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Preface

In this thesis, I aim to present a comprehensive and accessible exploration of turbulence in

atomic gases, particularly through the lens of cold atom Particle Image Velocimetry (PIV).

The inception of this technique came from an unlikely source: a longstanding issue with

the bipolar current servo used for magnetic field control in our lab. This defect, when combined

with high-power radiofrequency (RF) signals, led to an uncontrolled DC offset, impacting the

lab’s RF controls. My advisor, Ian, once suggested using two-tone copropagating Raman beams

as an RF alternative, which, while effective, was not widely adopted.

The breakthrough came when I considered the use of a spatial light modulator (SLM) to

control the spatial pattern of the Raman beam. This would allow for spatially-dependent RF

coupling and, consequently, spatially-dependent spinor transfers. This concept paralleled the

principles of Particle Imaging Velocimetry (PIV) in classical fluids, with spatially-dependent

spinor transfers acting as tracer particles.

I am hopeful that this innovative technique will reinvigorate interest in hydrodynamic

studies within the experimental physics community. By enabling direct measurements of velocity

fields in cold atom experiments, we open new doors to understanding and exploring the rich

dynamics of quantum fluids.
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Chapter 1: Introduction

Bose-Einstein condensates (BECs) represent one of the most intriguing states of matter

in quantum physics. First predicted by Satyendra Nath Bose and Albert Einstein in the early

twentieth century, BECs are formed when particles known as bosons are cooled to temperatures

near absolute zero. Under these extreme conditions, a significant fraction of the bosons occupy

the lowest quantum state, leading to the emergence of quantum phenomena on a macroscopic

scale. This unique state of matter provides an unparalleled platform for exploring a range of

quantum phenomena.

One of the most fascinating aspects of BECs is their behavior as quantum fluids. Unlike

classical fluids, where the flow is governed by the Newtonian mechanics, quantum fluids exhibit

collective behavior governed by quantum mechanics. The particles in a BEC act coherently,

displaying properties such as superfluidity, a flow with zero viscosity, and quantized vortices.

These characteristics make BECs an ideal system for studying fluid dynamics in a regime where

classical intuition that circulation of a vortex can vary continuously gives way to quantum behavior.

Despite the extensive research on BECs, the study of turbulence within these quantum fluids

remains relatively unexplored territory.

Turbulence is a fundamental phenomenon encountered in a wide range of fluids and at all

scales: from classical systems such as the earth’s oceans and atmosphere [4, 5]; confined and solar
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plasmas [6, 7]; and the self-gravitating media of the large-scale universe [8] to quantum fluids

such as neutron stars [9], superfluid 4He [10] and atomic Bose-Einstein condensates (BECs) [11,

12]. All of these are characterized by complex patterns of fluid motion that span a wide range of

length scales. While the understanding of classical turbulence has matured in the past century [13],

that of quantum systems has many open questions [14]. For example, in BECs does there

exist a range of length scales—often termed the inertial scale—in which kinetic energy cascades

from large to small scale in accordance with a Kolmogorov scaling law? Although this scaling

was predicted only for incompressible fluids, it has been observed in virtually all turbulent

fluids [13]. Kolmogorov scaling is generally quantified in terms of velocity structure functions

(VSFs) that require knowledge of the fluid velocity field, which is difficult to measure in quantum

gas experiments. In this dissertation I present a velocimetry technique, analogous to particle

image velocimetry (PIV) [15, 16] employing spinor impurities as tracer particles, and thereby

obtain VSFs in turbulent atomic BECs in agreement with the Kolmogorov scaling.

Existing experimental evidence for turbulence in atomic BECs relies on time-of-flight

(TOF) measurements that have contributions from interaction-driven expansion [11] and the

momentum distribution [17]. This has no clear connection to VSFs, where the order-p VSF is

defined as Sp(l) = ⟨|δvl(x)|p⟩ as a function of displacement l which describes the typical change

in velocity

δvl(x) = [v(x+ l)− v(x)] · el (1.1)

along the direction of the displacement el 1. Without access to the VSF, the turbulence in

1The average ⟨· · · ⟩ is the ensemble (and ergodic for classical fluids) average over all positions x and displacement
directions el. Since the longitudinal and transverse VSFs are expected to be equal in isotropic systems such as ours,
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atomic gases lacks a direct point of comparison with other fluids.

Unlike classical fluid flow, superfluid flow is strictly irrotational with a velocity field governed

by the phase of the superfluid order parameter ϕ via v = ℏ∇ϕ/m. Despite this, it is generally

believed that superfluid turbulence obeys the same scaling Sp(l) ∝ l(p/3) as classical fluids,

described by the initial K41 Kolmogorov theory [18, 19, 20]; in the case of 4He this has been ex-

perimentally verified [21, 22] for p ≤ 3. The more complete K62 theory [23] adds an intermittency

exponent that becomes important for large p and also predicts that the ensemble probability

density function of velocity increments (VI-PDF) is non-Gaussian, with “fat-tails.” Power-

law scaling behavior and the energy cascade have been observed in the momentum distribution

of homogeneously trapped BECs undergoing relaxation [12]; while this was interpreted in the

context of Kolmogorov-type scaling for order p = 2, the observed exponent departed from the

prediction of K41 theory and was instead interpreted using a wave turbulence model.

x position

y 
po

si
ti

on

Figure 1.1: (a) An example of velocity field. (b) Tracer particles (bright pink) are injected into
the system at t = 0. (c) At t = ∆t, tracer particles (bright pink) move from their initial position
(dark pink).

The cold-atom PIV technique, developed in our group, schematically illustrated in Fig. 1.1(a)-

we focus our exposition on the longitudinal VSF.
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(c), enables directly measuring the velocity field and thereby both Sp(l) and the VI-PDF. In

this technique we prepare an initial velocity distribution [representative depiction in Fig. 1.1(a)],

then create localized “tracer particles” consisting of atoms in a different hyperfine state using

a spatially resolved technique [Fig. 1.1(b)], and, after a ∆t delay, measure the displacement of

the tracers [Fig. 1.1(c)]. This then leads directly to the local fluid velocity. The detail of this

technique is introduced in the Chap. 5.

1.1 Thesis overview

This thesis covers three broad topic areas: the first is background, including topics from

atomic physics that form the basis for our experimental techniques and turbulence theory that is

related to the science studied in the context. The second area is technical details, including some

details of our experimental apparatus, as well as how we use it to implement the cold atom PIV

technique. The final category is scientific results, including our measurement of VSFs from VI

which agrees well for low order of VSFs and intermittency is observed from high order of VSFs

and scale-dependent VI-PDF in a turbulent condensate.

Chapter 2 introduces important tools from atomic physics, including the light matter interactions

in which the tensor light shift is discussed in detail since it is directly related to the way we

generate the tracer particles in the system. I also discuss the laser cooling and evaporative cooling

techniques we apply to produce BEC in the lab.

Chapter 3 introduces the basic theory of classical and quantum turbulence, including the

Kolmogorov theory in classical incompressible turbulence, and classical compressible turbulence

using coarse graining, and finally the theoretical models and key experimental findings of quantum
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turbulence. Velocimetry techniques are also discussed in this chapter. For readers who are only

interested in the atomic physics, this chapter can be skipped.

Chapter 4 describes the apparatus for producing 87Rb BEC, including the vacuum system,

magnetic field control, and optical control. Readers who are not interested in experimental details

can skip this chapter.

Chapter 5 presents the implementation of cold-atom PIV in velocity field measurement.

Benchmark examples include dipole mode and scissors mode in the harmonic trap and the quadrupular

irrotational flow field in a rotating harmonic trap.

Chapter 6 introduces the application of the cold-atom PIV in a turbulent condensate. The

velocity structure function is measured and agreed well with the Kolmogorov scaling. The

intermittency is also observed from the fat tail of the velocity increments probability distribution

function. Numerical simulation from a dissipation Gross Pitaevskii equation is also discussed.

Chapter 7 introduces a strange behavior in superfluid hydrodynamics, in which by imprinting

anisotropic spatial-dependent potential, the superfluid density becomes a tensor related to the

speed of sound. The theory and experimental details are discussed.
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Chapter 2: Atom Light Interaction and Bose-Einstein Condensate

In this chapter, I will discuss the basic light atom interaction formalism used in the ultracold

gas community, from two-level atoms to the coherent transfers, in which the light shift is discussed

in detail. Then we discuss its application of laser cooling and evaporative cooling. The realization

in the lab is introduced in Chap. 4. Please note that the ultracold gas is considered as a single

particle in the first four sections of this chapter, which means that the scattering between atoms

is neglected. In the last section, we will add the interaction when we discuss the Bose-Einstein

condensate.

2.1 Two-level systems

A two-level atom is the simplest configuration for quantum mechanics, where the Hamiltonian

can be expressed by

Hatom = ℏω|e⟩⟨e|. (2.1)

Here, the energy of the ground state |g⟩ is set to 0 for simplicity, and the energy difference

between the excited state |e⟩ and the ground state |g⟩ is ℏω. Now we introduce the light to the

system. In a semi-classical picture, the light can be expressed by its electrical field.

E(r, t) = ϵ(r, t) exp (iνt− ik · r) + C.C, (2.2)
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where ϵ is a slowly varing amplitude compared to the spatial frequency k, and C.C is the complex

conjugate. In atomic physics, under dipole approximation, we write the atom-light interaction as

a perturbative term −d · E(r = r0, t), where d = qer is the dipole moment of the atom with

charge qe, and r0 is the position of the atom. A rigorous derivation can be obtained from the

Hamiltonian of an electron with charge qe and mass m moving in an electromagnetic (EM) field.

H =
1

2m
[pe − qeA(r, t)]2 + qeϕ(r, t) + V (r, t)− µ ·B(r, t), (2.3)

where A and ϕ are the vector and scalar potential of the EM field, B is the magnetic field, µ is

the magnetic dipole moment, and V is the core Coulomb potential. Using the Coulomb gauge,

that is, ∇·A = 0; ϕ = 0, the vector potential satisfies the wave equation and can be decomposed

as A(r, t) = A(t) exp (ik · r). Expand the vector potential around the position of the atom r0,

A = A(t)eik·r0 [1 + ik · δr]. (2.4)

Under the dipole approximation k · δr ≪ 1, the vector potential becomes spatially independent,

that is, A ≈ A(t)eik·r0 . Since the position dependence of A is gone, thereby A commutes to pe.

So we basically treat the EM field as a classical field and the Hamiltonian becomes the following.

H =
1

2m
[pe

2 − 2qepe ·A+ q2eA
2] + V − µ ·B. (2.5)

The vector potential coupled to the momentum can be transferred away by a unitary transformation

|ψ′⟩ = R|ψ⟩ = exp [−iqe
r ·A(t)

ℏ
]|ψ⟩, (2.6)
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and the Hamiltonian becomes

H ′ = RHR† + iℏ
∂R

∂t
R† =

pe
2

2m
+ iℏ(

−iqer
ℏ

· ∂A
∂t

) + V (r)− µ ·B, (2.7)

where RpeR
† = pe + qeA is used. The second term on the right-hand side (RHS) is exactly the

interaction term Hint = −d · E(r0, t). So, we can decompose the Hamiltonian into two terms.

Hatom =
pe

2

2m
+ V (r), Hint = −d · E(r0, t)− µ ·B(r0, t) (2.8)

The atom-light interaction consists of the electrical dipole interaction d · E(r0, t) and the

magnetic dipole interaction −µ · B(r0, t). Electric dipole transitions only have a non-vanishing

matrix element between quantum states with different parity. Magnetic dipole transitions in

contrast couple states with the same parity. The response of the magnetic dipole transition is

much weaker than that of electric dipole transitions, so normally we consider only the electric

dipole interaction unless it is forbidden by selection rules.

2.2 Coherent transfer between two levels

Rabi oscillations [24] and adiabatic rapid passage (ARP) [25] are two frequently used

methods for transferring atoms between different states. In this section, the rotating wave approximation

(RWA) [26] is applied to obtain an effective Hamiltonian without a fast oscillation in the optical

frequency, from which we discuss Rabi flopping and ARP.
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2.2.1 Rotating Wave Approximation

For a two-level atom, the electric dipole moment d can be decomposed under the eigenbasis

of Hatom

d = dge|g⟩⟨e|+ deg|e⟩⟨g|, (2.9)

where for spherical symmetric atoms dgg = dee = 0. Under the dipole approximation E(t) =

ϵ(t)e−iνt + C.C. So, the Hamiltonian becomes

H = ℏω|e⟩⟨e| − (dge|g⟩⟨e|+ deg|e⟩⟨g|) · (ϵ(t)e−iνt + ϵ∗(t)eiνt). (2.10)

To obtain an effective Hamiltonian without the fast oscillating frequency ν, we go to the rotating

frame by applying U = |g⟩⟨g|+ e−iνt|e⟩⟨e|. The effective Hamiltonian then becomes

Heff = U †HU − iℏ(
d

dt
U)U † = ℏ(ω − ν)|e⟩⟨e|+ deg · ϵ(t)|e⟩⟨g|+ dge · ϵ∗(t)|g⟩⟨e|, (2.11)

where the fast oscillation with frequency 2ν is ignored under RWA.

2.2.2 Rabi Oscillation and Adiabatic Rapid Passage

When the excitation is on resonance (ν = ω), and the atom is initially on the ground

state, the atom population will oscillate between the ground and excites states by cos2 Ωt
2

, where

Ω = 2deg·ϵ
ℏ is the Rabi frequency. Introducing the detuning δ = ω− ν, the effective Hamiltonian
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is

Heff = ℏ

 0 −Ω∗
2

−Ω
2

δ

 . (2.12)

with eigenenergies ϵ± = ℏδ
2
∓ ℏ

2

√
|Ω|2 + δ2 and eigenstates which often called dressed states

|ϕ±⟩ =
1

N±

(
Ω∗|g⟩+ (−δ ±

√
|Ω|2 + δ2)|e⟩

)
. (2.13)

Note that |g⟩ and |e⟩ are already rotated; for convenience, I use the same label. The normalized

factors are N2
± = |Ω|2 +

(
−δ ±

√
|Ω|2 + δ2

)
.

When the excitation is far off-resonant (|δ| ≫ ∥Ω|), the dressed state reduces to the bare

state without the coupling, i.e., for the blue-detuned case

|ϕ+⟩ ≈
Ω∗

2δ
|g⟩+ |e⟩ ≈ |e⟩, |ϕ−⟩ ≈ |g⟩ − Ω

2δ
|e⟩ ≈ |g⟩. (2.14)

ϵ+ ≈ ℏ(δ +
|Ω|2
4δ

), ϵ− ≈ −ℏ
|Ω|2
4δ

. (2.15)

We see that the eigenenergy of the ground and excited states shifts by ℏ |Ω|2
4δ

in opposite directions;

this effect is called the AC stark shift. If Ω is inhomogeneous, it can be used to create a trapping

potential for optical tweezers and dipole trap.

Consider the case that we turn on the coupling when the atoms are initially in the ground

state; then the detuning is swept adiabatically from far blue detuned to far red detuned, where the

Landau-Zener transition is negligible if the swept is slow compared to the Rabi frequency, and

we transfer the state from |g⟩ along the channel |ϕ−⟩ to the case δ ≈ +∞ where |ϕ−⟩ reduces to

|e⟩. Finally, if we turn off the coupling, the atoms will end up in the bare state |e⟩. The above
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process is called an adiabatic rapid passage.

2.3 Optical Stark shift

In the last section, we have seen the effect of the AC stark shift when the excitation is far

from resonant. In principle this light shift can be derived from the second-order time-dependent

perturbation theory without RWA, i.e.,

∆Eα = −
∑
β ̸=α

2ωβα|⟨α|d · ϵ̂|β⟩|2|ϵ|2
ℏ(ω2

βα − ω2)
, (2.16)

where ωβα = (Eβ − Eα)/ℏ. For the large detuning and two-level case, this reduces to the AC

Stark shift in the previous section, and the ωβα on the numerator shows the opposite shift for the

ground and excited states. We can obtain the polarizability α(ω) of the system by −∆E/|ϵ|2, and

the result

α(ω) =
∑
β ̸=α

2ωβα|⟨α|d · ϵ̂|β⟩|2
ℏ(ω2

βα − ω2)
(2.17)

is Kramers-Heisenberg formula for the polarizability.

However, since the electric field is a vector, the polarizability should be a tensor which

satisfies dµ(ω) = αµν(ω)ϵν , so the light shift in general should be written in the form ∆E =

−αµν(ω)ϵµϵν with

αµν(ω) =
∑
β ̸=α

2ωβα⟨α|dµ|β⟩⟨β|dν |α⟩
ℏ(ω2

βα − ω2)
. (2.18)

Note that the above expression assumes linear polarization, if the light is circularly polarized the

ωβα in the numerator should be replaced by ω.

Since the state in the atomic BEC is typically described under the hyperfine basis |F,mF ⟩,
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we will rewrite the polarizability tensor for the state |F,mF ⟩

αµν(ω) =
∑
F ′,m′

F

2ωF ′F ⟨F,mF |dµ|F ′,m′
F ⟩⟨F ′,m′

F |dν |F,mF ⟩
ℏ(ω2

F ′F − ω2)
≡

∑
F ′

2ωF ′FTµν
ℏ(ω2

F ′F − ω2)
, (2.19)

where the angle dependence is merely on the dipole product tensor

Tµν =
∑
m′

F

⟨F,mF |dµ|F ′,m′
F ⟩⟨F ′,m′

F |dν |F,mF ⟩. (2.20)

It is straightforward to decompose the rank-2 tensor into scalar T (0), vector T (1), and tensor parts

T (2) using the irreducible tensor formalism, that is,

Tµν =
1

3
T (0)δµν +

1

4
T (1)
σ ϵσµν + T (2)

µν . (2.21)

T (0) is the trace of Tµν , that is,

T (0) = Tµµ (2.22)

T (1) is the anti-symmetric part of the tensor, i.e.,

T (1)
σ = (Tµν − Tνµ)ϵσµν . (2.23)

T (2) is the rest part.

We now try to express the scalar and vector part by the inner product and cross product of
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two vectors A and B, i.e.,

T
(0)
0 = − 1√

3
A ·B, T (1)

q =
i√
2
A×B, (2.24)

where the prefactors are given from the ⟨1, q; 1,−q|0, 0⟩ = −(−1)q/
√
3 and |⟨1, q′; 1, q−q′|1, q⟩| =

1/
√
2 unless q = q′ = 0. So T (0) becomes

T (0) =
∑
m′

F

⟨F,mF |dµ|F ′,m′
F ⟩⟨F ′,m′

F |dµ|F,mF ⟩

= −
√
3⟨F,mF |

∑
m′

F

d|F ′,m′
F ⟩⟨F ′,m′

F |d

(0)

|F,mF ⟩

= −
√
3⟨F ||

∑
m′

F

d|F ′,m′
F ⟩⟨F ′,m′

F |d

(0)

||F ⟩ ⟨F,mF |F,mF ; 0, 0⟩

= −
√
3(−1)2F

√
2F ′ + 1


1 1 0

F F F ′

 ⟨F ||d||F ′⟩⟨F ′||d||F ⟩

= −
√
3(−1)F+F ′√

2F + 1


1 1 0

F F F ′

 |⟨F ||d||F ′⟩|2

= |⟨F ||d||F ′⟩|2.

(2.25)

We used the Wigner-Eckert theorem in the third row, and further express the reduced matrix
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elements by Wigner-6j symbol using

⟨F ||

∑
m′′

F

d|F ′′,m′′
F ⟩⟨F ′′,m′′

F |d

(k)

||F ′⟩

=(−1)k+F+F ′√
(2F ′′ + 1)(2k + 1)


1 1 k

F ′ F F ′′

 ⟨F ||d||F ′′⟩⟨F ′′||d||F ⟩.

(2.26)

The proof can be found in chapter 7 of [27], where the 1 in the Wigner-6j indicates the rank of the

dipole operator, and the Wigner-6j value is (−1)−F−F ′−1/
√
3(2F + 1). In the second last row of

Eq. (2.25) we also used the conjugate of the reduced matrix elements

⟨F ′||T (k)||F ⟩ = (−1)F
′−F

√
2F + 1

2F ′ + 1
⟨F ||T (k)||F ′⟩∗. (2.27)

Similarly, we can express the vector part

T (1)
q = 2

∑
m′

F

⟨F,mF |d|F ′,m′
F ⟩ × ⟨F ′,m′

F |d|F,mF ⟩

= −i2
√
2⟨F,mF |

∑
m′

F

d|F ′,m′
F ⟩ × ⟨F ′,m′

F |d

(1)

q

|F,mF ⟩

= −i2
√
2⟨F ||

∑
m′

F

d|F ′,m′
F ⟩ × ⟨F ′,m′

F |d

(1)

||F ⟩ ⟨F,mF |F,mF ; 1, q⟩

= −i2
√
2(−1)2F+1

√
3(2F ′ + 1)


1 1 1

F F F ′

 ⟨F ||d||F ′⟩⟨F ′||d||F ⟩ mF δq0
F (F + 1)

= i2
√
2(−1)F+F ′√

3(2F + 1)


1 1 1

F F F ′

 |⟨F ||d||F ′⟩|2 mF δq0
F (F + 1)

.

(2.28)
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Note that the vector part is linear to mF , and the only non-vanishing part is T (1)
0 , thereby the

electric field vector should be ∼ (ϵ× ϵ∗)(1)0 to contract the polarizabiity.

Finally, following the similar procedure, the tensor part can be expressed as

T (2)
q = (−1)F+F ′

√
5(2F + 1)

F (F + 1)(2F − 1)(2F + 3)


1 1 2

F F F ′

 |⟨F ||d||F ′⟩|2[m2
F−F (F+1)]δq0

(2.29)

Notice that all non-vanishing irreducible components T (k)
q should satisfy q = 0 to preserve

mF , and thereby contract the T (k)
q to a rank-0 energy shift, the corresponding electric field tensor

(EE)
(k′)
q′ should satisfy k′ = k and q′ = 0. So, the total energy shift can be expressed by

∆E(F,mF , ω)

=−
∑
F ′

2

ℏ(ω2
F ′F − ω2)

[
ωF ′F

3
T (0)|ϵ|2 + ω

4
T

(1)
0 (ϵ∗ × ϵ)z +

ωF ′F√
6
T

(2)
0 (3|ϵz|2 − |ϵ|2)

]
.

(2.30)

We note that the first term in the square bracket is independent of the polarization of the electric

field, so it is called the scalar light shift, and we will show below that it reduces to the familiar

AC Stark shift for large detunings. The second term is called the vector light shift, since the rank

of the tensor is 1, where ω in the second term indicates that the vector light shift comes from the

circular polarized light. The last term is related to the rank-2 tensor, so we call it tensor light

shift.

Writing out the mF dependence, we have

δE(F,mF , ω) =− α(0)(F, ω)|ϵ|2 − α(1)(F, ω)(iϵ∗ × ϵ)z
mF

F

− α(2)(F, ω)
3|ϵz|2 − |ϵ|2

2

3m2
F − F (F + 1)

F (2F − 1)
,

(2.31)
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where the scalar, vector and tensor polarizabilities are

α(0)(F, ω) =
∑
F ′

2ωF ′F |⟨F ||d||F ′⟩|2
3ℏ(ω2

F ′F − ω2)
,

α(1)(F, ω) =
∑
F ′

(−1)F
′+F+1

√
6F (2F + 1)

F + 1


1 1 1

F F F ′


ω|⟨F ||d||F ′⟩|2
ℏ(ω2

F ′F − ω2)
,

α(2)(F, ω) =
∑
F ′

(−1)F
′+F

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)


1 1 2

F F F ′


ωF ′F |⟨F ||d||F ′⟩|2
ℏ(ω2

F ′F − ω2)
.

(2.32)

It is worth noting that the vector light shift is linear to mF , thereby it is similar to the

weak field Zeeman shift, and we can view the AC electric field as an effective magnetic field, i.e.

Beff ∼ (iϵ∗ × ϵ)z. Clearly, only a circularly polarized light contributes to the vector light shift;

for the case ϵ̂ = (êx + iêy)/
√
2, the effective B field is along (iϵ̂∗ × ϵ̂)z = −êz.

2.3.1 Tune-out (magic) Wavelength

In this section, we will focus on the case of large detuning, where the detuning is much

greater than the hyperfine splitting (∼GHz) so we can ignore the hyperfine structure. In this

case the light shift can be calculated from the two-level AC Stark shift −ℏ|Ω|2/4δ, but if more

energy levels are involved, it is possible to cancel out the scalar light shift, and the wavelength

of the incident light is referred to as the tune-out (magic) wavelength. To see this, we first

decompose the hyperfine structure reduced matrix elements into fine structure reduced matrix
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elements. Using

⟨F ||d||F ′⟩ ≡ ⟨J, I;F ||d||J ′, I ′;F ′⟩

= ⟨J ||d||J ′⟩(−1)F
′+J+I+1

√
(2F ′ + 1)(2J + 1)


J J ′ 1

F ′ F I

 ,

(2.33)

and Biedenharn—Elliott sum rule [27], the polarizabilities become

α(0)(F, ω) ≈
∑
J ′

2ωJ ′J |⟨J ||d||J ′⟩|2
3ℏ(ω2

J ′J − ω2)
,

α(1)(F, ω) ≈
∑
J ′

(−1)−2J−J ′−F−I+1

√
6F (2F + 1)

F + 1
(2J + 1)

ω|⟨J ||d||J ′⟩|2
ℏ(ω2

J ′J − ω2)


1 1 1

J J J ′



J J 1

F F I

 ,

α(2)(F, ω) ≈
∑
J ′

(−1)−2J−J ′−F−I

√
40F (2F + 1)(2F − 1)

3(F + 1)(2F + 3)
(2J + 1)

ωJ ′J |⟨J ||d||J ′⟩|2
ℏ(ω2

J ′J − ω2)


1 1 2

J J J ′



J J 2

F F I

 ,

(2.34)

where the ωF ′F is replaced by ωJ ′J due to large detuning.

Now we apply this to the atom we are interested, i.e., 87Rb. The energy level of the ground

state and D line is shown in Fig. 2.1. The dashed level corresponds to the tune-out wavelength

which makes the α(0)(F, ω) vanishing.

From large detuning we have 2ωJ ′J/(ω
2
J ′J − ω2) ≈ 1/δ, thereby

α(0)(F, ω) ≈ |⟨J = 1
2
||d||J ′ = 1

2
⟩|2

3ℏδ1
+

|⟨J = 1
2
||d||J ′ = 3

2
⟩|2

3ℏδ2
, (2.35)
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Figure 2.1: 87Rb D line.

where ⟨J = 1
2
||d||J ′ = 1

2
⟩ = 2.992ea0, ⟨J = 1

2
||d||J ′ = 3

2
⟩ = 4.227ea0 [28]. Here, a0 is the

Bohr radius. Note that the ratio of the reduced matrix element is approximately
√
2. Therefore,

at the tune-out wavelength λmagic, the δ2 + 2δ1 = 0, that is,(1/780 − 1/λmagic) + 2(1/795 −

1/λmagic) = 0. So, the tune-out wavelength is λmagic ≈ 790 nm.

Normally we don’t need to consider the effect of the vector light shift and tensor light shift

because the scalar light shift dominates, however, around the tune-out wavelength the higher rank

light shift is not negligible.

It is interesting to see that the tensor polarizability α(2)(F, ω) is also vanishing around

λmagic for the ground state of the 87Rb, owing to the vanishing Wigner-6j, i.e.,


1 1 2

1
2

1
2

1
2

 =


1 1 2

1
2

1
2

3
2

 = 0. So at the tune-out wavelength, if the incident light is not purely linear

polarized, the only nonvanishing light shift comes from the vector light shift, and its effect is

analogous to an effective magnetic field.
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2.3.2 AC vector light shift as RF

In the previous section, we have seen that the vector light shift can be analogous to a DC

effective magnetic field. Can we make it an AC effective magnetic field so that it can drive the

magnetic dipole transition? The time dependence can be introduced from the two-tone circularly

polarized light E = ϵ[(êx + iêy)/
√
2](e−i(ω+∆ω)t + e−i(ω−∆ω)t) + C.C., where ω can be selected

to tune out the scalar light shift and ∆ω is the modulation frequency that can be easily added

in the experiments by an acousto-optic modulator (AOM). Consequently we have an effective B

field Beff ∼ −2[cos (2∆ωt) + 1]êz, thereby apart from the DC effective magnetic field along

the light propagation, we also obtain an effective AC magnetic field with angular frequency 2∆ω

along the same direction. We can view it as an effective RF field, which is capable of driving the

magnetic dipole transition between different mF states in the 52S1/2 manifold of 87Rb, where the

electric dipole transition is forbidden due to J = J ′ = 0.

