
jkΩmt, (7.3)

= E0

∑

n

∑

k

Jn (βc) Jk (nβm) e
j(Ω0+nΩc+kΩm)t, (7.4)

where E0 is the amplitude of the laser electric field, Ω0 is the bare laser frequency, Jn is the

nth order Bessel function of the first kind, and VEOM(t) ∝ βc sin[Ωct + βm sin(Ωmt)] is the rf

signal used to drive the EOM phase-modulating the laser electric field. The amplitude of the

laser sideband at frequency Ω0 + nΩc + kΩm is E0Jn (βc) Jk (nβm). The rf signal VEOM(t) is

parameterized by four parameters: βc (the carrier modulation depth), Ωc (the carrier rf frequency

that lies in the ultra high frequency (UHF) band), Ωm (the baseband rf frequency that lies in

the medium frequency (MF) and high frequency (HF) bands), and βm (is the phase-modulation

index).

The carrier frequency Ωc should be tunable by approximately the FSR of the cavity. In order

to understand how changing the carrier wave frequency changes the bare laser frequency, we first

approximate the expansion in Eq. 7.4 and consider only the set of three sidebands at frequencies

Ω0+Ωc, Ω0+Ωc+Ωm, and Ω0+Ωc−Ωm; or the set of three sidebands at frequencies Ω0−Ωc,

Ω0 − Ωc − Ωm and Ω0 − Ωc + Ωm. Either set of sidebands can be used to generate a PDH error

signal. When the lock is engaged, the laser sideband at Ω0 ± Ωc is resonant with the cavity i.e.

Ω0 ± Ωc = 2πN × FSR (7.5)
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where 2πN × FSR is the frequency of the longitudinal mode of the reference cavity and N is

the resonator mode number. Assuming now that the laser stays locked to the chosen reference

cavity mode, a ∆Ωc change in the carrier wave frequency results in a ∆Ω0 change in the base

laser frequency, which can be mathematically expressed as follows:

∆Ω0 = ∓∆Ωc. (7.6)

Generating the phase-modulated rf signal VEOM(t) is complex. We use quadrature amplitude

modulation (QAM) [134, 135], employed extensively in digital signal communication, to generate

the phase-modulated rf signal for ESB locking. Using the angle-sum identity on the rf signal

VEOM(t), we get

VEOM(t) = ξ sin[Ωct+ βm sin(Ωmt)]

= ξ sin[βm sin(Ωmt)]︸ ︷︷ ︸
I(t)

cos(Ωct) + ξ cos[βm sin(Ωmt)]︸ ︷︷ ︸
Q(t)

sin(Ωct).

Expressed in this form, one can see how QAM can be used to construct the rf signal VEOM(t).

The in-phase baseband channel I(t) = ξ sin[βm sin(Ωmt)] amplitude modulates the carrier wave

cos(Ωct), and the quadrature-phase baseband channel Q(t) = ξ cos[βm sin(Ωmt)] amplitude

modulates the quadrature carrier wave sin(Ωct), which are then summed together to produce

VEOM(t). The slope of an ideal ESB PDH error signal near cavity resonance [131] is proportional

to J0(βm)J1(βm)(J1(βc))2, where Jn is the nth order Bessel function of the first kind. This slope

is maximal for rather large modulation depths βc = 1.84 rad and βm = 1.01 rad.

Tsz-Chun and Alessandro built our first version of the ESB locking hardware, which was
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ADL5375

(a) (b)

Figure 7.25: The ESB PDH error signals as a function of laser frequency detuning ∆Ω where
∆Ω = Ω0 + Ωc − 2πN × FSR: we use laser light at 1112 nm, a high-finesse ULE reference
cavity, and a fiber-coupled EOM driven by the high-quality phase-modulated rf signal from (a)
the ADL5375-based design (b) and the ADALM-PLUTO-based design.

centered around the ADL5375 chip from Analog devices. Later Alessandro would suggest a

separate and more compact implementation using ADALM-PLUTO, a software-defined radio

developed for hobbyists, students, and educators from Analog devices. Oliver helped Alessandro

get that implementation up and running. The GitHub repositories for both system architectures

can be found here: https://github.com/JQIamo/ESB_Signal_Generator and https:

//github.com/JQIamo/Electronic_Sideband_Locking_Pluto. Typical ESB PDH

error signals generated using the phase-modulated rf signal from both system architectures are

shown in Fig. 7.25. We are in the process of writing a manuscript on these system architectures.

7.4.3 Servo loop optimization for laser linewidth narrowing

The frequency of a laser is not a perfect sinusoid due to various noise processes that perturb

its frequency. A widely used model for the spectral density of frequency noise in free-running
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lasers Sf, laser is [70, 136, 137]

S2
f, laser

[
Hz2/Hz

]
=

∆ν

π
+
kf
f

+
kr
f 2
, (7.7)

where f is the instantaneous frequency excursion, ∆ν/π is the white frequency noise, kf/f is the

pink (or flicker) noise, and kr/f 2 is the random-walk noise of the laser. Different lasers exhibit

different amounts of the noise types listed in Eq. 7.7. The spectral density of the frequency noise

determines the laser lineshape function [138, 139].

Schawlow and Townes calculated the fundamental lower limit to the linewidth of a laser [140].

The noise process that determines the Schawlow-Townes linewidth is quantum in nature as it

arises from spontaneous emission that perturbs the phase of the laser electric field. The spectrum

of this quantum noise process is white and the laser linewidth associated with Schawlow-Townes

limit ∆νL,ST is as follows:

∆νL,ST = πS2
f,ST =

2πhνδν2L
P

. (7.8)

where hν is the energy of the photon, δνL is the linewidth of the laser cavity linewidth and P is

the output power of the laser. Note the quadratic scaling of the Schawlow-Townes linewidth on

δνL.

The lower limit is almost never achieved in a free-running laser as (1/f)a-type noise

sources dominate the spectral density of frequency noise at lower frequencies. The large spectral

density of frequency noise in the low-frequency range (Eq. 7.7) determines the laser linewidth,

while the spectral density of frequency noise is small in the high frequency range and contributes
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Servo Actuator
Laser

Plant

Frequency discriminant

Figure 7.26: The feedback control system for laser frequency stabilization in the presence of
noise.

to the wings of the laser lineshape [138]. However, low-frequency noise can be detected by

a frequency discriminator and suppressed by implementing a high-bandwidth feedback control

system. In fact, laser linewidths below the Schawlow-Townes limit can be achieved via active

feedback [70, 137].

Figure 7.26 illustrates the layout of the closed-loop laser frequency stabilization system.

In this system, the instantaneous optical frequency of the laser ν is tracked by a frequency

discriminator. This discriminator transforms optical frequency deviations ν − ν0 into voltage

deviations via its transfer function Dv(f) (has units of V/Hz), resulting in an error signal. The

inverted error signal voltage is amplified and transformed by G(f), the transfer function of the

servo. The servo output voltage is transmitted to the actuator, which converts the voltage to a

change in optical laser frequency through its transfer function K(f).

Sf,laser in units of Hz/
√

Hz is the linear spectral density of frequency noise associated with

the laser and is a measure of the RMS laser frequency fluctuation in a 1 Hz bandwidth. Sv,disc

and Sv,servo in units of V/
√

Hz are the spectral densities of voltage noise associated with the

frequency discriminator and servo, respectively, and represent the RMS voltage fluctuation in a 1
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Hz bandwidth. The steady-state optical frequency ν can be expressed as follows:

ν =
(
−
(
(ν − ν0)Dv(f) + Sv,disc(f)

)
)G(f) + Sv,servo

)
K(f) + Sf,laser(f) (7.9)

⇒ ν =
GKDv

1 +GKDv

ν0 +
Sf,laser +KSv,servo −GKSv,disc

1 +GKDv

, (7.10)

where GKDv is the open loop transfer function. The closed-loop spectral density of frequency

noise Sf,cl in units of Hz/
√

Hz can therefore be expressed as follows:

Sf,cl =

√
S2
f,laser + |KSv,servo|2 + |GKSv,disc|2

|1 +GKDv|
, (7.11)

where the contributions from the independent noise sources are added in quadrature. For a large

servo loop gain G,

Sf,cl =
Sv,disc

|Dv|
. (7.12)

Hence, the closed-loop spectral density of frequency noise should be limited by the property

of the discriminator DA(f) (in units of A/Hz) and the shot-noise Sv,disc. The transfer function of

a reference cavity frequency discriminator is as follows [70, 136]:

DA(f) =
D0

1 + i f
δνc/2

, (7.13)

where

D0[A/Hz] =
8J0(β)J1(β)

δνc

eηPi

hν
(7.14)
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is the discriminator low-frequency slope, η is the detector quantum efficiency, e is the charge of

an electron, and hν is the energy of the detected photons and Pi is the incident laser power [137].

Using Eqs. 7.12,7.13,7.14, the expression for the closed-loop laser linewidth is [137, 141]

∆νL,cl =
2πhνδν2c

16ηPiJ2
0 (β)

, (7.15)

under that assumption that Sf,cl is white.

The equations for the closed-loop shot-noise limited-laser linewidth (Eq. 7.15) and the

Schawlow-Townes limited linewidth (Eq. 7.8) can be compared: δνc is equivalent to δνL and

16ηPiJ
2
0 (β) is equivalent to P . Therefore, a reference cavity with a narrow linewidth is desirable

to suppress the closed-loop spectral density of frequency noise below the Schawlow-Townes limit

(within the loop bandwidth).

In the case of a diode laser, the feedback is typically split into a fast branch that modulates

the diode laser current and a slow branch that modulates the Piezoelectric Transducer (PZT) [70,

142]. For a fiber laser, the laser frequency feedback is facilitated by just a PZT. The PZT feedback

branch suppresses frequency noise in the acoustic range. The transfer function of a PZT is

RPZT(ω) = ΩPZT
2/( ΩPZT

2 + 2ωηΩPZT + ω2 ), where ΩPZT is 2π times the resonance frequency,

η = 1/2Q is the damping factor of the resonance, and ω = 2πf [70, 142]. ΩPZT is typically in the

range of 2π × 1 − 20 kHz. Therefore, a large unity gain frequency (ωslow) for the PZT feedback

branch requires careful engineering to handle the large phase lag introduced by the PZT transfer

function close to ΩPZT. Therefore, typically ωslow ≪ ΩPZT for simple19 PZT servo loops, which

deal only with the phase lag arising from the PZT transfer function and not the phase lag from the

19There are more complicated techniques like using a notch filter [70, 142].
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Figure 7.27: Closed-loop transfer function measurement protocol/formalism.

cavity pole at δνc/2 (see Eq. 7.13). The cavity pole should therefore be much larger than ωslow. A

cavity linewidth in the 2-40 kHz range is therefore a reasonable choice (i.e. δνc/2 ∼ ΩPZT/(2π)).

Ignoring Sv,disc and Sv,servo in Eq. 7.11, the close-loop spectral density of frequency noise is

Sf,cl =
Sf,laser

|1 +GKDv|
. (7.16)

Eq. 7.16 suggests that a laser with a narrow free-running linewidth is desirable. It simplifies

frequency locking and also reduces the need for a prestabilization cavity [143, 144]. It also

reduces the complexity of tuning the high-bandwidth feedback control system for close-loop

shot noise-limited performance (Eq. 7.15), as it requires expertise in control theory. To that end,

we paid our laser vendors a surcharge for lasers with narrow free-running linewidths.

I used a Vector Network Analyzer (VNA) (Bode 100 from Omicron Lab) to tune our high-

bandwidth feedback control systems [145]. I used the VNA to measure the transfer functions

of many of the individual elements that make up the feedback control system. However, not

all transfer functions are easily measurable. The transfer function of the reference cavity Dv(f)

(see Eq. 7.13) can be deduced by measuring the linewidth of the reference cavity δνc using the

ring-down method [70], a non-trivial measurement. Determining the transfer function of the
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laser actuator K(f) can also be difficult [146]. Delays, which are especially detrimental to loop

performance at high frequencies, can also be difficult to diagnose. In addition, there can be phase

lags from unsuspecting elements in the loop. However, the behavior of these hard-to-measure

transfer functions can be extracted by using the VNA to probe the closed-loop feedback control

system. These measurements can then be used to optimize the feedback control system.

I developed a closed-loop transfer function measurement protocol/formalism illustrated

in Fig. 7.27. Using the VNA, signals (insetpointe
i2πft and inactuatore

i2πft) are injected and their

responses (outerrore
i2πft and outservoe

i2πft) measured at strategic positions in the loop. The relationships

between the complex amplitudes of the injected and measured signals are as follows:




outerror
insetpoint

outerror
inactuator

outservo
insetpoint

outservo
inactuator


 =

1

1 +GKDv




1 −KDv

G 1


 . (7.17)

The VNA measures the quantities on the left hand side of Eq. 7.17. The gain and phase of the

measured quantities are plotted as a function of f . These plots are referred to as Bode plots and

are a great tool for understanding the behavior of transfer functions [70]. By performing these

measurements, we can extract (and diagnose) the transfer function of interest. For example, the

open-loop transfer function can be extracted by measuring outerror/insetpoint:

GKDv =

(
outerror

insetpoint

)−1

− 1. (7.18)

The poles and zeros of the servo transfer function G(f) can be tuned to push the unity gain

frequency of the open-loop transfer function [70] to its highest possible value20. From the

20The phase margin ϕm of the open loop transfer function should be in the 30◦ to 60◦ range for closed-loop
stability [70].
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Kramers-Kronig relationship [147], a large unity gain frequency for the open-loop transfer function

implies a large open-loop gain at low frequencies, essential for reducing the linewidth of the free-

running laser (Eqs. 7.16, 7.12, 7.15).

The formalism laid out above (Eq. 7.17 and Fig. 7.27) measures the linear response of the

closed-loop feedback control system. However, the reference cavity frequency discriminator is

only linear for an optical frequency in the vicinity of the cavity resonance i.e. |ν − ν0| < δνc/2.

Given that δνc is small, the laser must therefore be stabilized to the reference cavity before the

quantities in the LHS of Eq. 7.17 can be measured [146] to optimize the servo loop.

Wance Wang from Joe Britton’s group found this technique interesting and has used it to

optimize the many PDH feedback control systems in the Britton lab. We are writing a paper

together on this topic.

7.5 Design and construction of low-NA optical systems

In this section, I present details on the design and construction of the multiple laser systems

used in our experiment. I elaborate on the optical layouts for the lasers for magneto-optical

trapping (MOT) of Rb and Yb as well as the optical layouts for the lasers used for excitation of

Rb and Yb to Rydberg states. I also elaborate on the frequency-locking hardware for these lasers.

I designed all the optical layouts and built it with the help of Kevin.

I refer to these systems as low-NA optical systems because the NA of the laser light

delivered to the atoms is quite small. The beams are either collimated as in the case of MOTs

and imaging (NA = 0), or the beams are weakly focusing to a 100 µm spot size as in the case

of Rydberg lasers. This classification helps to contrast the quality of optics and the degree of
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Figure 7.28: Layout of the low-NA optical systems around the glass cell as viewed from the front

alignment that will be needed when I introduce high-NA optical layouts for the optical tweezers

(Sec. 7.6). The low-NA optical layouts around the glass cell to deliver light to the atoms are

shown in Figs. 7.28 and 7.29.

We use Labscript suite [122] (https://github.com/labscript-suite) for computer
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Figure 7.29: Layout of the low-NA optical systems around the glass cell as viewed from the top

control in our experiment.

7.5.1 Rb MOT lasers and frequency-locking electronics

We use the same lasers and frequency locking technique that were used in the old RbYb

experiment [8, 9]. However, Kevin and I overhauled, redesigned, and rebuilt their optical layouts

to boost the laser power efficiency and long-term stability of the setups (Figs. 7.30a, 7.31a, 7.31b).

Kevin and Tsz-Chun upgraded the home-built frequency locking electronics [8, 9] so that the

frequency locks remain engaged for multiple hours at a time.

The New Focus Vortex II TLB-6900 serves as the Rb master laser, which is locked 42.343

MHz red of the 85Rb, F = 3 ↔ F ′ = 3 − 4 crossover resonance via saturation-absorption
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(a) Schematic of the optical layout for the Rb master laser

(b) Saturation-absorption crossover (85Rb, F = 3 ↔ F ′ = 3− 4) resonance feature (yellow trace) and its
derivative (cyan trace)

Figure 7.30: Rb master laser optical layout and frequency locking feature
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spectroscopy. The Rb cooling laser (Toptica DL Pro) frequency is locked ∼ 1.1 GHz red of the

Rb master laser frequency. The Rb repump laser (Sharp diode in a Toptica DL Pro laser body)

frequency is locked ∼ 5.5 GHz blue of the Rb master laser frequency [8, 9]. In Fig. 7.30a,

I present the optical layout for the Rb master laser. Part of the optical layout constitutes the

saturation-absorption spectroscopy setup for the Rb master laser. I added a path to direct some

of the master light to the scanning transfer cavity lock (STCL) setup to lock the frequency of the

seed of the 399 nm laser (Appendix B). Fig. 7.30b shows the zoomed-out cross-over resonance

feature (yellow trace) and its derivative (cyan trace). Some of the Rb master laser light is also

coupled into one of the input fiber ports of a single-mode, non-PM fiber optic star coupler. The

other input fiber ports of the star coupler couple light from the Rb cooling and Rb repump setup.

One of the output ports of the star coupler is used to monitor the mode-hop behavior as well as

the lock status of the three Rb lasers on a scanning Fabry-Perot cavity. The other output port of

the star coupler is fed to the beatnote electronics setup.

We use optical phase locked loops (OPLL) [148] to stabilize the frequency of the Rb

cooling laser and the Rb repump laser. The reference for these OPLLs is the Rb master laser. The

cooling-master beatnote signal is divided down by a factor of 16 and the repump-master beatnote

is divided down by a factor of 64 by the EVAL-ADF4007 evaluation boards. The electronic

schematic is shown in Fig. 7.32.

The optical layouts for the Rb repump laser and the Rb cooling laser are presented in

Fig. 7.31a and Fig. 7.31b respectively. The Rb coolng and Rb repump MOT light are coupled

into the input ports of a different single-mode PM fiber splitter/combiner with 2 inputs and 8

outputs from Evanescent Optics, Inc (Fig. 7.33). We use three of the six high-power output ports

to deliver light to the 3D MOT arms in a retro-reflected geometry: two regular MOT arms and
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Figure 7.31: The schematic of the optical layout for the (a) Rb repump laser (b) Rb cooling laser
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one shallow-angle arm. The beam size of the regular MOT arms at the atoms is 10 mm and the

beam size of the shallow-angle MOT arms is 5.7 mm. We maximally deliver 5.5 mW of cooling

light and 2 mW of repump light to the atoms, as measured at one of the six high-power outputs

of the star-coupler.

In the Rb repump laser setup, we added an additional beam-delivery arm called the Auxiliary

Repump Arm (ARA). This arm delivers repump light over to the 1013 nm laser setup and was

used to align the 1013 nm Rydberg arm to the atoms (Fig. 7.38). Instead of the 1013 nm laser

light delivered via its 1013 nm Rydberg arm, we deliver 780 nm repump light to the atoms. When

the unaligned ARA arm is engaged, the Rb MOT disappears as the atoms are pumped into the

dark state when only the Rb cooling light is on. If the 1013 nm Rydberg arm, which now delivers

the 780 nm repump light, is aligned appropriately to the Rb atoms, the Rb MOT will reappear as

the atoms are pumped out of the dark state. Once we aligned the 1013 nm Rydberg arm using

this method, we disengaged the ARA.

During typical Rb 3D MOT operation, the cooling DDS reference frequency is set to

137.827 MHz and the repump DDS reference frequency is set to 174.688 MHz. Previously,

we used Novatech 409B to provide the reference rf frequencies for the beatnote locks. However,

we now use home-built DDS boards built around AD9910 from Analog Devices (https://

github.com/JQIamo/ad9910-dds.git) to provide these reference frequencies, as they

have much faster update rates: 4 µs update rate for the home-built DDS board vs 100 µs update

rate for Novatech 409B. We built a PCB for mounting these DDS boards into a Eurocard rack

compatible module (https://github.com/JQIamo/Eurocard_DDS.git). I designed

the topology of this PCB board. Oliver and Alessandro designed and built the PCB as well as the

front panel. Currently, we use the Eurocard DDS module for providing the reference rf frequency
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Figure 7.33: Single-mode PM fiber splitter/combiner with 2 inputs and 8 outputs for delivering
Rb 3D MOT light

for only the cooling laser.

7.5.2 Yb MOT lasers and frequency-locking electronics

7.5.2.1 399 nm laser system: Optics and frequency-locking electronics

I designed the optical layout for the 399 nm laser light delivery system and built it with

Kevin. The optical layout is presented in Fig. 7.34. The Toptica TA-DL-SHG Pro system

for 399 nm light is something that we inherited from the old RbYb lab. The light from the

399 nm system is distributed between the two 2D MOT arms, the imaging arm, the 2D MOT

push beam arm, and the three 3D molasses arms. The 399 nm power can be readily distributed

between the various arms using half-wave plates and PBS cubes. All 399 nm light is delivered

to the atoms via polarization-maintaining fibers (P3-375PM-FC series from Thorlabs). This is

because the shallow-angle blue Yb 3D MOT is extremely sensitive to force imbalances arising
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from polarization fluctuations.

The beam that exits the 399 nm laser head is elliptical despite there being an anamorphic

prism pair right after the bow-tie SHG cavity inside the laser head. The beam is also astigmatic

and is typical of laser light generated from a crystal pumped in a bow-tie cavity [70]. If the SHG

from the cavity was optimized by tweaking the doubling-crystal alignment, it would change the

astigmatic behavior of the output beam. We installed cylindrical beam-shaping optics to improve

the beam ellipticity and astigmatism. After the beam-shaping optics, the spot size is ∼ 1.2 mm.

The 399 nm laser head can produce 340 mW of 399 nm light, measured after the beam-shaping

optics. At the science chamber, we get ∼ 13 mW in the 2D MOT arms, ∼ 200 µW in the 2D

MOT push beam arm, and 1.61 mW in the shallow-angle 3D molasses arm (beam size: 6.6 mm)

and 18 mW in the other two regular molasses arms (beam size: 10.5 mm). One point to note,

excess power in the push beam annihilates the blue 3D MOT,

We use the seed light at 798 nm to frequency stabilize the laser to the Rb master laser at

780 nm via the Scanning Transfer Cavity Lock (STCL) (Appendix B). Oliver later upgraded the

software for easy interfacing with Labscript via the Bus Pirate(-v3.6a from Sparkfun). The Bus

Pirate interfaces with the Arduino Due through its I2C bus. Oliver also added blinking features to

the LED to represent when the laser piezo control voltage and cavity piezo control voltage were

close to the rails of the DAC or when the control voltages have railed. For example, solid LED

light means that the control voltages are safely within the rails, slow blinking light implies that

the control voltages are 500 DAC units away from the rails, and fast blinking light means that the

control voltages have railed. This lock remains engaged for multiple hours at a time.
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7.5.2.2 556 nm laser system: Optics and frequency-locking electronics
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Figure 7.35: Schematic of the optical layout of the 556 nm laser system

We use a single-frequency distributed-feedback fiber laser (Koheras Adjustik Y10 System

from NKT Photonics , P/N: K81-136-70) as the 1112 nm seed with an output power of ∼11

mW for the frequency doubled system. The output of this laser is amplified using a fiber laser

amplifier system (Quantel EYLSA-A-1111.60-1.0-P-UN-W-FC) to a maximum power output of
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1W of 1112 nm light. The amplified light is then frequency-doubled using the Toptica SHG-Pro

system.

I designed and built the 556 nm optical layout shown in Fig. 7.35. We use the same laser

to cool Yb atoms in a green Yb 3D MOT, and excite Yb atoms to the Rydberg states at different

points in time in an experimental sequence. We use an AOM from AA Optoelectronics (MT250-

A0,5-VIS) in a double-pass configuration to help us switch between these states of operation

during the experimental sequence. When the AOM is on, the laser frequency is shifted up by 500

MHz and the light is directed to the 3D MOT arms. When the AOM is off, all the green power

is directed to the Rydberg excitation arm. The ATM-801A1 AOM in the Rydberg excitation

beam path provides control over the pulsing of the 556 nm Rydberg excitation light. We also

sample some of the 0th order light in the Rydberg excitation beam path and couple it into a fiber.

This fiber-coupled light is sometimes sent to the wavemeter to determine the wavelength of the

unshifted frequency-doubled light.

We typically run the amplifier at 860 mW of 1112 nm light, which yields ∼ 405mW of 556

nm light right before the MT250-A0,5-VIS AOM. After the MT250-A0,5-VIS AOM double-

pass configuration (Fig. 7.35), we get approximately 210 mW of 556 nm light, which is then

distributed to the four Yb 3D MOT arms in our setup: the two shallow-angle arms have typically

13 mW each (beam size: 5.7 mm), the other two standard MOT arms have 33 mW each (beam

size: ∼ 9 mm). The power between the MOT arms can be distributed appropriately using half-

wave plates + PBSs. We use polarization-maintaining fibers to deliver the MOT light to the

atoms. This is because shallow-angle MOTs are highly sensitive to force imbalances arising

from polarization fluctuations.

We PDH lock the K81-136-70 1112 nm seed to the ULE reference cavity. A fiber-coupled
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EOM (iXblue NIR-MPX-LN-05-00-P-P-FA-FA) is connected directly to the monitor port of the

NKT photonics 1112 nm seed, which delivers the tapped seed light over to its ULE reference

cavity for PDH locking. We need no more than 300 µW of 1112 nm light at the ULE cavity.

I mounted a Toptica PID110 module, a Toptica SC110 module, and a low-noise high-voltage

piezoelectric driver [11] Eurocard module to a Toptica rack. I made modifications to the PID110

and SC110 so that the modules can communicate via the backplane of the Toptica Eurocard rack.

The reason for choosing PID110 (the slower servo ) over FALC110 (the faster servo) was

multi-fold. The seed free-running linewidth is inherently narrow to begin with, i.e. < 2 kHz. We

use the fiber laser’s native piezoelectric actuator for laser frequency feedback. The modulation

bandwidth is 20 kHz. However, there is an issue of FM to AM conversion in fiber lasers that can

overdrive the ELSA laser amplifier. For all these reasons, slow feedback is preferred, and hence

using PID110 as the servo. I chose to use a lower than normal modulation frequency of 625 kHz

and a multipole low-pass filter (400 kHz from Kiwa electronics) to filter the demodulated error

signal. This configuration helps increase the capture range of the lock and the laser stays locked

for multiple hours at a time. However, reducing the modulation frequency to expand the lock

capture range decreases the slope of the PDH error signal [69].

7.5.3 Design and construction of the optical layouts for the Rydberg lasers

In this section, I will present the optical layouts for all the Rydberg lasers we use in our

experiment. While I designed the optical layouts, Kevin and Yulong helped me build them.

Before that, I will motivate the choice of laser wavelengths used for Rydberg excitations in our

experiment.
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Figure 7.36: Two-photon Rydberg excitation

We intend to use a two-photon transitions to excite Rb and Yb atoms to Rydberg states.

The general scheme is illustrated in Fig. 7.36. When ∆ ≫ Ωi, δ,Γ,Γdecoh., adiabatic elimination

of the excited state can be performed and the scattering rate can be quantified as follows [149]:

Rsc =
ΓΩ2

1

4∆2
ρg1g1 +

ΓΩ2
2

4∆2
ρg2g2 + 2Re

[
ΓΩ1Ω2

4∆2
ei(k2−k1)·rρg1g2

]

<
ΓΩ2

1

4∆2
+

ΓΩ2
2

4∆2
+

ΓΩ1Ω2

2∆2

≤ ΓΩ2
1

2∆2
+

ΓΩ2
2

2∆2
= RT

where Arithmetic mean≥Geometric mean and |ραiβ| ≤ 1. Furthermore, the two-photon Rabi

frequency must be much greater than the decoherence of the Rydberg state (Γdecoh.) which is

greater than the linewidth of the Rydberg state (ΓRyd) [26]:

ΩR =
Ω1Ω2

2∆
= κΓdecoh., (7.19)
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where κ≫ 1. The fidelity, f , of the π pulse of duration δt = π/ΩR is given as follows:

f = (prob. of not scattering a photon while in |e⟩)×(prob. of not scattering a photon while in |g2⟩)

(7.20)

= (1−RT δt)

(
1− Γdecoh.

2
δt

)
≃ 1−RT δt−

Γdecoh.

2
δt (7.21)

= 1− πΓ(Ω2
1 + Ω2

2)

∆Ω1Ω2

− πΓdecoh.∆

Ω1Ω2

(7.22)

for RT δt≪ 1 and Γdecoh.δt = π/κ≪ 1. Now I will find the optimal ∆ as follows:

∂f

∂∆
= 0 (7.23)

=⇒ ∆ =

√
Γ

Γdecoh.
×
√
Ω2

1 + Ω2
2, (7.24)

and the fidelity for this choice of optimal ∆,

f = (1− Γdecoh.δt/2)
2 =

(
1− π

2κ

)2
≃
(
1− π

κ

)
. (7.25)

The expressions for Ω1 and Ω2 are as follows:

ΩR =
Ω1Ω2

2∆
=

√
Γdecoh.

Γ

η

2
√

1 + η2
Ω2 = κΓdecoh.

=⇒ Ω2 =
2κ
√
1 + η2

η

√
Γdecoh.Γ (7.26)

where Ω1 = ηΩ2. Few things to note:

1. The fidelity of the Rydberg excitation scales as 1/κ (Eq. 7.25), while the laser intensity
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scales as κ2 (Rabi frequency Ωi scales as κ in Eq. 7.26). This is not a favorable scaling.

One way to overcome this unfavorable scaling is to use the high NA objective to tightly

focus the Rydberg excitation beam on to the atoms: intensity scales as the inverse squared

of the spot size of the focused Rydberg excitation beam.

2. For a given κ, a longer intermediate state lifetime (1/Γ) helps relax laser power requirements

(see Eq. 7.26).

For these reasons, we chose 62P3/2 (Γ = 2π × 1.35 MHz) instead of 52P3/2 (Γ = 2π ×

6 MHz) as the intermediate state in Rb, and (6s6p)3P1 (Γ = 2π× 182 kHz) instead of (6s6p)1P1

(Γ = 2π × 28 MHz) as the intermediate state in Yb (Fig. 6.1). Furthermore, the transition

from the intermediate state 62P3/2 (Γ = 2π × 1.35 MHz) in Rb to the Rydberg state occurs at

1013 nm, a favorable wavelength where ample laser power is available. Last but not least, our

high NA objectives are diffraction-limited for 420 nm (52S1/2 ↔ 62P3/2 in Rb) and 556 nm

((6s6p)1S0 ↔ (6s6p)3P1 in Yb) Rydberg excitation light.

7.5.3.1 420 nm laser

The 420 nm laser system is a TA-DL SHG Pro system from Toptica that was inherited

from the old RbYb experiment. Given that this is a Rydberg excitation laser, care must be taken

to properly isolate it from vibrations (see Sec. 7.4.1). To that end, we mounted the laser on a

honeycomb breadboard (Thorlabs PBG12105) and built the entire optical setup on the breadboard

(Fig. 7.37a). We then placed this optical system in vibration isolation boxing (see Fig. 7.24a).

The laser used to operate at 423 nm on the old RbYb setup, which is one of the magic zero

wavelengths for the 5s−6p fine-structure manifold [150]. After the laser was moved downstairs,
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I pulled the laser wavelength to the 52S1/2 ↔ 62P3/2 resonance in Rb at 420.29891 nm using the

seed ECDL grating knob. The SHG crystal temperature was changed for good phase-matching

in the doubling crystal followed by realigning the SHG cavity for an optimal power output of 250

mW.

The optical layout for delivering 420 nm Rydberg excitation light as well as the imaging

light to the atoms is shown in Figs. 7.37a and 7.37b . The 1/e2 Gaussian beam diameter of the

laser beam output is ∼2 mm. We use a passively stable achromatic fiber port (Thorlabs PAF2A-

7A) mounted on a piezo-actuated cage-compatible kinematic mount (Thorlabs KC1T-P) for the

Rydberg launch that yields a 1/e2 Gaussian beam diameter of 720 µm, which is then focused

down to a 110 µm spot size at the atoms. We can deliver 95 mW of 420 nm to the atoms for

Rydberg excitation. We also have an imaging arm that delivers 420 nm light for fluorescing the

atoms on the 52S1/2 ↔ 62P3/2 transition.

We deliver the seed/fundamental light at 840 nm via a fiber-coupled EOM (iXblue NIR-

MPX800-LN-10-P-P-FA-FA) to the ULE cavity (Sec. 7.4.1). A Toptica FALC 110 is used to

PDH lock this laser to the ULE cavity. No more than 300 µW of 840 nm light is needed at the

ULE cavity for PDH locking. A flipper mirror is placed in the path of the fundamental light to

direct the light towards a wavemeter when necessary.

7.5.3.2 1013 nm laser

Fig. 7.38 shows the optical layout for the 1013 nm laser system. The 1013 nm seed laser is

a Toptica DLC DL-Pro. For ease of PDH locking and subsequent laser linewidth narrowing, the

free-running laser linewidth should be narrow (see Sec. 7.4.3 and Eq. 7.16). We asked Toptica
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Figure 7.37: Schematic of the optical layout of (a) the 420 nm laser system, (b) the 420 nm
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Figure 7.38: Schematic of the optical layout for the 1013 nm laser system.

for a special laser resonator that would yield a narrow free-running linewidth of <20 kHz at 5 µs

(in comparison to the typical diode laser linewidths of 80 kHz or more).

The beam profile of the laser output is elliptical (2 mm major axis, 1.12 mm minor axis).

We used a 2X anamorphic prism pair to shape the beam to a near Gaussian beam with a 1/e2
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diameter of 2 mm. The laser yields 130 mW of 1013 nm light, which we distribute appropriately.

We first sample a bit of this seed light and deliver it to the ULE cavity for PDH locking using a

fiber-coupled EOM (iXblue NIR-MPX-LN-05-00-P-P-FA-FA). We need no more than 300 µW of

laser light right at the ULE cavity. We couple the rest of the laser light into a 1030 nm polarization

maintaining tap 1x2 coupler with a 1:99 coupling ratio from DK Photonics (PMTC-102-30-L-

F-01-1-90-08-FA). The tapped light is coupled into a scanning FP-cavity (Thorlabs SA30-95)

for mode-hop detection. Most of the light, 90 mW, is used to seed the Azurlight fiber amplifier

(ALS-IR-1015-10-A-CP-SF).

The maximum output power is 8 W for seed laser wavelength between 1011 nm and 1012.8 nm

for the Azurlight amplifier. Do not increase output power at the risk of damaging the system.

Nominal output power is 10 W above 1012.8 nm. The average 1/e2 diameter of the beam

at the output of the Azurlight amplifier head at full power is 1.6 mm. We only use Zerodur

mirrors (BB111-E03) to direct the high power laser light in the Azurlight fiber amplifier setup.

An LMA-PM-15 Photonic Crystal Fiber (PCF) with SMA905 connectors (5◦ cut) is used to

deliver the Rydberg laser light over to the science chamber. The fiber coupling efficiency and

AOM diffraction efficiency are both progressively optimized with increasing power. From 7W of

amplifier power output, we deliver 3.44 W of 1013 nm light to the atoms.

At the science chamber (Rydberg launch setup in Fig. 7.38), we use a collimator from

Schäfter+Kirchhoff (60FC-SMA-T-23-A18-02) with a focal length of 18.4 mm to collimate the

1013 nm Rydberg excitation light exiting the photonic crystal fiber. Apart from the PCF’s high

power carrying capacity, the low fiber NA (due to a large mode field diameter of ∼ 12.6 µm)

paired with the collimator yields a near Gaussian mode profile with a 1/e2 diameter of ∼ 1.65

mm, which is then focused down to a spot size of ∼ 140µm at the atoms. Zerodur mirrors

115



PM-S405-X

HWP

PAF2P-15A (mounted on KC1T-P)
f=15.3 mmQWP

BB111-E02

BB111-E02

SPX030AR.14 (mounted on CT1A)
f=350 mm

Figure 7.39: Schematic of the optical layout of the 556 nm Rydberg excitation launch

(BB111-E03) are used to direct the high power laser light. We used 780 nm repump light to align

the 1013 Rydberg launch to the atoms via the ARA arm (Figs. 7.38 and 7.31a).

7.5.3.3 Setting up the 556 nm laser

The Rydberg excitation light and the 3D MOT light are derived from the same optical setup

(see Sec. 7.5.2.2 and Fig. 7.35). The undiffracted beam from the MT250-A0,5-VIS AOM (in its

off state) is utilized for Rydberg excitation, aiming to maximize the delivery of 556 nm light to

the atoms. The ATM-801A1 AOM controls the pulsing of the 556 nm Rydberg excitation light.

In order to ensure passive stability, the high power Rydberg light is collimated using a PAF2P-

15A collimator mounted on a piezo-actuated cage-compatible kinematic mirror mount (KC1T-P).

This light is guided using BB111-E02 Zerodur mirrors (see Fig. 7.39). The mean 1/e2 diameter

of the collimated beam is ∼ 1.6 mm, which is focused down to a mean spot size of 123 µm at the

atoms. We can deliver more 150 mW of 556 nm Rydberg excitation light to the atoms.
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7.5.3.4 308 nm laser

The 308 nm laser light is generated by a DLC FA-FHG Pro system. The 1232 nm seed

light from the ECDL seeds a Raman Fiber Amplifier (RFA), which then amplifies the 1232 nm

light. The amplified 1232 nm light undergoes two SHG stages. The first stage yields 616 nm

light, which then seeds a second SHG stage to yield 500 mW of 308 nm light. Unlike the other

Rydberg lasers, 500 mW of 308 nm light is directed to the atoms via free-space optics instead of

fibre optics (see Fig. 7.40). The intrinsic laser linewidth (5 µs) is < 80 kHz. Leakage light after

the first SHG atage at 616 nm is used to monitor the frequency of the laser on the wavemeter. I

directed the leakage fundamental light at 1232 nm over to the ULE cavity for PDH locking via a

P3-980PM-FC-5 fiber which is then butt-coupled to the fiber-coupled EOM (iXblue NIR-MPX-

LN-05-00-P-P-FA-FA) using an FC/APC mating sleeve.

