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the toolbox for quantum simulations and quantum computations. In this dissertation work, we
describe the methods we applied to build our new high-resolution 3’Rb Bose-Einstein condensate
(BEC) machine integrated with versatile quantum control and measurement tools. Then we
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work addressed the understanding of this scenario, and then measured the anisotropic superfluid

density in a density-modulated BEC, where the result matched the prediction of the Leggett



formula proposed for supersolids. We further considered and measured this BEC in rotation and
found a non-classocal moment of inertia that sometimes turns negative. We distinguished the
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using these tools to study many-body physics open quantum systems.
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Chapter 1: Introduction

1.1 Quantum simulations with quantum gases

In the pioneering lecture in 1982 [5], Richard Feynman proposed to “let the computer itself
be built of quantum mechanical elements which obey quantum mechanical laws”. Many would
not have expected that these words become the mainstream practice in the study of quantum
mechanics in the early 21st century. This was due to the amount of previous efforts to experimen-
tally harness the quantum dynamics using coherent approaches. Nowadays, people can already
make mesoscopic quantum many-body systems in their labs. Among them, the playground of
ultracold quantum gases has attracted broad attention and holds a large research community.
Thanks to the decades of milestone research that brings us the versatile tools for cooling and
controlling these atoms, making ultracold gases arguably the closest platform to Feynman’s
“quantum simulators”. I would like to start my introduction by asking “why” we should still

follow and lead the path of quantum simulation.

1.1.1 Why do we like quantum simulations?

One of the goals of quantum simulations is to solve quantum problems that are intractable

via classical approaches [6]. A well-accepted instance is strongly correlated ultracold gases in



optical lattices, could in principle, help understand and explore the phase diagram of the Fermi-
Hubbrad model [7], which is expected to show signatures of high-temperature superconductivity
in the extreme limit. Another direction of interest is building analogs of different quantum field
theories by clever design. The inter-particle interaction in ultracold gases can be enhanced
to allow for strong quantum fluctuations, such that the matter wave itself is described by a
quantum field [8]. Proposals exist that one can use this fact to build analog models of quantum
electrodynamics [8], dynamic gauge fields [9], and even those in curved space-time [10]. The
ultimate goal of this line is to achieve the non-perturbative regime, where classical simulation
and analysis are rarely useful.

Another aspect of quantum simulations is that they help people discover new science in new
regimes. Often those regimes were less explored either because they are rare to find in nature,
or people were misled by some “no-go” theorems. But with the right tools in hand, theorists
and experimentalists could rethink together and sometimes have unexpected discoveries. The
most recognizable example is the development of the booming field of quantum information,
which would not attract so much attention without compatible experimental progress. Despite the
applications, these new considerations also produced fruitful results in understanding quantum
coding theory [11], topologically ordered matter [12] and open quantum systems [13], just to list

a few.

1.2 Light-matter interaction

The main messenger through which we talk to the atoms is the photons. The photon field

is a U(1) gauge field often detonated by the vector potential A which couples to the electron in



the atoms by Hamiltonian [14]

Ho= 5 (b~ A (11)

2m, c

in the free space. And the gauge field A is expanded to plane wave basis

A(x,t) = Aé(e’®>) L He.) (1.2)

where € is the polarization vector with k-€ = 0. One can make the so-called dipole approximation

that the wavelength of the light A = 27 /k is much longer than the atomic size (the length scale

of electron motion). This interaction is then modeled in the electromagnetic fields E = —0,A /c.
P
H, = —d-E (1.3)
2me
where
d = ex (1.4)

is the electric dipole of the electron. Similarly, one can make the magnetic dipole approximation
which couples the magnetic field B = V - A with the magnetic moments of the electron and the
nucleus.

H,=—jiB. (15)

H=-———-d-E—j-B. (1.6)



In our experiments, we extensively used these couplings by EM fields such as optical lasers,
magnetic coils, and radio frequency fields. The dipole approximations always hold for these
scenarios.

For the coherent EM fields we generated in our lab, the photon occupation is large enough
that one can ignore the fluctuations in the photon fields, making the so-called semi-classical
approximation. This means we treat 2 and B as c-numbers instead of field operators, while in

the meanwhile, we study the quantum evolution of the atomic or electron motion.

1.2.1 Atomic two-level system

We want to make a toy model out of the real atom (and this is often justified by energy scale
separation). The simplest quantum system one can make is a two-level system (or pseudo-spin),
with the Hamiltonian

H = hewy leXe| — (BQ(E) |e) (g] + H.e.). (1.7)

This Hamiltonian is derived from the interaction term of (1.6) by defining Q = (e|d - E|g) /h
and note that (g| d|g) = (e| d |e) = 0 (or similarly for B) with only one field present at a time.
This is in general time-dependent Hamiltonian because of the coupling 2(¢). Consider a

single tone coupling Q(t) = Qcos (wt) = L(e™* 4+ e~™“*"). We usually apply the rotating wave

1
2

transformation by applying the unitary 2/(t) = ¢!l 5o that H becomes
h§2 —i2wt
H = —hd|e)e| — [7(1 + e ) |e) (9] + H.c] (1.8)

where 6 = w — wy. Because w > (), §, we can use the rotating wave approximation (RWA) and
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Figure 1.1: (a) An abstraction of two-level system coupled by Rabi frequency €2. (b) Bloch sphere
picture of the two-level system [1].

ignore the “fast rotating” coupling, and up to an offset

o

H =
2

(leXel — lgXgl) — (? le) (9] + H.c.). (1.9)

This is a time-independent Hamiltonian that can be directly diagonalized. We get two

energy eigenvalues

EyL =hwy :j:g\/QQ—i—(S? (1.10)

and as a function of ¢, this is the typical picture of “avoided crossing” in a two-level system.
Because the “real” eigenstates are superpositions of atom-photon dressed-states, the energy shifts
from the bare atomic energy are termed the AC Stark shifts. In the limit of 6 > (), we have a
better known expression

hs  hQ?

B, =4+— 4" 1.11
= 2 T 46 (1.11)



Another useful consideration is to ask about the dynamics starting from an arbitrary state.
This can be easily solved by projecting to the eigenstates, and the answer is population “flip flop”

at the frequency of w, — w_. For example, if at t = 0 the state vector is in |g), then

Q , \/QQ+52t

<€W> = _i\/m&n( 9

). (1.12)

Dynamics like such are named after I. I. Rabi and called the Rabi oscillations.

The Rabi oscillations can be visualized by the introduction of the “Bloch sphere” picture.
It is because we can use the isomorphism mapping from SU(2) to SO(3) by defining the vector
7 = (sin @ cos ¢, sin 0 sin ¢, cos #) (where 6 and ¢ are Euler angles). This corresponds to the state
vector

) = (cos (0/2),sin (6/2)e")T (1.13)
or if in a mixed state, the density matrix
p==-(Z+77). (1.14)
We find that the equation of motion for the vector 7~
g—j —OxF (1.15)

is a classical rotation driven by the “torque” Rabi vector (2, which is defined as

O = —(ReQ,Tm 0, 6) (1.16)



so that the rotation “frequency” is indeed v/Q2 + 62 = |w, — w_| — recovers the result (1.12).

In a multilevel system (like with the energy levels of a real atom), we still mostly work with
two of the many levels by deliberately isolating them in energy. This is often done in the ground
state manifold by utilizing the linear or quadratic Zeeman shifts such that the other states are
tuned far off resonance o > (2. The magnetic dipole transitions like RF or microwave were used
to transfer atomic populations often in a two-level setting. In some optical transitions such as the
cycling transition used for laser cooling, the two-level picture approximately applies, because of

the well-designed photon polarization.

1.2.2  Optical Bloch equations

There are coherent processes and “incoherent” processes encountered in our typical experiments.
Often the “incoherence” is induced by pumping into a continuous spectrum (with a high density
of states), such as the degenerate photon states |k) across the 47 spherical angle. This is encountered
in the so-called “spontaneous emission” in which the excited atom scatters a photon into one of
this degenerate sea of states.

To study such systems, people usually regard the whole physical system as an “open
quantum system” plus “reservoir” setting. By tracing out the reservoir, they can derive the

equations of motion for the system. We make two approximations [15]:

* The reservoir does not have a “memory” of its past evolution or its past interaction with the

system,;

» The reservoir state is stationary in the process of study, and is not affected by the interaction

with the system.



Reservoir

~
=

K

Figure 1.2: Illustration of an open quantum system. Typically there are coherent drives labeled
by €2, incoherent dissipations labeled by 7, and measurements labeled by &.

It is realized that such processes can be effectively described by the Markovian master equation
p(t) = ——[H ()] + Z [2C,p(t)CE — p(t)CIC — CCap(H)] . (117)

Here all the operators are defined in the subsystem we are interested in. p is the density operator
after tracing out the reservoir states. C, = /7,4, are the “collapse operators”, where A,
describe the system-reservoir interaction, and -y,, are the coupling strengths.

Let’s look at the spontaneous emission in a two-level system, where on top of

ho

=" lexe] - lgdal) — (2

5 5 le) (gl + He.). (1.18)

we also have the excited state |e) coupled to the reservoir photon modes with rate -y such that

C=7lg) (el @al. (1.19)



We write out the matrix elements

pee - _’Y(fl -+ 1)pee + ’Yﬁpll + iQ*peg — inge
Pgg = V(4 1)pgg — yTep11 — 182" peg + 12pge
(1.20)

pge = — (2'Fl + 1),0ge - iépge — Q" (1086 - ng)

O[22

Peg = =5 (200 4 1)peg + i0peg + 12 (pec — pgg) -

where 7 is the mode occupation number, and 7 = 0 for vacuum. This set of equations describes
the population and coherence evolution of the atom state and is named by Optical Bloch equations [14,
15].

There are steady-state solutions to the two-level system in a vacuum, namely p = 0. We

have then
ZQ (pee - pgg)
g = ——————% 1.21
Peg v/2 —id ( )
Ropt
ee — 1.22
p. 2R, (1.22)
and
Q 2
R, =% (1.23)

(/2R e

There is rich physics in this solution. First, the photon scattering rate is p..7; secondly, it predicts
the nonlinear response of the two-level atom to the optical field — the single atom polarizability is
a(9,€) o< pge /2. It has real and imaginary parts as shown in Fig. ??; thirdly, it predicts “power
broadening” as we ramp up the laser intensity — and in the extreme case R,p; > 7, pee = 1/2.

This is crucial in the consideration of probing atoms as well as laser cooling, as will be elaborated.
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Figure 1.3: A two-level system is known for its nonlinear response to external drive ).

1.3 Atomic structure

The workforce is our lab is the rubidium 87 (3’Rb) atoms, one of the simplest species in
the alkali family. These atoms are simple because they are in the same family as hydrogen, and
the eigenstates are labeled by the principal quantum number 7, the angular momentum number
[, and its projection m. For 8’Rb atoms, the ground state has n = 5. Our lasers mainly address
angular momentum [ transitions between [ = 0 and [ = 1. So we label our ground state as 55 /5.

But in general it is necessary to introduce the atomic structure for use of our experimental

control. Almost all the information can be found in the Steck datasheet [16].

1.3.1 Fine structure

Because the Coulomb potential that restrains the electron is only function of |r|, the energy
levels depend on n, but not [,m. So the different angular momentum states are degenerate.

However, there are corrections to this which lift this degeneracy. These are:

1. The electron kinetic energy has relativistic correction (just by simply applying special

10



relativity)

E? 4n
AFyy = —=—2 ~-3). 1.24
' ome? (l —1/2 3) (1.24)

Here m is the electron mass.

2. There exists spin-orbit coupling. To understand it, one can calculate it in the electron’s
moving frame, where the nucleus orbits around it and generates a magnetic field. The

interaction energy becomes

Zer g, L-S

Hqo = 1.25
SO 4dmey dme?c? 13 (1.25)
where Z is a correction factor. It follows that
& 7 L, 2 2
S-LZE(J—L -5%). (1.26)

3. The Darwin term is another correction from the Dirac equation. It only affects [ = 0.

2 2
Hparwin = h 4 < e > 53(1') (1.27)

8m2c? 4meg

Due to these corrections, the eigenstates are labeled by j through the angular momentum
coupling rules, which is J = L + S. Meanwhile, the coefficients of transformation are the
Clebsch—Gordan coefficients defined through

Ji J2

|JM) = Z Z |j1magamsg) (Jimajame | JM) (1.28)

mi1=—j1 ma=—j2

11



where .J = jl + fg

The fine structure lifts the degeneracy of our 5P state, and splits it into two 5P, and 53,
(the corresponding transitions are called D1 and D2). This splitting is ~ 7.3 THz and is vital
for our experiments. We generally address these two transitions in creating “spin”-dependent

potentials and inducing the Raman dressed states.

1.3.2 Hyperfine structure

The nucleus also has a magnetic dipole moment zi; = ¢g;/ and can experience the magnetic
field created by the orbiting valence electrons. In general this interaction is smaller than the fine
strucutre by the factor of g;/gs ~ m./m,, where m,, is the proton mass. On the other hand, there
is electric quadrupole interaction because of the structure of the nuclei. But by accounting for

that, we define

F=L+S+T (1.29)
and such hyperfine interaction energy is
1 SK(K+1)—2I(T+1)J(J +1)
AEy = ~Ap K + By 2 1.30
s = 5 Anfs 4 D 21(21 — 1)2J(2J — 1) (1.30)

where K = F(F+1)—I(I+1)— J(J + 1), Ayys and B),s are the magnetic dipole constant

and electric quadruple constant of the nuclei.

12
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Figure 1.4: The low-lying level diagrams of a ¥’ Rb atom. It includes both the D1 and D2 optical
transitions.

1.3.3 Level diagram

After we introduced the principles of level splittings, we summarized the most used transitions

in our experiment in the following chart (reproduced from [16]).

1.4 Multi-level simulation: internal states

The dynamics in a multi-level atom are complicated but are necessary to understand for

conducting a variety of real experiments. On the primary level, we should at least model the

13



G oo T T o __ (S — -GS T
+ +

L] -- - - -:- -_— F:2 o | L] s o
- [ ¥ F:1
Figure 1.5: The two simulated optical pumping schemes. They both share a o, polarized

optical pumping beam. But their repump beams are of different polarizations, 7 versus o + o_
respectively.

internal dynamics with spontaneous emission. This can be done through the introduced master
equation but generalized to many levels. Because our system dimension is large and involves a
number of couplings either coherent or incoherent, it is preferable to lay a clear framework. For
this purpose, I selected an open-source integrator Qu7iP2 [17, 18]. This simulation runs on the

full 55 /5 to 5P3/ transitions.

1.4.1 E.g. optical pumping

Optical pumping is a widely used technique in cold atoms, as well as used daily in producing
BECs. This puts a high standard on the efficiency and rate of optical pumping. We simulated this
process to understand the parameters we should choose.

The optical pumping describes a population transfer, say, from an arbitrary mp state of
|F' = 2) into a certain state |2, 2). This requires a “dissipative process” to remove the “entropy”.

This is usually done by shining a resonant o, polarized light on the F' = 2 to F’ = 2 transition

14
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Figure 1.6: Real time evolution. (a) Optical pumping without the repumper; (b) Even when
turning on a 7 polarized repumper (on resonance), it takes nearly 1 ms to pump 100% of
population!

(D2). In Fig. 1.6(a) we initialized the atom in the |2, 1), turned on the pumping light, and counted
the probability in |2,2) as a function of time I »(¢). However, the spontaneous decay channel
from F’ = 2 can also lead to residual population into F' = 1. This calls for introducing a
repumper laser, which brings the atoms back into the F/ = 2 from F' = 1.

It is “a reasonable guess” that this repumper detuning should be optimized to resonance for
best efficiency. However, our simulation says that it is not the case. As shown in Fig. 1.6(b), with
such a repumper on resonance, it takes almost “forever” to fully pump the atom (interestingly,
a fast pump is followed by a very slow pump). A similar time scale is observed for both 7 and
0+ + o_ polarized repump light.

Where does the atom probability go? With this question we examined the “meta-stable
state” population, and found that it stays in some certain superposition of the F' = 1 and F' = 2.

Ahbh, this is simple Coherent population trapping (CPT) physics! Reconsidering the two schemes

15



in Fig. 1.5, there are three (two) independent A three-level systems in the scheme a (b) — of course
they support dark states. With spontaneous decay from F’ = 2, the atom is also pumped to these
states invisible to our lasers.

The resolution to this problem is also straightforward, and that is making these states
“bright” again by tweaking the detuning 6. We scanned the detuning of the repumper beam
and observed the Electromagnetically induced transparency (EIT) “dip” at the zero detuning
(Fig. 1.7). We will need to park the repumper frequency a few MHz off the resonance to optimize
efficiency. Even though this simulation was run at zero magnetic field, a small background field
~1G like applied in our usual experimental runs is not helpful since the Zeeman shift isn’t large
enough.

Another “workaround” solution is to have stroboscopic lasers (which can be controlled by
the AOMs). In Fig. 1.7(b) we simulated the scenario where we turned on the optical pumping
light for 0.5 ws, and then switched to the repumper light for 0.5 s, and thus went on. This
sequence avoids dark states and allows for optical pumping on the 10us time scale, slightly

slower than the dettuning method.

1.4.2 E.g. spinor condensate imaging

In spinor BEC experiments, the spin projection along the quantization axis .S, is often
measured by calculating from two sequential measurements S, = ny — n,. The observables .S,
S, can in principle be rotated to the e, axis through an RF or microwave pulse. However, this
approach is destructive because of the rotation. (One might consider applying a “reversed” pulse

after the measurements, but this makes an interferometer which depends on the phase noises in

16
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Figure 1.7: Two solutions to the CPT problem. (a) Scan the repumper detuning to locate the
optimal pumping efficiency. Pump time is 5 ps. (b) Alternating the turning-on of the optical
pumping laser and the repump laser at 0.5 us time intervals.

the intermediate procedure.) We want to invent a “weak measurment” scheme for spin projection
along arbitrary axes.

We consider mp = =1 states in the F' = 1 as our psedo-spin space [1) , |]). Then we couple
the two spinors simultaneously to |2,0) by microwaves as shown in Fig. 1.8. This coupling is
off-resonant such that no real population is transferred to the /' = 2. Meanwhile, we turn on a
probe laser that is detuned to the |2, 0) to |3/, 1’) transition, but compensate with the microwave
detuning such that the two-photon (microwave+probe) coupling is resonant. We hope to build a
scheme where we can simultaneously turn on a combined microwave plus probe pulse for several
us, and then read out the absorption signal on the probe.

We ran the master equation simulations, and indeed we were able to observe the absorption
and diffraction of probe light as manifested by imaginary and real parts in the density matrix
element p.,. As we gave €2,,; and 2,,, the same phase, we found that p., is only function of (.5,)

but a constant of (S,). However, if we let arg(£2,1/€,2) = 7/2, we could measure (S,) instead
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Figure 1.8: Microwave-assisted probe scheme. Two microwave couplings make a A system, and
a probe laser is applied to read out the projected population.

of (S,).

We have made such a nice tool, but how should we understand it? The intuition is that
we made a A system by |1, —1), |1, 1) and a “virtual state” detuned from |2, 0) through the two
microwave couplings €2,,; and €2, (see Fig. 1.8). The probe addresses the “population” of the

virtual state, which is indeed Rabi coupled with the bright state of our A system. This bright state

is made of |B) = (2,1 (1,1) + Q2 1, —1))/\/|Q#1|2 +|€,2|” and is clearly a function of the

phase arg(£2,1/Q,2).

1.5 Light forces: external states

We use lasers to apply forces to the atoms. To understand the origin of the forces [19], we
go back to the two-level system Hamiltonian (1.9). We write out the Heisenberg equation for the
atomic momentum p

d 1 .

F="p=_"[pH 1.31
7P Z.h[p, ] (1.31)
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Figure 1.9: The optical depth and phase shift (arbitrary units) converted from p.,, where p., =
(2,0] p|3',1'). Both signals measure the projection into the |—) = (1) + [{))/v/2. Simulations
are done with bias field B = Be, (B = 10G), detuning 6 = 2I' (I' = 27 - 6.1MHz), pulse time
T = 2Us.

After plugging in (1.9) the expectation value of the force is

(F) =hVQpge + V" peg

1 (1.32)
_hbviar (2 4 L) iy (2 - 2)).
RSVIQP (£ + £2) + injopvg (1 - B
We can separate it by the “dissipative force” and the “reactive force”
() = 2|0 Vo Im (£2) + hv|0f Re (£2) (1.33)

Here ¢ = arg ().
The dissipative force is related to the imaginary part of the coherence p.4, which corresponds

to the absorbed light. Consider a plane wave with k that illuminates our atom with velocity v. In
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the weak light limit (|| < )

m £ = — M- (1.34)
492 + (6 — k - )2
which leads to
. 44|19
(F) = hk N g, (1.35)

492 4+ (0 — k - )2

This expression has a clear explanation that the atom absorbs a photon from our laser and gets a
momentum kick & from it, which multiplies the absorption rate is the force. The reason is that
the spontaneous emission following this absorption randomly ejects the photon to the 47 solid
angle, and hence is averaged out. Thus, an atom can be decelerated if it moves against our laser
beam IZ or it can be accelerated if it moves away from the laser.

It is natural to ask if one can make something useful by counter-propagating two identical
laser beams. Repeating the calculations and “naively” adding up the forces (in the weak intensity

limit), we expand the expression to first-order in v (E UK 0,7)

. 47|92 20k - 7
<F>:hk—472+ P\ T ) (1.36)

This is such a great result that it allows us to laser-cool the atoms! When the detuning § <
0, the force always slows the atom down along the direction of the counter-propagated lasers.
The technology was termed “Doppler cooling” when it was first discovered in the 1980s [20].
However, this nonlinear expression predicts a “turn-over” at large k - ¥, which means there is a
“capture range” |v| < v, of the frictional force. This parameter is vitally important when we

design the laser cooling apparatus.
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On the other side, the reactive force corresponds to the dispersive part of the atomic

polarizability. We would take the large detuning limit |2| < § and have

2
(F) = —hV (%) : (1.37)

We find this is the gradient of the AC Stark shift and hence is conservative. This force exists
as the light-dressed state of the atoms can have ground state energies depending on the light
intensity. For red-detuned laser, atoms would be attracted to the strong intensity; while for blue,
the weak intensity. The force was termed the Optical dipole foce [21]. Thus, we can control
in our experiment the external potential seen by the atoms easily through “sculpturing” the light

intensities in space.
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Chapter 2: Making and understanding your own Bose-Einstein condensates

2.1 Overview

The heroic move to make atomic Bose-Einstein condensates (BEC) was awarded the Nobel
prize in 2001. 20 years passed and the task was completed and simplified by many groups
around the world, and there have been standard techniques, although still challenging, to make
degenerate gases step by step. In this chapter, I will review the path we’ve taken. Hopefully, this
helps the readers build their apparatus as well.

Our approach to producing ultracold rubidium quantum gases borrows a lot of experience
from the precursor experiments RbChip and RbLi. In summary, one needs an atom source to
produce the atomic gas, laser cool them to mK~ K temperature, trap them and then conduct
evaporative cooling to reach nK temperature and a unity phase space density. In our new apparatus,
we did these several steps with a “modular programming” spirit, in both space and time.

Our vacuum system has two glass cells connected by “differential pumping tubes” which
allows vastly different vacuum pressures at the two ends. The alkali metal sources sit in the
vacuum bellows that are joined via a tee and connected to one of the glass cells, named the “MOT
cell”. On the one hand, we need to quickly load the MOT from the alkali vapor at a relatively
high density. But this high density of the background hot gases limits the lifetime (e.g. in a
magnetic or dipole trap) at the “MOT cell” due to their collisions with the laser-cooled atoms; on
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the other hand, we want a low enough pressure at the “science cell”, in order to run the scientific
BEC experiments for at least a few seconds (including evaporation).

The structure of the first half of this chapter focuses on the scheme to make ultracold gases
in BEC. The outline of the procedure is, we load a magneto-optic trap (MOT) at the “MOT
cell”, compress the MOT and conduct sub-Doppler cooling. We then recapture these atoms to
a magnetic quadruple trap, and immediately transfer them to the “science cell” by magnetic
transport. We run RF or microwave-forced evaporation there, and reload them to a hybrid trap
made by an optical dipole beam with the quadruple trap. Finally, we lower the overall trap depth

to allow dipole evaporation to reach quantum degeneracy.

2.2 Laser cooling and trapping

The first stage of laser cooling is done through the Doppler mechanism, as already described
in the last chapter. For our rubidium atoms, the room-temperature vacuum pressure already
provides too much background atomic density for loading a bright MOT. Thus, we put our
rubidium source on a thermoelectric cooler (TEC) to maintain the source temperature at around
0°C. The role of our regular three-dimensional MOT is to slow down and capture the fast-flying
atoms at ~ 200m/s. It is made of six laser beams detuned slightly (by several natural line widths)
to the red side of the |F' =2, mp = 2) to |F’ = 3, m/x = 3) cycling transition, each of them is
collimated, circularly polarized, and has a waist of ~1 inch. Because it takes at least ~ 3 x 10*
photon recoils to slow down an atom from its initial momentum, repump laser beams are added
to bring atoms back from |F' = 1) to |F" = 2). (And to balance the radiation pressure, we added

two of them in counterpropagation.)
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The optical molasses provides a damping force f = —kv, which slows down the atoms
within tens of microseconds. But these atoms would still be able to escape because there is little
spatial trapping force. We then add a pair of anti-Helmholtz coils along the e,, making a local
quadrupole magnetic field

B = B,,e, + Be, + B..e, 2.1

where B,, = —2B,, = —2B... The atoms are subjected to spatially varying linear Zeeman shift,
and as our lasers are red-detuned to the cooling transition, those who are farther from the trap
center experience a smaller detuning to the counter-propagating beam, which more likely pushes
them back to the trap center. In a MOT simulation, it typically takes tens of milliseconds to trap
atoms relatively close to the trap center.