2.4 Laser Cooling

Previous sections neglect spontaneous emission and dissipation in the system. In this

section, we add the dissipation into the system and discuss the laser cooling techniques from

the optical Bloch equation.
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2.4.1 Optical Molasses

With the spontaneous emission, the pure state decoheres to a mixed state typically described

by a density matrix ρ satisfying

∂tρee = i
Ω

2
(ρeg − ρge)− Γρee,

∂tρgg = −iΩ
2
(ρeg − ρge) + Γρee,

∂tρge = −(
Γ

2
− iδ)ρge − i

Ω

2
(ρee − ρgg),

∂tρeg = −(
Γ

2
+ iδ)ρeg + i

Ω

2
(ρee − ρgg),

(2.36)

where Ω and δ are the Rabi frequency and the detuning, and Γ is the excited state decay rate [29].

The force on an atom can be derived using Heisenberg equation of motion, i.e.,

F =
d

dt
⟨p⟩ = i

ℏ
⟨[H,p]⟩ = −⟨∇H⟩ = −Tr(ρ∇H). (2.37)

Since we are interested in the force induced by the laser-atom interaction, and under dipole

approximation the force becomes

F = −ℏ
2
(ρ∗eg∇Ω + ρeg∇Ω∗). (2.38)

We know that one part of the force is related to the scalar light shift, which only depends on the

magnitude of Rabi frequency; thus we decompose it to be a phase irrelevant and a phase relevant
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term using Ω = |Ω|eiϕ, i.e.,

∇Ω = Ω

(
∇|Ω|
|Ω| + i∇ϕ

)
⇒ ∇(lnΩ) = ∇(ln |Ω|) + i∇ϕ. (2.39)

We then use the steady-state solution of Eq. (2.36)

ρeg =
−iΩ

2(Γ
2
+ iδ)(1 + s)

, s =
|Ω|2

2[(Γ
2
)2 + δ2]

(2.40)

to replace the ρeg in Eq. (2.38), where s is the saturation parameter. We then obtain the following.

F =
ℏs

1 + s
(δ∇ ln |Ω|+ Γ

2
∇ϕ). (2.41)

The first term, phase irrelevant, is the dipole force used to trap atoms; the second term, phase

relevant, is the radiation-pressure force.

The previous argument assumes the atom is at rest; now we add velocity into the expression.

Suppose that the atom is moving with velocity v, the Rabi frequency Ω now becomes time

dependent, that is,

∂Ω

∂t
= v · ∇Ω. (2.42)

The steady-state solution of the optical Bloch equations has to change due to this time dependence.

Treating the change as a perturbation and keeping the terms to linear order of v, we have

∂ρeg
∂t

= ρeg

(
1

Ω

∂Ω

∂t
− 1

1 + s

∂s

∂t

)
,

∂(ρee − ρgg)

∂t
= −(ρee − ρgg)

1

1 + s

∂s

∂t
. (2.43)
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The final steady-state solution becomes

ρeg =
−iΩΓγ∗v/2

Γv|γv|2 + |Ω|2Re[γv]
, (2.44)

where Re stands for the real part and

Γv = Γ− s

1 + s
v ·

(
∇s

s

)
, γv =

Γ

2
+ iδ +

1− s

1 + s
v · ∇s

2s
+ iv ·∇ϕ. (2.45)

We can obtain the total force on the moving atom by putting this in Eq. (2.38). Now we study

the case that the incident light is a plane wave with wavenumber k, so the ∇s = ∇|Ω| = 0 and

∇ϕ = k. We then obtain

ρeg =
−iΩ

2[Γ/2 + iδ(v)](1 + s(v))
, s(v) =

|Ω|2
2[(Γ

2
)2 + δ(v)2]

(2.46)

where δ(v) = δ + k · v. We notice that the only difference between Eq. (2.46) and Eq. (2.40) is

a Doppler shift added to the detuning. And the radiation-pressure force becomes

Frad =
ℏkΓ
2

s(v)

1 + s(v)
. (2.47)

For a red-detuned light (δ > 0), the force is frictional, as can be seen from Fig. 2.2. And if two red

detuned beams with wave vector k and −k are involved, the deceleration effect is symmetric and

can be used to slow the motion of the atomic gas along the direction of k. Furthermore, if three

orthogonal pairs of these Doppler cooling beams are added to the system, the atom’s deceleration

will be along every direction, and the temperature of the gas can be largely decreased. This
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technique is typically referred to as optical molasses [30]. The limit of this cooling is T =

−6 −4 −2 0 2 4 6

−0.4

−0.2

0

0.2

0.4

v[Γ/k]

F
r
a
d
[ℏ
k
Γ
]

1D optical molasses

Figure 2.2: Frictional force of Doppler cooling when s(0) = 2 and δ = Γ. The blue (purple)
dashed line is when k and v have the same (opposite) direction, and the red solid line is the sum
of the two.

ℏΓ/2kB, which is called the Doppler limit.

2.4.2 Magneto-optical Trap

The optical molasses can cool the temperature of the gas, but is unable to trap the atoms.

In this section, I will introduce a technique that trapping and cooling can be simultaneously

achieved by using circular polarized red-detuned light with anti-Helmholtz coil pairs, and the

trap is referred to as the magneto-optical trap (MOT) [31].

For an anti-Helmoholtz pair with the symmetry axis along z, around the center of the trap,

the magnetic field produced can be expressed by B(x, y, z) = Bxxx + Byyy + Bzzz, and due to
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symmetry Bxx = Byy and Bzz = −2Bxx derived from ∇ ·B = 0.

Now let us consider the cooling along the z direction. The magnetic gradient along z gives

a spatially dependent Zeeman shift as shown in Fig. 2.3, where for simplicity the ground and

excited states are |F = 0⟩ and |F = 1⟩, so we only need to consider the Zeeman shift on the

excited states. Meanwhile, a pair of red-detuned circular-polarized counter-propogating beams

propogates along the z direction. The polarizations of the two beams are opposite compared to

the quantization axis êz.1

B B

νν

ν0
σ+ σ−

F = 1

F = 0

mF = 0

mF = 0

mF = 1

mF = −1

z

Figure 2.3: MOT scheme.

We now calculate the radiation force for an atom located at z with velocity v along êz. The

detuning for the σ− and σ+ light can be expressed by

δ(−)(z, v) = −ν + (ν0 −∆B(z))− kv, δ(+)(z, v) = −ν + (ν0 +∆B(z)) + kv, (2.48)

where ℏ∆B(z) = gµBBzzz is the Zeeman splitting at z. We can obtain the radiation-pressure

force by plugging this into Eq. (2.47), and the only difference compared to the optical molasses is
1But the polarization is the same in the optical reference frame, i.e., if we ride on the beam the polarization would

be the same.
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the kv should be replaced by kv+∆B(z), therefore the radiation-pressure force can be expressed

by

Frad(v, z) = −α(v +∆B(z)/k), (2.49)

where α is the damping coefficient. In addition to the cooling force −αv, the velocity-independent

term −α∆B(z)/k is the trapping force that pushes the atoms back to z = 0. So if we have

this setup in 3 orthogonal directions, we can obtain the 3D optical molasses and a 3D trap

simultaneously, and it is called 3D MOT.

2.4.3 Polarization gradient cooling

The MOT and optical molasses cannot beat the Doppler limit because of random heating

from the spontaneous emission. In this section, I will introduce a sub-Doppler cooling scheme

which exploits the internal structure of atoms and the fact that light can exert forces on atoms

beyond the simple Doppler effect. The force comes from the spatial dependence of the polarization;

thus, it is also called polarization gradient cooling (PGC) [32]. Generally speaking, the PGC

requires two red-detuned counterpropogating beams with orthogonal polarization. In this section,

I will discuss two cases: (i) the orthogonal linear polarized configuration and (ii) the orthogonal

circular polarized configuration.

2.4.3.1 Linear polarization configuration

In the section. 2.3, we have seen that the AC Stark shift can be decomposed to the scalar,

vector, and tensor parts. Here, we will use the vector light shift that lifts the degeneracy of

ground and excited states of the atom analogous to the Zeeman effect under a spatial-dependent
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polarization setup.

Consider the two counter-propogating beams are polarized along êx and êy, i.e.,

E(z, t) = E0e
ikz−iωtêx + E0e

−ikz−iωtêy + C.C.

= E0e
−iωt[eikz êx + e−ikz êy] + C.C.

(2.50)

Note that the |E| is spatial independent, but the polarization is spatial independent, thereby

the scalar light shift cannot break the degeneracy and the vector light shift will lift the degeneracy

if the effective magnetic field is non-vanishing.

Using Eq. (2.31) the effective magnetic field becomes

Beff (z) ∼ (iϵ∗ × ϵ)z êz = −2E2
0 sin(2kz)êz, (2.51)

where ϵ = E0[e
ikz êx + e−ikz êy].

For simplicity, we assume that the ground state is |F = 1⟩, and the spatial-dependent shift

can be seen in Fig. 2.4.

Here, we will explain the cooling process qualitatively. Due to the optical pumping effect,

the steady-state solution at z = (1
8
+ n

2
)(2π/k) would be |1,−1⟩ where the light is σ−. When

the |1,−1⟩ atom moves by 1
4
(2π/k), it reaches the valley of |1, 1⟩, where the light is σ+, then

again due to optical pumping, the atom will be transferred to |1, 1⟩ in an anti-stokes process

which reduces the kinetic energy of the system. This argument is similar to the Greek mythology

of Sisyphus who rolling a stone upward to the peak of a mountain but it rolls off to the valley

”spontaneously”, and this process repeats over and over, so we typically refer to it as Sisyphus

cooling. A more rigorous derivation using the optical Bloch equation is given in [33].
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Figure 2.4: Sisyphus cooling scheme.

2.4.3.2 Circular polarzation configuration

Consider the light is incident the same as the MOT scheme but without any external

magnetic field, then the electric field can be written as

E(z, t) = E0e
ikz−iωt(êx + iêy) + E0e

−ikz−iωt(êx − iêy) + C.C.

= 2E0e
−iωt[cos(kz)êx − sin(kz)êy] + C.C.

(2.52)

The |E| is spatial-independent, thereby the scalar light shift does not lift the degeneracy.

Note that the vector light shift is also 0 since ϵ = ϵ∗, so the AC Stark shift does not break the

degeneracy, thereby the cooling doesn’t come from the Sisyphus effect.

The polarization of the electric field at each point is linear. Consider an atom moving
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along êz with velocity v, then if we go to the frame rotating with −kv about êz, the polarization

is fixed. If the atom’s initial position is z = 0, then in the rotating frame the electric field

is constantly along êx. In the rotating frame, an additional gauge transformation term would

modify the Hamiltonian by ∆H = kvFz, which breaks the degeneracy by a purely motion-

induced effect. Again consider the |F = 1⟩ atoms, for the steady state the |1,−1⟩ atoms tend to

move along êz, while the |1, 1⟩ tends to move along −êz. If the excited state has cyclic transitions

with the |F = 1⟩ manifold, then the atom tends to absorb more photons from the cyclic transition

because of the greater Clebsch-Gordon coefficient. In this case, the |1,−1⟩ (|1, 1⟩) tends to absorb

more photons from σ−(σ+) light which propagates along −êz (êz). Thus, an atom moving right

(left) tends to absorb photons moving left (right), which results in a cooling effect. A rigourous

derivation is given in [33].

Note that the above argument relies on a zero external magnetic field. A nonzero magnetic

field results in a nonzero shift vB in the radiation-pressure force Frad = −α(v − vB), where α is

the damping coefficient. Under a zero external magnetic field, the temperature limit of the PGC

is the recoil limit Tr, i.e., kBTr = ℏk2
m

, where m is the mass of the atom and k is the wavenumber

of the light.

2.4.4 Evaporative Cooling

The laser cooling technique has a temperature limit close to the recoil limit, but still not

cold enough to reach the Bose-Einstein condensation. To lower the temperature, one has to

sacrifice the number of atoms using evaporation which is similar to the evaporation of hot water,

where the steam with high kinetic energy goes away and the remaining water molecules with
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less kinetic energy stay in the cup. This process does not conserve the number of particles, so to

reach a high phase-space density one cannot evaporate too aggressively. Atomic physicists apply

this evaporative cooling technique to the cold atoms [34]. In this section, I will introduce two

commonly used evaporative cooling techniques: (i) RF evaporation in the magnetic trap and (ii)

dipole evaporation in optical dipole trap.

2.4.4.1 RF Evaporation

Consider atoms loaded in the quadrupole magnetic trap, where the atoms with high energy

are further away from the trap center. Using 87Rb as an example, in the |F = 1⟩ manifold only

the state |1,−1⟩ is magnetic trappable. So, evaporation can be realized by pumping the atoms

with high kinetic energy into magnetic untrappable states, that is, |1, 0⟩ and |1, 1⟩. These states

can be coupled by the RF field, and we can understand it using the dressed state picture. The

coupled RF transition to the untrapped state is prominent when the detuning is within the Rabi

frequency, that is, |δ| ∼ |Ω|.

Again we only study the 1D case, the energy level of a magnetic trap along (0, 0, z) is

H = gmzµBBzzz, so the energy splitting is δω = gµBBzzz/ℏ. Then given the RF frequency

ωRF , some of the atoms in the spatial range ℏ
gµBBzz

(ωRF ± Ω) will become untrappable. Then

atoms with less energy that are located closer to the trap center will collide with the remaining

trappable atoms and rethermalize to a lower temperature. This RF effect is sometimes called the

”RF knife”. If we continuously (adiabatically) reduce the ωRF , we placed the RF knife close to

the center of the trap, and the temperature will be much lower at the cost of fewer atoms.
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2.4.4.2 Dipole Evaporation

Apart from the magnetic trap, the atoms can be loaded into optical dipole trap which

typically uses the dipole force (scalar light shift) from a red-detuned Gaussian beam. Around

the center of the trap, it can be approximated to a harmonic trap. By reducing the light intensity,

the trap depth decreases, so that the atoms away from the trap center with high kinetic energy

go out of the trap and become untrappable. If this trap depth reduction is done adiabatically, the

atoms can collide and re-thermalize to a lower temperature.

2.5 Atomic Bose-Einstein Condensates

In the context of dilute Bose gases, the interactions between particles, though weak due to

the low density of the gas, are crucial for understanding the system’s behavior. These interactions

are commonly approximated using a pseudo-potential that is characterized by the s-wave scattering

length. This approximation is particularly useful because it simplifies the complex nature of

interatomic forces into a manageable form, especially at low temperatures where s-wave scattering

predominates. In this section, I will introduce the Gross-Pitevskii equation (GPE) [35, 36] to

describe the ground state of BEC, and the study the elementary excitation using Bogoliubov-de-

Gennes (BdG) formalism [37, 38].

2.5.1 Gross-Pitevskii equation

In a completely condensed system, each particle is in an identical single-particle state,

denotedψ(r), fulfilling the normalized condition
∫
d3r|ψ(r)|2 = 1. The many-particle condensate’s

wavefunction in a mean-field approach is represented as the symmetrized product of these single-
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particle wavefunctions due to its bosonic nature, expressed as Ψ(r1, r2, ..., rN) =
∏N

i=1 ψ(ri).

This wavefunction is influenced by three key components: kinetic energy, potential energy,

and interaction energy. The mean-field interaction energy g is dependent on the s-wave scattering

length a in a weakly interaction Bose gas, i.e. g = 4πℏ2a
m

. Consequently, the system’s Hamiltonian

is formulated as:

H =
N∑
i=1

(
p2i
2m

+ V (ri)

)
+ g

∑
i<j

δ(ri − rj) (2.53)

Solving for the BEC’s wavefunction from this Hamiltonian is a challenging task. Thus, a

variational approach is employed, where the condensate wavefunction is approximated as ψ(r) =

√
Nϕ(r), and the particle density is n(r) = |ψ(r)|2. For large numbers of atoms, terms on the

order of 1/N are negligible, leading to the energy functional for the N-particle wavefunction:

E(ϕ, ϕ∗) = N

∫
d3r

(
ℏ2

2m
|∇ϕ(r)|2 + V (r)|ϕ(r)|2 + 1

2
Ng|ϕ(r)|4

)
(2.54)

The solution of the ground state is obtained by minimizing this energy functional under

variations of ϕ with the constraint
∫
d3r|ϕ(r)|2 = 1, maintaining a constant total number of

atoms. This minimization involves a Lagrange multiplier µ:

δ

[
E(ϕ, ϕ∗)− µN

∫
d3r|ϕ(r)|2

]
= 0, (2.55)

which leads to the time-independent Gross-Pitaevskii equation (GPE).

iℏ∂tϕ(r) =
[
− ℏ2

2m
∇2 + V (r) + gN |ϕ(r)|2

]
ϕ(r) = µϕ(r). (2.56)
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This equation, a type of non-linear Schrödinger equation, incorporates the external potential V (r)

and a non-linear term gN |ϕ(r)|2 that describes the mean-field potential of other atoms. The

eigenvalue µ is the chemical potential, which differs from the mean energy per particle found in a

linear Schrödinger equation. Using the condensate wavefunction ψ(r) with normalized condition∫
d3r|ψ(r)| = N , the GPE becomes

iℏ∂tψ(r) =
[
− ℏ2

2m
∇2 + V (r) + g|ψ(r)|2

]
ψ(r) = µψ(r). (2.57)

2.5.2 Bogoliubov-de-Gennes excitations

The Bogoliubov-de-Gennes (BdG) equations, while initially formulated for superconductivity [39],

are also applicable in the analysis of Bose-Einstein condensates (BECs). In the context of BECs,

the BdG framework is utilized to examine the spectrum of elementary excitations. It provides

a mathematical structure to describe the behavior of small perturbations from the ground state

within the condensate. This application is particularly relevant in discovering the dispersion

relations of these excitations and understanding the interactions within the condensate. The BdG

equations offer a method for quantifying and analyzing the collective modes and the dynamics of

particles in the condensate, contributing to the theoretical understanding of various phenomena

observed in BECs, such as superfluidity and the formation of vortices.

From Eq. (2.57) we can obtain the ground stateψG and the corresponding chemical potential

µG =

∫
d3r ψ∗

G

[−ℏ2∇2

2m
+ V (r) + g|ψG|2

]
ψG. (2.58)

For a BEC, the wavefunction ψ with ”weak” excitations should also satisfy the GPE, thereby we
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can decompose it into ψ = ψG + δψ. Under the BdG formalism, the excitation is expressed by u

and v with frequency ω, i.e.,

ψ(r, t) = exp(−iµGt) [ψG(r) + u(r) exp(−iωt)− v∗(r) exp(iω∗t)] . (2.59)

Inserting it into Eq. (2.57) and separating the terms with exp(−iωt) and exp(iω∗t), we obtain the

following BdG equations.

ωu =

[
− ℏ2

2m
∇2 + V (r) + 2g|ψG|2 − µG

]
u− gψ2

Gv, (2.60)

−ωv =

[
− ℏ2

2m
∇2 + V (r) + 2g|ψG|2 − µG

]
v − gψ∗

G
2u. (2.61)

This set of equations is linear and can be solved by diagonalizing.
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Chapter 3: Review of Turbulence and Velocimetry

Turbulence, characterized as chaotic and unpredictable flow patterns in fluids, has intrigued

scientists for centuries as a result of its complexity and elusive nature. Horace Lamb once said:

”I am an old man now, and when I die and go to heaven there are two matters on which I

hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion

of fluids. And about the former I am rather optimistic.” Werner Heisenberg said something

similar afterwards: ”When I meet God, I am going to ask him two questions: Why relativity?

And why turbulence? I really believe he will have an answer for the first.” These reflective

comments emphasize the mysterious nature of turbulence, illustrating its status as one of the

most challenging and unresolved puzzles in the scientific world.

The nonlinearity inherent in turbulent flows is a fundamental aspect that makes turbulence

a formidable challenge in fluid dynamics. Similar to all chaotic systems, turbulence is extremely

sensitive to the initial condition, making prediction a challenging task. Furthermore, when

attempting to model turbulence using mathematical equations, one encounters more unknowns

than available equations. This imbalance necessitates the introduction of approximations or

models to ”close” the system of equations, a significant challenge that brings uncertainties and

limitations to the predictive capabilities of turbulence models. The rich physics also lies in the

nonlinearity. The most profound findings in the turbulence are related to energy cascade, which is
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vividly described by Lewis Fry Richardson’s poetry, ”Big whorls have little whorls, Which feed

on their velocity; And little whorls have lesser whorls, And so on to viscosity.” Energy injected

into the system on a large scale by external force such as stirring and shaking, and the kinetic

energy transferred from the large scale to small scales in a self-similar manner, as the ”big whorls

break into small whorls”, and finally it is dissipated on the small scale due to viscosity.

Although turbulence is characterized by randomness and unpredictability, there is a fundamental

aspect that exhibits statistical regularity: the scaling law for the kinetic energy spectrum. In

the subinertial range, where the energy cascade predominantly occurs, this scaling law becomes

prominent, standing as one of the most universal and consistent findings in the study of turbulence.

In 1941, Andrey Kolmogorov, a prominent mathematician in turbulence research, introduced

groundbreaking theories that helped unveil the statistical nature of turbulent flows [18, 19, 20].

Kolmogorov’s theories elucidated the multiscale nature of turbulence, shedding light on the

energy cascade process and the manifestation of the scaling laws in the kinetic energy spectrum.

His work laid a robust foundation for understanding the complexities inherent in turbulent flows,

steering subsequent research toward a more profound comprehension of this chaotic yet structured

phenomenon.

This chapter gives a review for the turbulence and velocimetry, from incompressible classical

turbulence to compressible turbulence as well as quantum turbulence. The Kolomogorov theory

for the incompressible turbulence is discussed in detail. Then the compressible turbulence is first

introduced under a coarse-grained picture. Finally, the quantum turbulence in both superfluid

Helium and atomic BEC is discussed. This chapter also gives a review for the velocimtery

techiniques in both classical and quantum fluids.
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3.1 Incompressible Turbulence

In this section, the fluid considered is incompressible fluid, so the density of the fluid is

constant and the velocity field satisfies ∇ · v = 0 due to continuity equation.

3.1.1 Basic features of turbulence

Before discussing the details of the features, it is necessary to introduce the concept of

”eddy”, which is defined as the region of significant self-correlation. If we stir a fluid to create

turbulence, the largest eddy would be the system size, where it shows the macroscopic flow.

In Richardson’s poems, this large eddy then breaks into smaller eddies which have smaller

correlation length, and finally to a scale that dissipation dominates.

3.1.1.1 Irregular, random and chaotic

The most annoying feature of turbulence is that its velocity field v(x, t) varies significantly

and irregularly. Suppose that you place a velocity sensor in the fluid and record the velocity.

You would obtain a trace as in the Fig. 3.1. And if you repeat the measurement, the traces are

unrepeatable even though you set all the experimental parameters the same, which means that at

least some of the parameters are not actually under control.
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Figure 3.1: A representation of the chaotic and random nature of the velocity field over time.

3.1.1.2 High Reynolds number

The Reynolds number (Re) [40] is a dimensionless quantity that is used to predict flow

patterns in fluid mechanics. It is defined as

Re =
UL

ν
, (3.1)

where U is the characteristic velocity, L is the characteristic length, and ν is the kinematic

viscosity.

The Reynolds number is actually the ratio of convection to diffusion, or the inertial force to

viscous force, which can be seen from the Navier-Stokes equation [41] for incompressible fluid

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v + fext, (3.2)
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where ρ is the density, p is the pressure, and fext is the external force. The term (v · ∇)v is the

inertial force, which also describes the convection of the momentum. And ν∇2v is the viscous

force, also known as the diffusion force. The ratio of these two terms is aprroximately to be UL
ν

in the scale you are interested in. So high Re (Re ≫ 1) typically stands for the case when the

scale is set to the large scale, where the dissipation from the viscous force can be ignored.

3.1.1.3 Dissipation

Dissipation occurs always in the fluid. On a small scale, dissipation dominates (Re ≪ 1).

For the steady state, the energy injection rate must be equal to the dissipation rate

ϵ ≈ u20
τ0

=
u30
L0

, (3.3)

where u0, L0 are the charactersitic velocity and length for the largest eddy, τ0 = L0

u0
is its

characteristic time. Note that only in the steady state we can write the dissipation rate in a form

independent of ν.

The dissipation range η must be related to the dissipation rate ϵ and the viscosity ν. Dimensional

analysis gives η = (ν
3

ϵ
)
1
4 .

3.1.1.4 Efficient mixing

For a regular nonturbulent fluid, suppose that at t = 0 we have two closely located tracer

particles, its relative distance |∆x| at time twould satisfy ⟨|∆x|2⟩ ∝ Dt, whereD is the diffusion

coefficient. This
√
t diffusion rate can be derived from Fick’s second law of diffusion [42].

In turbulence, since dissipation (viscosity) is closely related to diffusion, |∆x|2 must be a
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function of the dissipation rate ϵ and t. From the dimensional analysis we have ⟨|∆x|2⟩ = ϵt3.

The chaotic motion in the turbulent fluid accelerates diffusion. This t3/2 suggests superdiffusion

in turbulence, which is called Richardson’s law [43].

3.1.1.5 Vortices

A turbulent fluid is always combined with vortices. Vortices in incompressible turbulence

are fundamental elements, marking regions where the fluid circulates around a core area. Understanding

the dynamics of these vortices is crucial in the study of incompressible turbulence, as they are

integral to the energy transfer processes and the overall chaotic motion observed in such fluid

flows.

3.1.2 The Reynolds-Averaged Navier–Stokes Equations

Reynolds decomposition [44] involves breaking down the instantaneous flow variables into

mean and fluctuating components. Consider a flow variable, such as velocity u, which varies with

time and space due to turbulence. It can be decomposed as follows: u(x, t) = ū(x) + u′(x, t),

where ū(x) is the velocity field averaged over time and u′(x, t) is the fluctuating part. This

decomposition simplifies the equations of motion and aids in understanding and analyzing the

turbulent characteristics of the flow. Applying the Reynolds decomposition to the Navier-Stokes

equations [Eq. (3.2)] leads to the Reynolds-averaged Navier-Stokes equations (RANS).

∂(v̄ + v′)

∂t
+ ((v̄ + v′) · ∇) (v̄ + v′) = −1

ρ
∇(p̄+ p′) + ν∇2(v̄ + v′) + fext, (3.4)
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Time average to the entire equation, we obtain

v̄ · ∇v̄ + v · ∇v′ = −1

ρ
∇p̄+ ν∇2v̄ + fext. (3.5)

For incompressible fluid, we have ∇ · v̄ = 0 and ∇ ·v′ = 0, so the equation can be written as the

RANS form, that is,

∇ · v̄2 +∇ · v′2 = −1

ρ
∇p̄+ ν∇2v̄ + fext, (3.6)

where on the left hand side v2 is a short hand notation for the rank 2 tensor with elements v2
ij =

vivj . And the v′2 is called the Reynolds stress tensor. Note that the above equation contains

more unknowns than the number of equations. The equation of Reynolds stress tensor actually

introduces a higher-order tensor of v′, and the number of unknowns is always greater than the

number of equations. This difficulty is always called the ”Turbulence closure problem”.