The 308 nm beam has a 1/e2 diameter of 1.6 mm, which is then focused down to a spot

size of ∼ 122 µm at the atoms using excimer laser optics (Fig. 7.40). Two of the mirrors in

the Rydberg excitation beam path are mounted on piezoelectric mirror mounts (8816-6 from

Newport) to remove human alignment optimizations due to the hazardous nature of the light at

this wavelength. To further reduce human involvement in laser power output optimizations, auto-

alignment of the input light into the SHG cavity during each doubling stage can be performed via

the TOPAS PC GUI from Toptica.
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DLC FA-FHG pro

308 nm

WPH10M-308

MQ110-A3-UV
-110 MHz

10QM20EM.25

10QM20EM.25
mounted in 8816-6

WPQ10M-308

WPH10M-308

OptoSigma SLSQK-50-500P (500 mm)
CXY2 connected to z stage

perpendicular to the
plane of this diagram

10QM20EM.25
POLARIS-C1G

C110TMD-A
BB05-E02

BB05-E02

Toptica FiberDock

To ULE cavity

P3-980PM-FC-5

P3-460B-FC-1

616 nm

1232 nm

To wavemeter

Raman Fiber Amplifier

10QM20EM.25
mounted in 8816-6

Figure 7.40: Schematic of the optical layout of the 308 nm laser system
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7.5.4 Launch optics for the AOD-based and SLM-based tweezer projection

systems

We use a Coherent Verdi V18 laser, a diode-pumped solid-state laser [70], to generate the

tweezer light for both species (see Fig. 7.41). The Verdi laser can generate 20 W of single-

mode CW 532 nm light. A minimum of 5.5 W of 532 nm light is directed using a high-energy

optically-contacted polarizing beamsplitter cube (Newport 05BC15PH.3) to seed the SolsTiS-

10W-PSX-XF, a Ti:sapphire laser from M Squared Lasers. A high-energy V-coated HWP at

532 nm (Newport 10RP02-16) is used to control the power distribution between the Yb tweezer

launch optics and the Rb tweezer launch optics. With 10 W of 532 nm seed light, we get 1.18 W

of output 840 mW light from the Ti:sapphire laser.

7.5.4.1 Launch optics for the Yb tweezer projection systems

The 532 nm output beam (with an average 1/e2 Gaussian beam diameter of 2.8 mm at

low power) is demagnified by 3X (using V-coated lenses at 532 nm) to match the AOM vendor

suggested spot sizes for optimal diffraction efficiencies. The power in the demagnified beam is

distributed between the AOD tweezer arm and the SLM arm using the Newport 05BC15PH.3 and

10RP02-16 combination from above. The SLM light and AOD light are frequency shifted with

respect to each other (via their AOMs) to minimize optical interference. High energy mirrors

(Newport 10QM20HM.35 and Thorlabs NB1-K12), V-coated at 532 nm, are used to direct the

light to LMA-PM-10 Photonic Crystal Fibers (PCF) to deliver light to the AOD-based optical

tweezer projection system and SLM-based optical tweezer projection system. The PCFs have
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SMA-905 connectors (8◦ angle cut) to handle high power. Unfortunately, SMA-905 connectors

do not have notches. This makes any form of mechanical recovery (and therefore alignment

recovery) highly improbable when these PCFs are disconnected from their mounts and then later

reconnected. The lack of a notch also precludes the recovery of any PM-matching into these

fibers. Given the highly alignment-sensitive nature of the optical tweezer projection systems,

recovery irises are placed just before the PCF launch. Aligning into these irises using the two

mirrors should couple some 532 nm light into their respective PCFs. This topology mitigates

the need to disconnect the fibers from their mounts in the most unfortunate of misalignment

scenarios.

Some of the sampled undiffracted light from the AOM for the AOD-based optical tweezer

system is coupled into an SM fiber (Thorlabs P3-405B-FC-5) for the Twyman-Green-Fizeau

interferometer setup (see Sec. 7.6.3.1). The 50:50 non-polarizing beam splitter (Thorlabs CM2-

BS013) is used to direct the light back-coupled into the fiber from the Twyman-Green-Fizeau

interferometer setup, which is then measured using a power-meter head.

7.5.4.2 Launch optics for the Rb tweezer projection systems

The 840 nm light from the Ti:Sapphire laser is weakly expanding. It is collimated using

a 300 mm lens to an average 1/e2 beam diameter of 860 µm. The light is distributed between

the AOD arm and the SLM arm using a waveplate (Thorlabs WPHSM05-850) and a V-coated

polarizing beam splitter (Edmund Optics #47-050). The SLM light and AOD light are frequency

shifted with respect to each other (via their AOMs) to minimize optical interference. The high

power 840 nm light is directed using broadband-coated Zerodur mirrors (Newport 10Z40BD.2)
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for maximum passive stability. Recovery irises are placed in the AOD and SLM beam paths for

the same reasons as the ones mentioned in the above section. While the 840 nm tweezer AOD

light is delivered via an LMA-PM-10 PCF , the SLM light is delivered via a standard PM fiber

patch cable (Thorlabs P3-780PM-FC-5).

7.5.5 Design and construction of the imaging launch

The imaging launch in Fig. 7.28 is used for absorption imaging [151, 152] of laser cooled

atoms and for illuminating the atoms during fluorescence imaging via the high NA objectives.

This setup was quite difficult to install because of the lack of space underneath the steel chamber.

The imaging launch delivers polarized light at 399 nm for imaging Yb atoms and polarized

light at 780 nm for imaging Rb atoms (Fig. 6.1). In the absorption imaging configuration, we

use this setup to perform time-of-flight measurements [151, 152] to determine and optimize the

temperature of laser-cooled Rb and Yb atoms (Fig. 7.63 and Fig. 7.65). The absorption imaging

system is a 4f imaging system and has a magnification of 0.75. In the fluorescence imaging

configuration, a mirror mounted in a kinematic mirror mount is installed right in front of the

camera. This retroreflected illumination of the atoms helps balance out the photon recoil during

fluorescence imaging.

7.6 Design and construction of high-NA optical systems

In order to fully appreciate the nuances of the high-NA optical system design and construction,

I will approach this topic from the framework in Abbe’s Theory of Image Formation [59, 153].

The Abbe Theory of Imaging treats the scattering of light from an object as scattering from a
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superposition of gratings with different grating periods. By illuminating this superposition of

gratings, light is diffracted into multiple orders. The imaging system captures some of these

diffraction orders and directs them to the image plane where these orders interfere to create an

image. The NA of any real imaging system spatially restricts the range of Bragg angles that

can be sampled, serving as a low-pass amplitude filter for high spatial frequency components.

Additionally, aberrations in the imaging system act as a phase filter that change the strict phase

relationships between the sampled diffraction orders, which distorts the image formed from their

interference. These physical effects therefore set a lower bound on the grating spacing—fine

object details—that can be resolved by an imaging system.

Mathematically, an imaging system maps the object amplitude uo(ξ, η) to the image amplitude

ui(x
′, y′) using an impulse response function h(x′, y′; ξ, η) (Fig. 7.42). By imposing linearity

on this mapping, the relationship between the object amplitude and image amplitude can be

expressed as a superposition integral [154]

ui(x
′, y′) =

∞∫

−∞

∞∫

−∞

h(x′, y′; ξ, η)uo(ξ, η)dξdη.

The impulse response function h(x′, y′; ξ, η) is typically referred to as a Point-Spread Function

(PSF) in optical systems. In a well-corrected optical system, the PSF is shift invariant/uniform

over a region of space called the isoplanatic patch [154, 155] and the imaging system is a linear

shift invariant (LSI) system [154, 155]. Within an isoplanatic patch in the LSI imaging system,

the image amplitude (ui(x′, y′)) is the convolution of the amplitude PSF (h) of the imaging system

(Fig. 7.42) with the amplitude of the object (uo (ξ, η)) as given by the Fraunhofer diffraction
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Figure 7.42: General structure of an imaging system

integral [154, 155, 156] and expressed as follows:

ui(x
′, y′) =

∞∫

−∞

∞∫

−∞

h(x′ − ξ′, y′ − η′)ug(ξ
′, η′)dξ′dη′, (7.27)

where

h(x′, y′) =
A

λzi

∞∫

−∞

∞∫

−∞

P (x, y)eikW (x,y)

︸ ︷︷ ︸
P(x,y)

e
−i 2π

λzi
(x′x+y′y)

dxdy, (7.28)

and

ug(ξ
′, η′) =

1

|M |uo (ξ, η) , (7.29)

where ξ′ = Mξ, η′ = Mη, M is the magnification of the imaging system, A is a constant

amplitude, P(x, y) = P (x, y)eikW (x,y) is the generalized pupil function that includes the effects

of the aberration W (x, y) across the pupil. The exit pupil and the entrance pupil are images of

the aperture stop in the image space and object space respectively [96].

Complex exponential functions are the eigenfunctions of an LSI system and form the

appropriate basis set for expressing the object and image fields [155]. With complex exponential
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functions serving as the basis set, the action of optical elements and even their aberrations can be

modeled as amplitude and/or phase filters in spatial frequency space. Therefore, an LSI imaging

system allows the full applicability of the Transfer Function (TF) approach from Control Theory,

which is highly convenient [70]. Taking the Fourier transform (F) of the convolution integral

(Eq. 7.27), we get the transfer function formulation for the imaging system:

Ui (fX , fY )︸ ︷︷ ︸
F(ui)

= H (fX , fY )Ug (fX , fY )︸ ︷︷ ︸
F(ug)

, (7.30)

where H (fX , fY ) is referred to as the Amplitude Transfer Function (ATF) or Coherent Transfer

Function (CTF). The expressions for H (fX , fY ) are as follows [154]:

H (fX , fY ) = F {h(x′, y′)} (7.31)

= F





A

λzi

∞∫

−∞

∞∫

−∞

P(x, y)e
−i 2π

λzi
(x′x+y′y)

dxdy



 (7.32)

= AλziP (λzifX , λzifY ) (for symmetrical pupils) (7.33)

= Aλzi P (λzifX , λzifY )︸ ︷︷ ︸
Apodizing amplitude filter

× eikW (λzifX ,λzifY )

︸ ︷︷ ︸
Aberrations as a phase-only filter

(7.34)

The amplitude transfer functionH (fX , fY ) is basically the scaled generalized pupil function

P (λzifX , λzifY ) (see Eq. 7.33). The unaberrated and unapodized ATF is therefore a simple

low-pass filter as the pupil in a real imaging system always has a finite aperture size. This can be

easily seen through the following coordinate transformation between the ATF spatial frequency
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coordinates and the pupil physical coordinates [154, 157]:

fX =
x

λzi
≤ NA

λ
, fY =

y

λzi
≤ NA

λ
. (7.35)

This transfer function approach helps differentiate the effects of diffraction from that of aberrations

on the object field spectrum:

Ui (fX , fY ) = Aλzi P (λzifX , λzifY )︸ ︷︷ ︸
diffraction

eikW (λzifX ,λzifY )Ug (fX , fY )︸ ︷︷ ︸
Aberrated object spectrum

. (7.36)

Specifically, aberrations act as a phase-only filter that distorts the phase spectrum of Ug (fX , fY ),

while P (x, y) acts as an amplitude-only filter [154, 157].

Although the expressions stated above are for electric field amplitudes, it is the object field

intensity and image field intensity that are actually measured in practice. Depending on the type

of illumination of the object (coherent or incoherent), the intensity of the image (and its spectrum)

can be mapped to the intensity of the object (and its spectrum) using the relations in Table 7.3.

As can be seen in Table 7.3, incoherently illuminated imaging systems are linear in irradiance,

whereas coherently illuminated imaging systems are linear in electric field amplitude [154, 157].

Coherent Illumination Incoherent Illumination

|ui|2 = Ii = |h ∗ ug|2 |ui|2 = Ii = |h|2 ∗ |ug|2

Amplitude PSF (APSF): h(x′, y′) Intensity PSF (IPSF): |h(x′, y′)|2

TF: H(fX , fY ) = F{h(x′, y′)} TF: H(fX , fY ) ⋆ H(fX , fY ) = F{|h(x′, y′)|2}
fcutoff, coherent = NA/λ fcutoff, incoherent = 2NA/λ

F {Ii} = (HUg) ⋆ (HUg) F {Ii} = (H ⋆ H) (Ug ⋆ Ug)

Table 7.3: Coherent illumination vs. Incoherent illumination
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Specifically, for incoherent illumination, the normalized incoherent transfer function is

called the Optical Transfer Function (OTF), which is expressed as follows:

OTF(fX , fY ) =
H ⋆ H

∞∫
−∞

∞∫
−∞

|H (p′, q′)|2 dp′dq′
(7.37)

=

∞∫
−∞

∞∫
−∞

H (p′, q′)H∗ (p′ − fX , q
′ − fY ) dp

′dq′

∞∫
−∞

∞∫
−∞

|H (p′, q′)|2 dp′dq′
(7.38)

=
F {|h(x′, y′)|2}

∞∫
−∞

∞∫
−∞

|h(x′, y′)|2dx′dy′
(7.39)

= MTF(fX , fY )eiPTF(fX ,fY ), (7.40)

where MTF(x, y) is referred to as the Modulation Transfer Function and PTF(x, y) is referred

to as the Phase Transfer Function in literature [94, 158, 159]. For an unapodized pupil, the

diffraction-limited OTF is [154, 160]

OTF(f) =
2

π


cos−1 λf

2NA
− λf

2NA

√
1−

(
λf

2NA

)2

 , 0 ≤ f ≤ 2NA

λ
.

A critical property of the OTF enforced by the Cauchy-Schwarz inequality is [154],

OTF(fX , fY )u ≤ OTF(fX , fY )a, (7.41)

=⇒
∫∫

OTF(fX , fY )adfXdfY∫∫
OTF(fX , fY )udfXdfY︸ ︷︷ ︸

Strehl Ratio: DS

≤ 1. (7.42)

The subscripts u and a stand for unaberrated/unapodized and aberrated/apodized respectively [155].
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The inequality in Eq. 7.41 implies that the bandwidth (and cutoff frequency) of the transfer

function for an imaging system decreases with increasing aberrations. This leads to increasing the

size of the IPSF reducing the achievable resolution, as the OTF and IPSF are a Fourier transform

pair. Eq. 7.42 shows the origins of the Strehl ratio (DS), an important metric of optical imaging

quality, which can be derived directly from the OTF [59, 95, 159]. OTF is commonly switched

out for MTF in Eq. 7.42 as the latter is measured in practice21. The Strehl ratio is also routinely

expressed in other forms as [59, 155, 159]:

DS =
|h(0, 0)|2a
|h(0, 0)|2u

(7.43)

∼= e−k2(⟨W 2⟩−⟨W ⟩2) (7.44)

∼=
(
1− k2(⟨W 2⟩ − ⟨W ⟩2)

2

)2

(Maréchal formula) (7.45)

∼= 1− k2 (⟨W 2⟩ − ⟨W ⟩2)︸ ︷︷ ︸
(RMS OPD)2: σ2

W

, (7.46)

where the subscripts u and a stand for unaberrated/unapodized and aberrated/apodized respectively,

⟨W 2⟩ =
∫∫

PW 2dxdy∫∫
Pdxdy

and ⟨W ⟩ =
∫∫

PWdxdy∫∫
Pdxdy

. In the expression for the Strehl ratio (Eq. 7.46), the

term σ2
W is representative of the amount of energy that is removed from the central peak and

redistributed elsewhere in the point spread function. Having introduced the concepts of OTF,

MTF, and DS , I can now comment on what it means to label an imaging system as diffraction-

limited. In order to do that, I will introduce the concept of optical path difference (OPD).

OPD refers to the departure of an aberrated wavefront from an ideal reference wavefront.

The reference wavefront is a plane wave for an afocal system or an ideal spherical wavefront

21The resultant MTF-based Strehl ratio is larger than the OTF-based Strehl ratio.
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for a focusing system. OPD is typically quoted/measured in units of wavelength. Ideal imaging

systems (unlike real imaging systems) have no aberrations and therefore have an OPD = 0. OPD

is also called the wavefront error (WFE) [99]. Therefore, OPD can be (and is widely) used to

determine the quality of a real imaging system [59, 95, 102, 158]:

• Lord Rayleigh’s λ/4 criterion (P–V OPD< λ/4): Peak-to-valley (P–V) OPD is the maximum

departure of the aberrated wavefront from the reference wavefront minimum over the

aperture of the exit pupil. P-V OPD is a good measure of the image quality of an optical

system if the wavefront error is smooth over most of the pupil aperture and is not greater

than λ/4. Under these circumstances, the real imaging system is considered to perform at

a level on par with an ideal imaging system with no aberrations. As the resolution of the

ideal imaging system is limited only by diffraction, the real imaging system is classified as

diffraction-limited if it satisfies Lord Rayleigh’s λ/4 criterion.

• Maréchal’s criterion (RMS OPD < 0.071λ =⇒ DS > 0.82 ) : The Rayleigh criterion

is not airtight as different aberrations with the same P-V λ/4 OPD can have drastically

different effects on the image quality [94, 102]. The Maréchal criterion states that the

root-mean-squared OPD (RMS-OPD) calculated over the pupil aperture should be less

than 0.071λ to yield an imaging system performance on par with an ideal system without

aberrations. This RMS-OPD < 0.071λ criterion when substituted into the expression for

the Strehl ratio in Eq. 7.44 yields a DS ≥ 0.82.

Using OPD as a metric to quantify the diffraction-limited performance of the imaging

system is generally applicable for low P-V OPDs of λ or less. Typically, one starts off with

geometrical ray tracing for evaluating the performance of an optical layout. The Geometrical PSF
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(GPSF) is a handy tool to evaluate the performance of a highly aberrated imaging system [161].

In geometrical ray tracing, rays from a point source on the object plane are traced through the

imaging system to generate a spot diagram at the image plane. The optical designer typically

compares the geometric blur (distribution of the rays in the spot diagram) with the Airy disc size

and tweaks the layout so that the geometric blur size is smaller than the Airy disc size. This

is called the golden rule of optical design [160]. After the golden rule is satisfied, the optical

designer typically moves on to the OPD metric to further refine the optical system. I used both

of these metrics for evaluating the performance of our imaging/tweezer projection systems: spot

diagrams and RMS OPD for focusing systems, and just the RMS OPD for afocal systems.

The RMS OPD metric when applied to a multi-element imaging system states that the total

RMS OPD of the imaging system should be < 0.071λ [102]. OPD errors can arise from the

fabrication of the individual components of the multi-element imaging system, from the OPD

residuals from the optical design itself, and from the relative mechanical alignment between the

various elements of the optical system like tip/tilt, defocus/despace, and decenter. These OPD

errors are added in quadrature to yield the RMS OPD error of the entire imaging system, which

can be mathematically expressed as follows:

RMS OPDimaging system =
√

RMS OPD2
fabrication + RMS OPD2

design + RMS OPD2
alignment + ....

(7.47)

I individually addressed each term in Eq. 7.47 to minimize the RMS OPD of our optical systems

for creating diffraction-limited optical tweezers and diffraction-limited imaging of single atoms.

My general strategy to create diffraction-limited optical tweezers is illustrated in Fig. 7.43. This

strategy also facilitates diffraction-limited imaging of single atoms. The next sections elaborate
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Generating minimally aberrated wavefronts

Minimizing θresidual

2NA

2NA

n

AFOV/2

t

FOV/2

θresidual

Ideal optical arrangement  
Objective

Glass cell window

Figure 7.43: My general strategy for creating diffraction-limited optical tweezers

on how I addressed each term in Eq. 7.47.

Before I end this section, I will explore the question of what it means to be diffraction-

limited by looking at the second moment width of the IPSF [159, 162], also known as the D4σ

width. The IPSF is simply the image of an incoherently illuminated point source (Table 7.3). The

131



expression for the second moment of the IPSF is as follows:

⟨(x′)2⟩+ ⟨(y′)2⟩ =
∫∫ +∞

−∞ ((x′)2 + (y′)2) |h(x′, y′)|2dx′dy′
∫∫ +∞

−∞ |h(x′, y′)|2dx′dy′
.

Invoking the Fourier moment theorem [159, 162], ⟨(x′)2⟩ ∝ ∂2 OTF(0,0)
∂x2 , one can derive the

following expression for the second moment along one axis:

⟨(x′)2⟩ ∝
∫∫ (

∂P

∂x

)2

dxdy

︸ ︷︷ ︸
∝(Diffraction-limited spot size)2

+ k2
∫∫ (

P
∂W

∂x

)2

dxdy

︸ ︷︷ ︸
∝(RMS spot size from ray tracing data)2

,
(7.48)

where x and y are the exit pupil coordinates (Fig. 7.42). This formulation for the second moment

allows for the separation of the effects of the amplitude-only filtering effect of the pupil (first

term) from the phase-only filtering effect of the wavefront aberrations (second term). The first

term represents the effect of diffraction and defines the Airy disc size. The second term represents

the purely geometrical effect of the wavefront aberrations, which manifests as transverse ray

errors εY , εX in the image plane. (Eqs. 7.52, 7.53) [95, 96]. The RMS spot size, which is used to

quantify the geometrical blur size in a spot diagram, is intimately related to these transverse ray

errors εY , εX [96]. In order for a system to be considered diffraction-limited, the RMS spot size

must be much smaller than the Airy disc size, which is at the heart of the golden rule of optical

design.

7.6.1 Minimizing RMS OPDfabrication

In my optical designs, I only used commercially available lens, mirrors, and waveplates.

The surface quality of all these commercial parts was at worst 40-20 scratch-dig. The surface
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flatness of the Zerodur mirrors and waveplates used in these layouts was typically λ/20 at 632.8

nm [102]. Care was taken to minimally distort the optics during mounting. For example, Delrin

retaining rings (Newport LH2-T-RR) and retaining rings padded with Buna-N nitrile rubber O-

rings (Thorlabs SM2LTRR, SM1LTRR; McMaster 4061T194, 4061T145) were used to secure

lenses, dichroics, and plate PBS. The Zerodur mirrors were mounted in low-wavefront distortion

mounts (ULTIMA low-wavefront distortion mirror mounts from Newport).

We used custom dichroics for our optical setups. To that end, Alluxa Inc. manufactured

3” OD dichroics and plate polarizing beam splitter (PPBS) for us. These parts were constructed

from high-quality 5 mm thick fused silica substrates with 40-20 scratch-dig and ∼ 0.01λ RMS

OPD flatness per inch. The specifications for the dichroics used in the optical layouts are in

table 7.4. I carefully chose the transmission and reflection bands for the dichroics so as to be

Label Transmits (nm) Reflects (nm) Surface Flatness & Scratch-Dig OD

D1 (dichroic) 532, 830-870 399, 420, 556, 780 λ
100

RMS/in, 40-20 3”

D3 (dichroic) 780, 830-870 399, 420, 532, 556 λ
100

RMS/in, 40-20 3”

D4 (dichroic) 399 420, 556 λ
100

RMS/in, 40-20 3”

PPBS 532, 830-870 532, 830-870 λ
100

RMS/in, 40-20 3”

Table 7.4: Specifications for the custom optics from Alluxa Inc.

simultaneously cost-effective and maximize the number of the ways in which the many colors in

our optical setup can be combined and separated (Fig. 6.1). D1 is the only multi-band dichroic in

our setup. D3 and D4 are single-band dichroics. I preferred a PPBS over a cube polarizing beam

splitter to minimize the number of surfaces, as each additional surface can add fabrication errors.

Last but not least, the dichroics, waveplates, and PPBS were placed only at locations in the beam

path where the beam is collimated to avoid aberrations (see Fig. 7.4).
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7.6.1.1 Microscope objective

The defining characteristics of a microscope objective are its NA and FOV. However, the

choice of NA and FOV for any lens (or lens assembly such as a microscope objective) is not

arbitrary, although simultaneous large values for NA and FOV are desirable. In fact, NA and FOV

are inversely related to each other [163]. This inverse relation originates from a very important

principle in optical design called the Abbe sine condition, which can be readily derived from

Fourier optics. The Abbe sine condition [164, 165] states that for off-axis and on-axis diffraction-

limited performance

niri sin θi = noFOV sin θo = FOV × NA = constant, (7.49)

where ni sin θi is the image space NA, no sin θo is the object space NA, and ri is the size of the

image. High NA microscope objectives are well-corrected for the offense against sine condition

(OSC) over the FOV of the objective. An optical system that satisfies the Abbe sine condition

conserves étendue [166] i.e. the optical throughput (denoted by the étendue G-value) between

the object and image. The étendue G-value can be expressed in terms of FOV and NA as

follows [163]:

G =
π

4
FOV2NA2. (7.50)

One can immediately see the relation between the Abbe sine condition and étendueG-value

by squaring both sides of Eq. 7.49. The throughput of conventional microscope objectives usually

lies between G = 0.0243 mm2 and G = 0.9503 mm2 [163]. Infographics classifying the various

types of lenses as a function of their typical NA and FOV can be found in these references [95,
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102]. Resources for designing microscope objectives can be found here [163, 167, 168, 169]. In

our case, Special Optics designed and built two 0.6 NA infinity-corrected microscope objectives

for us. The objectives have the following specifications (Fig. 7.44):

• Diffraction-limited performance at: 399 nm, 420 nm, 532 nm, 556 nm, 780 nm, 858 nm

• NA: 0.6

• Working distance: ∼ 2 mm air + 9.5 mm fused silica + 9.525 mm vacuum

• Outer diameter (OD) and Length: < 50.8 mm,∼ 100 mm

• Aperture and Field of View (FOV): ∼ 36 mm and ∼ 0.2 mm

• Axial and lateral colors: < 10um

• Housing: We choose to use Ultem—a high-performance thermoplastic—so as to avoid

eddy currents during magnetic field switching. The Ultem housing also provides resistance

to thermally-induced alignment errors from having the magnetic field coils on for extended

periods of time. Both of these features would be compromised if an Aluminum housing

was chosen instead.

While the objective specifications are good, mounting the objectives turned out to be

nontrivial. The mounting must be secure, long-term thermally stable, and should not introduce

excess wavefront distortion. Special Optics told us to be wary of introducing aberrations during

mounting. I conceived, manufactured, and interferometrically tested a few versions of the mounts

before settling on a final version (Fig. 7.45). The collimated back-reflection from the mounted

objective was interfered with a reference beam in the Twyman-Green-Fizeau interferometer setup
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Figure 7.44: Specifications of our 0.6 NA objectives from Special Optics.
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Custom V-block Mount

Objective

Newport 8081 stage

Custom mounting plate

Custom 1/2-13 flat-tip slotted-head Ultem setscrew

Figure 7.45: CAD design of the V block mount for the objectives

(see Sec. 7.6.3.1) for characterizing the recovery capabilities and drifts of the objective mount

assemblies.

The final iteration of the mount was a V-block machined out of nonmagnetic 316 SS with a

90◦ angle for the V and Ultem 1/2-13 flat-tip slotted-head setscrews to secure the objective against

the V-block (see Figs. G.23, G.25, G.24 and 7.45). The setscrews were tightened using a torque

wrench to a torque of 0.6 lbf-in. The use of three flat-tip setscrews and the large surface area for

each setcrew helps to evenly distribute the force over the objective body to minimize aberrations.

Once secured, the objective was hard to remove from the V-block, but at the same time the

setscrews could be unscrewed by hand. The Ultem material for the setscrews was determined

interferometrically (see Sec. 7.6.3.1 and Sec. 7.2.1) by subjecting the objective V-block assembly

to heat from the continuous operation of the MOT coils at currents appropriate for Rb MOT

and Yb MOT. This is because debugging/recovering the highly sensitive shallow-angle MOTs

(Sec. 7.7.1) requires steady-state operation of the MOT coils. The heat from the MOT coils

during steady-state operation must not misalign the objectives. In its final iteration, the objective
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mount assembly recovered to less than 70 µrads of tilt as measured on the Twyman-Green-Fizeau

interferometer (see Sec. 7.6.3.1), when the coils were turned off after 30 mins of continuously

operating the MOT coil at 12 A with air cooling of the coils applied.

The SS V-block is nonmagnetic, and has low conductivity that helps suppress eddy currents

during magnetic field switching. This V-block objective assembly is mounted to a Newport 8081

stage, which is in turn mounted to a custom Aluminum base plate. As the SS V block significantly

outweighs the objective, the center of mass of the V-block objective assembly is over the 8081

stage. This helps counteract the fact that the objective cantilevers quite a bit beyond the V-block.

Furthermore, the 90◦ angle for the V improves the repeatability of the insertion and withdrawal of

the objectives from the V block [170]. The importance of the angle for the V was born out of my

discussions with Les Putnam. Repeated removal and reinstallation of the objective resulted in an

interferometrically determined tilt alignment error of ∼ 70 µrad. The entrance aperture surface

of the objective is flush with one vertical or end surface of the V block (Fig. 7.45). This helps in

restoring the working distance between the objective and the glass cell surface to an acceptable

degree upon reinstallation of the objective. In hindsight, it would have been easier to have asked

the objective vendor to machine mount specific threads on the Ultem body. For example, the

Newport LP-2A mount would have been an appropriate choice to mount the objective with a

threaded body.

7.6.2 Minimizing RMS OPDdesign

The design of any well-corrected optical system starts with a first-order optical layout [102].

First-order optics, Gaussian optics or paraxial optics [61, 96] is built on the first-order approximation

138



to Snell’s law (n sin I = n′ sin I ′) i.e. nI = n′I ′, where n and n′ are the refractive indices

of the two mediums, I and I ′ are the angle of incidence at the boundary between the two

mediums. Gaussian optics represents the situation of perfect imaging, also known as stigmatic

imaging [171].

Gaussian optics is a special case of a collinear transformation applied to a rotationally

symmetric system that maps planes perpendicular to the optic axis in the object space to planes

perpendicular to the optic axis in the image space without distortion [61]. In Gaussian optics,

any “pencil” of lines from a single point in the object space maps to a unique “pencil” of lines

directed towards a single point in the image space. The points in the object space are “conjugate”

to points in the image space. A collinear transformation maps a point P (x, y, z) in the object

space to a point P ′ (x′, y′, z′) in the image space by a set of equations shown below [61] :

x′ =
a1x+ b1y + c1z + d1
a0x+ b0y + c0z + d0

,

y′ =
a2x+ b2y + c2z + d2
a0x+ b0y + c0z + d0

,

z′ =
a3x+ b3y + c3z + d3
a0x+ b0y + c0z + d0

.

Collineation is very useful in determining the cardinal points and planes of a multi-element

imaging system [61], which I used frequently for my first-order high-NA optical layouts. All

object distances and image distances in the Gaussian and Newtonian imaging equations are

referenced from these cardinal points and planes. The cardinal planes are defined by the specific

transverse magnification (or lateral magnification) m = h′
h
(= the image point height from the

139



optical axis/object point height from optical axis) as follows [96]:

m = ∞ → Front Focal Plane (FFP),

m = 0 → Back Focal Plane (BFP),

m = 1 → Front Principal Plane (FPP),

m = 1 → Back Principal Plane (BPP).

However, collineation cannot represent the imaging action of a lens (except in the case of

afocal lens) as it does not take into account the equality of optical path lengths of the rays needed

for stigmatic imaging. For example, for points on the optic axis, the transverse magnification

according to collineation is m ∝ tan θ/ tan θ′ for ray angles θ and θ′ relative to the axis in the

object space and image space respectively. However, Abbe’s sine condition, which considers

optical path lengths, requires m ∝ sin θ/ sin θ′ [172]. The congruence exists in the afocal case

and in the paraxial limit, where both magnifications reduce to m ∝ θ/θ′. For desiging high-NA

imaging systems, one needs to consider the higher-order terms in the expansion of the sine in

Snell’s law [102]:

sin I = I − I3

3!︸︷︷︸
3rd order ray aberrations:
1) Spherical Aberration

2) Coma
3) Astigmatism

4) Petzval/Field curvature
5) Distortion

+

5th order ray aberrations︷︸︸︷
I5

5!
... (7.51)

If the aberrations arising from higher-order terms are not corrected in an imaging system, stigmatic

imaging breaks down; A point object is not mapped to a single point in the image plane via
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collineation, but rather to a cluster of points around the ideal Gaussian image point. In fact, the

transverse ray errors εY , εX—the deviations of the ray intersections at the image plane from the

ideal image point—are related to wavefront aberration W (x, y) via the following relations [95,

96]:

εY = −R
r

∂W (x, y)

∂y
, (7.52)

εX = −R
r

∂W (x, y)

∂x
, (7.53)

R

rP
= − 1

n′u′
≈ − 1

NA
, (7.54)

where x = ρ sin θ, y = ρ cos θ are the normalized exit pupil coordinates, the physical pupil

size is r , 0 ≤ ρ ≤ 1, n′ is the image space refractive index and u′ is the marginal ray angle.

Correcting these errors is at the heart of the third-order optical layout.

The wavefront aberration polynomial expansion picture pioneered by J.J. Hopkins is a very

powerful tool. The wavefront aberrations at the exit pupil of an imaging system is a polynomial

expansion [61, 173]:

W (H⃗, ρ⃗) =
∑

j,m,n

Wklm(H⃗ · H⃗)j(H⃗ · ρ⃗)m(ρ⃗ · ρ⃗)n, (7.55)

where H⃗ is the normalized field vector , ρ⃗ is the normalized aperture vector , ϕ is the cosine of

the angle between the vectors, and Wklm are the coefficients of the aberrations in the polynomial

expansion. The indices j,m, n represent integers and k = 2j +m and l = 2n +m. The order

of an aberration term is given by 2(j + m + n) and is always an even number. The indices

k, l,m in each term represent the algebraic power of H⃗ , ρ⃗, and cosϕ respectively. The aberration
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coefficients, Wklm , can be expressed in terms of the contributions of the individual surfaces in

the imaging system via the Seidel aberration coefficients (SI ,SII , SIII , SIV ,SV ). The goal is to

minimize the aberration coefficients.

The Seidel aberration coefficients that encapsulate surface contributions (Seidel sums) can

be evaluated using only first-order ray invariants determined from ray tracing data in an optical

design software like Zemax (see Table 7.5). It is quite amazing how primary wavefront aberration

coefficients can be calculated using just first-order ray quantities [61, 164].

Aberration Term Seidel aberration coefficients Seidel sums

0th Order

Uniform piston W000 - -

2ndorder

Quadratic piston W200H
2 - -

Tip/tilt W111Hρ cos(ϕ) - -

Focus W020ρ
2 - -

4thorder

Spherical aberration W040ρ
4 W040 =

1
8
SI SI = −

j∑
i=1

(
A2y∆

(
u
n

))
i

Coma W131Hρ
3 cos(ϕ) W131 =

1
2
SII SII = −

j∑
i=1

(
AĀy∆

(
u
n

))
i

Astigmatism W222H
2ρ2 cos2(ϕ) W222 =

1
2
SIII SIII = −

j∑
i=1

(
Ā2y∆

(
u
n

))
i

Field curvature W220H
2ρ2 W220 =

1
4
(SIV + SIII) SIV = −Ж2

j∑
i=1

Pi

Distortion W311H
3ρ cos(ϕ) W311 =

1
2
SV SV = −

j∑
i=1

(
Ā
A

[
Ж2P + Ā2y∆

(
u
n

)])
i

Quartic piston W400H
4 - -

Refraction invariant for the marginal ray A = ni = nu+ nyc
Refraction invariant for the chief ray Ā = nī = nū+ nȳc
Lagrange invariant Ж = nūy − nuȳ = Āy − Aȳ
Surface curvature c = 1

r

Petzval sum P = c∆
(
1
n

)

Table 7.5: Wavefront aberration polynomial coefficients expressed in terms of Seidel sums [1]
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The Seidel sums of an optical system (see Table 7.5) do not intuitively inform optical

design. To do that, one needs to factor out the structural aberration coefficients (σI ,σII , σIII , σIV ,σV )

from the Seidel aberration coefficients (SI ,SII , SIII , SIV ,SV ) [61]. The Seidel coefficients of a

component depend on its structural coefficients. For example, for a thin lens, these structural

coefficients encapsulate its structural characteristics such as the shape factor, the conjugate /

orientation factor, the refractive index of the lens material [61]. The reader is referred to the

following reference for more details [174].

Figure 7.46: Seidel diagram for the AOD-based tweezer projection system up to the entrance
aperture of the objective for Yb

One can immediately draw some insights from expressing the total Seidel surface contributions

in terms of structural aberration coefficients of the components of the system [174]. I used these
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insights to design my optical layouts, which are stated as follows:

• Try to always work with as low a lens power as possible [102].

• Split a high power lens into multiple low power lenses.

• Add negative lenses to counteract aberrations from positive lenses.

• Compound lenses into a doublet or a triplet.

• Play with the shape factor and the conjugate factor of the lenses. Sometimes, flipping the

lens orientation can lead to lower total aberrations.

• Balancing of aberrations through the σ2
W in the expression for the Strehl ratio (Eq. 7.46):

even aberrations like spherical aberration and astigmatism can be balanced with defocus;

the odd aberrations like coma and distortion can be balanced with tip/tilt for a given field

point.

The above design principles are by no means exhaustive. For a more exhaustive list, check out the

following references [95, 159]. I routinely used the Seidel diagram feature on Zemax to optimize

my third-order optical layouts. As an example, I show the Seidel diagram for the AOD-based

tweezer projection system up to the entrance aperture of the objective for Yb in Fig. 7.46. The

Seidel diagram shows the Seidel aberration coefficients of each surface and the Seidel sum.

7.6.2.1 First-order optical layout

All optimized third-order optical layouts start with a first-order optical layout. Here, I will

only treat the optical layout for the AOD-based tweezer projection system (Fig. 7.47). The SLM-

based tweezer projection system is very similar to the AOD-based tweezer projection system.
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Figure 7.47: Schematic of the optical layout for the AOD-based tweezer projection system.
The AOD is driven by a sum of three single tone sinusoidal waveforms, as an example. The
optical layout for the SLM-based tweezer projection system is the same except it lacks the first
4f Keplerian f1/f0 magnification stage.

For the sake of simplicity, I will consider only one AOD axis as the optical system is symmetric

about the optic axis.

Arbitrary motion of a tweezer in the back focal plane of the objective is facilitated by the

radio-frequency (rf) waveform driving the AOD [83]. When the AOD is driven by a single-tone rf

waveform at frequency ν, it deflects the beam by an angle ξ that is mapped to a tweezer position

x by the optical system (Fig. 7.47). ξ and x are measured with respect to the optic axis of the

tweezer projection system, which is defined by a single-tone rf waveform at frequency ν0 driving

the AOD (Fig. 7.47).

