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Ultracold atoms are a versatile platform for studying quantum physics in the lab. Using

carefully chosen external fields, these systems can be engineered to obey a wide range of effective

Hamiltonians, making them an ideal system for quantum simulation experiments studying exotic

forms of matter. In this work, we describe experiments using 87Rb Bose–Einstein condensates

(BECs) to study exotic topological matter based on out-of-equilibrium effects. The topological

states are prepared through the quantum dynamics of the ultracold atom system subjected to a

highly tunable lattice potential described by the bipartite Rice–Mele (RM) model, created by

combining dressing from a radiofrequency (RF) magnetic field and laser fields driving Raman

transitions. We describe a form of crystal momentum-resolved quantum state tomography, which

functions by diabatically changing the lattice parameters, used to reconstruct the full pseudospin

quantum state. This allows us to calculate topological invariants characterizing the system.



We apply these techniques to study out-of-equilibrium states of our lattice system, de-

scribed by various combinations of sublattice, time-reversal and particle-hole symmetry. After

quenching between lattice configurations, we observe the resulting time-evolution and follow

the Zak phase and winding number. Depending on the symmetry configuration, the Zak phase

may evolve continuously. In contrast, the winding number may jump between integer values

when sublattice symmetry is transiently present in the time-evolving state. We observe a scenario

where the winding number changes by ±2, yielding values that are not present in the native RM

Hamiltonian.

Finally, we describe a modulation protocol in which the configuration of the bipartite lattice

is periodically switched, resulting in the Floquet eigenstates of the system having pseudospin-

momentum locked linear dispersion, analogous to massless particles described by the Dirac

equation. We modulate our lattice configuration to experimentally realize the Floquet system

and quantify the drift velocity associated with the bands at zero crystal momentum. The linear

dispersion of Floquet bands derives from nontrivial topology defined over the micromotion of

the system, which we measure using our pseudospin quantum state tomography, in very good

agreement with theory.
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Preface

A Ph.D. thesis serves multiple purposes. It seeks to convey theoretical background, tech-

nical details, as well as scientific results. It is a capstone to years of research, putting specialized

scientific results into a broader context. This thesis describes the key scientific results of my

graduate career, including technical details and nuances that were too long for the papers. It also

includes technical and theoretical background which will be familiar to experts, but might prove

useful as a reference for future students. If you are searching for technical details of an experi-

ment performed in the RbK lab at NIST between 2018 and 2023, or a reference on the physics of

alkali atoms, laser cooling, or topology in condensed matter physics, you are in the right place. I

hope this thesis serves you well.
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Chapter 1: Introduction

Quantum simulation is a paradigm of experimental physics first proposed by Feynman [2],

in which experimenters use an analog quantum system to study a quantum system of interest,

taking advantage of quantum features of the analog system to simulate problems which are com-

putationally difficult using classical computers. Quantum simulators make use of a wide variety

of platforms based on disparate physical systems but generally take advantage of many-body

quantum effects such as quantum entanglement [3].

Ideal quantum simulation platforms allow the experimenters to precisely control and mea-

sure the analog system. Ultracold atoms are a form of quantum-degenerate matter including

Bose–Einstein condensates (BECs) and degenerate Fermi gasses, offering superb measurability

along with the ability to engineer potentials using external fields. This makes them an excellent

platform for quantum simulation of condensed matter systems, allowing the creation of “artificial

solids” with desired properties in the lab [4].

Ultracold atom systems build on several major achievements of 20th century physics. Mod-

ern atomic physics developed along with quantum mechanics, providing key insights and test

cases for the developing theory [5, 6]. Explaining the details of atomic structure and predicting

the resulting spectra was a key triumph of the “first quantum revolution,” in which physicists used

the emerging quantum theory to better understand the natural world. The ability to precisely ma-
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nipulate atomic states makes ultracold atoms an excellent platform for technologies engineered

to take advantage of quantum mechanics: the “second quantum revolution” [7]. This precise

manipulation is enabled by technical innovations including laser cooling [8], making possible

the creation of atomic BECs, quantum-degenerate systems where a macroscopic fraction of the

atoms occupy the same quantum state, in the lab [9–11].

The experiments presented here use ultracold atoms to study topology in condensed matter

physics. Topology provides a paradigm to illuminate phenomena in condensed matter physics

including the quantum Hall effect and topological insulators [12–14]. We take advantage of our

ability to precisely prepare initial states and observe their evolution to study topology in the con-

text of quantum dynamics, observing changing topology during out-of-equilibrium evolution,

and topological dynamics of periodically modulated Floquet systems. Both of these experiments

take place in quantum simulated one-dimensional lattice systems. In the first, we observe the

changing topology of the time-evolving system, culminating with our observation of a state with

higher-order topology in the out-of-equilibrium evolution. In the second, we engineer and char-

acterize a Floquet system mimicking the behavior of massless particles described by the Dirac

equation: linear, spin-momentum locked Floquet bands. This experiment culminates with our

measurement of the underlying Floquet topological invariant characterizing the system.

1.1 Thesis Overview

This thesis covers three broad topic areas: the first is background, including topics from

atomic physics that form the basis for our experimental techniques. The second area is technical

details, including some details of our experimental apparatus, as well as how we use it to imple-
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ment a tunable bipartite lattice system. The final category is scientific results, including our study

of topological states of an out-of-equilibrium lattice system in Ch. 7, and a topological Floquet

system with linear, spin-momentum locked (Dirac) dispersion in Ch. 8.

Ch. 2 introduces important tools from atomic physics, including the electronic structure of

87Rb as well as the light matter interactions we harness to produce BECs and manipulate them in

quantum simulation experiments.

Ch. 3 introduces the basic theory of BEC as well as the laser and evaporative cooling

techniques we apply to produce BEC in the lab. The chapter includes technical details of our

experimental apparatus including a thorough review of the Raman system used throughout the

experiments described in this thesis.

Ch. 4 describes the basic theory of lattice systems, providing simple models which can be

used to understand the key physics of our experiments.

Ch. 5 establishes key ideas from topology in physics, including examples of nontrivial

topology in static one and two-dimensional systems, defining the winding number, Zak phase,

and Chern number. We also introduce topology for dynamical systems described by Floquet

topological invariants (Floquet winding numbers).

Ch. 6 introduces the Raman-RF system used for the bipartite lattice experiments described

in this thesis, including the pseudospin measurement techniques we employ to measure the topol-

ogy of our system. We include a detailed theoretical model of the system at the single-particle

level as well as basic experiments to characterize the lattice system in the lab.

Ch. 7 describes an experiment where we measure the topology of the quantum state of

atoms in our bipartite lattice as they undergo out-of-equilibrium evolution. We categorize differ-

ent initial states by symmetry, observing scenarios where topological invariants characterizing the
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system can change during the evolution, including a case where the topological winding number

takes on a value not possible in our static lattice system.

Ch. 8 describes an experiment in which we realize a Floquet system where the eigenstates

are spin-momentum locked linear bands. We observe linear motion predicted for the system,

characterize the topological origin of the behavior in terms of a measured Floquet topological

invariant, and study how the motion changes with altered modulation.

The appendices describe technical details of an RF signal generator circuit in App. A, some

practical aspects of imaging systems along with a description of prototype systems in App. B, and

a reproduction of Ref. [15], a study of techniques to create solitonic excitations in our ultracold

atom system in App. C.
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Chapter 2: Atomic Physics Background

In this chapter we introduce key concepts and results from atomic physics that will be the

foundation for understanding our experiments. This includes atomic structure, focusing on alkali

atoms, which will provide the state space in which our experiments take place. We also introduce

light-matter interactions, providing the key tools we use to manipulate atoms. We discuss the

specific ways these concepts can be applied to create optical dipole force traps and drive Raman

transitions between the internal states of our atoms. Finally, we introduce how we measure our

ultracold atoms systems, using absorption imaging and time-of flight (ToF) techniques. Together,

these elements form the toolbox for creating ultracold atoms systems and using them for the

quantum simulation experiments we will discuss in later chapters.

2.1 Alkali Atoms

Alkali metals comprise the first column of the periodic table. This gives their neutral

electron configuration a filled subshell plus a single valence electron, making their electronic

state structure qualitatively similar to hydrogen. For single electron excited states, this means

the orbital angular momentum operator L̂ and spin angular momentum operators Ŝ simply cor-

respond to the single valence electron, and the electronic state is described by four quantum

numbers. The orbital electronic state is characterized by the principal quantum number n, or-
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bital angular momentum quantum number l, and magnetic quantum number mL corresponding

to the quantization axis projection of the orbital angular momentum. For alkali atoms there

is an additional magnetic quantum number mS for the electronic spin (s = 1/2 owing to the

single valence electron). The corresponding quantum numbers are s = 1/2;mS = ±1/2 and

l = 0, 1, ...;mL = 0, {−1, 0, 1}, ... depending on the orbital angular momentum state, which we

denote S, P, D, ... using the historical spectroscopic notation [16]. The full spectroscopic nota-

tion includes the spin multiplicity 2S + 1, which is always 2 for our atoms, so we omit it. At

this coarse level of electronic structure the ground state of 87Rb is expressed as 5S and the first

excited state as 5P .

2.1.1 Fine structure

Fine structure describes lower energy scale features of atomic spectra, which arise due to

relativistic effects, including the relativistic kinetic energy and the relative motion of the electrons

and the nucleus. The relativistic treatment of the atomic Hamiltonian gives rise to a spin-orbit

term, proportional to L̂ · Ŝ. This is called spin-orbit coupling because it is an interaction between

the orbital angular momentum and the spin angular momentum. Diagonalizing the Hamiltonian

including this term results in a new electronic angular momentum operator Ĵ = L̂ + Ŝ, so that

the eigenstates of the Hamiltonian are described by new quantum numbers j,mJ . Including fine

structure, we describe the electronic state in terms of n, l and j denoted nLj , for example 5S1/2

for the electronic ground state of 87Rb.

The ground state of 87Rb, 5S1/2 has l = 0, j = 1/2, so there is no fine structure splitting

for the ground state. The first excited state has l = 1, giving possible values of j = 1/2 or

6



j = 3/2, so the fine structure splits the level into separate 5P1/2 and 5P3/2 levels. The resulting

5S1/2 → 5P1/2 and 5S1/2 → 5P3/2 transitions give rise to the D1 and D2 spectral lines. For

87Rb these have wavelengths of λD1 = 794.98 nm1 and λD2 = 780.24 nm (fD1 = 377.11 THz,

fD2 = 384.23 THz) [1]. This can be expressed in terms of the fine structure splitting ∆EFS =

h(fD2 − fD1), 7.12 THz for 87Rb. The state structure at the level of fine structure is shown on

the left of Fig. 2.1.

2.1.2 Hyperfine Structure

In addition to the spin-orbit coupling that gives rise to fine structure, the atomic Hamilto-

nian also includes coupling between the electronic and nuclear spins. For 87Rb we have a nuclear

spin Î with i = 3/2. As before the Ĵ · Î term can be diagonalized by defining the total angular

momentum quantum number F̂ = Ĵ + Î, so that the good quantum number are f and mF . For

87Rb in the electronic ground state with j = 1/2, we have two possible values: f = 1, 2. In the

absence of external fields, these two state-manifolds are split by a frequency of 6.8347 GHz [1].

The state structure for 87Rb including hyperfine structure is shown on the right of Fig. 2.1.

2.1.3 External Magnetic Fields

In the presence of a static external magnetic field, all three components of the angular

momentum interact with the field B0 via their individual magnetic moments. The strengths of

these interactions all depend on the different magnetic dipole moments associated with each type

of angular momentum. It is convenient to write them all in proportion to the Bohr magneton µB

1We have arbitrarily limited number of significant digits for convenience; for the full values with uncertainties,
see Ref. [1]
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Figure 2.1: Energy level structure of 87Rb. The levels on the left include the fine-structure
splitting that gives rise to the D1 and D2 lines, while the right includes hyperfine structure.
The energy levels given are in the absence of an external magnetic field. Values for frequency
differences and corresponding light wavelengths are from Ref. [1].
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with g-factors giving the proportionality. For the electronic spin and orbital angular momentum

these are given by gS ≈ 2 and gL ≈ 1 respectively. The nuclear gI depends on the details of the

nuclear structure, so we rely on experiments rather than calculations. For 87Rb gI = −0.0009951;

owing to this small value, we can generally neglect terms including gI in comparison to terms

with gS or gL [1, 17].

Since the couplings that gave rise to fine and hyperfine structure are still present, diago-

nalizing the full Hamiltonian is non-trivial. Despite this, the physics can be understood in two

limiting regimes, giving a simple approximate diagonalization of the Hamiltonian: small field,

where the couplings between angular momentum components dominate, and large field, where

the interactions with the external fields dominate. In the large field case, we consider all the

individual dipoles to interact with the external fields and neglect the coupling terms, making

s,mS; l,mS; and i,mI good quantum numbers. In the small field case the couplings dominate,

so f,mF are good quantum numbers, so we calculate a Landé g-factor to describe the interaction

between the total angular momentum and the external field.

gJ ≈1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(2.1)

gF =gJ
f(f + 1) + j(j + 1)− i(i+ 1)

2f(f + 1)
+ gI

f(f + 1) + i(i+ 1)− j(j + 1)

2f(f + 1)

gF ≈f(f + 1) + j(j + 1)− i(i+ 1)

2f(f + 1)
(2.2)

For the specific case of alkali atoms with s = 1/2, we have the luxury of an analytical
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solution for the Hamiltonian eigenvalues at all field strengths: the Breit–Rabi Formula [18, 19].

E =
∆EHFS

2(2I + 1)
+ gIµB(mI ±mJ)B ± ∆EHFS

2

√
1 +

4(mI ±mJ)x

2I + 1
+ x2; (2.3)

x =
µBB(gI − gJ)

∆EHFS

(2.4)

For 87Rb (mI ±mJ) takes on the possible values −2,−1, 0, 1, 2. The magnetic energy lev-

els for 87Rb are shown in Fig 2.2, including the low-field regime where f,mF are good quantum

numbers and the high-field regime where j,mJ are good quantum numbers. We will primarily

work in the low field regime, using states described by f,mF as our state space.

In the low field regime the energy shift goes as gFmFB. Although states with mF = 0

do not experience an energy shift proportional to B near B = 0, they do experience a quadratic

shift (the “clock shift,” which is named due to mF = 0 states being of particular use in atomic

clocks) [19].

eq =
(gi − gj)

2µB

2ℏ∆EHFS

B2 (2.5)

This means that the mF states do not form a perfect ladder system with even energy spacing.

Despite this, for the experiments described in this thesis, we worked with ∆E = 1MHz, corre-

sponding to eq/ℏ ≈ 150Hz, which is negligible for most purposes.

The interaction energy −µ̂ · B can be used to create external potentials for atoms. This

allows for magnetic trapping of atoms in the local minimum of a magnetic field gradient, for

atoms in low-field seeking states. For 87Rb in the low-field regime, the trappable states are

|f = 1,mF = −1⟩ and |f = 2,mF = {1, 2}⟩. In regions where the magnetic field goes to 0

it is possible for atoms to transition to non-trappable states, leading to “Majorana” spin-flip
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Figure 2.2: Magnetic sublevels of the electronic ground state of 87Rb. The left panel shows the
crossover between the low field and high field regimes, while the right shows the details of the
low field regime.

losses [20].

2.2 Light Matter Interaction

In this section we introduce a model for the interaction of an atom with the electromagnetic

field, such as that generated by a (monochromatic) laser or a radiofrequency (RF) antenna with

frequency ω. It will be sufficient to consider the external field classically for our purposes. This

will provide important tools for coherently manipulating the internal states of our atoms, as well

as creating light-dependent forces that allow for cooling and trapping.
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2.2.1 Near-Resonant Excitation and Rabi Flopping

First we consider the effect of the atom-light coupling when ω is near resonance. We

use a two-level atom as an approximate model. The formalism is applicable to electric dipole

transitions between different electronic states or magnetic dipole transition between hyperfine

states, although for our experiments the excited state lifetime is too short to observe Rabi flopping

between ground and excited electronic states. In both cases we will consider a monochromatic

field with time dependence given by cos(ωt), neglecting any variation of the field over the atomic

length scale (this is justified as long as λ≫ ratom). The bare Hamiltonian is

Ĥ = ℏω0 |e⟩⟨e| − Ĥint. (2.6)

For our two-level approximation, we write Ĥint is terms of the matrix elements of the electric

dipole moment operator d̂ for electric dipole transitions or µ̂ for magnetic dipole transitions:

deg = ⟨e| d̂ |g⟩, and deg = ⟨g| d̂ |e⟩ = d∗
eg and likewise for µ̂eg. It is convenient to write these in

terms of the quantity Ω. For the electric dipole case we have

ℏΩ = deg · ϵ̂E0(r). (2.7)

And for the magnetic dipole case we have

ℏΩ = µ̂eg · β̂B0(r). (2.8)

12



This gives an interaction Hamiltonian

Ĥint = −ℏ(Ω |e⟩⟨g| cos(ωt) + Ω∗ |g⟩⟨e| cos(ωt)). (2.9)

We transform into a rotating frame at ω by applying Û = |g⟩⟨g|+ |e⟩⟨e| eiωt via Hint → ÛHintÛ
†.

In the rotating frame, the Hamiltonian is

Ĥint =− ℏ(Ω |e⟩⟨g| e−iωt cos(ωt) + Ω∗ |g⟩⟨e| eiωt cos(ωt)) (2.10)

=− ℏ/2
(
Ω |e⟩⟨g| (1 + e−i2ωt) + Ω∗ |g⟩⟨e| (1 + ei2ωt)

)
(2.11)

The rotating frame transformation also changes the bare Hamiltonian to

ℏ(ω − ω0) |e⟩⟨e| . (2.12)

Following this we can neglect “fast rotating” terms with frequency ω + ω0 by taking the rotating

wave approximation (RWA). This can be thought of as ignoring time dependence on the scale

defined by ω, which is femtosecond scale for light oscillations and microsecond scale for RF. We

define δ = ω − ω0 to write the RWA version of the full Hamiltonian in simplified form

Ĥ = ℏ
(
−δ |e⟩⟨e|+ Ω

2

(
|e⟩⟨g|+ |g⟩⟨e|

))
, (2.13)

assuming Ω = Ω∗. Time evolution under Eq. 2.13 ÛRabi(t) = e−iĤt/ℏ generates Rabi oscil-

lations [21]. Fig. 2.3 shows the sinusoidal populations in the |g⟩ and |e⟩ states over this time

evolution starting from |g⟩ for different values of δ. For δ = 0 the population oscillates with full

13



contrast with angular frequency Ω, which is called the Rabi frequency. For finite δ, the contrast

decreases and the oscillation frequency increases, to the generalized Rabi frequency

Ω̃ =
√
Ω2 + δ2. (2.14)

In addition to considering the effects of the pulsed Rabi Hamiltonian (Rabi flopping) we

can gain understanding from the eigenstates of the Rabi Hamiltonian. The eigenvalues of Eq. 2.13

are shown in Fig. 2.3 (c) for Ω = 1 as a function of δ, showing an avoided crossing at δ = 0. The

energy shift, negative for δ < 0 (red detuning) and positive for δ > 0 (blue detuning), shows the

basic physics of light shifts, which we will discuss in detail in Sec. 2.3. For high δ the eigenstates

are essentially bare states with shifted energy due to the coupling.

2.2.2 Magnetic Transitions

One common application for Rabi oscillations in our experiments is driving transition be-

tween the hyperfine sublevels of the 87Rb electronic ground state, either between hyperfine man-

ifolds (f = 1 ↔ f = 2), or between sublevels within a hyperfine manifold. The magnetic dipole

moment can be determined from the angular momentum, the Landé g-factor (Eq. 2.2), and the

Bohr magneton, determining the Rabi frequency via Eq. 2.8. We will be working in the low-field

limit introduced in Sec. 2.1.3, so f will be a good quantum number and F̂ will be the relevant

angular momentum operator.

When driving transitions between sublevels of a hyperfine manifold, there are often more

than two relevant states to consider. In these cases the field may drive transitions between more

than two states, such as the three states of the f = 1 hyperfine manifold of 87Rb. The three state

14
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Figure 2.3: Rabi Oscillation starting from |ψ(0)⟩ = |g⟩. (a) Resonant oscillation with Ω = 1,
δ = 0 giving Ω̃ = Ω. (b) Off-resonant oscillation with Ω = δ = 1 giving Ω̃ =

√
2Ω. (c)

Eigenvalues of the Rabi Hamiltonian for Ω = 1 with variable δ. At high δ the difference between
the coupled eigenenergy (solid curves) and the bare energy (bashed lines) can be understood as
light shifts.
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Figure 2.4: Evolution during a resonant RF pulse. (a) Initial state |mF = 0⟩. (b) Initial state
|mF = −1⟩.

Rabi Hamiltonian is analogous to Eq. 2.13, including terms proportional to Ω between each rung

of the ladder (terms coupling states separated by 2ω0 are neglected after taking the RWA). As we

introduced in Sec. 2.1.3, our hyperfine sublevels are not a perfect ladder because of the presence

of the quadratic Zeeman shift, which enters as a diagonal term eq |mF = 0⟩⟨mF = 0|.

Fig. 2.4 shows experimental data for RF Rabi driving for two different initial states: |mF = 0⟩

and |mF = −1⟩, with ωRF/2π = 1MHz and δ ≈ 0. At the selected Zeeman energy, the quadratic

Zeeman shift can be safely neglected for strong driving.
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2.3 Light Shifts

In addition to driving transitions between states, external light fields can shift the energy

levels of the internal atomic states. In this section we will focus on the effects of the interaction

with the electric field of the light wave, since the interaction with the magnetic component will

be much weaker. As before, we consider a monochromatic external field.

E(t) = E0(r) cos(ωt)

= E+(r)e−iωt + E−(r)eiωt

= ϵ̂E+(r)e−iωt + ϵ̂E−(r)eiωt (2.15)

E0(r) is a spatial envelope function and ϵ̂ accounts for the polarization. It is useful to define a

basis for the polarization based on the quantization axis for the atoms ez in terms of σ+ (right-

circularly polarized), σ− (left-circularly polarized), and π (linearly polarized along ez) states. As

a guide, we can think of the response of a classical oscillator coupled to the electric field with

polarization (electric dipole moment per unit volume)

p(t) = αE(t). (2.16)

The interaction energy in this model is proportional to p(t) · E(t), corresponding to the electric

dipole moment interacting with the external field. The polarizability α will have real and imag-

inary parts corresponding to oscillations in phase and out of phase with the external field; these

oscillations give rise to (conservative) dipole forces and (dissipative) scattering forces [22].
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As we develop a model for the interaction between our quantum mechanical atoms and

the external field, we will determine the quantum model for α and corresponding dipole and

scattering forces. We begin by considering the Hamiltonian describing interactions between an

atom and the external field. The dominant term in the multipole expansion for the light-matter

interaction is the electric dipole term.

Ĥd = d̂ · E(t); (2.17)

d̂ = −e
∑
n

rn, (2.18)

where n sum over the electrons of the atom and −ern is the electric dipole moment operator for

the nth electron, with e being the fundamental charge.