3.1.3 Vortex Stretching

Vorticity is defined by ω = ∇× v. From Eq. (3.2), we have

∂v

∂t
+

1

2
∇(v · v)− v × ω = −1

ρ
∇p+ ν∇2v + fext, (3.7)

where we have used 1
2
∇(v ·v) = (v ·∇)v+v×(∇×v). Now take the curl of the entire equation

∂ω

∂t
−∇× (v × ω) = ν∇2ω +∇× fext. (3.8)
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The second term on the left hand side (LHS) can be expanded

∇× (v × ω) = (ω · ∇)v − (v · ∇)ω + v∇ · ω − ω∇ · v, (3.9)

where the last two terms on the right hand side (RHS) are 0. We then obtain the vorticity transport

equation

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v + ν∇2ω +∇× fext. (3.10)

The first term on the RHS represents ”vortex streching”, i.e., velocity gradient leads to the change

in the rate of vorticity. The second term is the diffusion term, and we observe that the kinematic

viscosity is actually the diffusion coefficient for the diffusion of vorticity.

The vortex streching is once believed to be the cause of energy cascade from an angular

momentum conservation argument; however, it might not be the real cause [45], so I will only

briefly state its implication to the cascade here. Consider the fluid element with vorticity ω,

the fluid element tends to be more elongated under strain, and the diameter of the fluid element

decreases. Assuming that the local angular momentum is conserved, the vorticity has to increase.

Thus, the kinetic energy is transported from large-scale to small-scale.

3.1.4 Equilibrium range theories

Kolmogorov’s theory assumes homogeneous and isotropic flow, which might be quite

different from the real cases, but it is a good starting point and gives us scaling laws agrees

well even with some complicated inhomogenous and anisotropic flow.

Much similar to Richardson’s poet, Kolmogorov explains the idea more rigorously. It is
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built on two similarity hypothesis.

3.1.4.1 Hypothesis of Kolmogorov

Kolmogorov presented a theory in which large anisotropic eddies are the primary energy

carriers in turbulent flows, transferring energy across various scales. These eddies gradually lose

their distinct shapes and characteristics, transitioning into a state where they are homogenous and

isotropic. In this state, the energy of the eddies depends solely on the energy they receive from

the larger eddies and the energy dissipation rate due to the smaller eddies.

Kolmogorov’s first similarity hypothesis: At large Reynolds numbers, the local average properties

of the small-scale components of any turbulent motion are determined entirely by kinematic

viscosity and average rate of dissipation per unit mass.

Following his hypothesis, we can derive the characteristic length η, time τη and velocity uη for

the ”small scale”, since it only depends on ϵ and ν, i.e.,

η =

(
ν3

ϵ

) 1
4

, τη =
(ν
ϵ

) 1
2
, uη = (ϵν)

1
4 . (3.11)

It is easy to verify that the Reynolds number of the scale η is 1, which suggests a balance of the

convection to diffusion.

Kolmogorov’s second similarity hypothesis: There is an upper subrange (the inertial subrange)

in this bandwidth of small eddies in which the local average properties are determined only

by the rate of dissipation per unit mass.
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On this scale, both energy injection and dissipation are negligible, and the kinetic energy is

transferred from the large scale to the small scale. In steady state, the energy injected rate should

be equal to the dissipation rate, and on a large scale, the dissipation is negligible, so it depends

only on the energy injected rate ϵ and not on the detail of the dissipation mechanism given by ν.

In the inertial subrange, the energy spectrum depends only on k and ϵ. The kinetic energy

has the unit of L3τ−2. ϵ has the unit of L2τ−3. From dimensional analysis we obtain E(k) =

Cϵ2/3k−5/3, where C is a constant and lies in the range of 1.5 to 2.5 for most fluids.

3.1.4.2 Velocity Structure function

The energy spectrum is not a quantity that can be measured with ease, so realistically it

is worth using a more experimental friendly metric, that is, the velocity field structure function

Sp(l), which is defined in Eq. (3.12) based on the velocity increments δvl,

δvl(x⃗) = ⟨|v⃗(x⃗+ l⃗)− v⃗((x⃗))|⟩ · l̂, Sp(l) = ⟨|δvl(x⃗)|p⟩; (3.12)

where l⃗ is the positional separation vector of the two velocity field sample points, and l̂ is its unit

vector, and p is the order of the structure function. Note that the structure function can also be

defined without the absolute value, and Kolmogorov’s four-fifth law is built upon the S3 of the

longitudinal velocity increments without taking the absolute value. On the experimental side, it

is more convenient to use the absolute value, so the gap between the magnitude of the odd and

even order of structure function is less prominent.

Historically, experimentalists only use a single velocity sensor to read the streamline velocity

43



on a single spot, record its readings at different times, and then map the temporal difference to

the spatial difference making use of the Galilean invariance. The second-order structure function

was found to follow a scaling of 2/3 over l, i.e. S2(l) ∝ l2/3. This empirical law is often called

the ”two-thirds law”, which seems to hold for all turbulent flow, at least approximately.

From Kolmogrov’s second similarity hypothesis, the velocity structure function should

solely depends on the dissipation rate ϵ if the relative distance l is in the inertial subrange, then

using dimensional analysis, Sp has the unit of Lpτ−p, thus

Sp(l) ∝ (ϵl)p/3 , (3.13)

which agrees with the two-thirds law when p = 2.

In 1941, Kolmogorov gave an exact result for the third order longitudinal structure function

S3(l) = −4

5
ϵl, (3.14)

which is called the ”four-fifths law”. I will introduce Kolmogorov’s derivation in the following

section.
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3.1.4.3 Karman-Howarth-Monin relation

Kolmogorov derives the four-fifths law based on the Karman-Howarth-Monin relation [46],

i.e.,

∂t⟨v(x) ·v(x+l)⟩ = 1

2
∇l ·⟨δv2δv⟩+⟨v(x) ·(fext(x+ l) + fext(x− l))⟩+2ν∇2

l ⟨v(x) ·v(x+l)⟩.

(3.15)

Proof: We will use the shorthand notation prime to denote the variables at x + l. From

Eq. (3.2), we have

∂tvi = −∂j(vjvi)− ∂iP + fext,i + ν∂j∂jvi, (3.16)

and an equation for primed variable. Then we have

∂t⟨viv′i⟩ =− ⟨v′i∂j(vjvi)⟩ − ⟨vi∂′j(v′jv′i)⟩ − ⟨v′i∂iP ⟩ − ⟨vi∂′iP ′⟩

+ ⟨v′ifext,i⟩+ ⟨vif ′
ext,i⟩+ ν⟨v′i∂j∂jvi⟩+ ν⟨vi∂′j∂′jv′i⟩,

(3.17)

where the last two terms on the first line is zero due to integral by parts and incompressibility. The

viscous terms can be expressed by the derivative of the separation distance l, that is, ν⟨v′i∂j∂jvi⟩ =

ν⟨vi(x)∂j∂jvi(x − l)⟩ = ν∇2
l ⟨viv′i⟩, where homogeneity is used. The forcing term can be

expressed as ⟨vi(x)(fext,i(x+ l) + fext,i(x− l))⟩.

What remains to prove is that the first two terms in the RHS of the above equation are equal

to the first term on the RHS of Eq. (3.15).

⟨v′i∂j(vjvi)⟩+ ⟨vi∂′j(v′jv′i)⟩ = −∂lj⟨v′ivjvi⟩+ ∂lj⟨viv′jv′i⟩ = ∂lj⟨v′iviδvj⟩. (3.18)
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Then using v′ivi = (vivi + v′iv
′
i − δviδvi)/2,

∂lj⟨v′iviδvj⟩ =
1

2
⟨v2i ∂ljδvj⟩+

1

2
∂lj⟨v′iv′iδvj⟩ −

1

2
∂lj⟨δviδviδvj⟩, (3.19)

where ⟨v2i ∂ljδvj⟩ = ⟨v2i ∂jv′j⟩ = 0 because of incompressibility, and ∂lj⟨v′iv′iδvj⟩ = −⟨vivi∂ljvj(x−

l)⟩ = ⟨vivi∂jvj(x − l)⟩ = 0 because of homogenity and incompressibility. Thereby we obtain

Eq. (3.15).

3.1.4.4 Derivation of four-fifths law

Considering the fully developed turbulence (ν → 0) and in the stationary limit (t → ∞),

the time dependence of Eq. (3.15) is removed. In the inertial subrange, the correlation length

of the external force is much greater than the separation l, so we can write the forcing term to

2⟨v(x)fext(x)⟩ = 2ϵ, where ϵ is the energy injection rate, which is also equal to the dissipation

rate in steady state. In the high Renyolds number limit (ν → 0), the viscous term is negligible in

the inertial subrange. Thus we have

∇l · ⟨δv2δv⟩ = −4ϵ. (3.20)

Now we consider the third-order longitudinal structure function S3(l), where the longitudinal

notation is removed for simplicity.

S3(l) =
liljlk
l3

⟨δviδvjδvk⟩ = 2
liljlk
l3

(Sij,k + Ski,j + Sjk,i), (3.21)
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where Sij,k = ⟨vivjv′k⟩. Using homogeneity and isotropy, we can expand the tensor Sij,k to

Sij,k(l) = A(l)δij
lk
l
+B(l)

(
δki
lj
l
+ δjk

li
l

)
+ C(l)

liljlk
l3

. (3.22)

And S3(l) becomes a function solely depends on A(l), B(l) and C(l), i.e.,

S3(l) = 2
liljlk
l3

[
(A+ 2B)

(
δij
lk
l
+ δjk

li
l
+ δki

lj
l

)
+ 3C

liljlk
l3

]
= 6(A+ 2B) + 6C. (3.23)

Now we consider connecting the structure function to the Eq. (3.20), using incompressibility

∇l · ⟨δv2δv⟩ = 4∂jSij,i = 4∂j

[
(A+ 4B + C)

lj
l

]
. (3.24)

Using the relation ∂kf(l) = (lk/l)f
′(l) and ∂k(li/l) = δik/l − lilk/l

3, we have

∇l · ⟨δv2δv⟩ = 4(A′ + 4B′ + C ′) +
8

l
(A+ 4B + C), (3.25)

which links the A, B and C with the dissipation rate ϵ but introducing new differential variables.

Using the incompressibility of ∂kSij,k = 0 to obtain more relations,

∂kSij,k =

[
A′(l) + 2

A(l) +B(l)

l

]
δij +

[
2B′(l) + C ′(l) + 2

C(l)−B(l)

l

]
lilj
l2

= 0, (3.26)

where the two terms in the square bracket should be both vanishing. Multiplying the first bracket
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by 3 and adding the second bracket, we obtain the following.

d

dl
[3A+ 2B + C] +

2

l
[3A+ 2B + C] = 0. (3.27)

The general solution is 3A + 2B + C = const/l2, since the solution should be finite at l → 0,

we obtain

3A+ 2B + C = 0, B = −A− l

2
A′, C = −A+ lA′. (3.28)

Eq. (3.23) and Eq. (3.25) become

S3(l) = −12A, −ϵ = −lA′′ − 7A′ − 8

l
A. (3.29)

Under the change of variable y = A/l, x = ln l, the differential equation becomes

y′′ + 6y′ + 15y = ϵ. (3.30)

The general solution is as follows.

y = α exp [(−3 + 6j)x] + β exp [(−3− 6j)x] +
ϵ

15
. (3.31)

Under the limit of l → 0 (x→ −∞), y should be finite, so y = ϵ/15 and

S3(l) = −4

5
ϵl. (3.32)

48



3.1.4.5 Velocity increments PDF and the intermittency

The velocity increments probability distribution function (PDF) is an essential metric for

intermittency, which describes the anomolous scaling of the velocity increments compared to the

Kolmogorov theory.

Kolmogorov theory is based on the self-similarity assumption, which leads to scale-invariant

scalings for the longitudinal structure function. So, if we study the PDF of the longitudinal

velocity increments δv(l), it should also be scale-invariant, which means the large-scale velocity

increment PDF should have the same shape as the small-scale velocity increment PDF in the

inertial range. However, it is found that the fat-tailed feature becomes more and more clear when

the spatial separation l is decreased. When the separation is large, the PDF is Guassian or near

Guassian, but when the separation is small, the rare event with large velocity increments becomes

more and more frequent. This scale dependent phenomenon is the symbol of intermittency, which

suggests that the Kolmogorov theory needs revision to the self-similarity hypothesis.

In 1962, Kolmogorov and Obukhov gave a refined the self-similarity hypothesis [23]. The

original averaged dissipation rate ϵ is replaced by a scale-dependent dissipation rate ϵl, which can

be viewed as the filtered version of the dissipation field. The previous K41 calculation is still

assumed to be valid for ϵl, but the whole system’s expectation value should depend on the PDF

of ϵl, which is assumed to follow a log-normal distribution. Then a refined structure function is

given by

Sn(l) ∝ (E[ϵl]l)
n/3(l/L)−µn(n−3)/18, (3.33)

where E stands for the expectation value, L is the system size and µ is experimentally measured to
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be close to 0.23. So this anomalous scaling is apparent for high-order velocity structure function,

and for low-order the correction is negligible since the rare event’s effect to the structure function

is not prominent.

3.2 Compressible turbulence

The previous sections mainly discuss incompressible turbulence, where the density of the

fluid is spatially independent, so we have the incompressible condition ∇ · v = 0. However,

realistically, the fluid is compressible, especially when the fluid’s velocity is higher than the

speed of sound. In this section we will discuss the compressible fluid, where the density now

becomes a spatial-dependent variable.

3.2.1 Governing dynamics

From conservation law, we can write the transport equation of density, momentum, and

kinetic energy [47], i.e.,

∂tρ+ ∂j(ρvj) = 0, (3.34)

∂t(ρvi) + ∂j(ρvivj) = −∂iP + ∂jσij + ρfext,i, (3.35)

∂t(ρ
|v|2
2

) + ∂j

[
(ρ
|v|2
2

+ P )vj − 2µ(viSij −
1

3
vjSkk)

]
= P∂jvj − 2µ

(
|Sij|2 −

1

3
|Skk|2

)
+ ρvifext,i,

(3.36)

where Eq. (3.35) is the compressible Navier-Stokes equation. µ is the dynamic viscosity, Sij =

(∂jvi + ∂ivj)/2 is the symmetric strain tensor, and σij = 2µ(Sij − 1
3
Skkδij) is the viscous stress.

Note that the Stokes hypothesis is used so that the bulk viscosity is ignored.
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3.2.2 Coarse graining

Following the coarse graining and filtered appraoch used in the large eddy simulation, we

can decompose any field a(x) into the large-scale component āl(x) and sub-grid component

a′
l(x), where the coarse-grained field contains modes at scales greater than l, i.e.,

āl(x) =

∫
d3rGl(r)a(x+ r), (3.37)

where G(r) is the Friedrichs mollifier satisfies normalized condition and centered at r = 0. And

Gl(r) = l−3G(r/l). Note that this filtering operation is linear and commutes with spatial and

time derivatives. The residue field is the sub-grid component

a′
l(x) = a(x)− āl(x). (3.38)

Applying the filtering operation to the continuity and Navier-Stokes equation, we have

∂tρ̄l + ∂j(ρvj)l = 0. (3.39)

∂t(ρvi)l + ∂j(ρvivj)l = −∂iP l + ∂jσij l + (ρfext,i)l (3.40)

To reduce number of terms, we use the density-weighted Favre average [48], i.e.,

ãl =
(ρa)l
ρl

. (3.41)

We will remove the subscript l from now on when there is no confusion. Then the continuity and
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Navier-Stokes equation become

∂tρ̄+ ∂j(ρṽj) = 0. (3.42)

∂t(ρṽ) + ∂j(ρṽiṽj) = −∂j(ρτ̃(vi, vj))− ∂iP + ∂jσij + ρf̃ext,i, (3.43)

where τ̃(vi, vj) = ṽivj − ṽiṽj is the turbulent stress accounting for the effect from the scale

smaller than l, and it is the only term couples the large scale momentum to the small scale. In

addition, we can define the 2nd-order generalized central moments of any fields f(x) and g(x)

by τ(f, g) = (fg)l−f lgl. Using τ and τ̃ to describe the small-scale effect, the transport equation

for large-scale kinetic energy can be written as

∂t(ρ
|ṽ|2
2

) + ∂jJj = −Πl − Λl + P∂jvj −Dl + ϵinjl , (3.44)

where

Πl(x) = −ρ∂jviτ̃(vi, vj), Λl(x) =
1

ρ
∂jPτ(ρ, vj) (3.45)

are the subgrid scale kinetic energy flux to scales less than l,

Dl(x) = ∂jũi[2µSjj −
2

3
µSkkδij], ϵinjl (x) = ṽiρf̃ext,i (3.46)

are the dissipation and energy injection by the external force on the large scale,

J(x) = ρ
|ṽ|2
2
ṽj + Pvj + ṽiρτ̃(vi, vj)− ṽiσij. (3.47)

is the large-scale transport of kinetic energy, and −P∂jvj is the large-scale pressure dilatation.

52



3.2.3 Scale Decomposition

The viscous range lµ is defined as the scale at which viscous effects become significant in

kinetic energy balance. In [47] it has been shown that Dl is negligible on scales l ≫ lµ, and

injection of kinetic energy can be localized on large scales L≫ l with proper stirring. Therefore,

there exists an intermediate scale L ≫ l ≫ lµ where dissipation and external injection are

negligible, which is the inertial range of compressible turbulence.

The subgrid scale flux terms in Eq. (3.45) transfer large-scale kinetic energy to scales

smaller than l. H. Aluie argues in [49] that this subgrid scale flux cascade is localized based on

empirical facts that the structure function is localized and the scalings are weak. This result has

been verified by a numeric study [50]. If we use a density-weighted velocity field, the statistics

of the compressible turbulence is very similar to the incompressible turbulence.

3.3 Quantum turbulence

Quantum turbulence refers to the turbulence of quantum fluid or superfluid, where the fluid

is purely inviscid or mixed with some portion of viscid classical fluid. The quantum fluid in the

literature emphasizes quantized vortices more than the invisicid fluid. But normally we do not

distinguish them very carefully, since the quantized vortices come from the irrotational nature of

superfluid.

In this section, I will first introduce the history of superfluid and theoretical models of its

fluid dynamics, then discuss the energy cascade and dissipation mechanism.
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3.3.1 Superfluid

The superfluid, named by Pyotr Kapitsa, was first observed by him in 1937 in liquid

4He [51]. When the liquid 4He is cooled below the λ point (2.17 K), he observed that the liquid

could flow with no resistance through the capillaries and over the edges of containers. He also

observed that a thin layer of helium below the λ point (helium II) could climb up and out of

the container. Around the same time, John Allen and Don Misener observed an unusually high

thermal conductivity [52]. All these observations suggest that a new state of matter was found,

and Fritz London proposed that superfluidity was a quantum mechanical phenomenon related to

Bose-Einstein condensation.

In 1995, the creation of Bose-Einstein condensates in dilute gases of alkali atoms provided a

new system in which superfluidity could be studied [53]. However, despite the close relationship

between superfluidity and Bose-Einstein condensates, they are very different ideas. Helium II

superfluid can achieve a density of almost 100% superfluid with a density of less than 10% BEC.

In atomic BEC, with spatial modulation of the density, the superfluid density can be much less

than the BEC density. Basically, BEC is a state of matter that can be described by a condensate

wave function (order parameter), but its transport behavior, which gives the superfluid density,

depends on details of the spatial dependence of the wave function. This will be elaborated on in

Chap. 7. But for most cases, the superfluid order parameter is equal to the BEC order parameter,

and we will not emphasize their difference in this chapter.

With the BEC order parameter defined by a complex macroscopic wavefunction ψ(x), the

fluid dynamics is well described by the Gross-Pitaevskii equation [Eq. (2.57)]. By introducing the

Madelung transformation ψ =
√
n exp (iθ), we obtain a hydrodynamic description by superfluid
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mass density ρ = nm, and velocity v = ℏ
m
∇θ. This mapping agrees with the irrotational

feature of the superfluid. Since the macroscopic wavefunction should be single valued for the

space coordinate x, the phase winding can only be multiples of 2π, that is, the circulation Γ =∮
v · dl = κn, where n is an integer and κ = h/m is the quantized circulation. A vortex with

such quantized circulation is called a quantized vortex, and any rotational motion of a superfluid

can only be sustained by quantized vortices.

In the incompressible fluid section, I introduce some model of energy cascade by vortex

stretching, which tries to relate the turbulence with vortices, however, numerical simulation

suggests the vortex-strectching term is not dominant. And in the classical fluid the relationship

between the vortices and turbulence is still unclear. However, the quantized vortex does not

diffuse, since the flow is inviscid. And the core of the quantized vortex is very thin and on the

scale of healing length in the system. So in quantum fluid we have a more well-defined vortex

compared to classical fluid, and it might give us a better understanding of the relation between

vortices and turbulence.

3.3.2 Theoretical models

3.3.2.1 Vortex filament model

The vortex filament model simplifies the description of a quantized vortex by treating it as

a one-dimensional filament in a three-dimensional fluid. This filament carries circulation and is

where the phase of the superfluid order parameter changes by 2π. The velocity at a point r due
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to the presence of a filament is given by the Biot-Savart law:

vs(r) =
κ

4π

∫
s

(s− r)× ds

|s− r|3 , (3.48)

where s is the vortex line, and the integral is along the vortex line, similar to the Biot-Savart

law in the magnetic field calculation. The rest of the superfluid is considered incompressible and

irrotational, with the exception of these filaments.

A simplification of the Biot-Savart law is to decompose the filament dynamics into local

and nonlocal parts, and the nonlocal part is ignored assuming the local part dominates, which

is called the local induction approximation (LIA). Schwartz [54] shows that the motion of the

filament is perpendicular to its tangential s′ and curvature s′′ direction, where the prime stands

for the diffentiation with respect to the one-dimensional coordinate ε is we use the parametric

form s(ε, t), i.e.,

ṡ =
κ

4π
s′ × s′′ ln

(
2(l+l−)1/2

e1/4a0

)
, (3.49)

where a0 is the vortex core size, and l+ and l− are the lengths of the two adjacent line elements

after segmentation. As we can see, the motion is along the binormal direction s′ × s′′ which

explains the helical oscillation pattern of the vortex line (Kelvin waves) as a steady-state solution.

LIA is a good approximation for single vortex, for dynamics related to many vortices such as

vortex reconnection, the nonlocal term needs to be considered carefully.

The vortex filament model can also be extended to the finite-temperature case where normal

fluid is present. It is a good model for understanding the vortex motion, but it is not precise

enough for multiple vortices dynamics.
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3.3.2.2 The Gross-Pitaevskii model

Using hydrodnamical picture, the GPE becomes quantum Euler equation

∂tρ+∇ · (ρv) = 0, (3.50)

∂t(ρv) +∇ · (ρvv + P I−Σ) = ρf , (3.51)

where I is the unit tensor, f = −∇Vext is the externel force, and P = gρ2/(2m2) is the pressure,

and Σ is the quantum stress, i.e.,

Σ =
ℏ2

4m2
∇2ρI− ℏ2

m2
∇√

ρ∇√
ρ. (3.52)

It is obvious that this set of equations is dissipationless, which agrees with the observation

that the superfluid is inviscid.

However, experimental results have revealed that the quantum turbulence agrees with the

Kolmogorov spectrum, where dissipation is required to balance the large-scale energy injection,

so that the kinetic energy can cascade from large to small scale. The dissipation mechanism in

a quantum fluid is in debate, but we can conclude that there must be an inertial range where the

energy injection and dissipation are negligible. Typically, quantum turbulence has three main

characteristic length scales: the length scale L of energy injection by external stirring, which is

often approximated by the size of the system, the mean distance between the vortex li, and the

radius of the vortex core ϵ determined by the healing length of the quantum fluid. The Richardson

cascade is dominated on the scale L≫ l ≫ li with the exponentE(k) ∝ k−5/3, and an additional
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cascade is believed to be in between the li and ϵ by Kelvin waves, which is the vibration of the

vortex lines excited by vortex reconnection.

Using the coarse graining method in the section of compressible turbulence, we can again

decompose scales and discuss the energy cascade in the inertial range.

3.3.3 Coarse Graining and Richardson Energy cascade

Using the same notation system as the compressible fluid, the coarse grained quantum Euler

equation [55] becomes

∂tρ+∇ · (ρṽ) = 0, (3.53)

ρ(∂t + ṽ · ∇)ṽ +∇ · (ρτ̃(v,v)) = −∇P +∇ ·Σ+ ρf̃ . (3.54)

We can further apply the coarse graining to the kinetic energy budget equation

∂t
1

2
ρ|v|2 +∇ ·

[
(
1

2
ρ|v|2 + P )v −Σ · v

]
= P∇ · v −Σ : ∇v + ρv · f , (3.55)

where the ”:” stands for the double index contraction by A : B = AijBij , and obtain the large-

scale kinetic energy budget equation

∂t(
1

2
ρ|ṽ|2) +∇ · J = P∇ · ṽ −Σ : ∇v − Πl − Λl + ϵl, (3.56)

where

J = (
1

2
ρ|ṽ|2 + P )ṽ + ρṽ · τ̃(v,v)− P

ρ
τ(ρ,v)−Σ · ṽ +

Σ

ρ
· τ(ρ,v), (3.57)

ϵl = ρṽ · f̃ , (3.58)
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Πl = −ρ∇ṽ : τ̃(v,v), (3.59)

Λl =
∇P
ρ

· τ(ρ,v)− 1

ρ
∇ ·Σ · τ(ρ,v). (3.60)

The spatial transport term does not contribute to the cascade since it vanishes at the boundary.

Again, the energy injection is localized to large scale L, so τ(v, f) has been neglected. The

term related to the subscale is the subscale grid flux term Πl + Λl, which is quite similar to the

classical compressible turbulence. Notice that the dissipation term is not here, but to reach a

fully developed turbulence, an empirical small-scale dissipation Dl is required. Then there is

no reason to expect a cascade different from the Richardson cascade in a classical fluid. The

remaining question is how to study the range it holds. T. Tanogami [55] estimates the crossover

scale by balancing momentum flux ρvv and quantum stress Σ, which gives λ ≈ κ/vrms ≈ li,

where κ = h/m is the quantum circulation.

3.3.4 Dissipation mechanism

In the coarse-grained scheme, we have seen that the Richardson cascade in quantum fluid

should be similar to the classical turbulence. However, we do not have a good understanding of

the dissipation mechanism. What we can know from the experimental result is that the dissipation

has to be on the small scale; otherwise, we should not observe the Richardson cascade. I will

introduce some candidates for the dissipation mechanism in the quantum turbulence community.

3.3.4.1 Kelvin wave and Kelvin Cascade

Kelvin waves are defined as helical displacements of a rectlinear vortex line propogating

along the core. It originates from vortex reconnection, where the tips of the crossing point, similar
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to the bending point of a plucked string, can relax into vibrations along its new vortex core. An

approximate dispersion relation for the inviscid fluid is given in [56]

ω =
κk2

4π

[
ln

(
1

ka0

)
+ c

]
, (3.61)

where a0 is the vortex core parameter and c ∼ 1. It is worth to note that the Kelvin wave only

survives in superfluid, and it is damped by mutual friction when the normal fluid is around. At

high k, the Kelvin wave is unstable and some other type of quasiparticles (phonons) will be

radiated. This can be seen as a dissipation mechanism for incompressible kinetic energy, since

phonons contribute to compressible kinetic energy. So the whole picture of the Kevin wave

related dissipation can be summarized as: low k Kelvin wave forms by vortex reconnection,

then the Kelvin wave cascades from low k to high k due to nonlinear interaction, and finally is

radiated to phonons at high k. In this way, the system’s incompressible kinetic energy (vortices)

transforms to the compressible kinetic energy (phonons). In superfluid helium, the phonons can

leave the system by interacting with the container wall. In an atomic BEC, the phonon cannot

leave the system by colliding with the container wall because the wall is made up of the optical

potential as a rigid body. However, the wall depth of the container is typically on the order of the

chemical potential, so the phonon can leave similarly to pouring out of the boundary.

3.3.4.2 Friction from Normal Fluid

The Kelvin wave cascade model describes the dissipation mechanism at zero temperature,

when the normal fluid is negligible in the system. However, realistically, turbulence is far from

equilibrium, vortices and phonons are all over the system. When these excitations are no longer
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coherent, we can treat them as a normal fluid with viscosity, which can exert frictional force on

the vortices and the Kelvin wave. The interaction between normal fluid and superfluid is far from

trivial and requires detailed modeling, which is part of the reason the scaling prediction of the

Kelvin wave cascade is different from model to model.