The ABCD matrix for the AOD-based tweezer projection system from the AOD plane to

the objective BFP (Fig. 7.47) is

ABCDtweezer =




0
f0f2f4fobjective

f1f3f5

− f1f3f5
f0f2f4fobjective

f0f2(−d2f2
4−(d1+f3)f2

5+f4f2
5+f2

4 (f5+fobjective ))
f1f3f4f5fobjective


 , (7.56)

where fobjective is the focal length of the objective. Setting the only on-diagonal component of this
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ABCD matrix to 0 yields the following expression for d2 as a function of d1:

d2 = f5

(
1− f5f3

f 2
4

+
f5
f4

)
− f 2

5

f 2
4

d1 + fobjective , (7.57)

with a maximum value of

d2,max = f5

(
1− f5f3

f 2
4

+
f5
f4

)
+ fobjective . (7.58)

With the on-diagonal term set to 0, this optical system facilitates the angle-to-position mapping

expressed mathematically as follows:

x =
fobjective

M
ξ (7.59)

where M = (f1f3f5)/(f0f2f4) is the total magnification of the AOD-based tweezer projection

system. The magnification should be chosen appropriately as Gaussian beams are used as input

to the tweezer projection systems. This magnification determines the degree of truncation of

the Gaussian beam by the entrance aperture of the objective given an input beam size to the

tweezer projection system. The smallest spot size at the objective BFP is achieved when a plane

wave is incident on the aperture of the objective, which implies an infinite magnification. This

is obviously power-inefficient. Underfilling the entrance aperture of the objective leads to larger

spot sizes. One thing to note is that Gaussian apodization broadens the central Airy disc, but

reduces the power in the secondary rings. More details on the effect of Gaussian apodization on

the PSF and the OTF can be found in Ref. [160].

I conceived of this atypical first-order layout because of its ability to implement a perfect
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angle-to-position mapping. In a conventional 2nf (2f , 4f , 6f ...) imaging system, the location

of each lens is strictly defined by its focal length. For instance, in a 2f or a 6f imaging system

that maps angle to position, deviations from these defined spacings lead to an imperfect angle-

to-position mapping through the introduction of a non-zero angle-to-angle mapping. This angle-

to-angle mapping has the same effect as θresidual in Fig. 7.43 and Fig. 7.4, and can therefore

decrease the FOV of the objective. This can happen, for example, when the objective is not

fobjective + flast lens away from the last lens in a 2nf imaging system due to space constraints in

the experiment. My design gets around these issues. By tuning d1, the spacing d2 between the

last lens and the objective can be continuously adjusted to implement a perfect angle-to-position

mapping (Eq. 7.57).

Another important feature of this layout is that lens 3 is negative and can therefore counteract

aberrations from the positive lenses in the tweezer projection system. This cannot be easily done

in a 2nf imaging system as the lenses are all positive. Lens 3 in my optical layout can also be

positive and would yield a larger dynamic range for d2. However, the system size would be larger

and the aberrations from the positive lenses cannot be easily counteracted. As a comment, the

combination of lens 2, lens 3, and lens 4 has the structure of a Cooke triplet anastigmat lens [164]

with tunable power.

As we only control the frequency of the single-tone sinusoidal waveform (ν) driving the

AOD (Fig. 7.47), it makes sense to derive an equation that maps ν to x. The relationship between

ξ and ν in the Bragg regime is [175, 176]

ξ =
λ(ν − ν0)

vrf
,
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Figure 7.48: Schematic of the optical layout for the AOD-based tweezer projection systems.

where vrf is the velocity of sound in the AOD crystal, λ is the wavelength of light in the AOD

crystal. Substituting this expression for ξ in Eq. 7.59, one can get the following important

mapping between x and ν [176]:

x =
λf0
Mvrf

(ν − ν0). (7.60)

For our AOD-based tweezer projection systems with M = 6.85, vrf = 650 m/s, f0 = 30 mm,
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Figure 7.49: Schematic of the optical layout for the SLM-based tweezer projection systems.

a change in the frequency of the single tone rf drive by ∆ν = 1 MHz maps to a change in the

position of the 532 nm (840 nm) tweezers ∆x by 3.6 µm (5.7 µm) at the objective BFP.

The complete optical layout for the AOD-based tweezer projection system and the SLM-

based tweezer projection system can be found in Fig. 7.48 and Fig. 7.49. The major difference

in the optical layout for the SLM-based tweezer projection system and the AOD-based tweezer

projection system is the lack of the first 4f Keplerian magnification stage (no lens 0 and lens 1 in

Fig. 7.47) in the SLM layout. The SLM is placed f2 away from lens 2 (see Figs. 7.47 and 7.49).

The magnification of the SLM-based tweezer projection system is 1.875. In the AOD-based

tweezer projection systems, we use DTSXY-400 from AAoptoelectronics as our AODs. In the

SLM-based tweezer projection systems, we use ultra-high-speed SLMs from Meadowlark (see

Table 7.6).
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7.6.2.2 Third-order optical layout

The Zemax simulations of the optimized third-order layouts for the AOD- and SLM-based

tweezer projection systems are presented in Figs. 7.50, 7.51, 7.52, 7.53. The maximum field

angle [164, 177] ξmax for the tweezer projection systems is (using Eq. 7.59)

ξmax = ±M FOV
2fobjective

= ±M 0.1 mm
30 mm

, (7.61)

where ξmax is ±1.31◦ for the AOD-based tweezer projection system, and ξmax is ±0.36◦ for the

SLM-based tweezer projection system. I designed the tweezer projection systems to accommodate

larger field angles: ±1.5◦ for the AOD-based tweezer projection systems and ±0.4◦ for the

SLM-based tweezer projection systems. In other words, I built some overhead into the tweezer

projection systems as aberrations grow polynomially with the field size/angle [164].

The tweezer projection systems are designed to be diffraction-limited over their entire range

of field angles. I confirm this by looking at the spot diagrams and ensuring that the golden rule of

optical design is satisfied. I also look at the wavefront map and ensure that RMS OPD < 0.071λ.

Figs. 7.50a, 7.51a, 7.52a, 7.53a show the wavefront maps for a field angle of 0◦ for the AOD-

and SLM-based tweezer projection systems. Figs.7.50b, 7.51b, 7.52b, 7.53b show the wavefront

maps for the maximum field angles of the AOD- and SLM-based tweezer projection systems.

Figs.7.50c, 7.51c, 7.52c, 7.53c show the spot diagrams for the AOD- and SLM-based tweezer

projection systems.
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Figure 7.50: Zemax simulation of the optimized third-order layout for the AOD-based tweezer
projection system for Rb: (a) Wavefront map at field angle of 0◦ (b) Wavefront map at the
maximum field angle of −1.5◦ (c) Spot diagrams at different field angles
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Figure 7.51: Zemax simulation of the optimized third-order layout for the AOD-based tweezer
projection system for Yb: (a) Wavefront map at field angle of 0◦ (b) Wavefront map at the
maximum field angle of −1.5◦ (c) Spot diagrams at different field angles
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Figure 7.52: Zemax simulation of the optimized third-order layout for the SLM-based tweezer
projection system for Rb: (a) Wavefront map at field angle of 0◦ (b) Wavefront map at the
maximum field angle of −0.4◦ (c) Spot diagrams at different field angles
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Figure 7.53: Zemax simulation of the optimized third-order layout for the SLM-based tweezer
projection system for Yb: (a) Wavefront map at field angle of 0◦ (b) Wavefront map at the
maximum field angle of −0.4◦ (c) Spot diagrams at different field angles
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SLM Part number Design wavelength Liquid Crystal Response Time (10-90%):

UHSP1K-488-850 532 nm ≤ 0.6 ms

UHSP1K-500-1200 840 nm ≤ 1.2 ms

Table 7.6: Specifications of the spatial light modulators (SLM) from Meadowlark. The format
for these SLMs is 1024× 1024, the pixel pitch is 17.0µm×17.0µm, fill factor is 97.2 %

7.6.2.3 Remarks on the AODs and SLMs

When Kevin and I were playing with the AODs, we noticed a few things. First, the

butterfly/floral pattern around the beam spots in the AOD diffraction pattern in Fig. 7.54a is

normal. Our DTSXY-400 AOD vendor, AA-optoelectronics, told us that this diffraction pattern

arises due to the low acoustic velocity in an anisotropic medium. We measured its effect on

the beam profile: Fig. 7.54b is the beam profile of the input beam to the AOD, and Fig. 7.54c

is the beam profile of the diffracted beam. Another thing to note is that the AOD crystals are

typically cut such that the diffracted first-order light is collinear with the input beam to the AOD.

The crystal is cut at an angle with respect to the input laser beam/optic axis. This implies that

the undiffracted beam exiting the AOD is not collinear with the input beam to the AOD as it

must refract at the angled-cut surface due to a large non-zero angle of incidence at this surface.

However, the diffracted beam makes a small angle (i.e. is approximately orthogonal) with respect

to the angled-cut surface. This is very convenient for axially symmetric optical systems as the

diffracted light is approximately collinear with the optical axis without the need for any folding

mirrors. This angled cut should not be confused with a different angled cut on the crystal

that prevents standing acoustic waves. This cut is at an angle with respect to the piezoelectric

transducer axis.

Regarding SLM-based tweezer projection systems, I suggested using ultrahigh-speed SLMs
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i.e. SLMs with frame refresh rates in the few kHz range [178]. Typical SLMs have a refresh

rate of 60 Hz or 120 Hz. Given these slow refresh rates, SLMs are used to generate the static

background lattice into which the atoms are stochastically loaded. The AOD generated tweezers

are then used to pick and place the single atoms in the stochastically loaded background lattice

to create a defect-free array [39].

Using an SLM with a faster update rate may allow for a shorter rearrangement time.

Many atoms in the background lattice may be moved simultaneously by updating the phase

hologram on the SLM. This high-speed hologram update strategy can be paired with the pick-

and-place strategy to shorten the rearrangement time. We procured two ultrahigh-speed SLMs

from Meadowlark, one for 532 nm and the other for 840 nm. The specifications for these SLMs

can be found in Table 7.6.

7.6.3 Minimizing RMS OPDalignment

After minimizing the RMS OPDfabrication and RMS OPDdesign to the best of our abilities,

we need to assemble the optical systems. During assembly, care must be taken to minimize

RMS OPDalignment i.e. minimize alignment-induced aberrations. These aberrations arise from

alignment errors like decentration, defocus/despace, and tip/tilt between the constituting elements

of the optical system [102]. Diffraction-limited performance from the optical systems can only

be ensured if these alignment-induced aberrations are low [102]. For example, θresidual—the

tilt between the glass cell and the objective—should be less than 0.02◦ for diffraction-limited

performance from the objectives. In the following sections, I will elaborate on the techniques for

aligning:
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(a)

(b) (c)

Figure 7.54: (a) AOD diffraction pattern (b) Beam profile of the input beam to the AOD (c) Beam
profile of the diffracted beam at the output of the AOD

1. The high NA objectives,

2. The imaging system,

3. The AOD-based tweezer projection systems,

4. The SLM-based tweezer projection systems.
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7.6.3.1 Interferometric alignment of high NA objectives

Reference surface

Test surface

beam splitter beam splitter

Twyman-Green interferometer Fizeau interferometer

Reference surface

Test surface

Figure 7.55: Schematic of the optical layouts for the Twyman-Green interferometer and the
Fizeau interferometers

I conceived and implemented an interferometric technique to align our two high NA objectives.

I blended two amplitude-division interferometers—the Twyman-Green interferometer and the

Fizeau interferometer—into an interferometer that I will name the Twyman-Green-Fizeau interferometer.

The Twyman-Green interferometer and the Fizeau interferometer are typically used for testing

the quality of the optics including microscope objectives [179, 180, 181, 182]. Schematics of

the typical optical layouts for the Twyman-Green and the Fizeau interferometers are shown in

Fig. 7.55. The interferogram at the exit port of the interferometers is used to determine the

quality of the optics [183].

In the Fizeau interferometer—a type of common path interferometer [180]—the beamsplitter

surface and the reference surface are one and the same, while these surfaces are separated in the

Twyman-Green interferometer, which makes the latter more versatile. However, this versatility
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comes at the cost of necessitating high quality optics [184, 185]. Fringe visibility in the interferogram

is maximum when the reference beam and the beam returning from the test surface have a

similar irradiance. The reflectivity of the reference (and beamsplitter) surface in the Fizeau

interferometer is 4%, which is typical of Fresnel reflections. Therefore, a Fizeau interferometer

is not well-suited for testing highly reflective optics. The Twyman-Green interferometer, on the

other hand, is ideal for testing highly reflective optics.

The full Twyman-Green-Fizeau interferometer layout is shown in Fig. 7.56. One arm of

the interferometer, which I refer to as the long arm, hosts the glass cell and the two objectives in a

1× Keplerian telescope arrangement. The other interferometer arm, which I refer to as the short

arm, provides the flat reference wavefront. By inspecting the interferograms at the exit port of

the interferometer, we are able to determine the quality of the optics and the alignment precision

of the various elements in the interferometer.

The alignment procedure makes use of the fact that in a system that is symmetric about

the stop (i.e satisfies stop symmetry), the odd wavefront aberrations (such as coma) cancel out,

whereas the even wavefront aberrations (such as spherical aberration and astigmatism) double

in magnitude when light traverses the system [95]. The two well-corrected objectives in a 1×

Keplerian telescope arrangement form an afocal system and must be placed symmetrically on

each side of the glass cell. The center of the glass cell is the position of the hypothetical stop and

should coincide with the focal plane of each well-corrected objective. Therefore, by minimizing

the coma [95, 186] in the interferogram measured at the exit port, optimal alignment can be

achieved.

In order to observe interferograms with high fringe visibility, the interfering beams must be

spatially coherent [179]. Therefore, the light source must approximate a point source. Hence, I
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Figure 7.56: The schematic of the optical layout for the Twyman-Green-Fizeau interferometer:
The Roman numerals represent the order in which the highlighted cyan sections of the
interferometer are assembled.

used a single-mode fiber patch cable to deliver collimated light to the Twyman-Green-Fizeau

interferometer. Although the Twyman-Green interferometer and Fizeau interferometer could

have been implemented using light sources with short coherence lengths (superluminescent diodes),

I chose to use highly coherent light from a laser to relax the requirements on matching the path

lengths exactly. This allows for laser unequal path interferometry for optical shop testing [179,

187].

The mathematical form for an interferogram generated by an amplitude-division interferometer
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is as follows [181, 188]:

I(x, y) = (Itest + Iref) + 2
√
IrefItest cos[k (Wtest(x, y)−Wref(x, y)︸ ︷︷ ︸

OPD

)], (7.62)

where Itest is the intensity of the beam reflected from the test surface, Iref is the intensity of the

reference beam, Wtest(x, y) is the wavefront of the laser beam reflected from the test surface,

Wref(x, y) is the reference wavefront and is generated by a beam reflected from the reference

surface, and (x, y) is the coordinate of a point in a plane parallel to the reference surface. The

fringe visibility is maximum when Itest = Iref. Aberrations introduced by the test surface can be

inferred from the structure of the interference fringes [189]:

OPD = Wtest(x, y)−Wref(x, y) = nλ. (7.63)

Let us now look at the important case of when the measured interferogram can be used to

determine the tilt of the test surface with respect to Wref(x, y). For simplicity, I assume that the

test surface does not introduce any higher-order aberrations and that the test surface is tilted along

one axis. The location and spacing of the fringes can be used to infer the tilt from Eq. 7.63:

OPD = Wtest(x, y)−Wref(x, y) = 2θxx = nλ (7.64)

=⇒ θx =
λ

2∆x
, (7.65)

where θx is the relative wavefront tilt along the x axis, ∆x is the measured spacing between the

fringes and λ is the wavelength of light used in the interferometer. The minimum measurable tilt
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(θmin) is limited by the size of the laser beam i.e. when the fringe width is equal to the beam size.

Large beams are therefore preferred. In our setup, θmin = 532 nm/(2 × 25 mm) = 10 µrad. A

typical interferogram used to measure the amount of tip/tilt is shown in Fig. 7.57a. The grid lines

are spaced by 1 mm.

When Wref(x, y) is a diffraction-limited plane wavefront and is normal to its flat reference

surface, i.e. ∇Wref(x, y) = 0, the relative measured tilt θx is exactly equal to the angle of

incidence (AOI) of the laser beam with respect to the test surface:

∇Wtest(x, y) = 2θx = 2AOI. (7.66)

The FOV of the objective is greatly compromised by residual tilt θresidual between the objective

and the glass cell window (see Figs. 7.43 and 7.4). However, θresidual = 0 when the AOI of the

laser beam is zero with respect to both the glass cell surface and the objective.

Now I will elaborate on how the interferograms can be used to assemble the Twyman-

Green-Fizeau interferometer for the purposes of aligning the two high NA objectives (see Fig. 7.56).

The Roman numerals in Fig. 7.56 in the following paragraphs represent the order in which the

different highlighted cyan sections of the interferometer are assembled.

I: In order to realize ∇Wref(x, y) = 0, the light from the fiber must first be collimated using

diffraction-limited optics. The collimation is performed using lateral shearing interferometry [180].

The reference beam wavefront must also be normal to the reference surface R1. This can be

achieved by coupling the reflected light from R1 back into the fiber. This back-coupling can be

challenging for large diameter collimated beams as the AFOV of the collimator plus single-mode

fiber assembly is 2 arctan(MFD/(2fcollimator)) ≃ MFD/(fcollimator), where fcollimator is the focal
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(a) (b) (c)

Figure 7.57: The grid size is 1 mm. (a) Tip/tilt fringe (b) Newton’s rings showing the bowing of
the glass cell window with a decentered laser beam (c) Newton’s rings showing the bowing of
the glass cell window with a centered laser beam.

length of the collimator and MFD is the mode field diameter of the single-mode fiber patch cable.

The AFOV is in the range of 32 µrad to 43 µrad for a fcollimator = 80 mm (C80APC-A) and MFD in

the range of 2.5−3.4 µm (P3-405B-FC-5 single mode fiber patch cable). We have experimentally

measured and verified this AFOV range by measuring the power of the light coupled back into

the fiber as a function of the tilt of the reference λ/20 flat mirror R1 (20Z40BD.1 from Newport)

mounted in a piezoelectric kinematic mirror mount (8822-AC from Newport which has an angular

resolution of 0.7 µrad). We get close to the maximum expected fiber back-coupling from the short

arm accounting for all losses in the optical chain. In the optimum back-coupling configuration,

the uncertainty in the angle of incidence is less than 10 µrad.

II: Next we adjust the alignment of the λ/20 reference optical flat R2 (#48-131 from Edmund

Optics) such that the interferogram between the back-reflection from this surface and the reference

wavefront has a single tip/tilt fringe over the beam width i.e. θ = θmin. In this arrangement, back-

reflection from the reference optical flat R2 couples back into the fiber. When the alignment of R2

with respect to reference flat mirror R1 deteriorates to greater than 50 µrad i.e. 5 tilt fringes, we
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measure no back-coupling into the fiber. This optical flat serves as the reference surface for the

Fizeau interferometer. We block the light from the short arm to turn the Twyman-Green-Fizeau

interferometer to just a Fizeau interferometer.

III: The utility of a Fizeau interferometer becomes apparent when the laser beam in the long

arm must be made normal to the glass cell. Given that the glass cell has a small back-reflection

due to the RAR nanotextured surface, it is important to match this back-reflected irradiance for

maximum fringe visibility, justifying the use of the reference optical flat R2. While one can

insert a neutral density filter in the short arm of the Twyman-Green interferometer and forego the

optical flat R2 altogether, one must make sure that the neutral density filter does not introduce

aberrations. We have experimentally verified the presence of large aberrations in a commercial

neutral density filter from Thorlabs by measuring the interferogram using the back-reflection

from the optical flat as the reference wavefront. When the back-reflection from the glass cell is

aligned—using λ/20 flat mirrors M2 and M3 (30Z40BD.1 and 30Z40ER.2 from Newport)—to

the back-reflection from R2, we can measure Newton’s rings in the interferogram arising from

the bowing of the objective window of the glass cell (see Figs. 7.57b and Fig. 7.57c). We can

also identify the center of the objective windows by centering the Newton’s rings (see Fig. 7.57c).

IV: To complete the skeleton of the Twyman-Green interferometer, the next step is to adjust the

alignment of the last λ/20 flat mirror M3 (20Z40BD.1 froom Newport) in the long arm. Since

Objective 2 is used for optical tweezer projection and single-atom imaging, this mirror must be

retractable. To allow for removing M3 from the laser path while maintaining optical alignment,
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Figure 7.58: The interferogram for when the objectives are well aligned. This interferogram is
representative of the minimum coma condition. The grid size is 1 mm.

we mount the mirror on a crossed-roller bearing translation stage (LNR50M from Thorlabs)22.

To align M3, we unblock the light in the short arm and adjust the tip/tilt of M3 in the long arm

until only one large tip/tilt fringe was observed on the interferogram. In this configuration, the

retro-reflected long arm laser beam would also couple into the fiber. We get close to the maximum

expected fiber back-coupling from the long arm cavity accounting for all losses in the chain. With

M3 aligned, the skeleton for the Twyman-Green-Fizeau interferometer is complete and we are

now in a position to start aligning the objectives.

22Crossed-roller bearing translation stages have the least angular deviation given the their travel range [190]. We
removed the micrometer on this stage because we need only two discrete positions: fully retracted or fully inserted.
We noticed that the tilt of the mirror changed when the micrometer was turned to move the stage. This problem
disappeared when the stage had only two discrete positions. We would retract and insert the mirror using the stage
multiple times and would not observe a discernible change in tilt greater than 10 µrad.
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V: Objective 1 is aligned first. The objective is first centered on the optical axis of the laser beam

in the long arm. The working distance for our objectives is 2 mm from the glass cell surface.

The objective is mounted (Fig. 7.45) and translated, while its distance from the glass cell window

is monitored using a camera. For this alignment, the back-reflection from the optical flat serves

as the reference wavefront i.e. the Fizeau interferometer configuration. The dim collimated

back-reflection from the first surface at the entrance aperture of objective 1 is interfered with

the reference wavefront to generate an interferogram. The alignment of objective 1 is adjusted

using a 5-axis piezoelectric motor-actuated stage from Newport (8081) until one tip/tilt fringe is

measured on the interferogram.

VI: Objective 2 is aligned next. The FOV of each high NA objective is 200 µm with a depth of

field of order λ [191]. Therefore, aligning the FOV of both objectives to each other is challenging.

For this alignment, the Twyman-Green interferometer configuration is used i.e. the short arm is

unblocked. The motion of the mounted objective 2 (Fig. 7.45) is controlled using another 5-

axis piezoelectric motor-actuated stage from Newport (8081). The alignment of objective 2 is

adjusted until the coma aberration as measured on the interferogram [180] is minimized (see

Fig. 7.58). In the optimally aligned configuration, we even measure a third to a fourth of the

maximum expected fiber back-coupling from the long arm cavity accounting for all losses in the

chain with the objectives in place.

The residual coma in the interferogram arises from the decentration of the glass cell with

respect to the optical axis of the laser beam in the long interferometer arm [192]. The objectives

must be centered on the space between the electrodes in order to use their full NA. Unfortunately,

the center of the space between the electrodes is offset from the center of the objective window
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of the glass cell. We suspect that the electrode assembly must have drooped under gravity.

Apart from the high alignment precision, this alignment technique also allows for fast

recovery/re-alignment of high NA objectives in the event of a misalignment. We have re-aligned

our high NA objectives in less than 4 hours. Last but not least, this alignment technique yields

laser beams that can now serve as reference beams for aligning the imaging system and the optical

tweezer projection systems, which I will discuss next.

7.6.3.2 Aligning the tweezer projection systems

At the heart of the tweezer projection systems was the use of optical rails (see Fig. 7.59).

Large-scale control over alignment errors between the constituent optics can be rectified by

using optical rails and its compatible accessories. Finer control over the alignment errors can

be performed by using lens mounts (LP-2A, 9081 alignment stage, and 9071 alignment stage

from Newport) that have 5-axis capabilities: tip, tilt, defocus, decenter in x, and decenter in y.

Defocus/despace errors between the lenses can be corrected by using shearing interferometry

on the multiple afocal subsystems that make up the tweezer-projection system. I specifically

chose the 95 mm optical construction rails from Thorlabs and all of its accessories like drop-on

rail carriages and rail plates from Thorlabs and Newport. I designed my own long rail plates

(red plates in Fig. 7.59) that were used in the tweezer-based projection systems. However, I

eventually abandoned using these rail plates as they turned out to be less versatile than the drop-

on rail carriages from Thorlabs and Newport. Using optical rails has multiple benefits, which I

list below:

• Using the mechanical constraints of the rails and their accessories, it is straightforward to
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approximately align the input beam to the tweezer-projection system and all the mounted

optical components to the rails. For instance, the optical mounts mounted on rail carriages/plates

can be readily centered transversely with respect to the rail. The input beam can be made

level and centered transversely with respect to the rail using irises mounted on rail carriages

that are tightened to the rail.

• The rails facilitate non-sequential alignment of the mounted optics, which was critical in

the alignment of our tweezer-projection system. The optical elements can be removed

for alignment or debugging purposes, and then reinstalled easily with no change in the

alignment. We use additional rail plates to memorize the location of each optical element

in the beam path when we remove it.

• The rails provide large dynamic range for defocus/despace corrections without compromising

tip/tilt and decentration of the mounted optical elements in the process.

• The rail plates/carriages on which the optics are mounted have a large surface area overlap

between the plates/carriages and the optical rails. This helps improve passive stability when

the rail plates/carriages are tightened to the rails.

• The rails are heavy, monolithic machined pieces of aluminum. This feature, along with the

fact that the large overlap area between the bottom surface of the rail and the optical table,

helps increase passive stability when the rails are bolted down.

I built the tweezer projection systems (see Fig. 7.48 and Fig. 7.49) with help from Kevin. I detail

my strategy for aligning the tweezer projection systems in Appendix I.

168



(a) (b)

(c) (d)

Figure 7.59: The optical rail-based construction of (a) (b) the AOD-based tweezer projection
systems, (c) (d) SLM-based tweezer projection systems

7.6.3.3 Designing and aligning the imaging system

In order to align the imaging system, the mirror M3 in the long interferometer arm is

retracted (see Fig. 7.56). The reference beam from the long interferometer is used to align the

4f imaging system (see Fig. 7.48). The imaging lens is centered on the interferometer beam.

The camera is placed at the focus of the interferometer beam. The camera sensor area is also

169



centered on the focused interferometer beam. The magnification of the 4f imaging system is

M = fimaging/fobjective, where fobjective is the focal length of the objective and fimaging is the focal

length of the imaging lens. The specifications of our imaging system for both species can be

found in the table below.

Camera M Atom (Color) Pixel size (µm)

Andor iXon X3 EMCCD, model number: DU-888D-c00-BV-9JO 25 Rb (780 nm) 16

Princeton 123 Instruments, model number: PIXIS 1024B DETECTOR EXCELON 33 Yb (399 nm), Rb (420 nm) 13

The transverse, axial, and angular magnification of a tweezer, with waist wtweezer and Rayleigh

range zR,tweezer = (πw2
tweezer)/λ, imaged by this 4f imaging system is as follows:

Transverse magnification: wcamera =Mwtweezer (7.67)

Axial magnification: DOF︸︷︷︸
depth of focus

=M2zR,tweezer =
πM2w2

tweezer

λ
, (7.68)

Angular magnification: θcamera ≃
NA
M

. (7.69)

The choice of magnification M depends on a few things. A small angular magnification

θcamera (large M ) helps minimize aberrations when the focused imaging light passes through a

plane-parallel plate (bandpass filter) installed right in front of the camera. In addition, the depth

of focus [106, 193] of the imaging system increases quadratically with M . Therefore, a large M

seems highly preferable. However, the Nyquist sampling theorem for digital imaging of a point
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source sets an upper bound on M . The sampling theorem can be stated as follows [194, 195]:

M × 1.22λ/NA︸ ︷︷ ︸
Diameter of the Airy disc at the camera

≥ 4× camera pixel size. (7.70)

For a given SNR, oversampling the PSF of the imaging system—using more than four camera

pixels to sample the diameter of the Airy disc—increases the camera acquisition time. This is

not ideal, as we desire short cycle times. As the atoms in optical tweezers will be separated by

2 to 5 µm or more, we do not need to follow the 4 pixel rule. I designed the imaging system

to undersample the PSF, dedicating 2 pixels to sample the Airy disc diameter. This choice

also improves the accuracy in determining the position of the tweezer in the focal plane of the

objective, when compared with using just one pixel for the Airy disc diameter.

Although the long arm interferometer beam at 532 nm was used to determine the position

of the camera, the axial position of the camera is different for the imaging light due to chromatic

aberrations induced by the imaging lens (The objective lens is corrected for chromatic aberrations).

In order to determine the correct axial position of the camera, we need to image the atoms.

We first load atoms into a tweezer with a tunable waist. The waist size of the tweezer

can be tuned using zoom beam expanders (ZBE1B and ZBE12 from Thorlabs in the AOD-based

tweezer projection systems in Fig. 7.48). As the average number of atoms in the tweezer trap

volume scales as w2
tweezer [72], we start with a tweezer with a large waist. This arrangement yields

a large fluorescence signal and the camera is comfortably in the depth of focus of the imaging

system. The fluorescence signal measured on the camera reduces dramatically as the tweezer

waist is reduced due to the w4
tweezer trap volume scaling. At the same time, the depth of focus

also decreases, but less dramatically, due to the w2
tweezer scaling. The camera is mounted on two
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translation stages (LNR50M from Thorlabs) and a lab jack (L490 from Thorlabs) for full x, y, z

motion control. We adjusted the position of the camera so as to stay in the depth of focus of

the imaging system as the tweezer waist (trap volume) is progressively reduced. This technique

helped us image single atoms in tweezers (Fig. 7.66). I had originally devised this alignment

technique but had abandoned it because I was afraid of beam steering issues with the zoom beam

expander, which in the end was not as bad as I thought.

For pedagogical purposes, I will derive [72, 196] the scaling laws for the optical dipole trap

volume Vdipole trap, the average number of atoms loaded into the dipole trap ⟨N⟩, and the dipole

trap power Pdipole trap as a function of the waist size of the dipole trap wdipole trap. A tweezer is just a

microscopic dipole trap. The rate equation for the number of atoms loaded into an optical dipole

trap N is as follows [72, 196]:

dN

dt
= R− γN − β′N(N − 1), (7.71)

where R is the loading rate from the MOT, γ is the one-body decay rate due to collisions

with fast background gas atoms, and β′ is the two-body decay rate due to inelastic collisional

mechanisms [72, 73, 196]. The steady-state average number of atoms in the dipole trap ⟨N⟩

under strong loading rate conditions is therefore [72, 196]:

⟨N⟩ ∼
√
R

β′ ∝ w2
dipole trap

√√√√ π2

λdipole trap
ln

(
1

1− kBT/|U0|

)√
kBT/|U0|

1− kBT/|U0|
︸ ︷︷ ︸√

Vdipole trap

, (7.72)

where λdipole trap is the dipole trap wavelength, T is the temperature of the atoms in the dipole trap
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and U0 is the dipole trap depth. The ratio kBT/|U0| in Eq. 7.72 was measured to be constant and

equal to 0.4 in Ref. [196] for their range of trap parameters. Therefore, ⟨N⟩ scales as w2
dipole trap,

Vdipole trap scales as w4
dipole trap. Pdipole trap scales as w2

dipole trap for a constant trap depth U0.

Before using the zoom beam expander approach to adjustwdipole trap, we used an iris screwed

to the mount for the last lens in the AOD-based tweezer projection system (lens 5 in Fig. 7.47)

to adjust wdipole trap. This approach failed as we did not have enough tweezer laser power at our

disposal as Pdipole trap scales as w4
dipole trap for this approach.

7.6.3.4 Rearranging the optical tweezers

Hologram plane

Phase

Amplitude

Illumination

Focal plane

Image
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FFT-1

Initial seed: random

Discarded

Discarded

Output
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...... ......

...... ......
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(b)

Figure 7.60: (a) The standard Gerchberg-Saxton (G-S) algorithm (b) My modification to the G-S
algorithm for fast frame generation.

AOD-based optical tweezers are routinely used to create defect-free arrays of single neutral
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atoms. Rearranging stochastically-loaded tweezer arrays requires dynamic arbitrary control over

the amplitude, frequency, and phase of the single-frequency tones that comprise the multitone

waveform driving the AOD. Some generate the multitone rf waveform using an FPGA-based

signal generator or SDR [76, 197, 198]. Some use a PC to pre-compute and save the waveforms,

and the rearrangement trajectories in memory [198, 199]. Others move an optical tweezer by

controlling a voltage-controlled oscillator with a microcontroller [200].

I came up with an idea for fast real-time rf arbitrary waveform generation using graphic

processing units for the purposes of rearranging/moving the AOD-based optical tweezers to create

a defect-free array. This idea was implemented by Oliver. We wrote a paper about it [83].

The following work is preliminary, but seems promising. As we have ultrahigh speed

SLMs on our system, we need to compute holograms at high speed to make good use of these

SLMs. We use the Gerchberg-Saxton (G-S) algorithm to generate the phase-only holograms for

the SLM. The standard G-S algorithm is illustrated in Fig 7.60a [178, 201, 202, 203]. It is an

iterative algorithm that takes an initial random phase hologram as the seed. Typically, multiple

iterations are needed to converge to the desired hologram. However, when we are rearranging the

atoms using the SLM, we have intimate knowledge of the sequence of movements that must be

made to generate a defect-free array. The motion of the traps from one frame to the next has to be

small to minimize atom loss. Therefore, instead of seeding the G-S algorithm with the random

phase hologram to generate a frame, I had the idea of seeding the G-S algorithm with the phase

hologram of the frame that preceded it. This idea is illustrated in Fig. 7.60b.

Oliver implemented this idea on the Quadro RTX 6000 GPU using CUDA (Compute

Unified Device Architecture). Typically, only one G-S iteration is needed to achieve fidelity

of 96%. Fidelity is defined as the overlap integral between the target image electric field and
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Undiffracted order

Generated image

Figure 7.61: SLM generated image measured by the camera placed at an image plane in the
SLM-based tweezer projection system

the generated image electric field in Ref. [204]. One iteration takes 220 µs on average. It takes

∼ 120 µs to transfer the data from the GPU to the CPU. Data transfer from the CPU to the SLM

takes ∼ 200 µs. Oliver has been testing these computer-generated holograms on the actual SLM

(Fig. 7.61).

7.7 Towards trapping single atoms

7.7.1 3D MOTs of Rb and Yb

The MOT arm arrangement in our experiment is as follows: two regular arms and one/two

shallow-angle arms, which are at 67.5◦ from a regular third arm orientation (see 7.28 and

Figs. 7.29). This arrangement for the arms was chosen to avoid forming the third MOT arm
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Figure 7.62: A 3D MOT of 87Rb atoms in the shallow-angle arm arrangement

Figure 7.63: Absorption imaging of ∼ 100, 000 87Rb atoms sub-Doppler cooled to ∼ 30µK in
the shallow-angle arm arrangement
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through the objectives. However, this design choice has delayed us by several months. Although

we do not need a lot of atoms for experiments with atoms in optical tweezers, all the steps that

lead up to it benefit from large atom numbers. For instance, debugging the MOTs and aligning

laser beams to the MOTs is easy with large atom numbers.

Our MOT arrangement renders the capture and cooling of atoms highly sensitive to scattering

force imbalances arising from power and polarization fluctuations in the MOT arms, especially

the shallow-angle arms. These force imbalances lead to non-ideal MOT operations: higher

ultimate temperatures and poor transfer of atoms between laser cooling stages. Force imbalances

can be diagnosed when magnetic field gradients are lowered while all other parameters for the

3D MOT are kept constant. The 3D MOT cloud will move in the direction of the imbalance

as the field gradient is lowered before it disappears [205]. The scattering force imbalances are

overcome at large magnetic field gradients.

Force imbalances play an important role when Yb atoms are transferred from the Yb blue

3D MOT to the Yb green 3D MOT [205]. The maximum scattering force for the blue transition

is ∼ 230 times greater than the maximum scattering force for the green transition ((30 MHz/399

nm)/(0.182 MHz/ 556 nm)) (Fig. 6.1). Additionally, the optimal magnetic field gradient for

a MOT is proportional to the linewidth of the cooling transition used: the optimal field gradient

needed for the blue MOT is greater than that needed for the green MOT. The Doppler temperature

of the MOT cloud is also proportional to the linewidth of the cooling transition. Due to the

scattering force imbalances in the blue 3D MOT, the atoms can be accelerated to velocities

beyond the capture velocity of the green 3D MOT. A green 3D MOT in a shallow-angle arm

arrangement (two regular arms and one shallow-angle arm in a retro-reflected beam geometry)

was unable to capture the atoms from the shallow-angle blue 3D MOT. I designed and installed
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(a) (b)

Figure 7.64: A 3D MOT of 174Yb atoms (a) in the blue shallow-angle arm arrangement (b) in the
simultaneous blue plus green shallow-angle arm arrangement

(with Kevin) an additional shallow-angle arm for extra confinement, which made this a dual

shallow-angle arm arrangement with two regular arms and two shallow-angle arms in a retro-

reflected beam geometry (see Fig. 7.29).

We first achieved a 3D MOT of 87Rb atoms in the shallow-angle arm arrangement (see

Fig. 7.62). Subsequently, we sub-Doppler cooled ∼ 100, 000 87 Rb atoms to ∼ 30µK (see

Fig. 7.63). The blue shallow-angle 174Yb 3D MOT is shown in Fig 7.64a and the simultaneous

blue plus green shallow-angle 174Yb 3D MOT (aka hybrid Yb 3D MOT) is shown in Fig 7.64b.

The hybrid 3D MOT is the starting point for transferring atoms to just the green 3D MOT. We use

the same gradient for Yb as we do for Rb (±6− 8 A in the MOT coils). We shine a total ∼ 100

mW of 556 nm light distributed over all the MOT arms, effectively power-broadening the MOT

transition. Power broadening is a simple alternative to artificial broadening [8, 9]. We would then

reduce the field gradients, while simultaneously decreasing the power in the green MOT beams

and bringing the frequency of the green MOT closer to resonance. This would give us a cold

(∼ 30− 50µK) cloud of 3− 5× 106 174Yb atoms (see Fig. 7.65).

At some point, we tried to form the green 3D MOT of Yb with a third MOT arm through

the objectives, but that turned out to be very challenging. Our setup was not designed for this
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Figure 7.65: Absorption imaging of a cloud of ∼ 3× 106 174Yb atoms cooled to ∼ 30− 50µK in
the green 3D MOT shallow-angle arrangement.

particular arrangement, and the high-NA nature of the objectives did not make this alignment

easy. In conclusion, my advice would be to simulate [206] an exotic MOT arrangement before

implementing it. The difficulty of trapping and cooling atoms in exotic MOT arrangements

should not be underestimated.