Next we consider how interaction with off-resonant light effects the energy levels of an

atom. Using second order perturbation theory in Ĥd, we can write the energy shift of the ground

state. The interaction energy is the dipole interaction from Eq. 2.17 and can be expressed in terms

of the atomic polarizability, quantifying the atomic response to the external field.

We first consider a two-level atom with excited state |e⟩ and ground state |g⟩. In this case

the energy level of the |e⟩ state is shifted by [19]

∆Eg = −2ωeg| ⟨g|E(r)+ · d̂ |e⟩ |2
ℏ(ω2

0 − ω2)
. (2.19)

This provides a simple model to understand the scalar light shift from far detuned laser beams.

When ω < ω0 (lower than resonant frequency or red detuned) the energy shift is negative. As a

result atoms are attracted to regions of high laser intensity. By contrast, for ω > ω0 (higher than
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resonant frequency or blue detuned) the shift is positive, leading to repulsive forces in regions of

high intensity. This ground state scalar light shift forms the basis for red detuned dipole trapping

(Sec. 2.3.2).

The form of Eq. 2.19 motivates us to define the dynamic (AC) polarizability

α(ω) = −ω0| ⟨g| ϵ̂ · d̂ |k⟩ |2
ℏ(ω2

0 − ω2)
(2.20)

defined so that

∆Eg = −α(ω)|E|2. (2.21)

To describe light shifts in multilevel atoms, we use a sum to include terms from all the

atomic states. We will also need to account for the different angular momentum states of our

system. To capture the interaction between different polarizations and angular momentum states,

we introduce a frequency-dependent polarizability tensor [19, 23] for state |i⟩,

αµν(i;ω) =
∑
j

2ωij ⟨i| dµ |j⟩ ⟨j| dν |i⟩
ℏ(ω2

ij − ω2)
, (2.22)

where j sums over the excited states. αµν(i;ω) is defined so that

∆Ei(ω) = −αµν(i;ω)E
+
µ E

−
ν , (2.23)

where the repeated indices µ, ν are summed over.

When we write an expression for αµν it is helpful to decompose it into different parts,

depending on how they transform under rotation. This leads to scalar, vector, and tensor contri-

19



butions to the polarizability.

α(0) = ανν (2.24)

α(1)
η = ϵηµν(αµν − ανµ) (2.25)

α(2)
µν = αµν −

1

3
αηηδη,η, (2.26)

where ϵηµν is the rank-3 antisymmetric tensor (Levi–Civita symbol), δη,η is the Kronecker delta,

and summation over repeated indices is implied.

We are interested in the polarizability of atomic hyperfine states in the linear Zeeman

regime, where f,mF are good quantum numbers, so we will specify by exchanging i → f,mF

and j → f ′,m′
F . In this case, after converting to spherical tensors, only one independent compo-

nent remains for the scalar, vector and tensor polarizabilities, α(0), α(1), α(2). See Ref. [19] for a

full derivation. The interaction Hamiltonian can be written in terms of these components and the

angular momentum operator F.

Ĥd = −α(0)|E+|2 − α(1)i(E+ × E−) · F− α(2)(...). (2.27)

Our experiments work in a regime where only the first two contributions are important, so

we will neglect terms including α(2).

2.3.1 Scattering

Our treatment of Rabi oscillation neglected spontaneous emission from the excited state.

In many cases, when the lifetime τ of the excited state is shorter than or comparable to the Rabi
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frequency, spontaneous emission cannot be neglected. Instead, an atomic ensemble will come to

a steady state, where the rate of excitation from the external field equals the rate of spontaneous

emission, or scattering. The scattering rate depends on the decay rate Γ = 1/τ , detuning from

resonance δ, and saturation intensity Isat [24]

Γsc =
I

Isat

Γ/2

1 + I/Isat + 4(δ/Γ)2
. (2.28)

The saturation intensity

Isat =
2π2Γℏc
3λ3

, (2.29)

quantifies when saturation effects become significant. Note that these expressions do not account

for a Doppler shift between the atom and the excitation light.

2.3.2 Optical Dipole Force Traps

A key consequence of the scalar polarizability and resulting dipole force is the ability to

create attractive potentials with red detuned light and repulsive potentials with blue detuned light.

The scalar polarizability for state i is

α(0) =
∑
j

2ωij| ⟨i|d · ϵ̂ |j⟩ |2
ℏ(ω2

ij − ω2)
. (2.30)

The polarizability can be neatly expressed in terms of the Fermi golden rule [25] transition rate

[22]

Γij =
ω3
ij

3πϵ0ℏc3
| ⟨i| |d · ϵ̂| |j⟩ |2. (2.31)
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For a two-level atom with only i = g, j = e we simplify the notation ωij → ω0,Γij → Γ.

The scalar polarizability results in a dipole potential expressed [22]

U(r) =
3πc2

2ω2
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (2.32)

in terms of the intensity I = 2ϵ0c|E|2. The off-resonant scattering rate for this scenario is

Γsc =
3πc2

2ℏω2
0

(
ω

ω0

)3(
Γ

ω − ω0

+
Γ

ω + ω0

)2

I(r). (2.33)

In the RWA where the detuning δ = ω − ω0 is relatively small, |δ| ≪ ω0, we can neglect

the counter-rotating (ω + ω0) terms, giving

U(r) =
3πc2

2ω2
0

−Γ

δ
I(r), (2.34)

and

Γsc =
3πc2

2ℏω2
0

(
Γ

δ

)2

I(r). (2.35)

This potential forms the basis for optical dipole trapping, in which a spatial intensity pat-

tern, typically a tightly focused Gaussian laser beam or a pair of crossed beams creates a region of

high intensity, resulting in a locally harmonic trap. Our implementation of optical dipole trapping

is discussed in Sec. 3.3.1.

In general the two-level atom approximation and RWA should be thought of at approxi-

mately the same level; this is because when the counter rotating term cannot be neglected, the

contribution from other excited states is generally also non-negligible [19]. Note that the ra-
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tio of potential depth to off-resonant scattering is ℏδ/Γ, meaning that we can reduce unwanted

scattering by increasing the detuning, with the resulting loss in potential depth compensated by

increasing the intensity.

A more rigorous treatment must take into account the multi-level internal state structure of

real atoms. For alkali atoms such as 87Rb this means including separate contributions from the

D1 and D2 lines as well as the particular hyperfine ground state [22] (as before we consider the

linear Zeeman regime where f,mF are good quantum numbers).

U(r) =
πc2Γ

2ω2
0

(
2 + PgFmF

δD2
+

1− PgFmF

δD1

)
I(r), (2.36)

where P = 0,±1 for light with π, σ± polarization. For far detuned light such that δ ≫ ∆EFS, it

makes sense to define the average detuning δ defined relative to the center of the D-line doublet.

In this case we can approximate the potential as

U(r) =
πc2Γ

2ω2
0δ

(
1 +

1PgFmF∆EFS

δ

)
I(r). (2.37)

As we introduced in Sec. 2.1.1 ∆EFS is the 5P fine structure splitting. This shows the diminish-

ing role of fine structure as we detune further from resonance. For example, our optical dipole

trap operates at 1064 nm so that the two-level approximation is highly accurate and fine structure

can be neglected. For closer detuned potentials, such as the phase imprinting potentials we used

for the experiment described in App. C with 777.6 nm (ω/2π = 685.5THz), the dominant con-

tribution comes from the 0th order term with a correction due to the internal structure. For light

with frequency very close to the D1 and D2 transitions, the approximation is not valid.
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2.4 Raman Coupling

The vector polarizability allows light to create state dependent potentials and drive Raman

transitions between different internal states. In a Raman transition there are two or more light

fields with frequency components ω+ and ω−, which a drive transition between different internal

states accompanied by a change in momentum. This can be thought of as a two-photon transition

via a virtual excited state.

We will focus on the vector light shift for the state structure of alkali atoms in the linear

Zeeman regime. Recall that the vector polarizability part of Eq. 2.27 was a term of the form

E × E · F̂. Because of this, the vector light shift part of the Hamiltonian can be expressed in

terms of an effective magnetic field Ω.

Ĥv =
µBgF
ℏ

(Ω · F̂) (2.38)

The effective field is proportional to the vector polarizability [23],

α(1) =
2α(0)∆EFS

3δ
. (2.39)

For a combination of laser fields Eω+ and Eω− with frequency components ω+ and ω−
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differing by ωRF = ωZ + δRF, the effective magnetic field takes the form [23]

Ω =
α(1)gf
ℏgj

[− Im[(E∗
ω− × Eω+) · (ex − iey)],

− Re[(E∗
ω− × Eω+) · (ex − iey)],

δRF
ℏgj
α(1)gf

+ i(E∗
ω− × Eω− + E∗

ω+ × Eω+) · ez].

(2.40)

The Ω± = 1/2(Ωx±Ωy) components drive transitions between different mF sublevels, while the

Ωz component acts as an effective bias field. Note that δRF, which defines resonance for coupling

the mF internal states, should not be confused with the single photon detuning, δ which is often

large when driving Raman transitions.

For the specific case of two equal intensity beams counter propagating along ex, with the

ω− beam linearly polarized along ey and the ω+ beam linearly polarized along ez, we have

Eω− = EeikRxey and Eω+ = Ee−ikRxez. The configuration results in a spatially rotating effec-

tive Zeeman field

Ω = [ΩR sin(2kRx),ΩR − cos(2kRx), δRF], (2.41)

The Raman Rabi frequency ΩR = E2α(1)gf/gjℏ corresponds to the proportionality in Eq. 2.40.

If we are free to define the origin for x we can effectively change the phase of the sin and cos

terms in the position dependent magnetic field.

Fig. 2.5 shows the time evolution under the influence of a Raman Hamiltonian of this type

starting from |k = 0,mF = 0⟩. Configurations other than counterpropagating beams are equally

possible, with the recoil direction defined by the intersection angle θ between the beams and the

length and energy scales changing as cos(π − θ)/2 [23].

More complicated arrangements of fields can yield additional structure. For example if
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Figure 2.5: Raman pulsing starting from the |k = 0,mF = 0⟩ initial state. In this case the mF =
±1 states have k = ±2kR. Solid lines are theory curves for Ω = 10.6ER.

each beam carries both frequency tones ω−, ω+, the field components are Eω− = EAe
ikRxey +

EBe
−ikRxez and Eω+ = EAe

−ikRxey + EBe
ikRxez. For this arrangement Eq. 2.40 yields

Ω = [(ΩA + ΩB) sin(2kRx), (ΩA − ΩB) cos(2kRx), δRF], (2.42)

where the Raman Rabi frequencies are defined for individual field pairs: ΩA,B = E2
A,Bα

(1)gf/gjℏ.

The addition of a magnetic field oscillating at ωRF adds a position independent component to the

effective field: ΩRF cos(ϕRF)ex −ΩRF sin(ϕRF)ey, where ϕRF is the relative phase between the RF

and Raman fields. This arrangement forms the basis for the lattice system we will introduce in

Ch. 6.
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2.5 Measurements

One of the key advantages of ultracold atoms as a platform for studying diverse physics is

their high degree of measurability. This includes absorption imaging, quantifying light removed

from a probe beam by resonant absorption by the atoms; phase contrast imaging, quantifying the

phase shift acquired by the beam through dispersive interaction with the atoms; and fluorescence

imaging, quantifying light re-emitted by the atoms after resonant absorption. We focus on ab-

sorption imaging, which allows us to image the column density of an atomic cloud either in-situ,

or after a time-of-flight (ToF) expansion.

2.5.1 Absorption Imaging

We can quantify absorption and dispersion with a density-dependent complex index of

refraction. In the two-level approximation this gives [26]

n = 1 +
σ0ρλ

4π

(
i

1 + (2δ/Γ)2I/Isat
− δ

1 + (2δ/Γ)2I/Isat

)
, (2.43)

with resonant cross section σ0 = 6πλ̄2, atomic density ρ, detuning δ = ω − ω0 and saturation

intensity Isat (defined in Eq. 2.29). For simplicity we factor out the density dependence, defining

n0 − 1 = (n− 1)/ρ.

As light passes through the 3D atomic density distribution, it will be attenuated by the

imaginary part of n. This leads to an optical depth related to the atomic column density.

d

dz
I(x, y, z) = −Im[n(x, y, z)]I(x, y, z) (2.44)

27



Integrating along z from the initial condition of I(x, y, 0) yields the solution

I(x, y, z) = I(x, y, 0)e−ρ̃(x,y,z)Im[n0], (2.45)

where ρ̃(x, y, z) =
∫ z′

0
ρ(x, y, z′) is the integrated atomic column density up to z.

The optical depth of the medium is the quantity ρ̃(x, y, z)Im[n0] = OD(x, y) for z → ∞

(i.e. after the beam has passed through the region containing atoms). We can extract the OD by

comparing an image of the probe beam attenuated by atoms to a bare image of the probe beam.

Ia(x, y)

Ip(x, y)
= e−OD(x,y) (2.46)

In practice we also subtract a “dark” image taken with no probe light to reduce the contribution

from technical noise such as stuck pixels. Fig. 2.6 shows how we use absorption to generate an

image of the atomic distribution. This may be the in-situ distribution of trapped atoms, or the

distribution after the atoms are released using ToF imaging as we will explore in the next section.

The number of atoms can be calculated from the OD on a per-pixel basis. In the limit of

probe intensity much less than Isat this gives

np =
ApOD

σ0
, (2.47)

where Ap is the in-situ pixel area, taking into account any magnification of the imaging sys-

tem. As a rule we treat the absolute atom number from the measured OD as an estimate rather

than a quantitative measurement, as accurate atom number counting from OD requires careful

calibration and elimination of systematic error.
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Figure 2.6: Conceptual sketch of absorption imaging. Atomic absorption attenuates the probe
beam. By comparing an image of the attenuated probe to a reference probe image without atoms
present, we can determine the OD. The false-color image right shows a cropped region of the
sensor for the atoms and probe shots used to form an absorption image, corresponding to the
center of Fig. 2.7 (a).

Our absorption imaging uses the f = 2, f ′ = 3 transition of the D2 line, meaning that the

probe light must be accompanied by a “repumper” beam (discussed in Sec. 3.2.1) so that atoms

may undergo multiple absorption-emission cycles and any atoms in f = 1 are pumped into a

state addressable by the cycling transition. Alternately we can use a microwave pulse to transfer

some or all of the atoms from f = 1 to f = 2 before imaging. This is the basis for partial transfer

absorption imaging [27] which is useful when the OD is high or to perform a measurement

without fully destroying the cold atom system. We do not use partial transfer imaging for any of

the scientific data reported in this thesis, but we use it for a magnetic field monitoring technique

described in Sec. 3.7.1.
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2.5.2 Time-of-Flight Imaging

We are often interested in the momentum distribution of our ultracold atoms. To probe this,

we use time-of-flight (ToF) imaging, in which we release our atoms from their trap, allowing

for a period of mean-field driven expansion, followed by free expansion (the atomic density

quickly reduces to the point where interactions are negligible and the expansion can be considered

free). If the expansion time is long compared to the initial spatial distribution of atoms, the

ToF distribution will reflect the initial momentum of the atoms at the start of the expansion.

This approach has the added benefit of allowing the atoms to spread out, so their OD is lower,

allowing for more faithful imaging. Atoms experience radiation pressure from the resonant probe

light during absorption imaging as well as momentum changes due to spontaneous emission. To

avoid complications due to this, we used a probe pulse time of 30µs for the experiments described

in this thesis, which is fast compared to the timescale for atomic motion. Fig. 2.7 (a-c) shows

ToF images of condensates with different momentum components separated along the horizontal

direction (separation along the vertical direction will be discussed in the next section).

The spatial ToF distribution can be qualitatively thought of as the in-situ momentum distri-

bution. This equivalence is only quantitative in the limit of very long ToF, which can be especially

hard to reach in anisotropic traps with weak longitudinal confinement, in which case the initial

size is large in the longitudinal direction. To compensate for this we can use momentum focus-

ing [28–30]. In this technique we briefly deepen the harmonic trap in the longitudinal direction,

providing a restoring force to the atoms related to their displacement from the trap center, for a

quarter period of the deepened trap, followed by free propagation. This is analogous to the action

of a lens in optics followed by a region of free space for the light to come to a focus. This trans-
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lates the initial momentum information into position information removing any contributions to

the ToF distribution from the in-situ condensate size. Fig. 2.7 (c) and (d) compare ToF images

with and without momentum focusing along the ex direction, corresponding to the horizontal

direction in the images.

When working with systems with narrow peaks in their momentum distributions, this

method presents a drawback because the final distribution will be more tightly focused com-

pared to a conventional ToF distribution, making the peak OD higher and atom number counting

correspondingly harder.

2.5.3 Stern–Gerlach Imaging

In addition to the momentum distribution of atoms, we also often desire to measure their

internal state. We can measure the internal angular momentum of atoms using the Stern–Gerlach

(SG) effect in combination with ToF imaging. The principle of SG imaging, borrowed from

the famous 1922 experiment [6, 31], uses an inhomogeneous magnetic field to spatially separate

atoms by their magnetic moment. In the classic realization an atomic beam passes through an

inhomogeneous magnetic field; in our case the movement comes from the atoms falling due to

gravity during the ToF. For our experiments, the magnetic field is approximately a quadruple

configuration, produced by a pair of coils in an anti-Helmholtz configuration (see Sec. 3.4). As

we saw in Sec. 2.1.3 the different internal mF states have different magnetic moments, meaning

the spatial distribution after SG ToF gives us the distribution of mF internal states.

SG imaging is compatible with momentum resolved imaging when we measure momen-

tum along only one direction of the system, perpendicular to the SG separation direction. As
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Figure 2.7: Example absorption images taken after SG ToF. (a) different magnetic states separated
along the y direction. (b) States with different momentum and internal state separate along both
directions. (c) A distribution with more combinations of internal and momentum state after ToF.
(d) A similar distribution after momentum focused ToF.
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demonstrated in Fig. 2.7 this allows us to measure in the basis of |k,mF ⟩ states. The relative

population in each state can be found by counting the OD in each region where there is a density

peak, and dividing each by the total OD. This provides something analogous to the probability

associated with each basis state in a single particle measurement.
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Chapter 3: Experimental System

Bose–Einstein condensation (BEC) is a striking manifestation of quantum mechanical ef-

fects, in which a macroscopic number of particles occupy the same quantum state. Creating

and manipulating BECs in the lab allows us to directly see quantum effects, such as matter-wave

interference [32] and perform quantum simulation experiments. Laser cooling [8] is a set of tech-

niques that exploit the intricacies of atomic physics and light-matter interactions to cool atomic

ensembles to extremely low temperatures providing key technical steps to achieving BEC in the

lab.

In this chapter, we review the basic principles of Bose–Einstein condensation and laser

cooling, applying the atomic physics principles from the last chapter. We then describe relevant

details of our experimental apparatus, including the system we use to drive Raman transitions that

we make use of in our topological lattice experiments. Most of the details of our apparatus have

been covered in past theses [33–35], so this chapter provides an overview and reports changes

and updates to the apparatus in more detail. Secs. 3.8 and 3.9 report on changes to the Raman

beam setup and the addition of a digital micromirror device, respectively.
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3.1 Introduction to Bose–Einstein Condensation

The statistical mechanics of a system of quantum particles must take into account their

indistinguishably. In 3D systems, indistinguishable quantum particles are either fermions with

half-integer spin or bosons, with integer spin [36]. Fermions must have a many-body wavefunc-

tion that is antisymmetric under particle exchange, leading to the Pauli exclusion principle, which

restricts the occupation number for quantum states to be zero or one. In contrast bosons, whose

many-body wavefunction must be symmetric under exchange, can have occupation numbers of

any integer.

The Bose–Einstein distribution describes the thermal average occupation number of states

in a system of bosons at temperature T [37].

nT (i) =
1

e(Ei−µ)/kBT − 1
, (3.1)

where Ei is the energy of state i, kB is Boltzmann’s constant, and µ is the chemical potential. It

is convenient to rewrite the distribution in terms of the fugacity z = eµ/(kBT )

nz(i) =
z

e(Ei)/kBT − z
. (3.2)

The occupation as function of E is shown in Fig. 3.1 (a) for a range of z values.

For an ideal Bose gas, the Bose–Einstein distribution reduces to the classical Maxwell–

Boltzmann distribution for an ideal gas in the limit where z ≪ 1 corresponding to the limit

where all the average particle occupation numbers are small. In contrast, quantum effects become

important as the inter-particle spacing d, which scales like the cube root of the real-space number
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Figure 3.1: Bose–Einstein distribution. (a) Occupation number as a function of energy for three
different values of z. (b) Ground state occupation as a function of z, which diverges as z ap-
proaches 1 corresponding to µ = 0 and Bose–Einstein condensation. (c) Condensate fraction as
a function of temperature expressed as T/Tc for an ideal (untrapped) Bose gas.
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density n, decreases.

We can gain some insight into Bose–Einstein condensation by considering an ideal Bose

gas at low temperature. For this toy model, there are no interactions and there is no external

potential. The model consists of N bosons in a space with periodic boundary conditions, and the

Hamiltonian eigenstates are plane waves with energy given by the kinetic energy (ℏk)2/2m.

Bose–Einstein condensation occurs when a the ground state has macroscopic occupation

number N0/N ̸≈ 0. Remarkably, this is possible for temperatures above absolute zero, and

happens when d is comparable to the thermal de Broglie wavelength λdB = ℏ
√

2π
mkBT

. The

conditions for Bose–Einstein condensation depend on the temperature and the density (as well as

the dimensionality of the system); at fixed density n the critical temperature is [38]

TC = 0.527n2/32πℏ2

mkB
. (3.3)

The the total occupation of the ground state as a function of T is [38]

N0

N
= 1−

(
T

TC

)3/2

, (3.4)

as shown in Fig. 3.1 (c).
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3.1.1 Trapped Noninteracting Bose Gas

We can make the scenario more realistic by adding a harmonic trap to our model. The

potential for a harmonic trap in 3D is

V (r) =
m

2

∑
i

ω2
i x

2
i , (3.5)

where the index i ranges over x, y, z, and ωx,y,z are the frequencies of the trap in each direction.

Unlike for the ideal Bose gas, the single-particle ground state for the trapped gas is localized

at the center of the trap. This means a condensed trapped gas has a localized real space and mo-

mentum space density [39]. The geometric mean harmonic oscillator frequency ω̃ = (
∏

i ωi)
1/3

defines length and energy scales aho =
√

ℏ/(mω̃) and ℏω̃.

For the trapped gas, the critical temperature for condensation is

TC = 0.94ℏω̃N1/3. (3.6)

And the condensate fraction is [39]

N0

N
= 1−

(
T

TC

)3

. (3.7)

Finite system size effects are beyond our discussion here but result in a smoothing of the

transition and a correction to the transition temperature that scales as N−1/3 [39].
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3.1.2 Interacting Bose gas

In this section we will explore how interactions between bosons modify their low-temperature

behavior. In the dilute limit, the interactions between atoms can be approximated as a contact in-

teraction

Vint(r1, r2) = V0δ(r1, r2). (3.8)

Atoms repel each other (or attract each other for V0 < 0) when they overlap, but do not interact

when they are separated by finite distance. The strength of the contact interaction is related to the

s-wave (l = 0) term in the partial wave expansion for scattering, with scattering length as:

V0 =
4πℏ2as
m

(3.9)

In the spirit of the Bogoliubov treatment of a Bose gas, we can describe the system by a

single complex wavefunction (order parameter) evolving according to a wave equation including

the interaction potential as an effective nonlinearity [39]

iℏ∂tψ(r, t) =
(

ℏ2

2m
∇2 + Vext(r) + V0|ψ(r, t)|2

)
ψ(r, t). (3.10)

Eq. 3.10 is called the Gross–Pitaevskii equation (GPE). The GPE neglects contributions from the

uncondensed (thermal) component of the system but is nonetheless a very good approximation

to the behavior of condensates well below TC .