3.3.5 Quantum Turbulence Experiments

Earlier quantum turbulence mainly focuses on the thermal counterflow of the two-fluid,

since it is a unique phenomenon in a quantum fluid. The experimentalist touches on the energy

spectra and velocity structure function type of statistics since the mid 1990s. Later on the

turbulence experiments in atomic BEC started around 2009, and a scaling law was found in

2016. I will summarize these cornerstone experimental results.

3.3.5.1 Quantum turbulence experiments in 4He

Kolmogorov spectrum in superfluid 4He In 1998 Maurer and Tabeling [57] confirmed the Kolmogorov

spectrum in superfluid 4He turbulence for the first time. Using total-head tube coupled to a

piezoelectric quartz, the authors measured the pressure time traces of the turbulent flow excited

by two counter-rotating disks. The authors then mapped the pressure fluctuation to the velocity

fluctuation and observed the energy spectra for turbulent He4 under three different temperatures

2.3, 2.08, and 1.4K. The Kolmogorov spectrm (E(k) ∼ k−5/3) are observed for all three cases

independently of the superfluid fraction. Also, the intermittency effect is observed from the PDF

of the velocity increments with different time separations at 1.4K.
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Decay grid turbulence experiments in 4He Oregon group developed a gird turbulence setup for

superfluid 4He [58]. An upward moving grid is used to excite the turbulence, and vorticity ω

is measured by a second sound transducer assuming the vorticity is proportional to the second

sound attenuation coefficient based on [59]. In classical turbulence the energy dissipation rate

ϵ = ν⟨ω2⟩. The authors assumed that this relation holds for 4He if we replace the vorticity by

the quantum ciculation times the vortex line length L, i.e. ϵ = ν ′κ2L2, where ν ′ is the effective

kinematic viscosity. The authors observed the decay of the vorticity (κL) following t−3/2 [22].

This relation agrees with the Kolmogorov exponent 2/3 for the dissipate rate ϵ, i.e. the total

energy is E ∝ ϵ2/3, and for the decay turbulence ϵ = −dE/dt ∝ −ϵ−1/3dϵ/dt, so we have

ϵ ∝ t−3 and finally agrees with the experimental result L ∝ t−3/2.

Velocimetry and visualization in 4He Maryland group first observed the quantized vortex by

injecting less than 10% hydrogen particles as tracers of the motion of 4He [60]. The tracer

particles were illuminated by an argon-ion laser sheet for imaging. Using this technique, the

Maryland group observed non-Gaussian PDF of the velocity field, which is largely related to

quantum vortices, so it is able to resolve the velocity field up to vortice core size [61]. Kelvin

wave and vortex reconnection were also observed using the same technique [62].

3.3.5.2 Quantum turbulence experiments in Atomic BEC

Quantum turbulence of atomic BEC in harmonic trap Sao Carlos group first observed vortex

tangles in a 3D harmonic trapped BEC by a combination of rotation and shaking of the trap in

2009 [11], which is the first evidence of quantum turbulence in BEC. During the free expansion

of the gas, they observed a self-similar expansion, i.e. the momentum distribution has a similar
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aspect ratio of the density in-situ aspect ratio before expansion, which is opposite to the result in

typical trapped BEC in the ground state. A power law is found for the momentum distribution

n(k) ∝ k−2.9 [17], however, it is difficult to compare the result with the Kolmogorov scaling,

since the gas is inhomogeneous and the velocity field is difficult to extract.

Quantum turbulence of atomic BEC in optical boxes Cambridge group used a spatial light

modulator to create a homogeneous box-trapped BEC, which is a great platform to study homogeneous

turbulence. Turbulence was created by shaking the box potential and the momentum distribution

of the turbulent cloud was observed by free expansion [12]. However, the observed scaling

n(k) ∝ k−3.5 is different from the Kolmogorov exponent, and the authors claimed that the

turbulence they observed is more closely related to wave turbulence where the phonons’ motion

dominates over vortices.

3.3.5.3 Summary

As you can tell, the quantum turbulence experiments in the atomic BEC and superfluid 4He

are very different. The latter is more closely related to the classical turbulence study, measuring

statistics of the turbulent flow by direct or indirect sensor of the velocity field. However, the

atomic BEC turbulence studies only measure the momentum distribution of the whole cloud,

losing the spatial correlation information due to lack of methods to extract the velocity field,

which is the core physical quantity to measure and study in a turbulent flow. So it is tough to

compare the experimental result with other fluids and with the classic physical laws such as the

Kolmogorov law.
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3.4 Velocimetry

In this section I will introduce the velocity measurement techniques both in classical fluid

and quantum fluid. Velocimetry techniques are divided into intrusive and non-intrusive, and the

latter is emphasized since it is a weak measurement with limited impact on the system during

measurement.

3.4.1 Velocimtery in classical fluid

3.4.1.1 Intrusive Velocimetry

Pitot Tube The Pitot tube measures the velocity of fluid flow by converting the kinetic energy

of the flow into potential energy. Note that this potential energy is the pressure energy not the

gravity potential energy. A standard Pitot tube consists of two concentric tubes. The inner tube

has an opening facing the fluid flow and measures the total (stagnation) pressure Ptot, while the

outer tube, often with side holes, measures the static pressure Pstatic of the fluid. As the fluid

enters the front of the Pitot tube, it comes to a halt (stagnation). The pressure at this point is the

highest and is known as the stagnation pressure. The difference between this stagnation pressure

and the static pressure gives a measure of the fluid’s dynamic pressure, which can be used to

calculate the fluid’s velocity by

v =

√
2(Ptot − Pstatic)

ρ
. (3.62)

Pitot tube is largely used in velocimtry of incompressible fluid, and it is worth noting that
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the first energy spectrum experiment of quantum turbulence uses the Pitot tube as a probe for

velocity fluctuation over time.

Hot Wire Anemometer A hot wire anemometer is an instrument commonly used for measuring

the velocity of a fluid, particularly air [63]. The core of the device is a very thin wire (the ”hot

wire”) heated to a temperature above the ambient temperature of the fluid. This wire is typically

made of materials such as platinum or tungsten because of their stability and high melting points.

When the fluid (like air) flows through the heated wire, it cools the wire down. The cooling

rate depends on the velocity of the air; faster air flow results in more cooling, which leads to a

resistance change that can be precisely measured from the voltage drop E across the hot wire.

The relation between the velocity and the voltage drop needs calibration to the King’s law:

E2 = A+Bvn, (3.63)

where A, B and n are constants determined from calibration. The power n is typically close to

0.5 for laminar flow and close to 0.45 for turbulent flow.

3.4.1.2 Non-intrusive Velocimetry

Laser Doppler Velocimetry Laser Doppler Velocimetry (LDV) [64], also known as Laser Doppler

Anemometry (LDA), is a technique used to measure the velocity of a fluid using the Doppler

effect of laser light. LDV is based on the Doppler effect, which occurs when the frequency of

a wave changes due to the relative motion between the source of the wave and the observer. It

typically runs with two coherent lasers with the same frequency, intersecting at an interested
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region for velocimetry. The tracer particles, when moving across the interference pattern, scatter

photons in a period T = λ/(2 sin θv), where λ is the wavelength of the incident laser, and θ is the

angle between two beams, v is the velocity perpendicular to the fringe pattern. A photodetector

can be used to record the scattering events for velocimetry.

Particle Image Velocimetry Particle Image Velocimetry (PIV) is an optical method of flow

visualization that is used in research and engineering to obtain velocity measurements and related

properties in fluids [65]. The fluid is seeded with tracer particles, which are typically small

enough to faithfully follow the fluid flow dynamics without affecting them. The seeded flow is

illuminated with a light source, typically shaped into a sheet that illuminates a plane of the fluid

flow. A camera (or multiple cameras for 3D PIV) captures images of the illuminated particles at

two or more instances in time. Images can be split into segments where the cross-correlation of

the same segment of different images is calculated, where the peak of the cross-correlation gives

the relative displacement ∆x of two images within the time interval ∆t of two adjacent images.

The velocity of that segment is given by v = ∆x/∆t, and applying this technique to all segments

gives a velocity field of the fluid.

Laser Speckle Velocimetry Laser Speckle Velocimetry (LSV) [66] is another optical technique

used to measure the velocity of a fluid flow, similar in some respects to PIV but with distinct

differences. It is particularly useful in situations where seeding the flow with particles (as in

PIV) is impractical or impossible. Speckles are random interference patterns produced by the

scattering of coherent light (like laser light) from a rough surface or in a medium with scattering

particles. In fluid dynamics, these naturally occurring speckles in the fluid are used instead of
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artificially introduced tracer particles. The fluid flow is illuminated with a laser, and the scattered

light, which forms the speckle pattern, is captured using a camera. As the fluid moves, the speckle

pattern changes, providing information about the fluid’s motion. Similar to PIV, cross-correlation

techniques are used to analyze the changes in the speckle pattern between images. The average

displacement of the speckle pattern in each interrogation region is used to calculate the velocity

field.

3.4.2 Velocimetry in cold gases

3.4.2.1 Time-of-flight measurements

Time-of-Flight (ToF) measurement is a fundamental technique widely used in the field of

cold atom physics. This technique involves releasing a cloud of ultra-cold atoms from a trap,

such as a magnetic or optical trap, and allowing them to freely expand. Since the gas is typically

dilute, we neglect the collision between atoms and during free expansion besides the gravitational

accleration it moves with its original velocity. So if we allow the atoms to expand for long time

such that its initial position difference is negligible, its positonal distribution gives the momentum

(velocity) distribution of the cloud before expansion.

ToF gives the velocity distribution of the whole cloud but loses the velocity field information,

so it is not ideal to study turbulence since it cannot give the spatial correlation of the velocity field.

Previous quantum turbulence experiments of quantum gases mainly use ToF to measure n(k) and

write the energy spectrum as E(k) = n(k)ℏ2k2/2m. This indirect measurement needs a very

long free expansion time up to 100 ms to resolve the large k in the inertial range. This is typically

difficult to do for cold atom experiments since under free fall it will collide with the boundary of
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the ultra high vacuum system; therefore, an additional magnetic field is applied to compensate

gravity, but the magnetic field will also reshape the n(k). So far no observed energy spectrum

from ToF shows evidence of Kolmogorov scaling law.

3.4.2.2 Light dragging effect velocimetry

The light dragging effect [67, 68], a phenomenon historically rooted in the early studies of

ether and first observed by Fizeau in his flowing-water experiment, has evolved to play a critical

role in modern velocimetry techniques. The essence of the light-dragging effect, as depicted

in Fizeau’s experiment, lies in the interaction of light with a moving medium and how this

movement alters the light’s propagation. However, the medium has to be moved relatively on

the order of speed of light to observe a measurable dragging; thereby it is unrealistic until the

development of slow light, where the group velocity of the light can be slowed down to mm/s or

even stopped. Therefore, the drag of a moving medium becomes obvious.

I will briefly introduce the principle of light dragging.

Light dragging effect The light-dragging effect can be understood from the special relativity.

We consider the case in the following figure. The incident light is dragged in the medium moving

vertically with velocity v, the medium length is L, and the distance dragged is ∆x.

Incident

Figure 3.2: Illustration of the light dragging effect in a moving medium with vertical motion.
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The walk off angle inside the medium is given by [69]

tan θ =
∆x

L
=
v

c
(
c

vg
− vp

c
), (3.64)

where vg and vp are the group and phase velocity determined by the relative dielectric constant ϵr

vg =
c√

ϵr(ω0) +
ω0

2
√

ϵr(ω0)
dϵr
dω

|ω0

, vp =
c√
ϵrω0

. (3.65)

The dragging can be largely amplified for highly dispersive media. In atomic physics,

it could be realized by the electromagnetically induced transparency (EIT), where the group

velocity of light can be slowed down.

Using this effect, the center of mass motion has been measured by [70], but it has not been

applied to velocity field measurement. In principle, using a structured light pattern and analysis

with cross-correlation, it might be possible to extract the velocity field.

3.4.2.3 Raman Velocimetry

Raman velocimetry in cold atom experiments utilizes the Raman scattering process to

measure the velocity of atoms [71]. In a typical setup, two laser beams with slightly different

frequencies are directed at the cloud of cold atoms. These beams are tuned close to an atomic

resonance, facilitating a two-photon Raman transition. In this process, an atom absorbs a photon

from one laser and then emits a photon into the other, effectively undergoing a transition between

two different internal states. This transition is accompanied by a change in the atom’s momentum

as a result of the photon recoil.
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The frequency difference between the two lasers is set to match the energy difference

between the two internal states of the atom, plus or minus the kinetic energy associated with

the atom’s motion. By carefully tuning the frequency difference of the lasers, one can selectively

address atoms moving at specific velocities.

The outcome of a Raman velocimetry experiment is often a velocity-sensitive population

transfer between the atomic states, which can be detected and analyzed. By scanning the frequency

difference between the two lasers, we can construct a velocity distribution of the atomic cloud.

However, the measured velocity is still not the velocity field required for turbulence study.
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Chapter 4: The RbRb apparatus

This chapter introduces the apparatus for BEC production, in which the vaccum system,

optical system, and the magnetic field control in the lab is discussed in detail. The chapter is

ended with a brief introduction of digital micromirror device which is closed related to the PIV

for velocity field measurement in Chap. 5.

4.1 Experimental Layout

Figure 4.1: The RbRb apparatus. Reproduced from [1]. For clarity the science cell optics is not
shown here, and only half of the transport coils are shown.

Figure 4.1 illustrates the apparatus used for Bose-Einstein Condensate (BEC) production.
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The setup comprises two primary glass cells: the Magneto-Optical Trap (MOT) cell on the left

and the science cell on the right. The MOT cell is where atoms are initially captured and subjected

to laser cooling. The science cell, designed with a smaller volume, facilitates closer observation

of atoms through microscopes with high numerical aperture and serves as the primary zone for

conducting scientific experiments. Both cells, along with the atom source, are integrated into an

ultra-high vacuum system, maintained by two ion pumps.

The surrounding optics, partially depicted in Fig. 4.1, are primarily dedicated to laser

cooling in the MOT cell. However, to accommodate additional optical axes for scientific research,

atoms are magnetically transferred from the MOT cell to the science cell using the surrounding

coil system.

The apparatus is essentially a tripartite system, encompassing the vacuum system, optics

system, and magnetic field control system. Each component is pivotal to the apparatus’s functionality

and will be discussed in detail in this chapter.

Concluding the experimental layout, a typical experimental sequence to produce BEC in

RbRb involves several key steps. Initially, the MOT cell undergoes MOT loading for 2 to 6

seconds, followed by a brief laser cooling phase lasting less than 1 second. Subsequently, atoms

are magnetically trapped and transported to the science cell within 2 seconds. Once in the science

cell, RF or microwave evaporation occurs over 4 to 6 seconds, followed by the loading of atoms

into the dipole trap. The final stage, dipole evaporation, takes place over 10 seconds, culminating

in the achievement of BEC. Overall, the entire experimental sequence to produce BEC spans

approximately 20 to 25 seconds.
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4.2 Vacuum system

(a) (b)

(c)

RbK

port A

port A

MOT

Science

Figure 4.2: The RbRb vacuum chamber. (a), (b) are reproduced from [1]. (c) shows the physical
vacuum chamber.

Fig. 4.2 shows the vacuum system, in which (a) depicts the atom source. In the vacuum

system, we placed two species of alkali metals Rb and K stored in ampules before bake. They

are placed on different sides of the vacuum chamber, and a Tee is used to combine them to port

A. As shown in Fig. 4.2(b), two ion pumps are placed between the MOT cell and the science cell

to achieve high vacuum, and a differential pumping tube is placed inside the system to let the

science cell have a lower pressure than the MOT cell.
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4.2.1 Vacuum bakeout

To achieve ultrahigh vacuum (UHV)1, it’s necessary to bake out the system to degas the

molecules inside the metal. Baking is time-consuming and typically takes several months to

achieve UHV. To accelerate the degassing, it would be better to bake at high temperatures such as

450◦C, however, some vacuum parts do not allow us to do so. The ion pump cannot resist bakeout

temperatures higher than 350◦C, and the glass cell has an even lower bakeout temperature limit,

i.e. 250◦C.

So we did a three-time bake. (i) Bake all vacuum parts under 450◦C without assembling and

pumping with a turbo pump. (ii) Assemble the vacuum chamber except for the atom source and

the glass cell, and bake under 350◦C with a turbo pump and the two ion pumps. (iii) Assemble

the atom source ampules and glass cell to achieve a complete vacuum assembly and bake under

250◦C with a turbo pump and the two ion pumps.

For (ii) and (iii), as shown in Fig. 4.3(a) we wrapped the whole vacuum system in UHV

aluminum foils and attached heat ropes to the foils. Initially, only the turbo pump is on and the

ion pump is on when the pressure is below 10−5 Torr.

Bakeout sometimes ends in a pressure plateau where the pressure does not decrease over

time, which suggests the existence of leakage in the system, so adding a residual gas analyzer

(RGA) for leakage checking is recommended.

1Actually the UHV standard in the lab is pretty simple, i.e., the ion pump current reading should be 0,A, which
corresponds to a pressure less than 10−10 Torr
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(a) (b)

Figure 4.3: (a) shows the bakeout technique we use, in which the bellow is connected to a turbo
pump, and the vacuum system is wrapped by the UHV aluminum foils. (b) shows a typical
bakeout log. The current reading is from two ion pumps and the spikes are temperature sudden
increasing of the baking during the process.

4.2.2 Atom source control

After UHV was achieved, we cracked the ampule and released the atoms. Unlike other

systems with Zeeman slowers which typically heat the atoms source so that the atom background

density is quite high, we set the Rb source temperature to 0◦C by a thermoelectric cooler (TEC)

cooled by a metal piece with water running inside, and the source is wrapped by thermal blanket,

as can be seen in Fig. 4.2(c). To avoid ice being frozen on the atomic source chamber, we flush

the system with room-temperature nitrogen.

It is worth noting that the melting temperature of Rb is 39◦C, so the metal is in the solid

phase at 0◦C, but there is still vapor with pressure P given by Eq. (4.1) [28], which is enough for

the cold atom experiments.

log10 P = −94.048− 1961.258

T
− 0.038T + 42.575 log10 T. (4.1)
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In the first few weeks after achieving UHV, to accelerate the whole system to reach an

equilibrium, 2 we heat the source above the melting point for 20 minutes per day. Fluorescence

is only observable after several weeks with the aid of periodic external heating.

Ultraviolet light (UV) is reported to reduce the portion of alkali atoms attached to the glass

cell [1], we tried adding UV to the system during MOT loading but found no difference, which is

still a mystery to this lab.

K atom source is typically controlled at room temperature 20◦C, but we never use that since

we don’t have lasers for K yet.

4.3 Experimental optical setups

Our laser system consists of three distinct lasers: the master laser, the cooling laser, and

the repump laser. For effective laser cooling, precise dynamic control over the frequencies of the

cooling and repump lasers is crucial. This precision is achieved by locking these lasers to a stable,

known frequency, which is provided by the master laser. The master laser itself is stabilized by

locking it to a specific atomic spectral line, ensuring a high degree of frequency stability and

accuracy.

This section will first introduce the configuration of the MOT optics surrounding the MOT

cell. Subsequently, we will delve into the details of the laser control and locking mechanisms,

encompassing the master, cooling, and repump lasers.
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OptPump
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Gold 
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Gold 
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PBS

(a) (b)

Figure 4.4: MOT optics. Reproduced from [1]. (a) Three pairs of beams that form the MOT
region within the glass cell. The pair that goes in and out of the plane is not labeled in (a). In
(b), MOT5 is labeled, and MOT6 is hidden behind the coils. In (b) an additional optical pumping
beam labeled by OptPump has orthogonal polarization to the MOT5.

4.3.1 MOT optics geometry

The 3D MOT requires 6 cooling beams, as shown in Fig. 4.4, realized by a cage mount

system attached to the coil holder. All the beams are tuned to circular polarized and two gold

mirrors are used to preserve the polarization of the reflecting beams. Repump beams are sent

in from MOT1 and MOT4. The optical pumping beam is propogated along MOT5 but with a

polarization orthogonal to the MOT5.

4.3.2 Laser Control

In our lab we use hyperfine levels of 85Rb and 87Rb for laser control. The laser frequencies

used are summarized in the following diagram, and the details will be elaborated in this section.

2In other words, we want more atoms to accumulate in the glass cell for experiments.
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Figure 4.5: Laser frequency diagram. The unit is in MHz. The first row shows the frequency
rough difference of the cooling, master, and repump laser. The second row gives detailed beam
frequencies relative to the lock.

4.3.2.1 Master Laser

To achieve laser cooling, the frequency of the laser needs to be stabilized and can be

controlled with high bandwidth. The cooling and repump lasers have to be locked to a frequency

standard, in our lab we call it the master laser, which uses saturated absorption spectroscopy

(SatAbs) of 85Rb, shown in Fig. 4.6.

SatAbs can resolve frequency within the natural linewidth (6 MHz for Rb) among the

Doppler-broadened absorption spectrum by a pump beam (pink in Fig. 4.6) that pumps some

of the atoms from the ground to excited states so that the probe beam (red in Fig. 4.6) absorption

efficiency will be reduced when the probe beam is resonant to the excited atoms which is a spike

in the absorption spectrum.

In our setup, the pump and probe beam have a frequency difference of 160 MHz due to

double passing of a 80 MHz AOM, νpump − νprobe = 160MHz. We lock to the 85Rb F = 3 →

F ′ = 4 transition with frequency ν3→4, since the pump and probe beams counterpropagate with

nonzero frequency difference, additionaly we have to take into account the Doppler shift kv, that

is, νpump = ν3→4+kv and νprobe = ν3→4−kv. So, the Doppler shift is 80MHz, and the beam sent
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to the beatnote lock has the same frequency as the probe beam, that is, νmaster = ν3→4 − 80MHz

= 384229161 MHz.

Rb vapor cellND filterλ/4

λ/2

PBS

PBS

Prism

BS
λ/4

λ/2

λ/4

Optical Isolator Vortex II TLB-6900 
NewFocus

Master Laser

Pump
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M

M

M

M

M

80 MHz AOM

0

+1

PhotodiodeOptical Isolator

Fiber Coupler

Probe

M

M

M

Figure 4.6: Master Laser SatAbs configuration.

4.3.2.2 Cooling Laser

The cooling laser setup is shown in Fig. 4.7, where 5 fiber output ports are used for beatnote

lock, probes on science side, MOT and molasses cooling and optical pumping, respectively.

A taper amplifier is used to amplify the light from 30mW to 700mW for the MOT beam,

which couples into a 2 × 6 fiber splitter and the maximum output power on each MOT arm is

30mW. An additional λ/4 waveplate is placed before the MOT cooling port for polarization

control.

The cooling laser is locked close to the 87Rb F = 2 → F ′ = 3 transition through

the beatnote lock. The locked frequency can be dynamically tuned within each sequence, for
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example, cooling laser frequencies in a typical BEC experiment are shown in the following table,

where the cooling detuning δ is relative to the F = 2 → F ′ = 3.

Stage Cooling red δ(MHz)

MOT 19.5

CMOT 19.5 →17.6

Molasses 49.0 →137.0

Optical Pump 243.23

The optical pumping in the experimental sequence is adjacent to the polarization gradient

cooling, which typically ends with ∼ 100MHz detuning, and the optical pumping pulse time

typically only lasts less than 1ms to avoid heating from the radiation pressure force, so in order

to jump less laser frequency in such a short time we set the optical pumping beam frequency

close to the F = 2 → F ′ = 2 transition by the −1 order of an 80MHz AOM which creates an

additional −160MHz difference compared to the MOT beam.

4.3.2.3 Repump laser

The repump laser setup is shown in Fig. 4.8, where 3 fiber output ports are used for

beatnote lock, probe on the science side, and repump on the MOT side during laser cooling

stages, respectively. The MOT repump port is coupled to the fiber splitter, so the fiber output on

the MOT side has both cooling and repump light.4

The repump is locked close to the 87Rb F = 1 → F ′ = 2 transition through the beatnote

lock. Although we are able to dynamically tune the repump frequency during the laser cooling

stages, typically we do not change that and it is not very sensitive.

3The optical pumping is 23.4MHz blue detuned to the F = 2 → F ′ = 2.
4The splitter only couples repump into 2 arms on the MOT side.

80



Toptica D
L

 P
ro

Toptica TA

Optical 
Isolator

λ/2

λ/2

λ/2

λ/2

80 M
H

z
 A

O
M

B
S

80 MHz
 AOM

80 MHz
 AOM

+
1 -1

+
1

S
hutter

S
hutter

S
hutter

M

M

MM

M M M M

M

M

M
M

M

M

M

P
B

S

P
B

S

P
B

S

λ/2

O
ptical

pum
ping

λ/4
λ/2

M
O

T
 cooling

λ/2

B
eatnote 

λ/2

P
robe2

λ/2

P
robe1

Figure 4.7: Cooling laser configuration.

4.3.3 Laser locking

In our lab, the master laser is locked to the Saturated Absorption (SatAbs) spectrum,

ensuring a high degree of precision for the frequency standard. Both the cooling and repump

lasers are then synchronized with the master laser through a beatnote method. The specifics of

this synchronization process and the underlying principles of the laser locking mechanisms will

be comprehensively discussed in the subsequent section.
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Figure 4.8: Repump laser configuration.

4.3.3.1 Master laser lock

The SatAbs photodiode collects the absorption spectrum and the error signal for locking is

generated from a lock-in amplifier by frequency modulation (FM) of the AOM, shown in Fig. 4.9.

With FM, the SatAbs spectrum S(f) is also modulated. Suppose that the laser frequency

is swept with rate df/dt = vsweep, then the photodiode reading is S (f(t)) = S(f0 + vsweept −

fAOM(t)), where fAOM(t) = fAOM,0 + A cos(2πfFMt). If we send the photodiode reading to the

lock-in amplifier with reference signal Vref = cos(2πfFMt + ϕ), then after the mixer the signal
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Figure 4.9: Master laser locking diagram

becomes

S (f(t))Vref =S(f0 + vsweept) cos(2πfFMt+ ϕ)

− dS

df
|f=f0+vsweept

[
fAOM,0 cos(2πfFMt+ ϕ) +

A

2
(cos(4πfFMt) + cosϕ)

]
,

(4.2)
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where A≪ fAOM,0 and vsweepfFM ≪ 1. After the low pass filter, the signal becomes

[S (f(t))Vref]DC = −A
2
cosϕ

dS

df
|f=f0+vsweept, (4.3)

which is proportional to the derivative of the spectrum, thereby an error signal for locking is

created for locking electronics.

4.3.3.2 Beatnote lock

The beatnote is generated from a fiber combiner which has three tones from the master,

cooling, and repump laser. The fiber is then sent to a 10GHz fast photodiode (EOT GaAs ET-

4000AF), shown in Fig. 4.10. The three beatnote frequencies within 10GHz are 1046MHz,

5522MHz, and 6568MHz, in which we only need the first two to lock cooling and repump. A

splitter (ZX10-R-14-S) split the beatnote into two. Low-pass filters (VLF-2850+) are applied to

keep only the cooling-master beatnote, and high-pass filters (VHF-4400+) keep the other two

high-frequency beatnotes. Note that to eliminate the cooling-repump beatnote, we also applied a

low-pass filter (VLF-4400 +) in series with the high-pass filter. The beatnote and the Novatech

DDS signal are sent to the PLL to receive an error signal to lock. Initially, we used the Precision

Photonics LB1005 PI controller as the locking electronics. Later on we upgraded it to Toptica

Digilock, which makes locking easier.

4.4 Magnetic field Control

The magnetic field is generated by running currents in coils in this lab, so coils and current

controllers (servos) are needed.
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Figure 4.10: Beatnote lock diagram.