7.7.2 Optical tweezers of single 87Rb atoms

Given that we are able to laser cool the Rb and Yb atoms to temperatures in the tens of µK

range, the next step is to trap them in optical tweezers. We first tried to trap single 87 Rb atoms in

optical tweezers because it is a simpler atom to work with.

One of the first things we did was to maximize the fluorescence from 87Rb atoms in the

MOT stage and the optical molasses stage on the Andor camera (Sec 7.6.3.3) by adjusting the

values for the magnetic fields. However, the procedure laid out in Sec. 7.6.3.3 is what gave
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us the first tweezer signal: The MOT and optical molasses were overlapped with a tweezer

beam in a large waist configuration, and the fluorescence from the atoms was measured. By

progressively reducing the tweezer waist using the zoom beam expander, we enter the single-

atom tweezer loading regime where the atoms are stochastically loaded into the tweezer. To

confirm the stochastic nature of the loading, we project a 2 × 3 optical tweezer array with the

spacing between the rf tones set to 2.5 MHz, which maps to a 14.25 µm spacing at the objective

BFP (Eq. 7.60). Fig. 7.66 shows the average image of 30 individual fluorescence images of the

stochastically loaded 2× 3 optical tweezer array. The x− and y− axes in this image are in units

of the number of camera pixels. The exposure time on the Andor camera was set to 100 ms for

these fluorescence measurements.

This signal (Fig. 7.66) was achieved just a few weeks before I finished writing this thesis.

I would not have been able to present this image here without Madi’s and Kevin’s efforts during

these past three months. For that, I am extremely grateful.

7.8 Outlook

Although the last few years of construction have been both fun and challenging, it is

really good to see that we have gotten ever so close to doing real science. The immediate

next step would be to trap single Yb atoms in optical tweezers followed by characterizing and

optimizing the loading and trapping of both atoms in their respective optical tweezers. Given

the ultrahigh-speed SLMs at our disposal, we can work towards accelerating the creation of

simultaneous defect-free lattices of both species. Building the optical setups for implementing

single-qubit gates for each species would also need to be done. Exciting both of these atoms to
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Figure 7.66: 30 shot averaged image of 87Rb atoms stochastically loaded into a 2x3 optical
tweezer array. The x− and y− axes are in units of number of pixels.

their Rydberg states to characterize the heteronuclear Förster resonances, in addition to measuring

the anomalously weak van der Waals interaction between two Yb atoms in the (6sns)1S0 Rydberg

states, are also on our scientific roadmap. These measurements would enable us to implement

the multi-qubit gates needed for many of the proposals I have mentioned in Chapter 6. Some of

these ideas include the transfer of quantum information between atoms of two species, and the

creation of N-atom Greenberger–Horne–Zeilinger (GHZ) states [207, 208, 209].
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Appendix A: Dark State Optical Lattice with a Subwavelength Spatial Structure
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We report on the experimental realization of a conservative optical lattice for cold atoms with a
subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level
atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating
the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than
10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We
study the band structure and dissipation of this lattice and find good agreement with theoretical predictions.
Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 105

times the excited state lifetime, and could be further improved with more laser intensity. The potential is
readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect
box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with
subwavelength spacings.
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Coherent control of the position and motion of atoms
with light has been a primary enabling technology in the
physics of ultracold atoms. The paradigmatic examples of
conservative optical potentials are the optical dipole trap
and optical lattices, generated by far off-resonant laser
fields, with the ac-Stark shift of atomic levels as the
underlying mechanism. The spatial resolution for such
optical potential landscapes is determined by the diffraction
limit, which is of the order of the wavelength of light λ.
This fundamentally limits optical manipulation of atoms.
For example, in quantum simulation with atoms in optical
lattices, the minimum lattice constant is λ=2, setting the
energy scale for Hubbard models for both hopping (kinetic
energy) and interaction of atoms, with challenging temper-
ature requirements to observe quantum phases of interest
[1]. Developing tools to overcome the diffraction limit,
allowing coherent optical manipulation of atoms on the
subwavelength scale, is thus an outstanding challenge.
Following recent proposals [2–4], we report below first
experiments demonstrating coherent optical potentials with
subwavelength spatial structure, by realizing a Kronig-
Penney–type optical lattice with barrier widths below λ=50.
In the quest to beat the diffraction limit, several ideas have

been proposed to create coherent optical potentials with
subwavelength structure. These include Fourier synthesis of
lattices using multiphoton Raman transitions [5,6], optical

or radio-frequency dressing of optical potentials [7,8], and
trapping in near-field guided modes with nanophotonic
systems [9,10] (although they suffer from decoherence
induced by nearby surfaces). An alternative approach uses
the spatial dependence of the nonlinear atomic response
associated with the dark state of a three-level system [11–16]
as a means to realize subwavelength atomic addressing and
excitation. The subwavelength resolution arises when optical
fields are arranged so that the internal dark state composition
varies rapidly (“twists”) over a short length scale.
As proposed in [3,4], such a subwavelength twist can

also be used to create a conservative potential with narrow
spatial extent, due to the energy cost of the kinetic energy
term of the Hamiltonian [2,17,18]. Unlike ac-Stark shift
potentials, this twist-induced potential is a quantum effect,
with magnitude proportional to ℏ. Using this effect, we
create 1D lattices with barrier widths less than λ=50. This
potential realizes the Kronig-Penney (KP) lattice model
[19]—a lattice of nearly δ-function potentials. We study the
band structure and dissipation and find that the dark state
nature of this potential results in suppressed scattering, in
good agreement with theoretical models.
Our approach is illustrated in Fig. 1(a). A three-level

system is coupled in a Λ configuration by two optical
fields: a spatially varying strong control field ΩcðxÞ ¼
Ωc sin ðkxÞ and a constant weak probe fieldΩp. The excited
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state jei can decay to either ground state jgii. Within the
Born-Oppenheimer (BO) approximation, slowly moving
atoms in the dark state jE0ðxÞi are decoupled from jei,
where jE0ðxÞi ¼ sinðαÞjg1i − cosðαÞjg2i and αðxÞ ¼
arctan½ΩcðxÞ=Ωp� [3]. The two bright states E�ðxÞ have
excited state component jei, leading to light scattering. As
shown in Fig. 1(b), the fields are arranged in such a way
that the dark state changes composition over a narrow
region, depending on the ratio ϵ ¼ Ωp=Ωc. The kinetic
energy associated with this large gradient in the spin wave
function gives rise to a conservative optical potential VðxÞ
[3,4] for atoms in jE0ðxÞi,

VðxÞ ¼ ℏ2

2m

�
dα
dx

�
2

¼ ER
ϵ2cos2ðkxÞ

½ϵ2 þ sin2ðkxÞ�2 ; ð1Þ

where k ¼ 2π=λ, ER ¼ ℏ2k2=2m is the recoil energy, andm
is the mass of the atom. The potential VðxÞ can be viewed
as arising from nonadiabatic corrections to the BO potential
[3,4] or artificial scalar gauge potential [18,20,21]. When
ϵ ≪ 1, this creates a lattice of narrow barriers spaced by
λ=2, with the barrier height scaling as 1=ϵ2 and the full
width at half maximum scaling as 0.2λϵ [Fig. 1(b)].
The potential VðxÞ exhibits several properties that

distinguish it from optical potentials based on ac-Stark
shifts: (1) The explicit dependence on ℏ, via the recoil
energy ER, reveals the quantum nature of VðxÞ arising from
the gradient in the wave function, whereas a typical optical

potential can be described entirely classically as an induced
dipole interacting with the electric field of the laser.
(2) Since gradients in wave functions always cost energy,
VðxÞ is always repulsive. (3) The geometric nature of the
potential results in it being only dependent on ϵ. By
deriving both fields from the same laser, it is relatively
insensitive to technical noise. (4) Unlike near-field guided
modes [9,10], our scheme works in the far field, thus
avoiding the decoherence associated with the proximity of
surfaces.
We realize the Λ configuration using three states selected

from the 1S0, F ¼ 1=2 and 3P1, F ¼ 1=2 hyperfine mani-
folds in 171Yb. The two 1S0 ground states mF ¼ �1=2
comprise the lower two states jg1i and jg2i [see Fig. 1(a)].
The 3P1, mF ¼ −1=2 state, with inverse lifetime
Γ ¼ 2π × 182 kHz, makes up the third state jei in the Λ
configuration. The jgii → jei transitions are isolated from
the transition to the other 3P1, mF ¼ þ1=2 state by
applying a 12 mT magnetic field B⃗ to Zeeman split the
two 3P1 states by ΔB ¼ 1.8 × 103 Γ. The same field
slightly splits the 1S0 ground states by −0.5Γ due to the
small nuclear magnetic moment. The standing-wave con-
trol field ΩcðxÞ, traveling along B⃗, is produced by two
counterpropagating σ− laser beams that couple the jg2i and
jei states with amplitudes Ωc1eikx and Ωc2e−ikx. A third
beam, π polarized and traveling normal to B⃗, couples the
jg1i and jei states with amplitude Ωpeiky. The frequency of
the control and probe beams can be chosen to set the single-
and two-photon detunings, Δ and δ. We define δ ¼ 0 as the
dark state condition for the isolated three-level system,
accounting for the Zeeman splitting. Off-resonant cou-
plings to other states can introduce light shifts, which
require nonzero δ to maintain the dark state condition.
We create an ultracold 171Yb gas in a bichromatic crossed

dipole trap by sympathetic cooling with Rb atoms that are
also magnetically confined [22,23]. After Yb atoms are
collected with a temperature of ≃300 nK (T=TF ¼ 1.10,
where TF is the Fermi temperature), the magnetic field in
the x direction is ramped up in 100 ms to 12 mT, removing
Rb from the trap. The Yb atoms are then optically pumped
into jg1i using a 50 ms pulse from one of the control beams,
resulting in ≃1.5 × 105 Yb atoms polarized. The small
171Yb scattering length (−3a0 [24], with a0 the Bohr
radius), plus the lack of s-wave scattering in polarized
fermions allow us to neglect interactions. The Rabi
frequencies of each of the three beams are calibrated by
measuring the two-photon Rabi frequencies from jg1i →
jg2i at large Δ with different pairs of beams. The laser
polarization purity and alignment to B⃗ are carefully
optimized, such that the residual fraction of wrong polari-
zation measured in Rabi frequency is less than 0.5%. To
load Yb into the ground band of the dark state lattice, we
first populate the spatially homogeneous dark state by
ramping on Ωc1 followed by Ωp and then adiabatically

(a) (b)

(c)

FIG. 1. Level structures and experimental geometry. (a) The
three levels in 171Yb used to realize the dark state are isolated
from the fourth 3P1, mF ¼ þ1=2 state by a large magnetic field.
They are coupled by a strong σ− polarized control field Ωc
(green) and a weak π polarized probe field Ωp (orange). The
resulting dark state is a superposition of the ground states jg1i and
jg2i, with relative amplitudes determined by ΩcðxÞ=Ωp. (b) Spa-
tial dependence of the dark state composition is created using a
standing wave control field ΩcðxÞ and a traveling wave probe
field Ωp. The geometric potential VðxÞ (black) arises as the dark
state rapidly changes its composition near the nodes of the
standing wave. (c) The two counterpropagating σ− beams
creating the standing wave are aligned with a strong magnetic
field along x, while the π beam travels along y.
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ramp on Ωc2 in 1 ms, creating the lattice. We measure the
momentum distribution using a band mapping sequence
[25], by first ramping off Ωc2 in 0.5 ms and then suddenly
turning off all the other light fields. We take absorption
images after time-of-flight (TOF) along y to measure the
momentum along x and z; see [26] for further details.
The existence of lattice structure of VðxÞ leads to

Brillouin zones (BZ), visible in TOF images taken after
band mapping. Since kBT is less than the band gap, the
population is predominantly in the first BZ and distinct
band edges are visible [upper panel in Fig. 2(a)]. The lower
panel shows the result with no probe beam, where we find a
nearly Gaussian distribution in the lattice direction. We also
see nearly Gaussian distributions for atoms loaded in the
other two-beam configurations: Ωc1, Ωp and Ωc2, Ωp.
For small ϵ, this lattice maps to a 1D KP model. One

characteristic feature of the KP lattice is that the energy of
the nth-band scales as n2ER, such that the band spacing
increases with n. In contrast, in a deep sinusoidal lattice,
the band spacing decreases with n. To map out the band
structure, we excite atoms from the ground (s) band into the
higher bands by shaking the lattice using phase modulation
of one of the σ− beams. After band mapping, we measure
the band populations, which become separated after TOF
[see Fig. 2(c)]. Figure 2(b) plots the frequency-dependent

excitation into the first (p) and second (d) excited bands for
ϵ ¼ 0.14, extracted from the data in Fig. 2(c). The s → d
excitation arises from a two-step process involving the p
band. We map out the band structure up to the g band
and plot the energy differences for adjacent bands [see
Fig. 2(d)], which increase monotonically with n. The green
rectangles show the theoretical band spacings and widths,
calculated from a model that includes both the light shifts
from states outside the three-level system [26] and mixing
with the bright states.
Another property of a KP lattice is that, in the deep lattice

limit, its band structure is almost independent of the barrier
strength (the area under the potential for a single barrier),
which scales with 1=ϵ. The band spacings for different ϵ are
plotted in Fig. 3(a) for fixedΩc ¼ 100 Γ andΩp varied from
5 to 20 Γ. As expected, the band spacings are almost
independent of ϵ, even though the probe power varies by
an order of magnitude. The upper panels of Fig. 3(a) show the
potentials of the upper bright state (blue) and dark state
(green) for three ϵ. For ϵ ≤ 0.1, mixing between E0ðxÞ and
E�ðxÞ states modifies the band structure, reducing the band
spacing. For ϵ≃ 0.1, we realize a barrier width of 10 nmwith
minimal coupling to the bright state. The shaded regions are
predictions based on amodel that takes bright state couplings
into account,which are in better agreementwith themeasured
spacings, compared to the model that has no couplings
(dashed line). We attribute the discrepancy between theory
and experiment to the residual polarization imperfections,
calibration errors in the optical intensity, and limitations of
band spectroscopy. We note that the theory predicts a
vanishing band width near ϵ≃ 0.125 and the growth of
thebandwidth at even smaller ϵ, due to the interference of dark
state and bright state mediated tunneling [26].
Away from δ ¼ 0, the state is no longer completely dark

and it experiences an additional periodic potential with
amplitude δ [26,30] [Fig. 3(b)]. This additional potential
perturbs the KP lattice and the band structure. We verify
this by measuring the band spacings as a function of δ
[Fig. 3(b)] and find it agrees with the prediction (shaded
area), with the systematic deviation likely coming from the
same factors as in Fig. 3(a).
Finally, we study dissipation. The nonadiabatic correc-

tions to the BO potential that give rise to VðxÞ also weakly
couple the dark state with the bright states, which leads to
light scattering, heating the atoms out of the trap. We
measure the lifetime τ in a dark state lattice [Fig. 4(a)] for
different Δ and find it significantly longer for Δ > 0 than
for Δ < 0. This is in contrast to an optical lattice based on
ac-Stark shifts, where heating is independent of the sign of
Δ [31,32]. To intuitively understand this asymmetry, we use
the model described in [4] and note that the coupling to the
bright states takes place inside the barrier. An atom can
scatter light by admixing with the bright states E�ðxÞ
(approximately Δ independent) or exiting into the energy-
allowed E−ðxÞ state via nonadiabatic couplings (strongly Δ

(a)

(d)

(b) (c)

FIG. 2. (a) Band mapping results for atoms loaded into the dark
state lattice with three beams (upper) and with only Ωc beams
(lower). The white traces show the integrated momentum dis-
tribution in each direction (x is the lattice direction). (b),(c) Band
spectroscopy: in (c), we plot the TOF column density integrated
over z after shaking the lattice vs the shaking frequency; in (b),
we plot the fraction of the population (frac. pop.) excited to the p
band (dark green) and d band (magenta) Brillouin zones [see (c)]
vs shaking frequency. Gaussian fits [colored lines in (b)] are used
to determine the center frequency and the width of the transition.
(d) Band spacing scaling: Enþ1 − En is plotted vs the band index
n of a dark state lattice with Ωc ¼ 70 Γ, Ωp ¼ 10 Γ, Δ ¼ 22 Γ,
and δ ¼ 0. The gray vertical bars indicate the transition width
inferred from the measurements, while the green rectangles are
predictions of the expected band spacings and widths [26].
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dependent). The E−ðxÞ state [red, Fig. 4(a), upper panels]
contributes more to the loss, explaining the Δ asymmetry.
The result of the model [26] is depicted as the black line,
with an empirical scale factor of 2.2 applied to the theory to
account for the unknown relationship between the scatter-
ing rate and loss rate (1=τ). The lifetime in a homogeneous
control field when one of the Ωc beams is blocked is shown
in Fig. 4(a) (inset). The τ≃ 4 × 105=Γ lifetime is almost
independent of Δ, as theory would predict, and is 70% of
the expected lifetime due to nonadiabatic coupling to the
bright states and off-resonant scattering from states outside
the three-level system.
The nonadiabatic bright state coupling also leads to a

counterintuitive dependence of the dissipation on the laser
power. Figure 4(b) shows the lifetime at constant ϵ as a

function of Rabi frequencies. Remarkably, the lifetime
increases with Rabi frequency. In contrast, for a regular
optical lattice at a fixed detuning, the lifetime does not
improve with more laser power. For the dark state lattice,
larger Ωc;p increases the separations between BO potentials,
resulting in decreased scattering. In general, the lifetime
improves with more laser power and at blue detuning.
However, couplings to EþðxÞ adversely affects the barrier
height [similar to the case with ϵ ≪ 1 in Fig. 3(a)]. With
realistic increase in laser intensity, we can potentially
improve the lifetime by an order of magnitude, while
maintaining the ultranarrow barriers.
The conservative nanoscale optical potential demon-

strated here adds to the toolbox of optical control of atoms,
enabling experiments requiring subwavelength motional
control of atoms. Such sharp potential barriers could be
useful for the creation of narrow tunnel junctions for

(a)

(b)

FIG. 3. Band structure scalings. Energies of the p and the d
bands with respect to the s band are plotted. (a) Vary ϵ:
Ωc ¼ 100 Γ, Ωp ¼ 5–20 Γ, Δ ¼ 22 Γ, and δ ¼ 0. Dashed lines
indicate the allowed transition energies predicted from modeling
VðxÞ alone, while the shaded regions are from a model including
couplings to the bright states. (Upper) Representative potentials
for the dark state (green) and bright state (blue). At ϵ ¼ 0.075, the
bright and dark states are no longer good basis states because of
the strong coupling between them. (b) Vary δ: Ωc ¼ 70 Γ,
Ωp ¼ 10 Γ, Δ ¼ 22 Γ. (Upper) Calculated dark state potentials
for positive and negative δ.

(a)

(b)

FIG. 4. (a) Lifetime of dark state lattice τ scaled by the excited
state lifetime Γ−1 vs Δ, with Ωc ¼ 70 Γ, Ωp ¼ 10 Γ, and δ ¼ 0.
(Inset) Lifetime of the dark state in spatially homogeneous
control fields, with Ωc1 ¼ 35 Γ, Ωc2 ¼ 0, Ωp ¼ 10 Γ, and
δ ¼ 0. (Upper three panels) The two bright state potentials
E−ðxÞ (red) and EþðxÞ (blue), and the dark state potential
(green), at different Δ. (b) Lifetime vs Ωp in a dark state lattice
where ϵ ¼ 0.2 and Δ ¼ 0. The solid black lines are predictions
scaled with a factor 2.2 [except for (a) inset, where no scaling is
applied]. The error bars represent 1 standard deviation uncer-
tainty from fitting the population decay data.
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quantum gases [33] or for building sharp-wall box-like
traps [34]. In addition, spin and motional localization on
small length scales can enhance the energy scale of weak,
long range interactions [3]. The dark state lattice is
generalizable to 2D and, for example, can be used to study
Anderson localization with random strength in the barrier
height [35]. By stroboscopically shifting the lattice [36], the
narrow barriers should enable optical lattices with spacings
much smaller than the λ=2 spacing set by the diffraction
limit, which would significantly increase the characteristic
energy scales relevant for interacting many-body atomic
systems.
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I. EXPERIMENTAL TECHNIQUES

FIG. S1. Level structure of the 1S1 and 3P1 manifolds of 171Yb: δ is the two photon detuning; ∆ is the single photon detuning;
ξ is the ground state Zeeman splitting and ∆̃ is the Zeeman splitting in the excited state due to the external magnetic field;
and ∆HFS is the 3P1 hyperfine splitting.

We use forced evaporation of co-trapped 87Rb to sympathetically cool ∼ 3×105 atoms of 171Yb to a temperature of
1.1 TF . The 87Rb -171Yb mixture is produced in a combined magnetic and multi-wavelength optical dipole trap [S1].
After reaching the final temperature, the Rb atoms are removed by ramping on the magnetic field to 12 mT. The
lifetime of Yb atoms in the trap after removal of the Rb atoms is 3 s. Referring to Fig. 1c. in the main text, the final
Yb trap frequencies are ωx ' 2π × 164 Hz, ωz+y ' 2π × 50 Hz, and ωz−y ' 2π × 155 Hz.

The σ−i and π coupling beams at 556 nm are generated from the same laser, which is beat-note (BN) locked to a
separate laser (used for laser cooling on the 1S0 − 3P1 transition), which itself is locked to an Yb atomic saturation
absorption signal. The dynamic control of the BN allows for rapid tuning of the single-photon detuning ∆ of the
beams. Separate acousto-optic modulators (AOM) allow for independent intensity control of all three coupling beams,
as well as control over the two photon detuning δ and the phase offset between the two σ−i beams (i = 1, 2) used for
shaking the lattice. The three beams are delivered to the atoms through independent optical fibers, and have beam
waists of ∼ 1mm at the atoms.

We image the atoms using the Yb 1S0− 1P1 transition at 399 nm, with light generated by a frequency doubled laser
system. We stabilize the seed of the imaging laser (at 800 nm) via a scanning transfer cavity lock [S2, S3] with light
locked to the 52S1/2 − 52P3/2 transition at 780 nm in Rb as the reference. State-selectivity is achieved by imaging in
a large magnetic field of 12 mT along x̂, such that the resulting 116 MHz spacing between the Zeeman states of 1P1 is
sufficient to resolve the spin-dependent transitions with linewidth Γ1P1 = 2π×30 MHz. The imaging beam propagates
along ŷ with linear polarization along ẑ, such that it has an equal superposition of σ̂+ and σ̂− relative to the B-field.



2

We measure the population in each hyperfine ground state by making the laser resonant with its respective stretched
state (1S0 |F = 1/2,mF = ±1/2〉 ↔ 1P1 |F = 3/2,mF = ±3/2〉) during imaging.

II. RABI FREQUENCY CALIBRATION

We calibrate the Rabi frequencies of σ−i (Ωci) and π (Ωp) by measuring two-photon Raman Rabi frequencies and
light-shift induced Raman detuning of the σ−i −π pairs of beams as a function of their beam powers. When ∆� Γ,Ω,
one can adiabatically eliminate the excited state, |3〉, and reduce the three-level system to an effective two-level system
with states |~p〉 |1〉 and

∣∣∣~p+ 2~δ~k
〉
|2〉, resulting in the following expressions for the two-photon Rabi frequency (ΩR)

and Raman detuning (δR) [S4]

ΩR =
ΩpΩci

2∆
(S1)

δR = δ +
4ωR(~p · δ~k +

∣∣∣δ~k
∣∣∣)

∣∣∣δ~k
∣∣∣

+ ξ − Ω2
ci

4∆
+

Ω2
p

4∆
(S2)

where δ~k = ~kc − ~kp, and ωR =
~|δ~k|2

2m is the Raman recoil energy. ~kc and ~kp are the k-vectors for one of the pump
beams and probe beam respectively. For a stationary gas, the second term in (S2) averages to 0.

We extract ΩR and δR by measuring the oscillation of the center of mass (COM) position of the cloud as a function
of the Raman pulse time, after a 12 ms time-of-flight (TOF). In addition to transferring population between ground
states, stimulated Raman transitions provide a momentum kick i.e. |~p〉 |1〉 ↔

∣∣∣~p+ 2~δ~k
〉
|2〉. This momentum kick

manifests itself in TOF measurements as spatially separated momentum peaks, and the COM position of the cloud
provides a measure of the ground state populations. Fig. S2(a) shows typical Rabi oscillation data, which we fit to a
damped sinusoid to determine ΩR. The damping arises from the spread in the momentum distribution of the atoms.

ΩR gives us information about the product of Ωci and Ωp, but not their absolute magnitudes. For fixed ∆, ΩR
and δR = 0, Eqs. (S1) and (S2) can be used to determine the two Rabi frequencies Ωci and Ωp as a function of laser
power. Defining Ω2

p = ApPp and replacing Ωci = 2ΩR∆/Ωp in Eq. (S2), we get

δ = ξ − ApPp
4∆

+
∆Ω2

R

ApPp
(S3)

where Pp is the power of the probe beam and Ap is the constant that connects Ωp to Pp.

FIG. S2. (a) Example center of mass oscillation of the cloud as a function of Raman pulse time, used to calibrate Rabi
frequencies. (b) Change in two-photon detuning (δ) as function of the probe power, Pp.

Experimentally, we fix ∆ = 40 MHz and vary Pci (the power of σ−i beam) and Pp so as to keep ΩR constant. We
tune δ to satisfy δR = 0, determined by maximizing the COM shift after a π/2 Raman pulse. We fit the measured
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values for δ as a function Pp using Eq. (S3) as the fit function with Ap and ξ as fit parameters. Fig. S2(b) shows the
fit to data. Defining Ω2

ci = AciPci just as for the probe beam, we extract Aci using Eq. (S1). Given the uncertainty
in the measurement of ΩR for the two cases, we can determine the balanced condition Ωc1 = Ωc2 to within 2%.

III. IMBALANCED LATTICE BEAMS

To determine the potential V (x) for imbalanced control beams, Ωc1 6= Ωc2, we consider the spatially dependent
control Rabi frequency of the form

Ωc(x) =
Ωc1eikx − Ωc2e−ikx

i
(S4)

When Ωc1 = Ωc2 = Ωc, we recover Ωc(x) = 2Ωc sin(kx). The resulting Hamiltonian in the bare state basis has the
form

H =
~Ωp

2




0 0 1
0 0 s sin(kx) + iη cos(kx)
1 s sin(kx)− iη cos(kx) 0


 (S5)

where s = 1
ε = Ωc1+Ωc2

Ωp
and η = Ωc1−Ωc2

Ωp
, and ∆ = Γ = δ = 0. Diagonalizing H gives the following normalized

eigenvectors:

|E0(x)〉 = − iη cos(kx) + s sin(kx)√
(1 + η2 cos2(kx) + s2 sin2(kx))

|1〉+
1√

(1 + η2 cos2(kx) + s2 sin2(kx))
|2〉

|E−(x)〉 = − 1√
2(1 + η2 cos2(kx) + s2 sin2(kx)

|1〉+
(iη cos(kx)− s sin(kx))√

2(1 + η2 cos2(kx) + s2 sin2(kx))
|2〉+

1√
2
|3〉

|E+(x)〉 =
1√

2(1 + η2 cos2(kx) + s2 sin2(kx)
|1〉+

(−iη cos(kx) + s sin(kx))√
2(1 + η2 cos2(kx) + s2 sin2(kx))

|2〉+
1√
2
|3〉

The resulting scalar potential for the dark state |E0(x)〉 [S5] is

V (x) =
~2

2M

∑

j=±

| 〈Ej(x)| ∇ |E0(x)〉 |2 = ER
s2 cos2(kx) + η2 sin2(kx)

(1 + η2 cos2(kx) + s2 sin2(kx))2
(S6)

When there is no imbalance, η = 0, we recover Eq. (1) from the main text,

V (x; η = 0) = ER
s2 cos2(kx)

(1 + s2 sin2(kx))2
(S7)
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FIG. S3. Growth of the barrier with decrease in η/s.
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The barrier height is given by hb = V (x = 0) = ERs
2/(1+η2)2. In Fig. S3, we show how hb grows as the imbalance

η/s is reduced from 1 to 0 (adiabatically loading into a 100ER lattice). When one of the control beams is turned
off, s2 = η2, the potential V (x) is small and spatially homogeneous. Given that our Rabi frequencies (Ωc1,Ωc2) are
balanced to within 2%, the uncertainty in η has negligible effect on the barrier height as hb ' ERs

2(1 − 2η2) for
η � 1. We also note that the FWHM of the sub-wavelength barriers in the dark state lattice is well approximated by
0.2λε below ε = 0.3 .

IV. LOADING ATOMS INTO DARK STATE LATTICE AND BANDMAPPING

To adiabatically load atoms into the ground band of the lattice, we first prepare the atoms in |1〉 by optically
pumping using the σ−1 beam with ∆ = 12 MHz. We then change ∆ to the final desired value using the BN lock. We
ramp on the power of the σ−1 beam in 0.1 ms and hold for 0.1 ms, followed by ramping on the π beam in 0.3 ms and
holding for 0.1 ms. This adiabatically transfers the atoms in |1〉 into the dark state of the σ−1 −π beam configuration.
Finally, we ramp on the σ−2 beam in 1 ms. As discussed in the previous section, this final step ramps the lattice
imbalance from η = 1 to η = 0, smoothly transforming the potential into the lattice potential.

To find the quasimomentum distribution of the atoms in the dark lattice we perform bandmapping at the end of
the experiment by adiabatically ramping down σ−2 in 0.5 ms (ramping down the barrier height), and then snapping
off the σ−1 beam, the π beam and the optical dipole trap. This maps atoms with given quasimomentum in the lattice
to real momentum in free space. We then take an absorption image of this momentum distribution after 12 ms TOF.

Optical Pumping Lattice Turn On Lattice Holding Bandmapping TOF

σ1
-

σ2
-

π

Δ

FIG. S4. Procedure to adiabatically load atoms into the ground band of the dark state lattice and performing bandmapping
at the end of the sequence.

V. POLARIZATION OPTIMIZATION

The polarization purity of the beams is sensitive to the alignment of the beams, ~kp and ~kci, with the magnetic field
~B. When ~kci of the circularly polarized control beams is well aligned with ~B, the atoms are optically pumped into the
trivial dark state, |1〉. But when the magnetic field is misaligned by an angle θ from ~kci, the resulting π component
intensity scales as sin2(θ). The effect of the π component can be investigated in the context of off-resonant EIT.
Due to the non-zero ground state Zeeman splitting (89 kHz), the π component and the σ− component of the control
beam are not on two-photon resonance which leads to photon scattering. This causes loss of atoms from the trap. By
measuring atom loss as function of the strength of the transverse magnetic field component( ~B⊥), we adjust ~B such
that ~B ‖ ~kc1. We then align ~kc2 to ~kc1 by coupling the σ−2 beam into the optical fiber that delivers the σ−1 beam to
the atoms with over 50% coupling efficiency.
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FIG. S5. Atom loss measurement to optimize polarization of σ−1 beam by scanning the transverse component of magnetic
field, ~B⊥.

The polarization of the π beam is optimized by aligning its polarization ~επ along ~B, ~επ × ~B = 0. This also implies
~kp · ~B = 0 where ~B is the magnetic field that also satisfies ~B ‖ ~kc1. We use a Glan-Taylor polarizer to define ~επ. The
optimal setting for the polarizer is determined by minimizing loss of atoms from the trap. To satisfy ~kp · ~B = 0, we
adjust ~kp such that the same ~B⊥ satisfies both ~kp · ~B = 0 and ~B ‖ ~kc1. We do this via a scheme where we first adjust
~kp and then perform the measurement we did to make ~B ‖ ~kc1 (Fig.S5), but now with the π beam. We iterate this
scheme until the ~B⊥ we measure coincides with the ~B⊥ needed to satisfy ~B ‖ ~kc1. When the polarization of the π
beam is not well aligned with ~B, undesired σ component from the π beam causes increased atom loss from the trap.
Just as in the case for σ−1 , this atom loss can be understood in the context of off-resonant EIT. With these techniques,
we accurately make ~B ‖ ~kc1, ~kp · ~B = 0 and ~επ × ~B = 0 to within ∼ 5 mrad.

VI. LATTICE MODULATION SPECTROSCOPY

We probe the bandstructure of the dark lattice by modulating the phase of the σ−2 beam with respect to the σ−1
beam using an analog RF phase-shifter on the RF drive to the AOM for the σ−2 beam. We transfer atoms from
the ground band to the first excited band by shaking the lattice at the appropriate frequency for 200 µs and an
amplitude of λ/8. We then perform bandmapping by ramping down one of the lattice beams in 0.5 ms. We measure
the population in each band as a function of modulation frequency and fit a Gaussian to the excited population to
extract the transition frequencies.

Since the short lattice shaking pulse is Fourier broadened, we are unable to resolve the quasimomentum dependence
of the band excitations when we scan the frequency. We also notice that in order to significantly populate excited
bands, a lattice shaking pulse with large amplitude is needed, in contrast to standard sinusoidal lattices where the
curvature of band dispersion can be easily resolved with small shaking amplitudes and longer pulse times. In standard
sinusoidal optical lattices, the Rabi frequency between a pair of bands is proportional to the shaking amplitude and
the lattice depth, and a small shaking amplitude in deep lattices can significantly populate the excited bands. This
is in contrast with the KP lattice, where the Rabi frequency is proportional to shaking amplitude, but independent
of the barrier height. Larger shaking amplitudes are required to transfer substantial population to the excited bands.
In addition, since the wavefunction in the dark state lattice goes to zero at the barriers and the potential is flat
elsewhere (where most of the wavefunction lives), the barrier excursion during a lattice shaking pulse needs to be
large to diabatically distort the wavefunction between the barriers and hence cause band excitations.

In Figs. 3(a) and 3(b) of the main text, we note that the frequencies of the transitions (s → p and s → p → d)
measured are slightly lower than the shaded regions. The dipole nature of the coupling due to lattice shaking allows
only transitions between bands of opposite parity i.e. s↔ p and p↔ d. The population in the d band arises after some
population has been transferred into the p band from the s band, which may affect the resonance spectrum. To better
understand this potential systematic redshift of the measured transition frequencies, we employ a model where we
map the first three bands (s, p, d) of the dark-lattice to an ensemble of discrete three-level ladder-type systems where
the energy spacings trace the curvatures of the bands sampled at various values of q. We solve the full time-dependent
Hamiltonian with an appropriate scaling factor for the drive strength and fit the ensemble average of the population
in the excited states as a function of lattice shaking frequency to estimate the transition frequencies. These estimated
transition frequencies are systematically lower by ∼ ER/3 than the average transition frequency between the bands
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which, has the same sign as the redshifts observed but is too small to account for all of the shift.

VII. MULTI-LEVEL MODEL

Fig. S1 depicts the three hyperfine states that constitute the Λ-system consisting of |1〉 , |2〉, and |3〉 (black) along
with five hyperfine states (grey) that the Λ system is coupled to off-resonantly. Couplings to these off-resonant states
affect the bandstructure of the Λ-system. We account for the effect of these off-resonant couplings by adiabatically
eliminating the five far off-resonant hyperfine states, which to second ordeer shifts the energies of the ground states
of the Λ-system, |1〉 and |2〉, by δ1(x) and δ2(x) respectively.

The Hamiltonian for our effective Λ-system is as follows.

H = −~2∂2
x

2m
+ ~



δ1(x) 0

Ωp
2

0 δ2(x) Ωc(x)
2

Ωp
2

Ωc(x)
2 −(∆ + iΓ

2 )


 (S8)

Here we use the same treatment to solve this non-hermitian Hamiltonian, as explained in [S6]. As H has the
periodicity of λ, we use Bloch’s theorem to define the wavefunction that solves H as ~Φ(x) = (u1(x), u2(x), u3(x))T ,

where uj(x) =
n=N∑

n=−N
Cj,q,ne

i(q+ 2nπ
λ )x for j = 1, 2, 3. Here u1(x), u2(x), and u3(x) represent the atomic wavefunctions

for states |1〉 , |2〉 and |3〉 respectively, and q is the quasimomentum such that q ∈ [−π/λ, π/λ]. The basis truncation
at N must be chosen large enough to correctly capture the non-adiabatic couplings between bright and dark Born-
Oppenheimer states at high momenta, and for the typical values of the parameters used in the experiment (e.g.
Ωp = 5− 30Γ, Ωc = 70− 100Γ, and ∆ = 2π× 4MHz), we find N = 105 to be sufficient to simulate the bandstructure.

The expressions for the ac-Stark shifts, δ1(x) and δ2(x), due to off-resonant Rabi couplings are as follows.

δ1(x) = δ − Ω2
p

2∆HFS

− 3Ωc(x)2

8∆HFS

(S9)

δ2(x) = −Ω2
p

4∆̃
− Ω2

p

2∆HFS

− Ωc(x)2

8∆HFS

(S10)

Substituting the expressions for δ1(x) and δ2(x) in Eq. (S8) and using the Bloch ansatz we calculate the bandstructure
for the Λ system.

The effects of the off-resonant couplings on the dark state (|E0(x)〉) can also be understood in the context of
perturbation theory. With the perturbing Hamiltonian given by

Hpert. = ~



δ1(x) 0 0

0 δ2(x) 0
0 0 0


 (S11)

the first order correction to V (x) is:

Vpert.(x) = 〈E0(x)|Hpert. |E0(x)〉 = ~

(
δ2Ω2

p

Ω2
p + Ω2

c(x)
+

δ1Ω2
c(x)

Ω2
c(x) + Ω2

p

)
(S12)

where |E0(x)〉 =
−Ωc(x)|1〉+Ωp|2〉√

Ω2
c(x)+Ω2

p

. With independent control over the two-photon detuning (δ), we are able to engineer

sub-wavelength traps as depicted in the upper panel of Fig. 3(b) in the main text.
We also note an interesting feature upon simulating the bandstructure for various values of ε. As ε is decreased

from 0.2 to 0.05, we observe that the curvature of the band inverts as shown in Fig. S6. For reference, we also present
the bandstructure calculated for just the potential H = p2

2m + V (x) + Vpert.(x) for each ε, represented as black dashed
lines. At a particular value of ε, which in this case is ' 0.125, the bandwidth vanishes due to destructive interference
between the normal hopping within dark state and the upper bright state assisted hopping implying no tunneling
despite barriers having finite width and height.
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FIG. S6. Change in curvatures of the first two bands of the dark state lattice for different ε. Colored lines represent bands for
the H given by Eq. (S8) and black dashed lines represent bands for H = p2

2m
+ V (x) + Vpert.(x).