To correctly address the cycling transition, we select our six cooling beams to be circularly
polarized o+ with respect to the propagation axes. In our experiment, we typically turn on the
cooling, repump lasers, and magnetic quadruple field at the same time, which makes a bright
MOT that saturates in 3-5 seconds, limited by the background vapor pressure. Our typical
magnetic gradient (5, ) is 12 G/cm, and the cooling detunings are -20 MHz ~ —3.3I".

According to people’s experience, loading a MOT with ultraviolet light (UV) could potentially
help optimize the MOT loading rate and final atom number. This is because atoms tend to coat
the glass cell’s inner surface, and the UV makes them go off (LIAD process) so that they can be
captured by the MOT. However, we were not able to observe such improvement, which needs
further investigation.

A MOT should in principle be able to lower the captured cloud temperature to below the
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Figure 2.1: The laser cooling scheme at the MOT cell. (a) The six red detuned laser beams are
delivered to intersect at the center of this glass cell. Together with the quadruple field generated
by the two anti-Helmbholtz coils, it can make a bright MOT cloud of ~ 1mm diameter. Its
fluorescence makes it visible to the naked eye. (b) We load the MOT with 1.9 s 1/e saturation
time.

Doppler limit, which is defined as

Al
Tp = T 146 uK for 8"Rb Ds. (2.2)

We applied the release-and-recapture method [22] with fluorescence imaging to measure the
MOT temperature, and observed close to 1 mK. This can be due to the imperfect alignment and
beam balances, as well as laser cooling efficiency. We moved on from it since we could run
efficient sub-Doppler cooling.

Following the MOT stage, we make a compressed MOT by raising the quadrupole trap
gradient and increasing the cooling laser detunings to match the gradient. The step is hoped

to decrease briefly the cloud size (and increase the spatial density), in preparation for the sub-
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Doppler cooling, where the atoms will not be spatially trapped. In our experiment, we ramped
up the gradient (B,,) from 12 up to 48 G/cm in 26 ms, and meanwhile, increased cooling laser
detunings from -20 to -40 MHz.

Now here comes the sub-Doppler cooling, as we simply turn off the magnetic gradients,
and ramp up the cooling detunings to -70 MHz in 15 ms. Because of the large detuning, there
is rarely Doppler cooling going on, but instead, a well-known mechanism called polarization
gradient cooling (PGC). This is explained by looking at the electric field made by say, our two
counterpropagating circularly polarized cooling lasers

E(z,t) = Epe™ ™ (¢, + ié,) + Ege %t (¢, — ié,)
(2.3)

= 2Eye " [cos(k2)é, — sin(kz)é,] .
This is a “polarization helix” standing wave in e,. It was often mistaken that such a field
could lead to the Sisyphus cooling mechanism, where atoms undergo repetitive “climbing hill”—
optical pumped into dark state process. It is worth noticing that can indeed be done in the field
like

E(z,t) = Ege ™! (e, + e *2¢,) (2.4)

which is made by two counterpropagating linearly polarized beams. Instead, the cooling mechanism
in our case can be elaborated as the following.
Consider an atom moving along the e, with velocity v. In the atom frame, the polarization

rotates at a frequency w = kv. So we further choose a rotating frame to keep the polarization
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vector constant, but this introduces an additional Hamiltonian

SH = kvF.. (2.5)

This Hamiltonian breaks the degeneracy (at zero magnetic field) between different mp states
because it has the form of a Zeeman shift. Thus, the electric dipole coupling H, = —d - E indeed
creates an offset in F,

(F)=A—— (2.6)

where A is the light shift for the mpr = 0 state, and A is a constant factor depending on the
F, F’. In our molasses, the cooling lasers are red detuned to D,, such that A, is also negative,
meaning that there are more atoms in my < 0 when v > 0. These atoms turn out to be more
likely to absorb a o~ photon rather than o™ due to the asymmetry in Clebsch-Gordan coefficients,
which carries a momentum opposite to v. Likewise, for v < 0, a o™ photon kicks the atom to
backwards. This is a cooling force that theoretically could cool atoms to the recoil limit

22
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T. ~ 362 nK for ' Rb (2.7)

at zero field, but would be severely compromised at a finite magnetic bias field.

2.3 Magnetic transport

Magnetic traps are a classic way to trap neutral atoms with non-zero magnetic dipole
moments. For ®"Rb this is the case with the ground state of 55/, |[F' = 1) or |F =2). Due
to the sign of Laude g-factors, the trappable state in /' = 2 are mp > 0, and for F' = 1 are
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Figure 2.2: (a) In-situ fluorescence images of the atoms after the MOT stage and the molasses
stage respectively. The cloud reaches a higher phase space density. (b) The commanded magnetic

field gradients and the laser detunings throughout the three laser cooling stages.
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mp < 0. In order to achieve a deeper and tighter trap, we chose |F' = 2, mp = 2) state.

Magnetic transport is an idea to adiabatically transfer atoms in real space along a long
distance. The atoms are always trapped in a magnetic quadrupole trap, but the trap center is
quickly moved by turning on and off a series of pairs of coils. We implemented this technique
in our apparatus, by using 11 pairs of transport coils, to transport atoms within 2 seconds over a
40 cm length between the two glass cells.

Before initializing the transport, we need to capture the atoms in a magnetic trap in the
MOT cell. But the atoms’ internal states are quite random after the PGC, because of the minimized
bias field at that stage. To resolve this issue, we add an optical pumping stage to transfer all
populations to the |F' = 2, my = 2) state. This is done by addressing the |F' = 2) to |F' = 2/)
hyperfine transition with an additional circularly polarized o* beam, in the presence of a small
bias field which defines the quantization axis, and a weak repump as well. The transfer typically
takes milliseconds.

Following this, we turn on the magnetic trap at 96 G/cm (B,), and to correct bias of the
trap center, we ramp up a bias magnetic field at the same time. Due to the slow response time, the
trap actually ramps on within 5-10 ms. With time of flight, we measured the magnetic trapped
atom temperature to be ~ 150 uK.

The most naive way of thinking of transport is by sequentially ramping off the first pair of
coils and ramping on the second. Such a process will greatly change the magnetic trap aspect
ratio, and is likely to excite the radial modes in such a trap. In fact, there is a clever way of
designing a transporting quadruple trap whose aspect ratio is invariant over space. While the
idea was summarized in the paper [23], it requires knowing the exact geometry of the setup and
the coils. We tried out best to accommodate such prerequisites by designing two coil holders that
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hold the transport coils, which themselves are “anchored” via screws to the vacuum setup. For the
coils, we ordered flattened ribbon coil foils and wound them in an “assembly line” with explored
protocols. However, in practice, this is still not enough to match the pre-calculated geometric
model, as it can only transport a tiny portion of atoms to the destination. But that tiny signal
saved us, because we have then parameterized the transport geometry and dynamics, and used a
feedback optimization algorithm to achieve maximum efficiency. The typical transport efficiency

is 85% in terms of atom population, and the whole procedure takes 2 seconds.

2.4 Evaporative cooling

The laser cooling will get atoms down to typical phase space densities of ~ 1073, so all
current techniques require an evaporative cooling stage to obtain BECs of large atom numbers
(Tiny BECs were obtained, however, via Raman (sideband) cooling not long ago. And there are
newer ideas, which are by themselves exciting). In terms of our magnetic trapped cloud after
transport, the typical temperature of our Rb atoms is ~ 100uK, an order of magnitude hotter
than laser-cooled atoms in the MOT cell. This is the price we paid for the transport, and is
due to two reasons: 1. the “adiabatic heating” from the compressed trap, which is reversible if
one decompresses the trap; 2. the non-adiabaticity in the transport process — this happens mostly
during the acceleration/deceleration process at the beginning/end of the transport, where the cloud
shape (aspect ratio) is forced to change rather quickly.

We follow a two-step evaporation sequence: first RF/microwave forced evaporation, and

then dipole evaporation.
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2.4.1 RF evaporation stage

Following the transport, we have a tight magnetic trap of 96 G/cm (B,,) in the science
glass cell. We make use of the high atom density in this trap for fast thermal equilibrium (with
elastic collisions) while evaporating atoms out of the trap. We turn on our RF amplifier, which
sends RF magnetic fields to atoms through circuit board antennas near the glass cell, and we
chirp down the RF frequency slowly from 11 MHz to 3.5 MHz within 4-6 seconds. During
this process, the atoms’ internal states Zeeman splittings are spatially dependent, and the RF
field resonantly flips the state at a certain radius of the trap. Because only half of the states are
trappable, the flipped state would experience a magnetic force that expels it from the trap, which
is called forced evaporation. Elastic collisions then help re-establishes a Boltzmann distribution
with a lower temperature. We can reach below 2 ;K in our experiment.

However, we soon found our RF antennas weren’t powerful enough such that the RF Rabi
frequency (smaller than 27 x 2 kHz) was slightly too small for efficient evaporation. This was
further confirmed by switching to the microwave from RF. The working principle is the same,
only that the microwave addresses more states between ' = 1 and ' = 2 manifolds, which
complicates the picture. Fortunately, we didn’t seem to hit unexpected resonances, and we can
shorten the forced evaporation stage to 3 seconds due to the 2x larger Rabi couplings. However,

the lowest achievable temperature is almost the same as using RF.

2.4.2 Dipole evaporation stage

The RF or microwave-forced evaporation can cool the atoms to around 2 K in our setup.

As we lowered the “knife edge” frequency, we experienced two obstacles — 1. the power delivered
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by our RF antenna dropped; 2. atoms in the magnetic trap are expected to find severe “Majorana
spin-flip heating”. As such, we completed the final stage of evaporation in an optical dipole trap
or a hybrid trap.

The dipole force originates from the conservative part of the light-matter interaction. The
simplest two-level system atom would experience a potential when illuminated by a far from

resonant laser light with frequency w [24]

U(F) = 3”62( F 1t )I(F) 2.8)

2w \wo—w  wyt+w

where wy is the energy splitting between levels, I is the natural linewidth, and () is the light
intensity at 7. Because wy — w < wy + w, the second term is often ignored and the sign of the
potential is determined by the detuning A = w — wy. For red-detuned light, we have a negative
potential (thus attractive), while for blue-detuned light we have a positive (repulsive).

For consideration of planned scientific experiments, we made an elongated dipole beam of
9 W 1064 nm laser incident from the e,, and provided tight confinement along the gravity e,
direction. While the dipole beam waist is much smaller than the magnetic trap length, we placed
the dipole beam center just 30 um below the magnetic trap center so as to capture fallen atoms
upon evaporation and avoid Majorana losses. We first decompress the magnetic trap to just above
the level against gravity (around 15 G/cm for B,,) so that the cloud temperature is lower. The
transfer process happens as we turn on the dipole beam to full intensity and further lower the
magnetic trap depth. Although the magnetic trap cannot support atoms outside the dipole trap
region, it also provides confinement in the e, which increases the atom density. Finally, we ramp

down the hybrid trap depth by lowering both the magnetic trap and dipole beam intensity, and
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observe the onset of the BEC transition in the harmonic trap.

2.5 Theory of Bose-Einstein condensates

The statistical mechanics of finite temperature systems made remarkable predictions regarding
the statistics of quantum particles. For bosons whose wavefunctions are symmetric upon particle
interchange, the condensation to a single quantum state is foreseeable at a finite temperature.

This is made transparent by the onset of a singularity in the Bose-Einstein distribution.

2.5.1 Onset of condensation in trapped gas

For a realistic consideration, we look at the Bose gas trapped in a harmonic trap in 3D [25].
The potential is

1
V= E(wixz + Wiy 4 wiz?). (2.9)

The single-particle Hamiltonian is exactly solvable and has an energy spectrum

1)wm + (ny + 1) y + (. + l)wz (2.10)

e:(nm+2 5 5

where n,,ny,n, =0, 1,2, ... The ground state is marked by n, = n,, = n, = 0 with wavefunction

_ (MWho\3/4 {_ﬂ 2.2 2.2 22}
o = ( — )% exp 2h( 2T+ Wy +wiz) (2.11)

from which we define

Who = (Wtwyw;)"/? (2.12)
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and the oscillator length

ho = (L)l/2 (2.13)

mwpe

With a grand canonical ensemble of atoms, at finite temperature 7" and chemical potential
4, the occupation number is
1
N=% T —— (2.14)

Mg, My, Nz 65(67“) _ 1

Here § = 1/kgT is the inverse temperature. The chemical potential 4 is an increasing function
of N and a decreasing function of 7. Hence, upon increasing the atom number or lowering the

temperature, we raise the chemical potential until
h
M = €o00 = 5(“1’ + Wy + wz) (215)

At this point, one finds that the occupation distribution becomes singular at the ground state.
It turns out that this is when the bosons begin to condense. There is a macroscopic number of
bosons in the ground state, as one further increases the /N or lowers the 7°, but the pt = €y does
not change.

We define the occupation in the ground state as Ny, and calculate the sum

1
N — Ny = Em,ny,npom- (2.16)
Plug in the energies and replace the sum with an integral (in the thermodynamic limit):
o dngdn,dn,
N — Ny = /0 R CR—— R (2.17)
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By changing of variable, we derive

kgT
hwho

N —No=(B) () (2.18)

where ((n) is the Riemann ¢-function. When Ny = 0,

kpT. = 0.94hw;,, N/ (2.19)
is the critical temperature. For T' < T,, we have the condensate fraction
—=1- (%)3 (2.20)

This is the result for a non-interacting harmonically trapped Bose gas in the thermodynamic
limit in 3D. There will be finite size correction, interaction correction, etc. otherwise [25]. With
other trap shapes or different dimensions, the result will also be different. For example, for a

homogeneous 3D gas (such as that trapped in a box potential), the exponent changes [26]
—=1- (_)3/2 (2.21)

as well as the critical temperature

2/3 27h?

kT, = 0.527n (2.22)

m

One can rewrite the condensation condition to another form. Let us define the thermal de
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Broglie wavelength

27

i = h .
B kaT

(2.23)

Then we find that in the homogeneous case \g5(7.) ~ v2n~1/3

is slightly larger than the
average inter-particle spacing. This is when interference dominates over kinetics, and suggests

the coherent nature of the Bose-Einstein condensate.

2.5.2 Theory of a pure condensate

The real condensates created in the lab are interacting gases. Let us first consider the

description of a pure condensate (1" < 7). The full many-body Hamiltonian is

H= / dr¥i(r) {—%W + V(r)] U(r) + % / drde’ U (e) Ut () U (r — ¢') U (¢') T(r).
(2.24)
where W is the bosonic field. For a pure condensate, all the atoms are in the same quantum state,
and then they move collectively. Thus we replace the field operator with a collective c-number
wavefunction

U(r) = o(r). (2.25)

For weakly interacting alkali bosonic atoms at ultracold temperature, the magnetic dipole-
dipole interaction is weak, and the three-body recombination process is slow. In this scenario, the
collisions are mostly two-body and due to the symmetry, the interaction potential U is summarized

in a pseudo-potential (according to the final phase shift) [26]

U('—r)=go(r' —1). (2.26)
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This potential is characterized by a single parameter — the interaction strength

47 h?
9= e (2.27)
m
or the scattering length a.
Finally, we arrive at the equation of motion for the state ®
] h2 2
ihaé(r,t) = <— QZ + V(r) + g|®(r, t)|2) O(r,t). (2.28)

This is named the Gross-Pitaevskii equation (GPE), first written down by Gross [27] and Pitaevskii [28].

This GPE also defines an energy functional
_ h? 2 2, 91504
E[®] = [ dr | VO + Veu (r)[ @ + S| 2| (2.29)

which is connected by

.0 oE

(2.30)

These equations very well approximate the low energy dynamics of the condensate [29]. They
and their variants were used extensively to describe the experimental works with the BEC.

There is also a stationary version of GPE, which is derived by naming

d(r) = Y(r)e /" (2.31)
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so that the GPE becomes

(<o + V) + alol0)) vte) = o) @32)

2m

This GPE is often used to find the ground state of the trapped BEC with a chemical potential .
An analytically simple formula arises when we simply ignore the kinetic energy, which is termed

the Thomas-Fermi approximation. On this we have

(V(r) + gl(r)]?) (r) = pa(x). (2.33)

and the condensate density

(2.34)

2.5.3 Bogoliubov theory — excitations

The interacting BEC is an intrinsically many-body quantum system. But when the interaction
is weak, we can apply the well-developed Bogoliubov theory in superconductors, which allows
for analytical calculations of the elementary excitations. I’'m going to explain the procedure in
the language of second quantization.

We consider linearizing the problem [30]
U =y + 0y (2.35)

and we use the contact interaction pseudo-potential in the original Hamiltonian U (r — r’) =
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go(r —r’)

m

H= / drf(r) { ;2 VZ+ V(r)} T(r) + g / de¥f (e) U () O (r) U(r).

We plug it in
h2

H— uN =F, + /dr(—&/;(r)T%VQ(M(r)

T [V() + 2] 0)? — 1] 0 ()30 (x)
+5 {w<r>2 [0tm)] + w*<r>2w<r>12}>

2
1 - ~
where we define
) L
v =
Sept
and
— (R?/2m) V* +V 4 2g|¢]* — p gip?
g+ — (?/2m) V? +V + 29[¢|* — p.

The eigenmodes can be found by diagonalizing M

MWl = eiUzWi
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(2.37)

(2.38)

(2.39)

(2.40)



and find eigenvectors

V[/i:

There are two obvious solutions to the linear problem

%

ulzvlzwandugz—vgza—N.

We define operators related to these zero energy modes (¢; = €5 = 0)

Q= [ drow) (30w + 591w

and

p=3[a a0 (5w — ot o)

Besides those, for higher energies we write

di= [ dr [w ()00 + )30 ).

Then the Hamiltonian is diagonalized

. - 1du
H— uN = ( . 12)
1 AN +€z:>oe &, Gy /

and these are called Bogoliubov modes of the condensate.

40

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



2.6 Simulations of the condensates

Simulation (numeric experiment) is powerful when exploring the unknown territory of
physics, which visualizes physics ideas and points the direction of understanding. We have done
extensive simulations on BECs in our lab, both in use for directing new experiments and also for

validating collected data and understanding.

2.6.1 GPE simulations: principles

The essence of the GPE simulation is numerically solving the nonlinear differential equation

e, K2 V2
ziia@(r,t) = (— o + V(r) + g|®(r, t)|2) O(r,t). (2.47)

It is indeed a well-studied field, and several methods are present differentiated by the way they
handle the time and space derivatives. We hereby have applied the “pseudo-spectral” method to
handle the spatial derivative, and used proper “time splitting” to handle the time derivative. This

can be summarized in the following points (I'll start with one dimension.)

* We first choose a proper time step and spatial grid which have intervals At and Ax, with

total grid points N, N,.
» We discretize and vectorize our wavefunction ®(x,¢) on our spacetime grid.

* In each step At of time evolution, we would like to apply the Hamiltonian

h2o? 5
H=— o + V(z) + g|P(x,t)] (2.48)
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* Instead of using “finite difference” to approximate the spatial derivative 0, f ~ Af/Ax
(which needs ~ N? matrix elements of memory), we apply the “pseudo-spectral” method.
That is

) . ho? 1 . hk?
exp(—iAtT)®(x) = exp —zAtZ— O(z) = F {exp —zAtQ— F[P](k)} (2.49)
m m
which again allows vectorizing the kinetic energy matrix 7 to ~ N, elements. Here we

note F as the Fourier transform from z to k, vice versa for F 1.

» However, because [z, p| = iA,
exp(—iAtT) exp(—iAtV)D(x) # exp(—iAtH)d(x). (2.50)

Here V = V(z) + g|®(x, t)|?. We want to find proper “trotterization” of the time evolution

At. There is a standard way to do this

exp(—iAtV/2) exp(—iAtT) exp(—iAtV /2)®(z) = exp(—iAtH + O(A))®(z).
(2.51)

We can also get to O(At3) precision if time At is split into 5 intervals.

In the said procedure, the space complexity is O(/V,), and the step-wise time complexity is
O(N,log N,). Moreover, each evolution step that is matrix element-wise multiplication can
be parallelized on a GPU. There is also a GPU-accelerated Fast Fourier Transform algorithm.
We have implemented this with the Python framework CuPy on an NVIDIA GPU that supports

CUDA. On a typical flagship GPU (e.g. GTX 3080) this shortened regular simulation hours by
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tens of times when running a 2D GPE of interest.

2.6.2 Dimensionless GPE

It is often more convenient to write the GPE in the units that is natural to the problem. In

our simulations, we typically choose these:

Reduced Planck constant 4 — 1. Atomic mass m — 1.

* Frequencies are rescaled to the harmonic trap frequency w — w/w,; time is rescaled ¢t —

tw,. Energies are rescaled to £ — E/h/w,.

* Distances are rescaled to the harmonic trap characteristic length + — z/ag, where ay =
\/h/mw,; momentum is rescaled to p — pay.

* Wavefunction is rescaled according to the dimension. In 1D, itis & — @aé/ 2; in 2D,

b — (I)Clo.

The contact interaction strength ¢ is rescaled according to the dimension. In a 2D trap, it

becomes g = v/8masp/a., where a, = \/h/mw,.

This makes our GPE simple

0 v: o1
— P = [ —— + =22+ Vophers Ol ) d. 2.52
i5 ( 5+ 5%+ Vo + g|9| ) (2.52)

In the case where there is only a box trap (or something else), we either set a fictitious “w,” or
can make azp our length unit instead. More caution needs to be paid to match the time and length

scale of the problem.
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2.6.3 Spinor GPE

The spinor GPE is a couple of equations describing a BEC with multiple internal states.
Note that these states can be coupled via EM fields, different from real multi-species BECs (such
as a Rb, K mixture). An important aspect of spinor BECs is the difference between interspin and
intraspin scattering lengths.

We write out the equations for /' = 1 manifold of 8"Rb,

) R*Vv?
17’10,5(1)1 = {— om + Vv + (CO + CQ) |:‘<I)l|2 + |(I)0’2} + (CQ — CQ) ’q)_1|2} (I)l
+ CQq)*—l(I)g7
) V2 2 2 2
1h0t<1>_1 =94 — 9 +V+(Co+02) U(I)_ly +‘(I)0| ] +(Co—62)|®1’ (I)_l
m
(2.53)
—+ CQ(I)T(I)S,
] V2 2 2 2
ihoidg =3 =5 —+V + (co+c2) [|P1]” + [@_1]"] + co|Po|” p o
+ QCQ(I)S(I)I(I),L
For mp = =1 states the intraspin interaction strength is symmetric
g11 = g-1,-1 = Co + Ca, (2.54)
while the interspin
gi1,—1 = Cp — Ca. (2.55)
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Those involve mp = 0 are
goo =¢o and go1 = go,—1 = o + Ca. (2.56)

In the absence of a magnetic field, this system is either in the ferromagnetic phase (c; < 0) or
antiferromagnetic phase (c; > 0). Our 8"Rb atom is the former case.

In many experiments, we can choose to make a “spin-1/2” system by only populating the
mp = *1 states and ramping up a bias magnetic field to avoid spin-exchange collisions. We can

also couple the two states

2\72

m +V+(C()+CQ>|®1|2+(CO_CQ>|®_1|2}¢)1
- (2.57)
ih@tq)_l - {— 2m

+ %4 + (Co + Cg) |(I>_1|2 + (CO — Cg) |(I)1|2} (I)_l.

This pair of equations is symmetric, but depending on the sign of c», there are simply two phases:
immiscible and miscible phases at zero temperature. For 8’Rb condensate, ¢, < 0 so the ground
state is a slightly immiscible phase, where the two spinors will spontaneously form a domain
wall.

In some other experiments, we keep adjacent states mp = 1,0 which makes it convenient

to coherently couple them,

. h2V? hQ
1ho, P, :{— o +V 4+ (co+c2) [|‘I’1|2+ |¢0|2}}@1 - 76130

R2V2 9% (239
ihatq)():{— om +V—|'(CQ+CQ)|(I)1|2+CU|(I>()|2}(I)O— B (I)T

These equations support plenty of interesting physics. If 2 = (2 is induced by RF or microwave
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coupling and is hence homogeneous in space, it is called a Rabi coupled condensate. Otherwise
if Q = Qg exp(i2k, - r) induced by a pair of Raman lasers, it is often termed a spin-orbit coupled

condensate.