The magnetic field in this lab needs to be controlled under three cases: (i) laser cooling

and magnetic trapping in the MOT cell. (ii) Magnetic transport of the trapped atoms from the

MOT cell to the science cell. (iii) Magnetic trap and magnetic field control in the science cell for

physics study.

In this section, we will introduce the coils used in the lab and the coil winding procedure.

Then we introduce the servos, and finally the application of magnetic transport as well as bias

and gradient control in the science cell.

4.4.1 Coils in RbRb

The coils used in the lab are shown in Fig. 4.11. (i) Out of the MOT cell we have 8

cloverleaf coils and 2 round coils for bias field control along 3 directions. (ii) We have 11 pairs

of coils for magnetic transport, for clarity only half of the coils are shown in Fig. 4.11. The two

round shape coils also create the quadrupole magnetic field for magnetic trapping in the MOT

and science cell. (iii) Eight clover leaf and eight racetrack-shaped coils are out of the science cell
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Figure 4.11: Coils in RbRb. Reproduced from [1].

for the bias and gradient field control.

4.4.2 Coil winding

The coil winding platform is shown in Fig. 4.12(a), where rods are to create tension during

the winding of the ribbon wire. After 635 turns of winding for each coil, we tied the coil to the

coil winding form, then put epoxy on top of the coil for shape fixing. To ensure that the epoxy

5The target number is 60, but we typically wind 3 more turns, since the epoxy during curation will be attached
the outtermost turn, and we have to remove that turn.
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(b)(a)

Figure 4.12: Coils winding. (a) shows the coil winding pipeline. (b) shows the coils with epoxy
in a vacuum bubble.

was fully immersed in the coil, we placed the coils in a vacuum bubble for 30 minutes, as shown

in Fig. 4.12(b). Then we let the epoxy cure, which typically takes more than 10 hours at room

temperature. To accelerate the curation, the epoxy can be heated.

However, the epoxy does not have good thermal conductance, and the current running in

the coil can be up to 100A, thereby we need to remove the epoxy as much as possible for better

heat dissipation. The epoxy on both sides of the coil is lathed off by team member Ana Valdes in

the UMD machine shop.

An example of the lathed coil surface under the microscope is shown in Fig. 4.13(a).

4.4.3 Current servos

All current servos in the lab come from two supply (Angilent 4490A) capable of conducting

440A with beefy cables connected from the corridor outside to the lab ”current” manifold, shown
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(a) (b)

(c)

Figure 4.13: (a) Coil surface after lathing under microscope. (b) A cloverleaf coil with epoxy
covered. (c) A round shape coil with epoxy removed.

(a) (b)

(c)

Figure 4.14: (a) The metal bars are the ”bus” of the +15V , ground and −15V for the current
control in the lab. Below is the transistor bank for the transport coil current. (b) Shows the 11
high current cable connectors for the transport coil. (c) Shows the diagram of the unipolar and
bipolar current control in the lab.
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in Fig. 4.14.

4.4.3.1 Unipolar current servo

The unipolar current servos in the lab control the current of all the magnetic transport coils,

including the MOT and science quadrupole coil. It is built on the basis of the design of the NIST

lab which uses the Hall sensor for current sensing.

4.4.3.2 Bipolar current servo

The bipolar current servo is designed to control the bias and gradient magnetic field ranging

from −20A to 20A in the lab. We used to use the commercial product Kepco as the bipolar

current source, while the noise in the current mode is quite large and we have an additional servo

in its voltage mode for higher bandwidth and less noise. In the current design, we need 12 bipolar

servos (3 MOT bias + 9 for the bias and gradient in the science cell), so purchasing 12 Kepcos

is not a financially wise choice. Instead, we built the low-noise sensing resistor-based bipolar

current servos on our own. The details of the design can be found in [72]. Here, I will briefly

state the design.

The circuit has three high-level modules depicted in Fig. 4.15(a): current sensing module,

feedback module, and current generation module. In the current sensing module, a sense resistor

transduces the load current to a voltage. The feedback module uses an opamp-based proportional-

integral (PI) servo to maintain the sensed voltage at a target value. Lastly, the output of the

feedback module is used to govern the MOSFET gate voltage, thereby determining the current

through the load.
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Figure 4.15: Bipolar servo schematics. (a) High-level modules including current sensing,
feedback and current generation. (b) Bipolar current control schematics. The control signal
is input on the left and divided into positive and negative channels (top and bottom respectively)
that control separate banks of NMOS and PMOS transistors before being delivered to the load
(far right) and sensed.

The current generation module uses N–channel MOSFETs (NMOS, IXFN520N075T2)

for positive current and P–channel MOSFETs (PMOS, IXTN170P10P) for negative current, as

shown in Fig. 4.15(b). To avoid crossover distortion when the feedback signal passes below the

threshold voltage of the MOSFETs, we used a class AB amplifier design [73, 74]. MOSFETs

have a threshold gate voltage Vth below which they do not conduct; the AB amplifier design

adds a positive offset voltage to the NMOS gate and a negative offset voltage to the PMOS gate.

In our circuit, this is implemented with a pair of noninverting summing amplifiers (based on

LT1363 opamps) that use trim pots to tune these offset voltages close to the threshold voltage

of the MOSFET. The threshold voltages of NMOS and PMOS have opposite polarity, so only

one group of MOSFETs will turn on for a specific control signal. For example, when the control

signal is positive, the gate voltage of the NMOS and PMOS will be greater than their thresholds,

allowing the NMOS to conduct while disabling the PMOS.

90



4.4.4 Magnetic transport

As we have previously stated, the science cell has a lower background pressure leading to

a longer lifetime that is ideal for BEC experiments. Also, the science cell gives more optical

axes since the MOT setup is on the other end. Therefore, the apparatus would benefit from the

transport of the atoms from the MOT cell to the science cell. We selected magnetic transport

because of its high stability. We heard a very pleasant experience from the RbChip lab that once

the magnetic transport is optimized, you don’t need to optimize it for years. And based on my

experience, this is a definitely true statement. The only issue is that it is quite complicated and

requires the fabrication of many coils. So in this section, we will first introduce the principle of

magnetic transport and then discuss its realization in the lab.

4.4.4.1 Physical principle of the magnetic transport

Magnetic transport in atomic physics is facilitated by an array of overlapping coils configured

as an anti-Helmholtz arrangement [75]. Ideally, the aspect ratio of the gradient field β =

−Bzz/Byy should be constant during transport, where Bij is the shorthand notation for dBi/dxj .

Here z is the direction of strong confinement and y is the direction of transport, and the minus

sign in the definition of β is due to the divergent-free B field satisfying Bzz = −(Bxx +Byy).

On the other hand, the atoms are trapped at the place with the minimum magnitude of the

B field. In our case, the minimum is zero.

So during transport at time t, the atom is transported to position ỹ = y(t), then the B field

should satisfy two conditions: (i) |B(y)| = 0; (ii) β0 = −Bzz(y)/Byy(y).

To achieve that, we have to turn on 3 coils simultaneously. Let us take a step back and
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suppose we want to achieve that with 2 coils, then condition (i) fixes the current ratio of two

coils, and we don’t have more free-tuning parameters to fulfill condition (ii). Conversely, with

three coils on, we have two independent current ratios to fulfill both conditions.

The 3-coil configuration gives a good scheme for transport except for the boundary conditions.

Before and after transport, the atoms are confined in a magnetic quadrupole trap with β = 2.

Consequently, to achieve a different β value during transport, we use a 2-coil configuration at

the start to ramp the β value from 2 to β0, and keep it constant during transport and use another

2-coil configuration at the end to ramp β from β0 to 2.

With a predefined y(t), we can determine the magnetic field B(t) and the currents I(t) that

run in each coil.

4.4.4.2 Realization of magnetic transport

As previously stated, 11 coil pairs are used for transport, so we have 9 free-tuning magnetic

gradients to control for the 3-coil configuration, i.e., [(1,2,3), (2,3,4), (3,4,5),...,(9,10,11)]. Then

for the 2-coil stages, we have more parameters to decide, from where to transit from 2-coil to 3-

coil and the β0 value to the detail of the β ramp. Finally, y(t) is also optimized. We send all these

parameters to a machine learning platform (M-Loop [76]) for optimization, and the transport

efficiency is up to 80%, which is validated by a round-trip transport.

An example of a round trip transport curve is shown in Fig. 4.16.
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Figure 4.16: Time traces of current control during a round-trip magnetic transport.

4.4.5 Bias and gradient field control

In both the MOT cell and the science cell, bias magnetic field control is essential. And

for the science cell, we aim to achieve additional full magnetic gradient control, i.e., we want to

control all the 9 components of the tensor ∇B. From the Maxwell equation we have ∇ ·B = 0

and ∇×B = 0. So in total, we need at least 5 independent gradient controls for the 5 degrees of

freedom. In our design, we used 16 coils with 9 independent bipolar current controls to achieve

full control of bias and gradient magnetic field control.

I will elaborate the design in the subsequent sections.

4.4.5.1 Bias configuration

As shown in Fig. 4.17, we use eight independently controlled cloverleaf coils to control the

bias field. The designed B field versus current I is Bx/Ix = 1.553 G/A, By/Iy = 3.198 G/A

and Bz/Iz = 3.198 G/A.
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Figure 4.17: Bias coil and current configuration.

4.4.5.2 Gradient configuration

As shown in Fig. 4.18, we use eight independently controlled cloverleaf coils to control the

gradient field components except for the dBy/dy = −dBz/dz pair controlled by eight racetrack

coils. As a shorthand notation we use Bij = dBi/dxj . The designed gradient field versus

current I is (i) Byz/I = Bzy/I = 0.923 G/cm/A, (ii) Bxy/I = Byx/I = 0.937 G/cm/A, (iii)

Bxz/I = Bzx/I = 0.937 G/cm/A, (iv) Bxx/I = −2Byy/I = −2Bzz/I = 0.366 G/cm/A and

(v) Byy/I = −Bzz/I = 0.492 G/cm/A.

4.4.5.3 Calibration of the B field

Number of turns calibration The number of turns of each coil during fabrication might have

some uncertainty, so it is necessary to calibrate it, and we select to test it with the BEC. The

procedure is as follows. (i) We prepared the BEC in a magnetic sensitive state, for example,

|F = 2,mF = 2⟩. (ii) We applied a magnetic gradient force −µ ·∇|B| during the free expansion

of BEC by running currents to only one of the eight clover leaf coils, for example 10 A with a
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Figure 4.18: Gradient coil and current configuration.

TOF= 15 ms. From the camera, we can know the displacement of the cloud as a result of the

magnetic gradient. The displacement ratio gives the number of turns ratio.

B field versus Current Calibration The B field can be calibrated by microwave or RF resonance.

In our case, we used the microwave and the two states are |F = 2,mF = 2⟩ and |F = 1,mF = 1⟩

with a magnetic sensitive Zeeman shift 2.1 MHz/G. We basically scan the resonance by ARP

under different detuning and magnetic fields by scanning currents applied in coils. An example

of By versus I is shown in Fig. 4.19. Note that the minimum detuning is nonzero which means

the existance of non-zero background magnetic field. The zero-field current can be obtained

at the minimum of the resonance. In this way we obtain the zero-field current in the lab is
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Figure 4.19: Calibration of B field using microwave resonance. Blue points are measured from
ARP resonance, and the orange is fitted from the square root of a parabola.

(Ix, Iy, Iz) = (−53 mA,−45 mA,−224 mA). And the B field and current ratio can be extracted

from the slope in the large field region, i.e., Bx/Ix = 1.38 G/A, By/Iy = 3.33 G/A and

Bz/Iz = 3.30 G/A. These values are close to the design.

4.5 Digital micromirror device control

A Digital Micromirror Device (DMD) is a type of microelectromechanical system (MEMS)

that is pivotal in the field of digital light processing (DLP) technology [77]. At the core of a DMD

is an array of microscopic mirrors, each individually controlled to tilt at precise angles. These

mirrors, typically fabricated on a silicon wafer, are capable of tilting in two directions, allowing

them to reflect incoming light either into or away from the optical path of the device.
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In a typical application, light from a source is directed onto the DMD chip. Each mirror’s

orientation determines whether the light is reflected towards the projection lens (‘on’ state) or

away from it (‘off’ state). This binary operation of the mirrors, combined with the diffraction

effects, enables the creation of high-resolution images or patterns. Due to their high speed and

precision, DMDs are capable of modulating light both spatial and temporal.

In our lab, we have two DMDs, one is for creating a spatial and temporal dependent optical

dipole potential using scalar light shift and the other uses to create patterns from the vector light

shift.

Typical applications of the scalar light shift DMD include (i) creating confining trap, such

as the box trap, or creating a harmonic trap using halftoning [78]. (ii) creating collective mode

excitations such as the scissors mode by displacing the harmonic trap by an angle. (iii) creating

dynamical ”movie” such as Bragg scattering by a moving sinusodial potential [79].

Typical applications of the vector light shift include (i) creating spatial dependent vector

light shift, (ii) creating tracer particles for velocimetry which will be introduced in the chap. 5.

DMD chip is not designed for a laser source since it creates many laser speckles which act

as an uncontrollable disorder optical potential for the atoms. LED is not a good option here, since

it diverges so fast during propogation. Superluminescent LED (SLED) is an option [80], but its

power is quite low. In our lab, for the scalar light shift light source we selected a multimode

635 nm laser with ∼ 3 nm linewidth which reduces the coherence length and thereby reduces the

speckles effect. For the vector light shift DMD, we use the single mode 790 nm laser source.
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Chapter 5: Velocimetry

In Chap. 3 we introduced several well-developed velocimetry techniques in the classical

fluid and some proposed techniques in quantum fluid, among which the particle image velocimetry

(PIV) is the one implemented in our system. In this chapter I will introduce the detail of the

implementation and benchmark test on several velocity field in atomic BEC.

5.1 PIV in BEC

I want to begin with a question: what is the most important part in the PIV? My answer

is tracer particles, which show the same trajectory as the fluid particles so that we can read the

velocity field of the fluid. Ideally, we expect the tracer particles to have the same mechanical

property of the fluid particles, at the mean time we can also distinguish the tracers from the fluid.

A different spinor species seems to be the best candidate because the scattering length differences

between the inter- and intra-species are approximately the same. For example, in the 87Rb, we

can prepare the BEC in |F = 1,mF = 1⟩ and use |F = 1,mF = 0⟩ as tracer particles. With

an additional magnetic bias field we can selectively transfer |F = 1,mF = 0⟩ to the F = 2

manifold for imaging.

The main technical challenge is then how to introduce the tracer particles into the system

in a spatial-dependent manner so that we can extract the local velocity field. A non-spatial
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dependent transfer of fluid particles to tracer particles can be implemented typically by a RF

or microwave pulse which can be hardly controlled in a spatial dependent manner due to its large

wavelength (RF:∼ 100 m; microwave:∼ 100 mm) relevant to the typical size of an atomic BEC

(∼ 10 µm). Consequently we have to use EM field with wavelength at least a magnitude smaller

than the size of atomic BEC, and that is the laser with wavelength ≤ 1 µm. In Chap. 2 we have

introduced using AC vector light shift as RF field, i.e., if the incident light has two tones

E = ϵ
[
e−i(ω+∆ω)t + e−i(ω−∆ω)t

]
, (5.1)

then the effective B field is proportional to

Beff ∝ i(E× E∗) = 2i(ϵ× ϵ∗)[1 + cos (2∆ωt)]. (5.2)

Therefore, apart from the DC effective magnetic field, we obtain an AC effective magnetic field

with angular frequency 2∆ω which is the frequency difference of the two tones.

If an external DC magnetic bias field sets a Zeeman shift with angular frequency 2∆ω that

is resonant to the AC part of the Beff , the magnetic dipole transition will drive the atoms to other

spinor states within the ground state manifold, thereby we can achieve the RF coupling in an

optical manner under the condition that 2∆Ω is in the RF range. Finally, the spatial dependence

of the coupling can be achieved by a spatial light modulator, in this way we can control the

position of the tracer particles. We can also understand the magnetic dipole transition by two-

tone laser as a three level Raman transition, and thereby we will call the PIV technique Raman

PIV.
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I have briefly stated the Raman PIV in BEC, in the following subsection I will introduce

the details of its implementation in our system.

5.1.1 Details of the Raman PIV technique

Our Raman PIV technique, schematically illustrated in Fig. 5.1(a)-(c), allows us to directly

measure the velocity field and thereby both velocity structure function and velocity increments

statistics for turbulence study in Chap. 6. In this technique we begin with some initial velocity

distribution [representative depiction in Fig. 5.1(a)], then create localized “tracer particles” consisting

of atoms in a different hyperfine state using a spatially resolved Raman technique [Fig. 5.1(b)],

and, after a ∆t delay, measure the displacement of the tracers [Fig. 5.1(c)]. This then directly

leads to the local fluid velocity.

We used 87Rb BECs with N ≈ 2 × 105 atoms in the |F = 1,mF = 1⟩ hyperfine

ground state with strong vertical confinement (trap frequency ωz = 2π × 220 Hz) provided by a

1064 nm trapping laser with an elliptical cross section, traveling along ex. Additionally, a digital

micromirror device (DMD) patterned 638 nm multimode laser traveling along −ez provided in-

plane confinement. An ≈ 1.4 G magnetic bias along ey created a ∆f = 1 MHz Zeeman splitting

between adjacent mF states.

Figure 5.1(d) schematically shows the geometry used to create localized tracer particles: a

pair of copropagating 790 nm lasers with frequency difference ∆f drove mF -changing Raman

transitions with a 50 kHz Rabi frequency.

The two-tone Raman beam, with a wavelength of 790 nm, was generated by applying

amplitude modulation to the 80 MHz frequency signal driving the acousto-optical modulator
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Figure 5.1: Concept. (a) An example of velocity field. (b) Tracer particles (bright pink) are
injected into the system at t = 0. (c) At t = ∆t, tracer particles (bright pink) move from their
initial position (dark pink). (d) Spatially-resolved Raman technique to create localized tracer
particles.

(AOM). This modulation was set at a frequency difference of ∆f/2 = 0.5 MHz, effectively

manipulating the AOM’s first-order output to create the desired two-tone beam.

We selected 0.5 MHz modulation to ensure that we can couple the two-tone with enough

power(≈ 100 mW) of light simultaneously into a single optical fiber so that the two-tone can

co-propogate to the BEC. The PBS and waveplates is to ensure the outcoming light from the

DMD has as much circular polarized component as possible. Ideally, we expect a purely circular

polarized beam since it will create the effective magnetic field along the beam propagation
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direction êz, which can be seen by plugging the circular polarized vector into the effective B

field expression, i.e. i(êx + iêy) × (êx − iêy) = 2êz. For some reason, the beam polarization is

difficult to control after reflecting from the DMD, and we rotated the waveplate to optimize for a

maximum Rabi frequency of 50 kHz at the atom.

The bichromatic 790 nm Raman beam was patterned by the DMD, enabling the placement

of arbitrary patterns of tracer atoms in |F = 1,mF = 0⟩. Tracer atoms were selectively

measured using partial transfer absorption imaging (PTAI) [81], in which ≈ 6.8 GHz microwaves

transferred the tracers to |F = 2,mF = 0⟩ where they were detected using resonant absorption

imaging. Our imaging system had a nominal 1 µm resolution, and allowing us create and then

detect tracers with 1/e radius down to 1.6 µm.

In our experimental sequence we first initialized the velocity field of interest and then

created a set of N tracers, at positions rj0 in the êx-êy plane using an ≈ π/2 Raman pulse, with

j = 1 . . . N (these positions were directly verified by PTAI measurement). After a ∆t evolution

time, we imaged the tracers to obtain the final positions rj . The velocity at each rj0 was taken as

the first order finite-difference vj = (rj − rj0)/∆t.

5.2 Velocity field measurement of benchmark flow in BEC

The benchmark test progresses from simple to complex scenarios, beginning with the

dipole and scissors modes in a harmonic trap and advancing to the irrotational quadrupole flow

pattern in a rotating harmonic trap.
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5.2.1 Dipole mode

The most simple velocity field is the dipole mode in a harmonic trap [38], in which the

motion is analogous to a harmonic oscillator, and the spatial dependence of the velocity field is

negligible. So, the dipole mode is ideal for the sanity check of the PIV technique.

I will first derive the dipole mode velocity field and give the experimental verification.

5.2.1.1 Dipole mode velocity field derivation

Starting from the GPE [Eq. (2.57)], and we use the hydrodynamics picture by writing the

condensate wavefunction as ψ =
√
ρeiφ, where ρ is the atom number density and φ is the phase

of the wavefunction. The velocity field is determined by the phase gradient, i.e., v = ℏ
m
∇φ. The

GPE becomes

∂tρ+
ℏ
m
∂i (ρ∂iφ) = 0,

− ℏ∂tφ =
ℏ2

2m
∂iφ∂iφ+ gρ+ V − µ.

(5.3)

Since we only measured the velocity field in 2D, here we focused on the dipole mode in the

XY plane with the external harmonic trap potential V = 1
2
m(ω2

xx
2+ω2

yy
2). The excitation of the

system can be found by adding a perturbation into the system, i.e., ρ̃→ ρ+ δρ and φ̃ = φ+ δφ,

which should also satisfy the Eq. (5.3), thereby we can obtain

∂tδρ+
ℏ
m
∂i(δρ∂iφ+ ρ∂iδφ) = 0,

− ℏ∂tδφ =
ℏ2

m
∂iδφ∂iφ+ gδρ.

(5.4)

Since the ground state of the BEC has zero velocity field, we can set φ = 0, and the density can

be treated with Thomas-Fermi approximation, i.e., ρ = (µ − V )/g. The equation of motion for
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the perturbation further reduces to

∂tδρ+
ℏ
m
(∂iρ∂iδφ+ ρ∂2i δφ) = 0,

ℏ∂tδφ+ gδρ = 0.

(5.5)

Now we consider the excitation with angular frequency ω, i.e., δρ = δρ̄e−iωt, δφ =

δφ̄e−iωt. For the dipole mode, the trial solution for oscillation along êx and êy are δφ = δφ̄xxe
−iωt

and δφ = δφ̄yye
−iωt, which gives the eigenmode ω = ωx and ω = ωy respectively. So the dipole

mode frequency along the principle axis is the trap frequency, and the dipole mode velocity

field along axis êj is given by vj(t) = ℏ
m
δφ̄je

−iωjt, where j = x or y. Note that this velocity

field is spatial-independent, so we can place a single tracer into the BEC for the velocity field

measurement.

5.2.1.2 Dipole mode experimental verification

We first prepared |F = 1,mF = 1⟩ BEC in the ground state with trap frequency (ωx, ωy) =

2π × (46, 23)Hz created by projection from the confining DMD. [Fig. 5.2(a)]. The dipole mode

was excited by a magnetic kick along the weak confinement direction êy [vertical in Fig. 5.2(a-

b)]. We then injected the tracer patterns shown in Fig. 5.2(b) using Raman PIV, and measured the

tracers’ position difference with ∆t = 2ms. One tracer position is plotted in the Fig. 5.2(c) with

a dipole mode frequency of 23.6Hz and peak velocity ≈ 0.5 mm/s fitted by a damped sinusoidal

function. The measured dipole frequency agrees well with the trap frequency.
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Figure 5.2: Velocity measurement of the dipole mode using PIV. (a) shows the ground state BEC
in a harmonic trap. (b) shows the PIV tracer patterns. Colorbars in (a-b) show the optical density
(OD). (c) shows the position change of a tracer under dipole mode excitation.

5.2.2 Scissors mode

We then add some complexity by introducing some spatial dependence in the velocity field.

The quadrupole mode [82] would be a good candidate in which the scissors mode [83] is the one

I am most interested, since it is related to the irrotational flow of the superfluid. So, here I applied

the Raman PIV to study the velocity field of the scissors mode. Before that, let me explain more

about the scissors mode.

Consider the BEC in a harmonic trap under an angle displacement [Fig. 5.3(a)], similar

to the pendulum, the BEC would have an angle oscillation with a frequency dependent on the

moment of inertia. The classical moment of inertia is given by Ic =
∫
d3rρr2, but the measured

moment of inertia extracted from the angle oscillation frequency in the superfluid is less than Ic,
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Figure 5.3: Scissors mode measurement using PIV. (a) shows the velocity field of a rotating
harmonic trap. In the PIV, the red dots move to the pink dots with the angle between two ”arms”
θ changing dynamically. (b) shows the scissors mode oscillation of the θ using PIV, and the inlet
shows the tracers’ pattern used in the experiment.

which can be explained by the irrotational velocity field in the superfluid, and this special mode

is called the scissors mode with a velocity field v = ∇(αxy), where α is a parameter determined

by the trap frequency. Fig. 5.3(a) depicts this irrotational velocity field, and we observe that

the overall shape rotating direction agrees with the long arm (weak confinement) movement,

while opposite to the short arm (strong confinement) fluid motion. Now suppose we do a PIV

measurement to this flow field by injecting 4 tracer particles, which are drawn as red circles in

Fig. 5.3(a) with the two-arm angle θ = 90◦, then under some time interval they will move to the

positions marked by pink dots with θ < 90◦. In contrast, if we reverse the direction of Ω, the θ

will increase during the PIV, thereby the θ will oscillate back and forth with a frequency equal to

the overall shape oscillation frequency. We typically call this mode the ”scissors” mode, since it

is analogous to scissors’ arms opening and closing periodically.
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5.2.2.1 Scissors mode derivation

From the equation of motion of the wavefunction perturbation [Eq. (5.5)], we apply the

trial solution for the scissors mode, i.e., δρ = δρ̄e−iωt and δφ = δφ̄xy xye
−iωt and obtain the

following.

− iωδρ̄− ℏ(ω2
x + ω2

y)

g
xyδφ̄xy = 0,

gδρ̄− iωℏxyδφ̄xy = 0.

(5.6)

Consequently the eignfrequency ω should satisfy

det

iω
ℏ(ω2

x+ω2
y)

g
xy

g −iωℏxy

 = 0 ⇒ ω =
√
ω2
x + ω2

y . (5.7)

The velocity field is given by

v(t) =
ℏδφ̄xy

m
∇(xy)e−iωt =

ℏδφ̄xy

m
(xêy + yêx)e

−iωt, (5.8)

which is quite different from the classical fluid with rotational velocity field v = ω × r =

ω(xêy − yêx).

5.2.2.2 Scissors mode velocity field verfication

The experimental result is shown in Fig. 5.3(b), where we loaded the atoms into a harmonic

trap with trap frequency (ωx, ωy) = 2π × (46, 23)Hz confined by the optical potential created

from the confining DMD. We excited the scissors mode by a sudden displacement of the trap

potential by changing the harmonic trap potential from the confining DMD. The tracer pattern is
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shown in the inlet, and the angle θ is measured after the ∆t = 2ms. The oscillating frequency

agrees well with the theoretical result ωsissors =
√
ω2
x + ω2

y = 2π × 51.4Hz.

5.2.3 Rotating Trap

The scissor mode indicates that the irrotational flow exists in the BEC, but we only measured

velocity at four different positions. So, can we add more tracers and observe the whole velocity

field? For slowly rotating systems, such that no vortices are present, the superfluid velocity is

theoretically established to exhibit an irrotational quadrupole-like pattern [84] v = a(yex + xey)

with a ∝ Ω for small Ω. At higher rotation frequencies, when Ω becomes comparable to the

trap frequencies ωx,y, this becomes a metastable configuration with a range of possible instability

conditions [85, 86] the details of which must be obtained numerically. Here I will first derive the

steady-state flow field, then give the experimental verification for an overcritical transient flow

field.

5.2.3.1 Steady-state velocity field

In the rotating frame with angular frequency Ω, the GPE becomes

∂ρ

∂t
+∇ · (ρ(v −Ω× r)) = 0, (5.9)

∂v

∂t
+∇

(
v2

2
+
V

m
+
g

m
ρ− v · (Ω× r)

)
= 0, (5.10)

where the external potential V = m
2
(ω2

xx
2 + ω2

yy
2).