VIII. ESTIMATE OF LOSSES BASED ON TRANSMISSION THROUGH A SINGLE BARRIER

In this section, we provide estimates of losses present in our system, based on the analysis of scattering from a single
barrier created by Ωc = Ωpx/w, where w = ελ/(2π) [S7]. The advantage of this approach is that we can analytically
calculate PNA, the probability to lose an atom into state |E−〉 from state |E0〉 due to non-adiabatic coupling between
the states, as well as provide intuitive explanations for Psc, the probability of scattering a photon from state |3〉.
This approach is discussed in Ref. [S7], where PNA and Psc are calculated for ∆ = 0. An alternative complementary
approach for the estimation of losses is discussed in section IX.

First, we estimate Psc for the case when the detuning ∆ = 0. We follow the physical argument from Ref. [S7] to
estimate the probability Pe of being in the excited state |3〉: the dark state probability at x = 0 is ∼ |t|2 ∼ E/Ew,
where Ew = ~2/(2mw2) is the barrier height as well as the strength of the non-adiabatic coupling. The admixture of
|E−〉 and |E+〉 (and hence of |3〉) is simply ∼ (Ew/(Ωp/2))2, where Ew plays the role of an effective Rabi frequency
and Ωp/2 plays the role of detuning. Multiplying the two together we obtain Pe ∼ 4EEw

Ω2
p
. Then the probability of

scattering a photon in a single pass is Psc ∼ ΓPe2w/v, where 2w/v is the approximate crossing time for atoms having
velocity v =

√
2E/m. In order to estimate the impact of these losses on dark-state lifetime in the lattice, we multiply

Psc by the rate Rλ/2 = v/(λ/2) with which atoms scatter from the barriers separated by λ/2. This leads to photon
scattering rate γsc = cscPscRλ/2, where the prefactor csc is on the order of unity. We have confirmed the validity of
this expression by numerically calculating the photon scattering rate γsc from a single barrier as

γsc = Γ

∫ 2w

−2w
|ψe(x)|2

∫ λ/2
0
|ψE0(x)|2

, (S13)

where ψe(x) and ψE0
(x) are the amplitudes to be in states |3〉 and |E0〉, respectively, for and incoming dark-state

plan wave. From comparison with numerical results, we find that the prefactor csc is approximately 0.9. The second
imperfection comes from the nonzero probability PNA of losing the atom into the open |E−〉 channel due to the
nonadiabatic coupling between |E0〉 and |E−〉. Based on Ref. [S7], we know that PNA ≈ 1.37

√
E/Ewe

−1.75
√

Ωp/(2Ew).
In order to estimate the impact of these losses on dark-state lifetime in the lattice, we multiply PNA by the rate Rλ/2,
which leads to the rate γNA = 2PNA

√
2E/m/λ of losing atoms into state |E−〉.

Using the expressions for γsc and γNA found above, we can estimate the decay rate γn of the n-th Bloch band dark
state by evaluating γsc +γNA at E = En. In order to test the relation between our barrier-based results and the results
from a direct lattice calculation more quantitatively, we consider γ1 = γ1,sc+γ1,NA for the lowest Bloch band (subscript
1 indicates the number of the band) for the parameters as in Fig. 3(left) from the supplement of Ref. [S6]. We find
good agreement between the lattice-based calculation and the barrier-based calculation, see Fig. S7. Moreover, we
see that γ1,NA is much smaller than γ1,sc for the parameters considered; therefore the scaling with Ωp is given by the
scaling of γ1,sc. Since, for fixed n, all terms except Pe are Ωp-independent, the scaling of γ1 with Ωp is governed by
the scaling of Pe with Ωp. This gives us a physical explanation for the numerically observed scaling in Fig. 3(left) in
the supplement of Ref. [S6], as well as for the scaling of our experimental results, which we comment on below.
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FIG. S7. We plot analytical results for the total decay rate γ1 = γ1,NA + γ1,sc and the non-adiabatic decay rate γ1,NA for the
first Bloch band in units of J1 = 2εER/π

2 as a function of EwΓ/Ω2
p for ∆ = 0, Γ = 600ER, and two different values of ε. Note

that the prefactor csc is fixed using the numerics for a single barrier. For comparison with analogous results for a direct lattice
calculation, see Fig. 3(left) in the Supplementary materials for Ref. [S6]. The numerics for a barrier gives the decay rate γ1
approximately two times greater than the decay from lattice calculations. Note that, for ε = 0.1, losses due to PNA become
non-negligible.
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FIG. S8. Lifetime plotted on a log-log scale against the parameter Ω3
p/(ΩcΓ

2) under three conditions: keep Ωc = 100Γ and
scan Ωp from 5 to 40 Γ (blue); keep Ωp = 5Γ and scan Ωc from 12.5 to 100 Γ (orange); and keep ε = 0.2 fixed and scan Ωp

from 2.5 to 20 Γ (green). A linear fit τΓ ∝ Ω3
p/(ΩcΓ

2) is also shown (black line).

In Fig. S8, we plot the experimentally observed lifetime as a function of the parameter Ω3
p/(ΩcΓ

2) for different cases
where we vary ε, Ωp, and Ωc. We checked based on barrier numerics for the complete data set that τ has a greater or
equal contribution from γsc than from γNA. This explains the observed linear scaling over orders of magnitudes of τΓ
with Ω3

p/(ΩcΓ
2). This linear scaling is plotted as a black line in Fig. S8.

Finally, we comment on the dependence of γsc + γNA on ∆. In this case, both Psc and PNA are relevant, and the
interplay between them describes the results shown in Fig. 4(a) in the main text. For ∆ < 0, PNA gives a leading
contribution to τ , whereas, for ∆ > 0, PNA is negligible and the leading contribution comes from Psc. PNA strongly
depends on ∆, whereas Psc is only very weakly dependent on ∆. This explains the observed asymmetry in the
dependence of losses on ∆, as explained in the main text. Finally, we numerically confirmed that the results (not
shown) based on barrier calculations describe well the quantitative behavior of the losses as a function of ∆ and
quantitatively agree with the full lattice calculations. The full lattice analysis is presented in the next section.
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IX. THEORY FOR LIFETIME MEASUREMENTS BASED ON PERTURBATIONS TO THE DARK
STATE

Here we use a direct lattice-based calculation to explain the lifetime in the context of perturbations to the dark
state eigenfunction induced by couplings to the bright channels and off-resonant couplings to states outside the Λ-
system (Fig. S1). The imaginary part of the dark state eigenenergy determines the scattering rate of the atoms which
determine their lifetime in the trap up to a scaling factor. The couplings between the dark and bright channels are
small when the energy separations between them are large. As we change ∆, Ωp, and Ωc, we alter the admixture
of |3〉 into the dark state and hence the amount of photon scattering. First we discuss the measured lifetime in the
context of two beam EIT (inset of Fig. 4(a) in the main text) and then explain the lifetime measurements in the dark
state lattice when we scan ∆ and Rabi frequencies Ωp and Ωc (Fig. 4(a) and Fig. 4(b) in the main text).

When the off-resonant couplings to the Λ-system are neglected the Hamiltonian is given by:

H = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ ~




0 0 Ωpe
iky/2

0 0 Ωc(x)/2
Ωpe

−iky/2 Ω∗c(x)/2 −∆′


 (S14)

with ∆′ = ∆ + iΓ
2 . In the experiment Ωc(x) can be either Ωc(x) = Ωce

ikx with lasers in the homogeneous EIT
configuration, or Ωc(x) = Ωc sin kx for standing wave case.

A. Homogenous EIT configuration

We first consider the two-beam EIT configuration. In this configuration the non-hermitian Hamiltonian (S14)
can be exactly diagonalized by finding a proper biorthogonal basis. The right eigenvectors are indexed by the 3D
momentum ~q, and are of the form:

ei~q·~r(aeiky |1〉+ beikx |2〉+ c |3〉) (S15)

where (a, b, c)† is a right eigenvector of the matrix:

H~q,k =




~2

2m (q2 + 2kqy + k2) 0 ~Ωp/2

0 ~2

2m (q2 + 2kqx + k2) ~Ωc/2

~Ωp/2 ~Ωc/2 −~∆′ + ~2q2

2m


 (S16)

with q2 = q2
x + q2

y + q2
z .

The Hamiltonian H~q,k can be diagonalized analytically, however the resulting expressions are complicated. For the
experimental parameters, both ~2q2/2m and the recoil energy ~2k2/2m are much smaller than ~Ωc and ~Ωp, defining
small parameters with respect to which one can expand. Expanding up to the second order we get the following
expression for the energy of the dark state:

E0 ≈
~2q2

2m
+

~2

2m

(
k2 +

2kqyΩ2
c

Ω2
c + Ω2

p

+
2kqxΩ2

p

Ω2
c + Ω2

p

)
−
(

~3

m2

)
4∆Ω2

cΩ
2
pk

2 (qy − qx) 2

(
Ω2
c + Ω2

p

)
3

−
(

~3

m2

)
2iΓΩ2

cΩ
2
pk

2 (qy − qx) 2

(
Ω2
c + Ω2

p

)
3

, (S17)

with imaginary part ImE0 ∆-independent. The last two terms in (S17) appear then as a second order correction. It
should be mentioned that the imaginary term in Eq. (S17) is a sum of ∆-dependent contributions from the upper
and from the lower bright states. In their sum, however, the ∆-dependence disappears.

The other loss mechanism results from off-resonant couplings to the states beyond the Λ-system (|4〉 , |5〉 , |6〉 , and
|7〉 in Fig. S1). This additional loss rate is given by

Γoffres. = Γ
Ω4
p

4∆̃2
(
Ω2
c + Ω2

p

) + Γ
5Ω2

cΩ
2
p + 3Ω4

c + 4Ω4
p

8∆2
HFS

(
Ω2
c + Ω2

p

) , (S18)

and is approximately ∆-independent. For the parameters used in the experiment for the EIT configuration we find
Γoffres. to be approximately a factor of two smaller than the loss rate from Eq. (S17). We conclude that the combined
loss rate in the homogeneous EIT configuration is approximately ∆-independent, in agreement with the results shown
in the inset of Fig. 4(a).
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B. Standing wave case

We now consider the standing-wave case. In contrast to the homogeneous EIT configuration, the standing wave
case does not admit an exact analytic treatment. Although the Hamiltonian (S14) can be diagonalized numerically,
to support our numerical results and to get an insight into underlying loss mechanisms, we present below the analysis
based on the Born-Oppenheimer (BO) approach (as in Ref. [S6]).

We first diagonalize the atomic part of the non-Hermitian Hamiltonian (S14) (the last term) to find its BO eigen-
states: The dark state right eigenvector

|E0(y, x)〉 =
1

N0

[
(−Ωp) |2〉+ Ωc(x)eiky|1〉

]
, N0 =

√
Ω2
c(x) + Ω2

p

and the two bright states

|E±(y, x)〉 =
1

N±

[
Ωc(x)|2〉+

(
∆′ ±

√
Ω2
c(x) + Ω2

p + ∆′2
)
|3〉+ Ωpe

iky|1〉
]
,

where N± =
√

2

√
Ω2
c(x) + Ω2

p + ∆′
(

∆′ ∓
√

Ω2
c(x) + Ω2

p + ∆′2
)
.

The eigenfunctions of the Hamiltonian (S14) can be written as

ψ(x, y, z) = eiqzz+iqyy (f0(x)|E0(y, x)〉+ f+(x)|E+(y, x)〉+ f−(x)|E−(y, x)〉) ,

and the Hamiltonian for the wave functions f0(x) and f±(x) in the BO basis takes the form (see Ref. [S6])

H = −~2∂2
x

2m
+

~2q2
y

2m
+

~2q2
z

2m
+




0 0 0
0 E+ 0
0 0 E−


 .

+
~2

2m

Ω′2c (x)Ω2
p(

Ω2
c(x) + Ω2

p

)2




1 0 0
0 M2

+ + C2 0
0 0 M2

− + C2




− i~
2m

(
∂xÂ+ Â∂x

)

− ~2

2m

Ω′2c (x)Ω2
p(

Ω2
c(x) + Ω2

p

)2




0 CM− −CM+

CM− 0 −M+M−
−CM+ −M+M− 0




+
~2

2m



D00 D0− D0+

D0− D−− D+−
D0+ D−+ D++


 , (S19)

where

E± =
1

2

(
−∆′ ±

√
Ω2
c(x) + Ω2

p + ∆′2
)

(S20)

and the matrix Â has the form

Â = −i~ Ω′c(x)Ωp
Ω2
c(x) + Ω2

p




0 −M+ −M−
M+ 0 −C
M− C 0


 .

The coefficients

C = ∆′
Ωc(x)

2Ωp

Ω2
c(x) + Ω2

p

Ω2
c(x) + Ω2

p + ∆′2
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and

M± =

[
1 +

2E±(x)

Ω2
c(x) + Ω2

p

]−1/2

.

determine couplings between the dark and the bright state manifold, which takes place in the region of subwavelength
peaks. They also result in the energy corrections to the bright states [second line, Eq (S19)], which are typically much
smaller than E±. The matrix in the last line of (S19) originates from the y-dependent phase of Ωp and has elements

D00 =
Ω2
c(x)k(k + 2qy)

N2
0

,

D0± =
Ωc(x)Ωpk(k + 2qy)

N0N±
,

D±± =
Ω2
pk(k + 2qy)

N2
±

,

D∓± =
Ω2
pk(k + 2qy)

N±N∓
.

Note that D00 gives a correction to the dark state non-adiabatic potential, Eq. (1) in the main text, which is small
under the conditions of the experiment.

Considering the first two terms in (S19) as a zero-order Hamiltonian (where the dark- and bright state BO channels
are decoupled), we define the dark state eigenfunctions ψE0

(~q,n)(x, y, z) and bright states ones ψE±(~q,n)(x, y, z), where qz
and qy are the transverse momenta, qx ∈ [−π/λ, π/λ] is the lattice quasimomentum, and n being the band index.
The corresponding energies are E0,(~q,n) and (complex) E±,(~q,n), respectively. Note that qx, qy, and qz are conserved
quantum numbers even when the couplings between the BO channels are taken into account, in contrary to n.

We can now consider the couplings between the BO channels [other terms in the Hamiltonian (S19)] perturbatively
assuming the gaps between the BO states being much larger than the coupling matrix elements. The finite lifetime
of the dark state ψE0

(~q,n) is given by the imaginary part of the corresponding eigenenergy, which appears in the second
order contribution

δ(2)E0,(~q,n) =
∑

σ=±

∑

m

L〈ψE0

(~q,n)|H|ψ
Eσ
(~q,m)〉RL〈ψ

Eσ
(~q,m)|H|ψ

E0

(~q,n)〉R
E0,(~q,n) − Eσ,(~q,m)

. (S21)

To analyze the ∆-dependence of the imaginary part of δ(2)E0,(~q,n), we first notice that the largest contributions
to the matrix elements 〈ψEσ(~q,m)|H|ψ

E0

(~q,n)〉 from the spacial integrals come from the states with eigenenergies close to
min Reε+ for the upper bright states, and close to maxReε−for the lower ones. Matrix elements with other states are
small because their spatial wave functions are either rapidly oscillating or exponentially suppressed in the coupling
regions.

In the red detuned case ∆ < 0, the upper bright states are pushed away from the dark ones. This leads to the
decrease of the coupling matrix elements with the relevant states because the amplitudes of the internal states |1〉
and |2〉 in the upper bright state decrease in favor of |3〉. On the other hand, the relevant lower bright states are
pushed towards the dark ones, with increasing amplitudes of |1〉 and |2〉 in its internal structure. In the experiment
we have |∆| / Ωc and, as a result, Im E−,~q,n remains approximately unchanged and close to −Γ/4 for the states close
to maxReε−. Therefore, the dominant contribution to Imδ(2)E0,(~q,n) comes from the lower bright states and increases
with |∆|, resulting in the decrease of the life-time observed in the experiment, see Fig. 4(a).

In the opposite case ∆ > 0, the contribution of the lower dark states decreases, while the contribution of the upper
bright states increases and becomes dominant. Here, however, the decrease of imaginary part of E+,(~q,m) dominates
over the growth of its real part and over weak increase of the coupling matrix elements, such that Imδ(2)E0,(~q,n)

decreases with increasing ∆ in agreement with the experimental observations.



12

Finally, we mention that the life-time is an increasing function of Rabi frequencies Ωc,Ωp, see Fig. 4(b). This is due
to the increase of the gaps to the bright states, while the couplings matrix elements remain practically unchanged.

Connecting Eq. (S21) to the population decay rate is done in the following way: we assume a homogeneous trapped
gas with a Fermi-Dirac distribution, where the chemical potential is chosen to fit the total number of particles. For
each band index n and quasimomentum ~q the decay rate Γ(~q,n) is evaluated by finding the imaginary part of the
eigenenergy in Eq. (S21). Since most of the atoms occupy the lowest band of the lattice, we average Γ(~q,n) over the
lowest three bands to find the average decay rate, which is justified by the fact that the third band almost gives no
contribution (<5%). We use the experimentally measured atom number, temperature, and trapping frequencies as
the inputs for each data point of Fig. 4, which explains why the theory curve is not smooth in Fig. 4.
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ABSTRACT

We present a compact all-digital implementation of a scanning transfer cavity lock (STCL) for long-term laser frequency stabilization. An
interrupt-driven state machine is employed to realize the STCL with the capability to correct for frequency drifts in the slave laser frequency
due to measured changes in the lab environmental conditions. We demonstrate an accuracy of 0.9 MHz for master laser and slave laser
wavelengths of 556 nm and 798 nm as an example. The slave laser is also demonstrated to dynamically scan over a wide frequency range while
retaining its lock, allowing us to accurately interrogate atomic transitions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5067266

I. INTRODUCTION

Many applications require stabilizing the frequency of a laser,
and various methods have been developed to lock a laser frequency
to a desired value. One of the simplest locking techniques is the
scanning transfer cavity lock (STCL),1–6 in which the stability of a
master laser frequency (for example, locked to an atomic transition)
is transferred to a scanned Fabry-Pérot cavity, which plays the role
of a frequency discriminator, and the slave laser frequency is then
stabilized to the cavity. In addition to its simplicity, STCL has a wide
capture range and the difference in wavelength between the slave
and master lasers can be multiple nanometers. Scanned Fabry-Pérot
cavities are common in atomic physics labs, and the optical hardware
for STCL is typically readily available.

In this paper, we present an all-digital and cost-effective
approach for implementing the STCL. The signal acquisition and
processing, detailed in Sec. III, is done digitally in a low-cost
ArduinoDue development board7 mounted on a custom shield. This
is in contrast to the implementations that use analog circuitry for
peak detection1,3,4 and a dedicated computer for signal acquisition
and/or processing.4–6 We also investigate the effect of the environ-
ment on the slave laser frequency8,9 and present a method that can
compensate for this effect to within an accuracy of 0.9 MHz for
master and slave laser wavelengths of 556 nm and 798 nm, respec-
tively. We monitor the environment using a low-cost commer-
cially available BME280 sensor breakout board7 that measures the

temperature, pressure, and humidity with an accuracy and pre-
cision sufcient for the measurements we present in Sec. V C.
This sensor can be integrated to the current hardware design
with relevant updates to the current software protocol to pro-
vide a compact all-digital STCL with long-term laser frequency
stability and accuracy. The particulars of our STCL implementa-
tion are detailed in Sec. IV. The GitHub link for the project is
https://github.com/JQIamo/Scanning-Transfer-Cavity-Lock.

II. SCANNING TRANSFER CAVITY LOCK TECHNIQUE

The transmission resonances of light through a Fabry-Pérot
cavity relate the frequency of the light to the length of the cavity.
For a confocal cavity, the resonance frequencies are given by

ν =

Nc

4nd
, (1)

where ν is the laser frequency,N is the longitudinal mode number of
the resonance, c is the speed of light, n is the refractive index of the
medium inside the cavity, and d is the length of the cavity. For a xed
cavity length, the transmission peaks are spaced by the free spectral
range (FSR): ∆FSR = c/4nd. In our implementation, the length of the
cavity is scanned with an amplitude large enough such that the res-
onant frequency is scanned over a range slightly larger than its FSR.
The average cavity length is adjusted to provide three peaks arranged
in a Master-Slave-Master (M − S − M′) conguration, as shown in
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Fig. 1(b). For a linear scan of d with speed α, the arrival time of the
peak ti is given by

ti = (di − d0)α,
where i = M, S, or M′, di is the resonant cavity length, and d0 is the
(arbitrary) cavity length at t = 0. Using Eq. (1), we relate the fre-
quencies of the lasers to the arrival times of the peaks and provide
signals that can be used to stabilize the average cavity length and the
frequency of the slave laser. Drifts in the average cavity length are
measured by the position of the rst peak of the master laser, tM ,
which is used to stabilize d0. With the average cavity length locked,
tS is then used to stabilize the desired slave laser frequency νS to the

FIG. 1. (a) Schematic of the STCL hardware. (b) Schematic of the STCL peak
nding algorithm. The dashed segments of the peaks represent the relevant peak
data that are acquired and processed by the µC to determine the arrival times
of the peaks, tM , tS, and tM ′ . All the arrival times are measured with respect to
the rising edge of the scan trigger. The circles pinpoint the start timestamp at high
threshold and low timestamp at low threshold, between which peak data of interest
(dashed segments) are acquired.

cavity. In order to remove dependence on the ramp speed α, we use
the second peak position of the master laser, tM ′ , forming the ratio

r =
tM − tS

tM′ − tM
=

dM − dS

dM′ − dM
= NM −NS

nMνM

nSνS
, (2)

where ni is the refractive index of air for light at frequency ν i and
i = M, S. The slave mode number NS is the largest integer smaller
than NM(nSνS)/(nMνM) so that 0 < r < 1. If we dene a refer-
ence frequency νS0 = (νMnMNS)/(nSNM), then the slave frequency
δνS = νS − νS0 is given by

δνS = νM
NS

NM

nM

nS
 rNM

1 − rNM
 ≃

NS

NM
∆FSR r, (3)

up to order r/NM ≪ 1 and nM , nS ≃ 1. Deviations of r from a chosen
lock point r0 generate the error signal that can be used to feedback
to the slave laser.

III. SOFTWARE IMPLEMENTATION

In order to lock both the cavity to the master laser and the
slave laser to the cavity via tM and r, the arrival times (tM , tS, tM ′ )
of the peaks need to be determined during each scan of the cavity
length, the respective error signals calculated, and feedback per-
formed via the changes in control voltages to the piezoelectric trans-
ducers (PZT) that sets the DC offset for the cavity spacing d0 and the
slave laser frequency. We use an interrupt-driven10,11 state machine
to achieve these tasks.

A. State machine

The ow structure of the interrupt-driven state machine is
shown in Fig. 2. It is designed to respond to a series of inter-
rupts generated by hardware (peripherals) or software (software trig-
gered interrupts) which changes the control ow of execution in the
program.10,11

The functionalities of each state and the conditions for transi-
tions between states are described below:
0. State 0 is the open-loop state. This is the default state of the

device upon start-up. In this state, the device output is at the
middle of the dynamic range of the feedback voltages. When
the lock is engaged, the device transitions into state 1 and the
loop is closed engaging feedback. It then returns to this state
only when the lock is disengaged.

1. State 1 is the feedback and reset timer state. It is triggered by
an interrupt on the rising edge of the scan trigger [Fig. 1(b)]
provided by the cavity driver. It updates the control voltages
to the slave laser and the Fabry-Pérot cavity that were calcu-
lated in the previous cycle, and the system timer is reset. All
timestamps are referred to the rising edge of the scan trigger
[Fig. 1(b)]. Upon completion, it returns to state 2.

2. State 2 is the data processing and wait state. If returning from
state 1, it waits until a peak signal is ready to be sampled.
When the signal exceeds the high threshold of the programmed
comparison window [Fig. 1(b)], the Analog to Digital Con-
verter (ADC) asserts an interrupt to change the state to state 3.
If returning from state 3, it processes the acquired data and
waits. Processing involves nding the arrival time of the peak
(tM/tS/tM ′ ) and calculating the new control signals for the
cavity and the slave laser feedback. Upon completion, it waits.
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FIG. 2. State machine schematic. The arrows indicate the transitions between
states and their directions upon meeting the stated requirements.

3. State 3 is the data acquisition state. The start timestamp is
saved, and the data acquisition is initiated. When the peak data
crosses the low threshold, the ADC asserts an interrupt which
saves the stop timestamp and terminates the data acquisition
and returns to state 2. The sampled data are saved in the µC
Random Access Memory (RAM) for subsequent processing
[dashed segments in Fig. 1(b)].

B. Data acquisition

The transmission peaks are sampled by a 12-bit ADC native to
the SAM3x8E µC7 at 1 Megasamples per second. In order to opti-
mize RAM usage and reduce the need for data ltering of irrelevant
data, we only save sampled data near the peak via signal threshold
based interrupts in our state machine. We use the direct memory
access functionality to rapidly transfer the data of interest directly
into a buffer in the µCRAMwithout any processor intervention.We
found that a comparison-window based interrupt [high threshold-
low threshold as shown in Fig. 1(b)]11,12 is superior to a single-valued
level-triggered interrupt since uctuations in the peak signal near the
threshold spuriously triggered interrupts. This is resolved by setting
a sufcient difference between high threshold and low threshold.
Depending on the alignment into the cavity, the intensity of themas-
ter and slave lasers, and the choice of thresholds, we sample 70–125
points for each peak, approximately 2–3 cavity linewidths.

C. Peak detection algorithm

The position of the maximum of the transmission peak is
given by the zero-crossing of the 1st derivative determined by a
5-point digital Savitzky-Golay (SG) lter.13,14 This lter is an ef-
cient method to smooth the acquired data without signicantly

distorting the signal while improving the signal-to-noise ratio, which
has the following form:

Y
′

j =
−2yj−2 − yj−1 + yj+1 + 2yj+2

10
, (4)

where yj = value of the buffer at index j and Y′

j = derivative at buffer
position j. This lter can be efciently implemented using shift oper-
ators in the program. Using the zero-crossing timestamps to tag the
peaksmakes the STCL robust to laser power uctuations. Upon nd-
ing a zero-crossing timestamp (tM , tS, or tM ′ ), the state machine
calculates the error signals and control voltages for the servo loop.

D. Servo loop

The servo loop feeds back on the slave laser and to the cavity
PZT to stabilize the cavity length. The zero-crossing timestamps tM ,
tS, and tM ′ are used to compute the error signal for the cavity and
slave laser, which are tM ,lock − tM and rlock − ∆tMS/∆tMM ′ , respec-
tively. The control signal (u(ty)) at discrete time ty is given by the
discrete PI lter15

u(ty) = u(ty−1) + KP(e(ty) − e(ty−1)) + KIe(ty)∆t, (5)

where e(ty) is the error signal at ty, KP is the proportional gain, KI

is the integral gain, ∆t is the time it takes to scan the cavity, and
ty = y∆t, where y is an integer. Updates are performed at the ris-
ing edge of the next scan trigger using two 12-bit DACs native to
the SAM3x8E µC. Windup is prevented by not updating the value
of u(ty) if u(ty) − u(ty−1) causes the DAC output to fall outside an
adjustable range of voltages (the rails).15

IV. EXPERIMENTAL SETUP

In our implementation, we use a Thorlabs scanning confocal
Fabry-Pérot Cavity, SA200-5B,7 that has an FSR of 1.5 GHz. The cav-
ity PZT is scanned in a sawtooth fashion with a period of 100 Hz and
with an amplitude that scans the resonant frequency of the cavity by
1.2 FSR. The cavity is neither temperature controlled nor sealed or
evacuated.

For the master, we demonstrate the lock with two different
lasers, one at 780 nm and the other at 556 nm, and for the slave,
we use a laser at 798 nm. The λM = 780 nm master laser is locked to
a saturated absorption feature on the 85Rb 52S1/2|F = 3⟩↔ 52P3/2|F

′

= 3–4⟩ crossover signal with a precision of 1 MHz, and the other λM
= 556 nmmaster laser is stabilized to the 1S0|F = 1/2⟩↔ 3P1|F = 3/2⟩
transition in 171Yb with a linewidth of 1 MHz. Once the cavity is sta-
bilized to either of the two master lasers, the slave laser is locked to
the cavity, using the ratio r. The locked slave laser at λS = 798 nm is
the seed input for a Toptica TA-DL SHG pro laser system7 that gen-
erates frequency-doubled light at 399 nm that we use to interrogate
the 1S0 ↔

1P1 transition in Yb.

V. PERFORMANCE

A. Lock bandwidth

In our implementation, the bandwidth of the lock is limited by
the frequency of the cavity PZT scan to 100 Hz. The state machine
on the Arduino Due development board can acquire peak data, pro-
cess the data, and update the feedback output voltages for each ramp
of the cavity at a maximum rate of 2 kHz, which is much faster than
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the 100 Hz cavity PZT scan. The cavity and the slave laser typically
stay locked for a day’s operation. The laser lock is robust against
acoustic noise in the lab, and when it does unlock, it is due to drifts
in the slave laser and not the cavity.

Pound-Drever-Hall locking16 to a cavity has a much higher
bandwidth allowing one to narrow the linewidth of a laser but is
more involved as it requires modulating the laser frequency and
demodulating the photodiode signal. The STCL is simpler to imple-
ment and is intended for stabilization against long-term laser fre-
quency drifts and does not narrow the slave laser (the slave laser
in our experiment has an intrinsic short-term laser linewidth of
∼100 kHz). The ultimate limit on the bandwidth of the STCL will
likely be determined by the speed of the cavity PZT scan.

B. Dynamic setpoint change

The STCL allows us to scan the frequency of the slave laser by
changing r. We translate a change in r,∆r, to a corresponding change
in frequency of the slave laser, ∆νS, through a scale factor, β . The
value of β can be calibrated using atomic transitions or calculated
via rst principle as follows:

r + ∆r = NM −NS
νM

(νS + ∆νS)
(6)

⇒ ∆r ≃
NSνM

ν2S
∆νS =

4dλS
cλM

∆νS = β
−1
∆νS, (7)

where nM , nS ≃ 1. With d = 50 mm, λM = 780 nm, and λS = 798 nm,
β = 1.465 GHz. In our implementation, it takes 40 ms for the STCL
to lock after a sudden jump in its slave laser setpoint r. In principle,
since the slave laser response time is much faster than the 10 ms cav-
ity sweep time, by feed-forwarding on the slave laser control voltage,
it should be possible to change the slave laser frequency in one cavity
sweep.

In Fig. 3, we show the absorption spectrum of the 1S0 ↔
1P1

transition in 171Yb obtained by scanning the frequency of the slave
laser using the STCL. The linewidth extracted from the t matches
well with the natural linewidth of the transition, indicating that the
magnitude of β has been accurately determined.

C. Effect of the environment on the accuracy
of the slave laser

The expression for the slave laser setpoint r [Eq. (2)] can be
simplied to

r = NM −NS
nMνM

nSνS

≃ NM −NS
νM

νS
[1 + nM − nS] (8)

since nM , nS ≃ 1. Differentiating both sides of the equation yields,

∆r = NS
νM

νS
1 + nM − nS

νS
∆νS − ∆(nM − nS). (9)

When the feedback loop is engaged (∆r = 0), accuracy of the slave
laser frequency (∆νS = 0) is only guaranteed when ∆(nM − nS) = 0.
The magnitudes of ni depend on environmental factors like tem-
perature (T), pressure (P), humidity (H), and CO2 content of air.

FIG. 3. Absorption spectrum of the 1S0 ↔
1P1 transition in Yb as the slave laser

frequency is stepped through a chosen frequency range in every experimental
realization. The Lorentzian t to the distribution gives a linewidth Γ = 2π × (28.74
± 1.16) MHz which is close to the natural linewidth of 2π × 28 MHz.

Analytic expressions for this dependence of ni of air on T, P, H, and
CO2 content are presented in Refs. 17–20. Equation (9) indicates
that implementation of STCL in a cavity exposed to ambient air,
long-term laser frequency stability and accuracy (∆νS = 0) requires
that the setpoint is dynamically changed via feed-forward to account
for variations in the lab environment, i.e.,

∆r = −

NSνM

νS
∆(nM − nS). (10)

Feed-forward is ideal for this application since changes in the ambi-
ent environmental parameters occur on a timescale of a fewminutes,
which is much slower than the bandwidth of the lock (10 ms). Along
the lines of the work presented in Refs. 8 and 9, we investigate the
effect of environmental parameters T, P, and H on the slave laser fre-
quency. The sensitivity of the slave laser frequency’s dependence on
T, P, or H increases with increasing dissimilarity between the master
and slave laser wavelengths.

We use the line center of the 1S0|F = 1/2, mF = 1/2⟩ ↔

1P1|F = 3/2, mF = 3/2⟩ transition in 171Yb as an absolute frequency
reference (Fig. 3) to determine the value of νS = ν0S, where ν0S
= 751 527 368.68(39)2 MHz21 is half the reference transition fre-
quency since we frequency-double our slave laser for the atomic
spectroscopy. We measure the effect of the environment [Eq. (10)]
by experimentally determining the r that brings the doubled slave
laser into resonance with the atomic transition. We quantify drifts
in the required r by comparing it to an arbitrary reference rref,

∆r = −

NSνM

ν0S
∆(nM − nS)

⇒ β(r − rref) = −ν
0
S[(nM − nS) − (nM − nS)ref], (11)

⇒ ∆νenv = −ν
0
S∆ndiff., (12)

where rref = NM − NSνMν0S[1 + (nM − nS)ref] serves as a reference
position of the atomic line center under the environmental con-
ditions on an arbitrarily chosen day. In this paper, we have used
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the method according to Ciddor18 (applicable over a wavelength
range of 230 nm–1690 nm) to perform all calculations related to the
differential refractive index.

The sensitivity of ∆νenv depends strongly on the difference
between λM and λS. From Eqs. (11) and (12), the expected environ-
mentally induced change ∆νenv is given by

∆νenv = −ν
0
S∆(nM − nS) = 

i

−ν
0
S
∂(nM − nS)

∂Xi
∆Xi,

where Xi is T, P, or H and −ν0S∂(nM − nS)∂Xi is the sensitivity
coefcient22 for the parameter Xi. For a given change, ∆Xi,

∆νXi = −ν
0
S
∂(nM − nS)

∂Xi
∆Xi, (13)

with the partial derivatives evaluated at T = 22 ○C, P = 101 168 Pa,
and H = 43.3%, which are the mean values of the environmen-
tal parameters we explore in our measurements. In Fig. 4, we plot
the frequency shift ∆νXi 18 resulting from a specic change of the
parameter Xi as a function of λM/λS. The values of ∆νXi  decreases
as λM/λS approaches 1, implying that the closer the wavelengths λM
and λS are to each other, the less sensitive is the accuracy of the slave
laser frequency to variations in environmental parameters.

The local lab environment is monitored using a BME280 sensor
breakout board placed near the cavity. The sensor board measures
the temperature, pressure, and humidity of air which we average
over the 8min it takes to acquire a complete spectrummeasurement.
Spectrum measurements were taken over the course of a few weeks,
during which the lab experienced a range of ambient environmental
conditions. The largest contribution to changes in differential refrac-
tive index came from weather-related atmospheric pressure changes
ranging from 100 323 Pa to 102 224 Pa. Figures 5(a) and 5(b) show
the measured change in the lock point r (scaled in frequency units)
as a function of the change in the differential refractive index, ∆ndiff.,
calculated using the method according to Ciddor18 with the mea-
sured environmental conditions. The solid line in both plots has a
slope given by the known resonance frequency ν0S = 751.52 THz
and is offset vertically in each case to minimize the mean devia-
tion of the points from the line predicted from the environmental
conditions. Histograms of the deviations, yi, from the theory are
shown in the insets of Figs. 5(a) and 5(b). The standard deviations
are 1.0 MHz and 0.3 MHz, respectively, for the λM = 556 nm and
λM = 780 nm data, suggesting that by using feed-forward based on
the environmental measurements, drifts in the slave laser frequency
(which typically occurs on the timescale of a few minutes) can be
corrected in real time to that level of precision.

For λM = 780 nm and λS = 798 nm, the values of |∆Xi| that
induce a ∆νenv = 1 MHz are ∆T = 7.4 ○C, ∆P = 2390 Pa, or ∆H
= 311%. Such changes in temperature, pressure, or humidity are
never observed during the course of any one measurement shown
in Fig. 5(b), suggesting that the 0.3 MHz scatter in the 780 nm data
is due to the error inherent to our experimental measurement, e.g.,
the error in tting to the line center (that is typically 250 kHz for
ν0S) is due to number uctuations between successive experimental
realizations.

For λM = 556 nm and λS = 798 nm, the values of |∆Xi|
that induce a ∆νenv = 1 MHz are ∆T = 0.3 ○C, ∆P = 104 Pa, or
∆H = 14.6%. We attribute the increased error of 1.0 MHz in the

FIG. 4. Calculations of the sensitivity of the slave laser frequency,∆νXi
, to changes

in environmental parameters ∆Xi (∆T = 1 ○C, ∆P = 100 Pa, or ∆H = 1%) as a
function of master and slave laser wavelengths. The absolute values of the sen-
sitivity coefcients monotonically decrease as λM /λS approaches 1, implying that
the closer the wavelengths λM and λS are to each other, the less sensitive is the
accuracy of the slave laser frequency to variations in environmental parameters.

λM = 556 nm measurements to the facts that we do not control
the atmospheric pressure in our lab (which can drift during the
8 min spectrum measurement time) and that we do not possess the
level of precision in our temperature control needed to correct for
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FIG. 5. Measurements of the shifts in the locked slave laser frequency, ∆νenv, due to changes in the lab environmental conditions: (a) Measurement of the change in
setpoint r such that the doubled slave laser is in resonance with the absolute frequency reference (the atomic line center of the 1S0|F = 1/2, mF = 1/2⟩ ↔ 1P1|F = 3/2,
mF = 3/2⟩ transition in 171Yb), as a function of change in differential refractive index, ∆ndiff. , determined from measurements of pressure, temperature, and humidity. In
this measurement, we use λM = 556 nm. The solid line has a slope given by the known value ν0S = 751.52 THz. (The offset of the line was chosen to minimize the
mean deviation of the measured points from the predicted line.) Error bars along the y axis are given by the t error in the line center from Fig. 3 and along the x axis by
the propagated uncertainty in ∆ndiff. from random uctuations in measurements from the BME280 sensor breakout board. Inset: Histogram of the deviations of the slave
laser frequency, yi , from the prediction for the λM = 556 nm measurements. The deviations are normally distributed with 65% probability and with the standard deviation of
1.0 MHz. (b) The same measurement as in (a), but with λM = 780 nm. The range of environmental conditions in this plot correspond to a drift of 13 MHz in (a). Inset: For the
λM = 780 nm measurements, the deviations, yi , are normally distributed with 69% probability and with the standard deviation of 0.3 MHz.

uctuations less than 0.3 ○C. In addition, the cavity is susceptible to
air currents, and we do not measure the temperature, pressure, and
humidity inside the cavity. Subtracting the environment insensitive
measurement error of 0.3 MHz in quadrature, we estimate our error
due to uncontrolled environmental parameters to be 0.9 MHz.