2.6.4 Ground states

Ideally, the ground state of the condensate can be found by solving the stationary GPE

2m

(- + Vi) + o)) o) = ) (259)

We developed the Newton’s method to directly solve this differential equation. But attention
needs to be paid as one can easily run into the “higher energy” stable or metastable states,
and hence the initial “guess” wavefunction needs to be wisely appointed. This method is more
appreciated and robust when applied to finding the “metastable” states on purpose, e.g. the 1D
and 2D soliton states, as well as magnetic solitons in the spinor case.

However, the simpler and often more efficient numeric method is called imaginary time

evolution. In this method, one solves

h2V2
h—®(r,7) = (— 5+ V(r) +g[@(r,7)|2> ®(r, 7) (2.60)

which just replaces ¢ — ¢7. Upon evolution in the imaginary time, the amplitude of each
condensate mode j is suppressed by a factor oc exp(—E;7/h), such that the ground state with
smallest F, wins.

To accelerate the convergence, a small rotation is often used ¢ — 7 + ¢, to introduce some
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real “dynamics” into the evolution. This is helpful to get out of “stubborn” steady states, such as

states with (spinor) vortices or any other phase windings.

2.6.5 E.g. Interface instability in a spinor mixture

We consider the two-component spinor gas of a "Rb BEC. As described in section 2.6.3,
the ground state of such a binary mixture without any external coherent coupling is determined
by the scattering lengths. More specifically, we look at the |F' = 1, mp = +1) states, making an
immiscible pair at zero temperature. This ground state is reached by the imaginary time evolution
of the spinor GPEs with a tiny gradient force 0B, /Jx, effectively acting like a perturbation that
breaks the symmetry (Fig. 2.3a).

We are interested in the dynamics at ¢ > 0, following a sudden quench of the gradient
direction to the opposite. A famous hydrodynamics prediction is — the Rayleigh-Taylor instability [31],
which says spontaneous patterns will form at the interface. This is reproduced in our dynamics si-
mulations in Fig. 2.3b, where we selected different quench gradients and observed vastly different
pattern sizes and growth rates. These scalings are summarized in Fig. 2.3c as a function of the
0B, /0x. These exotic behaviors can be understood within the Bogoliubov picture, which derives
the “non-Hermitian” modes with imaginary energies. The length scale and growth rate of the
patterns are determined by the “dispersion” of these modes.

Although this RT instability phenomenon was discovered to be universal in many hydrodynamic
systems, especially with fluid mixtures of different densities subjected to gravity [31], our ultracold
atom system can serve as a unique platform to study it due to our highly controllable tools. For

example, we have controls over (effective) interactions, gradient forces, etc. We might even
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Figure 2.3: Illustration of the interface instability with spinor GPE simulations. (a) The ground
state density profiles as are subjected to a tiny gradient of 1mG/cm. Shown are population
densities of |mp = +£1) states respectively. (b) The snapshots at different gradient forces where
dB/dx = 0.1, 0.4, 0.6, 0.7 G/cm. (c) The scaling of the pattern inverse lengths with gradients.
(d) The scaling of the pattern growth rates with gradients.
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consider an oscillating gradient force, which alters the “dispersion” of the “instability modes”.

2.6.6 Bogoliubov theory: sound waves

To understand the dynamics on top of the BEC ground state, the natural thing to do is

linearize the GPE to derive a perturbative description [30]

P(r,t) = ©,+0P = exp (—ipyt) <<I>g(r) + Zuz(r) exp(—iw;t) + v} (r) exp (z’wﬁ)) . (2.61)

w; 1s the oscillation frequency of each mode, and u;, v; the wavefunctions. Plugging it into the

GPE and using the stationary GPE solution, we derive the Bogoiubov-de Gennes equations

heosus(r) = (ﬁo — i+ 29n(r)> wi(r) + g (Uo(r))? vi(r)

— () = (Ho = i+ 2gn(r) ) vi(r) + g (25(r))” wi(x)

where

For a homogeneous condensate

®y = /nand = gn

the solutions are

u(r) = ue™* and v(r) = ve
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with u, v satisfying

such that the dispersion is

It reduces to

in the long wavelength limit.

h2k?
hwu = u+ gn(u+v)
ﬁ; (2.66)
—hwv = syl + gn(u + v)

(2.67)

(2.68)

2.6.7 E.g. Excitation spectrum of a spinor mixture

As an application, we consider the problem set up in a population-balanced miscible binary

mixture. Linking to the real laboratory setup, we consider an “interesting” scenario, we try to tune

the miscibility of the pair |F' = 1, mpr = £1). The proposed way to engineer a tunable interspin

interaction is by tuning the spatial overlap between the two wavepackets.

Suppose our trap geometry is tight in z but loose in xy, and we want to integrate out the

z direction to derive a 2D “GPE”. To build intuition, we consider the case where our trap in z is

quasi-2D, meaning w, > p. We can separate the wavefunction

22

e

VTl

V3P =y, (2.69)
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where [, is the harmonic oscillator length and then

222

2, G93d 5, € B
Hi = [ drd=2 o [ <
T (2.70)
L gsa 2 2
= [ d&r = |9, .
We want
Hiy = /d%% b [ | (2.71)

Let us add a magnetic field gradient B,, = B’, which pulls apart the two wavepackets in z such

that (Fig. 2.4)

Gsa R
Gad, 11 = e E (2.72)
is tunable by controlling
B/
2p = 2 2.73)
mw

How does the change of the interaction strength affect the Bogoliubov modes in the system?
The results are shown in Fig. 2.4c, d. In a miscible two-component BEC mixture, there exists
two “sound” modes — the density sound and the spin sound. While the former reflects the ripples
in the overall density oscillations, the latter has a lower energy cost, because it is made of out-
of-phase oscillations of the two components (Fig. 2.4c). As we tune the interspecies interaction,
we expect the density sound to not change its speed, but the spin sound is the opposite. As we
almost fully minimize the spatial overlap (Fig. 2.4d), the spin sound speed becomes comparable
to the density sound speed. Thus we create a new “knob” for tuning the propagation speed of the
spin ripples in our mixture.

This turns out to be useful for many of the experiments without introducing more complicated/nasty
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Figure 2.4: The proposed scheme to tune the interspecies interaction strength gy; ;. (a) By
applying a magnetic field gradient B,, = B’, the spatial distribution of |mp = +1) states
are separated. (b) If one tunes the g,; _; in real-time, it effectively simulates the dynamics
of classical and quantum fields during the expansion/collapse of the universe [2]. (c, d) The
numerically solved Bogoliubov modes when the gradient B,, = 0.5, 15G/cm. One can
read the “spin sound” speed changes by 20x. Simulations were run with parameters w, =
2w x 500Hz, N = 10°, L, = L, = 50pum — a box trap in zy, and a harmonic trap in z.
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ingredients such as the Feshbach resonance, which often induces loss. In analogy to cosmology/gravitational

physics, the Bogoliubov modes (phonons) in the BEC see a effective metric locally

(2.74)

determined by the local speed of sound and atom velocity. If one makes a rapidly changing c(t),
there is hope that he can emulate the dynamics when the universe is expanding (e.g. Fig. 2.4b) [32,
33]. As another proposed example, the tunable miscibility stabilizes the stripe phase in a spin-

orbit coupled BEC [34, 35].

2.7 Coherent manipulations

BECs are known for their simplicity in the ground state, but quantum simulations require
ingredients that are not intrinsic in the natural Hamiltonian. To enrich the physics one can study,
we often use laser light and RF fields to manipulate the atoms. This section sets the principles of

these controls.

2.7.1 8"Rb atoms subjected to lasers

For completeness of the introduction, we lay out the framework that the real 8’Rb atoms
interact with applied laser fields. For our experimental consideration, we only address close to

the transitions in the D; and D5 lines and ignore all other electronic states.
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The dipole approximated light atom interaction is [24]

~

H(w) = —a,, (W) EE, (2.75)

where Einstein-summation notation is assumed, in which we have defined the atomic polarizability

tensor by du = &, F,. Such a second-rank tensor has its irreducible decomposition

F,
G (w) =40 (W3, + &(1)(w)iegwf
5 . . (2.76)
A w)——— | = (F,F, + F,F,) — =F?%,,| .
—|—Oé (w)F(2F_1) 2( 12 l/+ v ,u,) 3 g

The &9 (w), @M (w), & (w) are named the “scalar”, “vector”, and “tensor” polarizibilities because
their ways of coupling to the angular momentum F'.

In 8"Rb atoms related to our experiments, we mainly consider manipulating atoms in the
F' = 1 ground hyperfine state. And thus we apply second-order perturbation theory treatment,
for a “virtual process” that brings atoms to the J' = 1/2 and J’ = 3/2 levels and returns to the
ground state in /' = 1, namely the AC Stark shifts (or light shifts) for the ground states. This

simplifies our calculation for the scalar polarizability

0 (w Z ( JHdHJ' 1
wHwry W—Wwiyg

_ 2 — 2 ] — 2 2 ’
_\<J lldll\ J=3)  [{(T=5ld17"=3)]
3h51 3h52

(2.77)

where the detunings d;, d5 are defined with respect to the D1 and D2 transitions. Then the scalar
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light shift due to the Hamiltonian 2.75 is

AEO(w) = — a9(F,w)|EJ?

_ 7TC2[|:2FD2( 1 1 )+FD1< 1 1 )}
N 2 wdy, \w+wp2 w—wps wd \wH+wpr w—wp1/]’

(2.78)

This predicts that if we park the laser frequency in between the D1 and D2 transitions, we can

“tune out” the scalar light shift. By noting that

1

1 L ;
<J = Slld]lJ" = 5> = 2.992eay, <J = glldllJ" =

§> = 4.227eay (2.79)

we derive the “tune out” wavelength to be A = 789.998 nm. In our experiment, we frequently
used this property by tuning the wavelength of our Raman Ti: sapphire laser.

Likewise, the vector part

oy gp_1s1 [BF(2F +1) w(J||d]|J")|?
(1) _ -1 2.J-J —F—I+1 2J +1 __
(W) ;( ) Fr1 2T )h(wg,J—w2)
2.
1 1 1 J J 1 (2.80)
J J J F F I
with the Wigner-6j symbols and
AED(w) = —aW(w) (B x E), % (2.81)

This part is linear to m g, and can be used to create an “effective magnetic field” by lasers.
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Finally, there is also the tensor part

o prap [AOF(2F + 1)(2F — 1)
a®(w) = (-1) \/ 3(F + 1)(2F + 3)

F/
(2.82)
L2 L wep (Fla)F)
FF P h(w%'F_WQ)
with
E|>—|E23m2 — F(F +1
AE® (i) = —a® (i) 2L~ | 3mi — F(F + 1) (2.83)

2 F(2F — 1)

This energy shift is only important when the laser is near resonant to either D1 or D2 where it can
resolve the hyperfine splittings among F's and F”s. In addition, due to the opposite contributions

of Wigner-6;’s, the tensor polarizability exactly vanishes at the tune-out wavelength.

2.7.2 Potential engineering

The idea of “arbitrary” potential energy V' (r) engineering is one of the key motivations for
building this apparatus. Typically, we can utilize atom response to the static magnetic and optical
laser fields to “sculpture” the locally varying potentials within the scale of a BEC (<~ 100 pm).

This introduces the “new” tool of the digital-micromirror device (DMD) that can, in real
time, change the optical potential engineering for our BEC experiments. Our DMDs have frame
refresh rates of 11 KHz and 30 kHz for the DLP 6500 and DLP 9500 models. In contrast, our
BEC has a chemical potential on the order of /-1 kHz, which means the DMD patterns can change
much faster than the “hydrodynamic” time scale of the BECs. This allows pretty interesting

engineering ideas, including spectroscopy and even potential feed-forward. Spatial-wise, the

56



DMD patterns are projected to the atom plane through a pair of high-resolution microscopes
(NA~0.55). Depending on the wavelengths, it permits micron-scale fine-tuning of the local
potentials. This already is only several times the healing length (and almost equal to the spin-
healing length of 8"Rb). In short, these devices allow us to “intervene” in the condensate’s
evolution.

Besides DMDs, we also use other laser light to make and change traps. For all these
potential engineering, the lasers are detuned far from any transitions in the D; and D, lines, also

in the sense that the detuning is much larger than the hyperfine splitting of any state.

2.7.2.1 Scalar potentials

The scalar potentials result from the AC Stark shift as discussed before. For the potential
to be spin-independent, the laser detuning has to be much larger than the fine structure splitting
between D; and D,. For the DMD potential engineering, we tried a few light sources: a 532 nm
fiber laser, a 670 nm lithium tapered amplifer (self-injected), and a 670 nm fiber-coupled diode
laser with nm linewidth. According to other groups’ experience (e.g. Greiner group theses), we
also purchased an LED source but weren’t able to collimate the beam due to poor beam quality
Ms. In the end, we found that a finite nm scale linewidth helps minimize disorder due to coherent
scattering/reflections.

We engineered potentials by uploading binary images to the DMD memory. Since the light
source is blue-detuned, we are able to make box traps of homogeneous gas; we can also imprint

lattice potentials, create local “dips” or make rotating harmonic traps.
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Figure 2.5: Examples of engineered experiments with our DMDs. (a) An optical lattice is directly
projected by the DMD that creates density modulation. The single-shot image is captured with
partial transfer absorption imaging (PTAI). The cross-section along e, allows one to calibrate
the lattice depth by reading out the density modulation. (b) A propagating and bouncing phonon
wavepacket is created in a box trap. A series of cross-section of density images shows our ability
to track the evolution in real-time. (c) An (overall) homogeneous spinor BEC mixture of |1, 1)
forms a single domain wall in a box trap. The false colors of red and green stand for the two
components’ densities.
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2.7.2.2 Spin-dependent potentials

We consider two types of spin-dependent potentials — magnetic gradient and vector light
shift.

In our apparatus, we can demand full control of magnetic bias fields and gradients, which
allows us to apply uniform forces in any direction. This force is described by the Zeeman
Hamiltonian

H,=-) pps-(Bo+VB-1) (2.84)

which is Taylor expanded at the condensate center of mass, s being the pseudo-spin. This is

basically a spin-dependent linear tilt force for the BEC, and we used it to do several experiments.

» We used it to initialize and stabilize spinor BEC domains, such as for the |F' = 1, mp = £1)

mixture. A single domain wall is stabilized and perpendicular to the applied gradient force.

* We measured the lowest-order elementary excitation in both the homogeneous and harmonically
trapped gas. For the former, we can extract the speed of sound; and for the latter, we

measure the harmonic trap frequency along a certain direction.
* We used oscillatory linear potential to obtain spectroscopy of the low-lying modes.

We have also got a DMD which is illuminated by near-resonant light (with detuning comparable
to the fine structure splitting), which can project to the atoms and create spin-dependent optical
potential via vector light shift. We experimentally created a spin-dependent optical lattice and

observed the periodic separation of the spinor wavepackets.
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Figure 2.6: (a) RF Rabi oscillations between |1,1) and |1, 0) at B, = 10 G. (b) Microwave spin
Rabi flops have a much longer coherence time, and eventually suffer from some phase noise after
3 ms. Transfer from |1, 1) to |2, 0).

2.7.3  Spinor population transfer

The 3"Rb ground states have hyperfine levels F' = 1 and ' = 2, in a total of eight states,
which we can call the “pseudo-spins states”. The energy shifts between these states can be
controlled simply via the Zeeman effect. To drive each of the allowed transitions between these
states, there are typically three approaches: RF, microwave and Raman. For 3’ Rb atoms, because
the spin exchange collision rates between and within the hyperfine levels are usually much slower
compared to the driven coherent processes, we typically consider the latter in a single particle
picture (ignoring the interaction). This also means we are lucky to avoid hyperfine relaxation

which leads to decoherence and heating.
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2.7.4 Raman and Bragg scattering

Raman process is another way of doing internal state transfer. This is made transparent by

noticing the vector contribution from the light atom coupling

. (2.85)

This is similar to a magnetic dipole coupling, and if there is more than one frequency of the laser,
it will act like an AC magnetic field. This “field” can be put non-parallel to the quantization
axis of F, and thus have an orthogonal contribution that drives internal state transfer just like
the RF or microwave fields. In the experiment, this can be done by illuminating the atom with
two laser beams detuned against each other by the amount that approximately equals the internal
state splitting. But since the atom will pick up a recoil momentum % (k; — ks), the two-photon

detuning needs to include a recoil energy that corresponds to

. 2
Alw; —wy) = B, = htle = k)" (2.86)

2m

However, one can also put two frequencies into a single beam with any polarization that is not
linear, by mixing two RF tones into what drives the AOM. In this way, there won’t be any recoil
energy and the Raman laser acts exactly like an AC magnetic field depending on its local intensity.

Bragg scattering can be considered as a “simpler” Raman process that only couples external

momentum states but doesn’t change the spin state. Due to this, the two Bragg beams have a much
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Figure 2.7: (a) Raman transition that simultaneously couples the spin and momentum states
between |F'=1,mr =1,p=0) and |F = 1,mr = 0,p = 2hkg). (b) Bragg transition Rabi
flops between momentum states |F' = 1,mp = 1,p=0) and |F = 1,mp = 1,p = 2hkg). (c)
We used the Bragg spectroscopy to measure the velocity of our BEC, and found a strong
correlation with the TOF-measured velocity.

smaller frequency difference

W1 — Wy = ET (287)

that couples momentum states |p = 0) and |p = hk; — hky). Typically the detuning is on the
kHz level for Bragg instead of MHz for Raman.

We note that either the Bragg or Raman scattering picture mentioned above is in the single-
particle picture. When running such considerations over BECs, and when the momentum transfer
is comparable to the inverse healing length, interaction effects must be taken care of. This regime

is theoretically and experimentally revisited in Chapter 4.
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2.8 Optical lattices

The optical lattice acts as an external potential in the form

V(r) = Upsin® (kpz) (2.88)

with

kp=m/a (2.89)

where a is the lattice period. These are made by two overlapping laser beams of the same
frequency which form a stand-wave of light intensity, and thus dipole potential. First, they can
easily address smaller spatial scales compared to the healing length and thus allow engineering
single-particle band structures to first order. Second, they provide a platform for quantum si-
mulations of “condensed matter physics”, namely, introducing the Brillouin zones, different
geometry/symmetry of the lattice, and when deep enough, increasing the interplay of interaction

with the former ingredients.

2.8.1 Single particle picture

The energy band structure can be solved by plugging in the potential in the Schrodinger

equation
h?* d?
U, (z) + Upsin® (kpz) ¥, () = E, 9, (x). (2.90)

Com dz?2 "
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This is a classic problem in solid-state physics, and one can prove the Bloch Theorem, which

states that any eigenstate of the Hamiltonian has wavefunction
= ", () (2.91)

where n labels the energy band index, and ik labels the quasi-momentum. It introduces the notion
of the “Brillouin zone” since k € (—ky, k) and the energies are periodic in k and k£ + 2ky. The
wavefunction u,, is a periodic function of z, i.e. u,(z + a) = u,(x). To solve such a problem,
one plugs it in and gets

h? o d d? .
~5 <—k2 + 2@]{:@ + @> U () + Upsin® (kpz) U () = Ept (). (2.92)

This differential equation can be numerically solved via finite difference methods. Analytically,
perturbative solutions can also be derived via the Fourier method. The energy solutions are
shown in Fig. 2.8. The lattice opens up an energy gap at the Brillouin zone boundary, called the
band gap. Quasimomentum states that are not in the first Brillouin zone are then “folded” back,
forming the higher energy bands. As for the eigenstates, the state labeled by quasimomentum k

has the decomposition to free particle states
n, k) =" Ci(n, Uy, kp) |k + 2ikp) where k € Z. (2.93)

We consider ramping on a lattice from zero depth while ignoring the atomic interaction.
This involves considering how the states and energies adiabatically evolve into the known free

particle case where V = 0 and £ = h?k?/2m. By looking at (2.93), we know we can load
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Figure 2.8: Some optical lattice physics. (a) Illustration of the energy dispersion in the extended
Brillouin zone picture. (b) The simulated TOF image when one pulses the optical lattice for
variable time. One observes two oscillation periods: the shorter oscillation time corresponds to
energy scale of lattice depth Uy, whereas the longer revival time 7., corresponds to /Uy ER. (c)
If the lattice depth is comparable to the chemical potential, the prediction of the interacting GPE
simulation gives vastly different results from the non-interacting prediction [3].
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the BEC state into |k = 0,n = 0) quasimomentum state from a static free particle state |p = 0).
With p starting in the first BZ, we can reach a finite quasimomentum state with |k = p,n = 0) in
the ground band. However, starting from higher BZ, we will likely load atoms to higher bands
with n > 0. Loading finite momentum states can be easily done with changing the counter-
propagating laser beams’ relative detuning, which makes a moving lattice respective to the atoms.

Another relevant experiment is by pulsing the lattice, we can also couple atoms to higher
momentum states. This is the same principle as introduced in the last section, but perhaps requires
a more specific calculation. Since the lattice is static, all the couplings in the “Bragg scattering”
sense are off-resonant, i.e. ¢(p = hkr) # e(p = 0).

Near the ground band bottom £ = 0, = 0, one can always Taylor expand the dispersion

to be
h2k?
Ey = (2.94)
2m*
which defines the effective mass m*. Or equivalently
1 0?E,
— = : 2.95
m*  Ok? (293)
With this, the semi-classical dynamics is captured by
ok F
— = — 2.96
ot h (2.96)

with the force F'. This force induces periodic motion of atoms in a lattice, named Bloch oscillations
with frequency

wp = —. (2.97)
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One also asks what the elementary excitations are like on top of the ground state of a lattice
trapped BEC. For a weakly interacting BEC, if the interaction energy is much smaller than the
lattice potential energy or the kinetic energy increase led by the lattice density modulation, we
regard the interaction as a perturbation. And thus, we run Bogoliubov formalism on the lowest
band of the lattice, which is near k& = 0 free particle-like with Hy = h?k*/2m*. Hence we simply

replace m with m* everywhere

2\? k2
wk) = \/<2m*) +oSon. (2.98)

2.8.2 Long period lattice

The characteristic length scale of our BECs is the healing length ¢ determined by the
mean-field interaction. We can imagine increasing the optical lattice period a such that a > £
while keeping the lattice depth constant, the role of interaction would surpass that of the lattice
potential. In the ultimate limit a > &, the system is similar to separately trapped condensates
which are “disconnected”, because the tunneling between wells is no longer fast enough to secure
long-range coherence.

While that limit is by itself interesting, we first look at the intermediate case where a ~
&. Tt is known that such a system might be described by a “tight-binding” model with on-site

interaction — the Josephson model. Here we consider GPE

h2
ihOyp = —%V% + (Vexe + 90l8]?) ¢ (2.99)
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where

Vew = Upsin® kyz. (2.100)
We expand
¢=VND tu(t)o (r —r,) (2.101)
and assuming
/ drgndr, = Omn (2.102)

¢ns are the orthonormal basis that is localized at each lattice site, the so-called Wannier functions.

Plug it in

2
iy o) (r — 1) = —f—m D Un(OV?6 (r — 1) + +Veuw & + gol6’0  (2.103)

We make use of the orthonormal condition by multiplying both sides by ¢* (r — r,,) and

integrate over r

h2
W0 () = ~5= Y [ 6 26u+ [ AV 3 65 0ub0+ Noo bl b [ drlonl’.
(2.104)

Sorting the terms out

. h2 . h2
O =5 / V6, - Vomardr + 2, / dr [V |?
m 2m
+¢m:ﬁ:1/d7"/€wt¢jﬂ¢mﬂ:l +¢m/d7’Vext |gz5m|2 (2.105)

+ Ngo / 0r (6] [l o
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We can finally define

h2
K= _2 /V¢:” Vomiadr — /¢:~L¢m+1%xt dr
m
h? 9 5
fn = 5= [ [Vom|™ + Ve |6l dr (2.106)
2m

A= Ngo/|¢m|4dr

respectively the local tunneling energy, chemical potential, and self-interaction. Our Josephson

equation becomes

ihdbm = —K (Y1 + Ymp1) + (fm + A [0m]?) . (2.107)

It turns out the on-site interaction term A can greatly affect the dynamics of such a system.
The most famous example is “self-trapping”, where an initially localized wavepacket cannot
fully spread in the lattice even in the absence of any disorder, as the interaction leads to density-
dependent “energy splittings” between the otherwise degenerate sites. Within our interest, the
term also has an impact when considering a non-Hermitian loss at the boundaries of the lattice.
It was found that the atom density would instead localize to the center lattice site as in analogy
to the “quantum Zeno effect”.

The superfluid transport in such a long wavelength lattice can still define an effective mass
m* (e.g. using the sound mode dispersion), but it is noticeably different from what is found in
eq. (2.95). Instead, one has to resort to the Leggett formula to calculate the m*, which is relabeled

by “superfluid density”, as is to be elaborated in Chapter 4.
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2.9 Spin-orbit coupling

The spin-orbit coupling (SOC) is ubiquitous in condensed matter physics, which is defined
as the interaction between the electron spin and the electron momentum. The origin of that
in solids is inversion symmetry breaking, e.g. the ionic electric field coupling to the moving
electron’s spin (because in the electron moving frame, it is understood as magnetic dipole coupling).