Consider the case Ω = Ωêz, and using the irrotational ansatz v = α∇(xy). Then v =
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(αy, αx, 0), and Ω× r = (−Ωy,Ωx, 0). Eq. (5.9) reduces to

∂ρ

∂x
(α + Ω)y +

∂ρ

∂y
(α− Ω)x = 0. (5.11)

Eq. (5.10) reduces to
g

m

∂ρ

∂x
= − 1

m

∂V

∂x
+ (2αΩ− α2)x,

g

m

∂ρ

∂y
= − 1

m

∂V

∂y
− (2αΩ + α2)y.

(5.12)

Consequently we obtain

Ω− α

Ω + α

x

y
=

1
m

∂V
∂x

+ (α2 − 2αΩ)x
1
m

∂V
∂y

+ (α2 + 2αΩ)y
=

(ω2
x + α2 − 2αΩ)x

(ω2
y + α2 + 2αΩ)y

⇒ Ω− α

Ω + α
=
ω2
x + α2 − 2αΩ

ω2
y + α2 + 2αΩ

(5.13)

Hence the α satisfies a cubic equation

2α3 + (ω2
x + ω2

y − 4Ω2)α + Ω(ω2
x − ω2

y) = 0. (5.14)

Under the low Ω limit, write α = δΩ and keep only linear term of Ω, we obtain

δ =
ω2
x − ω2

y

ω2
x + ω2

y

⇒ v = Ω
ω2
x − ω2

y

ω2
x + ω2

y

∇(xy) (5.15)

5.2.3.2 Rotating Trap Experimental Verification

The overcritical transient velocity field has a similar irrotational quadrupular pattern v ∝

∇(xy), and it is easier to measure because of the faster motion inside the fluid. The transient

behavior is first studied from a GPE simulation and then measured experimentally.
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Experimental procedure Atoms were prepared in a harmonic trap with frequencies (ωx, ωy) =

2π×(40, 50) Hz, where the XY plane potential was generated by the confining DMD. In our case

the steady-state solution would limit the rotation frequency to Ω ≲ 2π×40 Hz, leading to typical

speeds |v| ∼ 0.25 mm/s. To obtain an increased signal, we focused on overcritical systems with

Ω = 2π × 50 Hz, for which |v| ≈ 0.7 mm/s. Experimentally we began with static systems, then

linearly increased the angular frequency from zero to Ω in 15 ms, held Ω constant for 2 ms (at

which time the BEC rotated by an angle θ = π/2) and then performed PIV.
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Figure 5.4: Rotating harmonic trap flow field measurement using PIV. (a) shows measured the
velocity field of a rotating harmonic trap. The inlet shows the tracer particles motion of the black
arrow. The arrow end is the tracer’s initial position and the arrow head is the final position after
1.5ms. The color scale shows the experimental optical density from PTAI. (b) shows the velocity
field from the GPE simulation under the same case as (a). The color scale is rescaled to agree
with the measurement in (a).

In Fig. 5.4(a), we illustrate the velocity field across three circles with diameters of 2, 5, and

10 µm. The tracer pattern comprises two squares, each with a side length of 2.2 µm, positioned

with spatial separations of 5 µm or 10 µm. In particular, on the smallest circle with a 2 µm
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diameter, the tracer pattern is a single square due to the resolution limit. We systematically

scanned these patterns by rotating them around the center of each circle in increments of 15◦.

This process was repeated six times for each pattern, under two conditions: a wait time (∆t) of 0

and 1.5 ms. Fig. 5.4(b) shows the Gross-Piteavskii equation (GPE) simulation for comparison.

The irrotational quadrupole velocity field is clearly observed in the 5 µm and 10 µm circles.

This is the first known direct visualization of an irrotational atomic superfluid, confirming the

validity of our method for subsequent turbulence studies.
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Chapter 6: Turbulence experiments in atomic BEC

In this chapter, I will introduce the velocity structure function (VSF) measurement using

Raman PIV in a turbulent BEC and compare it to the K41 theory. Also, the intermittency is

observed from the high order of VSFs and fat-tailed of the velocity increment probability density

function (VI-PDF).

6.1 Turbulence Generation

Because Kolmogorov theory is valid for isotropic homogeneous systems, we turned our

attention to near-ground state BECs with uniform atomic density. We employed the confining

DMD to create a time-independent 2D disk-shaped potential V (r) = V0Θ(|r| − r0) with radius

r0 = 22 µm and depth V0 ≫ µ, where µ ≈ h× 550 Hz is the chemical potential. 1

We then initialized turbulence with a pair of counter-rotating stirring “rods,” with 3.5 µm

radii (also created by the confining DMD) that locally depleted the atomic density. As shown in

Fig. 6.1, the initially overlapping rods followed nominally circular trajectories (red curves, with

a 25 Hz rotational frequency) in which the radius changed every 400 µs to a random value in

the interval [12 µm, 15 µm]. The stirring potential was applied for 16 ms, the system was then

1The speed of sound is c = 1.3 mm/s, meaured within a square box potential with roughly the same size of
the disk, since the atoms are vertically confined within a harmonic trap of ωz = 2π × 220 Hz which is less than
mc2 = h × 368 Hz, and thereby we need add an additional geometric factor 3

2 to obtain the chemical potential
µ = 3

2mc
2 = h× 553 Hz.
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allowed to equilibrate for 40 ms prior to PIV measurement (with ∆t = 0.3ms evolution time).

0 ms 3 ms 6 ms 9 ms 12 ms 15 ms

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.1: Turbulence initialization. Atomic density measured at at six times during the
excitation process. Two counter-rotating stirring rods are moved in the condensates. The color
bar is the optical density from PTAI measurements.

6.2 Velocity Increments Dataset Collection

We used tracer patterns consisting of N = 4 tracers arrayed in a square [Fig. 6.2] with

three different side-lengths: 10.6µm, 11.4µm, and 12.6µm. Together these patterns gave access

to six tracer separations l comprising the side as well as the diagonal lengths. To obtain the

structure functions which are an ensemble average of various powers of the velocity increments,

each pattern was repeated ≈ 50 times. 2

The tracer positions rj were determined as their centers of mass (COM) ρjr/ρj . To first

order in ∆t the resulting velocity is the density-weighted (or Favre-averaged [48]) velocity ṽ =

ρv/ρ, used when applying Kolmogorov theory to compressible fluids [47, 49, 50] (we omit the

tilde in what follows). Each measurement yielded 12 velocity increments δvlij(r
j): with rj

associated with each tracer, and lij = ri0 − rj0 connecting to the remaining tracers.

We repeat the above procedure 44 times over eight days, so we obtain velocity increments

2The initial position r0 and final position r with ∆t = 0.3 ms of the trace were measured in a same experiment
sequence. We first measured r and then waited for 10 ms to measure r0.
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0.3 ms

0.0

0.1

0.2

0.30 ms

Figure 6.2: An example of Tracer patterns. Tracers are positioned on a squared array, each side
measuring 12.6µm. The left shows the position where the tracers are originally injected and the
right represents the tracers’ position with a time interval ∆t = 0.3ms compared to the left. The
red squares outline each region of interest (ROI), within which the red dots indicate the center
of mass used for velocity field calculation. The color bar is the optical density from the PTAI
measurements.

Runs l1 l2 l3 l4 l5 l6
1 {δ[1](1)vn1} {δ[1](2)vn2} {δ[1](3)vn3} {δ[1](4)vn4} {δ[1](5)vn5} {δ[1](6)vn6}
2 {δ[2](1)vn1} {δ[2](2)vn2} {δ[2](3)vn3} {δ[2](4)vn4} {δ[2](5)vn5} {δ[2](6)vn6}
...

...
...

...
...

...
...

44 {δ[44](1) vn1} {δ[44](2) vn2} {δ[44](3) vn3} {δ[44](4) vn4} {δ[44](5) vn5} {δ[44](6) vn6}

Table 6.1: Velocity increments dataset. The dataset covers six distinct tracer separations from the
squared array pattern, i.e., (l1, l2, l3, l4, l5, l6) = (10.6, 11.4, 12.6, 15.0, 16.1, 17.8)µm. Velocity
increments data is labeled as δ[i](j)vnj

, where i = 1..44 is the index of the experimental run, and
j = 1..6 is the index of the tracer separation lj . nj = 1.. ≈ 200 for j = 1, 2, 3 and nj = 1.. ≈ 100
for j = 4, 5, 6 since in each experimental run, the measurement is repeated for ≈ 50 times for
each tracer pattern which consists 4 data points for the square side (j = 1, 2, 3) and 2 for the
square diagonal (j = 4, 5, 6).

datasets shown in Table. 6.1.

6.3 Structure functions

The structure functions we focus on includes the longitudinal SL
p (l) = ⟨|δv(x, l) ·el|p⟩,

transverse ST
p (l) = ⟨|δv(x, l)·e⊥|p⟩, and scalar SS

p (l) = ⟨|δv(x, l)|p⟩ VSFs. The average ⟨· · · ⟩ is

the ensemble average over all positions x and displacement directions el. Please note the absolute

value is used in the definition of the structure function which is commonly used in turbulence
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experiments.

Historically, the second- and third-order structure functions are most frequently discussed

in the literature, since the second-order structure function is directly related to the kinetic energy

spectrum, and the third-order structure function gives the four-fifth law (section. 3.1.4.4), which

is an exact result derived by Kolmogorov. So we will discuss them in detail, and then discuss the

higher-order structure function to see the deviation from the K41 scaling.

6.3.1 Third order structure function (S3)

K41 predicts Sp(l) ∝ l(p/3), so it would be easy to start with the case of p = 3 in which

S3 is linear to l. Data points of S3 in Fig. 6.3 results from the velocity increments dataset in

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
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abs ST3
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Figure 6.3: Measured S3(l). Data point results from the average of 44 experimental runs,
each of which derived S3(l) from about 50 nominally identical experimental repetitions. The
uncertainties are the two-sigma standard error of the mean across the set of experimental runs,
and lines are fitted to the data plotted along with their 2− σ uncertainty band.
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section. 6.2. The dot points are the absolute value structure function, here we also add asterisk

points for the signed structure function without the absolute value to compare to the Kolmogorov

four-fifth law. Here the error bar stands for the 95 percent confidence interval, which is two-sigma

standard error of the mean across the set of experimental runs. 3 The shaded area gives the 2− σ

uncertainty for the linear fit. Note that the linear fit passes the origin, since from the definition

|δv(l = 0)| = 0.

The scalar SS
3 (green) agrees well with the linear relationship, while the transverse and

longitudinal ones are slightly off. The absolute value of ST
3 is typically slightly greater than that

of SL
3 , which aligns with our observations.

From the four-fifth law S3(l) = −4
5
ϵl we can estimate the dissipation rate ϵ in the system.

Here we used the mean of the signed SL
3 and ST

3 as the signed S3 for estimation, then the

dissipation rate ϵ ≈ 10−5m2/s3. We did not observe the anticipated negative slope in the signed

longitudinal structure function, SL
3 , and notably, the signed transverse structure function, ST

3 ,

exhibited a higher degree of asymmetry compared to SL
3 , which was unexpected [87].

6.3.2 Second order of structure function (S2)

The K41 theory did not originally predict S2(l) ∝ l2/3. Rather, this relationship, known

as the two-thirds law, is an empirical finding from experimental observations, as discussed in

section. 3.1.4.2. Any theory of turbulence, including the K41 theory, must first align with this

empirically established law.

Moreover, S2 is directly related to the kinetic energy spectrum, and the famous Kolmogorov
3Assuming the data points follows normal distribution, then the 95 percent confidence interval for n data points is

tn−1(0.025)σ.
√
n, where σ is the standard deviation and t45(0.025) ≈ 2. Although the velocity increments PDF has

non-Gaussian feature, it is still near-Gaussian in our case as shown in Fig. 6.8, so the normal distribution assumption
is reasonable.
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scaling E(k) ∝ k−5/3 can be derived from that. Since our PIV experiments are restricted to 2D,

I will elaborate on it in 2D.

6.3.2.1 Relation between S2 and kinetic energy spectrum

The first thing worth noting is that the kinetic energy spectrum in the turbulence study is

power spectrum of the velocity field rather than the Fourier spectrum of kinetic energy, i.e.,

E(k) = |FT[vx(r)]|2 + |FT[vy(r)]|2 ̸= |FT [v2x(r) + v2y(r)]|, (6.1)

where FT stands for the Fourier transform.

Second, the power spectrum E(k) is always reduced to 1D by averaging out the angle

dependence of the k, so there is an additional k from the Jacobian so that it satisfies
∫
dkE(k) =∫

d2kE(k), i.e.,

E(k) =

∫ 2π

0

dθ kE(k, θ), (6.2)

where (k, θ) is the polar coordinate of k.

From Wiener-Khinchin’s theorem, the autocorrelation of the velocity field is the Fourier

transform of the power spectrum, i.e.,

R2(r) ≡
∫
d2xv(x+ r) · v(x) = FT[E(k)] =

∫
d2kE(k) cos(k · r). (6.3)

Here the Fourier transform reduces to the integral of cosine since the power spectrum is real

symmetric.

On the other hand, the scalar SS
2 (r) can be decomposed by the autocorrelation function,
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i.e.,

SS
2 (r) ≡

∫
d2x |v(x+ r)−v(x)|2 =

∫
d2x [v2(x+r)+v2(x)−2v(x+r)·v(x)] = 2[R2(0)−R2(r)].

(6.4)

Please note that to obtain the structure function that only depends on the magnitude of r, we need

to average out the angle dependence of r, i.e., SS
2 (r) =

1
2π

∫ 2π

0
dϕSS

2 (r), where (r, ϕ) is the polar

coordinate of r. Combining Eq. (6.4) and Eq. (6.3), we obtain

SS
2 (r) = 2

∫
d2k[1− cos(k · r)]E(k) = 2

∫
kdkdθ[1− cos(kr cos(θ − ϕ))]E(k, θ) (6.5)

We can further expand the nested cosine using the Jacobi-Anger expansion with Bessel functions

and obtain

SS
2 (r) = 2

∫
kdkdθ[1− J0(kr)− 2

∞∑
n=1

(−1)nJ2n(kr) cos(2n(θ − ϕ))]E(k, θ). (6.6)

If the system is isotropic, we can further reduce it to

SS
2 (r) = 2

∫
dk(1− J0(kr))

∫
dθkE(k, θ) = 2

∫
dk(1− J0(kr))E(k), (6.7)

where ϕ is averaged out. It is worth noting that the structure function and energy spectrum is not

connected by a Fourier transform, but by a Bessel transform which is the Fourier transform of a

radially symmetric function in the polar coordinate. If E(k) follows k−5/3, then

SS
2 (r) ∝ 2r2/3

∫
d(kr)(1− J0(kr))(kr)

−5/3 ∝ r2/3. (6.8)
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6.3.2.2 Measurement of S2

Data points of S2 in Fig. 6.4 results from the velocity increments dataset in section. 6.2.

For an even order of structure function, we don’t need to distinguish the absolute and signed

structure function. The data points are fitted to the S2(l) = sl2/3 passing the origin, and the
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Figure 6.4: Measured S2(l). Data point results from the average of 44 experimental runs,
each of which derived S2(l) from about 50 nominally identical experimental repetitions. The
uncertainties are the two-sigma standard error of the mean across the set of experimental runs,
and lines are fitted to the data by l2/3 plotted along with their 2− σ uncertainty band.

error metric is the same as S3. Similar to the measured S3, the scalar one agrees well with l2/3,

and the longitudinal and transverse ones are slightly off. The amplitudes are sL = 1.06(7) ×

10−1 m4/3/s2, sT = 1.41(2)× 10−1 m4/3/s2 and sS = 2.47(6)× 10−1 m4/3/s2. Transverse VSFs

are generally larger than their longitudinal counterparts; for example the second order structure

function has the exact relation ST
2 (l)/S

L
2 (l) = 4/3 [88], and indeed we find ST

2 (l)/S
L
2 (l) =
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1.33(4). The good agreement of SS
2 ∝ l2/3 indicates the kinetic energy spectrum in our system

follows k−5/3 within the measured scale.

6.3.3 Sn(l) for n ≤ 7

Typically higher order structure functions have scalings deviations from the K41 scaling.

As shown in Fig. 6.5(a), we obtained the scalar structure function SS
n (l) up to seventh order and

fitted it to anlεn , where εp is the fitted scalings.
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Figure 6.5: Measured SS
n (l). (a) Log-Log plot of SS

n (l), n = 1..7 fitted to the dashed lines anlεn .
The error bar shows the two-sigma standard error of the mean. (b) intermittency correction εn− n

3

versus n. The error bar is the two-sigma uncertainty of the fitting in (a).

Fig. 6.5(b) shows the deviation of the measured scaling εn from the K41 scaling n/3. We

observed that the deviation increases for greater n, which is expected by the intermittency effect.

K62 theory predicted that the deviation is ∝ −n(n− 3). For our data, apart from the deviation is

nonzero at n = 3, the quadratic deviation agrees with the prediction.

We further obtained the longitudinal and transverse structure function and the intermittency
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Figure 6.6: Measured SL
n (l). (a) Log-Log plot of SS

n (l), n = 1..7 fitted to the dashed lines anlεn .
The error bar shows the two-sigma standard error of the mean. (b) intermittency correction εn− n

3

versus n. The error bar is the two-sigma uncertainty of the fitting in (a).
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Figure 6.7: Measured ST
n (l). (a) Log-Log plot of SS

n (l), n = 1..7 fitted to the dashed lines anlεn .
The error bar shows the two-sigma standard error of the mean. (b) intermittency correction εn− n

3

versus n. The error bar is the two-sigma uncertainty of the fitting in (a).
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corrections shown in Fig. 6.6 and Fig. 6.7. We observed that the longitudinal scalings are very off

from the K41 scalings while the transverse scalings are quite close, which suggests anisotropy in

the system.

6.4 Velocity increments PDF

Intermittency in the velocity increments PDF manifests itself as a deviation from the Kolmogorov

1941 (K41) scaling, not only observable through the higher-order structure functions but also

evident in the scale dependence of the probability density functions (PDFs) themselves. As the

scale decreases, the non-Gaussian characteristics of the velocity increments become increasingly

pronounced, the velocity increments exhibit more extreme events than would be expected in a

Gaussian distribution.

Having identified intermittency in the higher-order structure functions (section. 6.3.3), this

section shifts focus to the PDFs of velocity increments (VI-PDFs), aiming to uncover further

insights into the nuanced behavior of turbulent flows.

Recent measurements of the velocity PDF [61] and velocity increment PDF [89] in the

superfluid 4He have revealed contrasting results. At scales that exceed the average distance

l0 between quantum vortices, quantum turbulence manifests quasiclassical behavior in both its

energy spectrum and velocity statistics. However, at smaller scales, the discrete essence of

quantized vorticity influences the energy distribution and the frequency of high-velocity (increment)

events [90]. In this work, the tracer separations are on the scale of l0, thereby we expect that the

PDF would be near-Gaussian but still have non-Gaussian heavy tails. In this section I will first

introduce deconvolution used for estimation of PDF, and then discuss the non-Gaussian feature.
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6.4.1 PDF from Deconvolution

In the realm of measurements, noise is an inherent component, making the observed measurement

result, denoted as M̂ , a sum of the true result R̂ and instrumental noise N̂ , as shown by:

M̂ = R̂ + N̂ , (6.9)

where P̂ represents the random process P , and we utilize P (∆v) to denote the probability density

function (PDF).

Given the additive nature of noise, the PDF adheres to a convolution relationship, expressed

as:

M(∆v) = [R ∗N ](∆v), (6.10)

indicating that the observed PDF M(∆v) is the convolution of the true signal PDF R(∆v) and

the noise PDF N(∆v).

To calibrate the instrumental noise distribution N(∆v) in velocimetry, we analyze the

velocity increments distribution MBEC(∆v) of an unstirred Bose-Einstein condensate (BEC)

shown in Fig. 6.8. Theoretically, the real distribution RBEC(∆v) for the BEC’s ground state

should resemble a Dirac-δ function centered at ∆v = 0, leading to the conclusion that N(∆v) =

MBEC(∆v).

For a turbulent BEC, the measured velocity increments distribution is Mturb(∆v) shown

in Fig. 6.8. The challenge is to deconvolve this measurement by the instrumental noise N to
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uncover the real PDF, Rturb. While a direct approach involves Fourier transforms, where

Rturb = FT−1

[
FT[Mturb]

FT[N ]

]
, (6.11)

this method does not guarantee the resultant PDF will remain non-negative, a necessary condition

for real PDFs.
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Figure 6.8: Histograms of longitudinal velocity increments at l = 10.6µm for unstirred (blue)
and stirred (red) Bose-Einstein condensates (BECs). Panel (a) shows normalized PDFs in linear
scale, while panel (b) displays PDFs rescaled to peak at 1 in log scale. Error bars indicate

√
n

statistical counting errors.

To address this, we employ quadratic programming for deconvolution [91], a method

that will be detailed in the following section. This approach offers a more robust solution by

ensuring that the deconvolved PDF,Rturb, maintains its non-negativity, aligning with the inherent
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characteristics of probability distributions.

6.4.1.1 Quadratic Programming

Quadratic programming (QP) is a powerful optimization framework ideal for addressing

problems where the objective function is quadratic and the constraints are linear. In the context

of deconvolving a probability density function (PDF) from observed data contaminated with

noise, QP offers an efficient and precise method. The core challenge involves extracting the

true signal PDF, Rturb(∆v), from the observed measurements, Mturb(∆v), which are convolved

with instrumental noise. For simplicity, we denote Rturb and Mturb as R and M respectively

when the context is clear.

The deconvolution task can be elegantly formulated as an optimization problem within the

QP framework. This is achieved by minimizing the following quadratic objective function:

||M − CR||2 = −2(MTC)R +RT (CTC)R, (6.12)

where C represents the convolution matrix derived from the discretized instrumental noise across

k bins, and is defined as:

C = δ


N(∆v1 −∆v1) ... N(∆v1 −∆vk)

... . . . ...

N(∆vk −∆v1) ... N(∆vk −∆vk)

 , δ = ∆vi+1 −∆vi (6.13)

with δ specifying the uniform spacing between velocity increments bins. R andM are represented
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in vector form as:

R =


R(∆v1)

...

R(∆vk)

 , M =


M(∆v1)

...

M(∆vk)

 (6.14)

The optimization is subject to linear constraints ensuring that the PDF, R, is non-negative

and normalized, formalized as:

δITR = 1, R ≥ 0. (6.15)

By casting the deconvolution problem in terms of QP from the onset, we not only simplify

the formulation of the deconvolution problem but also ensure that the solution, R, adheres to the

fundamental properties of PDFs.

6.4.1.2 Velocity increments PDF after Deconvolution

In Fig. 6.9, we present the probability density function (PDF) for the stirred Bose-Einstein

Condensate (BEC) as depicted in Fig. 6.8, alongside its deconvolved version achieved through

quadratic programming [92]. Notably, Fig. 6.9(b) reveals the presence of non-Gaussian fat tails in

the PDF, particularly in the rare-event region, where the probability exceeds that of the Gaussian

distribution, as depicted by the black parabola. While the central portion of the PDF exhibits a

mild negative skewness, this skewness becomes less discernible within the rare-event region. The

deviation from Gaussian behavior is further analyzed and quantified in the subsequent section.
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Figure 6.9: Histograms of longitudinal velocity increments at l = 10.6µm for stirred BECs
(red) and their deconvolved versions (light blue), with the red curve illustrating the convolution
of instrumental noise with the deconvolved PDF. Panel (a) displays PDFs normalized in linear
scale, while panel (b) shows PDFs rescaled to peak at 1 in log scale, with velocity increments
rescaled by the standard deviation. The black curve represents the normal distribution. Error bars
denote statistical counting errors, given by

√
n.

6.4.2 Non-Gaussian Statistics

The non-Gaussian characteristics of a dataset can be effectively quantified and observed

through statistical measures such as kurtosis [93] and the Jarque-Bera (JB) statistic [94]. Kurtosis,

defined as K ≡ µ4/σ
4, measures the ”tailedness” of a probability distribution, where µ4 is

the fourth central moment and σ is the standard deviation. For a perfectly Gaussian (normal)

distribution, the kurtosis is 3. Deviations from this value indicate non-Gaussian features; specifically,

a kurtosis greater than 3 suggests a distribution with fatter tails than a normal distribution (leptokurtic),
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and a kurtosis less than 3 indicates thinner tails (platykurtic).
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Figure 6.10: Kurtosis and Jarque-Bera (JB) Statistic of the deconvolved PDF as Functions
of Positional Separations. Red and blue denote the transverse and longitudinal direction,
respectively. The error bars indicate the standard error [2].

The Jarque-Bera statistic provides a composite measure of deviation from normality, combining

both skewness (S ≡ µ3/σ
3) and excess kurtosis K−3 into a single statistic, where µ3 is the third

order central moment. The JB statistic is calculated as

JB =
N

6

(
S2 +

1

4
(K − 3)2

)
(6.16)

where N is the sample size. A distribution that perfectly follows a normal distribution would

have a JB statistic of zero. Higher values of the JB statistic indicate a greater departure from

normality, capturing asymmetry (through skewness) and the heaviness of tails (through kurtosis)
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in the distribution.

We calculated the kurtosis and JB of the deconvolved PDF and presented in Fig. 6.10.

The observation that non-Gaussian characteristics become more pronounced at smaller scales l

aligns with our expectations regarding intermittency in turbulence statistics. This scale-dependent

manifestation of non-Gaussian features is a hallmark of the intermittent nature of turbulent flows.

6.4.3 Structure Function after Deconvolution

From the deconvolved probability density functions for both longitudinal and transverse

velocity increments,Rl(∆v), at various positional separations l, we derive the p-th order structure

function as follows:

Sp(l) =

∫ +∞

−∞
d∆v (∆v)pRl(∆v). (6.17)

To construct the scalar structure function, it is necessary to consider the longitudinal and transverse

velocity increments as independent variables. This involves obtaining a two-dimensional (2D)

PDF, Rl(∆v
L,∆vT ), through 2D deconvolution employing quadratic programming (QP).

Fig. 6.11 illustrates the scalar structure function, where the intermittency correction, εn −

n/3, is fitted the K62 theory, expressed as −µn(n− 3). This fit yields an intermittency exponent

µ = 0.041(8), indicating a quantifiable measure of the deviation from K41 theory due to intermittency

effects.

6.5 Numerical Simulation of the stirring turbulence

Numerical GPE simulation is the typical way for atomic BEC hydrodynamics simulation;

however, it does not include the dissipation, thereby it cannot have a scaling the same as Kolmogorov’s
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Figure 6.11: (a) Log-Log plot of deconvolved SS
n (l), n = 1..7 fitted to the dashed lines anlεn .

The error bars are estimated from the
√
n statistical counting error. (b) intermittency correction

εn− n
3

versus n. The error bar is the two-sigma uncertainty of the fitting in (a). The black dashed
line represents the fit to the K62 theory, expressed as −µn(n − 3), where the pink shaded area
denotes the standard error of the fitting.

prediction. Since in the inertial range theory, the dissipation is negligible in large scale, so here we

add an additional dissipation term that only exists in the small scale. The detail of this numerical

scheme will be introduced in this section.

But before that, I want to discuss the dissipation in our experimental system. Our atomic

BECs are confined in a homogenous disc trap in the XY plance with an additional z confinement

with trap frequency ωz = 2π × 220Hz. The XY confinement potential is much greater than the

chemical potential µ ≈ h× 550Hz, so the atoms loss in the XY plane is negligible. Conversely,

The lowest unstable collective mode frequency in the z direction has a frequency of 2ωz, so all
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of the xy excitations with energy below that should be fairly stable, however, the 2ℏωz of energy

brings that unstable mode quite close to the trap depth, allowing it to evaporate.

So we can estimate the cutoff wavevector for dissipation via

kcutoff =
2ωz

c
= 2ωz

√
3m

2µ
=

2
√
3ωzmξ

ℏ
= 2

√
3
ξ

ℓ2ho,z
, (6.18)

ξkcutoff = 2
√
3

(
ξ

ℓho,z

)2

, (6.19)

where c is the speed of sound, ξ =
√

ℏ2/2mµ ≈ 325 nm is the healing length, and ℓho,z =√
ℏ/(mωz) = 727 nm, so we get ξkcutoff ≈ 0.7. This value will be used in the following

dissipative GPE simulations.