VI. SUMMARY AND OUTLOOK

We have implemented an all-digital µC-based STCL with envi-
ronmental monitoring of pressure, temperature, and humidity. The
environmental measurements have the precision to compensate for
environmental drifts, with appropriate feed-forward to the slave
laser setpoint. We demonstrate the capability to compensate for
environmentally induced frequency drifts at the 0.9 MHz level for
master and slave laser wavelengths of 556 nm and 798 nm as an
example. Integration of the environmental sensors into the cavity
could improve this performance. Currently, the bandwidth of the
STCL is limited by the frequency of the cavity PZT scan (100 Hz).
Future implementations of the STCL may include designing custom
cavities with PZT scan speeds in the kHz range, thereby increasing
the bandwidth.
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Quantum simulations with ultracold atoms typically create atomic wave functions with structures at
optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in
optical microscopy for biological applications, we use a nonlinear atomic response to surpass the
diffraction limit. Exploiting quantum interference, we demonstrate imaging with superresolution of λ=50
and excellent temporal resolution of 500 ns. We characterize our microscope’s performance by measuring
the ensemble-averaged probability density of atoms within the unit cells of an optical lattice and observe
the dynamics of atoms excited into motion. This approach can be readily applied to image any atomic or
molecular system, as long as it hosts a three-level system.

DOI: 10.1103/PhysRevX.9.021002 Subject Areas: Atomic and Molecular Physics, Optics,
Quantum Physics

I. INTRODUCTION

High spatial and temporal resolution microscopy can
reveal the underlying physics, chemistry, and biology of a
variety of systems. Examples range from the study of atoms
on surfaces with atomic resolution scanning tunneling
microscopy [1] to the use of superresolution microscopy
to observe individual molecule dynamics within living cells
[2]. The field of quantum simulation with ultracold atoms
has emerged to study strongly correlated many-body
systems using precise control with light-atom interactions
[3]. This entails confining atoms, engineering their inter-
actions and potentials, and measuring their states with laser
light. Based on fluorescence and absorption, the inherent
imaging resolution is limited by diffraction. Bringing
superresolution microscopy to the field of quantum simu-
lation of condensed-matter systems with ultracold atoms
will allow new direct probes of the wave function in a
variety of many-body systems.
We demonstrate here the imaging of atoms with unprec-

edented spatial resolution approximately equal to 11 nm that
iswell below the diffraction limit. Our approach is based on a
technique to localize atomic excitation on a subwavelength
scale, first proposed by Agarwal and Kapale [4] and first
demonstrated byMiles et al. [5].We can directlymeasure the

atomic probability density optically within the unit cell of
a 1D optical lattice (scanning electron microscopy has been
used tomeasure such quantities with 150-nm resolution [6]),
in contrast to measuring site occupancies [3,7,8]. Far-field
microscopy at the nanoscale based on nonlinear optical
response is well established [2] to resolve molecular dyna-
mics inside biological samples. Using similar ideas, sub-
wavelength addressing [9] and localized excitation have been
proposed [10–16] and observed in atomic systems [5,17].
Based on the dark state associated with a three-level system
[5,9–14,16], we coherently shelve narrow slices of the wave
function in every unit cell of the lattice into one of the spin
states dictated by the local dark state.We selectively read out
the total population in that spin state, which is proportional
to the local probability density of the lattice wave function.
The working resolution (width of the slice) can be adjusted
by changing the dark-state composition. The coherent nature
of this approach allows us to measure on a timescale much
faster than the evolution of the wave function. Our setup
can be readily applied to current quantum gas experiments
[3]. By dispersively coupling the readout state to a cavity, as
suggested by Refs. [16,18], one could perform subwave-
length quantum nondemolition measurements.
The principle of our approach is illustrated in Fig. 1 and is

similar to Refs. [4,5,16,18]. Assuming adiabaticity, a three-
level atom [Fig. 1(a)] coupled by two spatially varying light
fields will stay in a dark state, which is decoupled from the
excited state jei. This dark state is a superposition of the two
ground states with spatially varying amplitudes:

jDðxÞi¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩcðxÞ2þΩ2

p

q ½ΩcðxÞjg1i−Ωpjg2i�: ð1Þ
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Here, we use a standing-wave control field ΩcðxÞ ¼
Ωc sinðkxÞ and homogeneous probe field Ωp, where
k ¼ 2π=λ, and λ is the wavelength of the light. For
Ωc ≫ Ωp, the resulting dark-state composition is predomi-
nantly jg1i away from the nodes of ΩcðxÞ, and jg2i near the
nodes where Ωp ≫ jΩcðxÞj. The probability density of jg2i
[Fig. 1(c)] coming from this nonlinear dependence on the
Rabi frequencies [Eq. (1)] is periodic and has narrow peaks
near the nodes

fðxÞ ¼ ϵ2

ϵ2 þ sin2ðkxÞ ; ð2Þ

where ϵ ¼ Ωp=Ωc. The fullwidth at halfmaximum(FWHM)
σ of the peaks provides a good metric for the resolution
within the unit cell λ=2. For Ωc ≫ Ωp (small ϵ), σ depends
linearly on ϵ: σ ≃ ϵλ=π, allowing resolution greatly exceed-
ing the diffraction limit. Starting with atoms in jg1i with
wave function ψðxÞ, we can adiabatically transfer a narrow
slice of atoms into jg2i. The wave-function probability
density jψðxÞj2 [Fig. 1(b)] can be determined by measuring
the population transferred to jg2i at different locations x
[Fig. 1(d)], yielding a signal

nðxÞ ¼
Z

jψðx0Þj2fðx0 − xÞdx0: ð3Þ

By deconvolving this signal with the probing function
fðxÞ, we can reconstruct jψðxÞj2.
We use stimulated Raman adiabatic passage (STIRAP)

[19] to transfer the selected slices of the wave function from
the state jg1i into jg2i. In order to accurately measure the
shape of the wave function, the STIRAP process must be
adiabatic with respect to the spin degree of freedom (d.o.f.)
[i.e., the dark-state composition given by Eq. (1)] but
diabatic with respect to the motional d.o.f. For small ϵ, the
shortest duration of the STIRAP is inversely proportional
to the Rabi frequencies. For typical trapped atoms experi-
ments, Rabi frequencies can be tens of megahertz, while the
motional dynamics is on the order of tens of kilohertz.

II. EXPERIMENTAL METHOD

We work with the three-level system in 171Yb consisting
of jg1i ¼ j1S0; F ¼ 1

2
; mF ¼ − 1

2
i, jg2i ¼ j1S0;F ¼ 1

2
;mF ¼

þ 1
2
i, and jei ¼ j3P1; F ¼ 1

2
; mF ¼ − 1

2
i (see Appendix A),

coupled by λ ¼ 556 nm light. The control field ΩcðxÞ is
formed by two counterpropagating σ−-polarized beams
Ωc1eikx and Ωc2e−ikx in the direction of the quantization
axis defined by a magnetic field along x̂, while the probe
field Ωp is a π-polarized traveling wave normal to the
control beams [20]. We prepare 171Yb atoms by sympatheti-
cally cooling them with 87Rb atoms [21]. After ramping up
the magnetic field to 36 mTand removing the Rb atoms, the
Yb atoms are optically pumped into jg1i with a final
population approximately equal to 2 × 105. We measure
jψðxÞj2 of spin-polarized Yb atoms loaded into either a
Kronig-Penney- (KP) type lattice of thin barriers, as
described in Ref. [20], or a regular sinusoidal lattice based
on the ac Stark shift of Ωc1;2 off-resonantly coupled to the
jg1i ↔ j3P1; F ¼ 3

2
; mF ¼ − 3

2
i transition, which lies out-

side the three-level system making up the dark state.
Our microscope is implemented as follows. We first

suddenly turn off the lattice potential VðxÞ that supports the
wave function to be probed by switching off the Ωc2 beam.

(a)

(b)

(c)

(d)

FIG. 1. Principle of our nanoscale atomic density microscope.
(a) Configuration of the control field ΩcðxÞ and probe field Ωp
coupling aΛ system composed of jg1i, jg2i, and jei. Population in
jg2i is measured via a cycling transition connecting the imaging
state jii. (b) Wave function density jψðxÞj2 in jg1i in the lattice of
interest VðxÞ. (c) The spin-state composition is transferred to jg2i
near the nodes of Ωcðx0 − xÞ with probability given by fðx0 − xÞ
(narrow red peaks) and jg1i elsewhere. The width of fðx0 − xÞ is
determined by the relative strength of the two light fields ϵ ¼
Ωp=Ωc [see Eq. (2)]. (d) fðx0 − xÞ maps jψðxÞj2 onto the
population in jg2i, nðxÞ, which can be selectively measured via
state-dependent imaging. By stepping through different positions
x and measuring nðxÞ, we can reconstruct jψðxÞj2.
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Next, we ramp on Ωp followed by Ωc2 with a different
phase, which adiabatically flips the spin from jg1i to jg2i
in the region tightly localized near the nodes of the shifted
Ωcðx0 − xÞ ¼ Ωc sin½kðx0 − xÞ�. The intensity profiles for
ramping these two beams are calculated to preserve
adiabaticity, ensuring atoms follow the spatiotemporal
dark state at all times. We then rapidly ramp off all
beams simultaneously in order to preserve the dark-state
composition. We measure the jg2i population via state-
selective absorption imaging. Scanning x in fine steps
at small ϵ allows us to map out the jψðxÞj2 with high
resolution.

III. RESULTS

We use our wave-function microscope to investigate
atoms in sinusoidal and KP lattices. We start by preparing
the atoms in the ground band of the lattice of interest, as
described in Appendix B. Figure 2(a) shows nðxÞmeasured
in a 140ER sinusoidal lattice using a calculated resolution
of 8.8 nm, along with nðxÞ in a KP lattice with 50ER

barriers using a calculated resolution of 17.6 nm. Here,
ER ¼ ℏ2k2=2m is the recoil energy, and m is the mass of
the atom. The different lattice potentials (sinusoidal vs
boxlike KP) give rise to different functional forms of the
wave function in the lattice [inset of Fig. 2(a)]. The
expected jψðxÞj2 is Gaussian for a deep sinusoidal lattice
and cosine for a KP lattice. The solid lines are the
calculated jψðxÞj2 using independently measured Rabi
frequencies including both the resolution due to finite slice
width as well as wave-function expansion over the 800-ns
measurement time. In Fig. 2(b), we show the FWHM w
of the ground-band jψðxÞj2 of the sinusoidal lattice as a
function of the lattice depth. The blue curve represents the
calculated width, which is in good agreement with the data.
The remaining discrepancy may result from trap inhomo-
geneities, the uncertainty of the Rabi frequencies, and
mechanical effects arising from the nonadiabatic potentials
due to the spatially varying dark state [20,22,23].
The fast STIRAP slicing process allows for observing

the wave-function dynamics. At our maximum Rabi
frequency of Ωc ¼ 2π × 90 MHz and ϵ ¼ 0.05, we can
maintain the adiabaticity condition for a STIRAP time of
500 ns. Figure 3(a) shows the dynamics of the wave
function in a sinusoidal lattice after a sudden shift in the
lattice position. The atoms are first adiabatically loaded into
a 140ER lattice. Then, the lattice position is diabatically
changed in 100 ns by 1=4 of the lattice spacing via the
phase of the Ωc1 lattice beam, which excites a “sloshing”
motion. We map out the evolution of the wave function
within the unit cell by holding the atoms in the shifted lattice
for incremental periods of time before probing. In Fig. 3(a),
we show the measured jψðxÞj2, which are in agreement with
the calculations.

The dynamics of the wave function after a sudden
change in the lattice depth is shown in Fig. 3(b). The
atoms are first adiabatically loaded into the ground
band of a shallow lattice (6ER). The depth of the lattice
is then suddenly increased to 140ER, which excites a
“breathing” motion of the atoms inside a unit cell. As
time increases, we see that the jψðxÞj2 breathes at a
frequency characterized by the band energies. At t ¼
3.5 μs and t ¼ 9.5 μs, jψðxÞj2 is focused to calculated
w0 ≃ 26 nm.
We estimate the spatial resolution of our microscope

by measuring the narrowest wave function jψðxÞj2 that
we create with the breathing-mode excitation. This con-
dition occurs at 9.5 μs where the calculated jψðxÞj2 has

(a)

(b)

(a)

(b)

FIG. 2. Measurements of the ground-state wave function
within the unit cell of an optical lattice with different shapes.
(a) The orange points show nðxÞ for atoms in a sinusoidal
lattice measured with ϵ ¼ 0.05. The green points represent
nðxÞ in a Kronig-Penney lattice measured with ϵ ¼ 0.1.
Number fluctuations between realizations result in number
uncertainties of 5%. The solid lines are calculations using
measured Rabi frequencies to determine the lattice depth
normalized to the same atom number. Inset: Schematic of
different lattice potentials and corresponding jψðxÞj2.
(b) FWHM w of nðxÞ in a sinusoidal lattice as a function
of the lattice depth. Black points show experimental data with
ϵ ¼ 0.05, and the blue line is a calculation including the 800-
ns measurement time. The error bars are 1 standard deviation
from the Gaussian fits.
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w0 ¼ 26.2þ1.6
−0.6 nm, where the uncertainty arises from the

uncertainty in the Rabi-frequency calibrations used to
determine the lattice depth. We measure nðxÞ at this time
with different resolution by varying ϵ, as shown in Fig. 4.
The measured width w of nðxÞ is plotted as the gray open
circles, which decrease and approach the expected value
for small ϵ. Following Eq. (3), by deconvolving the results
[nðxÞ] with the calculated wave function (jψðxÞj2) and
taking into account the 800-ns expansion time, we estimate
the intrinsic resolution σ for different ϵ, which is plotted as
the black closed circles. The blue solid line is the calculated
width of fðxÞ. The ultimate resolution is possibly limited
by mechanical effects arising from the sharp potential
associated with the dark state [20,22,23]. As the slice width
σ decreases, the total population in jg2i also decreases,
setting a practical limit on the usable resolution, as illustrated
by the wave-function measurements shown in the Fig. 4
upper panel. The smallest measured σ reaches 11.4þ2.0

−4.4 nm,

which could be improved with higher signal-to-noise ratio
and Rabi frequencies.

IV. CONCLUSION

We demonstrate superresolution imaging of atomic
wave-function probability density with a spatial resolution
of λ=50 and a temporal resolution of 500 ns. This imaging
technique (demonstrated here on an ensemble of atoms) can
be extended to single atoms by averaging over multiple
realizations. The dark-state-based technique can be applied
to image any atomic or molecular system as long as they
host a three-level system, including the alkali atoms that are
used in many experiments. Such high spatial and temporal
resolution microscopy provides a new tool to address
ultracold atom simulations of condensed-matter systems,
especially phenomena associated with higher momenta and
energies. For instance, the temporal resolution will allow us
to measure the rapid dynamic evolution of the wave
functions in periodically driven Floquet systems [24]. The
spatial resolution of the technique could allow one to probe
density fluctuations due to phonon and vortex excitations in
a nonlattice cold atom system, which can be the size of the
healing length (typically submicron) [25,26]. It is also useful

T T

FIG. 3. Wave-function dynamics within the unit cell of an
optical lattice. We excite the (a) sloshing motion and (b) breathing
motion of jψðxÞj2 appears to have a wrong scale in a 140ER-deep
sinusoidal lattice by suddenly changing either the position or the
depth of the lattice potential. nðxÞ is plotted at different hold times
[1 to 14 μs in steps of 1 μs for (a) and 1.5 to 9.5 μs in steps of 1 μs
for (b)] after the sudden change. The points are experimental
data with ϵ ¼ 0.05, and the blue curves represent calculations
of nðxÞ based on the independently measured lattice parameters.
Typical number uncertainties are 5% due to fluctuations from shot
to shot.

FIG. 4. Spatial resolution of the microscope. We create a
narrow wave function jψðxÞj2 (FWHM 26 nm) by exciting the
breathing motion of atoms in a deep sinusoidal lattice and
measure nðxÞ at the focus point [see Fig. 3(b)] as a function
of ϵ. The measured w from a Gaussian fit with a vertical offset to
the nðxÞ (see upper panel for typical wave-function measure-
ments) is plotted against ϵ as the gray open circles, with the error
bars showing 1 standard deviation from the fitting. These data are
then deconvolved with the calculated wave function jψðxÞj2 to
find the intrinsic resolution σ and plotted as the black closed
circles. The error bars are dominated by the systematic uncer-
tainties in the width of jψðxÞj2. The blue curve is the calculated
width of fðxÞ at different ϵ.
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in probing lattice systems with higher band population either
intentionally populated to exploit the orbital d.o.f. [27,28] or
due to band mixing from strong interactions [29]. As
demonstrated in Fig. 3, our subwavelength resolution
already allows us to distinguish the different atomic wave
functions trapped in lattices with different subwavelength
structure. Such a resolution will be critical in the study of
optical lattices with lattice constants λ=2N created through
stroboscopic techniques [30], which is advantageous for
studying many-body physics since the energy scale is N2

times larger than a typical λ=2 lattice. Finally, while the
imaging technique demonstrated here measures the wave-
function probability density, the coherence of the dark-state
selection process could allow for measurement of the local
wave-function phase as well.
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APPENDIX A: 171YB ATOM LEVEL STRUCTURE

We measure the Yb atoms by absorption imaging on the
1S0 − 1P1 transition with light at 399 nm generated by a
frequency-doubled laser system. We stabilize the seed of the
imaging laser (at 800 nm) via a scanning transfer cavity lock
[31,32] with the master laser locked to a saturated absorption
feature on the 85Rb j52S1=2; F ¼ 3i ↔ j52P3=2; F0 ¼ 3–4i
crossover signal. State selectivity is achieved by imaging in a
large magnetic field of 36 mTalong x̂, such that the resulting
440-MHz separation between the j6i and j7i Zeeman
sublevels of 1P1 is much larger than the linewidth Γ1P1

¼
2π × 27.9 MHz. The imaging beam propagates along x̂ with
σþ polarization relative to B⃗. We measure the population in
the jg2i hyperfine ground state by making the laser resonant
with its respective stretched state, jg2i ↔ j6i for 10 μs.
Optical pumping of atoms in jg1i into jg2i via j7i is
suppressed by a factor of over 3000 due to the 440-MHz
detuning and the short imaging time.
Figure 5 depicts the three hyperfine states that constitute

the Λ system consisting of jg1i; jg2i, and jei that we use to
generate the KP lattice and to probe the wave function of
arbitrary lattices. We create the off-resonant sinusoidal ac-
Stark-shift lattices using the jg1i ↔ j5i transition with the
lattice depth given by 3Ω2

cðxÞ=8ΔHFS. The effect of this off-
resonant lattice is negligible when the atoms are in the KP

lattice with Ωc ¼ 70 Γ and Ωp ¼ 10 Γ, where Γ ¼ 2π ×
182 kHz is the inverse lifetime of 3P1. The method we use
to calibrate our Rabi frequencies is detailed in Ref. [20].

APPENDIX B: EXPERIMENTAL SEQUENCE

Preparation and experimental sequence: Before the start
of each experimental sequence, the atoms are optically
pumped into jg1i.
Stage I: To simplify the study of the static and dynamics

properties of wave functions in lattices, we prepare our
atom cloud to fill only the ground band of the lattice of
interest. Since the Fermi energy of our atomic cloud is
approximately 3ER, adiabatic loading into the lattice will
have some population in the first excited band. We resolve
this issue by first loading atoms into a KP lattice with ϵ ¼
0.14 (Ωc1 ¼ Ωc2 ¼ 35 Γ, Ωp ¼ 10 Γ, and Δ ¼ 4 MHz)
[20] and then holding for 5 ms. Atoms in higher bands of
the KP lattice have a shorter lifetime and are lost from the
trap, effectively removing atoms in the higher bands.
Stage II: In this stage, we adiabatically transfer atoms

from the ground band of the KP lattice into the ground band
of an ac-Stark-shift lattice in 10 ms.Δ is ramped down to 0,
which is important in achieving the maximum speed while
adiabatically following the dynamic dark state in stage IV.
Stage III: In this stage, we excite dynamics in the lattice.

In Fig. 6(c), the phase of the Ωc1 beam is ramped to 90° in
100 ns, so as to diabatically shift the position of the lattice
by λ=8 which induces sloshing dynamics. In Fig. 6(d), the
lattice depth is suddenly increased from 6ER to 140ER,

FIG. 5. Level structure of the 1S0, 3P1, and 1P1 manifolds of
171Yb: Δ is the single-photon detuning and ΔHFS ∼ 6 GHz is the
3P1 hyperfine splitting.
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and the atoms are held in the deep lattice for different times
(1.5 to 9.5 μs) to study the breathing motion.
Stage IV: In this stage, we measure the wave function.

First, Ωc2 is suddenly turned off to 0, while Ωc1 is set to
250 Γ. Then, the Ωp beam is suddenly turned on to its
desired value. Because of the large energy separation of
125 Γ (Ωc1 ¼ 250 Γ and Ωp ¼ Ωc2 ¼ 0) between the dark
and bright states, the adiabatic following of the dark state is
guaranteed during the turn-on of the Ωp beam. Then Ωc2

beam is turned on with a different phase ϕc2 implemented
by changing the phase of the rf drive to the acousto-optic
modulator (AOM), with the amplitude being ramped up
to 250 Γ with the optimal waveform so as to preserve the
adiabaticity during the ramp. By scanning ϕc2 from 0°
to 360°, we change the position of the node of
ΩcðxÞ ¼ 500Γ cosðkxÞ, thereby mapping out the probabil-
ity amplitude of atoms in each spatial slice of the wave
function.
Stage V: Finally, the lattice beams are ramped off

simultaneously in 100 ns by switching off the rf drive to
the AOMs. Since the dark-state composition depends
only on the ratio ðΩc1 þΩc2Þ=Ωp and not on the absolute
magnitude of the Rabi frequencies, simultaneous ramp-off

of the lattice beams preserves the dark-state composition
until the atoms are imaged.

APPENDIX C: HARDWARE CONTROL

In order to generate the experimental sequences described
earlier, we need to have fine, high-bandwidth control over the
amplitude and phase of the light fields Ωc1, Ωc2, and
Ωp. This control is achieved by using a home-built field-
programmable-gate-array- (FPGA; Spartan 6) controlled
direct-digital-synthesis- (DDS; AD9910) based rf signal
generator. We use three such devices to drive three AOMs
for the light fields. Phase coherence between the light fields is
ensured by having the devices be clocked by the same
10-MHz clock source and having the light fields be derived
from the same laser. Each device generates an 80-MHz rf
carrier signalwith arbitrary amplitude andphase and imprints
that onto the light via its respective AOM. The DDS can
update the phase of the rf signal every 4 ns. The desired
amplitude waveform (AW) is loaded into the local RAM of
the FPGA of the device and is updated at a maximum update
rate of 8 ns. The maximum length of the AW pulse is
approximately 256 μs when updated every 8 ns.

(a)

(d)

(b) (c)

FIG. 6. Experimental sequences. (a) Probing the ground-state wave function of a sinusoidal lattice. (b) Probing the ground-state wave
function of a KP lattice. (c) Probing the dynamics after a sudden change in the lattice position. (d) Probing the dynamics after a sudden
change in lattice depth. The drawings are not to scale.
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APPENDIX D: OPTIMAL AMPLITUDE
WAVEFORM FOR STIRAP

During stage IV, we adiabatically transfer atoms from j1i
to j2i near the node of ΩcðxÞ via STIRAP [19]. For
an ideal Λ system, the local adiabatic criterion is given
by Ref. [19] as Ωrms ≫ jΩc

_Ωp − _ΩcΩpj=Ω2
rms, where

Ωrms¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

cþΩ2
p

q
(at Δ¼0) is the energy gap between

the dark and bright eigenstates and the rhs is the off-
diagonal coupling between them. We define an adiabaticity
parameter r,

Ωrms ¼ r
jΩc

_Ωp − _ΩcΩpj
Ω2

rms
: ðD1Þ

A larger value of r implies a more adiabatic but slower
transfer. The equation is solved to give an optimal shape of
Ωc2 near the node of ΩcðxÞ (Ωc1 and Ωp are kept constant
here) for stage IV:

Ωc2ðtÞ ¼ Ωc1 −Ωp

�
Ωc1ffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c1þΩ2
p

p − Ωpt
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
Ωc1ffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

c1þΩ2
p

p − Ωpt
r

�
2

r : ðD2Þ

The time it takes to finish the Ωc2ðtÞ ramp is

Tr ¼
r
Ωp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ2

p : ðD3Þ

For a typical value of r ¼ 15, Ωc1 ¼ 250 Γ, and Ωp ¼
25 Γ, Tr is 0.52 μs; see Fig. 7. For a given spatial resolution
determined by ϵ, more available laser power will reduce Tr
and increase the temporal resolution.
We experimentally investigate the minimum r required

to ensure adiabatic following of the dynamic dark state.
We do this by keeping r fixed and measuring the temper-
ature of the cloud after STIRAP pulses. If the adiabaticity is
not well satisfied, the nonzero probability of atoms being
in the excited state jei leads to scattering which increases
the temperature of the atoms. To increase the sensitivity of
the measurement, we apply ten successive STIRAP pulses.
This study is performed with only one control beam Ωc2

and the probe beam Ωp. In each pulse, Ωc2 is ramped up
from 0 to 250 Γ and then ramped down to 0 following the
optimal waveform described by Eq. (D1). After ten cycles,
the temperature of the cloud is measured, and the results
are shown in Fig. 8(a). One can see that beyond a certain
value of r, the STIRAP process becomes adiabatic; i.e.,
the temperature is independent of r, which occurs at about
r ¼ 15 for Ωp ¼ 50 Γ; 25 Γ. Below r ¼ 15, the local
adiabaticity criterion breaks down. During the probe stage
in Fig. 6, we use r ¼ 15 in Eq. (D2) to calculate the
optimal AWs.
The energy gap between the dark and bright eigenstates

increases with increasing Ωrms, which reduces Tr needed
to ensure adiabaticity. We study this effect by keeping the
ratio of Ωp=Ωc2 ¼ 0.2 constant while Ωrms is varied. As
shown in Fig. 8(b), with larger Ωrms, faster ramp speed can
be achieved while still being adiabatic.

APPENDIX E: PRESERVING THE DARK-STATE
COMPOSITION DURING RAMP-OFF

The ramp-off stage of the lattice beams is crucial for our
measurement since it must preserve the dark-state compo-
sition generated during the probing stage. We achieve this
requirement by ramping down the light fields simultane-
ously while maintaining a fixed ratio between the Rabi
frequencies ΩciðtÞ=ΩpðtÞ, where i ¼ 1, 2. The dark-state
composition is thus preserved, as it depends only on the
ratio and not on the absolute magnitudes of the Rabi
frequencies. For the typical Rabi frequencies we use in the
experiments, the relative delay between the light fields

FIG. 7. The optimal amplitude waveform for Ωc2ðtÞ for
Ωc1 ¼ 250 Γ, Ωp ¼ 25 Γ.

FIG. 8. (a) The temperature of the atoms after ten complete
STIRAP pulses for different values of r and Ωp and (b) different
values of Ωrms and Tr
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needs to be less than 20 ns to preserve the dark-state
composition. The ramp-off must be diabatic with respect to
the mechanical d.o.f. of the wave function. This is
guaranteed by turning off the rf drive to the AOMs
simultaneously in 100 ns.
Experimentally, simultaneous turn-off of the light fields

between different AOMs is not guaranteed, as delays may
exist due to the laser light hitting the AOM crystals at
different distances from their respective piezoelectric trans-
ducers. With our best alignment of the AOMs, we reduce
the delay of the light fields to within 60 ns of each other.
This remnant delay at the atoms is compensated by delaying
the digital trigger that turns off the rf drive to an AOM. We
accurately measure the turn-off delays between the light
fields at the atoms using the method shown in Fig. 9(a).
Sweeping tshift of the digital trigger, thereby changing Δt ¼
tshift − tdelay, we measure the atom number in jg2i using
state-selective imaging. We are able to change tshift at
picosecond timescales using a delayed-pulse generator
(SRS DG535). When Δt < 0, the spin composition of
the dark-state wave function is jg1i. But as Δt ≥ 0, the
dark-state composition starts to become predominantly jg2i
with increase in Δt as shown in Fig. 8(b). By fitting a line to
the data, we get the time at which the dark-state spin
composition just starts to change from jg1i to jg2i. The

jg2i component of the dark state is close to 0 for the Rabi
frequencies used in the measurement when Δt ¼ 0. By
measuring these delays for each pair of beams Ωc1 and Ωp,
Ωc2 andΩp,we can compensate themvia adjusting the lengths
of the BNC cables of the digital trigger to the rf sources.
Another approach to ensure that the dark-state compo-

sition does not change is to turn off the light fields
diabatically with respect to the spin d.o.f. of the dark-state
wave function. As the Rabi frequencies of the light fields
are in the range of hundreds of megahertz, the turn-off time
must be less than 10 ns. It is challenging to achieve such
turn-off times with AOMs, but one could use electro-optical
modulators instead.

APPENDIX F: THEORY AND CALCULATION

The eigenfunctions of atoms in an optical lattice are
given by the Bloch ansatz as ϕqðxÞ ¼ eiqxuqðxÞ, where
uqðxÞ ¼ uqðxþ aÞ, q ∈ ½−k; k� is the quasimomentum, and
a is the periodicity of the lattice. The field operator for a
spin jσi;Ψ†

σðxÞ, and the total field operator for a spin-1=2
particle in a lattice Ψ†

SðxÞ is given as [33]

Ψ†
σðxÞ ¼

Xq¼k

q¼−k
ϕ�
qðxÞc†qσ;

Ψ†
SðxÞ ¼ ½Ψ†

jg1iðxÞ;Ψ
†
jg2iðxÞ�T;

where fcqσ; c†q0σ0g ¼ δqq0δσσ0 .
Before stage IV, all atoms are in jg1i as the trivial dark

state which is represented by the total field operator
Ψ†

SðxÞ ¼ Ψ†
jg1iðxÞð1; 0ÞT . During stage IV, the adiabatic

preparation of the dark-state wave function is given as

Ψ†
SðxÞ ¼ Ψ†

jg1iðxÞ
�

s sinðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2sin2ðkxÞ þ 1

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2sin2ðkxÞ þ 1
p

�
T
;

where s ¼ 1
ϵ ¼ ðΩc1 þ Ωc2Þ=Ωp.

The measurement involves probing the probability den-
sity of atoms in jg2i averaged over the filled ground band
of the optical lattice (jGBi) using state-selective imaging.
The observable that we measure is therefore,

hg2jhGBjΨ†
SðxÞΨSðxÞjGBijg2i

¼
�

1

s2sin2ðkxÞ þ 1

� Xq¼k

q¼−k

Xq0¼k

q0¼−k

ϕ�
qðxÞϕq0 ðxÞ

× hGBjc†qjg1icq0jg1ijGBi

¼
�

1

s2sin2ðkxÞ þ 1

� Xq¼k

q¼−k
jϕqðxÞj2

¼ fðxÞ
Xq¼k

q¼−k
jϕqðxÞj2:

(a)

(b)

FIG. 9. (a) Optical pulse sequence used to optimize the
temporal overlap between the Ωci and Ωp light fields. (b) The
population of the atoms in the jg2i state as a function of tshift with
Ωc1 ¼ 250 Γ and Ωp ¼ 50 Γ.
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Therefore, the measured density distribution within a
unit cell is the convolution of the actual density distributionPq¼k

q¼−k jϕqðxÞj2 and the probing function fðxÞ.
We solve for the band structure of two types of lattices:

the KP lattice and the sinusoidal ac-Stark-shift lattice.
Using the Bloch ansatz, the Schrödinger equation can be
written as

�
ℏ2

2m
ð−iℏ∂x þ qÞ2 þ VðxÞ

�
uqðxÞ ¼ ϵðqÞuqðxÞ:

The Schrödinger equation can be solved numerically by
Fourier expansion of uqðxÞ into plane waves

uqðxÞ ¼
XN
n¼−N

cn;qeinkx;

where n ∈ ð0; 1; 2;…Þ is the band index and diagonalizing
the matrix equation resulting in this basis. Similarly, the
time dependence of the wave function after suddenly
changing the lattice can be calculated by solving the
time-dependent Schrödinger equation with appropriate
initial conditions.
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Abstract
Floquet engineering or coherent time-periodic driving of quantumsystemshas been successfully used to
synthesizeHamiltonianswithnovel properties. In ultracold atomic systems, this has led to experimental
realizationsof artificial gaugefields, topological bandstructures, andobservationof dynamical localization,
tonamea few.Herewepresent a Floquet-based framework to stroboscopically engineerHamiltonians
with spatial features andperiodicity below thediffraction limit of light used to create themby time-
averagingover various configurations of a 1DopticalKronig–Penney (KP) lattice. TheKPpotential is a
lattice of narrow subwavelengthbarriers spacedbyhalf the opticalwavelength (λ/2) and arises from the
nonlinear optical response of the atomic dark state. Stroboscopic control over the strength andpositionof
this lattice requires time-dependent adiabaticmanipulationof the dark-state spin composition.We
investigate adiabaticity requirements and shapeour time-dependent lightfields to respect the
requirements.We apply this framework to show that aλ/4-spaced lattice canbe synthesizedusing realistic
experimental parameters as an example, discussmechanisms that limit lifetimes in these lattices, explore
candidate systems and their limitations, and treat adiabatic loading into the groundbandof these lattices.

1. Introduction

Time-periodic driving of quantumsystems is ubiquitous in quantummechanics. Small amplitude driving of a
quantumsystemprobes its linear response [1], while strong driving allows forHamiltonian engineering [2–6].
Optical potentials and inparticular optical lattices have proven to be a powerful tool formanipulating ultracold
atomic systems and are used in awide range of experiments [7–9]. However, the spatial features andperiodicity of
these potentials (generally arising from the secondorder ac-Stark shift) in the farfield are constrained by the
diffraction limit to be of order thewavelength of light used to create them. In particular, the Fourier decomposition
of these far-field optical potentials cannot have componentswithwavelength less thanλ/2, and thus theminimum
lattice spacing isλ/2.As the lattice spacing determinesmany of the energy scales in cold-atom lattice systems, it has
beenof interest to produceoptical latticeswith smaller spacings in order to increase relevant energy scales [10, 11].
Approaches tomaking subwavelength-spacedoptical lattices have beenproposed [12] and realized [13, 14]based
onmultiphoton effects, andonadiabatic dressing of different spindependent lattices [15, 16].

Recently, optical lattices basedon thenonlinear optical response ofdark states [17, 18]were realized [19]with
λ/2periodicity but strongly subwavelength structurewithin aunit cell, consisting of aKronig–Penney-like (KP)
lattice of narrow repulsive barriers ofwidth;λ/50. Time averaging a stroboscopically applied lattice potentialwith
high spatial frequencyFourier components can give rise to an average potentialwith periodicity and spatial features
smaller thanλ/2 [10]. Since the dark-stateKP lattice has high spatial frequencyFourier components, it is a candidate
progenitor latticewithwhich to realize such a time-averaged, subwavelength-featured lattice.Here,weexplore the
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implementationof a time-averageddark-stateKP lattice, taking into account realistic imperfections in thedark-state
system.After careful considerationof the adiabaticity requirements,we show that latticeswithλ/4period canbe
realized as an example, anddiscuss theprospects for latticeswith smaller spacings and features. Reference [20]
explores related ideas about painting arbitrary subwavelengthoptical potentials.

In the time-averaged approach, a time-periodic progenitor potentialW0(x, t) is applied such that the atoms
experience the time-averaged potentialWavg(x):

W x
T

W x t t
1

, d , 1
T

T

avg
2

2

0ò=
-

( ) ( ) ( )

whereT=2π/ωT is the period ofW0(x, t) andωT is the Floquet frequency. In order to successfully realize
Wavg(x)while avoiding heating,ωTmust bemuch faster than the timescale associatedwith themotional degree
of freedom in the lattice, which is set by the energy gaps between bands in the lattice [10, 21]. This requirement
suggests thatωT be as large as possible. Aswe discuss below, the particular realization ofW0(x, t)using a dark-
state lattice [19] has an additional requirement of spin adiabaticity that limits themaximumallowableωT.

The dark-state lattice is an artificial scalar gauge potential [17–19, 22, 23] experienced by an atom in the
dark-state eigenfunction of a three-levelΛ-systemwith a spatially dependent spin composition. Dynamically
manipulating the height, barrier width, and position of the lattice requires time-dependentmanipulation of the
spin composition of the dark-state eigenfunction. This spinmanipulation can be seen as a stimulated Raman
adiabatic passage (STIRAP) process [24] and adiabaticity requirements set an upper bound on thewindow for
usableωTwithinwhich the atoms are simultaneouslymotionally diabatic and spin adiabatic. Understanding the
practical limits of these constraints requires a detailed consideration of the systemdynamics, whichwe apply to
the specific 171Yb systempreviously used to demonstrate the dark-state lattice [19].

2. Time-dependent dark-state potentials

Weconsider the creation of time-periodic potentials for the dark-state channel,WDS(x, t) (which serves asW0(x,
t) in equation (1)), by coupling the three atomic levels in aΛ-systemwith a spatially homogeneous probe light
fieldΩp(t), and a spatially inhomogeneous control lightfield. The inhomogeneous control lightfield is
composed of two counter propagating fields with equalmagnitudes driven simultaneously,Ωc(x,
t)=Ωc(t) cos(kx+f(t))where k=2π/λ, as shown infigure 1(a).Working in the spatially and temporally local
dressed state basis of theΛ-systemdetermined by the couplingfieldsΩp(t) andΩc(x, t), theHamiltonian is given
by (equation (A.5))

H x t
p

m

W x
W x

W x
H x p t,

2

0 0
0 0
0 0

, , , 2rot

2 DS

od= + +-

+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ˆ ( ) ˆ ( )

( )
( )

ˆ ( ) ( )

whereWDS(x, t) andW±(x, t) are the dark-state and bright-state potentials in the three Born–Oppenheimer
(BO) channels and H x p t, ,od

ˆ ( ) represents the off-diagonal couplings between these channels (see appendix A).
WDS(x, t) andW±(x, t) include the BOpotentials as well as the non-adiabatic corrections to these potentials. The
dressed state coupling induced by H x p t, ,od

ˆ ( ) is detrimental, since itmixes bare excited state 3ñ∣ into the dark-
state channel through the bright-state channels, inducing photon scattering in the otherwise lossless dark state.