Typically the Hamiltonian takes the form of
Hsoc = E Qi OPj. (2.108)
4]

The usual experimentally relevant cases in 2D are the Rashba and Dresselhaus SOCs

HRashba = CY(O'zpy - O-ypm> (2109)

and

HDresselhaus = O-/(O-acpac - pry)- (2110)

We should note that it is not to be confused with the atomic SOC which typically refers to
the coupling between the outer shell electron’s orbital and spin angular momenta H' = L - S.
However, in an atomic system, there is no intrinsic coupling between an atom’s linear momentum
p and its internal states. The approach to introducing this coupling is by laser fields.

The technique that was invented in Ian’s group is Raman dressed states. Two counter-

propagating Raman lasers in e, of wavelengths )\ illuminate the atoms, which leads to the
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interaction Hamiltonian in the rotating wave approximation

2

P h ik ho

L 2 (Qeikr He.) + —o.. 2.111
2m+2( e 1) (1| +He.) + =0 ( )

Hlab = 9

These Raman fields coherently couple two internal states of the atom ||) and |1) with Rabi
frequency (1 = Qexp(i2k,x) with a detuning 0 = w; — wy — w4, where w4 is the energy
splitting between the states. We call the Hilbert subspace made by these internal states a pseudo-
spin half system.

To see how it relates to the spin-orbit coupling, we run a gauge transformation that is spin-
dependent

U = etreos (2.112)

so that the rotated Hamiltonian (we call H) becomes (up to a constant offset)

~hko)? R RS
H iy — W= ko)” B ke 2.113)
om 2 2

This is a linear combination of the Rashba and Dresselhaus Hamiltonians (upon rotation), but
with a non-commutating o, term. This o, term is important because otherwise, the Hamiltonian
can be gauge transformed back to a trivial p?/2m Hamiltonian. It is interesting to point out that

the gauge transformation is not a physical observable, e.g. the real velocity field will be

oo L PR (2.114)
m m

However, the change of the quasi-momentum p (over space and time) is observable. By loading
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the BEC to the lower band, this Hamiltonian can create artificial gauge fields for nonzero detuning
J, or quantum phases that interplay with the spin-dependent interaction at near zero ¢. These will

be discussed in detail in Chapter 5.
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Chapter 3: High-Resolution Quantum Gas Apparatus

3.1 Introduction

Ultracold quantum gas experiments were great platforms for quantum simulations. But
quantum simulations require accurate control of the quantum state, with advancing complexity
of the problem of interest. In the context of quantum gases, it means local measurement and
manipulation of the quantum state. For Bose-Einstein condensates, the relevant length scale is
often defined by the healing length &, which is typically sub-micron depending on the interaction
strength. In the meanwhile, the relevant time scale is determined by the chemical potential,
often on the order of sub-millisecond. It would be preferable to be able to detect the physics
process that happens around these scales. Furthermore, it would introduce an interesting interplay
with physics if one can change the control parameter of the experiment on the time scale of the
dynamics.

This is the big picture why we were building the high-resolution capability into this apparatus.
It is the first high numeric aperture (high-NA) attempt in our lab. We used microscope objectives
to probe the atoms in situ at high resolution, and also manipulated atom density and spin locally
in real time with two digital micromirror devices (DMDs). Nearly all our physics experiments
were based on these capabilities, which we spent lots of effort setting up and debugging. In this

chapter, I will summarize the experience.
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But before that, we spent nearly two years getting our degenerate rubidium gases in the
glass cell. Because the two of us built every setup in the experiment, I reckon that I am the
suitable person to detail a description of our apparatus just for a memorial purpose and future

reference. The narrative would be in the chronological order of the building process.

3.2 Overview

The design of the new basement lab and our new apparatus began before we joined the
group. I should acknowledge all the people who contributed to the design. Here is an incomplete
list: Ian Spielman, Francisco Salces Carcoba, Ana Valdés Curiel and Chris Billington. Thank
you!

The design is shown in Fig. 3.1. We have a very compact vacuum system, which is
composed of three major parts — the MOT glass cell (left), the stainless-steel transport section, and
the science glass cell (right). The vacuum system is designed to have two stages of differential
pumping, with the two ion pumps, and each stage achieves an order of magnitude drop in the
vacuum pressure. Thus the vacuum-limited atomic lifetime in the science cell can be as long as a
few minutes.

Attached to the first vacuum tee is our source part, where the Rb and K ampules (Fig. 3.2)
are sitting and temperature controlled so that the MOT cell has a pressure below 1079 torr. A
typical experiment starts with a vapor-fed MOT. The atoms are then further compressed and
laser-cooled to below the Doppler limit in a small volume, and transported via turning on and off
a series of quadrupole fields in 2 seconds all the way down to the other vapor cell — the science

cell. The science glass cell is specially chosen to be anti-reflective at wideband, so will allow
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Figure 3.1: The Solidworks sketch of our apparatus design. (Noticeably, I hide the coil holder
sketch closer to the reader, to let expose the vacuum design. Also, the microscope setups on the
science cell side are partially hidden here. We also made modifications to the mounting design.)
Credits to Paco and Ian.
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Figure 3.2: The Solidworks assembly of the dual-species sources parts. Credits to Paco, Chris
and Ian.

multiple optical trapping and controls, and this is where the real science experiment is taking
place.

The whole apparatus should sit on the optical table. But in our design, because we have
such a compact vacuum system, all the weight is supported by the stainless-steel holder plate
(brown plate in Fig. 3.4). The vacuum system is connected to this plate via the screws on the
conical expanders from 1.33in to 2.75in, which further connect to the two ion pumps. We slide
the stainless-steel plate in the C-slot on the second layer breadboard (Fig. 3.4 and 3.3)), and there
are designed screws to anchor it to the breadboard. We designed three layers for all the optics
needed in the future, and the top two layers are supported by the 80/20s. In our final setup, the
first (ground) layer is used for the high-NA imaging path and far-off-resonant beam shaping with
a DMD. The middle layer is for laser cooling optics, dipole trap, optical lattice, and Raman lasers.
The top layer is for sending in the resonant probe light and near-resonant laser beam shaping by

another DMD.
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Figure 3.3: The three-layer breadboard design for the vacuum assembly and the accompanying
optics. Credits to Paco.

Figure 3.4: The preliminary vacuum assembly sitting on the breadboard.
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3.3 Preparation: lab space, coil winding

When we started working in the basement lab BO134 of the Physical Science Complex, we
already had three empty optical tables sitting in the lab space. The first few things we did in 2019

WEre:

1. We designed and built the enclosure for the apparatus optical table. This was for isolation
from the environment as good as possible. Basically, we did not want stray laser light
to affect our apparatus from the other optical tables. More importantly, we wanted the

temperature and humidity stable at where the experiment was happening.

2. We set up the electric cables in the lab to connect the reference voltages (+15, 0, -15V) to
the power buses in the lab. These voltages were defined by an external “lab ground” and

two Agilent power supplies sitting in the corridor outside the lab.

3. We installed several BNC panels for each of the optical tables and connected them with
one another. This was to provide enough signal connectivity for the control and readout

signals across the lab.
4. We set up the lab control computer and the Labscript software.

5. We installed the plumbing system in the lab to allow for cooling water flowing to different
devices, including the main magnetic transport coils, high power lasers, and atomic sources’

temperature controllers.

6. We prepared and pre-baked the vacuum stainless-steel parts separately at high temperature

(~ 400 °C) to degas the hydrogen.
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Figure 3.5: The time evolution of the main lab space. (a) 2018-2019: we had the apparatus
optical table sitting in the center of the room. Next to it was the supporting electrical bench:
holding the transistor banks and power buses. Also, plumbing was set up down there. (b) 2019-
2020: we designed and made the enclosure from 80/20 aluminum parts. (c) 2021: we put on the
middle layer breadboard and set up the laser cooling and magnetic transport. We also obtained a
BEC in the hybrid dipole-magnetic trap.

Since we decided to use magnetic transport between the two glass cells, we had to prepare
the magnetic coils to produce the moving fields.

The first step was to count to number of coils needed. We designed the transport with 11
pairs of quadrupole transport coils (including the large quadrupole coils to make static quadrupole
traps at both glass cells). Besides those, we needed to control the magnetic bias fields. For the
MOT cell we designed eight triangular bias coils to control the B, and B,. We had another
pair of round coils to provide the B,. We followed the usual approach to controlling them with
three current channels, each of them proportional to B, ., B,_. and B, respectively. The wiring
scheme will be detailed later.

For the science cell, we aimed for more controls over all the bias fields and gradient
fields (first-order derivatives) with high precision and careful calibration. So we designed this
“complex” scheme. We had eight triangular coils, each controlled by a separate current channel,
in order to generate all the bias fields and gradients except B,,. B, is controlled by another

eight coils of the racetrack shape with a single current channel.
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Figure 3.6: All the magnetic coils that we needed and wound. The coil configuration design is
done by calculating the fields and gradients using the Radia plugin in Mathematica.

Figure 3.7: The setup in the IPST lab space was designated for coil winding.

The coil winding party started in 2019. The wires we used were quite special — we chose
the “Laminax” copper ribbon foils (from Bridgeport) that came in with “Kapton” insulation.
These were good for their compactness, and since they were eventually water-cooled via close
contact with the aluminum coil holder, the Joule heating was acceptable by design. We cleared a
lab space in the IPST building and made this setup for manufacturing these coils (Fig. 3.7). The
coil-winding aluminum forms were manufactured at the NIST machine shop for different shapes
of coils (round, triangle, and racetrack).

We first wound the ribbon wire by rotating the winding form (shown in Fig. 3.7) up to
around 60 turns. Next, we kept the winded wires on the form and added the Epoxy glue that fills

in the gaps between layers of ribbon wires. We put the form into a vacuum bell, and pumped out
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Figure 3.8: Right: Epoxy was used to fill in the gap between layers of the winded coils, which
fixed their form as well. They typically took several hours to cure. So before that, we put them in
a vacuum bell and extracted any bubbles that were inside the glue. Left: we tried fitting the coils
into the aluminum coil holder. Before finally putting them in, we added a layer of thermal paste
on the holder to fill in the gaps and allow for better heat conduction.

the air for ~ 1 hour, which allowed the bubbles in the epoxy to be also pumped out. We took the
coil out and let it cure at room temperature for half a day. Then we separated the coil from the
form (so it was easier if the form was pre-waxed), and added epoxy to the back surface. After the
whole process, the coil was taller than the coil holder, and hence was taken to the machine shop
and lathed to the correct height. We then cleaned the surfaces, checked any shorts, and insulated

the coil with Kapton tapes again.

3.4 Vacuum

The vacuum system of this apparatus is very compact. It is mainly made of stain-steel parts,

two glass cells, two 1on pumps, and a titanium sublimation (Ti: sub) pump.
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Figure 3.9: The stainless steel parts were pre-baked to over 400°C. In the figure, we have the
source parts. We baked twice in 2/2019 and 6/2019.

3.4.1 Vacuum bakeout

The first step to prepare the vacuum was the bakeout. The step is vital to eliminate the
gas molecules in the vacuum parts, which can slowly be released into the vacuum from the inner
surfaces if we don’t do the bakeout. To maximize the efficiency of the breakout, we did it in
three steps. First, we baked all stainless steel parts to around 450°C in a separate big cylindrical
container connected to a turbo pump. We had the bakeout logged in real-time via an interface
with the turbo pump and a bunch of temperature sensors attached to the system. The data was
then read by a Python program. This pre-bake process typically took about 12-15 days, after
which we didn’t observe a significant pressure change (Fig. 3.9b). We did it for the transport and
connecting parts to the ion pumps as well.

The second step is the assembly of the vacuum parts except the glass cells. The second
bakeout would follow it and include the ion pumps, so the bake temperature would only be
slightly above 200°C. We built an aluminum foil tent over the whole vacuum system and wrapped
the bulky parts including the ion pumps. We then attached the electric heater tapes around this

tent and started baking. Because we had the ion pumps turned on, the aimed pressure could be
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Figure 3.10: We were wrapping the assembled vacuum system with aluminum foils to prepare
for the bakeout. We could get three pressure readings at the turbo pump and both ion pumps. The
bakeout happened in Oct. 2019.

an orders of magnitude lower.

However, an incident happened after the second bakeout. As we lowered the temperature,
we found at some point the pressure reading rose. This was an indication of leakage due to an
abrupt change in thermal stress and was severed because our system had two heavy “big nipples”
connecting to the ion pumps — the weight was not even. We used the helium leak detection
method and identified the leakage spot was indeed the conical part. (We basically tried injecting
helium gas into the leakage spot and observed small pressure spikes at the pressure gauge after a
short delay. Fig. 3.12.)

After fixing the leak, we moved on to a third bakeout after getting the glass cells assembled.
This time the temperature could only go to 150°C because of the glass. And it was our final
bakeout, and we aimed at ion gauge currents as low as ~ 107% A (~ 10~!! mbar) after we
adiabatically cooled the system down. Eventually after a long bakeout, we were able to reach it
and the ion gauges couldn’t read the low pressure anymore. We then fired the titanium sublimation

pump (Gamma Vacuum TSP) twice. By running high voltages over the titanium filaments, they
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Figure 3.11: (a) The source part. We machined an enclosure that holds the vacuum bellow with
an atomic source. The whole enclosure is placed on a TEC with water cooling. We would wrap
the whole thing with space blanket. (b) We made sure that we could see light from the other side.
(c) The first assembly photo, taken with the coil holder.

were heated to sublimate titanium atoms which are chemically active with remaining hydrogen
and water molecules as well as deposit on the stainless steel surface to form an active layer. After

these steps, we assured an ultrahigh vacuum (UHV) in our system.
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Figure 3.12: (a) Leakage detection as we only exposed one flange at a time, where helium gas
flow was produced from a nozzle and injected to vacuum through the leaked flange. (b) Pressure
readings from the ion gauge during the third bakeout. The bakeout happened in Jan. 2020.

3.4.2 Vacuum assembly

We assembled the whole vacuum system during and between all the bakeouts. The first
part that was assembled (which was done at NIST) was the two ion pumps and Ti:sub pump,
which are connected using 2.75” flanges and via the two conical adapters to the upper “transport
section” which uses 1.33” flanges. Then we assembled the source part: Rb and K ampules in the
vacuum bellows, vacuum tees, elbows, all-metal valves, etc. Next we worked on the transport
part: three vacuum tees with two copper differential pumping tubes. We were extra careful about
it because we wanted to keep the transport axis in a straight line to not clip the atomic cloud
during transport, which is indeed hard because of the small inner diameter of the differential

pumping tubes (Fig. 3.11b). In the last step, we mounted the two glass cells.

3.5 MOT cell configuration

We make a 3D MOT directly loaded from the vapor, with six cooling laser beams and two
repump beams. We use a 10 meter long fiber multiplexer (Evanscent Optics) with two input ports
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Figure 3.13: MOT optics scheme. (a) Lab image of the MOT optics. Red lines/arrows mark the
cooling laser propagation direction. (b) Drawing of the MOT cell and related optics in e, —e.. (c)

Beam shaping of each single MOT beam which generates a 1 in circularly polarized collimated
beam. f;; = 50 mm.

and six output ports. The cooling light is coupled to input 1 and equally distributed into the six
fiber outputs. The repump light is coupled to input 2 and distributed into two output ports, which
counter-propagate by design. Each of the outputs is engineered to generate a 1 in MOT beam at
the glass cell center. Because this fiber multiplexer has a built-in polarizer, we don’t worry about
the MOT beam polarization drift, which only translates to power drift. These beams illuminate
the glass cell from e,, e, + e, and e, — e.. There is another optical pumping beam that goes in
from —e,.

For laser cooling, our experimental sequence has five stages: MOT, compressed MOT,
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molasses, optical pumping and magnetic trap. We lock our cooling laser (Toptica DL Pro) to
another master laser ~ 1 GHz away (to the red) using a fast photodiode (EOT GaAs ET-4000AF)
and phase-locked loop circuit (ADF4007) that compares the beatnote frequency with an external
local oscillator (Novatech 409B). Since we need different frequencies for the cooling beams
at different stages, we jump or ramp the local oscillator frequency to tune the cooling laser
frequency which has a ~ 1 ms response time for jumps within ~ 300 MHz. Similarly, the
repump laser is ~ 5.5 GHz away (to the blue) beat-note-locked to the master laser.

The magnetic quadruple field needed for the MOT is generated by a pair of anti-Helmholtz
coils. These coils are driven by “home built” transistor banks for large currents up to 150 A
(but the MOT coils are limited by the coil resistance so the maximum is around 50 A fora 15V
supply). These transistors are further controlled by a gate voltage generated from a PI servo
board, which uses an op-amp circuit to compare and feedback to the current running through
the coil (measured by Hall sensors), with an external voltage setpoint (set by an NI analog
channel). By tuning the PIs of the feedback loop we achieve a 20 kHz bandwidth, well above

that determined by the magnetic inductance of the coils.

3.6 Magnetic transport

We have 11 pairs of magnetic transport coils, which are used to generate continuous deformation
and translation of a magnetic quadruple trap from the MOT cell to the science cell [36, 37]. We
start by asking a mathematical question: at a certain time ¢, given the requirement of magnetic
field gradient B,, = —(B., + B,,), the quadruple center position x, and the trap aspect ratio

8 = B,./By,, can we solve the “inverse problem” to calculate the electric currents flowing
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in nearby transport coils? The answer is certainly a yes, and we only need to calculate three
adjacent coils that run currents (/;_1, [;, I;+1). Next, we parameterize the atom trajectory x(¢)
as a function of time. We define the trajectory into several piecewise functions, each one having
a given (dt, dv), where dt and dv are the time interval and constant coast velocity during this
interval. This is because we expect the adiabaticity conditions to vary in space, e.g. due to
differences in the coils/environment, and at the beginning and end of the transport. In this
way, however, the velocity is discontinuous between the pieces which might also contribute to
nonadiabaticity. To resolve that, we insert an “acceleration” period at the beginning of each
piece, which connects the velocity between the previous and the current pieces. This acceleration
is chosen to be a quintic polynomial of time, as we solve the coefficients under constraints of
given (xg, T1, Vg, v1,a9 = 0,a; = 0). Besides all that, at the beginning and end of the transport,
we have to decrease the number of active pairs of coils from three to one, which will include
more parameters on, e.g., when to switch between these stages.

Finally, we have a well-parameterized transport trajectory, but question is whether we trust
that the physical geometry reflects the magnetic field calculation from the design. Hence, we add
more parameters based on errors in the numbers of turns, geometric sizes and spacings of these
coils. For our setup, it gives us 35-45 parameters in total, but many of them are correlated. It is
generally a hard problem for humans to optimize over correlated parameters, but machines are
good at that. We use the open-source Python package MLOOP, which relies on built-in kernels
such as the gaussian process or neural network of sklearn. The feedback results are summarized
in Fig., which the optimizer found after ~ 1500 experimental shots in two days, and it transports

the atoms from cell to cell with an > 80% number efficiency in 2 s.
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Figure 3.14: (a) The geometry of the transport coils. The optimized atom trajectory and the aspect
ratio variation. (b) The corresponding electric currents on different pairs of coils as a function of
transport time. (c) The experimentally measured currents during the laser cooling and transport
stages. To measure the transport efficiency, we made a round trip.
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Figure 3.15: The breadboard that produced the two IR dipole beams. The beams D,,, D, are sent
to the horizontal and vertical dipole beams to make a crossed dipole trap.

3.7 Evaporative cooling

3.7.1 Dipole evaporation

We sent in a dipole beam from the lab e, direction, with a largely elongated aspect ratio.
The atoms will be attracted to the dipole beam region when transferred from a magnetic trap.
The dipole beam is an IR beam (A = 1064 nm, up to 10 W) delivered by a photonic crystal
fiber (which is designed to deliver high powers). The beam is measured to have a beam waist of

(W, w,)=(120,17)um, and is engineered by a telescope system shown in Fig. 3.16. Due to power
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loss at the optics along the beam path, the final delivered power is < 8 W.

The beam comes from a 50 W IPG YLR-50-1064-LP single-mode laser with 1 nm spectrum
bandwidth, which was deliberately chosen to avoid unwanted optical lattices led by reflections
from the glass cell window. (A 1% power reflection from an 8 W beam can create ~ FE,
depth of lattice, partly due to the small glass cell size! We used to have a single-frequency
IR laser that created lattices along e, and e,. The e, lattice was even able to hold atoms against
gravity for several Bloch oscillation periods, whereas the e, lattice leads to severe damping when
trying transport experiments.) The laser output is magnified in size from a telescope, and then
distributed via the PBS to two paths for two dipole beams which can create a crossed dipole
trap. The two beams are generated from opposite orders of two AOMs, and thus differ by
80 x 2 = 160 MHz in frequency (Fig. 3.15).

Both dipole beams have optical power servos after the fibers, which can reach ~ 10 us
rising time. We snap on the dipole beam power and slowly ramp down to get to the final trap

depth for dipole evaporation.

3.8 Bose-Einstein condensates

3.8.1 Time of flight

The time of flight (TOF) technique was the first measurement performed on BECs once
they were generated in the labs. It is done by snapping off any trapping potential and letting the
atomic cloud freely expand while it falls due to gravity. An absorption image is then taken to

calculate the optical depth. For uncondensed thermal atoms, free expansion is ballistic, so the
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Figure 3.16: (a) The horizontal e, dipole beam profile imaged on the side camera. The measured
widths are (w,, w,)=(120,17)m at the atom plane. (b) The BEC of atoms trapped in a crossed
dipole trap. In-situ image. The trap frequencies are 27 x (51, 50, 220)Hz. The chemical potential
is 27 x 2.1 kHz. (c) The beam path to generate the e, dipole beam. C'L; and C'L, are cylindrical
lenses of focal lengths for1 = —50 mm, foro = 400 mm. Lg is a plano-convex with fr3 =
150 mm that focuses the beam at the atoms. The GL (Glen-laser polarizer), HWP, pick-off PBS,
and PD work together to make an intensity servo for the beam, insensitive to polarization drifts
before the fiber.
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final cloud width after time 7

kgT
oi(1) = \/0% + (vpT)? where v} = %. (3.1)

And this is how we extract the temperature of a thermal cloud. But after the atoms condense,
their time evolution is strongly impacted by the interaction strength g, so one has to resort to the
GPE solution. Unless with a super long 7 where the atomic density is low enough to ignore g,
the expansion is very different from the superposition of independent evolution of the Fourier
modes. However, if the goal of measurement is the modes with length scales smaller than the
healing length (e.g. optical lattice diffraction), the TOF is still satisfactory.

BECs usually are high optical depth objects (OD2, 10) such that absorption imaging fails
to extract atomic density. Long TOF is often used to reduce the density which allows for a more
accurate determination of atomic density. For a harmonically trapped cloud, the TOF evolution
with GPE has simplified approximate solutions which we use to determine the trap frequencies.
By applying the known equation of state in the trap, it provides us a good estimation of the
chemical potential.

For a partially condensed cloud, because of the very different expansion rates between the
condensed and uncondensed atoms, we can fit the density profile to a Gaussian plus bimodal

distribution and extract the condensate fraction.
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Figure 3.17: (a) TOF=20 ms image of a partially condensed cloud. A gaussian fit to the thermal
cloud is done by spatially masking out the BEC, and then a bimodal fit is applied to the residue.
(b) Measurement of the BEC transition N (atom number) vs 7' (temperature) in a quasi-2D box
trap. The e, dimension is still a harmonic trap of w, = 220 Hz.
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3.8.2 Collective modes — calibrating the trap

We put the BECs in a harmonic trap
1
V(r) = §m(w§x2 + w2y’ + w?z?) (3.2)

The lowest-lying excitations of such a trapped cloud are the dipole and quadruple modes. The
dipole modes feature variations in (z), (y), and (x). The quadruple modes are (x?), (y?), (z?),
(zy), (yz), (zz).

From the formalism in the last chapter, by plugging in the Thomas-Fermi approximated
ground state, the mode frequencies can be derived. The dipole mode frequencies are w,, wy, w.,
exactly the same as the trap frequency. The correction due to interaction effects is negligible for
our 8'Rb cloud. It is also noticeable such modes also exist for gases above the BEC transition
temperature 7., which can be derived by solving the Boltzmann equation. For a perfectly harmonic
trap, such a dipole mode will not be damped. However, in reality, any anharmonicity will lead
to damping of the dipole mode, which can be classically understood as “dephasing” due to the
variance of oscillation periods starting from different initial displacements. Besides that, external
potentials such as disorder can also dampen the oscillation. In the presence of uncondensed
atoms, the collisions between them and the condensate lead to Landau damping of the condensate
oscillation.

We can straightforwardly create an initial state in overlap with the mode wavefunction by
ramping on 6H = f perturbation (with controlling a magnetic gradient), and snap it off at ¢t = 0.

We then track the center of mass oscillation using TOF measurements. Similarly, we can ramp
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Figure 3.18: Real-time evolution of collective modes in a harmonic trap (crossed dipole trap),
from TOF measurements. (a) Dipole moment (y); (b) Dipole moment (z); (¢) Quadruple moment

\/(22); (d) Aspect ratio 5 = \/(x?/y?).

up the dipole beam intensity to create v in overlap with the quadruple modes z;z;, and then

measure the oscillation of the radii of the cloud.