When the number of atoms is large, the interaction term dominates over the kinetic energy
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term, leading to an approximate solution to the GPE with density profile given by

|ψ(r)| =
√
µ− Vext(r)

V0
. (3.11)

Qualitatively, this means the BEC fills the potential to the point where the mean field interac-

tion cancels with the external potential. This is called the Thomas–Fermi approximation and

means that for a harmonic trap, the condensate size can be characterized by the Thomas–Fermi

radius [39].

3.2 Laser Cooling

In the previous section we introduced a basic description of low temperature bosonic sys-

tems. We now turn to the practical challenge of producing low temperature bosons. Laser cooling

provides a key set of tools for cooling bosonic atoms. Our experiments make use of many of these

tools to achieve a low temperature cloud, with quantum degeneracy and Bose–Einstein conden-

sation coming after evaporative cooling in a conservative trap.

The main idea of laser cooling is to remove kinetic energy from atoms using a combination

of stimulated and spontaneous light scattering, resulting in cooling. The essential physics of

laser cooling comes from the momentum transferred between atoms and the electromagnetic field

when an atom absorbs or emits light. Absorbing a photon results in a change in atomic velocity

given by the recoil velocity vr = ℏk0/m, where k0 = 2π/λ is the wavevector of the light. We

will consider light from spectrally narrow lasers with a well defined frequency ω and wavelength

λ. It is possible to slow and cool a beam of atoms in one direction using a single beam, as we

will see in Sec. 3.2.1. Cooling in multiple directions can be achieved with an arrangement of
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beams producing velocity dependent forces, so that the net force due to absorbing and scatting

light must be velocity dependent, resulting in damping of fast moving atoms.

Moving atoms experience a Doppler shift of the laser field ωD = −k · v, where v is the

atomic velocity and k is the light wavevector. This frequency shift, combined with the linewidth

of typical cycling transitions, as well as the spectral width of typical lasers, means that the laser

field will only be resonant with atoms within a relatively narrow range of velocities (specifi-

cally the velocity component in the laser propagation direction). This velocity selectivity can be

leveraged to give the desired damping force resulting in laser cooling [24].

The recoil velocity for real atoms—5.9mm/s for the D2 line of 87Rb—is tiny compared

to typical thermal velocities at realistic temperatures—vRMS = 360m/s for 87Rb at 450 K, a

typical temperature for our atom source oven, based on the classical Maxwell–Boltzmann distri-

bution [37]. Despite this, an individual atom can absorb and emit many photon on a “cycling”

transition, allowing a large change in the average velocity. A transition will work well as a cyclic

transition if the atom is very likely to return to its original ground state after spontaneous emis-

sion. We use the f = 2 → f ′ = 3 transition of the D2 line, because atoms are more likely to

decay from f = 3 to back to f = 2 compared to f = 1 due to selection rules.

Because each absorption on the cycling transition must be accompanied by an emission,

the atoms will experience random momentum kicks. These fluctuations act as a form of heating;

when balanced with the disruptive force this results in a steady state thermal distribution. The

lowest achievable temperature in this configuration is the Doppler limit [40].

TD =
ℏΓsc

2kB
, (3.12)
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where Γsc is the scattering rate, which is limited by the lifetime of the excited state Γmax = 1/τ .

3.2.1 Zeeman Slowing

One application of laser cooling is to slow an atomic beam using a single laser beam,

propagating antiparallel to the atoms. Because the cycling transition linewidth and laser linewidth

are narrow compared to the Doppler shift of light experience by the thermal atoms, the resonance

condition will change as atoms are slowed. This means that as atoms are cooled, they will come

out of resonance with fixed-frequency cooling light. This effect can be countered by changing

the frequency of the cooling light (chirp cooling), by using a spectrally wide source (broadband

cooling), or by changing the resonance condition for the atoms to absorb light (Zeeman cooling).

In the latter approach, an inhomogeneous magnetic field can be engineered around the atomic

beam, to form a Zeeman slower in which the detuning from resonance changes as atoms progress

to the end of the beam, allowing atoms to be continually slowed by absorbing light from the

fixed-frequency laser as they move through the beam, losing velocity as the travel forward [8].

As is clear from our discussion in the previous chapter, real atoms have an internal state

structure beyond a single ground state and a single excited state. This includes hyperfine ground

states not coupled by the cycling transition. As atoms undergo many cycles of absorption and

emission, they may decay into other sublevels of the atomic ground state, a form of optical pump-

ing. If these ground state sublevels are not coupled to the laser cooling light, the optically pumped

atoms can no longer be cooled using the cycling transition. This undesired optical pumping can

be compensated with additional optical pumping, using a seconder “repumper” laser beam to

pump atoms out of the undesired sublevels, back to states coupled to the cycling transition.
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3.2.2 Optical Molasses

In addition to slowing atoms in a beam, it is possible to use lasers to cool atoms in a

particular region of space. In the simplest case, a pair of counter-propagating laser beams can be

used to cool atoms in 1D in the area where the beams intersect. The detuning of the beams can be

set so that left-moving atoms resonantly absorb light from the right-going laser and are slowed,

and vice-versa for right-moving atoms. The resulting average force on the atoms is a velocity

dependent damping force analogous to movement in a viscous fluid. As a result, this technique

is called optical molasses. This simple model allows atoms to be cooled to TD in the direction

of the counter propagating beams [8, 40]. Naively, one might expect this to generalize to the 3D

case. In 3D, polarization effects of the overlapping beams become important, allowing for new

cooling mechanisms we will explore in the next section.

3.2.3 Sub Doppler Cooling

Perhaps shockingly, the internal state structure of atoms, combined with the polarization

properties of the cooling light, make it possible to cool below TD. This is possible through the

interplay between light shifts driven by polarization gradients, and optical pumping rates related

to the atomic state structure [24]. This gives rise to a class of techniques call polarization gradient

cooling (PGC).

Two common configurations for PGC involve linearly polarized beams with perpendicular

polarization (lin ⊥ lin PGC), or circularly polarized beams with opposite circular polarization

(σ+σ− PGC) [24]. In the lin ⊥ lin configuration, atoms experience a spatially dependent light

shift depending on their internal state. The laser fields optically pump atoms into the state for
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which they are at a potential minimum, meaning they lose energy as the move away from the

minimum. As the atoms move toward the maximum of their state dependent potential, they are

more likely to be optically pumped into a different internal state, for which the state-dependent

potential is reversed, so that the cycle can repeat. This is known as Sisyphus cooling owing to

the atoms repeatedly climbing potential hills to lose energy. In the σ+σ− configuration atoms

are optically pumped into different magnetic sublevels depending on their motion making them

more likely to absorb light from the beam propagating opposite their motion direction. We make

use of σ+σ− PGC in our experiments because we have circularly polarized beams can be readily

used for to created a σ+σ− configuration.

3.2.4 Magneto-Optical Traps

In addition to cooling using manipulation of atomic detuning from resonance, it is possi-

ble to create a system where atoms feel a restoring force due to spatially varying absorption of

laser light. A magneto-optical trap (MOT) uses a magnetic field gradient to change resonance

conditions so that atoms resonantly absorb more trapping light as they travel away from the trap

center.

We create MOTs where the magnetic field gradient is a quadrupole configuration field sup-

plied by our anti-Helmholtz coils. Each axis of the trap has a pair of counter-propagating beams

with σ+ and σ− polarization. The gradients and polarizations combine so that atoms resonantly

absorb light preferentially when they move away from the trap center; the preferentially absorbed

light is from a beam propagating from the resonance position toward the trap center, resulting in

the restoring force toward the trap center [40].
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3.3 BEC Production

Our system uses several stages of laser and evaporative cooling to achieve an ultracold

Bose gas. The system start with an atom source: gaseous Rubidium from an oven is collimated

by a heated nozzle and chilled cold-cup, feeding hot atoms into a Zeeman slower [41]. Slower

and repumper laser beams cool and slow the atoms in the longitudinal direction, providing a flux

of atoms in our main vacuum chamber.

In the main chamber, atoms from the slower beam are captured in a MOT formed by three

pairs of counter propagating beams and a quadrupole magnetic field generated by a pair of anti-

Helmholtz configured coils (Sec. 3.4). We load atoms into our MOT for 1 − 3 s depending on

the desired atom number1. Following this, we perform additional cooling and optical pumping

stages before transferring to a magnetic trap. We then cool the atoms using optical molasses and

σ+σ− PGC. Following this, we optically pump atoms into the f = 1 hyperfine state, our desired

final state.

Next, the atoms are captured in a magnetic trap formed from the same quadrupole coils

used for the MOT. After capturing low-field seeking atoms in our quadrupole trap, we increase

the current to compress the trap. This process increases the temperature, but increases the phase

space density in preparation for evaporative cooling. Evaporative cooling, in which atoms with

higher kinetic energy are allowed to leave the trap, resulting in a smaller lower temperature

cloud [42], is a key step along our path to Bose–Einstein condensation.

The first stage of evaporation in our magnetic trap uses an RF magnetic field to transfer

1We sometimes increase the loading time to compensate for slight misalignment of the MOT beams. We charac-
terize the MOT by the fluorescence it produces. The final fluorescence and the time to rise to 2/3 of the final value
characterize the MOT.
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atoms from trappable to non-trappable states. This results in a loss of atoms from the trap at

locations where the RF field is resonant with the transition between internal atomic magnetic

sublevels. We start the RF at a relatively high frequency (approximately 15 MHz)2, so that it

is resonant with atoms near the edge of the trap, which on average have higher kinetic energy

than atoms closer to the trap center. As the atoms are evaporatively cooled and the cloud shrinks,

we lower the RF frequency, to be resonant with atoms closer to the trap center. The moving RF

frequency is sometimes called a “knife edge” because it acts to remove atoms a certain distance

away from the trap center. We end at an RF frequency around 5 MHz.

Following RF evaporation, we relax the magnetic trap and transfer atoms to an optical

dipole trap (ODT) formed from the intersection of two approximately Gaussian 1064 nm laser

beams. This is based on the hybrid technique described in Ref. [43]. Following this transfer, we

reduce the ODT trap depth, allowing atoms near the edge of the trap to more easily escape, so

that the ensemble continues to undergo evaporative cooling until we reach our final trap depth.

Because the technique uses a magnetic trap the resulting condensate has an internal state with

mF = −1 in the conventional form of this procedure.

3.3.1 Optical Dipole Trap

Compared to earlier experiments using the RbK apparatus (see Refs. [33–35]), we use

a different optical dipole trap (ODT) configuration (see Fig. 3.3). In the past, our lab used a

configuration where the beam from an IPG Fiber Laser passed through a “split” acousto-optic

modulator (AOM) providing two orders, which we used to form a crossed ODT. Instead, we

2The starting frequency was 14.5 MHz at time of writing, but this is periodically changed when we optimize
the BEC production sequence. A higher initial frequency will provide better evaporative cooling for a larger initial
cloud.
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use one order from this laser AOM configuration along with an independent laser beam from a

separate 1064nm IPG Fiber Amplifier. This second beam, which propagates with our Raman

beams, provides the transverse confinement allowing us to achieve an anisotropic cigar shaped

trap with frequencies (ωx, ωy, ωz)/2π ≈ (15, 150, 100) Hz at the final trap depth. The dither

beam from the split AOM provides the relatively weak longitudinal condiment with frequencies

ranging from ≈ 15− 25 Hz depending on the dithering control.

3.3.2 Evaporation and State Transfer

In many of our experiments, we desire to start with a BEC in the mF = 0 internal state. To

provide this efficiently, we optionally employed a combination of a short resonant RF pulse and

magnetic field gradients during the final stage of evaporation. The magnetic field gradients tilt

the trap seen by mF = −1 atoms, gradually releasing them from the trap as the depth decreases.

Ideally this means that the magnetic component of the atomic cloud can act as a sympathetic

coolant for the desired nonmagnetic component. By tuning the duration of the RF pulse and the

strength of the magnetic field gradients, we can control the size of the final mF = 0 BEC.

3.4 Apparatus Overview

The RbK apparatus, shown in Fig. 3.2, consists of several subsystems that perform multiple

key functions, which together allow us to create ultracold atomic gases and use them for quantum

simulation experiments. These subsystems include, vacuum systems, atom source systems, lasers

and optics for beam forming and alignment, imaging systems and cameras, near DC magnetic

field systems, and coils/antennas for oscillating magnetic fields and a digital micromirror device
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Figure 3.2: Overview of the RbK apparatus. The apparatus consists of three levels: the table
level, the chamber level, and the upper level.
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for spatially patterning laser beams.

The laser systems include a slowing beam and repumper beam aligned along the Zeeman

slower axis, six beams to form our MOT along with repumper beams, probe beams for our imag-

ing system in the xy and xz planes, beams for our optical dipole trap, and beams to drive Raman

transitions. The arrangement of beams propagating through the experimental chamber is shown

in Fig. 3.3.

The near DC magnetic field system include three sets of coils in a Helmholtz configura-
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tion to control the three components of the bias (quantization) magnetic field, a pair coils in an

anti-Helmholtz configuration to produce gradients along the z axis, and a two sets of gradient

cancellation coils. The oscillatory magnetic field systems consist of a pair of coils above the

chamber used for RF evaporation and driving RF transitions, as well as a microwave horn for

driving transition between state in the f = 1 and f = 2 hyperfine manifolds. The details of the

magnetic field system are reported in Sec. 3.7.

3.4.1 Control System

The control and analysis system for our apparatus is organized around the labscript suite [44].

Labscript uses a modular architectures allowing many devices potentially controlled by multiple

computers to contribute to the control and analysis of each experimental shot. The operation of

the devices is synchronized by pseudoclock lines, which tell devices when to update based on

preprogrammed instructions, from the channels of a pulse generator. The command instructions

for each shot are generated from user created python scripts defining the sequence and parameters

and global variables that set the specific parameter values for each shot. Each shot corresponds

to a HDF5 file containing the instruction for all the programmed devices; as the shot is run data

gathered during the shot (such as images) are added to the file.

Our control system centers on a SpinCore PulseBlaster USB digital pulse generator

whose channels act as pseudoclock lines to control other devices. We use three NI 6733 PCI

analog output (AO) devices, two NI 6229 USB multi function output devices, and one NI 6343

USB multi function output device to provide analog and additional digital channels used to con-

trol the experiment.
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3.5 Camera Systems

The apparatus includes several cameras for use with absorption imaging. The xy ToF

camera is a Mako G-504B (CMOS sensor). We control the ToF camera position using a Zaber

T-LSR 300B translation stage. This allows us to change the camera position automatically if we

wish to change the ToF duration.

The xy in-situ camera is a Point Grey Flea FL3-FW-031M (CCD sensor). It is advanta-

geous to have an independent second camera for in situ imaging, so that we can independently

take in-situ and ToF images in the same shot. We use the capability to monitor magnetic field

drift (see Sec. 3.7.1). Both the xy ToF and xy in-situ cameras use the same imaging system,

consisting of a two-lens compound objective with effective focal length f = 83mm coupled with

an f = 500mm achromatic doublet giving a magnification of 6.

The xz camera is a Point Grey Flea FL3-FW-031M (CCD sensor). This is generally

only used for diagnostics because our scientific imaging uses the xy camera.

3.6 Laser Systems

The RbK apparatus includes multiple laser systems used to cool, trap, manipulate, and

measure our atomic systems. The details of their implementation are reported in Refs. [33–35].

We summarize them here for completeness.

The system includes three tunable-wavelength diode lasers operating near 780nm close to

the 87Rb D2 transition. The master laser is a Toptica DL Pro diode laser. It uses saturated

absorption spectroscopy [45] to lock to the f = 2 → f ′ = 2 f ′ = 3 crossover peak. It serves
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as a frequency reference for the other lasers only. The repumper laser is a Toptica DL 100

diode laser. The repumper generates beams to optically pump atoms out of f = 1 (f = 1 →

f ′ = 2) used for the slower, MOT and imaging stages. In 2021 we switched the frequency

servo from the integrated Toptica servo to an external Newport LB1005-S servo controller.

The cycling/cooling laser is a Toptica TA Pro tapered amplifier system operating close to the

f = 2 → f ′ = 3 transition. This laser generates beams for our Slower, MOT, PCG, and imaging

stages.

Our optical dipole trap lasers are an IPG YDL-10-LP Fiber Laser (conventionally called

the ODT laser) and an IPG YAR-10K-1064-LP-SF Fiber Amplifier (conventionally called

the lattice laser), both operating at 1064nm.

Our Raman beam laser is a titanium doped sapphire laser (Ti:Sapph) Coherent MBR 110

pumped by a Verdi V10, itself a diode-pumped solid-state Nd:YAG laser (the pump laser pro-

duces a 532 nm beam derived using a nonlinear crystal for frequency doubling the usual 1064

nm Nd:YAG emission line.) The Ti:Sapph is widely tunable in wavelength; for the experiments

reported here we operated it near 790nm.

At the time of writing, the lab also includes an additional Verdi V10, slated for use with

an under development sheet trap system for additional confinement in the z direction, as well as

an extra Toptica TA 100, originally purchased for use near 780nm, available for miscellaneous

uses.
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3.7 Magnetic Field Systems

Our experimental magnetic field system consists of a set of three pairs of Helmholtz-

configuration bias coils, used to produce approximately homogeneous fields along ex+ey, ex−ey

and ez. The apparatus also includes coils surrounding the Zeeman slower to generate the neces-

sary magnetic field profile as a well as a set of “reverse” coils to cancel the slower field in the

experimental chamber. The apparatus is also equipped with a set of quadrupole gradient coils

in an anti-Helmholtz configuration for use in our MOT and magnetic trapping stages as well as

Stern–Gerlach ToF imaging. The relative placement of the coils is shown in Fig. 3.4.

Each of the three sets of bias coils are controlled by a separate Kepco BOP20-20M 20 A

bipolar power supply, controlled by a home-built current servo. Current in the quadrupole coils

is driven by an Agilent 6690A 440 A unipolar power supply. The coil current is controlled by

a home-built transistor bank and servo. The slower and reverse coil currents are each driven by a

Kepco ATE6-100M 100 A unipolar power supply.

In addition to these main coils, we also have two sets of gradient cancellation coils, primar-

ily used to remove residual gradients in the system (these may arise because the bias coil pairs

are not separated by the ideal distance for a Helmholtz configuration, for example). These sets

are designed to control gradients of the form ∂Bz/∂z and ∂Bxy/∂z. These coils are not designed

to have their current ramped during the experiment, and are thus controlled by smaller Agilent

power supplies driving a constant current throughout the experimental sequence.

For RF evaporation as well as coherent manipulation, we drive RF signals through a pair

of coils above the chamber. These coils have two loops, arranged to produce a field in the ex

direction. In 2021 we upgraded the RF amplifier used for RF evaporation as well as our lattice
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Figure 3.4: Magnetic field coil arrangement. (a) Perspective. (b) Top view. Not to scale.

experiments to a Mini-Circuits LZY-22+. This upgrade resolved issues where the previous

amplifier produced a small residual current after its input signal was abruptly changed.

3.7.1 Magnetic Field Locking and Monitoring

For many of our experiments it is important to keep the bias magnetic field constant in order

to keep the detuning for RF and/or Raman transitions at the desired level (usually on resonance).

This is a challenge due to drifts in the external magnetic field caused by activity in neighboring

labs. To address this, we use a system of partial transfer imaging to evaluate the resonance

condition of our bias field before each experimental shot. In this scheme we use two microwave

pulses from |f = 1,mF = −1⟩ to |f = 2,mF = −2⟩, deliberately detuned, one with δ > 0 and

the other with δ < 0. This is a “stretched” transition, especially sensitive to changes in the

external field, since the two states experience opposite energy shits with changes in B. We
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take an image without rempump light to only measure the atoms transferred by the pulse. We

compare the number of atoms in each image; when the number is equal, the bias field is calibrated,

otherwise we must make an adjustment to the bias coil current for subsequent shots.

In principle this process could be used to generate an error signal which could be used

for automated feedback to stabilize the magnetic field. Because our workflow involves creating

large sequences of experimental shots (≈ 100), we did not implement any automated feedback

for the experiments described in this thesis. In general the external field was sufficiently stable

on the timescale of our sequences that our experiments did not require active feedback. We

monitored the detuning signal and discarded any data where the imbalance was too large, then

made adjustments between sequences throughout the day.

3.7.2 RF Signals

Several application in the lab require controllable RF signals. These include the dynamic

RF coils, the Raman signal generation (Sec. 3.8), and controls for the laser frequency servos. We

generate these signals using Novatech direct digital synthesis (DDS) synthesizers.

Because the Raman and RF drive channels are used simultaneously, it is important we have

control over the relative phase between these signals. For reasons that will be made clear in

Sec. 6.1.3 it is advantageous for us have two independent DDS channels for the RF field with a

different phases (both well defined relative to the Raman phases).

At the time when the experiments in this thesis were conducted, we used two Novatech

409-B signal generators. In our configuration each Novatech signal generator has two channels

that can be dynamically updated during the experiment and two static channels. Static channels
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have limited application, and are unsuitable for uses like RF evaporation where the frequency is

ramped, or control experiments where the RF phase is changed during the experiment. The two

Novatech devices were unsynchronized for the experiments described in this thesis, meaning the

relative phase between channels controlled by the same Novatech devices was well defined and

controllable, but the phase between channels on separate devices was not. After completion of

the experiments described here, we replaced our Novatech signal generators with models that

support an external 10MHz clock for phase synchronization across devices.

3.8 Raman Beams

Our Raman laser system consists of two counterpropagating beams (Raman-A and Raman-

C) of wavelength ≈ 790nm with frequency difference ωRF. In a single-tone Raman configuration,

one beam has frequency ω and the other ω+ωRF. In the two-tone configuration employed in many

of our experiments, each beam contains ω and ω + ωRF components. For the experiments in this

thesis ωRF = 1MHz. Both beams derive from a Coherent MBR 110 Ti:Sapphire laser pumped by

a Coherent Verdi-V10.

To achieve the desired frequency components in each beam, we pass each beam through

its respective AOM, with the first diffraction order aligned with an optical fiber to be sent to the

experiment. This arrangement is shown in Fig 3.6. Instead of working with frequency compo-

nents 0 and 1 MHz, we add an offset of 80 MHz, so both tones fit within the AOM’s performance

window, and the desired frequency component is found in the first order diffraction peak for both

beams.

For the single-tone configuration, we require an 80 MHz shift for Raman-A and 81 MHz
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for Raman-C. In the two-tone configuration both beams require an 80 MHz shift and an 81 MHz

shift. While the 80 MHz and 81 MHz tones result in slightly different diffraction patterns, in

practice, the fiber alignment can be tuned so that both components are coupled to the fiber.