The spin composition of the dark-state eigenfunction for theΛ-system infigure 1(a) is
x t x t x tDS , cos , 1 sin , 2a añ = - ñ + ñ∣ ( ) ( )∣ ( )∣ where x t t x t, tan ,p c

1a = W W-( ) [ ( ) ( )]. The non-adiabatic
correction to the dark-state BOpotential that gives rise toWDS(x, t) is determined by the spatial gradient of the
spin composition [17, 18] (appendix A.1) (figure 1(c)),

W x t
m x

x t,
2

, , 3DS

2 2
a=

¶
¶

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ( )

which for the light-field configuration considered here is a lattice of narrow repulsive barriers with temporally
modulated strength and position.We take here a stroboscopic approach, whereWDS(x, t) is repeatedly pulsed on
and off inmagnitude atN different positions for timeTiwith the position ofWDS(x, t) being shifted in between
the lattice pulses (hereT Ti= å ). In addition,WDS(x, t) can be held on and off for ton,i and toff,i (figure 1(d)).
Time averaging over theN different pulsedKP lattice potentials with arbitrary strength and position can produce
an arbitrary time-averaged potentialWavg(x) [20].

The ability to paint potentials requires real-time control over the position, strength andwidth of the barriers
(equation (3)). The strength of the barriers can be controlled via the Rabi frequenciesΩp(t) andΩc(t)
(figures 1(b), (c))with the height andwidth of the barriers being proportional to 1/ò2(t) and ò(t) respectively
[17–19]where ò(t)=Ωp(t)/Ωc(t) (for ò(t)=1). The barriers are located at the nodes/minimums ofΩc(x, t)
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(figure 1(c)), and their positions can be controlled by the control beamphasesf1(t)andf2(t) (figures 1(b), (c)).
StitchingN different sub-Floquet periods together (while ensuring continuity in the Rabi pulses between the
sub-Floquet periods) into one Floquet period allows for the versatility in the time-averaged potentialWavg(x)
that can be generated. Each sub-Floquet period of durationTi pulses a KPpotential at a different position x0i
(determined by the phasef0i)with a strength andwidth determined by òi. Figure 1(d) shows the pulsesΩp(i)(t),
Ωc(i)(t) andf(i)(t) for the ith sub-Floquet period−Ti/2�t�Ti/2.

3. Adiabaticity considerations

Without explicit time-dependence, H x p t, ,od
ˆ ( ) has static, off-diagonal terms depending on the spatial gradient

of the dark-state spin composition that couple the dark-state channel to the lossy bright-state channels. This loss
mechanismwas theoretically [17, 18] and experimentally [19] shown to limit lifetimes in theKP lattice. Large
energy gaps between the BO channels via large Rabi frequenciesΩc andΩp generally aid in suppressing this loss
[19].When explicit time dependence to the Rabi frequencies is included i.e.Ωc(x, t) andΩp(t), the spatially
dependent lossmechanismhas a trivial time dependence due to the temporally periodic nature of the changing
dressed states, and the loss is quantified by averaging over one Floquet period. There is, however, an additional
lossmechanismmediated via an explicitly time-dependent term in H x p t, ,od

ˆ ( ) (see appendix A). This term
mediates non-adiabatic couplings between the dark-state channel and the bright-state channels, but can be
suppressed by careful pulse shaping.

Our goal is to designΩp(t) andΩc(x, t) to be simultaneouslymotionally diabatic and spin adiabatic. In order
to design pulses that are spin adiabatic, we consider the three inequalities that quantify the sufficiency
requirements for adiabaticity [25] defined at single photon resonanceΔ=0 (see appendices A.2, B.2):

t
x t x t a, , , 4rmsa

¶
¶

W( ) ( ) ( )

t

x t t

x t
t b

,

,
d 1, 4

rmsT

T

ò
a¶

¶
¶ ¶
Wp w

p w

-


⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

Figure 1. (a)An idealΛ-systemwith inverse lifetimeΓ and single-photon detuningΔ. One leg of theΛ-system is coupled by a spatially
homogeneous and temporally varying probe lightfieldΩp(t) and the other leg by a spatially inhomogeneous and temporally varying
control lightfieldΩc(x, t). (b)The geometry of the light fieldswith arbitrary control over the envelope,Ωc1(t),Ωc2(t),Ωp(t) and phase,
f1(t),f2(t) of each light field. (c) (i)The instantaneous (at t=0) spatial dependence of the lightfields t kx tcosc fW +( )∣ ( ( ))∣ and
Ωp(t)wheref(t)=f1(t)=f2(t), (ii) the probability densities of the spin composition of the dark-state eigenfunction x t,y ñ∣ ( ) i.e.

x t1 , 2yá ñ∣ ∣ ( ) ∣ and x t2 , 2yá ñ∣ ∣ ( ) ∣ , and (iii) the instantaneous shape ofWDS(x, t). (d)Typical pulse shapes considered here for the
control beamsΩc(i)(t)=2Ωc1(i)(t)=2Ωc2(i)(t), probe beamΩp(i)(t), and phasefi(t) for the ith sub-Floquet periodwhere−Ti/2�
t�Ti/2 that determines the time-averaged potentialWavg(x).
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where x t x t t, ,c prms
2 2W = W + W( ) ∣ ( )∣ ∣ ( )∣ . Equation (4a), called the local adiabatic criterion [24], states that

to ensure adiabaticity during pulsing, the energy gap between the dark and bright eigenstates (set byΩrms(x, t))
must bemuch greater than the off-diagonal couplings between them ( x t t,a¶ ¶∣ ( ) ∣). Equation (4b) forces the
pulses to be smoothwhile both equations (4b) and (4c) set bounds on their rise time and fall times.

To design pulse shapes that satisfy equations (4a)–(4c), we parameterize the condition equation 4(a) through
a parameter r(t):

r t
x t t

x t

,

,
, 5h

hrms

a
=

¶ ¶
W

( ) ( )
( ) ( )

evaluated at x=xh, the positionwhere the inequality is the hardest to satisfy. The role of r(t) is to quantify the
spin adiabaticity during the rising and falling segments of theΩc1(t),Ωc2(t) andΩp(t) pulses (figure 1(d)).
Specifying r(t) determines the functional form for the Rabi frequencies and the Floquet frequency. To satisfy
equation (4) during the switching between the on (ton,i) and off times (toff,i), r ti∣ ( )∣( ) should satisfy the condition
r t 1i ∣ ( )∣( ) (see appendix B.2) and smoothly change from0.We consider a convenient analytic form for r(i)(t)
that has a continuous first derivative (figure 2):
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whereTi=tSi+toff,i+ton,i and tSi/2 is the rise or fall time.
Generally, it is easiest to be spin adiabatic for large energy separation between the dark and bright-state

channels. However at the nodes ofΩc(x, t), this energy gap is the smallest with a value of ÿΩp(t)/2 forΔ=0.
Therefore, we consider pulse schemes that change the positions of the nodes onlywhen the energy gap at the
nodes is large and the spin composition is essentially homogeneous (ò(t)?1).We consider twoways to achieve
the homogeneous condition in between pulses:

(1) Ω p(t)?Ωc(x, t) achieved by turning upΩpwhile turning off both control beams,

(2) Ωc1?Ωp?Ωc2(t) achieved by turning offΩc2(t)whileΩp andΩc1 are kept constant.

We note that the pulsing schemes considered here are not unique. Control overΩc1(t),Ωc2(t),Ωp(t),f1(t), and
f2(t) allows formultiple ways bywhich arbitrary potentials can be painted, andwe refer the reader to [20] for
other variants.

Forpulse scheme (1), thepositionwhere the local adiabatic criterion is thehardest to satisfy,xh, occursbetween the
nodes. (Pulse scheme (2), forwhichonlyoneof the twocontrol beams is driven, is treated in the appendix).Wechoose

Figure 2.The functional forms forΩc(i)(t),Ωp(i)(t), and r(i)(t) for the ith sub-Floquet period−Ti/2�t�Ti/2. Control over the duty
cycle ofWDS(x, t) is provided by the hold times toff,i and ton,i.
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the rmsaverageof theRabi frequencies tobe constant atxh, rmsW = t tp i c i i
2 2 2bW + W =( ) ( )( ) ( ) = ci pi

0 2 0 2W + W( ) ( ) =
1ci i

0 2 2W +( ) ( )whereβi is a constant andΩc(i)(t)=2Ωc1(i)(t)=2Ωc2(i)(t). Solving equations (5) and (6)
simultaneously, the expressions for tSi,Ωc(i)(t) are as follows (figure2):
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where t t t t t t t4 sin 4 2Si Si p p p= - -( ) ∣ ( ) ∣ ∣ ∣and
t r4 arctan 1 . 8Si i i i0 b= ( ) ( ) ( )

As a specific example, we explore creation ofλ/(2N)-spaced lattices whereN=2, 3, 4K. These lattices are
created by time-averagingNλ/2-spaced progenitor KP lattice potentials, each shifted in position by iλ/(2N) for
(i−1)T/N�t�iT/N and pulsed for a period ofTi=T/N [10], where i=0, 1,K,N−1 (figure 3(a)).
Moreflexibility is possible by pulsing the progenitor lattice with different strengths and relative positions,
realizing for example the Rice–Melemodel [26, 27] as shown infigure 3(b).

The goal to createλ /(2N)-spaced lattices that significantly confines the ground band sets constraints on the
lattice parameters.Without requirements of spin adiabaticity, time-averaging theKPpotential createsλ/(2N)-
spaced lattices with barriers ofmaximumaverage height of (1/N)ER/ò

2. Due to the reduction in the size of the
unit cell byN, the characteristic energy increases toN2ER, which is also approximately the energy of the lowest
band in aKP lattice. Hence for theλ/(2N)-spaced lattice to provide significant confinement,
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( ) ( ) which can be controlled

by choosing ò (limited by requirements on spin adiabaticity) and toff,i and ton,i. Of course, non-zero values for
toff,i and ton,i decrease the Floquet frequency (ωT) as

N
t t t

1

2
. 10

T
Si i ioff, on,

w p
= + +( ) ( )

ReducingωTmakes itmore difficult to be fullymotionally diabatic, so that the operational windowbetween the
two constraints rapidly decreases with increasingN.

Figure 3. (a)Recipe to stroboscopically realize aWavg(x) that is aλ/4-spaced lattice: PulseWDS(x, t)withf(i)(t)=0 for−T/2�t�0
andf(i)(t)=π/2 for 0�t�T/2. For realistic dark-state lattices, spin adiabaticity requires that the lattice cannot be turned on or off
instantaneously. (b) Stroboscopic realization of the Rice–Melemodel.
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4. Solving for the Bloch–Floquet bandstructure

We solve the Bloch–Floquet bandstructure for ourHamiltonian
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transition in 171Yb).We substitute the Bloch–Floquet ansatz, x t u x t, e ,qx E t
q E

i i
,

q
q

y ñ = ññ-∣ ( ) ∣ ( ) [2, 3, 5, 28–31]

into the time-dependent Schrödinger equation H x t x t x t, , i ,
t

y yñ = ñ¶
¶

ˆ ( )∣ ( ) ∣ ( ) to yield
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where q is the quasimomentum, Eq is the quasienergy, u x t,q E, q

ññ∣ ( ) is the Bloch–Floquetmode, and
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2
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+
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is the quasienergy operator defined in an extendedHilbert spacewhere time is treated as a coordinate with
periodic boundary conditions [2, 3, 5]. The extension of theHilbert space is symbolically represented by the
double ket notation for the Bloch–Floquetmode u x t,q E, q

ññ∣ ( ) [2, 3].We solve the eigenvalue problem in
equation (12) to calculate the Bloch–Floquet bandstructure (appendix C.1).

5. Results

The loss due to the off-diagonal coupling terms in H x t,od
ˆ ( ) that arises from the spatial gradient of the dark-state

spin composition increases with smaller ò [17–19]. This suggests that in order to generate potentials that have
reasonable lifetimeswith realistic values for Rabi frequencies, it is desirable towork at large ò, as allowed by
equation (9). Infigure 4, we investigate the creation of aλ/4-spaced lattice potential that significantly confines
the ground band.With a choice of òi=0.2, r0i=0.01, ci

0W =600Γ, and tSi=0.36Ti (equation (10))we use the
pulse shape in equation (7) to create this potential (figure 4(a)). The green trace is the pulse profile forΩc(t) (and
therefore t tp c

2 2bW = - W( ) ( ) )while the blue trace is the phase profilef(t) during one Floquet period. The
numbered red dots enumerate the different time slices during the pulse. One Floquet period of pulsing involves
stitching together two sub-Floquet periods that have a relative phasef(i)(t) differing byπ/2.Note that the phase
is suddenly switched during an off periodwhen there is no spatial variation to the dark state. The sub-Floquet
periods are color coded and labeled as I and II. This pulse yields an effectiveλ/4-spacedWavg(x) potential with
∼8ER barriers as shown infigure 4(b)whereWavg(x) is plotted.

Infigure 4(c), we search for thewindow of operationalωTwithinwhich the bands of an effectiveλ/4-spaced
latticeHamiltonian are clearly defined bymonitoring the Floquet spectrum Eq at q=0 as a function ofωT/ωR.
AsωT is increased, the pulsing becomesmoremotionally diabatic, but at the cost of increased r0i (equation (8)).
The increased r0i results in stronger admixing of the dark-state channel with the bright-state channels. The loss
rate−Im(Eq) is encoded in the color of the points infigure 4(c). The gray dots have loss (−Im(Eq))much larger
than the highest value in the color bar.

Infigure 4(d), weplot the bandstructure in theBrillouin zone of H x t,ˆ ( ) for the time-averagedHamiltonian
p m W x22

avg+ˆ ( ) ( )whereWavg(x) is evaluatedusing equation (1) (figure 4(b)) for the chosen pulse shape
(figure 4(a)). The folded bandstructure is indicative of aλ/4-spaced lattice. TheBloch–Floquet bandstructure for
thedark-state channel (figure 4(e)) is obtainedby solving theHamiltonian H x t p m W x t, 2 ,DS

2
DS= +ˆ ( ) ˆ ( ) ( )

forωT=150ωR (equation (3) and see appendixC.2). The avoided crossings enclosed in the red circles infigure 4(e)
arise fromcouplingswithhigh-lying dark-state eigenfunctions. Thebandstructures shown infigures 4(d) and (e)
ignore H x t,od

ˆ ( ) and therefore exclude loss due to non-adiabatic couplingswith the bright states. Infigure 4(f), we
show theBloch–Floquet bandstructure of H x t,ˆ ( ) (equation (11)), which includes thenon-adiabatic bright-state
couplings. The avoided crossings exist in the Bloch–Floquet bandstructure at the sameplace (q,Eq) for the same
parameters infigures 4(e) and (f), suggesting that these crossings arise fromcouplingswith high-lying dark-state
eigenfunctions. The groundBloch–Floquet band for H x t,ˆ ( ) has the same shape as the staticλ/4-spaced lattice
(except near the avoided crossings). The calculated average lifetime in the time-averaged potential for the ground
band infigure 4(f) is 1 ms,which can be substantially improvedwith a lowerωT. In general, lifetimes canbe
increased and the avoided crossings can be removed byoperating at larger Rabi frequencies.
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Wealso calculate the Bloch–Floquet bandstructures at a lower Floquet frequency ofωT=50ωR (pink
vertical line infigure 4(c)). The Bloch–Floquet bandstructure of the dark-state channelHamiltonian H x t,DS

ˆ ( ) is
shown infigure 4(g), and of H x t,ˆ ( ) infigure 4(h). The average lifetime of the ground band is 32 ms (the colored
regions infigure 4(h)) and ismuch longer than the lifetime of 1 ms for the Bloch–Floquet bandstructure
obtained atωT=150ωR infigure 4(f). The avoided crossings due to coupling to high-lying dark states,
however, are larger for the sameRabi frequencies.

Infigure 5, we show the dynamics of the spatial probability densities of the dark-state Bloch–Floquetmode
and its spin composition at time slices 1–5 (figure 4(a)) in the (q,Eq) configuration labeled by the brown star in
figure 4(f). The purple trace is the scaled probability density of the Bloch–Floquet dark-statemode and it hasλ/4
periodicity. It is roughly stationary except for the small wiggles that correspond tomicromotion.Meanwhile, the
spin composition (the black and red traces) of the Bloch–Floquetmode changes dramatically as a function of
time during the Floquet period. The population in 3ñ∣ (yellow trace) remains quite small.

To create subwavelength-spaced lattices with largerN, thewindow of operationalωTwill be smaller byN
(equation (10)). In addition, since largerN requires workingwith smaller ò (equation (9)), the lossmechanisms
limiting lifetime in these lattices becomemore significant. However, higher Rabi frequencies can combat both
these limitations. Using larger Rabi frequencies, we show an example demonstrating the feasibility of aλ/6-
spaced lattice.

With increased Rabi frequency of ci
0W =1800Γ, we use the pulse shape in equation (7) to design a composite

pulsing profile (figure 6(a)) to create a time-averagedλ/6-spaced lattice potentialWavg(x) that has∼9ER tall
barriers (figure 6(b)). Here òi=0.135, r0i=0.01, and tSi=0.59Ti. One Floquet period of pulsing involves
stitching together three sub-Floquet periodswith the relative phasef(i)(t) differing byπ/3 between adjacent sub-
Floquet periods. ForωT=280ωR (yellow vertical line infigure 6(c)), we plot the bandstructure of the time-
averagedHamiltonian p m W x22

avg+ˆ ( ) ( ) infigure 6(d), the Bloch–Floquet bandstructure of the dark-state

Figure 4. Stroboscopic creation of aλ/4-spaced lattice potential: (a) one Floquet period constituting theΩc(t)pulse (green trace) and
phase pulsef(t) (blue trace) for òi=0.2, r0i=0.01, ci

0W =600Γ, and tSi=0.36Ti. The numbered red dots enumerate the different
time slices shown in figure 5. The two sub-Floquet periods are labeled as I and II. (b)The time-averaged potentialWavg(x). (c)The
Floquet spectrum Eq at q=0 as a function ofωT/ωR. The background of seemingly randompoints represent Floquet states whose
quasienergies are only defined up tomodulo ÿωT. The loss rate−Im(Eq) is given by the colors of the points. (d)The ground band of the
time-averagedHamiltonian p m W x22

avg+ˆ ( ). (e)TheBloch–Floquet ground band of the dark-state channelHamiltonian
H x t p m W x t, 2 ,DS

2
DS= +ˆ ( ) ˆ ( ) atωT/ωR=150. (f)TheBloch–Floquet ground band of H x t,ˆ ( ) atωT/ωR=150. The yellow

region at q=0 represents the yellow vertical cut in subfigure (c). In (d)–(f) the bottom edge of thefirst excited band is at∼8ER. (g)The
Bloch–Floquet ground band of the dark-state channelHamiltonian H x t p m W x t, 2 ,DS

2
DS= +ˆ ( ) ˆ ( ) atωT/ωR=50. (h)The

Bloch–Floquet ground band of H x t,ˆ ( ) atωT/ωR=50. The pink region at q=0 represents the pink vertical cut in subfigure (c).
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channelHamiltonian H x t,DS
ˆ ( ) infigure 6(e), and the Bloch–Floquet bandstructure of H x t,ˆ ( ) infigure 6(f).

The folded bandstructures are indicative of aλ/6-spaced lattice. The particular phase sequence infigure 6(a)
used to create theλ/6-spaced lattice breaks time-reversal symmetry: the Bloch–Floquet bandstructures are
therefore asymmetric about q=0. The avoided crossings enclosed in the red circles exist in both Bloch–Floquet
bandstructures at the same place (q,Eq) for the same parameters infigures 6(e) and (f), suggesting that these
particular crossings arise from couplingswith high-lying dark-state eigenfunctions. The avoided crossing
enclosed in the green circle infigure 6(f) arises due to couplings with bright-state eigenfunctions.

6. Experimental considerations and limitations

While workingwith large Rabi frequencies reduces losses, a potential disadvantage is that theΛ-system
approximationmay break down. PerfectΛ-systems are rare in nature, andΩp(t) andΩc(t) can couple off-
resonantly to states outside of theΛ-system. These off-resonant couplingsmanifest as effective two-photon
detunings for the approximateΛ-system.Non-zero two-photon detunings are detrimental to STIRAP [24, 32],
although spatially homogeneous detuning could in principle be compensatedwith time-dependent laser
detuning. Two-photon detunings originating fromΩc(x, t), however, are temporally and spatiallymodulated

Figure 5.The dynamics of the wavefunction x t u x t, ,q E, qyñ = á ññ∣ ∣ ( ) of the (q, Eq) state indicated by the brown star in figure 4(f)
within one Floquet period, sampled at the times indicated by the red dots in figure 4(a).

Figure 6. Stroboscopic creation of aλ/6-spaced lattice potential: (a) one Floquet period constituting theΩc(t)pulse (green trace) and
phase pulsef(t) (blue trace) for òi=0.135, r0i=0.01, ci

0W =1800Γ, and tSi=0.59Ti. The three sub-Floquet periods are labeled as I,
II, and III. (b)The time-averaged potentialWavg(x). (c)The Floquet spectrum Eq at q=0 as a function ofωT/ωR. The loss rate−Im
(Eq) is given by the colors of the points. (d)The ground band of the time-averagedHamiltonian p m W x22

avg+ˆ ( ). (e)The Bloch–
Floquet ground band of the dark-state channelHamiltonian H x t p m W x t, 2 ,DS

2
DS= +ˆ ( ) ˆ ( ) atωT/ωR=280. (f)The Bloch–

Floquet ground band of H x t,ˆ ( ) atωT/ωR=280. The yellow region at q=0 represents the yellow vertical cut in subfigure (c).
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andmay not be completely compensatedwithout the significant experimental overhead of addingmore spatially
dependent compensating laser fields. In addition to added two-photon detuning, the lifetime in the time-
averaged lattices is further limited due to admixing of excited states outside theΛ-system.Hence, there are trade-
offs when increasing themagnitude of the Rabi frequencies: while the dark-state evolution ismore adiabatic with
less bright-state admixture, the off-resonant scattering from states outside theΛ-system also increases.
AppendixDpresents calculations for a realistic system consisting of 171Yb atoms, whichwas used to create KP
lattices [19].

A number of techniques can be used to verify the creation of these subwavelength lattices. For example,
nanoresolutionmicroscopy [33] can be used to directlymap out the ensemble-averaged probability density of
atoms in the ground band of theλ/(2N)-spaced lattices. In addition, Bloch oscillations [20, 34] or time-of-flight
measurements of themomentumdistributions [35] could be used tomeasure theN times larger Brillouin zones.
In fact,λ/4-spaced lattices were recently realized using the techniques explored in this paperwith 171Yb
atoms [36].

To adiabatically load into the ground band of the time-averagedλ/(2N)-spaced lattice potential, the
stroboscopic lattice should be turned on slower than themotional timescale set by N ER

2 ( ), whilemaintaining
a large gap to the bright states at all times. For pulse scheme (1) this can be achieved by slowly adjusting the
envelope of the pulsed control beam t f t tc cW = W˜ ( ) ( ) ( )whilemaintaining constantΩrms (see appendix E).

7. Summary and outlook

In this paper, we evaluate the idea of stroboscopically generating potentials using the repulsive barriers of a dark-
state KPpotential.We analyzed the competing requirements ofmaintaining dark-state spin adiabaticity and
simultaneousmotional diabaticity during pulsing of theKP potentials in the presence of realistic imperfections.
We showed that it is possible to create such potentials in an experimental systemof 171Yb atoms by calculating
the Floquet spectrumof atoms in a stroboscopically generatedλ/4-spaced lattice. This approach is applicable to
any three-level system, although it needs to bewell isolated from coupling to other levels in order to ensure good
lifetimes.While we have treated 1D systems here, thismethod can be readily generalized to 2D.Using progenitor
lattices of subwavelength attractive traps [37] in conjunctionwith barriers can allow forflexibility in tailoring
arbitrary time-averaged potential landscapes not limited by diffraction.
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AppendixA. Sufficiency conditions for adiabaticity

We start with the time-dependentHamiltonian

H x t
p

m

t

x t

t x t t

,
2 2

0 0

0 0 ,

, 2 i

. A.1

p

c

p c

2

*


= +

W

W
W W - D + G

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ˆ ( ) ˆ ( )
( )

( ) ( ) ( ( ) )
( )

H x t,ˆ ( ) is non-Hermitian due to the iΓ/2 term and requires a biorthogonal set of eigenvectors to diagonalize it
[38]. Due to the non-Hermitian nature of H x t,ˆ ( ), the eigenvectors are not guaranteed to be orthogonal to each
other, but still form a linearly independent set that spans theHilbert space [38]. To derive the artificial gauge
potentials and for quantifying the sufficiency conditions for adiabaticity, we transform H x t,ˆ ( ) using a rotation
transform R x t,ˆ ( ) composed of the right eigenvectors [38] of the spin-light field coupling part of H x t,ˆ ( ). The
expression for R x t,ˆ ( ) is:
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⎝

⎜⎜⎜⎜⎜⎜⎜⎜
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⎠
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where

t

x t
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x t l
E x t
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E x t

tan
,

, , ,

Arg , ,
2 ,

,
2 ,

. A.3

p

c
c p

c

1 2 2a z

q
z z

=
W

W
= W + W

= W = =

-

- +

( )
( ) ∣ ( )∣ ( )

( ) ( ) ( ) ( )

For pulse scheme (1)where both control beams are changed simultaneously with equalmagnitude:
Ωc(x, t)=Ωc(t)sin(kx+f(t)) resulting in θ(x, t)=0. For pulse scheme (2)where only one control beam is
pulsed: x t t, e i e 2ic c

t kx
c

kx
2

i 0 i2W = W - Wf + -( ) ( ) ( ( ) ) resulting in θ(x, t)¹constant.
The transformation H x t R HR R R t, irot

1 1= - ¶ ¶- -ˆ ( ) ˆ ˆ ˆ ˆ ˆ rotates H x t,ˆ ( ) into the dressed-atompicture of
theΛ-system. The effectiveHamiltonian after the transformation is [22, 24, 32, 39–41]

H x t
p A

m
B E x t

E x t
,

2

0 0 0
0 , 0
0 0 ,

, A.4

E x t

rot

2

,BO

=
-

- + -

+  

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ˆ ( ) ( ˆ ˆ ) ˆ ( )

( )
( )

ˆ ( )

where A R Ri
1= -ˆ ˆ ˆ , B R R ti

1= ¶ ¶-ˆ ˆ ˆ ,ΔΓ(t)=Δ(t)+iΓ/2, and E t= -D  G( ( )
t t x t, 2p c

2 2 2D + W + WG( ) ( ) ∣ ( )∣ ) are the energies of the upper and lower bright states.

We rearrange the terms in equation (A.4) to separate themotion of atoms in the three BO channels (dark
state, upper-bright state, and lower-bright state) [17, 18, 22] from the off-diagonal couplings (H x p t, ,od

ˆ ( )). For
pulse scheme (1) (θ(x, t)=0), this gives

H x t
p

m m
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2

, .

2
, , A.5
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Born Oppenheimer channels

, ,od



a

a

a

= +

¢
¢ ¢
-

-
-

¢

¢ ¢
-

+
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+
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-  

  

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟
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( )

( ) ( ) ( )

( ) ( ) ( )
ˆ ( )

ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( )
ˆ ( )

where f ¢=∂f/∂x and f f t= ¶ ¶ . The term B x t,ˆ ( ) arises from the explicit time dependence of H x t,ˆ ( ).
Careful pulse shaping can help suppress the terms in B x t,ˆ ( ) that couple the dark-state channel with the bright-
state channels. The coupling terms in H x p t, ,od

ˆ ( ) depend only on the ratio of the Rabi frequencies ( ,a a¢  ) and
not on their absolutemagnitudes, while the energy separation between the channels (E x t,BO

ˆ ( )) depend on
absolutemagnitudes of the Rabi frequencies. Thus at higher Rabi frequencies the BO channels become
increasingly decoupled. In addition, ,p c

0 0D W W ensures that the bright-state channels are well separated from
the dark-state channel.

A.1. Floquet scalar gauge potentials
Herewe derive the expression for the Floquet scalar gauge potential for the dark-state channel. The expression

for Â when both control beams are driven simultaneously as in pulse scheme (1) is
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The expression for the scalar gauge potentials for the BO channels is [23, 40]:
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where thefirstmatrix contains the scalar gauge potentials for each of the BO channels. The scalar gauge potential
for the dark-state channel is
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The expressions for A x t,ˆ ( ) andWDS(x, t) for pulse scheme (2) (θ(x, t)¹constant), are
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A.2. Formulating the sufficiency conditions for adiabaticity
The general expression for B̂ is analogous to Â, except that the derivatives arewith respect to x in Â andwith
respect to t in B̂, which for pulse scheme (1) is:
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The local adiabatic criterion (equation (4a)) for the instantaneous dark state requires that theminimumof the
spatially and temporally varying energy gap between the dark and bright statesmust bemuch larger than the
largest off-diagonal couplings between them,whichwe quantify as
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ForΔ=0, where fastest STIRAPpulses are guaranteed [24, 32, 42, 43]
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The expression for pulse scheme (2) (θ(x, t)¹constant) is:
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which in addition to a andα depends on q and θ.

Appendix B. Pulse shaping

B.1. Pulse scheme (2)
In themain text, we consider pulse scheme (1)with the constraint t tp i c i i

2 2 2bW + W =( ) ( )( ) ( ) . For pulse scheme

(2), inwhich only one control beam is pulsed, tp i pi
0W = W( )( ) and t 2c i ci1

0W = W( )( ) , the pulse shapeΩc2(i)(t) and
tSi are determined by r(i)(t) (equation (6)) and òi as follows:

t

T t T t

t t

t t
T t t t

t t t

t t

t t
t t T t

T t t T

0 2 2 2

2

2

16 4 2
2 2 2

2
2 2

2

2

16 4 2
2 2 2

0 2 2 2

, B.1c i

i i i

ci pi i

i i

i i i

ci
i i

ci pi i

i i

i i i

i i i

2

off,

0 0
on,

2 2 2 2
on,

off, on,

0

on, on,

0 0
on,

2 2 2 2
on,

on, off,

off,













 

 

 

 

 

p p

p p

W =

- - +

W
-

W +

+ - +
- + -

W
-

W
-

W -

+ - -
-

-

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

( )

( )
( )

( )
( )

( )( )

where t t t t t4 sin 4Si Si p p= -( ) ∣ ( )∣and
t

r

4

4 1
. B.2Si

i pi i0
0 2

=
W +

( )

For this scheme, xh is at the nodes ofΩc(x, t) since the energy gap between the dark-state and bright-state
channels is the smallest at the nodes and the spin at the nodemust completely flip from 2ñ∣ to 1ñ∣ (figure 1(a)) at
the end of the pulse.

B.2. Verifying the spin-adiabaticity requirements and choice for r0i
Weuse the off-diagonal coupling terms in equation (A.11) and setΔ=0 to recast the sufficiency conditions in
[25] (the inequalities equations (4a)–(4c)). Thefirst condition equation (4a) implies

t
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wherewe have used equations (5) and (6). For r0i=0.01, this inequality is well satisfied. The stronger version
[25] of the second inequality equation (4b) states:
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   ( )

For r0i=0.01, this inequality is alsowell satisfied.Wenote that equation (B.5) also enforces that r(t)must be
differentiable. The stronger version of the third inequality equation (4c) is [25]

x t r t t, 1 B.7h Sirms
2

maxW ∣ ( ) ( )∣ ( )
t r r1 4 arctan 1 1 for pulse scheme 1 , B.8Si i i i i0

2
0b  ( ) ( ) ( )

wherewe have substituted equation (8). Again, this inequality is well satisfied for r0i=0.01.

AppendixC. Bloch–Floquet bandstructure

C.1. Bandstructure of H x t,^ ( )
Weevaluate thematrix elements of the quasienergy operator Kq

ˆ derived in section 4. Kq
ˆ is expressed in

dimensionless units x̃ and t̃ where x x kx2p l= =˜ ( ) , t T t t2 Tp w= =˜ ( ) , E k m2R R
2 2 w= =( ) , and

the tildes over x and t are dropped for convenience, as follows:
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Weexpand theHilbert space of the Bloch–Floquetmodes in a planewave basis:
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ññ = å ñ∣ ( ) ∣ where xt lmj je elx mti iá ñ = ñ∣ ∣ . Here lä[−L, L],mä[−M,M], jä[1, 2, 3]

representing the three spins, and L andM are integers. TheHilbert space spanned by the basis set is composed of
planewaveswith the property lmj lmj I I Ilmj

L M2 1 2 1 3å ñá = Ä Ä+ +∣ ∣ ( ) ( ) .We solve equation (C.2) by

diagonalizing Kq
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where thematrix elements of A andB are
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Depending on the pulse scheme, l m j lmjCá ¢ ¢ ¢ ñ∣ ∣ has different forms. For pulse scheme (1) i.e.
x t t x t, sinc c fW = W +( ) ( ) ( ( )):
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For pulse scheme (2) i.e. x t t, e i e 2i:c c
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The spatio-temporal probability distribution of a Bloch–Floquetmode is

c c e , C.11
l m lmj

l m j lmj
l l x m m t2 i iåy =

¢ ¢
¢ ¢

- ¢ + - ¢∣ ∣ ( )( ) ( )
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where x t u x t, ,q E, q
yñ = á ññ∣ ∣ ( ) with the fractional probability of being in spin iñ∣ at x and t (xä[−π,π],

tä[−π,π]) given by

j c c

c c

e

e
. C.12l m lm l m j lmj

l l x m m t

l m lmj l m j lmj
l l x m m t
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∣ ∣ ∣
∣ ∣ ( )

( ) ( )
( ) ( )

It is important [17] to appropriately choose thenumberof planewavesL andM to be large enough to accurately
represent the couplingsbetween thedark-state channel andbright-state channels.We solve for the lowest fewdozen
eigenstatesnear zero energyof these sparsematriceswithdimensions 3(2L+1)(2M+1)×3(2L+1)(2M+1)∼
105×105using theArnoldi algorithm.Wefind that the solution convergeswithM as lowas 25,however for all our
calculationsweuseM;210.

C.2. Bandstructure of H x t,DS
^ ( )

In this subsection, we outline themethod used to numerically solve for the Bloch–Floquet bandstructure of the
dark-state channel ignoring non-adiabatic couplings to the bright-state channels:

H x t
p

m
W x t,

2
, C.13DS

2

DS= +ˆ ( ) ˆ ( ) ( )

where H x t H x t2, ,DS DSl+ =ˆ ( ) ˆ ( ) and H x t T H x t, ,DS DS+ =ˆ ( ) ˆ ( ). Due to the nonlinear nature ofWDS(x,
t) solving for the bandstructure in the extendedHilbert space approach requires a 2DFourier transformof
WDS(x, t). Instead, we solve for the bandstructure using the approach outlined in [2, 3, 5, 29]wherewe evaluate
the time evolution operator over one Floquet period,U T , 0ˆ ( ), and then diagonalize it.

Making the Bloch ansatz, x t u x t, e ,qx
qDS

i
,DSy ñ = ñ∣ ( ) ∣ ( ) , the time-dependent Schrödinger equation in

dimensionless units is

t
u x t q W x t u x t,

i
i , , . C.14q

T
x

H

q,DS
2

DS ,DS

q,DS

w
¶
¶

ñ = - - ¶ + + ñ
  

∣ ( ) (( ) ( )) ∣ ( ) ( )
ˆ

Wedetermine the time evolution operator for one Floquet periodU t t2 ,q,DS 0 0p +ˆ ( ) [2, 3, 5] and equate that to
the time evolution operator of an effective FloquetHamiltonian e iH t Tq,DS

F
0 - ˆ [ ] , where H tq,DS

F
0

ˆ [ ] is defined at a
Floquet gauge t0 [4].

The expression forU 2 , 0q,DS pˆ ( ) for t0=0 is derived as follows:
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where  is the time-ordering operator, LΔt=2π and L is an integer number of time-steps. Sq l,
ˆ is chosen to

diagonalize H x l t,q,DS Dˆ ( ) at time lΔt: S H x l t S E l t,q l q q l q,
1

,DS ,D = D
-ˆ ˆ ( ) ˆ ˆ ( )where S S Iq l q l

L
,

1
,

2 1=
- +ˆ ˆ . Finally, we

diagonalizeU 2 , 0q,DS pˆ ( ) in equation (C.15) to evaluate the Floquet eigenvalues and the eigenvectors [2, 3, 5]:
U u x u x2 , 0 e e , 0 , 0 . C.16q

iH T

j
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q
j

q
j

,DS
0

1

2 1

,DS ,DS
q q
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F
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=

+
-ˆ ( ) ∣ ( )⟩⟨ ( )∣ ( )ˆ [ ] / /

The Floquet eigenvalues Eq
j are time-independent. Forλ/(2N)-spaced lattices, the Rabi pulses are the same for

eachT/N sub-Floquet period and symmetry arguments were used to speed up the creation of the one-period
Floquet evolution operator,U 2 , 0q,DS pˆ ( ) [5].