3.8.3 Sheet trap — lower dimension

The plan was to trap the cloud in a quasi-2D setup such that the vertical trap frequency was
higher than the chemical potential. Therefore, we engineered a “sheet beam” sent in from the
e, which reflects over a dichroic mirror and combines with the IR dipole beam. The key idea
is adding a phase plate at the Fourier plane, which flips the optical phase by 7 at the upper half
plane (z > 0). This discontinuity of phase turns into an approximate Hermite Gauss 10 mode
which can hold the atoms in the middle (intensity minimum) against gravity.

The alignment of atoms into the sheet trap relies on a pico-motor-driven mirror. By tuning
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Figure 3.19: Green beam path. We reuse the same beam path to create either the sheet trap or the
1D optical lattice.

the z position of the sheet beam, we can load the atoms either to the gap or the top of the beam,
clearly observed from the side camera. To measure the trap frequency w, in the sheet trap, we

implemented a parametric driving method, namely
1
V(r,t) = §m(w§x2 + w2y’ + w,(t)*27) (3.3)

and

W (t) = wso + dwsin(21). (3.4)

This will lead to a parametric resonance at () = 2w, where maximized response or heating can

be observed.
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Figure 3.20: Sheet trap. (a) The sheet beam and trapped atom in TOF. We observed a large aspect
ratio inversion. (b) The design of the beam waist along e, e, tries to balance the anti-trap effects.
(c) Parametrically exciting the e, dipole mode. Watch the remaining number of atoms after the
drive.
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Figure 3.21: (a) Showcase of the Stern-Gerlach imaging. The five mp states in F' = 2 are
separated into wavepackets in space. (b) Use of microwave ARP spectroscopy to test the magnetic
field stability. The y-axis is the transferred fraction.

3.9 Coherent transfers in ground state

After we reached the BEC stage, the first thing we did was using the RF and microwave to

calibrate the magnetic fields in the science cell.

3.9.1 Stern-Gerlach imaging

We apply a large magnetic gradient by adding a bias field on top of the quadruple magnetic
trap. This exerts a spin-dependent force on our atoms during the TOF, and separates the wavepackets
into different orders. We can then count the population in different spin states at once, and

calculate the spin fraction which gets rid of total number fluctuation.
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3.9.2 Magnetic field stability

Because the intention of this apparatus is partly to create Raman-dressed states, we care
about the stability of the magnetic field without feedback or shielding. To the first order, this
is determined by the electric current stability that drives the bias coils. (For the real BEC
experiment, we turn off the quadruple coils.) We prepared the BEC in |1,0) state and made
microwave Rabi spectroscopy of the |1,0) — |2, 1) transition, which is the least sensitive to bias

field noise other than the |1,0) — |2, 0) clock transition.

3.9.3 Spin exchange collisions

At a low enough bias field, it is harder to use RF/microwave to calibrate the field due to
the degeneracy of different mp states. The data becomes difficult to interpret. In contrast, at
low fields, the spin-dependent interaction takes over and drives transitions between the Zeeman
sublevels. We observed these oscillations as a function of the bias field, and were able to identify

the zero point of the bias fields using this method.

3.10 Microscope system

We use an identical pair of microscope objectives Mitutoyo G Plan APO 50x ULWD
Objective Lens with NA=0.50. This gives the diffraction limit A\/2NA = \. The microscope
objectives are corrected for the 3.5 mm glass thickness of our glass cell (ColdQuanta high NA
imaging cell, inner coated for 532, 1064, and 780 nm, photo shown in Fig. 3.23b). They have a
working distance of 15.08 mm (as shown in Fig. 3.23c), and thus are very close to the cell window.
The focal length is 4 mm on the image side, and when accompanied with a f;,; = 200mm tube
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Figure 3.22: Coherent spin exchanges collisions starting in |2,0). Population fraction
in |2,0) (green dots), |2, 1) (blue crosses), |2, 2) (red triangles). Hyperfine relaxation is
approximately ignored in this model.

lens, gives 50x times magnification for our imaging system. The depth of field in this case is only
1.10 pm.

The idea of the apparatus is to use these microscope objectives for high resolution imaging
and projecting potentials. This is illustrated in Fig. 3.23a. The two objectives are symmetrically
looking at the atom and each other from the above and below. A resonant probe laser is sent
from the top through the objective, absorbed/scattered by atoms, of which light is collected by
the bottom objective and sent to the CCD after reflected from the dichroic D;. Absorption image
is then processed from two sequential images with and without the presence of atoms. The lower
DMD; is responsible for projecting spin-independent potentials (with laser detuning far from fine
structure splitting between D1 and D2). It is placed in the imaging plane of the telescope made
by the objective and Ly (f72 = 500 mm), and thus is de-magnified by 125x. Similarly, the upper
DMD; is used to project spin-dependent potentials, whose pattern is de-magnified by 75x with

L3 (ng = 300mm)

101



We mounted both objectives on cage systems with five axes tuning capability (displacements
in e, — e,, focal length e., tilt axes e,, e,). Because of the smallest of the depth of field, we
used the translation stages for e,, ey, e, (Thorlabs Z-Axis Translation Mount with 50 pm/rev
and Newport Standard 70 mm with 2 pym accuracy). The upper objective is mounted on the
upper breadboard, while the lower objective is supported by another added breadboard (between
the optical table and the middle layer breadboard) which holds the whole imaging system. For
imaging, we inserted a “flipped mirror” that can switch between the a 50x magnification (in-situ)

and a 10x magnification (TOF).

3.10.1 Bench test of the imaging system

To understand the imaging system, we replicate the design offline and test it using artificial
objects. We mainly test it upon two objects: a commercial USAF target and a pinhole array.

The USAF target has pre-calibrated fringe patterns on a transparent window. We used it to
test the tuning accuracy of our micrometer stages. We deliberately misaligned the probe beam
as well as the tilt angle of the target to observe the image aberration. We also looked at the
modulation transfer function of the smallest fringe pattern, which has a spacing ~ 2 pym, well
above our imaging resolution.

We did more quantitative test on the pinhole array (manufactured at NIST). This is a piece
of opaque glass with a transparent pinhole array, where the array grid size is 10 pm, and the single
pinhole radius ranges from 0.5 — 1.5 um. It is a “pity” that the size is still above the diffraction
limit, which convolves with the point spread function (PSF) in understanding the measurement.

However, simple simulation suggests that this doesn’t affect the PSD by very much. We calibrated
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(a) DMD:

L2

Figure 3.23: Crossection overview of the whole microscope setup. L1, Ly, L3 are achromat
doublet lenses. L, is the tube lens for imaging. Di, Dy, D3 are three dichroic beam splitters.
(b, c¢) are views from the top and side of the glass cell.
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Figure 3.24: The scheme in e, — e, plane near the glass cell, and the way different colors of
lasers are combined on the second layer breadboard. We used three dichroic beam splitters to
combine the 532, 780/790, 1064 nm lasers. Additionally, we insert a “flipper mirror” to switch
between the Raman and side imaging paths.

104



(a)

Pl image

1000

0 500 1000 1500 2000

(c) (d)

800 700 600 500 400 300 200 10 !’l‘m
zjum

Figure 3.25: Preliminary test of microscope system. (a) USAF image. (b) Pinhole array image.
(c) Atom density power spectrum (normalized to 1D) as a function of defocused distance. (d) In
the experimental system, one microscope image of the other one’s projected pattern.

the imaging system by measuring the averaged PSF of several individual pinholes, and proved

that we are able to reach NA ~ 0.5.

3.10.2 In-situ imaging of atoms

Due to the smallness of the depth of field, we cannot image a thick cloud such as atoms in
the magnetic trap. The best candidate is the quasi-2D atoms in the sheet trap. However, because

the horizontal confinement (in e, — e,) is either provided by the vertical dipole beam or DMD
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projection that both go through the objective, it is hard to “disentangle” the alignment of the
imaging focus and the trap itself. We noticed that we could make use of the hybrid trapped cloud
(no need for BECs), since the confinement comes from an e, dipole beam and the quadruple trap,
neither is correlated with the microscope. (Moreover, this trap makes tightly confined cloud in
e,.)

We have used two approaches to aligning the microscopes’ focus in reference to the hybrid
trap. For the first method, we project test patterns from the upper DMD; on the trapped atoms,
and tune the lower objective focus for a most clear image of the patterns on the atoms. Next,
we image the laser pattern itself rather than atoms, and tune the upper objective focus looking
for the sharpest pattern. We repeat the two steps above and tune the upper and lower objective
iteratively. This approach usually converges with 5-6 iterations in terms of regular maintenance
correction for the focal drifts.

A second approach is useful for a more defocused case, like when one completely realigns
the imaging system. That is by noticing that the high density of BECs contribute to large
refractive index when the probe is detuned, but the refraction effects are “minimal” when atoms
are close to the focal plane. We detune the probe by £50-150 MHz ~ 10-30I', and minimize the
lensing effect by tuning the imaging focus. We typically observe the local OD distribution flips
sign when we tune it across the focal plane. But this approach is not as sensitive as the first one,
which can bring the focus to within several pm.

Ultimately, we calibrated the imaging system performance by measuring the density-density
correlation function of the quasi-2D atomic cloud. This method was elaborated in [38, 39].
We collected 50 absorption images as a set of data, and calculated the 2D density variation

on(x,y) = n— (n). It is shown that the power spectrum density of the density variation contains
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information about all the imaging aberrations

PSD(én)(k) = | FT (6n)|* = FT[(én(r)on(r'))] (3.5)

assuming transnational invariance. The first order effect such as defocusing would show up as
“ring” like pattern in the 2D PSD, and is expected to vanish near the focal plane. Ideally one can
fit the aberrations to Zernike polynomials to extract information for redesigning improvement of

imaging quality.

3.11 Digital micromirror devices

We mainly used two DMDs for our experiments. The DMD, is a Luxbeam 4600 1080p
VIS from Visitech. It carries the DLP 9500 DMD chip, which features a fast ~30 kHz refresh
rate, 1080p resolution, and 10.8 pm pitch size. The mirror coating is optimized for visible light.
The other DMD; is a bbs 6500 from a German company bbs. It carries the DLP 6500 DMD chip,
which features an ~11 kHz refresh rate, 1080p resolution, and 7.6 pm pitch size. We illuminate
the DMD; with our Ti: sapphire output that is practically tunable in the range of 750 — 830 nm.
Meanwhile, we use our DMDs with a broadband (~ several nm wide) fiber-coupled laser source,
which might minimize the disorder in the projected potential that comes from the interference
with different light paths (Al < AMN?/)).

Because the mirror spacing on a DMD is comparable to the laser wavelength, it effectively
acts as a reflective grating for our single-frequency laser beam. This leads to many diffraction
orders whose intensity distribution varies with the incident angle. For projecting the DMD pattern

faithfully on the atom plane, we need to align the DMD normal to the optical axis. Within a
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Figure 3.26: Configuration of the upper breadboard: a Ti: sapphire beam (modulated by a DMD),
probe beam, and an IR beam are combined here and sent to the microscope.

limited tuning range of incident angle, we optimized the diffraction efficiency into the central
order. Unfortunately, commercial DMDs are not specially designed for the use of a laser (of a
certain wavelength), and hence, the waste of optical power is basically out of control (it’s difficult
to optimize it for e.g. the blaze condition). For our DMD;, we get a diffraction efficiency of
~ 25%, and for DMDs ~ 30%.

We placed the DMD; on the upper layer breadboard. The optical paths for the DMD as
shown in Fig. 3.26 include a beam telescope, a relay system, and a final projecting lens. A pair of
lenses (fr; = —75 mm, fj» = 150 mm) prodcues a magnified collimated beam of ~1 in, which
is incident on the DMD. Next an optical relay of about 1:1 extends the path length, during which
we combine using a PBS with our probe beam. The relay system also allows us to add masks in
the Fourier plane (e.g. block the zeroth order). The beams are then combined at the dichroic BS

with the IR 1064 nm beam that makes the vertical dipole beam. Finally, all these copropagating
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Figure 3.27: Setup on the optical table (lower layer): it is only used for DMD spatial engineering
of a blue-detuned laser. The beam is expanded and illuminates the DMD, then imaged to the
atom plane through a microscope.

beams are collected by the achromat tube lens f74, = 300 mm and sent through the microscope
objective.

The DMD; is placed on the bottom layer optical table. The output of the 635 nm broadband
laser is collected by the 1:3 telescope fr5 = 50 mm, fjs = 150 mm. Next it is sent to reflect
over and imprint the pattern on the DMD. Then it passes through the achromat tube lens f;; =
500 mm and is sent to the microscope objective.

Because we sometimes need to imprint dynamic patterns changing on the timescale of
~ms, we set up the triggers for both DMDs. A series of patterns are formatted into an array and
pre-uploaded to the RAM of the DMD before the experimental sequence starts. These DMDs
support external triggering in the way they flash the pattern at the rising/lowering edge of a

TTL voltage. Besides that, they also have internal clocks and allow for simple loop and “goto”
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commands. The typical use of the APIs are summarized in the Appendix.

3.12  Optical lattices

We have in general two ways of creating optical lattices: counterpropagating laser beams
or direct projection.

Due to the optical access, it is most straightforward to counter-propagate beams in the e,.
We choose A = 532 nm produced by the IPG GLR-030 green single-mode fiber laser, which
creates a 266 nm period lattice. The incident lattice beam is first combined with a side probe
beam, and then the IR dipole beam at two dichroic mirrors. After it passes through the science
cell, it is reflected by another dichroic mirror and focused onto a retro-reflecting mirror. Both the
incident and the reflected beams are picomotor steered. Because we used a photonic crystal fiber
to deliver the lattice beam, the power is limited to < 2 W. We need to compromise with the beam
homogeneity to reach a deeper lattice depth.

For direct projection, we simply print a pattern on our DMD. In some cases, we opted to
block the zeroth order of the lattice beams in the Fourier plane, which can make a shorter period

lattice (by twice), and also help reduce some disorder in the beam.

3.13 Raman lasers

The Raman beams that we use in the experiments are produced by a Ti:sapphire laser (M-
Squeared SolsTiS system with an external cavity). This laser needs to be pumped by a single-
mode 532 nm pump laser. During our use, we swapped the pump laser with a new IPG GLR-30

(the same as that generates the optical lattice or sheet trap, the power distribution controlled by a
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Figure 3.28: The Ti:sapphire laser breadboard. Shown in orange beam paths are Raman C and D
which we used for most experiments.

PBS), from where we re-aligned the pump beam to the Ti: sapphire crystal using the two built-in
mirrors and a lens. We typically set the pump power to 10 W, which delivers 1.5-2 W at the
wavelength of around 790 nm. Both the Ti:sapphire laser and the pump laser need external water
cooling.

The light paths on the laser breadboard (Fig. 3.28) can produce 3-4 beams delivered by the
fibers to the apparatus table, while we usually use two among them and label them Raman C and
D. These two beams are generated by the same order of separate AOMs, whose frequencies are
controlled by two DDS channels (Novatech).

We used these beams for driving Raman or Bragg transitions, making optical lattices, and
creating spin-dependent potentials. In Fig. 3.24, the two beams are sent in counterpropagation
in e,. We used such a setup to carry out experiments such as spin-orbit coupling with large

recoil momentum, Bragg spectroscopy in e,, and creating an incommensurate optical lattice with
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the green lattice. In Fig. 3.23 and 3.26, we illuminate Raman C on the upper DMD;, which
allows us to create arbitrary patterns. For the experiment described in Chapter 5, we commanded
an optical lattice with the DMD and blocked the Oth and -1st order in the Fourier plane. With
a copropagating Raman D beam combined at a PBS, this can create a small recoil spin-orbit
coupling, which is beneficial for the observation of the non-reciprocal transport due to the non-
Hermitian gauge potential. For another superfluid turbulence project, we added two RF tones to
drive the AOM of the Raman C beam, which is again sent to the DMD and microscope. This can
create spatially varying “effective RF” Rabi frequency. We used this feature to locally introduce

spin impurity for local velocity measurements.

112



braket

Chapter 4: Measurement of superfluid density

4.1 Introduction

The study of superfluidity was one of the beginning marks of the laboratory study of
quantum physics. It is macroscopic phenomenon, where the liquid helium atoms flow without
feeling any frictional force by its container, yet has its deep roots in the matter wave coherence. It
is widely believed today that the superfluidity has close connection to the phenomenon of Bose-
Einstein condensation (BEC). The theory is well formulated for the low energy Bose liquids,
marking one of the simplest many-body systems. Yet there are always surprises and new discoveries
with the lately matured tools of understanding and manipulating these Bose systems at ultralow
temperature.

One of these surprises lies in that some people (Like Anthony Leggett) realized that the
superfluid is not a usual state of matter that parallels the division of solid, liquid, or gas. Actually
it is widely found phenomenon in all of the three states. Heliums (*He and *He) are both liquids
when they are superfluids, and the 1995 discovery of BEC in alkali gases like Rb and Na (with
following hydrodynamic experiments) showed to us that the weakly interacting gases state can be
a superfluid. However, it seems counter-intuitive that a solid, which usually has small response
to compression and shear forces, can be a superfluid.

Leggett believes that any bosonic matter at low enough temperature (i.e. near its ground
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state), should show similar superfluid behavior as an argument of quantum mechanics. Although
it was debated at the time, many soon realized that nothing fundamental could prevent such
a state from forming. In an early seminal paper, Leggett introduced the simple way of defining
superfluid density from the non-classical rotational inertia (NCRI), and derives an upper bound of
superfluid density regardless of the microscopic wavefunction, called the "Leggett formula”[40].
The bound elegantly links the atomic density modulation to the superfluid transport behavior.

Despite the idea being early born, the sought for supersolids was arduous journey. People
tried to find the onset of superfluid density in solid Helium in terms of NCRI, measured by the
oscillation frequency in a called torsion experiment. Early signatures almost had them convince
themselves the discovery of the supersolids, marking a sudden change of oscillation period
upon lowering the temperature. However, later experiments have found similar drop in the
shear modulus of the solid helium at the same temperature, which was measured by a different
approach. It was argued and then verified by the same group that the drop of frequency was most
likely due to the change of shear modulus.

On the opposite side of the same coin, another group of people tried to tackle this by
engineering a crystalline order starting from a simple gases BEC. Proposals were many but
the main idea was to engineer a “roton” minimum in the dispersion relation of momentum
space which a Bose cloud could condense into. The successful example is by using the dipolar
interaction, which naturally dresses the simple Bogoliubov dispersion into that feature. Experiments
were carried out with different atomic species, and the predicted crystalline structure has been
verified using simple imaging techniques[41, 42]. To this end, people again tried to measure
transport properties, like superfluid density, via a torsion-like setting but in an optical dipole
potential. However, it is recently found that this is obscured by the internal degrees of freedom
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of the spontaneously formed crystal (which features both a Goldtone and a Higgs mode). The
theme of research is hence still going on.

In this work, we take a methodology of investigating the origin of (reduced) superfluid
density in the simple model of supersolidity (i.e. by Leggett), in a hybrid experimental and
theoretical approach. Our experimental system of Rb BEC gas in a 1D optical lattice, although
not featuring any dipolar interaction, captures the key physics of supersolidity and verifies the
Leggett formula. The results we derive from this, including experimental probes of the superfluid
properties, can help construct the different perspectives of understanding, and also is directly
valuable to the similar experiments in the real supersolids.

This paper is structured as the following: in section 4.2 we introduce the formalism of
linear response to calculate transport properties of a superfluid system. In section 4.3 we apply
the formalism to the lattice gas. In the next section 4.4 we derive the principle of the measurement
tool — the sum rules. In section 4.5 we introduce our experimental apparatus and display the
measurement of anisotropic speed of sound via Bragg scattering. In the next section 4.6 we
alternatively formulate the same problem via the effective mass approach, which is both technically
simple and helps understand the coarse-grained problem. In section 4.7 and 4.8 we again show
our data and numerical simulation of the rotational properties: the NCRI, and discuss the emergent
normal fluid in our system. In the last section 4.11 we draw connections to other systems which

share similar physics, and future experimentally realisable schemes.
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4.2 Generalized formalism: Superfluid density

The superfluid density remarks an important transport property in a bosonic superfluid
system. It describes the response of the system to the superfluid phase twist, i.e. 00 when we

define the complex superfluid order parameter as

d(r) = [i(r)|e?). (4.1)

Lies in the center of superfluid density is the current-current correlation function. Gordon Baym [43]
gave a physical example which lets us see how it is the case. Consider a long cylinder container
with superfluid flowing in the e, direction. The container is at rest, while the normal component is
in equilibrium with the wall, such that the momentum is only carried by the superfluid component.
To employ thermodynamics, we need to relate it to the reference frame moving with the superfluid,
where the walls move at velocity u. Define the momentum density (or current) g(r), and the

current in the wall/lab frame is

tr e_ﬁ[H—P~u+éMu2—uN] g(?")

{g(r))u =

4.2
tr efﬁ[HfP-u+%Mu27uN] 42)

Expand it (g.(7)), = (g:(7)) + B [{g9:(r)P.) — (g.(v)) (P.)] u where P = [ drg(r). Play with

the Green function for a bit,

—ip
(-t =1 [ A a0 ()~ o) (P
(4.3)

_ / i / ) [{g:(r0)g. (X't)) — (g-(r) {g- (¥)] u
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One can get

= [ [T,

where

Yij (r, 7' w) = /_oo dte™ ") ([gi(rt), g; (r't)]) .

Assuming translation invariance,

(g.(r)) = / % / i) / Z g_:w

As a tensor, the current-current correlation can be decomposed

kik;
k

Tij(kXU) kj

One can verify that

T (k,w) = / dte™(=1) / dre= ™00 ([gh(rt), g% ('1)]) -

AL (ke w) + ((zj ik ) Y7 (s, w).

4.4)

4.5)

(4.6)

4.7)

(4.8)

So is the transverse Y7 (k,w). Here the transverse and longitudinal current operators are first

introduced.

How does one identify the superfluid and normal components from this? Gordon argued

that for the situation we considered (where the cylinder is infinitely long without boundaries), we

first take the limit £, = 0 when integrating out r’, and then k, = k, = 0

i . *dw Y., (kw)
(9:(r)), = ol L W
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But because

. . kZ kZ
lim lim 5
kaky—0k.—0 K

=0, (4.10)

the longitudinal Y*(k,w) does not contribute. Hence we have the normal component {g.(r)) =

P
< dwYT(k

pn = lim W &) (k,w)

k—0 |

)

o 27w

which is the most important relation we are after. Interestingly, if we reverse the order of
integration,

. . kZ kz
lim lim
kom0 ko ky—0 K2

=1,
we get the f-sum rule instead

) * dw T (k,w)

This sum-rule can also be rigorously derived from the continuity equation of total density. The
reason why we get the total density is that this order of integration indicates the situation where
there are in addition two walls which are (infinitely far away from each other) along z. So no
matter the fluid is superfluid or normal it must move together with the container.

The form of the Hamiltoninan after frame translation, ' = — [ p - u reminds one of the
classical gauge coupling. Actually, by introducing an artificial charge to the system, the problem
is reminiscent of the simple BCS superconductor model. There, the gauge dependent moment

operator
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where p is the canonical momentum, introduces another diamagnetic current so that the total
current becomes

J=7—pA

made of the canonical and gauge part.

In the same approach, one can fix a gauge

and find that the canonical current is proportional to A:

J=pnA

This makes a total diamagnetic current

J = —psA

proportional to the superfluid density.

4.2.1 Rotational property

The last section considered the most classic situation of superfluid in translation. But
another important experiment is the rotating bucket. In this section I will derive the moment

of inertia’s relation to the normal density.
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The moment of inertia tensor is

Plugin L = [dr r x g(r),

* dw T, (k
/ /d’f‘/d’l"/ ik ( 5zsl5jmnrsrl / ~ ln( w)'
o 2T W

And as before, decompose 1;;(kw) = S5 YL (k, w) + (6ij - %) YT (k,w).

Now in a rotating bucket, we calculate T ,,. Note that

/dreik""szslrskl = /dreik""(r xk),=0

if the rotation center axis is at 7 = 0. So we are again left with only the transverse current. The

rest is just algebra.

_/ dk /dT/drlezk(r r) 2 ror /md_WTﬁ(kw>
EzsiTsTs . omr w

The integration trick is to write

/ dr'e T — (). / et — i (V). (20)85 (k)
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and integrate by parts

I, Z—i/dreislrs/ dk (27)26(k) (Vi), (¢ /Oo d_ww)

(2m)3 oo 2T W
dk , * dw TE (kw)
o 2 2 3 ik-r 1l
= [areta | e dEe / i

In the second line we used V;, Y% (k,w) = 0 as k — 0. So we arrived at the conclusion that
the moment of inertia is only contributed by the normal component as defined by the transverse

current.

4.3 Periodic modulation of density

Optical lattice has been used to quantum simulate the solid state crystalline structure for
a long time. By shining two counterpropagating laser beams which coherently generates a
standing-wave intensity pattern, the atoms cooled to ultracold temperature can be efficiently
trapped in the lobes of the induced dipole force potential. Because the standing wave pattern
is periodic in space, the density modulation of atoms mimics that of electrons in a normal crystal.
However, the cold atoms we used are bosons, which is fundamentally different from electrons
and form a BEC that displays macroscopic matter wave coherence.