We implement a network of RF hardware to create the desired frequency components,

shown in Fig. 3.5. A pair of Novatech DDS synthesizer channels produce 80 MHz and 81

MHz signals (hereafterf1 and f2). Each signal is passed through an RF power splitter, model

Mini-Circuits ZSC-2-4+, and each of the resulting four signals is sent to an RF mixer, model

Mini-Circuits ZAD-3+, allowing independent control of each amplitude by an AO channel

from our control computer. Following the mixers, one pair of frequencies f1 and f2 are combined

using a power splitter to form the RF signal for Raman A and the other pair are combined to give

Raman C. These signals could be sent directly to independent RF amplifiers to generate the AOM

drive signal for each beam. In order to lock the beam power, we implement an additional step.

The total power in each beam is controlled by a voltage controlled attenuator (VCA), model

Mini-Circuits ZX73-2500-S+. The output signal of each variable attenuator is sent through a

preamplifier and a fixed attenuator (the latter is only used to match the final amplifier’s desired

input power; in principle we could have used a preamplifier with a smaller gain, were one avail-

able). The RF signal for each beam is then passed through an RF switch, model Mini-Circuits

ZYSWA-2-50 DR, allowing for fast digital control, before amplification by a Mini-Circuits

ZHL-1-2W+ RF amplifier. The final RF signal is sent to the AOM for the A and C beams, each

containing f1 and f2 components with relative amplitude controlled by the mixers.

We label the frequency components as A1, A2, C1, and C2, with A1 and A2 both being sent

to the Raman A AOM and likewise for the C components and C AOM. The frequency components

A1 and C1 form a Raman pair and thus must be have frequency difference ωRF, as with A2 and
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C2. To optimize Raman coupling at fixed optical power, we use the same mixer voltage for the

A1/C1 pair (controlling the Raman Rabi frequency Ω1 for the corresponding transition) and a

different voltage for the A2/C2 pair (determining the Raman Rabi frequency Ω2).

To lock the power in each beam we use a Newport LB1005-S analog servo controller to

generate an error signal. The signal is generated by comparing the voltage from a photodiode

(PD) on the experiment side of the optical fiber for each Raman beam to a setpoint voltage

generated by an AO our control computer. Because the PD signal contains a 1 MHz oscillation

when operating in the two-tone configuration, we low-pass filter the PD signal. This allows us to

lock the total optical power in each Raman beam, though not the relative power in each frequency

component, compensating for drifts in the fiber coupling. In practice this means the stability of

a single-tone configuration is higher than the stability of the two-tone configuration, owing to

possible fluctuations in the relative strength of each frequency component at fixed optical power.

When using the servo, the total optical power is controlled by the servo set point, so only

the relative values of the mixer control voltages matter for the signal, not their absolute values.

We can bypass the optical power servo to operate the setup in a “manual mode” by disengaging

the servo lock function and turning the output offset to maximum. In this configuration the value

of each mixer control voltage sets the strength of the corresponding frequency component in each

beam, in practice determining Ω1 and Ω2.

On the experiment side, the beams are collimated out of fiber (the estimated 1/e2 beam

diameter based on the Thorlabs specification is 1.5 mm). Each beam is focused to the atoms

by a 300 mm singlet lens. Based on the nominal beam divergence of the collimator (0.03 deg at

790 nm), we can estimate the Rayleigh range to be 60 mm and the 1/e2 beam waist to be 300

um [46].
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Figure 3.5: Schematic of RF circuits for Raman AOM control. The four mixers receive an
analog control signal from our control computer (indicated with solid circles), and the VCA’s
each receive an analog control signal from a Newport LB1005-S servo controller (indicated
by solid circles). The output of each branch is controlled by a TTL switch allowing for fast
digital control of the AOM signal from the control computer (those channels correspond to solid
squares).
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Figure 3.6: Raman AOM setup. The labeled elements are A. Shutter, B. λ/2 plate used to control
the relative power in the A and C branches after polarizing beam splitter, C. AOMs, D. Optical
fiber launch. 60



We also implement Flea3 cameras to image each beam after passing through the chamber,

in order to identify potential drifts. In principle images from these cameras could be used when

post-selecting data to reject any shots where the one or both of the beams deviated from their

optimal position. In practice we did not find this useful for the experiments described in this

thesis.

3.9 DMDs

At time of writing the RbK apparatus includes one digital micromirror device (DMD) in

a direct imaging configuration [47] to project potentials using off-resonant light. The DMD is a

TI DLP 3000 integrated into a TI LightCrafter evaluation board. The optical setup, shown

in Fig. 3.7, begins with a fiber collimator, an angled half-wave plate acting as a pick off for a

photodiode and an f = 50mm lens directing the incoming beam to the DMD surface. After

the DMD surface, the patterned light is directed through a Keplerian telescope demagnifying the

pattern with m = −1/2, consisting of f = 100mm and f = 50mm singlet lenses. We have

determined that the singlet lenses are a significant source of spherical aberration degrading the

projection performance As of the writing of the thesis, we plan to replace the spherical signets

with achromatic doublets as soon as is reasonably practical. The system also include two irises:

one before the telescope to block unwanted diffraction orders from the DMD and the other be-

tween the lenses of the telescope, acting to control its numerical aperture (see App. B). After the

telescope, the patterned light is directed into the imaging system path where it is combined using

a dichroic mirror.
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Figure 3.7: DMD pattern projection setup. The labeled elements are A. DMD, B. iris, C. f =
100mm lens, D. iris, E. f = 50mm lens, F. dichroic mirror.
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Chapter 4: Lattices

This chapter introduces the essential physics of one-dimensional (1D) lattice systems.

We describe simple models that capture the qualitative physics of atoms confined to a one-

dimensional lattice with two subsites per unit cell. We also describe how multi-subsite lattices

map to lattice models of particles with spin. These models provide a starting point to understand

the experimental lattice system discussed in Ch. 6.

4.1 Bloch’s Theorem

Lattice systems have a discrete translational symmetry: the system is invariant under dis-

placements of multiples of the lattice constant a. The presentation here will assume a 1D lattice,

but the ideas generalize to higher dimensions. The Hamiltonian of a particle experiencing a lat-

tice potential is thus invariant under lattice constant a displacements: D̂Ĥ = Ĥ . This symmetry

means that eigenstates of the Hamiltonian can be labeled by crystal momentum q. Crystal mo-

mentum is defined in the reciprocal space of the lattice, the Brillouin zone (BZ). In our convention

the reciprocal space has periodicity 2kR and the real space lattice has periodicity λR/2 = π/kR.

This convention is chosen to match the atomic physics implementation we will introduce in Ch. 6.
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According to Bloch’s theorem [48], lattice eigenstates can be written

|ψq⟩ = eiq·r |uq⟩ . (4.1)

This leads to real space wavefunctions

ψq(r) = eiq·ruq(r). (4.2)

|uq⟩, called the Bloch state, is a unit cell periodic wavefunction. In general, |uq⟩ will also have a

band index n. The Bloch states are eigenvectors of the Bloch Hamiltonian

Ĥq = eiq·rĤe−iq·r. (4.3)

4.2 Single-Band Tight Binding Model

We first consider a simple model of a 1D lattice consisting of a single state per unit cell.

This toy model will provide a starting point from which to study richer models as well as some

useful insights about lattice systems.

The single-band tight binding model consists of a set of lattice sites with corresponding

basis states |j⟩ localized to the lattice site, with tunneling matrix elements J between nearest

neighbors. We will consider a finite system size of N lattice sites. In real space the Hamiltonian

is

Ĥ =
∑
j

(
− J |j⟩⟨j + 1|

)
+H.c.. (4.4)
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As we have seen in the previous section, the discrete translational symmetry of the lattice

means the eigenstates will be labeled by crystal momentum q, defined within the BZ so that

−kR ≤ q ≤ kR. Eigenstates of q have a Fourier series relationship with position eigenstates

labeled by j.1

|q⟩ = 1√
N

∑
j

eixjπq/kR |j⟩ (4.5)

|j⟩ = 1√
N

∑
q

e−ixjπq/kR |q⟩ (4.6)

The model is a single-band model because there is only one state at each q value, a direct conse-

quence of limiting the model to one state per lattice site. Rewriting the Hamiltonian in terms of

eigenstates of q, we find

Ĥ =
1√
N

1√
N

∑
j,q,q′

−e−ixjπq/kR |q⟩⟨q′| eixj+1πq
′/kR + H.c. (4.7)

=
1

N

∑
j,q,q′

−(e−i(q−q′)xjπ/kRe−iπq′/kR |q⟩⟨q′|+H.c.) (4.8)

=
∑
q,q′

−δq,q′(eiπq
′/kR |q⟩⟨q′|+H.c.), (4.9)

where we have used the Kronecker delta sum identity

1

N

∑
j

ei(q−q′)j/N = δq,q′

with xj = aj/N , where a is the lattice constant and qn = 2nπ/a, to evaluate the sum over j.

1In our case this is a discrete Fourier series due to the finite lattice size.
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This gives us an expression for Ĥq, which can be thought of as the diagonalized form of the

Hamiltonian.

Ĥq = −(eiπq/kR + e−iπq/kR) = −2J cos(πq/kR) (4.10)

The spectrum of our tight binding model is a single band with cosinusoidal dispersion with

bandwidth set by the tunneling strength J . Weaker tunneling strength—corresponding to a deeper

lattice potential—results in a flatter band. The band structure is shown in Fig. 4.1 (a) for J = 1.

Real lattice systems can approximate the behavior of the tight binding model when their potential

is sufficiently deep so that only nearest-neighbor tunneling is present and excitations above the

lowest band are not present.

4.3 Two-site Lattices

Next we consider lattices with two subsites per unit cell. The minimal model to understand

the physics of two-site 1D lattices is the tight-binding Rice–Mele (RM) model [49].

ĤRM =
∑
j

[
−
(
J ′ |j ↑⟩⟨j ↓|+ J |j + 1 ↑⟩⟨j ↓|

)
+ H.c. +∆(|j ↑⟩⟨j ↑| − |j ↓⟩⟨j ↓|)

]
(4.11)

This can be viewed as a generalization of Eq. 4.4 to include two sites per unit cell with separate

intercell and intracell tunneling strengths (J and J ′), as well as a relative energy offset between

the subsites given by ∆. Because the RM model only allows tunneling between nearest neighbor

subsites, it represents a bipartite lattice consisting of ↑ and ↓ sublattices, where sites in the ↑

sublattice are only coupled to sites in the ↓ sublattice and vice-versa. Because the bipartite RM

model is a common theoretical tool to understand the physics of two-subsite lattices, the term
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bipartite lattice is sometimes used to refer to two-subsite lattices without direct reference to the

sublattice definition [50].

For the special case of ∆ = 0 the RM model reduces to the Su–Schrieffer–Heeger (SSH)

model, originally developed to study electrons in polyethylene molecules [51].

ĤSSH =
∑
j

−
(
J ′ |j ↑⟩⟨j ↓|+ J |j + 1 ↑⟩⟨j ↓|

)
+ H.c. (4.12)

Which tunneling strength J or J ′ is larger defines the dimerization of the lattice. We denote

models with J > J ′ as configuration I and J ′ > J as configuration II. Note that the configuration

definitions depend on the choice of unit cell.

Eqs. 4.11 and 4.12 express the non-interacting Hamiltonian in first-quantized form and

express the site degree of freedom within each unit cell as a pseudospin-1/2 with the left subsite

labeled by ↑ and the right subsite ↓. This can be thought of as mapping the spatial subsite degree

of freedom to an internal degree of freedom possessed by each unit cell. Under this interpretation,

we can describe intercell tunneling as a site jump accompanied by a pseudospin flip and intracell

tunneling as a pseudospin flip. Tunneling between ↑ and ↓ subsites within the same unit cell flips

the pseudospin leaving j unchanged, while tunneling to an adjacent unit cell flips the pseudospin

and changes j by ±1. We will elaborate on this mapping in Sec. 4.3.1.

Just as in the single band case, the discrete translational symmetry of this model leads to

eigenstates labeled by crystal momentum, q, with each q value having two basis states to account
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for the pseudospin degree of freedom, indexed by σ = ↑, ↓.

|q, σ⟩ = 1√
N

∑
j

eixjπq/kR |j, σ⟩ (4.13)

|j, σ⟩ = 1√
N

∑
q

e−ixjπq/kR |q, σ⟩ , (4.14)

where j sums over unit cells. As before, we simply substitute these definitions to find the Hamil-

tonian’s momentum space representation:

Ĥ =

[
1

N

∑
j,q,q′

J ′e−ij(q−q′)π/kR |↑⟩⟨↓|+ Je−i(j+1)(q−q′)π/kR |↑⟩⟨↓|+H.c. (4.15)

+∆(|q, ↑⟩⟨q′, ↑| − |q, ↓⟩⟨q′, ↓|)
]

Ĥq =− J ′σ̂x − J (cos(πq/kR)σ̂x + sin(πq/kR)σ̂y) + ∆σ̂z. (4.16)

As before we used the Kronecker δ function identity to evaluate the sums over j and q′. Because

the model includes a subsite degree of freedom, we are left with a 2× 2 matrix for each q value.

The Hamiltonian has eigenvalues within each q block given by

ϵ±(q) = ±
√
J2 + J ′2 + 2JJ ′ cos q +∆2. (4.17)

Fig. 4.1 (b) shows the band structure for ∆ = 0 and different relative values of J and

J ′. When one tunneling strength dominates (either J ≫ J ′ or J ′ ≫ J), the energies become

essentially q-independent, meaning the bands are flat. In this case we say the lattice is fully

dimerized because the system essentially consists of pairs of subsites coupled to each other but
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Figure 4.1: Band structure for tight-binding models. (a) Cosinusoidal band structure of the single
band model. (b) Three cases for the SSH model: J = 10J ′ (dark green), J = 2J ′ (teal), and
J = J ′ (light green). The increased imbalance between tunneling strengths is associated with
flatter bands and a wider band gap, while with equal tunneling strengths the gap closes.
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uncoupled form the rest of the lattice.

In addition to the eigenvalues, we can study the form of the eigenstates for each q value.

Since we have expressed Ĥq in terms of Pauli operators, we can interpret its eigenstates as being

aligned along a vector h on the pseudospin Bloch sphere.

h =(J ′ + J cos q, J sin q,∆)/|ϵ| (4.18)

h =(sin θ cosϕ, sin θ sinϕ, cos θ), (4.19)

where ϕ and θ are the azimuthal and polar angles on the Bloch sphere respectively, given by

|ϵ|e−iϕ(q) = Jeiqa + J ′, (4.20)

and

θ = arctan

(√
J2 + J ′2 + 2JJ ′ cos q

∆

)
. (4.21)

Later, we will leverage this interpretation to describe pseudospin evolution under Ĥ as rotations

about the h axis. The eigenstates of Ĥ are aligned along the h axis on the Bloch sphere, allowing

us to use the familiar form [52] to write them.

u±(q) =

 cos(θ(q)/2)

± sin(θ(q)/2)e−iϕ(q)

 (4.22)

In the degenerate subsite (∆ → 0) limit the RM model reduces to the SSH model; for larger

values of ∆ the gap between the two bands increases. For the SSH case the eigenstates lie on the
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equator of the Bloch sphere:

u±(q) =
1√
2

 1

±e−iϕ(q)

 . (4.23)

The band structure is unaffected by exchanging the role of J and J ′ as captured by Eq. 4.17.

Despite this, the form of the eigenstates depends of the values of J and J ′ as determined by

ϕ(q) in Eq. 4.23, not only the degree of dimerization. In the fully dimerized limit, this means

the configuration I eigenstates wrap around the Bloch sphere with q, while the configuration

II eigenstates are q-independent, pointing along ex for all q. We will explore the topological

implications of this fact in Ch. 5.

4.3.1 Spin Mapping

For completeness, we will review how we can interpret the tight binding RM Hamiltonian

as a system with particles possessing spin, as well as the second quantized form of the Hamilto-

nian commonly used in the condensed matter literature. This section contains no new ideas; it

only clarifies the relationship between different mathematical formations of equivalent models.

First, we note that the RM model from Eq. 4.11 can be equivalently expressed in second

quantized notation:

ĤRM = −
∑
j

[(
J ′b̂†j âj + Jâ†j+1b̂j + h.c.

)
+∆(â†j âj − b̂†j b̂j)

]
, (4.24)

where the âj and b̂j operators annihilate a particle on subsite ↑ or ↓ in the jth unit cell.

Formally, it is always possible to factorize the Hilbert space for a particle in this tight

binding model into a lattice site degree of freedom and a subsite degree of freedom, which can
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be thought of as an internal pseudospin. The creation and annihilation operators can written as a

spinor ψ̂j = (ψ̂j↑, ψ̂j↓) in the |↑⟩ , |↓⟩ basis, with

âj ≡ ψ̂j↑ (4.25)

b̂j ≡ ψ̂j↓. (4.26)

Terms from the second quantized RM Hamiltonian can thus be written

b̂†j âj + H.c. = ψ̂†
j↑ψ̂j↓ + ψ̂†

j↓ψ̂j↑ (4.27)

= ψ̂†
jσ

+ψ̂j + ψ̂†
jσ

−ψ̂j (4.28)

= ψ̂†
jσxψ̂j (4.29)

â†j+1b̂j + H.c. = ψ̂†
j+1↓ψ̂j↑ + H.c. (4.30)

= ψ̂†
j+1σ

+ψ̂j + H.c. (4.31)

â†j âj − b̂†j b̂j = ψ̂†
j↑ψ̂j↑ − ψ̂†

j↓ψ̂j↓ (4.32)

= ψ̂†
jσzψ̂j. (4.33)

Under this mapping, we can interpret multi-subsite lattices as spinful lattice systems. In

the pseudospin language we can write the RM Hamiltonian as

ĤRM =
∑
j

(
J ′ψ̂†

jσxψ̂j + J(ψ̂†
j+1σ

+ψ̂j + H.c.) + ∆ψ̂†
jσzψ̂j

)
, (4.34)
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and the SSH Hamiltonian as

ĤSSH =
∑
j

(
J ′ψ̂†

jσxψ̂j + J(ψ̂†
j+1σ

+ψ̂j + H.c.)
)
. (4.35)

This explicitly shows how the RM model is equivalent to systems where spin plays a key

role, such as the Floquet system with a spin-momentum locked linear (Dirac) dispersion system

described in Ref. [53]. We will study this system experimentally using a bipartite lattice in Ch. 8.
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Chapter 5: Topology and Evolution

In this chapter, we discuss the topology of quantum systems including static systems and

dynamically evolving systems. Topology is of particular interest in condensed matter physics, be-

cause topological order [12,54] presents a paradigm to classify phases of matter distinct from and

complimentary to the conventional approach based on spontaneously broken symmetries [55].

In mathematics, topology is the study of the global properties of spaces. The topology of

a space is insensitive continuous changes to the local geometric properties of the space. Thus,

topology quantifies the connectedness of a space but not the details like the distance between

specific points. The local details can be changed by continuous deformation, but the topology

cannot. Spaces or surfaces can be classified as topologically equivalent based on quantities called

topological invariants [56]. In this chapter, we explore how these invariants arise, first in the

mathematics of surfaces, then in the structure of quantum states, and finally in the dynamics of

time-evolving Floquet systems.

5.1 Topology of Surfaces

We can gain some intuition for topology by thinking about the topology of 2D surfaces

embedded in 3D space. The local geometry of a surface is quantified by its curvature, which

can be changed by continuous deformations. The connectedness of a surface is quantified by the
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genus g, which counts the number of holes in the surface.

The local curvature of a surface M is quantified by the Gaussian curvature K, defined as

follows for a point r on M. The normal vector n for the point r defines an infinite set of planes pn

containing n. Each pn corresponds to a normal section by its intersection with M. The curvature

κp for each plane is defined by the second derivative of the normal section at r. The maximum

and minimum values of κp are the principal curvatures at r: κ1, κ2. The product of the principal

curvatures gives the Gaussian curvature: K = κ1κ2.

An example for a point on a torus with inner radius 1 and outer radius 5/4 is shown in

Fig. 5.1, along with the planes corresponding to the principal curvatures, the principal normal

sections (dashed lines), and the quadratic approximations to the normal sections (solid blue lines).

In this case the normal sections of the torus are circles, so the quadratic approximation shown

only approximately follows normal sections of the torus for points close to r = (5/4, 0, 0). For

the point shown the Gaussian curvature is K = 5/16.

We note that K can also be defined in terms of the Ricci curvature scalar: K = R/2, which

is itself defined as a contraction of the Riemann curvature tensor, defined in terms of derivatives

of the metric tensor describing M [57].

Remarkably, the local curvature, quantified by K, is connected to the global topology,

quantified by the genus, when we integrate contributions from the entire surface. This connection

is given by the Gauss–Bonnet theorem [56], which we state for the case where the surface has no

boundary:

1

2π

∫
M
KdA = 2− 2g. (5.1)
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Figure 5.1: Normal vector (black), normal sections (dashed), and principal curvatures (blue) for
the point (5/4, 0, 0) on a torus with inner radius 1 and outer radius 5/4. κ1 and κ2 have the same
sign giving a positive Gaussian curvature K = 5/16.
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5.2 Topology in quantum systems

In this section we describe how to quantify the topology of a set of quantum states, such

as the states in the band of a lattice. We introduce how the presence of nontrivial topology

ushers in edge states with interesting properties through the bulk-boundary correspondence. We

define topological invariants for quantum systems, which classify equilibrium systems and are

robust under continuous changes to the system Hamiltonian as long as no gaps close and no

symmetries are added or removed. Finally, we extend these ideas, developed to topologically

classify Hamiltonians based on their equilibrium eigenstates, by applying them to time-evolving

systems.

5.2.1 Bulk-boundary Correspondence

One of the most striking consequences of topological physics is the bulk-boundary corre-

spondence, which connects the bulk topology to the presence of dispersing states located on the

boundary (or surface) of a system [13, 14, 58]. In fermionic systems, when these features exist

in the band gap and intersect the Fermi energy, they acquire quantized, disorder resistant con-

duction properties. These features include edge states associated with the integer quantum Hall

effect (QHE) and topological insulators [12, 13], which provide applications in metrology [59]

and spintronics [60] respectively. This means that wherever we can find nontrivial topology,

there is a possibility of finding edge states at the boundary between different regions (such as the

boundary between a system with nontrivial topology and the vacuum).

For example, in the integer QHE, a large magnetic field induces a quantized Hall conduc-

tance (i.e. the ratio between the current and the perpendicular Hall voltage) [61], due to chiral

77



edge states connected to the bulk-boundary correspondence [62]. In this case the edge states can

be thought of as 1D conducting channels whose origin lies with the topology of the 2D insulat-

ing bulk (we will introduce a description of the bulk topology in Sec. 5.4.3). Similarly 2D Z2

topological insulators (TIs) feature a pair of counter propagating edge states whose origin lies in

the topology of the insulating 2D bulk [13]. The symmetry properties of these case are different,

leading to different topological classifications, as we will explore in Sec. 5.3. The topological

Floquet system we will describe in Ch. 8 has properties closely related to the conducting edge

states of a Z2 TI, although the topological character of that system derives from the time resolved

micromotion, rather than the bulk as in the TI case. The correspondence also is behind the exis-

tence of edge states in the 1D SSH model [51]. Since the boundaries of a 1D system are points,

the edge states localized and can be thought of as zero dimensional.