6.5.1 Numerical dissipative GPE scheme

A numerical simulation using GPE with small-scale dissipation [95],

(i− γ̃(k)) ℏ∂tψ̃(k, t) = [ℏ2k2/2m− µ(t)]ψ̃(k, t) + h̃(k, t),

is implemented to reveal the Kolmogorov scaling law for the exact stirring sequence in the

experiment where h(k, t) is the fourier transform of h(x, t) = gN |ψ(x, t)|2ψ(x, t)+Vext(x, t)ψ(x, t),

µ is the chemical potential, and γ̃(k) = γ0θ(k − 2πs/ξ) is the dissipation term. The dissipation

term does not conserve number of particles, however, we normalized the wavefunction at each

time step, so the chemical potential is time dependent to conserve number of particles. Here, the

dissipation term removes excitations with wavelengths smaller than ξ/s, where ϵ is the healing

length, s and γ0 is a free tuning parameter and θ is the Heaviside function. The previous section
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estimates the kcutoff ≈ 0.7/ξ, thereby we use s = 0.7/2π ≈ 0.11 for the following simulations.

The calculation flowchart would be (i) Calculate µ(t) and h(x, t) from ψ(x, t) (ii) Calculate

h̃(k, t) by 2d fft. (iii) calculate ψ̃(k, t+∆t) using

(i− γ̃(k)) ℏ∂tψ̃(k, t) = [ℏ2k2/2m− µ(t)]ψ̃(k, t) + h̃(k, t)

by a fourth-order Runge-Kutta(RK4) method.

The initial state of the wavefunction was prepared as follows. We first calculated ψgnd, the

zero-temperature ground state wavefunction without dissipation, from the imaginary evolution of

GPE. Then we evolved ψgnd under a stochastic GPE in real-time for several seconds to obtain the

initial state ψinit satisfying |⟨ψinit|ψgnd⟩|2 ≈ 0.97.

We then evolved ψinit by the dissipative GPE with stirring, following the same procedure

in the experiments, i.e., stirring for 16 ms and free evolving for 40 ms.

We built up our numerical experiment ensemble with 20 experiments considering two

randomnesses: (i) the initial state, (ii) the radial trajectory of the stirring rods.

6.5.2 Kinetic energy spectrum and structure functions

Since we used the center of mass to track the velocity field of the tracers in the experiment,

we also used the density weighted velocity ṽ = ρv/ρ̄ in the numerics for the study of the velocity

field and the energy spectrum.

The kinteic energy spectrum agrees well with the Kolmogorov −5/3 scaling, as shown

in Fig. 6.12. The green line is fitted to the spectrum within the inertial range with a scaling

−1.54(8). It is worth noting the k for the healing length is 1/ξ instead of 2π/ξ, since the healing

132



length describes the length changes from zero to the max density without periodic features.
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Figure 6.12: Kinetic energy spectrum corresponding to the case of turbulence freely decaying for
40ms after stirring. The blue dots represent the kinetic energy spectrum. The green line is fitted
to the inertial range and the red line is fitted to the crossover range.

The second and third order of scalar structure functions are shown in Fig. 6.13, obtained

from the direct computation of the numerical dataset. To compare with the experimental data,

the velocity field is also calulated from the center-of-mass velocity field in a 7 µm × 7 µm

region. Scaling in the experimental measured range (10.6 µm to 17.8 µm) is close to the K41

law; however, the amplitude of SS
2 is ≈ 15% of the experimental data, indicating that the velocity

increases from the numerical simulation are ≈ 40% of the experimental data. The discrepency

might result from some thermal component measured in the PIV, which is not included in the

numerical scheme for zero-temperature BEC. Stochastic projected GPE for finite-temperature

BEC might be a good candidate to resolve this issue. Nevertheless, the dissipative GPE scheme

we employed successfully captures the scalings of the Kolmogorov spectrum and low-order

structure functions.
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We further obtained higher-order structure functions to see the effect of intermittency, as

shown in Fig. 6.14. The intermittency correction is relatively larger than the experiments for

higher orders.
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Chapter 7: Measurement of Superfluid Density

7.1 Introduction

Superfluidity and Bose-Einstein condensation (BEC) are deeply connected. We have seen

the irrotational velocity field in a rotating BEC, which suggests the superfluidity. The hydrodynamics

in the BEC is typically described by the Gross-Piteavskii equation (GPE), which can be transformed

into Euler equations describing inviscid fluid, thus in this case the superfluid fraction is believed

to be 100%. On the other hand, GPE is a good mean-field description of the zero-temperature

BEC, thereby the zero-temperature BEC also has a perfect BEC fraction, neglecting the quantum

fluctuations. For finite temperature BEC, the superfluid and BEC fraction can be quite different,

but under the zero-temperature limit, the BEC and superfluid fraction is always believed to be

the same. In other words, in dilute atomic BECs, if you obtain a pure BEC, then the superfluid

fraction is generally believed to be pure [96, 97].

On the contrary, superfluid 4He can achieve a nearly 100 % superfluid fraction, with only

about 14 % condensate fraction [98], and infinite 2D Berezinskii-Kosterlitz-Thouless superfluids

(BKT) have no condensate at all [99, 100]. In 1970 Leggett showed that supersolids—systems

spontaneously forming both superfluid and crystalline order (i.e. density modulations)—exhibit

the reverse behavior: superfluid density far below the condensate density [101]. So in general,

superfluid and condensate are very different concepts. Condensate describes the state that can be
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described by a complex-order parameter (macroscopic wavefunction), which can be viewed as

analogous to a single-particle wavefunction. The motion of the condensate can be described by

the nonlinear Schrodinger equation (GPE), analogous to the motion of a single particle described

by the Schrodinger equation. In this picture, the condensate motion is quite ”collective”, which

is a simple generalization of the case of a single particle. However, superfluidity is a transport

concept. In a rotating bucket experiment, the normal fluid density is determined by the fraction

of fluid that is rotated along with the bucket, and the rest of the irrotational fluid is superfluid.

Similarly, if you drag a pipe with the fluid filled inside, the fluid that follows the motion of the

pipe is normal fluid, and the rest of the fluid that is stationary is superfluid. As you can see, the

superfluid is related to the detailed transport motion, so it must depend on the excitation of the

ground state.

To compare with the macroscopic wavefunction, we can introduce the superfluid order

parameter. The complex-valued order parameter [38] ϕ(r) =
√
ρsf exp[iφ(r)], which describes

a superfluid with number density ρsf and phase φ(r), gives rise to two hallmark superfluid

properties: dissipationless supercurrents associated with spatial gradients inφ(r) and (Bogoliubov [97])

phonons described by traveling waves in φ(r). Because dissipationless supercurrents—both

electrical and, as here, neutral—arise from phase gradients, they are locally irrotational; in

liquid 4 He, the resulting nonclassical rotational inertia [102, 103] appears below the superfluid

transition temperature Tc.

Supersolids are more exotic systems that spontaneously form a crystalline order while

exhibiting superfluid transport properties and phase coherence [104]. Recent experiments with

dipolar BECs of Dy and Er exhibit crystalline order and phase coherence [105, 106, 107], suggesting

superfluid. Leggett argued that the modulated density ρ(r) of a supersolid leads to an unavoidable
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reduction in ρsf , and derived an upper bound for ρsf [101]. This reduction is accompanied by the

appearance of an unusual normal fluid that is pinned to the lattice potential and contrary to the

usual two-fluid model carries no entropy. Here, the reduced superfluid density results from the

3D density distribution, and as such is masked in tight binding descriptions such as the Bose-

Hubbard model, which makes the unrelated prediction of vanishing ρsf at the superfluid to Mott

insulator transition [108, 109].

So an interesting question to ask would be can we see the reduction of ρsf in a pure BEC

by introducing spatial modulated ρ(r)? The spatial modulation can be easily provided by the

optical lattice in the experiment. If we only apply a 1D lattice, we might be able to observe the

anisotropic superfluid density ρsf , which is quite reasonable, since ρsf should be a tensor defined

from the transport response.

In this chapter I will first introduce the Leggett bound and then discuss the superfluid

hydrodynamics and finally show the experimental work on this topic: (i) measurement of the

superfluid density via speed of sound and compared it to Leggett’s bound; (ii) measurement of

the rotating response of the system from the scissors mode.

7.2 Leggett’s Formula in anisotropic superfluids

Here we consider pure 3D BECs well described by the Gross-Pitaveskii wavefunction

ψ(r) = |ψ(r)| exp[iϑ(r)]. An optical lattice potential V (r) = (U0/2) cos(2krx) periodically

modulates the condensate density ρ(r) = |ψ(r)|2 with unit cell (UC) size a = π/kr [Fig. 7.1(b)-

i]. In contrast, the SF order parameter ϕ(r) is a coarse grained quantity describing the properties

of the system on a scale ≫ a, giving the nominally uniform density in Fig. 7.1(c)-i.
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Even disregarding potential differences between ρsf(r) and ρ(r), we argue that ϕ(r) is not

simply equal to ψ(r) averaged on some large scale compared to a. The fundamental origin of this

effect can be understood by considering a 1D system of size L with periodic boundary conditions

in which both the condensate phase ϑ and the SF phase φ wind by an integer multiple N of 2π

[Fig. 7.1(b,c)-ii], yielding a metastable quantized supercurrent [110]. To satisfy the steady-state

continuity equation, the microscopic current J(x) = ρ(x) [ℏ∂xϑ(x)/m] must be independent

of x [Fig. 7.1(b)-ii], however, the periodically modulated density ρ(x) > 0 implies that the

local velocity v(x) = ℏ∂xϑ(x)/m has an oscillatory structure and consequently ϑ(x) follows a

staircase pattern [Fig. 7.1(b)-iii, iv] with steps of height 2πNa/L.

From macroscopic considerations the superfluid current is J = ρsf [ℏ∂xφ(x)/m] = 2πNℏρsf/(mL).

Equating the currents obtained from the condensate wavefunction and the SF order parameter and

integrating over a UC 1 yields Leggett’s equation [101]

ρsf(x) =

[
1

a

∫
UC

dx′

ρ(x+x′)

]−1

, (7.1)

along with

φ(x) =
1

a

∫
UC

ϑ(x+x′)dx′.

GPE simulations confirm that these analytical relations are valid independent of the lattice period

to healing length ratio. Equation (7.1) further implies that ρsf ≤ ρ̄, where ρ̄ is the spatial average

of the condensate density over a UC, and at zero temperature the remaining density ρn = ρ̄− ρsf

1Any average that removes the lattice structure suffices and the average over single UC where x′ ranges from 0
to L is the most compact possible.
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behaves as a normal fluid pinned to the lattice potential.
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Figure 7.1: Concept. (a) A BEC is confined in a harmonic trap superimposed with a 1D optical
lattice (along ex, green), spatially modulating the condensate density (red). The dashed and
dotted lines call out a region of nominally constant mean density and the left and right columns
indicate the (b) state of the condensate and (c) SF in the presence of a current. These were
computed for a 5Er deep lattice and plot: i. density (red), ii. current (green), iii. phase (orange),
and iv. local velocity (blue). The red dashed line plots the mean density ρ̄.

In a 3D system, the current Ji = ρsfij [ℏ∂jφ/m] is derived from an SF density tensor

(having employed the Einstein summation convention). Provided that the condensate phase can

be expressed as ϑ(r) = ϑx(x) + ϑy(y) + ϑz(z), the argument above in conjunction with 3D

continuity equation implies that ρsfij is diagonal, and the analogs to Eq. (7.1) for each of the three

elements use the 1D density integrated along the transverse directions 2. In the more general

2Time reversal symmetry is also necessary so that each component—such as ψx(x)—has no nodes and can be
made real valued [111].
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context where mean field theory [such as the Gross-Pitaveskii equation (GPE)] is inapplicable

or the condensate phase cannot be separated as above, the Leggett expression for ρsf is an upper

bound for the SF density [101]; in later work Leggett also found a lower bound [111]. Using the

Legget expression, this implies that the superfluid density is only reduced along the direction of

the optical lattice, so ρsfyy = ρsfzz = ρ̄.

7.3 Superfluid Hydrodynamics

In this section, we will first derive the equation of motion from Hamiltonian mechanics.

Then we will coarse-grain the external potential and derive a long-wavelength GPE that describes

the superfluid dynamics where the Leggett bound is recovered. And finally, we can obtain the

dependence of the collective mode on the superfluid density.

7.3.1 Hamiltonian fluid mechanics

We begin by deriving Leggett’s bound from the mean-field energy functional and arrive at

the superfluid hydrodynamic equations and an effective long-wavelength GPE. We approach this

problem using the mean-field energy functional

E[ψ, ψ∗] =

∫
d3r

[
−ψ∗ ℏ2

2m
∂j∂jψ + V (r)|ψ|2 + g

2
|ψ|4 − µ|ψ|2

]
=

∫
d3r

[
ℏ2

2m
(∂jψ

∗)(∂jψ) + V (r)|ψ|2 + g

2
|ψ|4 − µ|ψ|2

]
,

which integrates the local energy density E over all space. V is the external potential and the

interaction constant g = 4πℏ2as/m is proportional to the s-wave scattering length as. We
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integrated by parts to obtain the second expression with the assumption that the wavefunction

is vanishing at the boundary.

GPE: The GPE can be directly obtained by using E[ψ, ψ∗] as a classical Hamiltonian and

considering ψ∗(r) and iℏψ∗(r) as fields of canonical positions q and momenta p. Taking the

functional derivative of Eq. (7.2) leads to a pair of dynamical equations

dtq = ∂pE → dtψ =
1

iℏ

[
− ℏ2

2m
∂j∂j + V (r) + g|ψ|2 − µ

]
ψ. (7.2)

dtp = −∂qE → iℏdtψ∗ = −
[
− ℏ2

2m
∂j∂j + V (r) + g|ψ|2 − µ

]
ψ∗. (7.3)

These expressions are a complex conjugate pair, both of which recover the time-dependent GPE.

Phase-amplitude: Dynamics can also be obtained in the phase-amplitude picture

E =

∫
d3r

{
ℏ2

2m

∣∣∣∣i∂jϑ+
1

2ρ
∂jρ

∣∣∣∣2 ρ+ [g
2
ρ+ V − µ

]
ρ

}

=

∫
d3r

{[
ℏ2

2m
(∂jϑ)

2 +
ℏ2

2m

1

4ρ2
(∂jρ)

2 +
g

2
ρ+ V − µ

]
ρ

}
. (7.4)

using ψ = ρ1/2 exp(iϑ). Dynamics are again generated as in Hamiltonian mechanics, here by

identifying the canonical “momentum” p→ ℏϑ and “position” q → ρ. We therefore have

∂tρ(r) =
δE

δ(ℏϑ)
=

1

m

∫
d3r′ρ∂j(ℏϑ)∂jδ(r− r′) = − ℏ

m
∂j(ρ∂jϑ) (7.5)

∂tℏϑ(r) = − δE

δ(ρ)
= −gρ− V + µ− ℏ2

2m

[
(∂jϑ)

2 − 1

4ρ2
(∂jρ)

2 − ∂j
1

2ρ
∂jρ

]
(7.6)

= −gρ− V + µ− ℏ2

2m

[
(∂jϑ)

2 − 1

ρ1/2
∂2j ρ

1/2

]
(7.7)
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where we included r in places to clarify the action of δ-functions. This recovers the usual

superfluid hydrodynamics.

7.3.2 Coarse Graining

We now turn to the case where the potential can be expressed as a sum V (r) = Vs(r)+Vr(r)

of slowly and rapidly varying components. In our experiments Vr(r) will be a lattice potential

and Vs(r) will be the external trap. The coarse graining strategy is to find a long wavelength

energy density

Eeff =
ℏ2

2m
f sf
ij (∂iξ

∗)(∂jξ) + Veff(r)|ξ|2 +
geff
2
|ξ|4 − µeff |ξ|2 (7.8)

equal to the unit-cell averaged energy density

Ē =
1

L3

∫
UC

d3r

[
ℏ2

2m
(∂iψ

∗)(∂iψ) + V (r)|ψ|2 + g

2
|ψ|4 − µ|ψ|2

]
(7.9)

of the full theory in Eq. (7.4). Here ρ̄ and φ are the unit-cell averaged density and phase giving

the coarse grained GPE wavefunction ξ = ρ̄ exp(iφ); and L3 is the unit cell’s volume.

We now proceed term by term in order of increasing complexity, beginning with the chemical

potential to illustrate the approach:

µeff ρ̄ =

∫
UC

d3r′

L3
µρ(r′) = µρ̄, so µeff = µ. (7.10)
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Thus, the chemical potential is unchanged. The terms leading to the effective potential

Veff ρ̄ =

∫
UC

d3r′

L3

[
ℏ2

2m
(∂iψ

∗)(∂iψ) + Vr(r
′)ρ(r′) + Vs(r

′)ρ(r′)

]
(7.11)

≈
∫
UC

d3r′

L3

[
ℏ2

2m
(∂iψ

∗)(∂iψ) + Vr(r
′)ρ(r′)

]
+ Vsρ̄ (7.12)

include a contribution from the kinetic energy. The resulting effective potential

Veff =

∫
UC

d3r′

L3

ℏ2

2m

(∂iψ
∗)(∂iψ)

ρ̄
+

∫
UC

d3r′

L3
Vr(r

′)
ρ(r′)

ρ̄
+ Vs (7.13)

contains the expected contribution from the slowly varying potential, the average of Vr(r′) weighted

by the normalized density distribution, and the kinetic energy associated with the rapidly varying

wavefunction.

The interaction coefficient is slightly changed according to

geff ρ̄
2 = g

∫
UC

d3r′

L3
ρ2(r′), so geff = g

∫
UC

d3r′

L3

[
ρ(r′)

ρ̄

]2
. (7.14)

This describes the increase in interaction energy resulting from confining atoms into the individual

lattice sites.

The kinetic energy term is difficult to work with directly, so we instead focus on the

continuity equations, which result from the kinetic energy density. Averaging over a single unit

cell leads to an equality

∂jJ
sf
j =

∫
UC

d3r′

L3
∂jJj =

∑
j

J⊥
j (r+ Lej)− J⊥

j (r)

L
≈ ∂jJ

⊥
j (7.15)
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stating that the change in coarse-grained density must be equal in both descriptions. Here we

introduce the current Jj = ℏρ∂jϑ/m and its coarse-grained counterpart J sf
j = ℏρ̄f sf

jk∂kφ/m. In

the second equality we evaluated the integral along the j-direction and introduced the transverse

averaged currents J⊥
j and density ρ(⊥,j), for example J⊥

x =
∫
dydzJx/L

2 and ρ(⊥,x) =
∫
dydzρ/L2,

where the integrals is over a face of the unit cell. In the long-wavelength limit we replace the

finite difference with a derivative, leading to the conclusion J sf
j = J⊥

j and therefore

ρ̄f sf
jk∂kφ =

∫
d2r′⊥
L2

ρ∂jϑ = ρ(⊥,j)∂jϑj. (7.16)

In the second equality we assumed the mean field wavefunction phase can be written in a separable

form, implying ϑ = ϑx(x)+ϑy(y)+ϑz(z). Since φ is the unit-cell average of ϑ it can be written

in the same way. Integrating Eq. (7.16) then leads to

f sf
jk = δjk

[
1

L

∫
drj

ρ̄

ρ(⊥,j)

]−1

(7.17)

and recovers Leggett’s bound as an equality. This completes the job of deriving the coarse-grained

GPE

iℏdtξ =
[
− ℏ2

2m
f sf
ij ∂i∂j + Veff(r) + geff |ξ|2 − µ

]
ξ (7.18)

An interesting point is that this GPE describes the dynamics of the coarse grained GPE wavefunction

ξ not the superfluid order parameter, since |ξ|2 = ρ̄, rather than ρsfij . However, its phase φ is the

phase of the superfluid order parameter and leads to the superfluid density via ρsfij = ρ̄f sf
ij .
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7.3.3 Coarse-grained superfluid hydrodynamics

We now continue by obtaining a long-wavelength hydrodynamic description of the coarse-

grained GPE in Eq. (7.18). In this case, the number current density and angular momentum

density are

Ji =
ℏ

2mi
f sf
ij (ξ

∗∂jξ − ξ∂jξ
∗) =

ℏ
m
ρ̄f sf

ij ∂jφ and Πz = xJy − yJx =
ℏ
m
ρ̄f sf

yyx∂yφ− ℏ
m
ρ̄f sf

xxy∂xφ

(7.19)

respectively In the phase-amplitude picture with ξ =
√
ρ̄eiφ, the GPE transforms into the anisotropic

hydrodynamic equations

∂tρ̄+
ℏ
m
∂i
(
ρ̄f sf

ij ∂jφ
)
= 0 and −ℏ∂tφ =

ℏ2

2m
f sf
ij ∂iφ∂jφ+ geff ρ̄+ Veff − µ. (7.20)

In what follows, we focus on the case of a lattice aligned along ex or ey, making f sf
ij diagonal.

7.3.3.1 Collective modes

Now we can find the collective modes by making small perturbations about the equilibrium

state,

ρ̄→ ρ̄+ δρ̄

φ→ φ+ δφ

Veff → Veff + δV
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
∂tδρ̄+

ℏ
m
f sf
ij [∂iδρ̄∂jφ+ ∂iρ̄∂jδφ+ δρ̄∂i∂jφ+ ρ̄∂i∂jδφ] = 0

−ℏ∂tδφ = ℏ2
2m
f sf
ij [∂iφ∂jδφ+ ∂iδφ∂jφ] + δV + geffδρ̄

Because of the initial state satisfies φ = 0 and gρ̄ = µ− 1
2
mω2

i x
2
i ,


∂tδρ̄+

ℏ
m
f sf
ij [∂iρ̄∂jδφ+ ρ̄∂i∂jδφ] = 0

−ℏ∂tδφ = δV + geffδρ̄

We take

δφ = δφxx+ δφyy

to derive the dipole oscillation frequencies. Let δV = 0, δρ̄ → δρ̄e−iωt and δφ → δφe−iωt, and

collect coefficients before both linear terms x and y, one calculates the eigenmodes of

ω2 − f sf
xxω

2
x 0

0 ω2 − f sf
yyω

2
y



The dipole mode frequencies are decoupled and are given by ω2
j,d = f sf

jjω
2
j .

The scissors mode is one of the quadratic modes, and we suppose

δφ = δφxxx
2 + δφyyy

2 + δφxyxy

147



and collect coefficients of all three quadratic terms giving the matrix


ω2 − 3ω2

xf
sf
xx −ω2

xf
sf
yy −2ω2

xf
sf
xy

−f sf
xxω

2
y ω2 − 3ω2

yf
sf
yy −2ω2

yf
sf
xy

−2ω2
yf

sf
xy −2ω2

xf
sf
xy ω2 −

(
f sf
xxω

2
x + f sf

yyω
2
y

)

 .

When f sf
xy = 0, f sf

xx ̸= f sf
yy this reduces to


ω2 − 3f sf

xxω
2
x −f sf

yyω
2
x 0

−f sf
xxω

2
y ω2 − 3f sf

yyω
2
y 0

0 0 ω2 − f sf
xxω

2
x − f sf

yyω
2
y

 .

The scissors mode frequency obeys ω2
sc = f sf

xxω
2
x + f sf

yyω
2
y , while the quadruple mode frequencies

are

ω2
quad =

3ω̄2 ±
√

9ω̄4 − 32f sf
xxf

sf
yyω

2
xω

2
y

2

with ω̄ = ωsc.

It can be easily seen from the matrix that the scissor mode decouples from the other two

quadrupole modes. This generalizes to 3D, where there are three decoupled scissors modes

xy, yz, zx. Thus, although our system is actually 3D, the xy scissors mode frequency is given by

the 2D result derived here. This procedure easily generalizes to f sf
xy ̸= 0.
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7.3.3.2 Rotational properties of the scissors mode

Following the above section

Πz = xJy − yJx =
ℏ
m
ρ̄f sf

yyx∂yφ− ℏ
m
ρ̄f sf

xxy∂xφ, (7.21)

and plug in the second hydrodynamics equation

∂tΠz = x∂tJy − y∂tJx = −x∂jTjy + y∂jTjx − xρ̄∂y(f
sf
yy

Veff
m

) + yρ̄∂x(f
sf
xx

Veff
m

). (7.22)

where we define Tjk ≡ ρ̄vjvk − σjk and σjk ≡ −1
2
f sf
jkgeff

ρ̄2

m
+ ( ℏ

2m
)2ρ̄f sf

jl f
sf
kn∂l(

∂nρ̄
ρ̄
). Those are

the counterparts of the classical momentum flux and stress tensor. More generally, this equation

actually follows from

∂tJk = −∂jTjk −
ρ̄

m
f sf
jk∂jVeff . (7.23)

Equation (7.23) provides the important dynamic equation for the quantum anisotropic superfluid,

in analogy to the classical Navier–Stokes equation. (It can be derived from the GPE without any

approximation. We omit the derivation here to avoid distraction.)

Integrating over all space generates the torque

τ =

∫
dxdy(f sf

xxω
2
x − f sf

yyω
2
y)ρ̄xy = (f sf

xxω
2
x − f sf

yyω
2
y)⟨xy⟩
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where the stress tensor terms in the equation (7.22) vanish after integration by parts:

∫
d3rϵikri∂jTjk =

∫
d3r∂j

(
ϵikriTjk

)
−
∫
d3rϵikTjk∂jri = 0

because Tjk is symmetric tensor.

A cloud rotated by a small angle θ experiences a torque

τ = (f sf
xxω

2
x − f sf

yyω
2
y)⟨x′2 − y′2⟩θ (7.24)

where ⟨x′2 − y′2⟩ =
∫
d3r′ρ(x′2 − y′2) depends only on the initial Thomas-Fermi distribution.

This leads to an equation describing harmonic motion

τ = ∂tLz ≡ Iθ̈

where I is the moment of inertia; I can be obtained from

I

Ic
=

−τ/θ
Icω2

sc

= −(f sf
xxω

2
x − f sf

yyω
2
y)⟨x2 − y2⟩

⟨x2 + y2⟩ ω2
sc

in terms of the oscillation frequency ωsc and the classical moment of inertia Ic = ⟨x2 + y2⟩.

In the ground state of the harmonically trapped condensate which has a Thomas-Fermi

density distribution, we have

⟨x2⟩
⟨y2⟩ =

ω2
y

ω2
x

where ωx and ωy are the trap frequencies along ex and ey directions. Hence the moment of inertia
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is

I

Ic
=

(f sf
xxω

2
x − f sf

yyω
2
y)(ω

2
x − ω2

y)

(ω2
x + ω2

y) ω
2
sc

.

7.3.3.3 Moment of inertia

The moment of inertia can also be derived from its definition

I = lim
Ω→0

∂ ⟨Lz⟩
∂Ω

.

We calculate this derivative respectively in the cases of (i) static lattice and (ii) rotating lattice.

The main difference between case (i) and (ii) is the order of two operations: the projection

into the lowest band of the lattice and rotating frame transformation that makes the trap potential

time invariant. In a rotating trap but static lattice, we first project the dynamics to the lowest band,

and then the time dependent potential can be transformed away and one derives additional terms

with the angular frequency Ω,


∂i
( ℏ
m
ρ̄f sf

ij ∂jφ
)
−∇ · (ρ̄Ω⃗× r⃗) = 0

ℏ2
2m2f

sf
ij ∂iφ∂jφ+ Veff

m
+ geff ρ̄

m
− ℏ

m
∇φ · (Ω⃗× r⃗) = µ

m

(7.25)

Here we use the ansatz φ = m
ℏ αxy. Since the µ in the second equation is spatial independent,

and under the Ω → 0 limit, we obtain

y∂xρ̄

x∂yρ̄
=
ω2
x

ω2
y

,
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where the terms of α and Ω are neglected. The first equation gives

y∂xρ̄

x∂yρ̄
=

Ω− f sf
yyα

Ω + f sf
xxα

.