When the lattice is shallow and the depth is lower than the chemical potential, it is known
that the atoms can freely flow despite the varying lattice potential, thus one knows that the matter

wave coherence still remains. When one ramps up the lattice depth above the chemical potential,
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classical hydrodynamics are forbidden, but quantum tunneling process can kick in, which again
helps maintain the whole cloud as a coherent state. It is predicted and later realized in the lab
that in a particularly deep lattice, a quantum phase transition can happen at zero temperature,
to a tensor product of atomic number Fock state reminiscent of the Mott insulator discovered in
solid state physics. The transition is usually called the superfluid to Mott insulator transition,
marking the change to a qualitatively different transport properties and complete loss of atomic
coherence across many lattice sites. The cold atom variant of this transition was discovered in
the Bose-Hubbard model realized with a quantum simulator.

However, there hasn’t been much attention to whether the superfluid is still pure before the
transition happens. Indeed we will find that the superfluid fraction is suppressed to close to O
long before the atomic coherence is lost, meaning that a superfluid transport experiment will find
little superfluid current. This paper develops different ways of understanding this fact. We start
with the simplest pictorial approach in a similar spirit to the famous Leggett formula.

It can be formally proved that the definition of the superfluid density in section 4.2 is
equivalent to the following definition: A superfluid is manifested by an order parameter ¢(r) =
/p*f explif(r)]. We consider a superfluid subjected to a “printed” phase pattern, and define the

superfluid density p* in terms of the induced current

T, = i} (10,6 /m]

This definition clearly shows the tensor nature of this quantity.
Now let’s consider a periodically modulated BEC. A BEC has its own order parameter

¥(r) = |Y(r)| explid(r)], and we will only consider the problem in a setting where the system
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is well described by the mean field Gross-Pitaevskii equation (GPE). As in Fig. 4.1 we apply
a phase winding a 27 across the whole BEC, and assume periodic boundary condition over the
dimension length of the system L. We solve for the BEC wavefunction in such as setup. Because
of the continuity equation which ensures there isn’t a time dependence in the solution, the current
J(x) = p(x) [hO,¢(x)/m] has to be a constant of x. The only way to do that is to introduce a
periodically modulated phase and velocity as well v(z) = hd,¢(z)/m.

Now we consider the superfluid parameter to be a coarse-grained version of the condensate
parameter, but in a subtle way. We should be able to directly equalize the phase winding of both
over L. From macroscopic considerations the current is J = p* [h0,0(x)/m] = 27hp* /(mL).
Equating the currents obtained from considering the condensate mode and the SF order parameter

and integrating over the whole system yields Leggett’s equation

pt=1L U p(x)ldxl B =a ch p(x)ldx] _1. 4.11)

This implies that p' < p, where p is the spatial average of the condensate density and as we
discuss below the remaining density p — p*f behaves as a pseudo-normal fluid. In the more
general context which does respect the time reversal symmetry, the Leggett expression for p® is
an upper bound for the SF density in systems with crystalline order [40].

The pictorial explanation captures the essence of the superfluid transport in a periodic
system. Now we can actually calculate the p,, in another approach, by using the definition of
the normal fluid density in section 4.2. We note that this definition is applicable to any system,

and generalizes to the cases where GPE is inapplicable due to the onset of fluctuations.
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Position z/d
Figure 4.1: Concept. (a) The BEC is confined in a harmonic trap superimposed with a 1D
optical lattice (along e, green), spatially modulating the density (red). The left and right columns

indicate the response of the condensate and SF to a force. These plot: current (green), phase
(orange), local velocity (blue) and density (red). The red dashed line plots the mean density p.

4.4 Josephson relation and sum rules

Now we switch to the motivation of our experiment. As we have seen, superfluid transport
lies in the zero frequency and zero momentum response to the gauge coupling, which should have
implications in the low energy excitations of the many-body system. Indeed, this relation can be
formulated using linear response again. The superfluid density has an explicit relation to Green
function of the many-body Hamiltonian, known as the Josephson sum-rule[43]. Here we derive

the sum-rule and relate it to the measurable quantities of the anisotropic sound velocities.
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We look at the variation of the condensate wavefunction i(z) = /|¢| exp[i¢(r)] due to
the external perturbation Hamiltonian H’ = — [ driy(r)&(r), where {(r) = {exp{i(k - r — wt)}.

According to linear response theory,

_ zkr iwt / )
5((r)) = g/ dw w+m7 (4.12)

w’

where A(k,w) = [ dre=* =) [* dqte =) (Typ(r,t), ¢ (r',¢')] ) is the spectral density, and

is related to the retarded one-body Green function

Ak, w) = ih / d(r — 1) e~k / d(t— 1) e U=)Gret (v fox! ).

o0

Similarly, the variation of the current operator J(r) = pv is

_ zkr—zwt fo A\
5(I(r)) = g/d w+m = (4.13)

with ['(k,w) = [ drdte @t=HkR0=([J(r ¢), 4 (', ¢')]). In the next we first take w — 0
limit, and then take k — 0.
We want to relate 6(J(r)) to 6(¢(r)), as to define the superfluid density. To do that, one

observes from the continuity equation —ik - J = 0;p so that

)zk‘

J(r,t) = / dkJ(k, t)e* " = / dkdr'e™ ") = 0,p(r” 1).
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Plug it back to equation 4.13, and after some algebra

L7 " k_;, —1
T(k,w) = / drdte =k / " 01 R (k,zw)dp ("), ()]

y (4.14)
= /dte_iw(t_t/)/dr"eik(rll_rl)k—j<[P (r'"t) , (T/t,)b
Hence
§(J(r,t)) = /dw/#eik%
/dwelkrf/dte w1 /dre =) (o), 0 (7, )]
7 W (4.15)

— ’krf/dre (r—r") [ (’f’t) wT (Tt)]>
— _eikvfﬁ <¢T(T’7 t)>
In the last equality we used [p(r), ¥ (/)] = [T (r)0(r), ¥ ()] = 1 (r)d (r — 7).
For a superfluid system, (1(r)) = o + 6(1(r)) = ™)y where we have defined the

superfluid phase 0(r). With the periodic modulation of density introduced by the optical lattice,

we take ¢ (r) — 1(r) = azaya. [, dri(r).[44] Now we have

53 = e <zz*>

30) = —ere [ ot

(1) = p V0 = pIV iz” psz%?
and take k — 0
o =i f%gi? X (4.16)
where pf = pi k;. For homogeneous weakly interacting Bose gas at 7' = 0, the Bogoliubov
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theory gives A(k,w) = 3£[0(w — ck) — d(w + ck)] as k — 0, which leads to p3’ = |¢/o|*. For

anisotropic systems, the poles of A (k,w) i.e. the sound velocities along different directions will

determine the anisotropic superfluid density.

4.5 Anisotropic sound measurement

From this section on we will concentrate on the specific case of a GPE described weakly
interacting BEC gas loaded in the optical lattice, and apply our established formalism.

We used ¥ Rb BECs with N ~ 2 x 10° atoms in the |F' = 1,mp = 1) hyperfine ground
state. An elliptical 1064 nm trapping laser traveling along e, provided strong vertical confinement
with frequency w, = 220 Hz; the in-plane frequencies, from w,, = 27 x (34,51) Hz to
27 x (56, 36) Hz, were optimized for our different experiments. We created a 1D optical lattice
using a retro-reflected A = 532 nm laser traveling along e,, giving an a = 266 nm lattice
period, comparable to the £ = 0.2 nm healing length. The optical lattice was linearly ramped on
in 100 ms to a final depth up to 15 F., with single photon recoil energy E, = h*k?/(2m) and
momentum hk, = 2mwh/\. For Bragg experiments the final state was measured using resonant
absorption imaging after a 15 ms time of flight (TOF); while for collective mode experiments
measurements were performed in-situ using partial transfer absorption imaging [45].

The speed of sound for diagonal pfjf- can be obtained from mc? = k~1pS! /p in terms of the
compressibility x = p~! (0p/0u) and the chemical potential x. The ratio of the speed of sound
along e, and e,

sf sf
2 sf
Cy pyy p

: (4.17)
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provides direct access to the different components of the superfluid density.

We Bragg-scattered the BEC off of a weak sinusoidal potential with wavevector £ slowly
moving with velocity v by patterning a laser beam with a digital micro-mirror device (DMD [46]).
The two complex components of this potential in effect drive two-photon transitions with difference-
wavevector 0k = 2k and angular frequency dw = 2kv. We applied this potential for ~ Hms;
Bragg transitions ensued when the difference energy and momentum were resonant with the
BEC’s phonon mode. We detected the Bragg-scattered population after TOF.

In Fig. 4.2 are examples of the measured sound velocities by projecting the moving lattice
with wavevector ranging from dg from 27/2 pum™! to 27 /6 um~! along and perpendicular to
the optical lattice direction e, and e,. The obtained dispersion relation is in a good fit linear to
k = 27 /dg which shows the phonon characteristics of the excited modes. Within local density
approximation (LDA) and under near isotropy of the harmonic trap along e, and e,, the sound
velocities are to a good approximation the slopes of the dispersion curves. With increasing optical
lattice depths, the sound velocity in e, is largely reduced in accordance to the increase of effective
mass m*. The perpendicular direction e, is minimally affected by the optical lattice and shows
negligible change of the sound velocity.

As stated in Eq. (4.17), the SF densities are related to the sound velocities. Because there
isn’t density modulation in e, we have assumed that pzfy = p the total density. In Fig. 4.2 the main
result of measured SF density along e, is shown. Meanwhile, we run the 2D GPE simulation in
imaginary time to find the ground state wavefunction in the lattice. We select one unit cell in
the center of trap where LDA is satisfied because d < R, , . where R, , . are the Thomas-Fermi
radii of the cloud. The Leggett equation of supersolid is then calculated by integrating the density
function over the unit cell, which agrees well with the measurement result. In the meanwhile, we
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Figure 4.2: Sound velocities measured by Bragg scattering. (c) along e, (blue squares) and e,
(orange dots) by the Bragg scattering. The inset (b) shows an example of the measured dispersion
relation at a certain lattice depth Uj,. (a)An example of the transferred population fraction with
the changing moving speed of the pattern. (d)The measured SF density ps/ compared with the
Leggett equation. Both results are also compared with a BdG calculation in a homogeneous gas
and an effective mass m/m* curve. All the simulation is done with real experimental parameters
without any fitting.
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numerically solved Bogoliubov-de-Gennes (BdG) equations to find the sound velocities and p?/

xxT?

which perfectly aligned with the Leggett equation. (Fig. 4.2(d))

4.6 Anisotropic system hydrodynamics

The BEC in an optical lattice that we had in the experiment — made of small 266 nm periods
— can be thought of as single particle problem in a periodic potential, which gives rise to the band
structure, and then dressed by the mean field interaction. The first part comes from the usual
solid state physics treatment, after which we project the Hilbert space to the lowest band, and
derive the long wavelength dynamics in terms of the “effective mass”. Superfluid properties are
considered further in this framework by rewriting the problem in GPE.

This section considers the anisotropic system manifested by different effective masses
along different directions. Depending on the problem of interest, the effective mass is either
a vector or tensor. I will only consider a two dimensional system.

Now I start from the GPE with effective mass tensor

ﬁ2
i = == (m™); 0:05% + Vi + gly[*y

By taking conjugate and algebra, we can easily get an equation of the continuity equation form,

and the density current
. h — * *
Ji = % (m 1)“ (Y 059 — ¥0;b")

Let ¢ = \/pe'®, p = [¢)]” and j; = puv;, we know v; = (m~"),; 0;¢. This is one of the key results
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of this section. Plugging this back to the GPE, we get the hydrodynamic equations:

Oup+ Ohji = 0= Dip + 0 (p (™), 0;0) = 0

—0hp = 5 (m™1),; 0,00;0 +V + gp

Now let’s find the collective modes: make small perturbations about the equilibrium state,

p— R+ dp

¢ = ¢+0¢

V -V +40V

009 = 5 (m™"),; [0:00;06 + 0:66;¢] + 6V + gdp

Because of the initial state satisfies = 0 and p = M_QT,

8t5p + (m_l)ij [&p@]égﬁ + p@zajégb] =0

— 9,66 = 8V + gbp

Suppose

5¢ = 5¢:{:x$2 + 6¢yyy2 + 5¢xy33y

and 0V = 0, collecting coefficients before all three quadratic terms (I omit the calculation here),
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the resulting matrix is

2 1
—2mw; (m )xy

2 (01
—2mw, (m™),,

2

—2mw; (m™),, —2mw3; (m™),, w? —m [(m™h) Wi+ (m™), Wy
If (m_l)acy =0, (m_l):px = (m_1>yy = m*_l’
w? =32 )2 0
—nwr W -3nw 0
0 0 w® — w2 —w)

The two quadruple mode frequencies are

2

30 £ /901 — 32w2w2

w

with w, — "-w,, while the scissors mode frequency is wy. = /w3 + wWp.

It can be easily seen from the wavefunction that the scissor mode is decoupled from the

other two quadrupole modes. Actually this can be similarly generalized to 3D, where one has

three different scissors mode zy, yz, zz. Therefore, although our system is actually 3D, the

scissors mode frequency is not changed from the simple 2D result derived here.
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4.6.1 Rotational properties

Next I calculate the moment of inertia. In a rotating frame, the (stationary) hydrodynamic

equations becomes

0; (P (mil)ij aj¢) =V (p2xr)=0

5 (m™ ), m 000,90 + 5+ L —v- (Qxr)=0

Suppose ¢ = axy, the second equation is

1 1 2 1a? 1
gp = 2* (aQ — —a*/m — —mwi) + 42 (—an e —mw2>
2 2 m

Plug it to the first equation,

m o
— —mw? | zy = 0.
m* m* Yy

(= 9) <2O‘Q - %2 - maﬁ) (—ay) + (= +0) (—2aQ

This can be solved in the €2 — 0 limit

Hence

133



So by definition the moment of inertia is

I (@ =) (Zy?—2?)

i 4.18
L) () @

According to the sum rule

o ma(L:)  PPm(w) —w?) (2° —yP)
(hWSC) - m_1<LZ) - Ji

it does not give the correct scissors mode frequency.

4.6.2 Application to moment of inertia measurement

In the experiment we measured the moment of inertia by imitating the torsion experiment
of solid helium. Basically we rotate the anisotropic harmonic trap by a small angle and measure
the evolution period. It turns out that full analytic solution of this problem is possible via the
effective mass approximation.

We already calculated the moment of inertia in the above section. Now we will relate the
scissors mode frequency to it via the dynamical equations. It turns out that in our experiment the
rotation of the harmonic trap also changes the torsion spring constant, which we have to calculate
below.

One can write the GPE in the hydrodynamic equations form

Ver
Oy Ji + 0T, + poi mt

) = 0. (4.19)

134



where

K2 1
T = R(aj@z)*aw — *0,000 + c.c) + 5g5jk|¢|4 (4.20)

is the stress tensor. We calculate the angular momentum density

IL = —ig (¢ edy — ady’ — O'yde +eyded’) = o, = y e, @.21)
and its time evolution satisfies

Vea Vew
Oll, = x0,Jy — yO,J, = —20,;Tj, + y0; T, — xpay(#) + yp(?x(#). (4.22)

Now we assume the lattice is along the e, and projects to an effective mass m*. The above

equation varies to

Vho

Vo
" )+yp8x(m

m*

L, = 20y Jy — yOiJ, = —20; T}y, + y0;Tj, — xp0y(

). (4.23)

It is clearly to see now that the stress tensor integrates to zero, so the torsion torque one has

derived

m

T = /d$dy§(%wm — wy):cy = 5( Wy — wy)<$3/>

Consider the cloud being rotated by a small angle 6, the (xy) moment can be derived in terms of

coordinates of the co-rotating frame

(zy) = ((z' cos @ — ' sin ) (y cos @ + 2’ sin ) = (x> — y/*) sin 20
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The torque is derived as

w? — W) — )0 (4.24)

where (% — y'?) depends only on the initial Thomas-Fermi distribution of the cloud, as § — 0.

4.7 Numerical calculation of the rotational properties

We can verify that the effective mass results are correct when the approximation is valid,
by numerical simulation directly from a GPE. But the numerical approach extends to the general
including large lattice period case,

First we run a real time simulation of the scissors mode experiment and discuss some
qualitative features. As in Fig. 4.3, when there is not optical lattice, the evolution is simple as
expected. Here the first 10 ms was used to rotate the trap to impose to the cloud some angular
momentum L., and then the trap was kept stationary at angle=0. The lattice is always along the
e, axis. We see oscillations of angle and zy moment at the expected scissors mode frequency
wse = /w2 + w2. Here we note that the xy moment is proportional to the angle when it is
small. The angle of rotation is derived by fitting the density profile to a rotated Gaussian, the
same as how we processed the experimental data. Special notation should be paid to the dynamic
variables. L, = xp, — yp, oscillates out of phase to the angle. And here we calculate the torque
using

ext

)+ ypax(%)-

ext

T = —.l’pay(?

As shown in (d), the torque is again in phase oscillating with the angle, and in fact the ratio

between them is the spring constant we are interested in to derive the moment of inertia.
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Figure 4.3: Real time evolution of scissor mode when there is not lattice. The units in (b,c,d) are

arbitrary.
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Figure 4.4: Real time evolution of scissor mode when there is optical lattice of period 1 ym and
depth Uy = 28E,.

Now let’s apply the optical lattice. For qualitative demonstration we choose a large period
lattice of 1 m and depth U, = 28F,.. The response to the kick is slightly different, but the angle
and xy moment still shows similar features of the cloud following the rotating trap potential and
then oscillates about the e, axis. What is surprising is the in the dynamic variable: one can see
that the L, and 7 are both opposite sign compared to the case of Uy = 0! This happens when U, is
large enough so that the dipole mode frequencies w? and wz are inverted. This fact is transparent
in the equation 4.24 that we derived in the last section, but here we have a larger period lattice
where effective mass description is invalid at all. The inverted sign also suggests that the moment
of inertia of the gas goes negative (because the orientation of the cloud does not change)! The
inverted 7 /1, is also predicted in the equation 4.18.

There is another simulation to show this. We can directly simulate what happens in the
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Figure 4.5: Real time simulation when quenching the angle of the harmonic trap. (a) No lattice.
(b) 2 pum lattice at 25 F,..

experiment. We find the ground state of the cloud in the dipole trap that is rotated by 1 deg, and
then show the real time evolution after the trap is quenched back to e, at t = 0. The comparison
of with or without the lattice is shown in Fig. 4.5. The major difference is that the quench induced
significant high frequency oscillations in the dynamical variables like 7 and L. This is due to that
the quench of the trap rotation from 1 deg to 0 excites populations to higher bands, so one expects
that the observed micromotion at the frequency of about > 4, /h. However, after averaging over
the micromotion by applying a low pass filter (in (b)), one gets again the negative signs in these
variables, consistent with the previous observation.

One might still be skeptical of the negative spring constant and moment of inertia because
they are simply counter-intuitive. Below we compare the simulation results to the effective mass
hydrodynamics calculation. The results are shown in Fig. 4.6. We see agreement between the

GPE simulation and the effective mass analytical result.
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Figure 4.6: Simulated results compared to the effective mass formula in the last section.
(a)Harmonic trap 27 x(56,36)Hz; (b) (36,56)Hz. The triangles are measured from GPE simu-
lations and the curves are calculated from equation 4.24. The numerical simulation in done in a
d = 400nm period lattice.

4.8 Measurement of moment of inertia

For highly anisotropic traps, the scissors mode describes a fixed density distribution pivoting
by a small angle ¢ about the trap center. In this case we quantify the dynamics in terms of
the Lagrangian L = I62/2 — V/(6), for moment of inertia I and potential energy V (6). The
“torsion” spring constant K = —0~'9,V and the resulting oscillation frequency w directly gives
the moment of inertia I = K /w?, which we interpret as resulting from the changing SF density.

In our optical lattice, we use the DMD to pulse an elliptical harmonic potential tilted by
~0.05 to 0.14 from e, for ~ 1 ms, then turn off the pulse and let the BEC evolve in the original
trap for variable amount of time. The pulse excites mostly the scissors mode dp,,xy of the
harmonically trapped cloud, which undergoes angular rotation with a period determined by the

harmonic trap frequencies as well as the SF densities. To measure the angle, we very briefly
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address the microwave transition to transfer ~ 20% of atoms to the |F' = 2, mp = 2) state and
pulse the probe light to take an in-situ absorption image. We fit the obtained density profile to
a rotated Gaussian distribution to extract the angle. In order to accurately determine the trap
frequencies, we also measure the dipole modes in e, and e, by pulsing magnetic gradient fields.

Fig. 4.7 shows the measurement results of the collective mode frequencies at varied lattice
depths, which agrees well with the hydrodynamic theory prediction. These data show w/wq drops
when the lattice is normal to the long-axis of the trap, yielding a major change of the moment
of inertia only when the SF moves along the lattice. This is in agreement with our expectation
that the non-classical part in the moment of inertia should change when the suitable component
of the SF density tensor decreases. To show the effect of the lattice on NCRI, we calculated the
torsion spring constant /' from a 2D GPE simulation, from which the moment of inertia is derived
using I = K/w?, (Fig. 4.7). The NCRI slowly increases when the lattice is along the long-axis,
but surprisingly drops rapidly to negative when it is normal. This is purely quantum behavior,
and is interpreted by that the normal fluid attaches to the lattice and the angular momentum is
only provided by the current of anisotropic p*/, which has either its co- or counter-rotating parts
suppressed by the density modulation. (Fig. 4.7) We also note that the superfluid flow .J*/ no

longer satisfies the irrtationality condition because of the anisotropy of p*/.

4.9 Emergent normal fluid

There is normal fluid component in our system, as calculated in section 4.3 using the sum-
rule. However, there is no obvious dissipation mechanism of a normal fluid current as in the two

fluid model of liquid helium. One needs to invent new ways to measure the normal fluid current.
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Figure 4.7: The NCRI properties of the trapped BEC gas in a static lattice. (a)The measured
dipole mode frequencies, which match the prediction from the calibration of the lattice depth by
diffraction experiment. (b)The scissors mode frequency drops with the lattice depth. Theoretical
points are obtained by the effective mass hydrodynamics theory in the lowest band. (c)The
calculated spring constant from GPE simulated density profile. (d)The inferred NCRI from the
scissors mode frequency measurement. In both (b) and (d) the red/black colors stands for two
inverted aspect ratios of the trap 27 x(56,36)Hz and 27 x(34,51)Hz.
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Here we propose several ideas to probe it.

It is naturally found from the sum rule, that the normal fluid responses to a gauge potential
coupled to the current operator. In a BEC experiment, one can realize such a potential with the
aid of a series of techniques called the artificial gauge field. We make such a Hamiltonian in our
experiment, by shining two counterpropagating Raman beams addressing two spinors degree of
freedom, introducing a spin-orbit coupling term. By applying a real magnetic field gradient, the
Raman detuning is varied in real space, and one can create a spatially varying gauge potential
that has nonzero curl. When the Raman coupling is weak enough, the changed effective mass
by the Raman coupling itself can be ignored, thus we can focus on the influence by the optical
lattice potential.

Let’s suppose the gauge potential engineered is of the form A = A(y, —x)/r. When the
optical lattice is turned off, the current is entirely diamagnetic and is proportional to the total
density. Fig. 4.11 quite clearly displays what to expect when such a gauge field is present with
the lattice potential. One would find that a normal fluid current emerges, which is paramagnetic,
and proportional to the normal density. This normal current originates from the modulation of the
wavefunction by the lattice. Although here our gauge is artificially fixed, the total current being
the diamagnetic current plus the emergent normal current is a physical observable, which marks
the change of transport property by the lattice.

An analytically simpler example is considering a particle on a ring problem: by wrapping
around a 1D stripe of periodic boundary, one gets an azimuthal lattice. Adding the mean field
interaction, the problem can again be understood by the GPE. We use potential V' (x,y) =

w? (/22 + 32 — R)? for the ring. Now we fix the gauge again A = A(y, —z)/R, where R

D=

is the ring radius. (Fig. 4.8) Focusing on the normal part of the current, one can see that the
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Figure 4.8: The ring trap subjected to a gauge potential. Lattice period d = 2.85um with depth
Uy = 30E,. Plot here are respectively the 2D density, azimuthal density, velocity and current.
Y-axes are in arbitrary units.
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Figure 4.9: Lattice period d = 0.35um on the ring. (a)Normal current and averaged

normal current. (b)Integrate normal current to get angular momentum L. The result is linear.
(c)Calculate the moment of inertia from L. The result matches perfectly with the effective mass
1 — m/m* (dashed line) calculated from solving band structure.

azimuthal velocity is strongly modulated over a lattice period — the modulation is in phase with
the density modulation, but of a different shape. The normal current being the product of the two,
also is modulated, but doesn’t average to zero over a unit cell.

For sanity check, we note here that the circumstance is different from when an artificial
phase twist (vortex) is applied along ring (Fig. 4.10). There the velocity is never modulated
across zero, and the azimuthal total current is a constant, consistent with section 4.3.