5.3 Symmetry and Topology

The topological invariants that characterize equilibrium gapped quantum systems depend

on the dimensionality of the system and what symmetries the system possesses [63–65].

“Ordinary” symmetries, described by unitary operators, can be used to decompose a Hamil-

tonian into decoupled sectors labeled by quantum numbers corresponding to eigenvalues of the

symmetry operator. For example the discrete translational symmetry of lattice models allows us

to write the Hamiltonian in terms of Ĥq, giving a decoupled Hamiltonian for each crystal mo-

mentum value. With “nonunitary” symmetries this is not possible. The three “nonunitary” sym-

metries of particular interest are time-reversal symmetry (TRS) corresponding to T , particle-hole

symmetry corresponding to P , and sublattice symmetry corresponding to S. T is an antiunitary
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operator that commutes with Ĥ; P is an antiunitary operator that anticommutes with Ĥ; and S

is a unitary operator that anticommutes with Ĥ . An antiunitary operator can be factorized into a

unitary operator composed with complex conjugation, so we can write our three symmetries in

terms of unitary operators. The symmetries are expressed in terms of unitary operators T , C, and

S as T̂ Ĥ∗T † = Ĥ for TRS, ĈĤ∗Ĉ† = −Ĥ for PHS, and ŜĤŜ† = −Ĥ for SS. Note that it is

possible to have T̂ T̂ ∗ = ±1 and ĈĈ∗ = ±1, with + and − corresponding to different cases (in

the case of TRS, systems with Kramer’s degeneracy [25] have −).

These three symmetries are what determines the possible set of topological invariants for

a system. Once the system has factorized into irreducible blocks, there are 10 possible ways the

irreducible blocks can transform under combinations of T , P , and S. This leads to the “ten-

fold way,” a classification of topological superconductors and topological insulators. Following

Ref. [65], these classes are tabulated in Tab. 5.1, along with the topological indices for zero,

one, and two dimensional systems. Here we assume the absence of defects, which modify the

effective dimensionality of the system [65]. A value of 0 indicates that nontrivial topology is not

possible in the given configuration. Z indicates the applicable topological invariant takes inte-

ger values, 2Z corresponds to even integers, and Z2 corresponds to integers modulo 2. Tab. 5.1

merely states the existence of topological invariants. In the following sections we will explore

how these invariants can be defined and calculated for specific cases.

5.3.1 Winding Numbers

The 1D SSH model possesses all three symmetries, with operators Ŝ = σ̂z for SS, Ĉ = σ̂z

for PHS, and T̂ = Î for TRS, putting it in class BDI. This means we expect an integer (Z)
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Symmetry class TRS PHS SS d=0 d=1 d=2

A 0 0 0 Z 0 Z
AIII 0 0 1 0 Z 0
AI + 0 0 Z 0 0

BDI + + 1 Z2 Z 0
D 0 + 0 Z2 Z2 Z

DIII - + 1 0 Z2 Z2

AII - 0 0 2Z 0 Z2

CII - - 1 0 2Z 0
C 0 - 0 0 0 2Z
CI + - 1 0 0 0

Table 5.1: Symmetry classes and topological indices for zero, one, and two dimensional systems.
0 denotes a case where the system lack a symmetry, while + and − correspond to different
symmetry operators.

topological invariant. For the SSH Hamiltonian this corresponds to a topological winding number

ν. Recall from Eq. 4.18 that Ĥq can be defined in terms of the vector h(q). The winding number

is defined as the number of times h(q) encircles the ez axis as q ranges across the BZ [14].

Configurations with J < J ′ have ν = 0 while J > J ′ gives ν = 1, corresponding to the

configurations I and II we introduced in Ch. 4.

In order to deform an SSH Hamiltonian with ν = 1 to one with ν = 0, we would need

to pass through a point in parameter space with J = J ′. Recall from Fig. 4.1 that for J =

J ′ the gap between the bands of the SSH model closes. Since the two configurations cannot

be deformed into each other without closing the band gap, the configurations are topologically

distinct, underscoring the role of ν as a topological invariant for the SSH model. Adding a finite

∆ to generalize from the SSH model to the RM model breaks SS. (In general the RM model

only possesses TRS.) When finite ∆ is allowed, it becomes possible to adiabatically transform

the ν = 0 SSH configuration to ν = 1 without closing the gap. Thus the winding number is not a

topological invariant in the absence of SS. In contrast, adding perturbations that break TRS and
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PHS while respecting SS moves the SSH model to class AIII, for which ν is still well defined.

Thus the SS specifically can be said to protect ν.

As required by Tab. 5.1, ν can take on any integer value, although the simple SSH model

only allows 0 and 1. Higher winding numbers are possible in models where matrix elements

couple longer range states (although these couplings must preserve SS). The winding number

can be used to quantify the topology of any state that includes all q in the BZ, including the

out-of-equilibrium states we study in Ch. 7.

5.4 Berry’s Phase

Another route to constructing topological invariants for quantum systems starts with the

Berry’s or geometric phase. To define the Berry’s phase, we consider a quantum state evolving

under the Hamiltonian Ĥ(n) where n is a general set of parameters for the Hamiltonian. In this

framework we want to quantify how the state space defined by the eigenbasis of Ĥ(n) changes

with changes in n. Our introduction will closely follow Ref. [66]. We consider evolution starting

from the jth eigenstate of Ĥ(n0), with all changes made adiabatically. The state evolves under

the time dependent Hamiltonian as

iℏ∂t |ψ(t)⟩ = Ĥ(n(t)) |ψ(t)⟩ . (5.2)

Because the evolution is adiabatic, the state will always be the jth eigenstate of the instantaneous

Hamiltonian Ĥ(n(t)). We will consider a cycle c in parameter space where n(T ) = n(0) at the
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end of the cycle. At time t the state can be written

|ψ(t)⟩ = exp(iϕd) exp(iϕg) |j(n(t))⟩ . (5.3)

The evolution produces two phase factors: a dynamical phase ϕd and a geometric phase ϕg. The

dynamical phase is the phase winding we expect from quantum mechanical evolution

ϕd = −1

ℏ

∫ T

0

Ej(n(t
′))dt′. (5.4)

This phase depends on the details of the evolution time and trajectory in parameter space and

is not useful for topological classification. In contrast, the geometric phase can be viewed as a

characterization of the Hamiltonian as function of its parameter space and the local geometry of

its eigenbasis. The geometric phase is written

ϕg = i

∮
c

⟨j(n)| ∇n |j(n)⟩ · dn, (5.5)

where c is the cyclic path in parameter space. Each eigenvector |j⟩ has its own Berry phase, with

corresponding index j, which we will omit for simplicity. While the Berry’s phase is often studied

in quantum systems, it is also applicable to many areas in classical physics, from pendulums [67]

to optical systems [68, 69].

Following Ref. [58], in analogy to the phase factor associated with gauge transformations

of the electromagnetic field in quantum mechanics, and assuming three parameters, we define the

Berry connection

A = −i ⟨j(n)| ∇n |j(n)⟩ , (5.6)
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and curvature

F = ∇n ×A. (5.7)

The connection and curvature are defined so that the Berry’s phase can be calculated as a line

integral of A or a surface integral of F in parameter space:

ϕg(c) =

∮
c

A · dl (5.8)

ϕg(c) =

∫
S

F · dS (5.9)

where S is the region of parameter space bounded by the curve c. The connection between line

integrals of A and surface integrals of F is given by Stokes theorem, in direct analogy with the

vector potential and magnetic field from electromagnetism. The Berry’s phase is connected to

the global phase freedom of the wavefunction. Under a gauge transformation, the Bloch states

transform as

|u(q)⟩ → eiφ(q) |u(q)⟩ . (5.10)

Likewise the Berry connection transforms as

A → A+∇qφ(q). (5.11)

In contrast, the Berry curvature is gauge invariant.

For a spin- (or pseudospin-)1/2 particle, where the state space corresponds to the Bloch

sphere, the Berry’s phase is proportional to the area on the Bloch sphere (or solid angle) traced

by a cyclic trajectory in parameter space [66].
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Just as the local geometry (curvature) of a surface can be integrated to quantify its topology,

the Berry’s phase can be used to define topological invariants for quantum systems. The Berry’s

phase concept underlies the Zak phase in 1D lattice systems and the Chern number in 2D lattice

systems.

5.4.1 Zak Phase

The state space of particles in a lattice in reciprocal space is the Brillouin Zone (BZ) as

introduced in Ch. 4. In 1D, the BZ is a circle from −kR to kR, so we can use the Berry phase

acquired along a cyclic trajectory across the BZ as a topological classification:

ϕZ = i

∫
BZ

dq ⟨ψ(q)| ∂q |ψ(q)⟩ . (5.12)

This concept was first developed by Zak [70] and is connected to the average particle position

within the unit cell (i.e. the polarization when the particles are charged) and is useful for studying

ferroelectricity [58, 71].

In the presence of sublattice symmetry, as in the case of the SSH model, the Zak phase is

equivalent to the winding number, and they are related by

ν =
ϕZ

π
. (5.13)

As with the winding number, SS is required for the Zak phase to be a topological invariant.
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5.4.2 Gauge Ambiguity

As we noted when introducing the SSH model (Sec. 4.3), the role of J and J ′ depends on

the choice of unit cell. Thus which models correspond to configurations I and II, with ν = 1

and ν = 0, depends on the labeling of unit cells. Unit cell dependence of nontrivial topology

is a commonly accepted feature in topological models, though it is not always present (see for

example Ref. [72]). This ambiguity is connected to the gauge freedom of the Berry’s phase from

the previous section, which extends to the Zak phase. A change in the unit cell can be viewed as

a reciprocal-space gauge transformations that results in a change in the Zak phase and winding

number [73].

Consider changing the unit cell to reverse the roles of J and J ′. This change essentially flips

the dimerization, causing states with a Zak phase of π to have a new phase of 0 and vice-versa.

These two cases are related by a crystal momentum dependant unitary transformation

Ûq =

1 0

0 e−iqπ/kR

 . (5.14)

We can see how this operator changes the dimerization by applying it to the momentum space

Hamiltonian, which in matrix form is

Ĥq =

 0 −(e−iqπ/kRJ ′ + J)

−(eiqπ/kRJ ′ + J) 0

 . (5.15)
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The transformed Hamiltonian is

ÛqĤqÛ
†
q =

 0 −eiqπ/kR
(
J ′ + Je−iqπ/kR

)
−e−iqπ/kR

(
J ′ + Jeiqπ/kR

)
0

 (5.16)

=

 0 −(eiqπ/kRJ ′ + J)

−(e−iqπ/kRJ ′ + J) 0

 . (5.17)

Moving the unit cell by half the lattice constant also flips the role of ↑ and ↓, exchanging the

off diagonal matrix elements to give the original momentum space Hamiltonian with J and J ′

switched.

The Bloch sphere based on the new unit cell is different the one for the original model. Ûq

rotates the Bloch sphere about the ez axis by a different amount for each q, so that a set of states

that previously wrapped around the equator with q (giving ϕZ = π) have a fixed position on the

new Bloch sphere (giving ϕZ = 0), thus changing the winding number of the trajectory given

by the set of states. This example is illustrated in Fig. 5.2, where the untransformed states wrap

around the equator, giving ϕZ = π, while the transformed states uniformly point to ex, giving

ϕZ = 0.

More generally, it is possible to redefine the position of the ↑ and ↓ lattice sites within the

unit cell to ja+δ↑ and ja+δ↓ via a gauge transformation [73]. This choice is related to our usual

picture by the unitary

Ûq =

eiqδ↑ 0

0 eiqδ↓

 . (5.18)

Correspondingly, the eigenstates of Ĥq are modified with the azimuthal Bloch sphere angle
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Figure 5.2: Illustration of crystal momentum dependent gauge transformation. Before the trans-
formation states from q = −kR to q = kR trace the equator (left). After the transformation
(right), they uniformly point to ex. Dotted lines indicate the rotation for different q values.

changing as ϕ(q) → ϕ(q) + q(δ↑ − δ↓) and the Zak phase is changed by π(δ↑ − δ↓)/a. This is

related to the approach of Ref. [74], which ascribes a displacement of a/2 to inter- and intra-cell

tunneling processes rather than treating the pseudospin as an internal degree of freedom, resulting

in the Zak phase for the SSH bands being ±π/2 for configurations with opposite dimerization.

Due to the gauge dependence of ϕZ, its absolute value generally does not have physical

consequences. Differences in ϕZ do have physical consequences and will have the same value

regardless of gauge or unit cell choice. In Sec. 6.2 we will introduce a technique that allows us to

measure the full pseudospin state, and thus calculate ϕZ, by introducing a secondary lattice. This

will allow us to avoid the unit cell ambiguity, essential giving measured quantities relative to the

unit cell defined by the secondary lattice.

5.4.3 Chern Number

Chern numbers provide a topological classification of 2D insulators, capturing the topology

of the integer quantum Hall effect. In a pioneering work, Thouless, Kohomoto, Nightingale, and
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den Nijs first explained the quantized conductance in the integer QHE in terms of a topological

invariant [12]. The TKNN invariant was later shown by Simon to be connected to the Berry’s

phase and the Chern class, a topological invariant from the mathematics of fiber bundles [75].

The Chern number does not rely on the presence of symmetry and corresponds to the Z

invariant for Class A, d = 2 in Tab. 5.1. As suggested by its connection to the QHE, where a

large magnetic field breaks TRS, an overall nonzero Chern number requires TRS to be broken.

The Chern number is defined in terms of the Berry curvature integrated over reciprocal

space. The reciprocal space of a 2D lattice forms a torus, with qx and qy defining the 2D parameter

space. We can interpret the Berry curvature as a flux going through the area elements of this

reciprocal space.

F(qx, qy) = F(qx, qy) · dS(qx,qy) =
∂Ax

∂qy
− ∂Ay

∂qx
(5.19)

The Chern number is defined by integrating the flux of the Berry curvature.

cn =
1

2π

∫∫
BZ

F(qx, qy)dqxdqy (5.20)

For discretely sampled systems Ref. [76] provides a robust approach to calculating Chern

numbers that enforces the integer requirement. Thus noise or experimental imperfections will not

result in a noninteger Chern number, even when a naive calculation with Eq. 5.20 would. In this

framework we define a set of link variables describing how the q-space wavefunction changes

between points on the discretely sampled BZ, which acts as a q-space lattice. For simplicity,

we will assume the 2D BZ discretely sampled at intervals of ∆, although this constraint can be
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relaxed. The link variables are defined

Ux(qx, qy) = ⟨j(qx, qy)|j(qx +∆, qy)⟩ /| ⟨j(qx, qy)|j(qx +∆, qy)⟩ |. (5.21)

The Ux(qx, qy) link variable is the normalized overlap between the state at (qx, qy) and the state

on the next lattice site in the x direction. Uy(qx, qy) is similarly defined for the state at the next

site in the y direction.

The link variables define the discretely sampled Berry connection and curvature.

Ax(qx, qy) =
1

i
lnUx(qx, qy), (5.22)

and

F(qx, qy) =
1

i
lnUx(qx, qy)Uy(qx +∆, qy)Ux(qx, qy +∆)−1Uy(qx, qy)

−1, (5.23)

where both quantities are defined on the branch of the logarithm giving Ax(qx, qy), F(qx, qy)

within [−π, π). Formally, F is defined at each discrete BZ point, but it should be thought of as

corresponding to a plaquette, as shown in Fig. 5.3

The Chern number can be calculated by summing the Berry curvature over the BZ:

cn =
1

2π

∑
BZ

F(qx, qy). (5.24)

This method produces equivalent results to the continuum definition (Eq. 5.20), but always yields

an integer, meaning errors and noise will not alter the result unless they are large enough to

overwhelm the signal [76]. This property relies on the periodicity of wavefunctions in the BZ.
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Figure 5.3: Calculating Chern numbers in a discretely sampled BZ. The Berry curvature F(qx, qy)
plays the role of a flux per plaquette in the lattice formed by the discretely sampled BZ.

5.5 Topological Dynamics

We introduced topology describing the properties of a set of quantum states, particularly

the (equilibrium) eigenstates of a Hamiltonian. This is just the beginning for us; next we ex-

plore how we can use topology to understand the dynamics of a time-evolving quantum system.

This includes scenarios when the static topological invariants, such as the Zak phase and wind-

ing number, change under quantum evolution, explored experimentally in Ch. 7. Additionally

we study scenarios where a topological invariant can be defined over the dynamics themselves,

explored experimentally in Ch. 8.

5.5.1 Topological Charge Pumps

In addition to the Quantum Hall effect, Thouless provided an paradigmatic example of

topological physics with a description of adiabatic charge pumping in a 1D driven system [12].
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This system consists of a time modulated 1D lattice with a filled lower band. Fig. 5.4 (a) shows

a cartoon of how periodic lattice modulation can lead to a displacement of one unit cell per pe-

riod. Bipartite lattices are a common choice for studying charge pumping. Fig. 5.4 (b) shows

schematically how the bipartite lattice potential can be cyclically changed to give a net displace-

ment per cycle. We can understand this type of charge pumping with a time dependent RM model

(Eq. 4.11) with periodically modulated J(t) = J(t+T ), J ′(t) = J ′(t+T ), and ∆(t) = ∆(t+T ).

In parameter space, in terms of ∆ and J−J ′ (Fig. 5.4 (c)) the number of times the cyclic trajectory

encircles the origin gives the net charge pumped per cycle [77, 78].

We can calculate the charge moved by the system by using the connection between the

Zak phase and the instantaneous polarization, with the flow of charge given by the change in

polarization over the cycle.

∆p =
1

2π

(∮
BZ

dq ⟨ψ(t = 0, q)| ∂q |ψ(t = 0, q)⟩ −
∮
BZ

dq ⟨ψ(t = T, q)| ∂q |ψ(t = T, q)⟩
)
,

(5.25)

where p is the dimensionless polarization, proportional to the electrostatic polarization by the

charge e when the pumped particles are electrons. The line integrals are taken in opposite direc-

tion along the BZ as shown in Fig 5.4 (d). We can apply Stokes theorem to turn the line integral

into an integral of the Berry curvature, making the pumped charge equal to the Chern number for

the space spanned by q and t [12, 58].

∆p = cn =
1

2π

∫
BZ

∫ T

0

F(t, q)dqdt (5.26)

This nicely shows the topological origin of the charge pump as well as the quantization of
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Figure 5.4: Charge pumping schematic. (a) Conceptual sketch of Thouless pumping. A periodi-
cally modulated lattice potential leads to a nonzero displacement per cycle, here one lattice site.
(b) Example of charge pumping in a bipartite lattice. (c) Cyclic pumping trajectory in parameter
space for the RM model. Trajectories that encircle the origin result in topological charge pump-
ing. (d) Parameter space for Thouless pumping. The Chern number characterizing a topological
charge pump is defined over the periodic q, t space. The quantized charge pumped per cycle is
given by integrating the Berry curvature in the cross-hatched region.
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the charge pumped per cycle, given by cn. This is a special case of the much broader topological

classification of Floquet systems we will explore in Sec. 5.5.2.

These ideas have been brought into the lab in several ultracold atom experiments [50, 78–

80], using both fermions and bosons. Since the topological charge pump requires a filled band, in

the bosonic case if the BEC wavefunction is localized around a single q value, the pumping can

be thought of as “geometrical” charge pumping, with the particle transport depending on the local

geometry of the band structure, rather than its global topology. Recently theorist have sought to

generalize the usual adiabatic pumping to high frequency topological pumps [81, 82].

5.5.2 Floquet Winding Numbers

The insight that dynamics themselves can have topology was greatly extended by Kitagawa

et. al. in Ref. [83] to classify the topology of Floquet quantum systems, creating a general

topological classification based on the dynamics of the system. To understand this classification,

we must introduce the preliminaries of Floquet theory.

Particles experiencing a periodically time varying Hamiltonian, with Ĥ(t) = Ĥ(t + T ),

can be described in terms of Floquet modes |ψν(t)⟩ = exp{(−iϵνt/ℏ)}|υν(t)⟩, where |υν(t)⟩ =

|υν(t + T )⟩ has the time periodicity of the Hamiltonian and ϵν is the quasienergy of the Floquet

mode, defined modulo 2πℏ/T . The mathematics of Floquet theory are directly analogous to

Bloch’s theorem, applicable when the potential is periodic in space as introduced in Sec. 4.1.

The stroboscopic dynamics (observed periodically at intervals of T ) of a Floquet system can

be described by a time independent Hamiltonian ĤF whose eigenvalues are the quasienergies

ϵν . The stroboscopic evolution of a lattice Floquet system is thus described by Bloch–Floquet
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eigenstates defined in the Floquet–Brillouin zone.

The evolution over a Floquet period is given by a time ordered exponential

Û(t0, t0 + T ) = T exp

[∫ t0+T

t0

− i

ℏ
Ĥ(t′)dt′

]
. (5.27)

Note that the specific form of the operator depends on the choice of initial time t0. Physically

this means that the stroboscopic behavior depends on the choice of time when the stroboscopic

observations are made. For simplicity we will take t0 = 0. Numerically the time evolution can be

calculated by treating Ĥ(t) as constant over the interval δt, to give the unitary evolution operator

from t to t+ δt, then taking the matrix product of the corresponding unitaries.

The Floquet topological invariants (winding numbers) classify the Floquet time evolution

operator Û(T ). Static topological systems have trivial Floquet topology, and Floquet systems

can have nontrivial Floquet topology even in the absence of static/conventional topology. This

clarifies the distinction between systems where Floquet engineering is used to achieve nontriv-

ial static topology, such as the first proposed Floquet topological insulators [84] and cases like

charge pumping where the nontrivial topology derives from the evolution itself. This topological

classification is not specific to lattice (Floquet–Bloch) systems, but as we are focused on lattices,

we will specify our discussion to Floquet–Bloch systems.

The winding number is related to the quasienergy spectrum, and to the micromotion within

each Floquet period [83,85]. For a Floquet–Bloch system the first winding number can be written

ν =
1

2π

∑
α

∫
BZ

dεα(q)

dq
Tdq (5.28)
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Figure 5.5: Example Floquet–Bloch band structure. One band contributes 0 to the sum in
Eq. 5.28, while the other contributes 1. Note that the highlighted points at the band edge are
connected due to the periodicity of the Floquet–BZ.

where α indexes the quasienergy bands. Fig. 5.5 show two example bands contributing 0 and

1 to the sum defining the Floquet winding number. The periodicity of the Floquet–BZ allows

continuous bands to span the quasienergy coordinate, making ν > 0 possible for a continuous

band. This is not possible in static systems with well behaved lattice potentials, where bands are

continuous across the edge of the BZ.

When symmetry allows us to separate the state space into decoupled sectors (as will be the

case in Sec. 8.3) we can define individual winding numbers for the sectors.