Therefore we obtain

α = −Ω
ω2
x − ω2

y

f sf
xxω

2
x + f sf

yyω
2
y

, (7.26)

and the total angular momentum becomes

⟨Lz⟩ =
〈
r⃗ × J⃗

〉
= α

〈
f sf
yyx

2 − f sf
xxy

2
〉
=

ω2
x − ω2

y

f sf
xxω

2
x + f sf

yyω
2
y

〈
f sf
xxy

2 − f sf
yyx

2
〉
Ω

I

Ic
=

1

Ic

∂ ⟨Lz⟩
∂Ω

=
ω2
x − ω2

y

ω2
x + ω2

y

f sf
xxω

2
x − f sf

yyω
2
y

f sf
xxω

2
x + f sf

yyω
2
y

(7.27)

where Ic is moment of inertia a classical mass distribution Ic = ⟨x2 + y2⟩. One can verify that

the scissors mode frequency is given by

ωsc =

√
−τ
Iθ

=
√
f sf
xxω

2
x + f sf

yyω
2
y (7.28)

the same as derived from the collective mode section.

The most striking observation from the result is that the moment of inertia can go negative

when the superfluid density along one axis is suppressed below a critical value determined by the

trap frequencies. This behavior is purely quantum mechanical and has no counterpart in classical

physics as we know of. From a hydrodynamics view, the reason for this zero-crossing is that the

angular momentum density always has co-rotating and counter-rotating parts in a quantum gas,
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due to the irrotational nature of the order parameter. Without the lattice, however, the co-rotating

part always exceeds the counter-rotating part, thus leading to positive moment of inertia. But

with the anisotropic lattice present the relative contribution of them can be re-tuned by varying

the lattice depth.

Next we consider the case (ii) with a rotating lattice synchronized with the rotating harmonic

trap. In this case, the projection operation into the lowest band needs to be taken after the rotating

frame transformation. The equation (7.25) then needs to modified as


∂i
( ℏ
m
ρ̄f sf

ij ∂jφ
)
−∇ · (ρ̄⃗̃Ω× r⃗) = 0

ℏ2
2m2f

sf
ij ∂iφ∂jφ+ Veff

m
+ geff ρ̄

m
− ℏ

m
∇φ · (⃗̃Ω× r⃗) = µ

m

(7.29)

where the Ω̃ is selected to be Ω̃ = Ω(f sf
xx, f

sf
yy). This can be seen from the fact that the kinetic

energy part is modified by the superfluid fraction tensor, so is the current operator. One arrives at

similar to the equation (7.26)

α = −Ω
f sf
xxω

2
x − f sf

yyω
2
y

f sf
xxω

2
x + f sf

yyω
2
y

(7.30)

and

Isf

Ic
=

(f sf
xxω

2
x − f sf

yyω
2
y)

2

(f sf
xxω

2
x + f sf

yyω
2
y)(ω

2
x + ω2

y)
(7.31)

This is the superfluid contribution to the moment of inertia, because only the superfluid flow can

be derived from the coarse-graining process that assumes lowest band dynamics. Equation (7.31)

aligns very well with the simulation result which is calculated from the gradients of the coarse-

grained superfluid phase ϑ(r), confirming the self-consistent superfluid description. Note that

it is strictly positive and rather different from the equation (7.27), due to the different order of
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rotating frame transformation and coarse graining.

However, the rest part of the moment of inertia is contributed by the normal fluid indeed.

The normal fluid current can be written as

Jn = (−ρnxxy, ρnyyx)Ω (7.32)

which can be derived from the transverse current definition

I = lim
q→0

∑
n̸=0

| ⟨0| L̂ze
iq·r |n⟩ |2 + | ⟨0| L̂ze

−iq·r |n⟩ |2
En − E0

, (7.33)

and it gives rise to

In

Ic
=
fn
xxω

2
x + fn

yyω
2
y

ω2
x + ω2

y

(7.34)

This result is also checked with the simulation by calculating the subtraction of the superfluid

from the total moment of inertia.

7.3.3.4 GPE simulations of rotating systems

We performed 2D GPE simulations of rotating harmonically trapped systems where : (i)

the lattice co-rotates with the confining potential or (ii) it is static in the lab frame (as in scissors

mode experiments). In both cases we use the coarse graining defined in section IA to obtain the

superfluid density and phase. In this way we compute the total moment of inertia I from ψ(r, t),

the superfluid component Isf from ϕ(r, t), and we define the normal component as the difference

In = I − Isf .

Case (i): the angular momentum density is strictly positive [Fig. 7.2(b)] for both lattice
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Figure 7.2: Moment of inertia in rotating systems computed using 2D GPE simulations. The
left column (a, c) indicates simulations in which the lattice is static while in the right column
(b, d) the lattice co-rotates with the confining potential. (a, b) Angular momentum density for
trap frequencies 2π×(56,36) and U0 = 10Er. The colormap ranges from negative to positive, by
normalizing to the largest absolute angular momentum density. (c, d) Total momentum of inertia
in traps with frequencies 2π×(56,36) (top, green) and 2π × (36, 56) Hz (bottom, blue). In (c)
and (d), the cross markers are GPE simulated results of superfluid contribution to the moment of
inertia Isf/Ic. This is identified by calculating the gradient of phase coarse-grained across a unit
cell. The triangle makers are GPE simulated results of the total moment of inertia I/Ic including
the normal and superfluid contributions. Dashed curves plot Isf/Ic and the solid curve plots I/Ic
both analytically derived from the superfluid hydrodynamics formalism.
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orientations and I/Ic increases with lattice depth [Fig. 7.2(d)]. In this case the normal fluid co-

rotates with the trap giving the current Jn = (−ρnxxy, ρnyyx)θ̇. The total I/Ic is then the sum of

the superfluid and normal contribution

I

Ic
=

(f sf
xxω

2
x − f sf

yyω
2
y)

2

(f sf
xxω

2
x + f sf

yyω
2
y)(ω

2
x + ω2

y)
+
fn
xxω

2
x + fn

yyω
2
y

ω2
x + ω2

y

. (7.35)

This result, along with our 2D GPE simulations, is plotted in Fig. 7.2(d). The dashed curve plots

the superfluid contribution to Isf/Ic in agreement with the coarse-grained GPE (crosses). The

solid curve and the triangles plot the corresponding total moment of inertia, in excess of the SF

contribution. This implies the appearance of normal fluid flow.

This agreement confirms that the superfluid contribution derives from gradients of the

coarse-grained phase φ, while the normal contribution stems from variations of ϑ within each

lattice site.

Case (ii): in contrast, as in our 1D thought experiment only the SF component responds.

Then although ∇φ is manifestly irrotational, because ρsfxx ̸= ρsfyy the superfluid current can be

rotational. In this case, the relative magnitude of the co- and counter-rotating contributions vary

with the lattice depth, leading to regions of negative angular momentum density L(r) along the

BEC’s semi-minor axis [Fig. 7.2(a)]. The superfluid moment of inertia computed from these

simulations [Fig. 7.2(c)] is in full agreement with the scissor mode simulation, and as expected

for a static lattice Isf = I (no normal flow).

When the lattice is along the semi-minor axis, as pictured in (a) and the green curve in (c),

the counter-rotating contribution increases with U0, until the dipole mode frequencies along ex

and ey invert, after which point, I/Ic becomes negative. The reverse is the case when the lattice
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is along the semi-major axis and I/Ic increases monotonically.

The superfluid current can be decomposed into J = J+ + J−, a sum of irrotational (J+)

and rotational (J−) components with

J± =
ℏρ̄
m

f sf
xx ± f sf

yy

2
(ex∂x ± ey∂y)φ.

In conventional isotropic SFs the rotational term J− = 0, implying irrotational current flow and

non-negative I/Ic. For anisotropic superfluids, J− need not be zero, and introduces an anomalous

contribution ∝ (f sf
xx− f sf

yy)(ω
2
x−ω2

y) to I/Ic that can be positive or negative. This decomposition

is not unique since one can introduce irrotational terms ±J′
+ to J± that sum to zero in J. We

selected the natural convention for which J− is zero for isotropic SFs.

7.4 Superfluid sum-rule and sound velocity

In this section we will first show the superfluid density is related to the speed of sound from

the Josephson sum-rule. Then we follow the route of the coarse-grained hydrodynamics to see

that the speed of sound is dependent on the superfluid density tensor.

7.4.1 Josephson sum-rule

The superfluid density is explicitly related to Green function of the many-body Hamiltonian

via the Josephson sum-rule [112]. Here we derive the sum-rule and relate it to the anisotropic

sound velocities. We consider the variation of the condensate wavefunctionψ(x) = |ψ| exp[iϕ(r)]

from a perturbation Hamiltonian H ′ = −
∫
drψ(r)ζ(r), where ζ(r) = ζ exp[i(k · r − ωt)].
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According to linear response theory

δ⟨ψ(r)⟩ = ζeik·r
∫ ∞

−∞
dω′ A(k, ω′)

ω + iη − ω′ , (7.36)

whereA(k, ω) =
∫
dre−ik·(r−r′)

∫∞
−∞ dteiω(t−t′)

〈[
ψ(r, t), ψ† (r′, t′)

]〉
is the spectral density, and

is related to the retarded one-body Green function

A(k, ω) = iℏ
∫
d (r− r′) e−ik(r−r′)

∫ ∞

−∞
d (t− t′) eiω(t−t′)Gret (r, t; r′, t′) .

Similarly, the variation of the current operator J(r) = ρv is

δ⟨J(r)⟩ = eik·r−iωtζ

∫
dω′ Γ (k, ω′)

ω + iη − ω′ (7.37)

with Γ(k, ω) =
∫
drdte−iω(t−t′)+ik(r−r′)⟨

[
J(r, t), ψ† (r′, t′)

]
⟩. In the next we first take ω → 0

limit, and then take k → 0.

We want to relate δ⟨J(r)⟩ to δ⟨ψ(r)⟩, as to define the superfluid density. To do that, one

observes from the continuity equation −ik · J = ∂tρ so that

J(r, t) =

∫
dkJ(k, t)eik·r =

∫
dkdr′eik(r−r′) i⃗k

k2
∂tρ(r

′, t).

Plug it back to equation 7.37, and after some algebra

Γ(k, ω) =

∫
drdte−iω(t−t′)+ik(r−r′)

∫
dk′dr′′eik

′(r−r′′) ik⃗
′(−iω)
k′2

⟨
[
ρ (r′′, t) , ψ† (r′, t′)

]
⟩

=

∫
dte−iω(t−t′)

∫
dr′′eik(r

′′−r′)kω

k2
⟨
[
ρ (r′′t) , ψ† (r′t′)

]
⟩

(7.38)
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Hence

δ⟨J(r, t)⟩ =
∫
dω′Γ (k, ω′)

−ω′ eikrζ

= −
∫
dωeikrζ

∫
dte−iω(t−t′)

∫
dreik·(r−r′) k⃗

k2
⟨
[
ρ(r, t), ψ† (r′, t′)

]
⟩

= −eikrζ
∫
dreik·(r−r′) k⃗

k2
〈[
ρ(rt), ψ† (r′t)

]〉
= −eik·rζ k

k2
〈
ψ†(r, t)

〉
(7.39)

In the last equality we used
[
ρ(r), ψ† (r′)

]
=

[
ψ†(r)ψ(r), ψ† (r′)

]
= ψ†(r)δ (r − r′).

For a superfluid system, ⟨ψ(r)⟩ = ψ0 + δ⟨ψ(r)⟩ = eiθ(r)ψ0 where we have defined the

superfluid phase θ(r). With the periodic modulation of density introduced by the optical lattice,

we take ψ(r) → ψ̄(r) = axayaz
∫
UC
dr′ψ(r′).[113] Now we have

δ⟨J̄⟩ = −eik·rζ k
k2

〈
ψ̄†〉

δ⟨ψ̄⟩ = −eik·rζ
∫
dω
A(k, ω)

ω

m

ℏ
δ⟨J̄⟩ = ρsf∇θ = ρsf∇δ⟨ψ̄⟩

iψ̄0

= ρsf
k̂
k
δ⟨ψ̄⟩
ψ̄0

and take k → 0

ρsf
k̂

= m lim
k→0

ψ̄∗
0ψ̄0

k2
∫ +∞
−∞ dωA(k,ω)

ω

(7.40)

where ρsf
k̂

= ρsfij k̂j . For a homogeneous weakly interacting Bose gas at T = 0, the Bogoliubov

theory gives A(k, ω) = mc
2k
[δ(ω − ck) − δ(ω + ck)] as k → 0, which leads to ρsf

k̂
= |ψ0|2. For

anisotropic systems, the poles of A(k, ω) i.e. the sound velocities along different directions will

determine the anisotropic superfluid density.

The modification of the phonon spectrum by the presence of a shallow optical lattice is

159



0 1 2
k/2π (µm−1)

0

10

20

ω
/
2
π

(k
H

z)

U0 = 3Er

Figure 7.3: Modification of the phonon spectrum by the a = 266 nm optical lattice via BdG
calculation. U0 = 3Er. Dashed black and solid red curves mark excitations created along ex and
ey respectively.

numerically computed through the Bogoliubov-de-Gennes equations applied upon the mean-field

ground state found by a 2D GPE imaginary time simulation. The lattice changes the sound

velocity ratio while opening a gap at the Brillouin zone edge, as in Fig. 7.3.

7.4.2 Speed of sound from the superfluid hydrodynamics

In an isotropic system, the speed of sound C can be expressed as

C =

√
∂P

∂ρ
, (7.41)

where P is the pressure and ρ is the density. In case of anisotropic superfluid, the stress tensor

can be deduced from the coarse-grained hydrodynamics, i.e.,

σjk ≡ −1

2
f sf
jkgeff

ρ̄2

m
+ (

ℏ
2m

)2ρ̄f sf
jl f

sf
kn∂l(

∂nρ̄

ρ̄
), (7.42)
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where the second term is the quantum pressure, and for the case of phonon it is negligible due

to long-wavelength limit. So, the speed of sound is determined by the first term, where the

anisotropic pressure becomes Pjk =
1
2
f sf
jkgeff

ρ̄2

m
. Then under the principal axis system, where Pjk

is diagonal, we have

Cj =

√
∂Pjj

∂ρ̄
=

√
fjjgeff

ρ̄

m
. (7.43)

Then in our 1D lattice case, the direction without density modulation should have pure

superfluid fraction, and the superfluid density drop in the direction with density modulation is

proportional to the reduction of the square of the speed of sound, i.e.,

(
Cj

C0

)2

= fjj, C0 =

√
geff

ρ̄

m
. (7.44)

7.5 Experiments

7.5.1 Bragg Spectroscopy

We used 87Rb BECs with N ≈ 2 × 105 atoms in the |F = 1,mF = 1⟩ hyperfine ground

state. A 1064 nm trapping laser with an elliptical cross section traveling along ex provided

strong vertical confinement with frequency ωz/(2π) = 220 Hz; the in-plane frequencies, from

ωx,y/(2π) = (34, 51) Hz to (56, 36) Hz, were optimized for our different experiments. We

created a 1D optical lattice using a retro-reflected λ = 532 nm laser traveling along ex, giving

an a = 266 nm lattice period, comparable to the ξ = 170(20) nm minimum healing length.

The optical lattice was linearly ramped on in 100 ms to a final depth ≤ 10 Er, with single
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Figure 7.4: Bragg spectroscopy. Black and red symbols mark excitations created along ex and ey
respectively. (a) Transferred population fraction p as a function of frequency difference δω with
wavevetor δk/2π = 0.26 µm−1 and lattice depth U0 = 5.7Er. The solid curve is a Lorentzian
fit, giving the resonance frequency marked by the vertical dashed line. (b) Phonon dispersion
obtained from Bragg spectra. The bold symbols resulted from (a) and the linear fit (with zero
intercept) gives the speed of sound. (c) Anisotropic speed of sound. The bold symbols are
derived from (b) and the solid curves are from BdG simulations (no free parameters [3]). (d)
SF density obtained from speed of sound measurements (blue markers, error bars mark single-
sigma statistical uncertainties). We compare with two models: the red dashed curve plots a
homogeneous gas BdG calculation, and the solid black curve plots the result of Eq. (7.1). The
simulations used our calibrated experimental parameters. In (a)-(c) each point has uncertainty as
shown in the last point.

photon recoil energy and momentum Er = ℏ2k2r /(2m), and ℏkr = 2πℏ/λ respectively 3. For

Bragg experiments the final state was measured using resonant absorption imaging after a 15 ms

time of flight (TOF); scissors mode measurements were performed in-situ using partial transfer

absorption imaging [115].

The speed of sound for diagonal ρsfij obeys the hydrodynamic relation [84] c2i = f sf
ii /(κm) in

terms of the compressibility κ = ρ̄−1 (∂ρ̄/∂µ), the chemical potential µ, and with density reduced

by the superfluid fractions f sf
ij = ρsfij/ρ̄. This reduces to the well-known value c2 = µ/m for an

isotropic homogeneous system (See [3] for the full dispersion beyond the linear approximation).

3We calibrated the lattice depth U0 by suddenly applying the lattice potential and fitting the resulting Kaptiza-
Dirac scattering [114].
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The sound speed ratio

c2x
c2y

=
ρsfxx
ρsfyy

= f sf
xx, (7.45)

provides direct access to the different components of the superfluid density [see [3] for a Josephson

sum rule argument]. Because the density is y-independent, Eq. (7.1) implies ρsfyy = ρ̄.

We performed Bragg scattering using a weak sinusoidal potential with reciprocal lattice

vector δk slowly moving with velocity v by patterning a laser beam with a digital micro-mirror

device (DMD [79]) and measured the scattered fraction p. This results from what are effectively

two interfering laser beams driving two-photon transitions with difference-wavevector δk and

angular frequency δω = δk v. We applied this potential for ≈ 5 ms. Bragg transitions ensued

when the difference energy and momentum were resonant with the BEC’s Bogoliubov dispersion,

and Fig. 7.4(a) shows data in the linear regime. The width of this spectral feature is limited by

our BEC’s inhomogeneous density profile; the resonance (vertical dashed line) obtained from a

Lorentzian fit (solid curve) therefore reflects an average speed of sound 4. The reduced Bragg

signal at small δω results from the vanishing of the static structure factor in the phonon spectrum

as δω goes to zero [116].

A series of such fits lead to phonon dispersion relations with Bragg-lattice period from

2.25 µm to 8.5 µm. Representative dispersions taken along ex and ey are shown in Fig. 7.4(b),

and we obtain the phonon speed of sound using linear fits. Figure 7.4(c) summarizes these data

showing the speed of sound decreasing along the lattice direction ex, but slightly increasing

4In high-elongated quasi-1D BECs, the longitudinal speed of sound is reduced by a factor of
√
2 from

√
µ/m. We

expect a related reduction from our tight confinement along ez , but for the Bragg spectra to exhibit inhomogeneous
broadening from the nearly isotropic Thomas-Fermi profile in the ex-ey plane.
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along ey (resulting from the increased atomic density in the individual lattice sites). Finally

Fig. 7.4(d) shows our main result: the normalized superfluid density obtained from these data

using Eq. (7.45) decreases as a function of U0.

We compared these data to GPE simulations in two ways, we: (1) used the Bogoliubov-de

Gennes (BdG) equations [84] to obtain cx and cy and (2) directly evaluated Eq. (7.1) from the GPE

ground state density. The solid curves in Fig. 7.4(c) plot the sound speed obtained from solving

the 1D BdG 5, and the red dashed curve in (d) is the ratio of these speeds. To compare with

Leggett’s prediction, we found the ground state of the 2D GPE for our experimental parameters

and evaluated Eq. (7.1) throughout our inhomogeneous system. The black curve in (d) plots

the resulting weighted average. Remarkably the BdG results are in near-perfect agreement with

Leggett’s expression.

7.5.2 Scissors mode

The direct connection between the SF phase gradient and the velocity field greatly impacts

rotational properties such as the moment of inertia I . For a highly anisotropic harmonic trap,

the scissors mode [117, 118] describes a fixed density distribution pivoting by a small angle θ

about an axis traversing trap center with frequency ωsc. Scissors mode experiments are in spirit

reminiscent of, though different in detail from, torsional balance experiments in 4He, which give

access to the non-classical rotational inertia [102, 103].
5To make k a good quantum number we modeled untrapped systems with periodic boundary conditions. The

chemical potential was selected to give the observed 3 mm/s speed of sound without the lattice present.
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Figure 7.5: Moment of inertia from scissors mode. (a-inset) Measured dipole mode frequencies
(circles) along with fits (curves) where the bare trap frequency is the only free parameter for
each curve. (a) Normalized scissors mode frequency. Blue and green correspond to U0 = 0 trap
frequencies (34, 51) Hz and (54, 36) Hz respectively. (b) Moment of inertia in units of Ic. In (a)
and (b) each point has uncertainty as shown on the first point. Symbols are the data computed as
described in the text, and the solid curves are GPE predictions.

We describe the scissors mode in terms of the angular momentum density

Πz = m(xJy − yJx) = ℏρ̄
(
xf sf

yy∂yφ− yf sf
xx∂xφ

)
(7.46)

of the initial density distribution ρ̄(r) oscillating by a small angle θ(t). Integrating Πz over the

system yields the total angular momentum Lz, then taking the derivative with respect to time

gives the torque

τ =

∫
d3r∂tΠz = −g

∫
d3rρ̄

[
xf sf

yy∂yδρ− yf sf
xx∂xδρ

]
,

where g is the GPE interaction strength, and we used the linearized long-wavelength hydrodynamic

kinetic equation 0 = ℏ∂tφ+ gδρ to describe small changes in the density δρ. Assuming an initial
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Thomas-Fermi distribution for ρ̄, the small-θ density difference δρ ≈ −mθ
(
ω2
x − ω2

y

)
xy/g gives

the torque

τ =
mθ

N

(
ω2
x − ω2

y

) (
⟨x2⟩f sf

yy − ⟨y2⟩f sf
xx

)
. (7.47)

In this case, the equation of motion τ = Iθ̈ describes the scissors mode oscillations and thus

connects the scissors mode frequency ωsc to the moment of inertia

I

Ic
=

(
ω2
x − ω2

y

) (
ω2
xf

sf
xx − ω2

yf
sf
yy

)
ω2
sc(ω

2
x + ω2

y)
(7.48)

in terms of the classical moment of inertia Ic. This expression is in agreement with Ref. [117]

when f sf
xx = f sf

yy = 1. Therefore, we expect ωsc, in conjunction with the superfluid density will

give I/Ic as a function of lattice depth.

The inset to Fig. 7.5(a) plots the observed dipole mode frequencies ωx,d and ωy,d for a trap

with bare (i.e., U0 = 0) frequencies (ωx, ωy) = (54, 36) Hz. The dipole frequency ωx,d decreases

with increasing U0; similarly to the sound speed, this is related to ρsf via f sf = (ωx,d/ωx)
2

along the lattice direction. This ratio can also be expressed in terms of an increased effective

mass m∗, with f sf = m/m∗ [119]; this converges to the predictions of the single-particle band

structure [120] when the lattice period falls below the healing length; in our case the value

computed perturbatively from the GPE differs by about 20 % from the band structure prediction.

The result of this modeling is shown by the solid curves.

We excited the scissors mode using our DMD to tilt the harmonic potential by 50 to

140 mrad for ≈ 1 ms (shorter than the trap periods) and let the BEC evolve in the original trap for
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a variable time. We measured the resulting dynamics in-situ and extracted the angle by fitting the

resulting density profile to a rotated Gaussian. Figure 7.5(a) shows the scissors mode frequency

normalized to the expected frequency [38] of ω2
sc,0 = f sf

xxω
2
x + f sf

yyω
2
y for a trap elongated either

along ex [with frequencies (56, 36) Hz, blue] or along ey [with frequencies (36, 50) Hz, green].

In both cases ωsc appears to be about 5 % in excess of the simple prediction, perhaps from finite

temperature or anharmonicities in the optical dipole trap.

We combine these observations in Fig. 7.5(b) to obtain I/Ic; the data (symbols) and our 2D

GPE simulations (curves, with moment of inertia computed using I = limΩ→0 ∂ΩLz, with angular

frequency Ω = θ̇) are in agreement 6. For traps elongated along ex (green), I/Ic surprisingly

changes sign when ωx,d = ωy,d. To understand the physical origin of this effect, we now turn our

attention to rotating systems.

7.5.3 Rotation

Our discussion so far has focused on the superfluid density and avoided questions about

any associated normal fluid flow. We can deduce the existence of a normal fluid component by

considering two thought experiments each a 1D ring geometry (with radius R) and in each case

consider the resulting angular momentum. In case (i), we consider a lattice along the azimuthal

direction that is very slowly accelerated [121] to a final angular velocity Ω; this is best understood

by transforming into the frame co-rotating with the lattice. This leads to a lab frame angular

momentum Lz/ℏ = 2πR(ρ̄−ρsf) that we interpret as a result of the normal fluid co-moving with

the lattice. In case (ii), we consider a complementary configuration with a static lattice and slowly

insert a single quantum of “synthetic” magnetic flux (see Ref. [122] for a proposal using artificial

6Numerically we selected Ω to be small enough that I did not depend on further changes in Ω.
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gauge fields to provide “synthetic” magnetic flux). The process is equivalent to imprinting a 2π

phase winding (of the type discussed on page 1), giving angular velocity Ω = ℏ/(mR2) and

angular momentum Lz/ℏ = 2πRρsf .

We confirm this picture of the existence of a normal fluid using 2D numerical simulations

of rotating trapped systems with a 1D lattice where: (i) the lattice co-rotates with the confining

potential; or (ii) it is static in the lab frame (as in scissors mode experiments). In (i), the current

results from a sum of normal and superfluid flow. The former co-rotates with the lattice and the

trap, while the latter derives from the SF phase gradient. In (ii) there is no normal fluid flow, but

as with our scissors mode observations, I/Ic changes sign.
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Chapter 8: Conclusion and Outlook

8.1 Conclusion

In this dissertation, I investigate superfluid properties of atomic Bose-Einstein condensates

(BECs) including laminar flow experiments that probe the superfluid density and turbulent flow

experiments that explore connections to Kolmogorov theory .

Laminar flow properties such as the superfluid denisty can be measured via indirect probes,

such as the speed of sound measurement in Chap. 7. On the other hand, the irregular flow

pattern such as turbulent flow necessitates direct measurement of the velocity field. To this end, I

developed a velocimetry method, similar to particle image velocimetry using spinor impurities as

tracers to measure the velocity field in a spatially resolved way, discussed in Chap. 5. This enables

the first observation of velocity structure functions (VSFs) in BECs, turbulent or otherwise.

The observed VSFs reveal that superfluid turbulence in BECs conforms to Kolmogorov theory,

including the so-called intermittency evident in both higher-order VSFs and the distribution of

velocity increments, discussed in Chap. 6.
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8.2 Outlook

Looking ahead, the Kolmogorov scaling law stands as the primary benchmark for understanding

any form of turbulence, and this research has indeed found indications of Kolmogorov scaling

within atomic Bose-Einstein condensates (BECs).

While Kolmogorov’s theory traditionally deals with turbulence that’s uniform and the same

in all directions (homogeneous and isotropic), real-world turbulence often doesn’t follow these

simple conditions—it can vary in density and direction (be inhomogeneous and anisotropic).

A promising direction for future work would be to apply the velocity structure function (VSF)

measurement technique used here to systems like BECs in harmonic traps or other environments.

On the technical side, analyzing scaling laws poses a challenge, especially when the entire

system we’re studying spans just on the order of 10µm. Expanding the size of the BEC by a

factor of 10 could significantly enhance our ability to study turbulence in these systems.

Exploring turbulence involving more than one type of spinor species opens another intriguing

avenue of research, particularly phenomena like Rayleigh-Taylor and Kelvin-Helmholtz turbulence [123].

Despite their theoretical significance, these types of instabilities haven’t yet been explored expe-

rimentally within the atomic BEC field.

The technique I’ve developed for measuring the velocity field offers a powerful tool for

investigating various flows within atomic BECs. Observing the superflow around an airfoil would

be fascinating [124]. Moreover, analyzing how tracers diffuses in BECs could provide a novel

way to measure temperature field within the system, adding another layer of understanding to our

studies of atomic BECs.
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