Back to the gauge field case, the reason for the modulation of the normal current is that

there is another current we haven’t counted. The mechanical momentum is p = —idy¢p — A.
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Figure 4.10: The ring trap subjected to a 27 phase twist. Lattice period d = 2.85um with depth
Uy = 15FE,. Plot here are respectively the 2D density, azimuthal density, velocity and current.
Y-axes are in arbitrary units.

The contribution of the latter term clearly is modulated by the density (because we chose A to
be a constant of #). This is crucial, because otherwise the total current is modulated in space,
manifesting non-stationary ground state (a time crystal?) seen from the continuity equation. We
verified the fact via real time evolution of the ground state, and did not find varying density or
momentum.

We study the quantitative contribution of the normal current (Fig. 4.9) by calculating the
angular momentum resulted from the normal current and compare it to the moment of inertia.
This time we chose to calculate it in the case of small lattice period for the sake of comparison
to analytical result. The found angular momentum increases linearly with the gauge field 2. And
the moment of inertia I = L./ is displayed in (c). This compared to the classical I. = (2% +y?)
matches the normal fluid density via the effective mass approximation.

We also studied the problem in the usual harmonic trap, as in our experiment (Fig.4.11). We
added a 2D lattice to make e, and e, equal weighted, making an isotropic effective mass tensor.
The coarse-grained normal current displayed in (a) is clearly reminiscent of perfectly rotating
fluid. (b, c) are similar calculation to extract the angular momentum and superfluid density in

such as 2D lattice. Furthermore, we applied the result to our experimental setup, where there
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were 1D lattice and anisotropic trap frequencies. Surprisingly, the moment of inertia doesn’t care

much about the trap anisotropy in this case.

4.10 Leggett’s formula

In the old days Tony Leggett proposed the possibility of the supersolid existence. There he
arrived at a limit through very simple arguments. It turned out that the cold quantum gases are
ideal systems that closes the gap to his limit. I will briefly review his idea.

Similar to many papers of the same age, this one considers a periodic boundary condition,

wrapping the x direction into a ring. Consider the many-body wavefunction on a rotating ring
N
: — == =
W (riry- - ryvjw) = eXP{ZZ<P( r i;w)} Wo ({13 -+ TX)
i=1

where the ansatz has assumed that the phase of the wavefunction is separable into single particle
phases and ¥ is real. In the rotating frame the phase satisfies (because of periodic condition in
the stationary frame)

(0 +2m) = o(0) — 2rmR*w/h

The energy in this frame is
(H) ot = Eo + (1/2m) / (Vo)p(T)dT

Now we want to minimize the energy by varying the functional ¢)(x). Hence we get the Euler-
Lagrange equation
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Figure 4.11: The NCRI properties in a rotating lattice. (a)The current after coarse-graining
has a rigid-body like distribution in an isotropic trap 27 x(56,56)Hz and U, = 5E, lattice at
d =266nm, and is proportional to the angular velocity (2. (b)The increase of angular momentum
in an isotropic 2D lattice and trap. (c)The SF density is derived from p*/ = 1 — I/I,.. The
theory curve is p*/ = m/m*. (d) The NCRI with a rotating lattice following the trap. Again the
red/black colors stands for the two inverted aspect ratios 27 x(56,36) and 27 x(36,56)Hz.
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With the boundary condition one gets
1 2 2
(H)triat = Eo + §NmR w Qo

with

-1
1 dﬂfl
QOE / Lol yron g0 7. <1
0 fo fo P (r)dy'dz

This is the upper limit for the superfluid fraction p;/p. For a pure superfluid system there won’t
be rotational energy associated with any moment of inertia. Leggett argued that a periodic (solid)

material must have a superfluid fraction less than 1.

4.11 Spin-orbit coupled superfluid

This section is devoted to the analytical calculation of the rotational velocity field in a spin-
orbit coupled gas. The situation is not only analytically simpler but more attractive because such
gas is known to have a supersolid phase transition below the critical coupling strength.

The Raman spin orbit coupling Hamiltonian writes

| , 1 1 hQ
Hsp = % (p:r - hkogz) + %pz + %pz - 70-1

In the BEC we add the interaction term and potential. To derive the hydrodynamic equations, the

energy density is calculated at the mean field level

2 k 1 Q 2
e(r) = ;—m(ngS)?n — % (V20) s, + 59712 + Ve n — %n + 2982

n
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And the density current along x is modified by the spin term

, h
Je = — (nvx¢ - kosz) .
m
We will see that this new term is important and may lead to a different result from the effective
mass hydrodynamics.

Now we can get the hydrodynamic equations by varying n, ¢ and s, respectively

(

omn + WELV - (Vo) — %@SZ =0

hop = h§2/2 — gn —V

—M0 9,0+ 305 =0
\

In a rotating frame, we still consider the stationary equations. The first and third equations

are modified by w, while the second equation is unaffected,

V- [(Vép—wxr)n] —kozS, =0

hk, 1.5,
__Oz¢+—Q——w1€0y:O
m 2 n

Now we make the anstaz
¢ = azy
S, =20yn

with 7 = %anb — %Szi. Equation (2) becomes

hkoa = QB — wky
m
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hence a = 2—05 — w. While the first equation generates

(Oxn)y (a0 +w — 2ko8) + (Oyn)(a —w)x =0

(Bun)y (% - 21{:05) + (Oyn)x <% - 2w) ~0

0 0

Now plug in the Thomas Fermi n from the middle hydrodynamic equation

1 1 1 1
n= E(M -V) = p (u - §mw§,az2 - §mw§y2) :

One has

SO

6: Q 2 2y 2"
T (wx —i—wy) — 2kow?

Now plug in the result to derive the velocity field,

T =aVe — koS.& = Vaxy — ko2Byz = (y (o — 2kof3) , cvx)

Q k 2k2 2k2
a—k—f—w—>a—2koﬁ—a—2ko(a+w)§0—a(l—?o) —wﬁo
and
2w wa — w2 (2 — 2k7)
a=w- —w=w-
w2 (Q — 2k5) + w2 w2 (Q — 2k3) + w2Q

Now let’s look at the isotropic case w, = w,. In the anisotropic hydrodynamics approach (int the
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last section) the moment of inertia vanishes. While here we get

WI{}O
i=a-n
and o = 2 —w = w- 5t = ko The velocity is field is

., w

This is just
QCT’

v=lxroe o,

where Q.. = 2k2 is the Raman coupling where the phase transition happens (from the single
minimum phase to the plane wave phase). So exactly at the phase transition, the fluid becomes a
rigid body.

Next is my result with anisotropy defined (in my notation)

w2
l+e=0=—
wiﬁ
the velocity field is
a2 Q-2 23] 60— (2 2k)
“Ula—m oo o Q| 50+ Q — 2k2
7= - ([692 — (2 — 2k2) — 4k36] y, [6Q — (2 — 2k2)] =)

60 + (2 — 2k3)
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Integrating it one gets

L A 1 A

Lo (1+0260+Q—2k2  (e+2)2((e+2)Q — 2k2)

where

A= (1=06)[6Q— (2—2k3)] + (14 0)4kio = €Q 4 2k§ (3€* + e + 4)

It’s a complicated result, but can be checked to reduce to the isotropic case

L 82 k2

Le  4-(2Q-2k2)  Q—k

if setting € = 0.
One can compare the result to the last section, and will find that the effective mass gives a

different answer this time.

4.12 Conclusion and outlook

Our inability to obtain I /1. from scissors mode measurements without detailed modeling
reinforces similar conclusions in dipolar gases [47]. In both cases the simple argument fails
because 0 couples to more internal degrees of freedom than L, alone. In this context Ref. [47]
concluded that the scissors mode does yield the moment of inertia when 1D density modulations
comove with the oscillatory motion: this is consistent with our findings comparing motion in

static and rotating lattices. Our GPE simulations indicate that the analytical relations generalize

151



to lattices with period in excess of the healing length.

Although we conclude that a normal fluid exists, it is inseparable from the optical lattice
and lacks any internal dynamics of its own, i.e., it is not described by a dynamical equation of
motion. Recent calculations for the strongly interacting superfluid *He films on materials such
as hexagonal boron nitride also predict an anisotropically reduced SF density [48], implying the
existence of a pinned normal fluid. In contrast, both the superstripe phase in spin-orbit coupled
BECs [49, 50, 51, 52, 53] and supersolid phases of dipolar gases [54, 55, 56], support dynamical
density modulations. Leggett’s expression applies to both of these systems implying a reduced
superfluid density, which in this case could exhibit dynamics, as expected for a system described
by a two-fluid model [57, 58].

This leaves open questions regarding nature the normal fluid of spin-orbit coupled systems
where an interplay between single-particle physics and interactions govern supersolid-like properties.
In addition, p*! is expected to be reduced outside of the superstripe phase [52, 53] where the
density is uniform (making Leggett’s expression inapplicable), but the BEC’s spin vector is

spatially periodic.
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Chapter 5: A Non-Hermitian Quantum Gas

5.1 Open quantum systems

Open quantum systems where the system of interest exchanges particle number, energy
or momentum with its environment, have attracted recent interest with both theoretical and
experimental efforts. This type of problem is often formulated by the quantum master equation [59]
under the Markovian approximation, while a mathematically equivalent method called quantum
trajectory, divides the system evolution into a period of non-unitary evolution, followed by a

quantum jump. In the equation

—i[H, 0 +Z( LjoL} - {Q, L, }) = —i <th@— Qth) +Y LjLt  (5.1)
j

the operators L;s are the quantum jump operators, which describe the incoherent process of
“wavefunction collapse” due to the dissipation into the environment [60]. In addition, we absorb

part of the evolution into the non-Hermitian Hamiltonian
1 i
Hyp =H =5 > LiL. (5.2)
J
In fact, the master equation deals with the elements of the density matrix. Generally in a
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many-particle system, the number of elements in the density matrix scales as n?, where n is the
many-body Hilbert space dimension. (However, we also would like to note that quantum many-
body systems are themselves intractable to calculate/simulate for both open and closed systems,
because of the scary scaling of n on the single particle Hilbert space dimension L, which is an
exponential function n ~ L. Here N is the number of particles in our physical system.) In a
few-body open system with small N, the n? scaling becomes important, and it is reasonable to

try to find an acceleration on top of it [60].

5.2 Non-Hermitian physics

Sampling is a great way to “bypass” this added complexity, and the quantum trajectory
method is one good example of this. (The method is also called quantum Monte Carlo wavefunction [60]
in some contexts.) The key spirit is to still describe the system with a “wavefunction” ()
instead of the density matrix p(t). However, this approximation is only legitimate with a single
trajectory and without the procedure of state collapse. To describe the measurements/dissipations,
one further introduces the “collapse operators” f/j, and samples over a probability distribution
whether or not to apply the projection L;. The probabilistic distribution is chosen such that
the probability of a quantum jump is determined by the wavefunction evolved to a certain time
(V| L;r- L;|v). One has to average over the sampled trajectories and look for convergence to the
master equation description. This numerical method is fully physics-motivated and proved to be
powerful in various AMO subfields.

Beyond the state collapse, the non-Hermitian Hamiltonian is utilized to depict the short-

term evolution of an open quantum system before the first quantum jump happens and in between
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two quantum jumps. In another scenario, it should also serve as a decent approximation when the
jump effectively ejects particles out of the ensemble, without perturbing the evolution of the rest.
Because the usual and real physical Hamiltonian is Hermitian (according to principles of quantum
mechanics [61]), this direction attracts limited attention, mainly from the mathematical and
theoretical perspectives. However, the revolution started around 2010 [62], when experimental
platforms started to be able to make such non-trivial non-Hermitian Hamiltonian models reality,
and people began to search old papers for interesting predictions. The results have been unexpected
— the physics in such systems has been beyond imagination — it rapidly expanded and evolved to

a new sub-field of physics.

5.3 Previous works on non-Hermitian systems

As is elaborated, non-Hermitian physics is a natural extension when physicists studied
the open quantum systems. There has been fruitful progress in exploring this new field [62].
Theoretically, the quantum mechanics of non-Hermitian Hamiltonians is itself exotic. For instance,
it doesn’t guarantee a real spectrum or a complete and orthonormal set of eigenstates [62, 63].
On the other hand, some symmetry such as the product of parity and time reversal symmetry
(PT) together helps recover a real spectrum [64]. Beyond that, many exotic properties of the
non-Hermitian bands are predicted in theory, which are related to singularities, chiral transport,
and topology [65, 66]. More recently, a new phenomenon regarding the non-reciprocity of
the transport in non-Hermitian systems was discovered, and it was given the name the “non-
Hermitian skin effect”.

Experimentally, however, the progress was mainly about engineering the non-Hermiticity
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with classical systems and those analogous to non-interacting simple quantum systems. For
instance, it is straightforward to engineer the gain and loss within the photonics platforms [65, 67,
68, 69, 70], mechanical resonators [71, 72], and optomechanics systems [73]. Yet, the realization
of the real quantum mechanical non-Hermitian physics has remained almost evasive, with only a
few examples [74, 75]. It is expected with the more developed control tools with true quantum
platforms such as ultracold atoms and molecules, more and more interesting physics can be
engineered [76]. The uniqueness of these systems will certainly shed new light on the theoretical

community and lead to new understandings.

5.4 Topological physics seen from outside

Topology represents the beauty of geometry since the 19th century. In a modern setting,
topology is defined as the property of a geometric manifold, and it is always a global property [77].
From a traditional perspective, topology enters only the fields where geometry becomes important.
For example, cosmologists are interested in the topology of spacetime connected to singularities [78].
As another example, some theorists developed mathematical formulation of topological field
theories [79].

Things became a bit different around 2000 [80]. It was all of a sudden some theorists found,
after the 70th birthday of Bloch’s theorem [81], that the Brillouin zone is not that trivial! Strange
as it sounds, a locally flat space does not mean completely trivial topology for physicists. The
idea is, that despite that the electrons move in the flat space, they still can experience an effective
“metric” in some parameter space, such as being homomorphism from the reciprocal space of the

Brillouin zone. Such studies began by defining the “metric” or local curvature as a function of
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the eigenstate wavefunction and its derivative. And due to its analogy to the Anharonov-Bohm
(AB) effect in real space, this curvature is named after Berry — the “Berry curvature” [82]. A
lot of simple models were revisited, including those with real magnetic field and AB effect, and
variants of the 1988 Haldane hexagonal model [83] became the leading trend. It didn’t take
a long time before experimentalists believed that they could make such systems a reality — by
utilizing spin-orbit coupling [81] — as for example proposed for graphene [84] but then turned to
the quantum wells due to the stronger coupling strength [85]. This made a new system without
external magnetic fields and stimulated people to think about the intrinsic topology of the bands,
as mentioned above.

About 10 years later, the “periodic table” of topological bands was completed according
to the symmetry class of the single particle fermionic Hamiltonian [86, 87, 88, 89]. These
systems are named “symmetry-protected topological phases”, as to be told apart from the “real”
topological phases that derived from the many-particle correlations. Although they are variants
of zero interaction systems, the topology lies in the global topology of functions of a single-band
structure. As an example, the spin-orbit coupling allowed the creation of the Z, topological class,
while keeping the time-reversal symmetry [84, 85].

In order to link to the mainstream of the thesis, I provide two examples of topology. These
fall respectively into the category of the AIII class in 1D and A in 2D. These classes are going to

be introduced in Section 5.6.
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Figure 5.1: Illustration of the SSH model. (a) SSH model is a 1 dimensional chain that is made
of two sublattices A and B. The hoppings within and between the A-B unit cells are different
and labeled J’ and J. (b) The topological winding number defined by the Zak phase counts
the number of turns the h vector winds around the origin, as g goes through the BZ. Figure is
reproduced from [4].

5.5 [Examples of topological physics in Hermitian systems

5.5.1 Su—Schrieffer—Heeger model: winding number

The Su-Schrieffer—Heeger (SSH) model [4, 90] is a 1D tight binding chain with two
sublattices (Fig. 5.1a).

After Fourier transformation to the ¢ space, the Hamiltonian is given by

0 J' + Je Tl A
H,=— =—h(q) -0 (5.3)

J' + Jel1® 0

where a denotes the distance between the A-B sites. This 2x2 Hamiltonian is summarized in a
2D vector h(q)

h.(q) +ih,(q) = J + Je' (5.4)
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which lives in a fictitious space parametrized by the 1D BZ wavevector g. With our definition
h, = J + Jcos(qa) and h, = Jsin(qa). (5.5)

If we plot h,/J vs h,/J in the 2D plane (Fig. 5.1), then ¢ parameterizes a circle that can enclose
the origin, or not. When J’ > J, the circle encloses the origin; whereas J < J, it does not. One

can define a “Zak phase” [90] in terms of this “property”

_ as 1[0
o) = / i(u | 9u)) - dg = -3 / % dq (5.6)
q; Bz 04

where |u(‘) (q)> stands for the wavefunction in ¢ space of the lower band and
¢q = arg(hy +ihy). (5.7)

This Zak phase is —7 when J' > J, or zero otherwise. If we want, we can also define a winding
number

N =—=¢) 5.8
T Zak ( )

such that it is either O or 1.

It turns out that this property has an implication when we consider instead an open chain
with two open ends. One would find two zero energy “edge states” exponentially localized at
each of the boundaries if and only if V = 1. These two states are energetically distinct from the
other “bulk” states which are separated by a large band gap. This is a known consequence of the

“bulk-boundary correspondence”.
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5.5.2 Quantum Hall system: real gauge field

By applying an external uniform magnetic field perpendicular to the 2D plane, the electrons
are subjected to the Lorentz force. In the classical setting, because of the initial velocity they own,
their motion forms the “cyclotron orbits”. These orbits prevent the longitudinal transport in the
bulk, thereby making the system an insulator. However, when they run into the open boundary of
the system, they can skip on the boundary itself, and become orbits of chiral transport, meaning
the motion is only along one direction rather than the opposite. These are called “skipping edge
orbits”.

It is natural to ask how one can quantize such motion. Indeed, the quantum mechanical
problem was solved in early days and gave the quantized integer Landau levels which have flat
dispersions. Depending on how many levels electrons fill out, the transverse Hall conductance is

quantized to the integer filling fraction v

O = —U. (5.9

When we put the system on a lattice, this number is related to the Chern number, defined with

the Berry curvature of the energy band

1 oAy AL
C,=—— dk,dk L = 5.10
21 BZ v ( 8km aky ( )
where A(n) is the Berry connection in the nth band
A (k) = i (un (k) |0, un(k)),  forj = z,y. (5.11)
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Over a torus (Brillouin zone), the Chern number has to be quantized as an integer. There will
also be gapless edge modes (whose number equals the absolute value of the Chern number) if the

system is finite-sized. These correspond to the skipping orbits in the classical picture.

5.6 Non-Hermitian topology

This section follows the wisdom summarized in the milestone paper [91], which gives
the topological phases classification of non-Hermitian systems in terms of the Altland-Zirnbauer
(AZ) classes.

For Hermitian systems, such classification was determined by the systems’ symmetry and
dimension. In the spirit of the AZ classes, distinct topological phases cannot be continuously
deformed into each other under the constraints of an existing energy gap, while respecting the
underlying symmetry. Note that it ’secretly” sets a reference energy (Fermi energy) in the
energy gap. The classification is listed in Table. 5.1. Here, only the time-reversal symmetry
(TRS), particle-hole symmetry (PHS), and sublattice/chiral (SS) symmetry are considered. Other
symmetries, according to the group theory, lead to reducible representations of the Hamiltonian
(because those symmetries are represented by unitary operators). The A class breaks all three
symmetries and is the simplest of all. The Chern insulator discussed in the last section is in this
class, and under 2D it holds an integer topological invariant, which is just the Chern number. In
the meanwhile, the SSH model is in the AIII class, which holds an integer winding number.

For the non-Hermitian systems, such “ten-folds way” also existed, as summarized in Table. 5.2.
The classification was done by “Hermitianization” — expanding the Hilbert space to construct

Hermitian Hamiltonians — in a mathematical way called the “K-theory”. In our current study,
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Symmetry class | TRS | PHS | SS | d=0 | d=1 | d=2
A 0 0 0 Z 0 Z
Alll 0 0 1 0 Z 0
Al + 0 0 Z 0 0
BDI + + 1 Ly Z 0
D 0 + 0 2Ly Lo 4
DIIT — + 1 0 Lo Lo
All — 0 0 27 0 Zs
CII — — 1 0 27 0
C 0 — 0 0 0 27
CI + — 1 0 0 0

Table 5.1: For Hermitian systems, we have the “ten-folds way” of the AZ classes. It gives the
possible topological invariants under different symmetries and dimensions.

AZ class Classifying space d =0 1 2 3 4 5 6 7
A, DIII, CI Cy 0 Z 0 VA 0 Z 0 A
Alll C, xC 0 77 0 ZZ 0 727 0 ZZ
AL D R1 Zo Z 0 0 0 27 0 Zo
BDI R1 X Ry Zo®Zo ZBZ O 0 0 22027 0 Zo® Zy
AllL C Rs 0 27 0 Lo Lo Z 0 0

Table 5.2: Non-Hermitian systems can also be categorized into the AZ classes, which are grouped
into six. Table reproduced from Phys. Rev. X 8, 031079.

we will focus on the simplest A class again, in one dimension. The periodic table predicts there

exists an integer topological invariant (Z), which we introduce in the next section as the “winding

number”.

5.7 The Hatano-Nelson (HN) model

Much earlier than the discovery of non-Hermitian topological phases, Hatano and Nelson

proposed a lattice model comprised of a simple ingredient of asymmetric hoppings. The non-
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(a) ®  Mel<|Jr[1 |[Jz|>|JR|

Jo Jr :
—— —> w=-1 ,, w=l
I N )R]

J Re E /j
%

Figure 5.2: Figure reproduced from: Phys. Rev. X 8, 031079. Illustration of the Hatano-Nelson
(HN) model. (a) Real space lattice with asymmetric hoppings J; and Jg. (b) There exists a
topological phase transition at | J,| = |.Jg|. On the left one has the winding number w = —1, and
on the right w = 1. At the transition point, the system is subjected to a real gauge field and its
Hamiltonian spectrum transforms to an arc from a loop.

Hermitian Hamiltonian is presented as following:

H=> —Jpal, a; — Jpalaj (5.12)

J

where J;, and Jr are complex tunneling amplitude and in general not equal. This model is
depicted in Fig. 5.2a. Intuitively, since the tunneling to the right is larger (smaller) than the
tunneling to the left, we expect the wavepacket to accumulate to the right (left) under open

boundary condition (OBC). This is indeed the case.
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5.7.1 Complex energy spectrum

The simplicity of the tight binding model allows for direct diagonalization both in the
periodic and open boundary conditions (PBC and OBC). We first look at the eigen-energies.
Because this model has no P7' symmetry, the energies are in general complex values.

We first look at the spectrum under PBC. We assume k € [—m, 7] as the Brillouin zone
(BZ), and calculate the E(k). The result is presented in Fig. 5.2. When the parameter v =
|J1|/|Jr| is not equal to unity, the F(k) forms a ”loop” as the parameter k& runs over the BZ.
The loop is counterclockwise if v > 1, and is clockwise if v < 1. However, when v = 1, the
spectrum “collapses” to a line (or arc). It turns out that this suggests an important topological

invariant, which we define here as w, the “winding number”

™ dk
w:/ %&gargE(k‘). (5.13)

—T

Since we have det F(k) # 0 in BZ, this definition is always legit. This winding number can also

be written as

T dk
w = / — 0k Indet H(k) (5.14)
_p 2m

in a more algebraic form. Indeed note that we have secretly chosen a reference “base energy”

Ep = 0, which is important for the validness of the definition. And more generally,

w = / LR I det[H (k) — B (5.15)

iy’

—T

is always defined with respect to the base energy.
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Thus the winding number w = 1 once v > 1, and w < 1 once v < 1. However, when
~ = 1 the winding number becomes ill-defined (E(k) goes past the origin). This is defined as a
“topological phase transition” point of the HN model, because w across v = 1 is discontinuous
and quantized integers, marking two distinct phases.

Following our reference, we would note that the non-Hermitian topological phases are very
different from the Hermitian counterparts. In the Hermitian systems, the topological invariant is
often defined related to the Berry phase using their eigenstate wavefunctions. As a result, it
requires at least two bands to make a non-trivial phase. In contrast here we have only a single

band non-Hermitian Hamiltonian, but can define the winding number from its complex spectrum.

5.7.2 Bulk-boundary correspondence

We are familiar with the bulk-boundary correspondence in Hermitian systems. In a quantum
Hall (Chern insulator) system, the edge modes (named the skipping orbits) arise because of the
non-trivial TKNN or Chern number. But can we expect something similar in the non-Hermitian
systems? But it turns out to be not that obvious and controversial for some years.

The first thing to notice is that the energy spectrum is generally a function of the boundary
condition type. For the periodic boundary condition or without any boundary (free space), we will
recover the complex dispersion as introduced in the above section, and it permits us to define the
spectral winding number. However, if what we consider is a finite system with an open boundary,
we will find that these eigenenergies change, and the winding number also changes [92, 93]. For
the HN model, its spectrum becomes real again with open boundaries, which will be elaborated

in the next section.
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But to find a potential edge state, we will have to consider a finite system. It turns out that
directly solving the finite system predicts the correct eigenstates (as derived in the next section).
These states do tend to localize themselves to the edges of the system, and their appearance

relates to the winding number we defined in the free space [91, 93].