νσ =
1

2π

∫
BZ

dεσ(q)

dq
Tdq (5.29)

where σ labels the sector. In Ch. 8 we will introduce a Floquet system where nontrivial topology,

characterized by Floquet winding numbers gives rise to linear dispersion across the BZ.

Ref. [83] generalizes this understanding to higher order winding numbers for higher di-
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mensional system, but we will focus on ν. ν can be applied to topological charge pumps with

the modification that the sum in Eq. 5.28 only ranges over the filled bands [83]. In this case the

quasienergy winding number is equivalent to the q, t Chern number defined over the micromotion

in Eq. 5.26, discussed in Sec. 5.5.1.

Floquet topology underlies the idea of “anomalous” Floquet topological insulators which

have nontrivial topology described by the winding number only in contrast to the first proposed

Floquet topological insulators [84], which use Floquet modulation to achieve conventional (static)

topology. These are systems inspired by a proposal from Kitagawa et. al. [83] for a 2D system

in a modulated hexagonal lattice with chiral edge modes characterized by ν. These ideas have

been realized in photonic systems [86, 87] as well as ultracold atoms [88]. The latter experiment

measured the underlying winding number using a clever simplification [89] rather than a full

characterization of the micromotion or quasienergy spectrum.
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Chapter 6: State Dependent Raman Lattice

In this chapter we introduce the experimental details of our state dependent lattice systems,

describing the tools we use in the lab to realize the theory models we introduced in Ch. 4. Our

implementation uses a combination of RF and Raman dressing fields to produce a highly tun-

able and measurable two-subsite lattice, which closely matches the bipartite Rice–Mele (RM)

lattice model for appropriate parameters. We introduce a measurement technique that allows us

to measure the population in each sublattice, which we extend using quantum state tomography to

fully characterize the quantum state of the sublattice pseudospin degree of freedom. We describe

the theory of our system, including its band structure, then present experimental data showing

the pseudospin makeup of the ground bands in different configurations as well as the displace-

ment over a tunneling oscillation between subsites. This chapter includes results published in

Refs. [90] and [91] in Secs. 6.4.2 and 6.5 respectively.

6.1 Raman Bipartite Lattice

Our experimental two-site lattice system consists of two optical Raman fields and one RF

magnetic field all driving transitions between the internal states |f = 1,mF = 0,±1⟩ of our

BECs, as shown in Fig. 6.1. This builds on work described in Ref. [50] as well as a related case

with single-tone Raman fields from Refs. [33, 92]. The three hyperfine states are separated by
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Figure 6.1: Schematic of combined Raman-RF driving. (a) Experimental geometry. Two counter-
propagating laser beams each carry two frequency components to drive Raman transitions. (b)
Level diagram showing Raman and RF transitions within the f = 1 manifold.
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Zeeman frequency ωZ ≈ 1 MHz, induced by an external magnetic field of ≈ 0.1mT along z. Our

control fields consist of an RF magnetic field with frequency ωRF and two pairs of cross-polarized

laser fields each with frequency components ω0 and ωRF in order to drive Raman transitions.

The RF field couples hyperfine states with the same momentum (|k,mF ⟩ ↔ |k,mF ± 1⟩), with

strength ΩRF. The two pairs of Raman fields couple hyperfine states with different momentum

(|k,mF ⟩ ↔ |k ± 2kR,mF ± 1⟩) with strengths Ω+ and Ω−. We used 790.03(2)nm (close to

the “magic” or tune-out wavelength [93]) for the Raman laser beams in order to cancel the state

independent scalar light shift from the D1 and D2 transitions; this choice also gives close to the

minimum spontaneous emission rate for a given Raman coupling.

Following our discussion in Sec. 2.4 the interaction between the atoms and the fields can

be expressed as a fictitious magnetic field [23, 94] interacting with the total atomic angular mo-

mentum operator F̂:

Hint=Ω(x̂)·F̂. (6.1)

The fictitious magnetic field

Ω(x̂) = [ΩRF cos(ϕRF) + Ω̄ cos(2kRx̂),−ΩRF sin(ϕRF)− δΩ sin(2kRx̂),
√
2δ]/

√
2 (6.2)

includes terms originating from the detuning δ = ωZ − ωrf ; the RF Rabi frequency ΩRF; the

relative phase ϕRF between the RF and Raman fields; and Raman parameters Ω̄ = Ω+ + Ω− and

δΩ = Ω+ − Ω−, which derive from Ω± [50, 91]. This follows from Eqs. 2.40 and 2.42 for the

specific form of our two-tone laser fields with the addition of an RF magnetic field.

The spatial components of the field Ω(x̂) trace an ellipse as x ranges from 0 to λR/2, which
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Figure 6.2: Ellipse showing Ω(x̂) for Ω+ = 12.7, Ω− = 5.7 and ΩRF = 4.2 for ϕRF = 0 (a) and
−π/2 (b). In both cases the ellipse lies in the x− y plane because δ = 0

.

defines our unit cell. The ez component is entirely controlled by δ, which we will take to be small

compared to the other terms. The major and minor axes of the ellipse are set by Ω̄ and δΩ, while

the center is set by ΩRF. This ellipse is plotted in Fig. 6.2 for two representative configurations

with different values of ϕRF. Conceptually, the vertices correspond to the potential minima of the

lattice, so the major axis length, set by Ω̄, along with the ex components of ΩRF determines the

depth of the potential minima. The covertices approximately correspond to the potential maxima,

so the barrier height is set by Ω̄ and the ey components of ΩRF. This picture gives some intuition

for the tunability of the resulting lattice system. By selecting ϕRF, we can select between a lattice

with a large energy offset between its subsites as in (a), or a lattice with an imbalance between

the two barrier heights as in (b).

Adiabatic (Born–Oppenheimer) potentials for the setup are shown in Fig. 6.3 for represen-
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tative parameter values and different values of ϕRF. As we can see from the adiabatic potentials,

the system produces a two-site lattice whose barrier heights and sublattice energy splitting can

be controlled by the RF and Raman parameters. Additionally the internal state depends on the

position in the lattice, with ⟨F̂x⟩ = ±1 corresponding to the two subsite minima within each

unit cell. This system can be well approximated by the Rice–Mele (RM) model, characterized

by nearest-neighbor tunneling strengths J , J ′, and energy offset ∆, as long as the lattice is deep

enough that we can neglect next-nearest-neighbor tunneling. This condition effectively makes

our system a bipartite lattice.

The Raman lattice also has a full spectrum of higher bands, included unbound bands, which

are not present in the RM model. In our experiments, we tried to limit any population in higher

bands, and used temporal filtering on our data to reduce the contribution from any higher band

population, which is associated with higher frequency components.

We tune the parameters of the lattice using ϕRF, controlling both the energy splitting ∆

and the imbalance between J and J ′. In practice we are most interested in the limiting cases

of a balanced lattice with J ≫ J ′ (configuration I) or J ′ ≫ J (configuration II); or a tilted

lattice with large ∆ and J ≈ J ′. A relatively strong RF coupling makes each case possible for

the appropriate value of ϕRF. We use intermediate cases for our pseudospin readout protocol

(described in Sec. 6.2). The coupling strength ΩRF controlls the magnitude of ∆ or the imbalance

between J and J ′, depending on the value of ϕRF. We select the values of Ω+ and Ω− to produce

a deep lattice with negligible next-nearest-neighbor tunneling and a value of ΩRF large enough to

produce a highly dimerized system when desired.
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Figure 6.3: Adiabatic potentials for combined Raman-RF lattice for Ω+ = 12.7ER, Ω− =
5.7ER, ΩRF = 4.2ER. The four cases shown have ϕRF = −π/2, π/2, π, and 0. The central
unit cell is shaded in gray.
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6.1.1 Raman Lattice Band Structure

To calculate the band structure of the lattice, we write the Hamiltonian for the system in

momentum space, using a basis of

{|q + 2NkR,mF = 1⟩ , |q + 2NkR,mF = 0⟩ , |q + 2NkR,mF = −1⟩},

where N formally ranges from −∞ to +∞; for calculations, we truncate the basis at ±Nmax,

restricting our model to the lowest 3(2Nmax+1) bands. The RF field appears as a matrix element

between hyperfine states with the same momentum (|q + 2NkR,mF ⟩ ↔ |q + 2NkR,mF ± 1⟩),

proportional to ΩRF. The two pairs of Raman fields provide matrix element coupling between hy-

perfine states with momentum differing by 2kR (|q + 2NkR,mF ⟩ ↔ |q + 2NkR ± 2kR,mF ± 1⟩)

proportional to Ω+ and Ω−. We combine these terms, along with the kinetic energy and quadratic

Zeeman energy to write the momentum space Hamiltonian in matrix form.

Ĥ =



. . . RA

RA† (KE(−1) +RF) RA

RA† (KE(0) +RF) RA

RA† (KE(+1) + RF) RA

RA† . . .


(6.3)

Where the three submatrices are

KE(N) = ℏ2(q − 2NkR)
2/2m⊗ 1, (6.4)
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corresponding to the kinetic energy with 1 being the identify matrix on the internal angular mo-

mentum subspace;

RF =


δ ΩRFexp(−iϕRF)/2 0

ΩRFexp(iϕRF)/2 −eq ΩRFexp(−iϕRF)/2

0 ΩRFexp(iϕRF)/2 −δ

 , (6.5)

corresponding to the RF coupling along with the detuning from RF/Raman resonance δ and the

quadratic Zeeman shift (given by −eq); and

RA =


0 Ω+/2 0

Ω−/2 0 Ω+/2

0 Ω−/2 0

 , (6.6)

corresponding to the two-tone Raman coupling.

Fig. 6.4 shows the band structure (calculated from the eigenvalues of Eq. 6.3) for the full

model for two configurations, one with a large subsite energy offset and one with equal subsite

energies. For the configuration in (a) the large sublattice energy offset results in the two lowest

bands being composed of states localized to different sublattice sites, giving them significantly

different magnetization. The lowest band is almost entirely composed of the |↓⟩ states with

⟨F̂x⟩ = −1, while the next band consists almost entirely the |↑⟩ states with ⟨F̂x⟩ = +1, giving

them nearly pure magnetization. In contrast, the case shown in (b) has balanced sublattice sites,

resulting in equal sublattice populations for the band states (as predicted in Eq. 4.23), giving

⟨F̂x⟩ = 0. The flatness of the bands indicates that our system will work well to approximate
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Figure 6.4: Band structure of Raman lattice in two configurations. (a) Imbalanced (large ∆)
configuration. (b) Balanced (SSH) configuration. (c) Zoom on lowest two bands from (b) and
comparison to SHH model with J = −0.34ER, J

′ − 0.0032ER (dashed black curves).
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a highly dimerized RM model, as shown by the fit to the RM band structure in (c). The large

separation between the lowest band (in the case of (a)) or doublet of bands (in the case of (b))

indicates that higher bands in our system will not inhibit our system from approximating the RM

model (in large ∆ cases the separation will only be valid for states occupying the lowest band).

6.1.2 Lattice Calibration

In order to determine the parameters of our lattice, we employ pulsing experiments starting

from a well defined initial state: a BEC at rest corresponding to |k = 0⟩ with initial internal

state |f = 1,mF = 0⟩ (other internal states could be used, but we selected |f = 1,mF = 0⟩ for

reasons of symmetry). By abruptly turning on the lattice, we observe transitions into higher

momentum states along with changes to the internal state. This evolution is described by the

momentum space Hamiltonian in Eq. 6.3.

The RF signals used to generate the frequency shifted Raman laser fields as well as the RF

magnetic field are generated by phase coherent channels from the same Novatech DDS synthe-

sizer, equipped with four phase-synchronous outputs (see Sec. 3.7.2). The relative phase of the

fields experienced by the atoms depends on the path each signal takes as it is amplified and, in

the case of the Raman signals, imprinted on the laser beams. Thus the relative phase at the atoms

must be calibrated, so that the control phase can be set to yield the desired value of ϕRF.

The pulsed lattice time evolution could be used to fit to a model for all the RF and Raman

parameters, including ϕRF. In practice it is best to calibrate the RF and Raman components

separately, using the combined evolution to calibrate ϕRF only. An example of pulse data with a

fit is shown in Fig. 6.5, where we simplify the data by summing over k states, only showing the
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Figure 6.5: Lattice pulsing experiment for calibration. To simplify the evolution, we sum the
population in different k states, showing the internal state summed over k. The theory curves are
a fit to ϕRF with Ω+ = 12.7ER,Ω− = 5.6ER,ΩRF = 4.5ER, yielding ϕRF = 0.22π.

internal state.

6.1.3 Measurement

Measurement of the pseudospin degree of freedom requires measuring the relative pop-

ulation within the ↑ and ↓ sublattices. This could in principle be achieved with sublattice site

resolution imaging [95], but we take a less direct approach leveraging the state dependence of

our lattice. The subsite populations are highly correlated with the internal atomic state, specif-

ically the angular momentum, which we can measure using Stern–Gerlach time-of-flight (SG

ToF) imaging as introduced in Sec. 2.5.2.

As shown in Fig. 6.3, ↑ and ↓ sites are highly polarized, with ⟨F̂x⟩ ≈ ±1, corresponding
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to atomic states |mx = ±1⟩. Our default readout sequence begins by abruptly removing the

coupling fields and applying an RF pulse to map eigenstates of F̂x to the standard F̂z measurement

basis. During the following ToF the SG effect separates the hyperfine states, ultimately yielding

the momentum distribution of the |↑, ↓⟩ pseudospin states. Summing the populations separated

by 2kR yields the pseudospin resolved crystal momentum distribution, from which we can obtain

⟨σ̂z(q)⟩ for the pseudospin. We discuss how to extend this protocol to other pseudospin bases in

Sec. 6.2.

6.1.4 Comparison to Bichromatic Method

Another natural approach to producing two-site lattices uses the scalar light shift from two

phase-coherent laser beams of wavelength λ and λ/2 [73, 74]. As with garden variety single

component optical lattices, the optical field results from the interference between forward-going

and retro-reflected beams giving a standing wave intensity pattern ∝ cos2. Both the λ and λ/2

lattices can be considered far detuned (although one may be blue detuned with the other red

detuned) and produce a state independent potential via the scalar light shift. The combined lattice

potential for the bichromatic configuration is

V (x) = Vs cos
2(kRx/2) + Vl cos

2(kRx+ ϕl), (6.7)

where kR = 2π/λ is defined in terms of the long period lattice. For a deep lattice the lowest

bands of the bichromatic configuration can closely match the properties of the SSH model, as

show in Fig. 6.6.

Like our Raman-RF lattice, this approach allows the relative barrier heights and tunneling
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Figure 6.6: Bichromatic optical lattice. (a) Optical lattice potential with Vs = −20ER and Vl =
−5ER in a balanced configuration. (b) Lowest bands. Green solid curves show the numerically
calculated band structure for the bichromatic lattice, while black dashed curves show a closely
matching SSH model band structure.

strengths to be tuned, in this case with the relative phase between the two optical standing waves.

Because this approach involves different wavelengths an additional phase shift can be introduced

by changes in air pressure due to the differential index of refraction between the two wavelengths.

This approach lacks the versatile measurability of our system, but techniques have been

developed to measure the sublattice populations in general two-site lattices [96, 97].

6.2 Pseudospin Rotations

We use the tunability of our bipartite optical lattice to implement a form of quantum state

tomography, allowing us to characterize the full quantum state of the pseudospin degree of free-
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dom for each q value. Our standard readout protocol to measure the ⟨F̂x⟩ component of atomic

angular momentum is a measurement of subsite pseudospin degree of freedom in the |↑⟩ , |↓⟩

basis (yielding ⟨σ̂z⟩). To measure other components of the pseudospin, ⟨σ̂x⟩ and ⟨σ̂y⟩, we must

apply evolution equivalent to a rotation on the pseudospin Bloch sphere, from the ex or ey axis

to the ez axis.

By allowing our system to evolve under a set of carefully chosen secondary lattices, we

apply a q-independent pseudospin rotation, allowing us to measure the subsite degree of freedom

in three linearly independent bases (⟨σ̂(q)⟩). Together, these three measurements allow us to

reconstruct full the quantum state via quantum state tomography.

6.2.1 Quantum State Tomography on a Subsystem

Quantum state tomography is a method of reconstructing the full quantum state of a sys-

tem from multiple measurements on similarly prepared systems. In the simplest case of a two-

state system, tomography can be achieved by measurements in the eigenbases of the familiar

(σ̂x, σ̂y, σ̂z) Pauli operators, with each expectation value specifying a component of the Bloch

vector b = (⟨σ̂x⟩ , ⟨σ̂y⟩ , ⟨σ̂z⟩), although expectations values of any set of three linearly indepen-

dent operators can be used to reconstruct b [98]. In this simple case, the state can be reconstructed

as

ρ̂ =
1

2
(I + ⟨σ̂x⟩ σ̂x + ⟨σ̂y⟩ σ̂y + ⟨σ̂z⟩ σ̂z) . (6.8)

These measurements can be constructed by performing a unitary transformation then measuring

in a fixed basis (normally σ̂z by convention). The effective measurement basis after applying the
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unitary Û and measuring in the σ̂z basis corresponds to the operator Û †σ̂zÛ :

⟨σ̂z⟩Û ρ̂0Û† = Tr
(
Û ρ̂0Û

†σ̂z
)

(6.9)

= Tr
(
ρ̂0Û

†σ̂zÛ
)

(6.10)

=
〈
Û †σ̂zÛ

〉
ρ̂0

(6.11)

where we used the cyclic property of the trace in the second equality.

In our lattice systems we perform tomography on a single degree of freedom—the pseu-

dospin. This is possible if our pre-measurement unitary transformations are q-independent,

meaning they rotate the pseudospin state equivalently for all q and leave q unchanged. Because

we combine the pseudospin measurements with momentum-resolved time-of-flight imaging, our

measurements independently give the pseudospin state for all q values present in the system.

Unitary evolution under our lattice Hamiltonian corresponds to a pseudospin rotation about

an axis determined by J, J ′, and ∆, as discussed in the context of Eq. 4.18. In general this axis is

q-dependent, except when J = 0. Using configurations with J ′ ≫ J , allows us to approximate

q-independent evolution. By setting ∆ = 0 and allowing evolution for a calibrated time we can

achieve a rotation about the ex axis, allowing us to rotate σ̂y eigenstates to σ̂z eigenstates via a

π/2 rotation. Unfortunately, our system does not allow for ey axis rotations; however, we can

circumvent this limitation with a different lattice configuration. We use a J ′ = ∆ configuration

to generate rotation about an axis between ex and ez. Rotating about this axis by π transforms

σ̂x eigenstates to σ̂z eigenstates. Data from our experimental realizations of the readout evolution

are shown in Fig. 6.7 along with the corresponding trajectory on the pseudospin Bloch sphere.

In principle we could also achieve the desired rotation by first rotating by π/2 around ez then by
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Figure 6.7: Evolution in readout lattices corresponding to pseudospin rotation. (a) y readout
lattice. (b) x readout lattice. The left column shows the time evolution under each readout lattice
(pictured in the gray inset). Evolution up to the calibrated pulse time is shown with solid symbols
and solid lines while evolution past this time is shown with open symbols and dashed lines. The
right column shows the corresponding rotations on the Bloch sphere allowing for measurement
in the σ̂x and σ̂y bases via native σ̂z measurement.
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π/2 around ex. In practice each switch between secondary lattices adds experimental complexity

and requires additional calibration, so we opt for the single-rotation approach.

Hauke et. al. proposed a related approach to pseudospin measurement in a bipartite lattice

in which the system is quenched to a Hamiltonian with flat, energy offset bands (analogous to

∆ ≫ J ′ ≫ J for our system) for a variable time, allowing the pseudospin Bloch vector for each

q value to be determined from the amplitude and phase of resulting oscillation [99]. This form

of Bloch state tomography has been applied experimentally in bipartite 2D lattices in and out of

equilibrium [100–102].

6.2.2 Unit Cells and Secondary Lattices

As can be seen in Fig. 6.3, which tunneling strengths correspond to J and J ′ depends on

the definition of the unit cell. Since the unit cell definition is arbitrary, one would expect the

key physics to be agnostic to this choice. However, our pseudospin mapping treats intercell and

intracell tunneling differently, making the unit cell definition important. In order to measure

pseudospin quantities that depend on the unit cell (i.e. ⟨σ̂x⟩ and ⟨σ̂y⟩ but not ⟨σ̂z⟩) we must use a

secondary lattice, which effectively fixes our unit cell. The secondary lattice is highly dimerized

with one dominant tunneling strength J ′; to treat secondary lattice evolution as q-independent we

must define our unit cell as the unit cell where the secondary lattice allows intracell tunneling. Our

unit cell- or basis-dependent pseudospin measurements are thus defined relative to the secondary

lattice.
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6.2.3 Remaining Phase Ambiguity

Quantum states are only defined up to an overall phase. For a two-state system, we can

parameterize all possible states by the probability amplitude associated with each basis vector

and a relative phase. When reconstructing a state vector from the density operator, the result has

an arbitrary overall phase. For an individual two-state system this phase has no physical meaning

and can be chosen to fit the a desired convention.

Our crystal momentum-resolved pseudospin state reconstruction suffers from a potential

ambiguity since the overall phase of reconstructed state for each q becomes a relative phase

between the different |ψ(q)⟩. This choice can be viewed as a momentum space gauge transfor-

mation and thus affects no observables but in some cases introduces an offset to the calculated

Zak phase.

6.3 Technical Implementation

To implement the lattice, we use two pairs of counterpropagating Raman beams, using the

setup introduced in Sec. 3.8 and an RF magnetic field, using the setup introduced in Sec. 3.7.2.

Our lattice system requires phase coherence between all the RF tones in the system. To achieve

this, we generate all the tones for our lattice experiments using a single Novatech DDS synthe-

sizer. As discussed in Sec. 6.1.3 we use an RF magnetic field for the readout process as well as

the lattice portions of our experiment. To provide full flexibility for the phase of the readout field,

we implement a separate readout channel connected to the RF amplifier and coils.

Our pseudospin measurement process requires another, nominally independent phase. Ide-

ally this would be implemented with a fifth phase synchronized DDS channel. Due to the tech-
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nical limitations of our setup we instead reuse the RF readout channel for this purpose. This is

possible because the phase required for the F̂x → F̂z RF pulse has the same phase required for

a balanced lattice in configuration II, naturally providing the lattice secondary configuration for

measuring ⟨σ̂y⟩. The secondary lattice required for measuring ⟨σ̂x⟩ requires a phase different by

≈ 0.04π; this is not the perfect phase for the RF readout pulse, but in practice it only introduces

an error that scales as 1 − cos 0.04π ≈ 0.01. Other sources of error in our experiment are larger

than 1%, so this non-ideal scheme is hardly noticeable. We compared the RF readout scheme to

using the primary RF branch for the secondary lattice (in limited situations where possible) and

found comparable results.

6.4 Measuring the SSH Eigenstates

Next, we look at using our techniques to measure the pseudospin makeup of the ground

band of our lattice in a balanced configuration. By comparing our result to the prediction of the

SSH model, we can see how well our system matches the idealized theory.