AppendixD. Effect of two-photon detuning

In this section, we discuss the detrimental effect of the states outside theΛ-system in realizingλ/(2N)-spaced
lattices for the specific case of 171Yb. In addition to theΛ-system composed of the states 1ñ∣ , 2ñ∣ and 3ñ∣ , the

s p P6 6 3
1( ) manifold has 5 additional states 4ñ∣ to 8ñ∣ that can couple to states 1ñ∣ and 2ñ∣ (figureD1).When the
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effective Rabi frequencies aremuch smaller than their respective detunings to the off-resonant excited states 4ñ∣
to 8ñ∣ , we can adiabatically eliminate the excited states and quantify their effect on the ground states 1ñ∣ and 2ñ∣ of
theΛ-system in dimensionless units as follows:

x t t
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when , HFSG D D ˜ . By dynamicallymodulating δ1(t) and δ2(t), we compensate for the spatially homogeneous
but temporallymodulated real parts in equation (D.2). The compensated x t,ORŴ ( ) is added to H x t,ˆ ( ) and
solved for using themethod outlined in section 4 and appendix C.1 to calculate the Bloch–Floquet bandstructure
ofλ/(2N)-spaced lattices in the presence of two-photon detunings and photon scattering loss due to states
outside theΛ-system. The non-Hermitian terms in equation (D.2) (equations (D.3) and (D.4)) account for loss
fromphoton scattering due to admixing of the adiabatically eliminated excited states with the bare stable ground
states 1ñ∣ and 2ñ∣ . For aλ/4-spaced lattice created by pulse scheme (1), equation (D.2) is
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FigureD1. Level structure of the (6s2)1S0 and (6s6p)
3P1manifolds of 171Yb:Δ is the single photon detuning, D̃ is the Zeeman splitting

in the excited state due to an externalmagnetic field, andΔHFS is the (6s6p)
3P1 hyperfine splitting.
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where 33, 000HFSD - G and 5500D - G˜ (figureD1). The real spatio-temporallymodulated terms in
equation (D.5) originate fromΩc(x, t) andmay only be compensatedwith the experimental overhead of adding
more laser fields.

InfigureD2(b), we show the effect of x t,ORŴ ( ) and contrast it with an idealΛ-system (figureD2(a)). In
figureD2(b), thewindowof operationalωT is smaller and the losses are higher, as expected. At lowerωT, the
sinusoidal two-photon detunings are not time-averaged out. The ground band is also red shifted due to the ac-
Stark shifts being red detuned. Large Rabi frequencies with uncompensated spatio-temporallymodulated two-
photon detuning destroy thefidelity of the STIRAP pulses andmake it harder to createλ/(2N)-spaced lattices.
Losses from excited states admixing further shorten lifetimes.

Another possible candidate system that usesfine-structure states instead of hyperfine states for theΛ-system
consists of themetastable states (6s6p)3P2 and (6s6p)

3P0 of Yb as the long-lived states 1ñ∣ and 2ñ∣ , and s s S6 7 3
1( ) as

the excited state 3ñ∣ . ThisΛ-system is well isolated, and 1ñ∣ and 2ñ∣ are separated in energy bymultiple THz. In
this configuration,λ/(2N)-spaced lattices can be realized for both bosonic and fermionic species of Yb. The large
matrix elements for the s p P s s S6 6 6 73

2
3

1«( ) ( ) and s p P s s S6 6 6 73
0

3
1«( ) ( ) transitions ensure that higher Rabi

frequencies can be achieved in these systemswithout the detrimental effect of states outside theΛ-system.
However, Floquet heating from interactions [2, 3] and losses from fine-structure collisions of (6s6p)3P2 atoms
[44] could limit lifetimes in these systems.

Appendix E. Adiabatic loading into the ground band

There are a fewways to adiabatically load into the ground band of aλ/4-spaced lattice given that one has control
overΩc1(t),Ωc2(t),Ωp(t),f1(t), andf2(t).We consider here a protocol inwhich the time-averaged potential is
grownby periodically pulsingΩc(t)with a slowly varying envelope f (t)with a timescalemuch slower than the
motional degree of freedom: t f t tc cW = W˜ ( ) ( ) ( ). The pulse profile forΩc(t) is determined by equation (7) for a

givenfinal ò. For pulse scheme (1), tpW̃ ( ) along the ramp is determined by t tp c
2 2bW = - W˜ ( ) ˜ ( ) . The large and

constant energy gap ÿβ/2minimizes admixing of the dark-state channel with the bright-state channels. Under
these conditions the loading is spin adiabatic because

x t

t
r t r

,
, E.1h

0
a

b b
¶

¶
< <

˜ ( ) ∣ ( )∣ ( )
for 0<f (t)<1 and f(t)=1/T, where t x ttan ,p c

1a = W W-˜ [ ˜ ( ) ˜ ( )]. For pulse scheme (2), we propose the
protocol t f t1p p

0W = - W˜ ( ) ( ( )) and the pulse profile forΩc2(t) is one that creates the desiredλ/4-spaced lattice
for a chosen ò according to equation (B.1). tpW̃ ( ) is reduced from an initial large value to its final value ofΩ0

p. This
ensures that the energy gap ÿβ/2 at the nodes is lower at the end of the ramp than at the start,minimizing
admixing of the dark-state channel with the bright-state channels along the ramp.
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FigureD2.The Floquet spectrumEq at q=0 as a function ofωT/ωR for aλ/4-spaced lattice: all calculations are performed for

ci
0W =600Γ, r0i=0.01, òi=0.2,Δ=0, and tSi=0.36Ti. (a) For the idealΛ-system. (b) For theΛ-systemwith the spatio-temporally

modulated ac-Stark shifts and losses due to the excited states 4ñ∣ – 8ñ∣ .
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Appendix E: Realization of a stroboscopic optical lattice for cold atoms with

subwavelength spacing
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Optical lattices are typically created via the ac Stark shift and are limited by diffraction to periodicities � λ/2,
where λ is the wavelength of light used to create them. Lattices with smaller periodicities may be useful for
many-body physics with cold atoms and can be generated by stroboscopic application of a phase-shifted lattice
with subwavelength features. Here we demonstrate a λ/4-spaced lattice by stroboscopically applying optical
Kronig-Penney-like potentials which are generated using spatially dependent dark states. We directly probe the
periodicity of the λ/4-spaced lattice by measuring the average probability density of the atoms loaded into the
ground band of the lattice. We measure lifetimes of atoms in this lattice and discuss the mechanisms that limit
the applicability of this stroboscopic approach.
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I. INTRODUCTION

Ultracold atoms trapped in periodic optical potentials pro-
vide wide-ranging opportunities to study many-body physics
in highly controllable systems [1,2]. In all cases, the charac-
teristic single-particle energy scale is set by the recoil energy,
ER = h2/(8md2), where m is the mass of the atom and d is
the spatial period of the lattice. Although temperatures in such
systems can be quite low, it is still challenging to reach tem-
peratures well below the relevant many-body physics energy
scales, which can be exceedingly small. Increasing the recoil
energy can potentially increase both single-particle and many-
body energy scales through tighter confinement, which may
aid in creating systems well into the regime where many-body
ground-state physics is observable. An inherent obstacle to
smaller lattice spacing is the optical diffraction limit, which
prevents lattice periodicities below d = λ/2, where λ is the
wavelength of the light forming the lattice. Several approaches
to move beyond the diffraction limit have been proposed and
some realized based on multiphoton effects [3–5], rf-dressed
adiabatic potentials [6–8], and trapping in near-field guided
modes with nanophotonic systems [9–12].

Here we report the realization of a recently proposed
Floquet-based approach [13–15] to create small-period lat-
tices, specifically λ/4-spaced lattices, by time-averaging
a modulated lattice potential that has subwavelength fea-
tures. We load atoms into the ground band of this time-
dependent lattice and measure their average probability den-
sity |ψavg(x)|2 with nanoscale resolution [16–18], to confirm
the subwavelength nature of the lattice. We study the lifetime
of atoms in the lattices over a range of modulation (Floquet)
frequencies ωF = 2π/T , where T is the period of a complete
cycle, to determine the frequency range over which the time-
averaged approach works.

*These authors contributed equally in this work.
†Corresponding author: wang.yang.phy@gmail.com

Creating an effective time-averaged potential requires that
the time dependence of the lattice be motionally diabatic
[19–21], namely, that T be much smaller than the motional
timescale of the atoms. Time-averaging a dynamically applied
lattice potential cannot create an effective potential landscape
with higher spatial Fourier components than the underly-
ing progenitor lattice. This implies that in order to create
landscapes with subwavelength periodicity, one must time-
average a potential that itself has subwavelength features [13].
In this work, we make use of the Kronig-Penney-like (KP-
like) potential to generate the desired potential landscapes
[14,15]. Such a KP potential is implemented via the dark
state associated with a three-level � system [22–24]. The spin
adiabaticity required to maintain the dark state during the stro-
boscopic cycle imposes additional constraints, as discussed
below.

There are multiple ways to implement time-averaging with
a KP lattice [14,15]. The particular approach that we adopt,
optimized for our experimental conditions, is shown in Fig. 1.
Periodic potentials with λ/2 spacing but subwavelength struc-
ture are stroboscopically applied to the atoms to create the
desired potential landscape. Specifically, atoms are subjected
to a KP potential for half of the Floquet cycle T/2; the
potential is then ramped down to zero and its position is
shifted by half of the lattice spacing λ/4; the shifted potential
is ramped on again and held for another half cycle, before
being ramped off and its position is restored.

Two factors must be considered to ensure that time-
averaging is an effective description of the system. First,
motional diabaticity sets a lower bound on the Floquet fre-
quency ωF , beyond which the band structure becomes un-
stable and severe heating limits the lifetime. Second, the
dark-state nature of the KP lattice sets an upper bound to
ωF . As the KP potential is a scalar gauge potential arising
from a spatially varying dark state [22–24], switching on and
off such a potential requires atoms to adiabatically follow
the spatiotemporal dark state at all times. We ensure this
adiabatic following by carefully designing the pulse shapes
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FIG. 1. The stroboscopic approach to creating a time-averaged
effective potential with a lattice spacing of λ/4 by dynamically
pulsing KP potentials with λ/2 spacing.

of our light fields (Appendix C), implementing stimulated
Raman adiabatic passage (STIRAP) [25]. Losses occur at
high ωF , as the atom’s dark-state spin composition fails to
adiabatically follow the rapid changes in the light fields. In
the following sections, we show that a frequency window
that simultaneously satisfies both requirements exists and that
there are momentum-dependent loss channels arising from
the Floquet-induced coupling with higher excited bands for
particular momenta.

II. EXPERIMENT

We work with fermionic 171Yb atoms that have a well-
isolated � system (Appendix A), consisting of two ground
states |g1〉, |g2〉 and an excited state |e〉 coupled by laser
light with λ = 556 nm. We use the methods outlined in
Refs. [24,26–29] to generate and optically control this well-
isolated � system. A control field �c(x, t ) = �c1eikx +
�c2(t )e−i[kx+φ(t )], where k = 2π/λ and φ(t ) is the relative
phase difference between the two fields, which couples |g2〉
and |e〉, is composed of two counterpropagating lattice beams.
The maximum value of �c2(t ) is constrained to be equal
to �c1 = �c0/2, in which case it gives rise to a standing
wave �c0 e−iφ(t )/2 cos [kx + φ(t )/2]. We control the strength
and the position of the KP potential using �c2(t ) and φ(t )
(Appendix C). A homogeneous probe field �peiky, coupling
|g1〉 and |e〉, travels perpendicular to the control beams. The
resulting spatially dependent dark state gives rise to a KP
lattice of narrow subwavelength barriers [22–24], plus an
additional sinusoidal potential due to the light shifts caused by
states outside the three-level system (Appendix A) as shown
in Fig. 2(a).

Stroboscopically applying the lattice with different
strengths and positions requires accurate and high bandwidth
control of the amplitude and phase of the lasers coupling

FIG. 2. (a) The stroboscopically applied potential, shown here
for �c0 = 500	 and �p = 50	, is composed of KP barriers on top of
a sinusoidal potential. The dotted line represents the potential shifted
by λ/4. (b) The time-averaged effective potential Veff(x). (c) The
black points are the measured |ψavg(x)|2 of atoms in Veff(x). Number
fluctuations between realizations result in number uncertainties of
5%. The black line is the calculation based on independently mea-
sured lattice parameters. The gray line is the calculated |ψavg(x)|2
in the lattice before the relaxation during the measurement. (d) The
micromotion dynamics at different times within a Floquet period.
The blue (red) shaded areas represent regions in which |ψ (x, t )|2 is
higher (lower) than |ψavg(x)|2, which is shown as a solid black line.

the three states, which we implement using dynamic control
over the rf fields driving acousto-optic modulators (AOMs)
[16]. We note that the spin adiabaticity condition depends
significantly on the pulse shape [14] in addition to the Floquet
frequency, and control of the pulse shape within a Floquet
period is critical [16]. We use arbitrary waveform generators
that can control the rf amplitude and phase with a resolution
of 8 ns and 4 ns, respectively. However, we are limited by the
bandwidth of the AOMs, which we measure to be 50 ns. This
is a factor of 8 times smaller than the smallest half-period of
400 ns that we have used in this study.

For typical experimental values of �c0 = 500	 and �p =
50	, where 	 = 2π × 182 kHz is the inverse lifetime of |e〉,
the KP barrier has a minimum width of 0.02 λ and a maximum
height ≈ 100ER, where ER/h = h/(2mYbλ

2) = 3.7 kHz, mYb

is the mass of a 171Yb atom, and the sinusoidal potential has a
depth ≈ 145ER, Fig. 2(a). Time-averaging this lattice applied
at two positions results in an effective potential Veff(x) shown
in Fig. 2(b), which includes the effect of the pulse shapes, with
an effective barrier height ≈ 7ER. (The sinusoidal component
of the potential averages to a spatially invariant offset.)
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III. MEASUREMENT

We apply this lattice to ≈ 2 × 105 Yb atoms at an initial
temperature of 0.3 μK that has been optically pumped into
|g1〉. To load the atoms into the ground band of Veff(x),
we adiabatically increase the depth of the stroboscopically
applied lattices in 200 μs (typically ∼80 Floquet cycles)
described in detail in Appendix B. After the loading stage, we
measure the ensemble-averaged probability density |ψ (x, t )|2
of atoms in the ground band of Veff(x) using a nanoresolution
microscopy technique [16] with FWHM resolution of 25 nm.
We also measure the momentum distribution of the atoms via
absorption imaging after time of flight (TOF).

A. Probing wave function density in the stroboscopic lattice

Figure 2(c) shows |ψ (x, t )|2 averaged over a Floquet pe-
riod T = 2.4 μs (ωF = 2π × 410 kHz) for atoms in Veff(x)
with a λ/4 lattice spacing, and Fig. 2(d) shows |ψ (x, t )|2
at different times within a Floquet cycle. By averaging the
data over a Floquet period, we eliminate the effect of mi-
cromotion and obtain the averaged wave function density
|ψavg(x)|2 [dotted trace in Fig. 2(c)] in the ground band of
the effective potential. The black curve represents the ground-
band probability density calculated from the time-averaged
potential including the quasimomentum averaging, the effect
of finite resolution of the microscope, and the relaxation of the
wave function during the measurement. The good agreement
between the data and calculation shows that time-averaging is
a good description of the effective potential. The calculated
wave function in the lattice before the relaxation during the
measurement is plotted in gray. We resolve the micromotion
in real space within a Floquet period by comparing |ψ (x, t )|2
with |ψavg(x)|2 [Fig. 2(d)]. The blue (red) shaded areas rep-
resents regions in which |ψ (x, t )|2 is higher (lower) than
|ψavg(x)|2. We observe that micromotion has the same time
periodicity as the Floquet drive, as expected.

B. Momentum-dependent loss channels

A characteristic feature of a Bloch-Floquet band structure
is the existence of avoided crossings at particular lattice
momenta arising from coupling with high-lying states [30],
which for large Floquet frequency are approximately plane
waves with high momenta. We measure the momentum dis-
tribution of the atoms in Veff(x) at different ωF by taking an
absorption image after ramping down the lattice in 100 μs
followed by a TOF of 3 ms. The atomic populations at high
momenta in Fig. 3(a) indicate the mixing of low-momentum
and high-momentum states due to the presence of avoided
crossings in our system. We use a Gaussian fit to determine
the center momentum of the populations with respect to the
ground band. The Floquet frequency ωF is plotted against the
center momentum [Fig. 3(b)] for the three most prominent
peaks (L1: green, L2: red, R1: blue). To first order, the avoided
crossings can be understood as arising from the crossing of
Floquet-dressed high-lying bands, which are shifted in energy
by integral multiples of ωF , and the low-lying occupied bands
of Veff(x), which are relatively flat. To determine the integral
multiple of ωF for the band coupling, we fit the peak positions
with a quadratic function h̄ωF = (p − p0)2/N + h̄ω0, where

FIG. 3. (a) Integrated TOF column density at different Floquet
frequencies ωF . The atomic populations at high momenta indicate
the presence of avoided crossings. The widths of the populations at
avoided crossings are primarily due to the physical dimensions of
the atomic cloud. (b) The Floquet frequency ωF is plotted versus
the center momentum of the populations in (a) determined using
Gaussian fits. Different series of avoided crossings are labeled and
colored (L1: green, L2: red, R1: blue) and their fitted quadratic
functions are drawn in solid lines respectively. The error bars are
one standard deviation of the Gaussian fits.

p is the momentum, N is an integer, p0 and ω0 are fitting
parameters, and the momentum and energy are in units of
h̄k and ER. For the L1 series, a good agreement with the
data is found for N = 1, indicating this series is due to
coupling between bands with an energy difference of h̄ωF .
For the L2 and R1 series, N = 2 gives the best fit, indicating
second-order coupling between bands that differ in energy
by 2h̄ωF . (The other visible peaks do not extend over a
sufficient range to accurately determine their curvatures.) The
fraction of atoms in the high-momentum states decreases
at higher Floquet frequency, suggesting weaker coupling to
higher bands. The asymmetry in the avoided crossings with
respect to p = 0 is due to the fact that we are driving just
the �c2 control beam, which gives rise to a vector gauge
potential [14].
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FIG. 4. Lifetimes of atoms at different ωF under different Rabi
frequency configurations. Green squares: �c0 = 500	 and �p = 0,
where the spin degree of freedom is decoupled and the loss is due
solely to failure of motional diabaticity at low ωF . Red triangles:
�c1 = 0, �c2 = 250	, and �p = 80	, where the spatial potential
is homogeneous and the loss is due solely to the failure of spin
adiabaticity at high ωF . Blue circles: �c0 = 500	 and �p = 80	,
where we show the lifetimes of atoms in the λ/4-spaced lattice,
Veff(x). The error bars are one standard deviation of the exponential
fits.

The 171Yb atoms are nearly noninteracting (s-wave scatter-
ing length is −3a0, where a0 is the Bohr radius), so they are
not likely to thermalize during the short loading and unloading
sequence. However, the observed low-momentum component
of the TOF distribution is consistent with the width of the
ground-band Brillouin zone for the λ/4-spaced stroboscopic
lattice, which is twice as large as the ground bandwidth of
the progenitor λ/2 lattice. Given that the Fermi momentum at
our density is of order the recoil momentum of the progenitor
lattice, the filled ground band in the λ/4 lattice indicates that
the effective temperature is higher than the ground bandwidth
but not a significant fraction of the band spacing.

C. Lifetime study

In order to determine the range of usable Floquet frequen-
cies for the stroboscopic scheme, we study the lifetime at
different ωF under different Rabi frequency configurations as
shown in Fig. 4. We determine the lower bound on ωF by
studying the motional diabaticity of atoms in just a strobo-
scopically applied ac Stark shift lattice. This is done by setting
�p = 0, which decouples the spin degree of freedom from
the dynamics with �c1 = 250	, while �c2(t ) is pulsed to a
maximum value of 250	(Appendix C). At low ωF , the atoms
are affected by the turning on and off, and phase shifting of
the sinusoidal ac Stark shift potential, which causes heating
and loss (green squares in Fig. 4). We determine the upper
bound on ωF by studying the reduction in the fidelity of
STIRAP as a function of ωF for a spatially homogeneous
dark state. This is done by setting �c1 = 0, �p = 80	, while
�c2(t ) is pulsed to a maximum value of 250	. The reduction
in STIRAP fidelity manifests as heating and loss due to the
decreasing spin adiabaticity at larger ωF . Most importantly,
we also measure the frequency-dependent lifetime of atoms

loaded into Veff(x) for different ωF (blue circles in Fig. 4).
The reduction in spin adiabaticity accounts for the decrease in
lifetime of atoms in Veff(x) at high ωF .

The short lifetimes in the stroboscopically applied KP
lattices are expected due to a few factors. First, couplings to
the spatially and temporally dependent bright states reduce
lifetimes in subwavelength-spaced lattices even for a perfect
three-level system, through couplings with higher Floquet
bands (as shown in Fig. 3) and off-resonant couplings with
bright states [14]. In principle, these couplings can be reduced
by using larger Rabi frequencies. However, lifetimes are also
limited by the breakdown of the three-level approximation at
large Rabi frequencies due to admixing of states outside the
three-level system (Appendix A). This manifests as a dynam-
ically varying and spatially dependent two-photon detuning
(arising from �c(x, t )), which reduces the fidelity of STIRAP
[25]. This competing requirement prevents us from benefiting
from larger Rabi frequencies.

IV. CONCLUSION

In conclusion, we demonstrate the creation of a time-
averaged λ/4-spaced lattice using a recently proposed strobo-
scopic technique [13] based on dynamically modulated dark
states in a three-level system [14,15]. The subwavelength
structure of the lattice is confirmed by measuring the prob-
ability density of the atoms averaged over the ground band of
the lattice. We measure the loss rate of atoms in the lattice and
observe high-momentum excitation due to Floquet-induced
coupling to higher bands. We measure the lifetime of the
atoms in the λ/4-spaced lattice to be 2 ms, which is not
long enough compared to the tunneling time to allow for
many-body studies in the current realization.

Further improvement of the λ/4-spaced lattice would re-
quire compensation of the two-photon detuning or the iden-
tification of other atomic systems with a more favorable
(isolated) three-level system [31]. The lattice demonstrated
here is limited by the off-resonant coupling to |(6s6p)3P1,

FIG. 5. Level structure of the 1S0 and 3P1 manifolds in 171Yb: 


is the single-photon detuning, and 
HFS ≈ 6 GHz is the 3P1 hyperfine
splitting.

041603-4



REALIZATION OF A STROBOSCOPIC OPTICAL LATTICE … PHYSICAL REVIEW A 101, 041603(R) (2020)

FIG. 6. Rabi frequencies of different light fields and the relative
phase φ between �c1 and �c2 during three stages. The Floquet period
is not shown to scale; the minimum number of Floquet cycles during
the ramp-on of �c2 is 40.

F = 3/2, mF = −3/2〉, which is only detuned by the hyper-
fine splitting from the three-level system being used. Better
candidates may make use of isolated electronic levels, which
are detuned by much larger optical separations. For example,
in 174Yb, the (6s6p)3P0 state and one of the states in the
(6s6p)3P2 level could be used as the ground states, while
one of the (6s7s)3S1 states could be used as the excited state,
with appropriate choice of polarization to select the three
states. In a more isolated three-level system the main limi-
tation would be the available laser power needed to meet the
Rabi frequency requirements. In addition to longer lifetimes,
higher Rabi frequencies would allow for lattices with smaller
spacings [14]. Our work can be extended to 2D, and additional
dynamic control over the two-photon detuning—which makes
subwavelength traps possible [31]—allows for construction
of arbitrary time-averaged potential landscapes not limited by
diffraction.
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APPENDIX A: 171Yb ATOM LEVEL STRUCTURE

Figure 5 shows the level structure of the 1S0 and 3P1

manifolds in 171Yb. The three hyperfine states |g1〉, |g2〉, and
|e〉 constitute the � system. We use a magnetic field of 36 mT
to yield a frequency separation of 1 GHz between |e〉 and |4〉.
The hyperfine splitting is 
HFS ≈ 6 GHz.

The ac Stark shifts on the ground states |g1〉 and |g2〉
arise due to off-resonant couplings to states outside the �

system. The �c(x, t ) light field off-resonantly couples |g1〉
with |5〉, and |g2〉 with |6〉. The �p light field off-resonantly
couples |g2〉 with |4〉, |g2〉 with |7〉, and |g1〉 with |6〉. The

spatiotemporally dependent ac Stark shifts due to �c(x, t )
give rise to the dynamic sinusoidal potential mentioned in the
main text.

APPENDIX B: EXPERIMENTAL SEQUENCE

Figure 6 shows the experimental sequence that we use to
load atoms into the ground band of the stroboscopic lattice.

(I) We start with atoms optically pumped into |g1〉. We
then ramp on �c1 (red trace in Fig. 6) followed by �p (blue
trace in Fig. 6), transferring atoms into a spatially homoge-
neous dark state. Then, we turn on �c2(t ) (green trace in
Fig. 6) in 200 μs (minimum number of Floquet cycles used
during the ramp ≈ 40) to adiabatically load atoms into the
ground band of the stroboscopic lattice.

(II) We pulse the stroboscopic lattice for a variable num-
ber of Floquet cycles.

(III) We measure the average probability density of the
atoms in the ground band of the stroboscopic lattice using the
nanoresolution microscopy technique described in Ref. [16].

The phase φ(t ) of the �c2 light field, which controls the
position of the stroboscopic lattice, is only changed when the
dark-state spin composition is spatially homogeneous [14].
The experimental techniques used to generate the pulses are
detailed in Ref. [16].

APPENDIX C: PULSE SCHEME

The functional form of �c2(t ) that we use to create the
stroboscopic lattice is [14]

�c2(t ) = �c0

2
− �p sin2(ωFt )

√
1 + 4ε2 − sin4(ωFt )

,

ωF = �pr0

√
1 + 4ε2,

where ε = �p/�c0. In Fig. 4, changes in ωF are parametrized
using r0. Smaller r0 implies slower, more spin-adiabatic
pulses. In our experiment, we typically use 0.02 � r0 � 0.2.

APPENDIX D: DETAIL OF LIFETIME STUDY

When studying lifetime for the STIRAP-only case and
for the stroboscopic lattice case, we observe that ∼20% of
the atoms have a lifetime of ∼20 ms and are insensitive to
change in ωF . We speculate that these atoms populate Floquet
states that are immune to STIRAP due to the large dynamic
two-photon detunings arising from the spatially dependent ac
Stark shifts due to couplings to states outside the � system
(Appendix A). The decay rates shown in the main text pertain
to the major fraction of the atoms which show frequency-
dependent loss rates both in the stroboscopic lattice and in
the stroboscopic STIRAP case.
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Appendix F: Cleaning machined parts for UHV assembly

In order to clean the machined parts for UHV operation, I had asked Creston for his UHV

cleaning recipe. In addition to his guidelines, I found a few resources online on the subject [112,

117, 210]. Incorporating all of these resources, I devised my own recipes to clean machined parts,

which I will describe below.

Before the recipe can be executed, the workstation must be prepped. First, label four pre-

cleaned beakers as “water”, “acetone”, “IPA”, “methanol” and four pre-cleaned tongs/tweezers as

“1”, “2”, “3”, “4”. Pre-cleaning involves using an ultrasonic bath to sonicate both the tongs/tweesers

and the insides of the beakers with the following reagents and in that order for 15 mins each at

elevated temperatures:

distilled water→acetone (HPLC grade or higher)→isopropyl alcohol (HPLC grade or higher)→

methanol (HPLC grade or higher).

Use UHV foil to define 6 zones in the work area (Fig. F.1). Each zone is dedicated to

storing the cleaned parts. Parts can only go from one zone to the next, but cannot go back.

This unidirectionality is indicated by the arrow in Fig. F.1. Use the pre-cleaned designated

tongs/tweezers (represented as numbers in Fig. F.1) to move the cleaned parts from one zone

to the next. Always use powder-free nitrile gloves for handling any cleaned part that cannot be

secured using tweezers/tongs. The recipe is as follows:
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Methanol
IPA

Acetone
Distilled Water 1

2
3

4

Simple Green+hot city water
scrub

Simple Green+hot city water
sonicated

Figure F.1: The workstation for cleaning machined parts for UHV operation.
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1. The ”Simple Green+hot city water scrub” zone is dedicated to parts that are scrubbed using

a toothbrush (Fig. F.2) in a container filled with a solution of Simple Green and hot city

water. Use a pipe brush to clean threads and holes. After the scrub, wash the part with

flowing hot city water. Wipe the parts dry with Kimwipes.

2. These parts are then transferred to a beaker filled with a Simple Green (30% by volume)

plus distilled water (70% by volume) solution. Sonicate the parts in an ultrasonic bath for

15 mins. Pour out the solution and then overflow the beaker with distilled water. Store the

parts now in the “Simple Green+distilled water sonicated" zone.

3. Are parts visibly clean and there is no residue on the Kimwipes upon wiping the parts? If

not, go to Step 1. If yes, go to the next step.

4. Use tongs/tweezers “2” to transfer parts to the “Acetone” beaker filled with HPLC grade

(or higher) acetone. Sonicate the parts in an ultrasonic bath for 15 mins. Drain the beaker

and dump the parts in the “Acetone” zone.

5. Use tongs/tweezers “3” to transfer parts to the “IPA” beaker filled with HPLC grade (or

higher) isopropyl alcohol. Sonicate the parts in an ultrasonic bath for 15 mins. Drain the

beaker and dump the parts in the “IPA” zone.

6. Use tongs/tweezers “4” to transfer parts to the “Methanol” beaker filled with HPLC grade

(or higher) methanol. Sonicate the parts in an ultrasonic bath for 15 mins. Drain the beaker

and dump the parts in the “Methanol” zone.

7. Allow parts to dry on the UHV foil before vacuum firing them for 48 hours at the material-

dependent temperature.
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Figure F.2: I am scrubbing the clamshell protectors

8. Store in UHV foil.
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Appendix G: Drawings of the machined parts
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Figure G.4: Drawing of the sleeve for the Rb dispensing modules. The sleeve connects two
dispensers together.
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Figure G.5: Drawing of the adapter for the Rb dispensing modules. The adapter connects the
dispenser to the conductors of the electrical feedthroughs.
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Figure G.13: Drawing of the SLM breadboard
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Figure G.14: Drawing of the objective breadboard
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Figure G.15: Drawing of the upper vertical breadboard
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Figure G.16: Drawing of the bottom vertical breadboard
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Figure G.17: Drawing of the AOD breadboard
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Figure G.19: Drawing of the custom pillow block carriage assembly
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Figure G.20: Drawing of the custom pre-aligned dual shaft assembly
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Figure G.21: Drawing of the back holder
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Figure G.22: Drawing of the front holder
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Appendix H: Glass cell cleaning and handling

H.1 Glass cell handling instructions from Precision Glassblowing

Here are the instructions on how to handle the glass cell:

1. DO NOT TOUCH THE WINDOWS.

2. Each window has a custom made semi-rigid plastic cover that rests on the edges of the

windows. These are intended to protect the window surface. Precision Glassblowing

strongly recommends that the covers be left in place while working with and handling

the cell. This is to prevent contact with the windows and maintain their cleanliness. Once

installed, the covers can be removed. The covers will also need to be removed before

bakeout as they are not made out of high-temperature plastic.

3. Retain the covers if you need to store the cell or ship it. There is always some variation in

window OD (factory tolerance), so each cover is made to fit each individual window.

4. The glass cell flange is rotatable. Keep this in mind when handling the glass cell, as the

ring can slide and impact the cell once it is unwrapped.

5. DO NOT TOUCH THE WINDOWS.
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H.2 Cleaning the RAR nanotextured windows of the glass cell

Here are the instructions that were given to us by TelAztec (check TelAztec’s Youtube

channel for a video tutorial), which I layout as follows:

1. The textured surfaces of these windows require special attention when cleaning. Conventional

cleaning techniques used for thin-film coatings—such as the drop-and-drag method or

physical wiping or cleaning using polymer films—should be avoided since this can result

in further contamination from solvent residues and debris from wipes being forced deeper

into the valleys of the textures.

2. RAR surface textured laser optics are most effectively cleaned by solvent rinsing first with

methanol (UHPLC grade or higher) or isopropyl alcohol (HPLC plus grade or higher), or by

immersion in an ammonia solution or a simple soap and water bath. Highly contaminated

textures can be cleaned very aggressively by immersion in acid solutions such as a mix

of sulfuric acid and hydrogen peroxide. The cleaning of the textured optics should be

completed by rinsing with isopropyl alcohol followed by drying with filtered dry nitrogen.

As we had already installed our glass cell by the time we decided to clean it, any form of

aggressive cleaning was out of the picture. First, we sprayed dry nitrogen from a pressurized

tank (∼ 75 PSI) on the windows several times to eliminate any contaminants. The pressurized

dry nitrogen was filtered through a nozzle to achieve a particulate size of less than 750 nm.

Then we sprayed UHPLC grade Methanol and HPLC plus grade acetone on the windows. We

immediately followed this by spraying filtered dry nitrogen in the direction of gravity to push the

sprayed reagents toward the bottom of the window.
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Appendix I: Aligning the tweezer projection systems

The optical layouts for both the AOD-based and SLM-based tweezer projection systems

(see Fig. 7.48 and Fig. 7.49) are similar, and hence their alignment strategies are also similar.

Here, I will detail how the AOD-based tweezer projection system was aligned using the nomenclature

introduced in Fig. 7.47.

1. The first step is to ensure that the input beam to the tweezer-projection system is both level

and mechanically aligned to the center of the optical rails in its entirety. This must be

done prior to assembling or aligning the optical system. While lenses in the optical mounts

mounted on rail carriages/plates can be readily centered transversely with respect to the

rails via mechanical constraints, fine-tuning of this alignment is only possible by using

the aligned input beam as the reference. To that end, two similar irises are each mounted

mechanically centered to a rail carriage. One such iris-carriage assembly is placed close

to the input beam launch and the other iris-carriage assembly is placed far away from

the launch, but before the folding mirror. We placed a beam profiler or a camera after

both irises and ensured that transmitted beam clipping was radially symmetric around the

intensity center when each iris was closed individually. We used the hexagonal edges of

the input beam collimated from a PCF fiber as the reference for this radially symmetric

clipping iris centration.
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2. We then moved the two irises to after the folding mirror. Translate the mirror on the first

rail to center the input beam on the near iris, and change the tip and tilt of the mirror mount

to center the beam on the far iris.

3. Now the input beam to the tweezer projection system is centered to the two optical rails.

The next step is to center all the lenses and remove any tip or tilt error with respect to

the aligned input beam. We use five-axis mounts for this purpose (Newport LP-2A, 9081

stage). As all the lenses in the optical layouts have one flat side, the back-reflection of

the input beam from the flat surface was used as a guide to remove tip and tilt errors i.e.

the back reflection must pass through both alignment irises. The input beam must first

interface with the flat surface of the lens to get a collimated back-reflection. Once the tip

and tilt alignment errors were corrected, we locked the tip and tilt knobs on the mount.

4. In order to remove decentration errors, the curved surface of the lens was used as it also

provides a back reflection, which increases in size with increasing distance from the lens.

By moving the decenter x and decenter y knobs on the five-axis mounts, the back reflection

halo from the curved surface can be centered to the collimated back-reflection from the

flat surface. This is typically easier for lenses that have larger radius of curvature i.e. less

optical power. The other method is to screw a threaded iris onto the five-axis lens mount,

and center the lens to the input beam by closing the iris while monitoring the radially

symmetric clipping of the transmitted beam profile. Lastly, we locked the decenter x and

decenter y knobs of the lens mount.

5. Steps 3 and 4 must be repeated for each lens to remove all decentration and tip/tilt error.

We are now in a position to correct the defocus/despace errors. Given that our optical
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systems can be broken down to afocal systems, we used shearing interferometry to correct

for defocus/despace errors. For instance, lens 0 and lens 1 constitute a Keplerian telescope,

lens 1 and lens 2 constitute a Keplerian telescope, lens 2 and lens 3 constitute a Galilean

telescope, and lens 4 and lens 5 constitute a Keplerian telescope. The out-of-order alignment

facilitated by the use of optical rails will be very relevant now. As the tip, tilt, and

decentration of the lenses are all corrected and the lenses mounted on rail carriages recover

near perfect alignment when you remove and reinstall them, the defocus/despace alignment

errors between the lenses can be isolated and corrected.

6. In the layout, the flat mirror is placed 4f away from the AOD for historical reasons.

Initially, I had thought about adding (and actually installed) a deformable mirror 4f away

from the AOD to adaptively correct for aberrations, but switched it out for the flat mirror

later. One can see that the flat mirror is at the simultaneous focus of lens 2 and lens 1. We

start by placing lens 1 upstream from the mirror and at a distance f1 away from it. The

shearing interferometer sets the location of lens 2 downstream from the mirror as lens 1

and lens 2 constitute a Keplerian telescope. Now the location of lens 0 can be defined

with respect to lens 1 as they constitute a Keplerian telescope. We used the shearing

interferometer before the mirror to determine the location of lens 0 with respect to lens

1. Now we can determine the location of lens 3 with respect to lens 2 by using a shearing

interferometer as they together constitute a Galilean telescope. Lastly, lenses 4 and 5 can

be placed with respect to each other as they constitute a Keplerian telescope by using a

shearing interferometer. If not for the rails, this out-of-order alignment would be hard.

The tip/tilt-corrected-lenses are now all placed appropriately with respect to each other i.e.
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defocus/despace errors corrected as well. The last step is determining d1 and the location

of the AOD with respect to lens 0.

7. The correct position of the AOD with respect to the lens 0 is where all the AOD diffracted

orders coalesce at the mirror, as enforced by the 4f imaging of the AOD plane on to the

mirror. Shrinking the beam entering the AOD prior to being diffracted helps in better

resolving the appropriate AOD position. As the AOD is mounted on a rail carriage, we just

slide the AOD-carriage assembly on the rails to determine the appropriate position. The

diffraction efficiency of the 2-axis AOD (is typically 55% after diffracting twice) is hardly

affected while sliding the AOD carriage when the carriage is properly justified with respect

to the rails. We drive both axes of the AOD with a multi-tone waveform generated by a

commercial arbitrary waveform generator M4i.6622-x8 from Spectrum Instrumentation.

8. The AOD diffraction order coalescing method for determining its position was used to

determine d1 (and therefore d2) as well. The AOD diffraction orders must coalesce at

the entrance aperture of the objective. However, this time lens 4 and lens 5 must be

moved simultaneously by exactly the same amount to avoid defocus/errors in this Keplerian

telescope.

9. Last but not least, the tweezer projection system must now be aligned to the objectives.

To do that, we drive the AOD to generate a single diffracted beam that is centered on all

the optics in the tweezer projection system. This diffracted order traverses both objectives

and makes it way to the Twyman-Green-Fizeau interferometer setup (see Fig. 7.56). The

folding mirrors after lens 5 and before the objectives are now used to overlap the beam

from the tweezer projection system with the reference beam from the short interferometer
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arm (see Fig. 7.48).

In order to align the SLMs, the center of intensity of the beam illuminating the SLM must

be aligned with the SLM pixel array. To that end, I recommend using a vortex pattern on the

SLM for proper centration of the input beam intensity to the SLM pixel array. Lastly, we use lead

shot filled sea bags to suppress vibrations in some of our optical setups, as suggested by Nathan.
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