5.7.3 Exact solutions

In this section, we derive the exact solutions of the Hamiltonian (5.12) under the open
boundary condition (OBC), which helps with a comprehensive understanding of the said properties.

The tight-binding Hamiltonian is solved via defining

and the system becomes coupled equations

Evy = —Jrn—1 — Jptbn1. (5.16)
The OBC means
Yo =N =0.
To solve this system, we introduce an important parameter v = +/Jg/Jr, here. We will

verify the solutions are (labled by m € N*)

Un =1/ %'y” sin(ky,nd) (5.17)
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where k,, = mm /(N — 1)d, withm = 1,2, ... Now plug it in (5.16):

B, sin(kpnd) = —Jpy" ' sin(kp(n — 1)d) — Jpy™sin(ky,(n + 1)d).

This is where v plays its role — it “re-balances” the asymmetry in J;, and Jg.

E,,sin(kpnd) = —+/Jp Jg2sin(k,,nd) cos(k,,nd)

And we have the eigen-energies

E, = =2~/ JpJg cos(ky,nd). (5.18)

This is an important result because we note that the energies are indeed on the real axis despite
the non-Hermitian Hamiltonian, but this is only true under the OBC. Another thing to note is that
(5.17) is not the true “edge mode” that goes exponential at the boundary —indeed it is ”quasi-edge
modes” we introduced in the last section. All the introduced properties can be verified using this
set of solutions.

Now we want to derive the continuum analog of the equation 5.16. To do it, we go back to

¥n = Vdi)(x = nd). We further introduce ancillary field

¢(x) = h(x)y " (5.19)
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We can easily find the equation for ¢(x):

E¢(z) = —/JL Jr(2 + d*0%)é(x) (5.20)

where we have used

8o £ d) = 0(a) £ dd,0(x) + SPO%6(x).

To derive the equation for ¢)(x), we just plug it in, and use the rule for higher derivative

In? v

. s s Iny _,
7 (™M) = By ™"+ ==y /d—2@x¢777 /

we get

1 2+ In®
PG = —\/Tpdpd? (@ — 2200, + =y, (5:21)

This equation corresponds to the case with an “imaginary gauge potential”. To see this, we define

A = iq, where
_ Iny
q= d
And then
(p—A?=p*—2p- A+ A* = -0? - 2¢0, — ¢* (5.22)

is the same as that in equation 5.21 but up to constant shift.
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5.7.4 Appearance of the imaginary gauge potential

There are a few ways to justify the physical “relevance” of an imaginary vector potential.
One way was introduced in the original papers by Hatano and Nelson, by considering the projection
of a disordered real gauge field [94]. But recently, people have found it can also be mapped to a
curved spacetime. Thus we have a mapping from the non-Hermitian Hamiltonian to an effective
metric [95].

This is discovered by introducing a coordinate transformation

Y _ (5.23)
Yo
and one has
O0r = 2qy0,
and

02 = 4¢%y(0, + yoy).

Plug them in equation (5.21), we have an equation for y

2
B = =/ JpJrd®(4¢°y*0; + =+ ). (5.24)
One can then select
h2
and K = 4¢, (5.25)

M=—r=or
2y JpJpd?
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these are the "mass” and “curvature” scalars. Then we arrive at

2

h 1
By = ———k(y’02 + ~

T v (5.26)

This is indeed interpreted as the equation of motion in the curved space.

5.8 Non-Hermitian skin effect

The non-Hermitian skin effect was an unexpected discovery where the topology and non-
Hermiticity comes to an interplay, causing directional transport behavior in a system with open
boundary conditions. Localized edge states are predicted in such systems, with the number
of them scaling as the number of bulk states N ~ L<, in stark contrast with the bulk edge
correspondence in Hermitian topological systems, where the number of edge states scales N ~
L7191, 96].

So far, most studies of the skin effect focus on the non-interacting lattice models, due to
their analytical and numerical simplicity. The non-Hermiticity is often represented by the non-
reciprocal tunneling, such as in the Hatano-Nelson (HN) model, which predicts macroscopically
accumulated eigenstates at one edge [94, 97]. A non-Bloch band theory was developed to solve
such models, and gives insight into a topological winding number that determines the onset
of the skin effect [92]. Topological phase transitions were studied theoretically by tuning the
chiral symmetry upon closing the band gap. Such predictions were experimentally realized in
photonic quantum walks, and recently in an engineered momentum state Raman lattice, where
non-reciprocal transport signatures were observed.

However, despite the successful efforts in the lattice models, they are not ideal for developing
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a more intuitive understanding of the origin of the directional acceleration force. Furthermore,
current experimental works were implemented and explained in a non-interacting setting, providing
incomplete description of open many-body systems.

Hereby, we study the stationary and dynamic properties of an open spin-orbit coupled Bose-
Einstein condensates system. The spin-orbit coupling is induced by Raman lasers crossing at a
small angle, and the system is in addition subjected to effective loss of particles via a two-photon
type coupling to the electronic excited state. Meanwhile, because the atomic momentum and spin
are coupled, this loss translates into a directional force and leads to nonreciprocal transport. We
observe the center of mass drift of the BEC in a homogenous box trap, and study its dependence
on the loss rate and Raman coupling strength. We find good agreement with the theoretical non-
Hermtian model, and further develop numerical simulation with non-Hermitian Gross-Pitaevskii
equation (GPE), which focuses on the impact of the interaction. By creating spatially varying
potentials, we prepare states that are localized to the box edge, and confirm they are close
to the stationary states in later evolution. Thus, we provide the first combined experimental
and theoretical research on the skin effect in the continuum, with the presence of many-body

interaction.

5.9 Non-Hermitian spin-orbit coupling

In our project, we would like to discover whether a non-Hermitian system with similar
properties can be engineered in a distinctly different physical system. Specifically, we will look
at a spin-orbit coupled BEC, which is not held in any lattice. Moreover, the atom-atom interaction

that renders our BEC a superfluid is present, which makes it an interesting question to ask whether
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the interaction changes the behavior of the non-Hermitian system.
But to begin with, let us consider a single-particle problem. The non-Hermitian spin-orbit

coupled Hamiltonian we intend to engineer is

. 5+ 00.)2 BQ RS
A ek . i L LS L P oS (5.27)
2m 2 2

with Pauli operators o, ., quasi-momentum p [98], atomic mass m, Rabi frequency (2, detuning
J, and spin projection operator Py = [1) (1|. Without the spin projection operator P, the
Hamiltonian is

- (p+00.)? hQ ho

Hy=—"“+—0,+—0,. 5.28
0 o +2U+2U ( )

This Hamiltonian was briefly discussed in Chapter 4. It is defined on the spin-half Hilbert space
made by |1) and |{). The two spinors are coupled at a coupling strength {2 and a detuning 6. But
most importantly, there is a spin-dependent gauge potential pyo,, which completely changes the
behavior of the simple Rabi-coupled model.

We solve the spectrum of the base Hamiltonian at 6 = 0 [35], which is shown in Fig. 5.4.
Two distinct quantum phases can be seen in the dispersion depending on the strength of the
Rabi frequency €. The phase transition is at i) = 4F,, where Fy = pZ/2m is the “recoil
energy” that is defined from the gauge coupling strength py,. When Af) < 4F, the dispersion
has two degenerate energy minimums, featuring a “double-well” shape in momentum space.
Since the atoms are bosons, when we load them into the dressed states, they tend to occupy
the lowest energy states at equal probabilities. The ground state profile is plotted in Fig. 5.3

with an external box potential. Experimental studies have shown that there can be another phase
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Figure 5.3: The ground state of the spin-orbit coupled Hamiltonian in a box potential. (a) The
box potential has a length L = 30 pm. (b) In the double minimum phase, the ground state can
form a density modulation “stripe” phase (solid); or if there is nonzero detuning (6 = F,. dashed),
it breaks the Z; symmetry and falls into the lower minimum. (c) In the single minimum phase,
the ground state is always in the single minimum even with ¢.

transition at small €2, below which the atoms are in a coherent superposition of the two energy
minimums, and due to interference effect they form “stripes”. But above this transition, these
two dressed states become “immiscible” and tend to spatially separate from each other, and thus
form domains. This process is spontaneous symmetry breaking and was easily observable in the
experiments. These two phases exist due to the spin-dependent interactions, and were named the
“stripe phase” and the “plane wave” phases. Whereas h{2 > 4 F, the dispersion transitions from
the “double minimums” to a “single minimum”. At the bottom of the lower band, the dispersion
is near quadratic and gives an effective mass m*. The bosons will be loaded to this minimum at
p = 0, and such a phase was given the name “single minimum” phase.

At small but finite ¢, the single minimum phase will not change qualitatively but the
minimum only shifts from zero momentum. In past works, the “synthetic electric field” and
“artificial magnetic field” were engineered by varying the J in time and space [99, 100]. However,
this detuning makes dramatic changes when A{) < 4 Fj. It splits the degeneracy of the two double

minimums, and makes bosons condense into the only real ground state.
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Figure 5.4: Tuning the (Hermitian) spin-orbit coupled Hamiltonian and deriving the dispersion.
An upper (blue) band and a lower (green) band emerge because of the coupling 2. A BEC will
always seek the lowest energy ground state in the lower band.

Now we add in the non-Hermitian term —¢hI"P;. This term is effectively another o, term

plus an imaginary constant energy because

R Al

We note that the imaginary constant is only going to offset the spectrum to the imaginary axis.

Hence we can absorb the ¢, term into an “complex detuning”
§ =6 —il. (5.30)

The solution of such a Hamiltonian has richer physics than one thought.

It is generally conceivable that such a non-Hermitian Hamiltonian has a complex spectrum,
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because the non-Hermiticity no longer requires real eigenvalues. Therefore, we study the real
and imaginary parts of the spectrum separately. As shown in Fig. 5.6a and 5.5a, the real part of
the spectrum slightly modifies when I' < FEj is small, which can be treated using perturbation
theory. When one ramps up the I', the band gap becomes smaller, and the bands tend to touch
each other at p = 0. It is noticeable that the dispersion develops a discontinuous 0E(p)/0,
at p = 0, and even for the large {2 = 6F, case (Fig. 5.5b), the lower band recovers a “double
minimum” structure. Finally when [ = €2, the band gap vanishes and keeps on vanishing for even
larger I'. This marks the appearance of an exceptional point at p = 0, where two eigen-energies
and eigenstates reduce into one, named coalescence. This is an important non-Hermitian “phase
transition”, as it remarks the breaking of the P77 symmetry [101] of the Hamiltonian.

We also look at the imaginary part of the dispersion in Fig. 5.5 and 5.6 (d-f). It is nonzero
even with a small I', and more importantly, it is asymmetric under parity transformation p — —p.
This property turns out to be crucial to the physics we study. Above the critical I' = (2, an energy

discontinuity at p = 0 is observed which crosses Im £/ = 0.

5.10 Topological band of non-Hermitian SOC

To reveal the topological property of the dispersion, we plot the complex spectrum in the
complex 2D plane in Fig. 5.7. The SOC features two bands, where the lower band encloses
the origin and the upper band does not. We extend the definition of the winding number in the

previous section because the quasi-momentum runs in the free space

< dk
w:/ 5O arg B(k). (5.31)

o0
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Figure 5.5: Begin with a single minimum phase € = 6£,. Ramp up the spin-dependent non-
Hermitian strength I'. Top row: the real part of the energy dispersion. Blue: upper band; green:

lower band. Bottom row: the imaginary part of the energy dispersion. In all the cases, we set
0=0.
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Figure 5.6: Begin with a double minimum phase {2 = 2F,. Ramp up the spin-dependent non-
Hermitian strength I'. Top row: the real part of the energy dispersion. Blue: upper band; green:

lower band. Bottom row: the imaginary part of the energy dispersion. In all the cases, we set
0=0.
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Figure 5.7: The complex dispersion in the complex plane as is parameterized by p. The red
reference point is at # = (. The upper (blue) and lower (green) bands are not topologically
distinct above and below the double minimum to the single minimum phase transition at {2 =
4F,. But one could ask if the topology of the dispersion ever changes across the non-Hermitian
phase transition at I' = €).

It is discovered that the lower band has a finite winding number of w = =1 around the origin
depending on the sign of I', whereas the upper band always has a zero winding number. This
property of the bands always holds when one varies the parameters €) or 9, as well as tuning the
quantum phase from the single minimum into the double minimum. It is a topological property
of the bands.

We also examine the eigenstates of such a Hamiltonian. We apply an open boundary
condition to the system, by turning on a potential that has hard walls. It is noticed that all the
eigenstates in the lower band localize themselves to one side of the box. As we flip the sign of T',
the localization direction reverts. This seems to suggest bulk-boundary correspondence.

Based on the above two observations, it is natural for us to consider the relation between
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Figure 5.8: Plot the density profile of the particle in the ground state of the non-Hermitian
Hamiltonian. In (a) the dashed and solid are for I' = —0.5 and 0.5F respectively. These
two cases are symmetric. We observe that the localization property does not seem to change
qualitatively across either the SOC phase transition or the non-Hermitian phase transition. The

localization “length” — or the center of mass drift (1| Z [¢)) does vary, though.
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our Hamiltonian and the Hatano-Nelson model. Both of them have nonzero winding numbers
which can be tuned, and both support directional localized eigenstates. Thus, we might be able

to engineer an analog to the Hatano-Nelson model.

5.11 Effective single-band Hamiltonian

The usually useful approach to understanding the spin-orbit coupling problem of a BEC is
by looking at the Raman-dressed states, which turns out analytically simple. The non-Hermitian
term in the problem acts on a single spin, introducing only a trivial spin-dependent loss by its own.
However, projecting this loss into the ground band of spin-orbit coupled Hamiltonian yields a
momentum-dependent loss and an effective scalar potential. We derive the effective Hamiltonian
via this procedure in this section.

The spin-orbit coupling is induced by two Raman lasers, resulting in the effective Hamiltonian

in the spin-1/2 subspace:
P pp | hQ

H=— z = Ogx
2m+ma+20
_ptpo)’ hQ - pf
- om 2 " 2m

where p, = hk, is the recoil momentum, and p is the canonical momentum. This Hamiltonian
is known to have a second order phase transition from the double minimum to single minimum

phases at 2 = 4w, = 4E,. /h. The two dressed bands are derived in closed form in both phases:

2 2 QO
_p_ ppT _2
Ei_2mj:\/(m> +(2)
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with the eigenstate wavefunctions:

sin (bi

Yy =

CoS ¢4

where

2k:p\* _ 2kep
mS mS)

¢+ = arctan |+4/1+ (

We introduce the non-Hermitian term to the Hamiltonian and have

(p +praz)2 hQ p2
g=LTPo) B
om 2% o

— iRl 1T -

The loss is purely on the |T) spin. We will treat this loss term as a perturbation to the Raman-
dressed states, and will derive two models from it: one that approximately expands near p = 0, the
other accounting for the full p € (—o0, c0). The following treatment is for the single minimum

phase when the minimum is at p = 0.

5.11.1 Minimal model — imaginary gauge potential

We want to study the dynamics of bosons condensed in the lower band £_ near p = 0. In

order to make Taylor expansion, we let

2k,.p
A= ——
m’
and hence
)\2
tancﬁ,:—l—)\—gz—l—)\.
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Near p = 0 the population in the |]) state is

(14 X)? 1 1 kp 1 o

:.27:—:—1 = —
po=sinon = Ty T A =g

where the recoil velocity is v, = hk,./m.

In the meanwhile, we expand the dispersion relation

2 2
E:p__? 1+<2k’"p)

2m mS)
o 1 B hk:f B hQ
=P 2m  m2Q) 2
from which the effective mass is
m* B 1
- Aw, *
m 1-— )

Finally this leads to an effective Hamiltonian around p = 0:

p2

H="L_
2m* el
2
p , I o
S o ——
omr (2 Q)
2 KD
=P il i

2m* Q 2

This turns into a “free particle” Hamiltonian with an unusual momentum-dependent loss.

One makes two observations about the Hamiltonian: one it reduces to the reciprocal tunneling

in the lattice models. To see that, consider the lattice model

H = Z —(t +7)aly a5 — (t = )ala;i

J
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After Fourier transform this becomes

H==> [(t+7e ™+t —7)e*] afa

= — 2[2 cos k — 12y sin kla; ax
k

— Z [—2 + k* + i2v9Kk] af ay,
K

where in the last equality we expand near k£ = 0.

5.11.2 Full dispersion p € (—o0, 00)

Invert the solution

b =sing |J) +cosé_ 1)

and get

_ sing_ [¢4) —singy [¢-)
sin(¢— — ¢4) 7

)

so that we can get the full Hamiltonian

H = Ey |+)+[ 4+ E- [=)—=] = hl'[T)1]

where |+) and |—) stand for the upper and lower Raman dressed bands. Plug in the decomposition,

H =Ey [+)+|+ E_ |-)-]
thl’ .9 i 2 RV
QETIr—— (sin® @ |[+){+| + sin® ¢4 |—)—|

— Sin g sin .. [+)—| — sin g sin 6 |<)+1).
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To simplify the calculation, let

_ hL' +) —)
b= sin? (¢p_ — ¢4 )’ [+ = sing_’ =)= sin ¢4

so the Hamiltonian becomes a standard two-band Hamiltonian coupled by i,

H = <SH§—;_ — zﬂ) )+ + (Siﬁ;s+ - iﬁ) =X

H B[N+ [=X+D-

We solve it in the S — 0 limit

oo E_ ‘ (iB)*
L= il B
sin® ¢ ot —
sin® ¢ sin® ¢

and after inverting the variable transformation

2 i 2
E =E_—iBsin’¢, + Eé Sin” ¢
sin® ¢_ T sin? o+
In the single minimum phase,
B B kT sin ¢4 2 . sin? ¢, h21?
o sin (6 — 1) | sin® (¢- — dy) - —
sin® ¢ sin® ¢4
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Let’s write it in the Hamiltonian form

2 0 ) 2 . 2
[ LU PR (250 Wy B T
2m 2 sin )

ms2 (- — ¢4
L - (5.32)
sin® ¢ h°T
Sin4 (¢_ B ¢+) sinEZJ:b, B siIlE2:;5+

5.11.3 Direct diagonalization

In fact, the advantage of the spin-orbit coupling Hamiltonian is that it is analytically simple.

In this section we derive the properties of the single particle Hamiltonian (5.60). We rewrite it as

(p+00.)*> hQ ho ,

W =) s+ Y, kT
o + 5 oy + 5 o, — ihI'P;

(G+00 K h@-iT) AT

po—v), Mg
om g et T 5 T

ﬁSOC =
(5.33)

In the following, we consider the overall loss term as a constant offset.

We can diagnonalize the 2x2 Hamiltonian and derive the eigenenergies

: 0 5 T
E, :p—ih\/(5)2+(@+——z'—)2

2m

) (5.34)

_r Q. popy, pop, L
_Qmih\/(Q) +(mh) ! I (2>

We will focus on the lower band for our BEC. To relate to our experiment, we set 6 = 0.

In a perturbative treatment, by assuming I' < €2, p2/2m, we can expand
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where the first line

2

Q
Eo=2 h\/ ()2 + (2 (5.36)

represents the lower band energy without the spin-dependent loss term Pj.
In our experiment, we load atoms into the “single-minimum” phase of the Hamiltonian,

where Q > 2p2/mh and allows us to expand near p = 0,

Q PoP Q 1, 2pop o
"y2 F0FNg 20 Z
¢<2>+< Pl 5 ()
2
~Q

(5.37)
1.2
[1 . _( Pop )2]

2 mhf)

1 vy 1T% pp )
2m  m2hQ 202 m2hQ

pol’ . Po \3 3
Pl oirp (5.38)
—I—zme+ ih (th)p

From this result we can see that the non-Hermitian term modifies the effective mass

l_ 2p5 P (E)Q]—l
m  m2hQ  m2hQQ ’

(5.39)

m* =

In addition, we can formulate the imaginary term into an imaginary gauge potential

pol' m*

B = O

(5.40)

The exact results of the energy dispersion is plotted and summarized in Fig. 5.5, 5.6, and
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Figure 5.9: Comparison of the three different models on prediction of the ground state. Red:
non-Hermitian SOC model; purple: minimal model (effective mass and the imaginary gauge
potential); green: projected model (lower band dispersion and the imaginary gauge potential)

5.7. In addition to the spectrum, we can also find the ground state of the Hamiltonian in a flat

potential. Examples are displayed in Fig. 5.8.

5.11.4 Prediction of the ground state

We run numeric solvers using the three different Hamiltonians to verify the correctness of
the projection and approximation. In Fig. 5.9 we plot the ground state displacement from the
center of the box potential, as calculated with the three models. We discover that the imaginary
gauge potential works as an excellent approximation for predicting the ground state center of

mass drift.
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5.12  Quench Dynamics

We know that the non-Hermitian spin-orbit coupled system exhibits the NHSE, which is
shown by theoretically finding the “quasi-edge” modes. But in the following section, we study
the time evolution after one suddenly turns on the non-Hermitian term (quench dynamics). This
is important because: 1. it is of experimental relevance (our experiment time is limited by the
atom loss, typically on the order of 10 ms); and 2. it is itself a valuable question to ask: what
unusual dynamics does the non-Hermitian topology bring to system? Does the time evolution
relate to the topological invariant? There are already some theoretical studies on the dynamics in
a system with NHSE. But they are in different contexts.

We have introduced the simple force model in the last section, which gave us intuition for
the source of the acceleration, but it brought us more confusion than understanding. During the
development of the model, we were puzzled for a long time by some interesting observations,
which I think are better to be elaborate here. We compare the full GPE dynamics simulation with

the projected model.

5.12.1 Magnitude of the acceleration

In Fig. 5.10a, we consider a ground state BEC in a box trap. At¢ = 0 we snap on the
spin-dependent loss which creates the imaginary gauge potential, and simulate the center of mass
evolution of a function of time. According to previous subsection, we know the center of mass
would drift. However, in Fig. 5.10b we can consider the same dynamics starting with a non-
interacting particle-in-box ground state. We discover that case (b) experience drifts that is much

smaller than (a). With case (b), our experimental resolution cannot measure the drift at all — there
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Figure 5.10: Simulated dynamics to illustrate the contribution of the transport. We plot the initial
state density profile above, and the (x) as a function of time ¢ below. (a) BEC ground state, keep
the box trap on. (b) Particle in a box ground state, keep the box trap on. (c) BEC ground state,

snap the trap off.
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must be some interaction effect.

5.12.2 Direction of the acceleration

In the simulation, we find a strange behavior that the direction of transport is not always
the same. We investigated this and the following example is a good illustration. We consider the
cases beginning with the GPE ground state (a,c). What is different in case (c) is that the box trap
is snapped off at £ = (. We notice that the atoms experience an opposite acceleration to case (a)
where the trap is kept. We intend to resolve these puzzles by building a mathematical model for

the non-Hermitian evolution in real space.

5.12.3 Dynamics model

We noticed that the imaginary term is indeed a “gauge field”. Thus, the canonical momentum
might be different from the mechanical momentum from our experience with the real gauge field.
Is there a simple way to understand it?

We are considering the time evolution under the Hamiltonian

2

H=H, +iHy =L
2m*

+V(z) +ifp (5.41)

with or without the external trap potential (box or harmonic). We would like to study the quantum

mechanics by ignoring the mean field interaction. The evolution follows

0 |) = (Hy +iHs) [¢)
(5.42)

i0; (| = (Y| (Hy — iH3)
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Following the spirit of Heisenberg,

i0; (1| O [y = — (W] (Hy — iHa)O [¢0) + (| O(Hy + iHy) )

= —([H,, 0)) + i({H,,0})

(5.43)

This looks simple but we overlooked the fact that state vector [¢) is not normalized to unity

because of the non-Hermitian Hamiltonian.

(1) = (V(0)] 4t )

So our real physical observable is

WO (0) 3,40)
Ty T YO )

As a special case, we first plug in O=1Ito equation 5.43

Oy (Y|v) = (W[ 2Ha [¥) = 2B (Y| p [¥)

We introduce the equation of motion of the physical observable

where we define
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(5.45)

(5.46)

(5.47)



as the renormalized physical observable which is what we measure in the experiment.

Thus, the equation for O =uzis

o)) = S 4 g (4(m.a)) — 20 o)), (5.48)

And the equation for p is:

a4p)) = IV, pD)) + 26({0P) — {())?)- (5.49)

There are two unusual terms. In the p equation, the second term is an “acceleration”
proportional to the variance of the canonical momentum p. On the other hand, the = equation
has also a second term proportional to the “covariance” in the phase space. In the coordinate

basis, the {p, z} term is

WHpab ) = [ deSa(v o - vo.07)

and is sometimes responsible for the opposite physical momentum to the canonical momentum.

‘We note that
({p,z}) = 2(z)(p) = ({z — (z),p — (P)}) (5.50)

and

{p.a} =ih{(a’ + a), (a' — a)}
(5.51)

=2ih(a'a’ — aa)
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5.12.4 Example: Gaussian wave packet evolution

As a concrete example, hereby