6.4.1 Filled Bands and Parallel Measurements

Our bosonic system will normally populate one q value in the lattice.1 Since we are inter-

ested in measuring the pseudospin state for the whole band, we fill the lowest band of the lattice

before performing our measurements. This can be thought of as simulating the momentum distri-

bution of a fermionic system, where Pauli exclusion results in filled bands up to the Fermi level.

Note that in our case the band is not necessarily uniformly filled, so the simulation is not perfect.

1Due to the finite system size the crystal momentum distribution will have a finite width even in the BEC case,
but this is small enough to be ignored for our purposes.
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Nonetheless, non-uniformly filled bands suffice for our purposes, since our measurements rely

on the relative population at each q value rather than the absolute population.

Our experiments begin by adiabatically ramping the coupling fields to their final values

over 2.5 ms, loading our BEC into the ground band of our initialization lattice at q = 0. Follow-

ing loading, we dephase the BEC to populate states across the BZ. We achieve this by applying a

force along the x direction to drive many repeated Bloch oscillation, a method used in Ref. [103].

We apply the force for 35 ms by displacing one of our dipole trap beams. Over this time, dephas-

ing processes and crystal momentum changing collisions result in population, initially localized

at q = 0, spreading across the BZ. Because the experimental Hamiltonian conserves crystal

momentum (dephasing, interactions, and collisional effects can be neglected over our short ex-

perimental timescales), the evolution for each q value is effectively independent, allowing us to

study all q values in parallel during each experimental realization.

6.4.2 Ground Band Measurements

Our results for the pseudospin components in each SSH configuration are shown in Fig. 6.8.

The three expectations values ⟨σ̂(q)⟩ are measured independently via the pseudospin rotation

described in Sec. 6.2. Each of the three expectation values corresponds to the average of about

30 repetitions, with each repetition including every q value. Fig. 6.8 (a) Combines the three

measurements to show the state at each q value on the Bloch sphere. Fig. 6.8 (b) shows the

results for each measurement independently. Because our measurements do not have perfect

contrast, the reconstructed states (open symbols in (a)) are not pure. In order to compare directly

to theory, we construct the closest agreeing pure state by taking the principal eigenvector of ρ̂,
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equivalent to normalizing the Bloch vector. This is in the spirit of Ref. [104], as will become clear

when we use the reconstructed states to calculate topological invariants in Ch. 7. In configuration

I the pseudospin rotates around the ez axis with q, while in configuration II the states uniformly

point to ex, independently of q. In both cases the sublattice symmetry restricts the state to the

equator.

Our data closely agree with the predicted states of Eq. 4.23 for a highly dimerized SSH

lattice, indicating that the lowest band of our lattice closely matches the highly dimerized SSH

model, as well as validating our pseudospin measurement and state reconstruction procedure.

Our data can be readily used to calculated the Zak phase from Eq. 5.12. This gives ϕZ =

0.99(3)π and ϕZ = −0.0005(1)π for configurations I and II, respectively, closely agreeing with

theory. 2 Any deviation from integer multiples of π likely results from small breaking of sublattice

symmetry.

6.5 Measuring Tunneling and Displacement

To measure motion of atoms in our system we can time-integrate the drift velocity, obtained

from the momentum distribution via our time-of-flight images [105, 106]. We perform these

displacement measurements starting with a BEC with a particular crystal momentum (here q =

0). The instantaneous drift velocity is determined from the momentum distribution

⟨p⟩ =
∑
n

2nℏkR| ⟨k = 2nkR|ψ⟩ |2; (6.12)

vd = ⟨p⟩ /m87, (6.13)

2The uncertainties are calculated as the sample standard deviation of the individually calculated Zak phase for
the ≈ 30 separate measurements.
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Figure 6.8: Measured pseudospin composition of the ground band of our lattice corresponding
to SSH configurations I (left) and II (right). (a) Pseudospin state for all q values across the BZ
plotted on the Bloch sphere. The raw measurements (open symbols) correspond to mixed states
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expectation values of σ̂x, σ̂y, σ̂z shown as a function of q, along with theory predictions from the
SSH model (dashed curves).
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where n ranges over the momentum orders present in our ToF image, typically from −2 to +2.

The displacement at time t, x(t), is obtained by integrating the drift velocity:

x(t) =

∫ t

0

dt′vd(t
′). (6.14)

We use this technique to measure the displacement during a tunneling oscillation starting

from |q = 0, ↓⟩, shown in Fig. 6.9. Because we can measure the magnetization as well as the

momentum distribution of our system, we can use both quantities to understand the oscillation.

Panel (a) shows the magnetization ⟨F̂x⟩ coherently oscillating with a period of 366(3) µs, provid-

ing a clear signal of motion between neighboring sites, with small wiggles coming from higher

band population. The higher band populations is taken into account by our numerical model

(dotted lines), and the theory prediction is qualitatively consistent with our observations. Panel

(b) plots the instantaneous drift velocity obtained from the momentum distribution. As before the

high frequency oscillations correspond to population in higher bands; they are more prominent in

this measurement because the higher band states include more overlap with high k states in the

bare momentum basis and thus contribute more to the drift velocity. These high frequency oscil-

lations are repeatable between experimental shots. Their amplitude is consistent with a ≈ 7 %

occupation of higher bands, as predicted by our numerical model. Panel (c) shows the integrated

group velocity, corresponding to x(t). This confirms our understanding of the process as a tun-

neling oscillation between adjacent lattice sites, which are separated by nearly 1/2 of a unit cell,

≈ 200 nm. The high frequency components are much less prominent in the measured atomic

displacement at the tunneling timescale, because time integration acts as a low-pass filter. Physi-

cally, we can understand this as as the displacement from faster motion associated with the higher
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band population averaging to 0 over the tunneling timescale.

Although our model for the lattice predicts symmetric behavior for the two SSH config-

uration with ϕRF = ±π/2, we empirically found a 6(2)% difference in their tunneling periods.

Similarly the difference in commanded RF phase between the two configurations was ≈ 1.03π

instead of π. These observations correspond to physics beyond our model, and thus indicate

small distortions of the lattice potentials. One possible explanation for this deviation is a weak

optical lattice. Conceivably this could be due to our retro-reflected fields from our Raman lasers,

although this would be unlikely if our experiment truly operated at the magic wavelength as we

indented.
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Figure 6.9: Observations of tunneling oscillation in a static, balanced lattice configuration. (a)
Magnetization associated with changing pseudospin state during tunneling. (b) Average velocity
determined from momentum. (c) Displacement calculated by integrating velocity. Solid symbols
represent experimental data while dashed curves correspond to numerical simulations.
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Chapter 7: Measuring Topology out of Equilibrium

In this chapter we describe experiments measuring the topology of a filled band of a bipar-

tite lattice as the system evolves out-of-equilibrium under different Hamiltonians. We make use

of the bipartite lattice system as well as the crystal momentum resolved pseudospin measurement

technique introduced in the previous chapter. We categorize the out-of-equilibrium evolution by

the symmetry of the initial state and evolution Hamiltonian and follow the time evolution of the

Zak phase and winding number. Cases where a symmetry is absent from the initial state or evolu-

tion Hamiltonian are categorized as explicit symmetry breaking, resulting in the symmetry being

absent from the time-evolving state. In contrast it is also possible for a symmetry to be broken

in the time-evolving state, despite its presence in the initial state and evolution Hamiltonian; this

case is called dynamically induced symmetry breaking [107].

When sublattice symmetry (SS) is broken, the Zak phase in general evolves continuously,

while the winding number may jump between integer values when SS is transiently present in

the out-of-equilibrium state, making the winding number well defined. We describe an example

of explicit symmetry breaking, observing large Zak phase oscillations. We also demonstrate a

subtle example of dynamically induced symmetry breaking in a system where the initial state

and evolution Hamiltonian both respect SS, where the winding number jumps by ±2 despite

the Zak phase ideally being constant. Finally we describe a case where the SS is dynamically
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broken, allowing for a time dependent Zak phase, despite SS being present in the initial state and

evolution Hamiltonian. We describe our results at the level of the RM model, which is sufficient

to capture the qualitative physics of our real system. The results presented in this chapter are

published in Ref. [90].

7.1 Explicitly and Dynamically Broken Symmetries

In Ch. 5 we introduced topological invariants for static (equilibrium) systems and Floquet

systems, with symmetry playing a central role in the possible invariants. Ref. [107] extends

this understanding to out-of-equilibrium systems, detailing the conditions in which topological

invariants can change in 1D systems. A time-evolving invariant can be due to explicit symmetry

breaking, for example when the evolution Hamiltonian breaks SS, the Zak phase may vary in

time. Likewise if the initial state breaks SS, the Zak phase may change in time, also due to

explicit symmetry breaking. In contrast, the symmetry breaking is dynamically induced when

the time-evolving state lacks a symmetry despite it being present in the initial state and evolution

Hamiltonian.

In the case of explicit symmetry breaking, it comes as little surprise that the time-evolving

state will in general lose its original symmetry, and hence topological indices may change for

the time-evolving state. The dynamically induced case is particularly interesting and counter-

intuitive, because it describes changes in topological quantities even when the symmetries that

protect them in equilibrium are present in the evolution Hamiltonian.
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7.2 Tunneling

Our first out-of-equilibrium scenario is a tunneling oscillation, analogous to what we stud-

ied in Sec. 6.5, but here for a filled band. We employ a q-independent initial state |ψ(q)⟩ = |↓⟩,

which is the ground state of the RM model with ∆ ≫ (J, J ′). As with all finite ∆ RM mod-

els this state lacks SS and particle-hole symmetry (PHS), only retaining time-reversal symmetry

(TRS). We prepare the state by adiabatically loading into a maximally imbalanced initialization

lattice with ∆ ≈ 5ER and J = J ′ ≈ 0.1 ER. The evolution begins when we abruptly switch the

Hamiltonian to a maximally dimerized SSH lattice with ∆ = 0 in either configuration I or II.

The pseudospin evolution can naturally be understood as rotations on the Bloch sphere

around the Hamiltonian axis h(q) we introduced in Sec. 4.3. In both configurations, the evo-

lution Hamiltonian obeys SS, restricting h(q) to lie in the ex-ey plane. Because our system is

highly dimerized, with nearly flat bands, |h(q)| is approximately constant with q. Fig. 7.1(a)

shows the evolving state for both configurations. Fig. 7.1(b) shows the state represented on the

Bloch sphere for selected evolution times. In both configurations, the high degree of dimerization

results in ⟨σ̂z⟩ oscillating between ↓ and ↑ poles nearly independently of q. The oscillation has

full contrast because the subsites are degenerate for the evolution lattice (∆ = 0). The ⟨σ̂x,y⟩

components (black arrows in (a)) evolve in a q-dependent way in configuration I but are approx-

imately q-independent in configuration II. Because our raw data include unwanted contributions

from higher band excitations, we use a temporal low-pass filter to produce the final data. We also

apply a filter in the spatial direction to reduce the effects of measurement noise. This is especially

important when calculating the Zak phase, which involves differentiating and thus amplifies noise

with high spatial frequency components. The filter has root mean square Gaussian widths kR/8
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and 10µs in crystal momentum and time, respectively.

The evolution in configuration I corresponds to a rotation about a different axis in ex-ey

plane for each q value, determined by h(q) = [J cos q, J sin q, 0]. This evolution causes ⟨σ̂(q)⟩

to wrap around the Bloch sphere as its σ̂z component increases until reaching the ↑ pole. This

evolution goes along with the changing Zak phase shown in Fig. 7.1(c) (teal points). The Zak

phase starts at 2π = 0 (mod 2π), reaches π when ⟨σ̂(q)⟩ reaches at the equator, and reaches its

extremal value of 0, corresponding to a full covering of the Bloch sphere, when ⟨σ̂(q)⟩ = ez.

Following this, the state reverses this evolution, returning to the initial |↓⟩ state at T ≈ 360 µs.

Because the Zak phase is defined modulo 2π, we used a phase unwrapper to produce a smooth

function between 0 and 2π for our experimental data.

In contrast, for configuration II, the Hamiltonian is q-independent with h(q) = [J ′, 0, 0].

This results in ⟨σ̂(q)⟩ orbiting ex, for all values of q. The state starts from the −ez pole and

reaches the +ez pole via ey and returns to −ez after one period T . As implied by the derivative

in the Zak phase formula (Eq. (5.12)) any state that is constant with q has ϕZ = 0. Equivalently,

the Bloch sphere trajectory of a state that is constant with q will not cover any surface area. This

agrees with our observations throughout the evolution shown in Fig. 7.1(c) (magenta points). The

Zak phase includes sub-percent level oscillations at timescales faster than T , corresponding to the

small spread in the state as a function of q seen in Fig. 7.1 (b)-right. This is likely due to the small

contribution from higher band population that escaped our filtering process.

As we noted in Ch. 5, a changing Zak phase is associated with changing polarization and

particle current. In the configuration I case, the change of 2π between the initial state and the

state at T = 1
2

corresponds to a net particle movement of one unit cell. The atoms undergo

similar motion in the configuration II case, but their motion is within the unit cell, so it does not
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Figure 7.1: Pseudospin state during a tunneling oscillation. (a) Full state reconstruction over
the oscillation. Color shows ⟨σ̂z(q)⟩ while black arrows show (⟨σ̂x(q)⟩ , ⟨σ̂y(q)⟩). Results for
the configuration I Hamiltonian are shown on the left with the configuration II case shown on the
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model in the appropriate configuration. (c) Corresponding Zak phase and winding numbers for
configuration I (teal) and configuration II (magenta). Points correspond to data and solid curves
correspond to theory.
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correspond to a changing Zak phase or a current between unit cells. This difference can be seen

as arising from our treating the sublattice pseudospin degree of freedom as an internal degree of

freedom, as we introduced in Ch. 4.

In general, the SSH Hamiltonian (with J, J ′ ̸= 0) will generate q-dependent evolution for

this initial state, resulting in the Zak phase being time dependent, except when J = 0. In both

examples, throughout the evolution, the state is an eigenstate of an RM Hamiltonian in the initial

configuration, with time-dependent ∆ and complex tunneling matrix elements, as are present in

lattice systems with an external magnetic vector potential [92].

All experimental data has some contribution along ez, and thus breaks SS to some degree.

To address this, we projected our measurements onto the ex-ey plane, enforcing SS, then renor-

malized the data to compute an integer valued winding number νexp, calculated via the Zak phase

for the renormalized, equatorial state. For this state the Zak phase must be an integer multiple of

π, yielding integer values for νexp. Our results, along with the predicted winding numbers of 1

and 0 for the two cases, are shown in Fig. 7.1 (c)-lower. The opacity of each symbol marks the

projection of the reconstructed state onto the ex-ey plane, with bold symbols corresponding to

states with little violation of SS. We estimate the degree of SS breaking by the root mean square

of ⟨σ̂z⟩: √∫
BZ

dq ⟨σ̂z(q)⟩2, (7.1)

which gives 1 for states that maximally break SS and 0 for states where SS is obeyed exactly for

every q.

The vertical gray bands mark the regions within 10% of T/4 + nT/2, when our theory

model predicts SS should be recovered. νexp is defined throughout but should only be compared
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to ν when SS is recovered. Within the gray bands SS is maximally restored, and we confirm

νexp = ν for these times. Interestingly, νexp remains constant when CS is violated, except for

three points in configuration I when ⟨σ̂(q)⟩ is nearly aligned along ez, and measurement noise

dominates the ex-ey projection.

We fit the observed pseudospin evolution to the evolution predicted by the SSH Hamil-

tonian to find the model parameters for each case. For configuration I the model parameters

are J = 0.395(2)ER, J ′ = 0.012(2)ER. For configuration II we have J = 0.038(3)ER,

J ′ = 0.379(2)ER. Ideally we would expect the values for the smaller and larger tunneling

strengths to be very close in the two configurations (i.e. J in configuration I should nearly equal

J ′ in configuration II and vice-versa); deviations from this result suggest small miscalibrations

(i.e. ϕRF was slightly closer to the correct value for configuration I than configuration II or vice-

versa) or that something is present in our experimental system beyond the lattice model. Fitting

to only the ⟨σ̂z(q)⟩ distribution yields qualitatively similar results to fitting to the full ⟨σ̂(q)⟩.

7.3 Dimerization

Next, we study a case where the initial state and evolution Hamiltonian both respect all

three symmetries—TRS, PHS, and SS. For this case, our initial states are eigenstates of the

highly dimerized SSH Hamiltonian and the evolution Hamiltonian is the highly dimerized SSH

Hamiltonian of the opposite configuration. In this case, the Zak phase is predicted to be constant;

however, SS is not present during much of the evolution, and when it is recovered ν changes its

value. Remarkably, in this case ν can take on values that are not present in the equilibrium SSH

Hamiltonian, confirming a counterintuitive prediction of Ref. [107].
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As in Sec. 7.2, when the system evolves in configuration I, the state for each q value orbits

a different axis in ex-ey plane, while in configuration II, the evolution corresponds to a rotation

about the ex axis for all q. For the first case, shown in Fig. 7.2 (a)-left, the initial state, a con-

figuration II eigenstate, has ⟨σ̂(q)⟩ aligned along ex for all q. As the state evolves under the

configuration I Hamiltonian, ⟨σ̂(q)⟩ traces out a figure-8 shape on the Bloch sphere as shown

in Fig. 7.2 (b)-left. Ideally this trace is symmetric, with the loops in the upper and lower hemi-

spheres of the Bloch sphere having equal area; our data agree with this prediction qualitatively

but not quantitatively.

In the second case, shown in Fig. 7.2 (a)-right, the initial state is a configuration I eigen-

state for which ⟨σ̂(q)⟩ encircles the equator of the Bloch sphere. As the state evolves under the

configuration II Hamiltonian, the circle traced by ⟨σ̂(q)⟩ rotates about ex by an angle 2J ′t, as

shown in Fig. 7.2 (b)-right. As with configuration I, our experimental data show the expected

qualitative pattern but show quantitative deviation, meaning they do not precisely trace a great

circle on the Bloch sphere.

As before, we use a fit to determine the model parameters for our evolution. The pa-

rameters are J = 0.408(3)ER, J ′ = 0.003(5)ER for configuration I and J = 0.009(5)ER,

J ′ = 0.446(3)ER for configuration II.

In both cases the ideal evolution has a constant Zak phase. For the first, the two loops traced

by ⟨σ̂(q)⟩ ideally have equal area, but being traced in opposite directions, provide canceling

contributions to ϕZ. Thus we expect ϕZ = 0 throughout the evolution. In the second case, the

great circle traced by ⟨σ̂(q)⟩ ideally always encloses half the surface area of the Bloch sphere,

so we expect ϕZ = π throughout. In both cases our observed state shows deviations from the

predicted constant value for ϕZ. We ascribe these fluctuations to imperfect state preparation (most
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likely a small amount of residual SS breaking), imperfections in the evolution Hamiltonian (SS

breaking and non-complete dimerization), and imperfections in our readout process. Because the

oscillation is more complex than the case from Sec. 7.1, and the constant Zak phase predictions

rely on details of the evolution rather than q-independence, it is somewhat reasonable that noise

and imperfections would yield larger deviations in this case compared to the tunneling oscillation.

Despite the nominally constant Zak phase, both these cases show changing topology quan-

tified by the winding number. In both cases the state periodically returns to the equator and

recovers SS every T/2 = π/(2J) ≈ 160 µs. At these times the winding number changes by ±2

as shown in Fig. 7.2 (c). As before, the gray bands mark the regions within 10% of the times when

our theory model predicts SS is recovered, here nT/2. This is possible at constant ϕZ because

a jump of ±2 corresponds to ϕZ changing by 2π, leaving its value unchanged modulo 2π. For

the first case, this results in a transient value of ν = 2, which is not possible for an SSH model

eigenstate. While ϕZ can be heavily affected by noise and imperfections, νexp is more robust,

agreeing with the predictions perfectly when SS is expected, and only deviating at other times

when noise in the data is comparable in magnitude to the ex−ey projected measurements. While

our experimental data show some time dependence in their Zak phases, ϕZ stayed within π of its

initial value, confirming that the changing winding number is due to the modulo 2π jump rather

than the spurious changes in ϕZ.

The ν = 2 state is particularly interesting, because the system approaches an eigenstate of

the extended SSH model with dominant next-nearest neighbor tunneling [108]

Ĥ =
∑
j

[
−
(
J ′ |j ↑⟩⟨j ↓|+ J |j + 1 ↑⟩⟨j ↓|+ J2 |j + 2 ↑⟩⟨j ↓|

)
+ H.c.

]
. (7.2)
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The corresponding momentum space Hamiltonian is

Ĥq = −
(
J ′ + J cos(πq/kR) + J2 cos(2πq/kR)

)
σ̂x −

(
J sin(πq/kR) + J2 sin(2πq/kR)

)
σ̂y,

(7.3)

emphasizing the connection between the J2 term and the possibility of ν = 2. Higher wind-

ing numbers also appear in generalized SSH models with a higher dimensional internal state

space [109, 110]. Note that Eq. 7.2 is a fine tuned model because it only includes longer range

tunneling terms that preserve sublattice symmetry, excluding terms like |j + 1 ↑⟩⟨j ↑|, which we

would generally expect to arise in lattices where longer range tunneling is allowed. Additionally

the ν = 2 case requires J2 > J , which is not typical for lattices realized in real space, although

it is possible in synthetic dimension realizations of the SSH model in frequency or momentum

space [110–113]. These are substantial barriers to realizing equilibrium ν = 2 states, highlighting

how our approach allows the preparation of exotic states. Our approach used unitary evolution

under a relatively simple Hamiltonian to dynamically prepare the eigenstates of an experimentally

inaccessible model. We speculate that this general framework—dynamical symmetry breaking

and recovery—could be used to prepare otherwise inaccessible states of interacting systems.

7.4 TRS Breaking with Tunneling Phase Models

It is possible for the Zak phase to change in time when both the initial state and the evolution

Hamiltonian respect SS but not TRS. This scenario was proposed in Ref. [107] using models

where the TRS breaking comes from complex tunneling matrix elements with initial states like

the ones we studied in Sec. 7.3. In this case the changing Zak phase results from the dynamically

132



broken SS. We can realize a closely related scenario by starting with eigenstates of the RM

model with complex valued tunneling matrix elements and evolving under the phase-free SSH

Hamiltonian.

To study this evolution, we prepare a state with ⟨σ̂(q)⟩ = ey, an eigenstate of the SSH

Hamiltonian with J = 0, J ′ = J0e
±iπ/2, observing its evolution under a partially dimerized

version of our real valued Hamiltonian with J ′/J ≈ 5. We prepared the initial state using a

partial tunneling oscillation under a configuration II SSH Hamiltonian as described in Sec. 7.2,

starting from |↓⟩ and evolving for T/4. Fig. 7.3 (a) shows the measured pseudospin populations

for this evolution, while (b) shows the Bloch sphere representation of the state at t = 400µs

along with the fitted theory prediction (SSH model with J = 0.0362(7)ER, J
′ = 0.1696(5)ER).

Because the system for this evolution is not fully dimerized, there is not a single tunneling period

across the band, leading us to present the data in real units rather than tunneling periods. The

Zak phase for the evolving state, shown in (c), starts at 0 and increases to ≈ π/6, allowed for by

dynamically broken SS. As suggested by the trace in (b) the winding number for this evolution

does not change from its initial value of 0.

At evolution for times past the final time in Fig. 7.3, our experimental result deviates fur-

ther from the model. We suspect that this may correspond with the onset of dephasing from

fluctuations in our control fields or atomic interactions. An estimate of the effective chemical

potential gives a timescale for the interaction of 2 ms [91]. The timescale for this experiment was

twice as long as those described in the previous section, explaining the increased role played by

dephasing physics. This longer timescale was necessary because the lattice parameters used to

achieve J ∼ J ′ produced slower tunneling rates as a result of a lower values of ΩRF.
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Figure 7.3: Pseudospin state for tunneling starting from a σ̂y eigenstate in a partially dimerized
lattice. (a) Full state reconstruction over the oscillation. Color shows ⟨σ̂z(q)⟩ while black arrows
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Initial state TRS PHS CS Symmetry class Configuration

Large ∆ RM eigenstate + +∗ 1∗ AI (BDI∗) II (Trivial)
Large ∆ RM eigenstate + +∗ 1∗ AI (BDI∗) I (Topological)

ϕ = π/2 SSH +∗ +∗ 1 AIII (BDI∗) II (Trivial∗∗)
Trivial SSH eigenstate + + 1 BDI I (Topological)

Topological SSH eigenstate + + 1 BDI II (Trivial)

Initial state Configuration Result

Large ∆ RM eigenstate II (Trivial) ϕZ constant
Large ∆ RM eigenstate I (Topological) ϕZ smoothly evolves

ϕ = π/2 SSH II (Trivial∗∗) ϕZ smoothly evolves
Trivial SSH eigenstate I (Topological) ϕZ constant; ν jumps from 0 to 2

Topological SSH eigenstate II (Trivial) ϕZ constant; ν jumps from +1 to −1

Table 7.1: Summary of experiments in this chapter organized by initial state and configuration
of evolution Hamiltonian. ∗ indicates that a symmetry is present in the initial state but it is
different from that of the evolution Hamiltonian (phase-free SSH model). ∗∗ means the evolution
Hamiltonian was not fully dimerized for the case studied; the stated dimerization corresponds to
the larger tunneling strength.

7.5 Summary

In this chapter, we presented paradigmatic examples of how explicit and dynamically in-

duced symmetry breaking can result in changing topology in 1D out-of equilibrium systems. We

focused on limited cases, especially fully dimerized lattices as they strikingly show what changes

are possible. We included several interesting cases characterized by dynamically induced symme-

try breaking. Despite this, we were not able to directly realize one of the key results of Ref [107],

a time varying Zak phase due to dynamically broken sublattice symmetry for a class AIII sys-

tem with no explicit symmetry breaking. This is possible in an SSH-like model with additional

couplings and complex hopping amplitudes. Our result from Sec. 7.4 is qualitatively similar but

involves explicit breaking of TRS and PHS.
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Table 7.1 summarizes the different initial states that we studied, based on their symmetry

properties and the configuration for the evolution Hamiltonian, describing how ϕZ and ν evolve

in time for each case.

One of the most exciting results from the chapter is the ν = 2 state we observed in Sec. 7.3.

Because the state exhibits topology beyond what is found in equilibrium states of the simple SSH

model, our approach provides an interesting route to creating states with nontrivial topology.

The topological out-of-equilibrium states are relatively short lived, so it remains to be seen how

the state could be used in future extension of this work. It also remains to be seen how this

approach could be used in more general settings, such as systems with higher spatial dimension

or interparticle interactions. We hope our work opens the door to study a wide range of possible

topological states.
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Chapter 8: Topological Dirac Floquet System

In this chapter we describe an experiment using Floquet engineering and our bipartite lat-

tice system to produce a system with a near-perfect Dirac Floquet spectrum with (pseudo)spin-

momentum locked linear bands. We measure the displacement over multiple Floquet periods

to confirm the predicted drift velocity at q = 0 for each pseudospin state, showing pseudospin-

momentum locking for the system. We show the dependence of the system on fine-tuned timing

by studying the band gap that opens as the system becomes mistimed. The system is described

by a topological Floquet winding number of the form introduced in Sec. 5.5.2, which we measure

by applying the crystal momentum-resolved pseudospin tomography from the last two chapters

to measure the Floquet micromotion of the system across the BZ. Finally we show displacement

measurements at finite q, which are consistent with the predicted linear bands, though our mea-

surements do not provide quantitative proof. Most of the results presented in this chapter are

published in Ref. [91].

8.1 Floquet Theory

As we introduced in Sec. 5.5.2, particles experiencing a time-periodic potential are natu-

rally described in terms of Floquet modes, directly analogous to the Bloch bands describing parti-

cles in spatially periodic potentials. We write the Floquet modes |ψν(t)⟩ = exp{(−iϵνt/ℏ)}|υν(t)⟩,
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where |υν(t)⟩ = |υν(t+T )⟩ has the time periodicity of the Hamiltonian and ϵν is the quasienergy

of the Floquet mode, defined modulo 2πℏ/T . Just as the edges of the first BZ are connected,

forming a circle, the quasienergy points ±πℏ/T are equivalent. Thus the parameter space of a

1D Floquet lattice can be thought of as a 2D torus with coordinates q and t. The dynamics of

Floquet systems, when observed stroboscopically (once per period T ), are described by a time-

independent Floquet Hamiltonian ĤF with eigenvalues ϵν .

8.1.1 Floquet Engineering

Floquet theory can be used as a general tool to understand periodically driven quantum

systems, allowing us to replace evolution under the full time-dependent Hamiltonian with evo-

lution generated by ĤF as long as we restrict ourselves to stroboscopic observations. Floquet

engineering extends this concept to create system with desired exotic or tunable properties. The

art and science of Floquet engineering lies in designing the drive to give a particular desired ĤF.

Floquet engineering has been applied to a wide range of systems, from topological insu-

lators [84] to graphene and spintronic systems [114]. Physicists working with ultracold atoms

have deployed Floquet engineering to study topological band structures and artificial gauge

fields [115, 116].

8.1.2 Calculating Floquet Band Structure

We can calculate the Floquet Hamiltonian and eigenstates (i.e. the Floquet band structure)

for a modulated lattice system directly from the time varying Hamiltonian Ĥ(t). Reviewing

Sec. 5.5.2, the time-evolution operator for a full Floquet period is given by the time ordered
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exponential

Û(t0, t0 + T ) = T exp

[∫ t0+T

t0

− i

ℏ
Ĥ(t′)dt′

]
. (8.1)

The specific result depends on the choice of initial time t0, meaning the stroboscopic behavior

depends on the choice of observation time within each period. Numerically, the time evolution

operator Û can be calculated by treating Ĥ(t) as constant within an interval δt, to give the unitary

evolution operator from t to t+δt, then taking the matrix product of the the time-ordered unitaries

for each δt interval.

With Û(t0, t0 + T ) in hand, the effective Floquet Hamiltonian can be calculated from

ĤF
t0
= iℏ log

(
Û(t0, t0 + T )

)
. (8.2)

The Floquet eigenstates and quasienergies are the eigenvectors and eigenvalues of ĤF. For sim-

plicity we take t0 = 0 in our following analysis, meaning the stroboscopic evolution is defined

for the state at the start of each period.

8.2 Floquet Engineering Dirac Bands

Next we consider the Floquet eigenstates of a periodically modulated bipartite lattice,

where switching between SSH configurations allows constant group velocity motion, with the

direction determined by the initial pseudospin state. This protocol closely follows Ref. [53],

which formulated the problem with spin-1/2 particles, meaning that rather than alternating be-

tween SSH configurations, their protocol alternated between spin dependent tunneling and spin

rotations.
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In our Floquet “switching” protocol the lattice periodically alternates between configura-

tion I (J ′ ≈ 0, J = J0) and configuration II (J ′ = J0, J ≈ 0), with period T . The first portion

(“half period”) of the cycle allows intercell tunneling with |j + 1, ↓⟩ ↔ |j, ↑⟩, while the second

portion allows intracell tunneling with |j, ↓⟩ ↔ |j, ↑⟩. The system is perfectly tuned for J0T = π:

each half period implements a π-pulse, resulting in full transfer of probability amplitude between

neighboring sites. This leads to a displacement of the lattice constant a with each Floquet period,

with the direction depending on the initial site occupied (|j, ↑⟩ → |j + 1, ↑⟩; |j, ↓⟩ → |j − 1, ↓⟩).

This intuitive description is based on spatially localized wavepackets, but the same displacement

holds for (pseudospin-polarized) crystal momentum eigenstates, with the displacement per cycle

being independent of q. Thus the Floquet eigenstates of the system have (pseudo)spin-momentum

locked motion with constant velocity v = ±a/T , under stroboscopic observation. The system is

described by a 1D Floquet Dirac Hamiltonian

ĤF(q) = qvσ̂z, (8.3)

corresponding to massless relativistic particles (the gapless dispersion corresponds to the zero

mass case). The spin polarized dispersion relation is shown in Fig. 8.1 for the pure SSH case (a)

and a numerical simulation of our bipartite Raman lattice system (b).

Deviation from perfect tuning (exact π-pulses) results in gaps in the quasienergy spectrum,

either at q = 0 or at the edge of the BZ. Under perfect tuning the system has a (Floquet) pseu-

dospin rotation symmetry, which allows the Floquet eigenstates to separate into decoupled |↑⟩

and |↓⟩ sectors, guaranteeing the bands do not hybridize where they cross at q = 0. From Fig. 8.1

we can see that the band for each sector winds around the Floquet-BZ once with q, corresponding
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Figure 8.1: Floquet band structure for switching protocol. (a) Idealized two band (SSH) model
with complete dimerization. (b) Full numerical simulation of RF+Raman lattice. The full model
matches the idealized version very well (up to an overall offset) except at q = 0, where slight
deviations from perfect timing cause the spin momentum locked bands to hybridize.
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to Floquet winding numbers of νσ = ±1 for the |↑↓⟩ sectors as described in Sec. 5.5.2.

νσ =
1

2π

∫
BZ

dεσ(q)

dq
Tdq (5.29, revisited)

For each initial pseudospin, different crystal momentum states start and end each driving

period at the same point on the Bloch sphere (the |↑↓⟩ poles), but evolve q-dependently within

the Floquet period. This q-dependent micromotion also reveals the the Floquet winding number

for each band, as we will see in Sec. 8.3.

8.2.1 Modulation Implementation

We implement the Floquet driving protocol by changing ϕRF to switch between lattice con-

figurations every half modulation period. In order to minimize additional excitations to higher

bands with each switch, we slowly ramp ΩRF around these switching times, modulating the RF

mixer voltage with a tapered cosine waveform, inspired by the Tukey window function, with edge

fraction of α = 30%. From 0 to τ the taper function is defined

V (t) = O + A



1/2 cos (2πt/(τα)) , t < τα/2

1 , τα/2 ≤ t ≤ τ − τα/2

1/2 (1− cos (2πt/(τα) + 2π/α)) , t > τ − τα/2,

(8.4)

where O is an offset and A is the peak value. The function gently ramps from O to O + A with

a cosine profile over τα/2, holds its peak value of O + A for τ − α, then ramps back to O over

the next τα/2 using a a cosine profile.
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We create a waveform by periodically repeating the function, changing ϕRF to alternate

between configuration I and configuration II, so that the period is T = 2τ . We generalize the

waveform to alternate between different “half” periods τI and τII , allowing the system to spend

a different time in each lattice configuration, with total period T = τI + τII . The true value of

ΩRF is modified by the nonlinearity of the mixer, but can safely be thought of as approximately

the commanded waveform. We chose the ramping parameters so that the change between config-

urations would be abrupt with respect to the timescale of the lower band doublet, but slow with

respect to the timescales associated with higher band excitations.

Ideally we would simply ramp the RF mixer voltage through 0 with a “bipolar” waveform,

taking advantage of the π phase flip in the RF signal when the mixer voltage changes sign, to

give the desired value of ϕRF. In Sec. 6.5 we noted small asymmetry in the tunneling periods

for the SSH configurations as well as small deviations from the expected RF phase. Because

the calibrated phase values differ by ≈ 1.03π for configuration I and configuration II instead of

exactly π, we correct the phase via the Novatech DDS channel at the configuration switching

times. This limits our modulation timing to fastest update interval allowed by the Novatech

channels (150 µs), but this is faster than the tunneling timescales in our system, so it did not

present a major obstacle. We also compensate for the asymmetry in natural tunneling period for

the two configurations be spending proportionally more time in configuration I.

8.2.2 Floquet Pulsing Experiments

To test our experimental control, we let the system evolve under a modulated lattice starting

from an initial state of k = 0, analogous to our lattice pulsing in Sec. 6.1.2. In anticipation of our
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Figure 8.2: Floquet pulsing experiment. The Hamiltonian is modulated by changing ϕRF by
π every 20 µs (shown with gray boxes). To simplify the evolution, we sum the population in
different k states, showing the internal state summed over k. The theory curves are a fit to ϕRF

with Ω+ = 12.7ER,Ω− = 5.7ER,ΩRF = 4.5ER, yielding ϕRF = −0.01π.

configuration switching protocol, we change the RF phase by π periodically every TFq/2.

Fig. 8.2 shows the results of a pulse experiment with TFq = 40 µs. We used an approxi-

mately calibrated value to control the RF phase, leading to ϕRF ≈ 0, which in turn results in the

|mF = −1⟩ and |mF = +1⟩ populations being approximately equal. This is different from the

evolution shown in Fig. 6.5 where we did not calibrate the phase, leading to an arbitrary value of

ϕRF. The evolution is quantitatively similar to what we observed when pulsing the static lattice,

though in this case we see discontinuities in the slope of the fit at multiples of TFq/2, when ϕRF

changes abruptly, most prominently at 60 µs.
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8.2.3 Observing Linear Drift in the Floquet System

We apply the drift velocity method introduced in Sec. 6.5 to measure motion under our

Floquet driving protocol. This allows us to characterize motion associated with the Floquet band

states at q = 0. Because the Floquet eigenstates are nearly pseudospin polarized, we prepare

them in the same way we prepared pseudospin eigenstates for tunneling oscillations in Secs. 6.5

and 7.2, by adiabatically loading a highly unbalanced lattice. Following this, we abruptly switch

the phase to its value for configuration I and begin our Floquet waveform for ΩRF. Fig. 8.3 (a)

shows the resulting lattice parameters over the protocol derived from a fit of the SSH model

to the full lattice band structure. We measure the state throughout the protocol, allowing us to

reconstruct the pseudospin evolution and displacement as in Sec. 6.5.

Fig. 8.3 shows the displacement and pseudospin evolution associated with initial |q = 0, ↑⟩

(positive slope) and |q = 0, ↓⟩ (negative slope) states. Linear fits to the displacement datasets

yield slopes of ±0.89(4)a/T and ±0.86(2)a/T , respectively. This is slightly differ from the drift

velocity of a/T predicted by the modulated SSH model, i.e., one unit cell per cycle. Based on

numerical studies of the band structure, we conclude that the deviation is due to the nonzero value

of both J and J ′ around the configuration-switching times, allowing unwanted tunneling, and the

deviations between our lattice system and the SSH model. Despite this, our numerics show that

the group velocity averaged over the BZ has magnitude a/T for both bands, as implied by the

(nearly) linear bands in Fig. 8.1 (b).

As seen in Fig. 8.3 (a) either J or J ′ dominates during the appropriate portion of the cycle.

The ratio of the desired tunneling strength to the undesired is ≈ 1%, although both rates reach

a significant (equal) value during the configuration switching times. This is in reasonable agree-
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ment with the results in Ch. 7, where the ratio of tunneling strengths in maximally dimerized

configurations was between 1% and 3%, based on a direct fit to the experimental data.

In principle, we could use filled band data to parallelize the linear drift measurement across

different q values, using the technique introduced in previous chapters, In practice the signal-to-

noise ratio for each q would be too low when measuring displacement using this approach.

8.2.4 Single-Configuration Modulation

As an added to test to characterize our drive, and to confirm the importance of our con-

figuration switching protocol, we implement a single configuration protocol including the same

modulation of the RF amplitude without changing ϕRF to switch the lattice configuration. The

resulting time dependent lattice parameters are shown in Fig. 8.4 (a). Motion of a the initial state

|q = 0, ↓⟩ is shown in Fig. 8.4 (b) along with ⟨σ̂z⟩ for the time evolving pseudospin state. The

displacement oscillates periodically, similarly to the simple tunneling case discussed in Sec 6.9,

although the contribution of higher bands is reduced, due to the smooth ramping of ΩRF. The

pseudospin evolution shows similar behavior to the configuration-switching protocol, oscillating

with approximately the switching period, as probability amplitude tunnels between neighboring

subsites. This emphasizes why we need to measure the average displacement to identify the drift

velocity associated with the linear dispersion of our configuration-switching protocol.

For this modulation scheme, the Floquet dispersion (Fig. 8.4 (c)) has a point at q = 0 where

the bands meet with quadratic curvature, analogous to the spectrum of bilayer graphene [117].

In contrast to the linear dispersion case, we did not load a Floquet eigenstate (or an approximate

eigenstate) for the single-configuration protocol, so our observations do not correspond directly
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Figure 8.3: Observation of linear drift velocity under tuned Floquet driving. (a) Lattice param-
eters during Floquet modulation. (b) Displacement and pseudospin evolution for |q = 0, ↑⟩ and
|q = 0, ↓⟩ initial states. Gray boxes indicate times when the lattice is in SSH configuration I while
white corresponds to configuration II.
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to the states plotted in Fig. 8.4 (c), and the observed lack of drift does not directly imply flat

bands.

8.2.5 Evolution under Different Drive

As we discussed earlier, the linear bands of our system are a consequence of perfectly

timed Floquet modulation. When the modulation deviates from this perfect timing, gaps open in

the Floquet spectrum. To probe this behavior, we modify the timing to have modulation period

T = T0 + δT , where T0 is the period for perfect timing. In our specific implementation we

changed the timing by reducing the time spent in configuration II while keeping the duration of

the configuration I portion constant. This results in a gap of size ≈ 2J0|δT |/T0 opening at q = 0.

The new bands correspond to a Dirac dispersion with finite mass.

Our pure pseudospin, q = 0 initial states are no longer eigenstates of the mistuned Flo-

quet Hamiltonian; instead they are an equal superposition of the band states above and below the

gap. The time evolution of our initial state under the mistuned Floquet system results from quan-

tum interference of these eigenstates, producing periodic motion. This phenomenon underlies

zitterbewegung [118–120], first identified in the context of the Dirac equation.

Fig. 8.5 shows this time evolution for one specific timing. From the pseudospin evolution

(Fig. 8.5 (a)) we can see that the tunneling dynamics retain their natural timescale, but the system

configuration switches before the atoms have completed a tunneling π-pulse. The displacement

(Fig. 8.5 (b)) shows oscillations corresponding to zitterbewegung at a third emergent timescale

(slower than the modulation timescale or the natural tunneling timescale). The frequency of

the oscillation of the displacement corresponds to the frequency of the gap in the Floquet band
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Figure 8.4: Observation of periodic motion under single-configuration Floquet driving. (a) Con-
trol timing. (b) Observed displacement and magnetization. Gray boxes are shown in analogy
with the configuration switching protocol. (c) Calculated Floquet band structure for single-
configuration protocol.
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parameters of Fig. 8.5. The quasienergy gap at q = 0 is indicated by a dashed line. Note that in
this case the band gap crosses the edge of the Floquet BZ. (b) Floquet band gap for a range of
mistiming values including theory and data. The highlighted point corresponds to the mistiming
case from (a) and Fig. 8.5.

structure. Fig. 8.5 (b) includes two sinusoidal fits to the displacement; one is a simple sinusoid,

while the other includes a linear offset. The linear offset is needed to fit the data satisfactorily.

This is likely due to slight bias in our imaging, resulting in a bias of measured momentum, in

turn giving a linear offset to the displacement.

The Floquet band structure for this mistimed case is shown in Fig. 8.6 (a). We extract

the gap frequency from measured oscillatory displacement for a range of δT values, shown in

Fig. 8.6 (b). A simple model gives a linear dependence of the gap size on δT/T0 (dashed curve).
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Our data more closely match the hyperbolic fit (solid curve). This indicates that our δT = 0 case

(nominally perfect timing) included some imperfections, bounded above by 0.05(1)(2π/T0).

8.3 Measuring Floquet Topology

Next we turn to understanding the topological origin of our Floquet system under perfect

timing. The topological Floquet winding number νσ, defined in terms of the Floquet band struc-

ture for each band σ =↑, ↓, can also be found from the pseudospin micromotion across the BZ.

This description of νσ is equivalent to the topological invariant characterizing adiabatic charge

pumping discussed in Sec. 5.5.1:

νσ =
1

2π

∫
BZ

∫ T

0

F(t, q)dqdt. (Eq. 5.26, revisited)

The Floquet winding number for the ↑ and ↓ sectors can be found by integrating the Berry

curvature defined in q, t space, which we find from the measured pseudospin-resolved micro-

motion over one Floquet period under ideal modulation timing. As in Ch. 7 the experiments

described in this section use filled band initial states to measure time evolution across the BZ.

Fig. 8.7 shows the reconstructed states for an |↑⟩ initial state, across the BZ over one mod-

ulation period, along with the calculated q, t Berry curvature for multiple cases. Panel (a) shows

the micromotion for the |↑⟩ band. Experiment (right) agrees closely with numerical calculation

(left). The pseudospin data are filtered and normalized as we discussed in Ch. 6 and Ch. 7, with

Gaussian root mean squared widths ∆t = 10 µs and ∆q = kR/6, reducing any contributions

from higher band excitations or loss of contrast caused by the filter or imperfection in our mea-

surements. Panel (b) shows the Berry curvature for three cases: the switching protocol for the
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|↑⟩ and |↓⟩ bands, and the single-configuration protocol for a |↑⟩ initial state. Note that the latter

case is not a Floquet eigenstate. Instead it corresponds to an equivalent initial state to our mea-

surements for the switching protocol. The measured data give winding numbers ν↑ = 0.991(5)

and ν↓ = −0.998(4) for the initial |↑⟩ or |↓⟩ states; very close to the ideal values of ±1 and

in very good agreement with values of 0.9994, and −0.9995 for our numerical simulations, de-

termined using equivalent analysis. In contrast for the single-configuration case, shown in the

bottom panel, our data yield 0.01 (2), compared to 0.0019 from simulation, underscoring the

lack of particle transport under that protocol. We use the technique introduced in Sec. 5.4.3 from

Ref. [76] because our data are sampled at discrete points in parameter space. The slight deviation

from integer values arises because the evolution is not perfectly periodic, even for our numerical

simulation.

The integral giving ν↑↓ for the bands in our system is equivalent to the integral we in-

troduced in Sec. 5.5.1 to characterize the quantized displacement in topological charge pumping.

Due to this similarity our system can be thought of as a pair of diabatic topological charge pumps,

with pumping in opposite directions for the two initial pseudospin states.

The topological underpinning of our system closely resembles that of TRS-invariant 2D Z2

topological insulators for the special case where Ŝz is conserved [58]. For this case the states

decouple into |↑⟩ and |↓⟩ sectors each with an associated Chern number cσ. In terms of the sector

Chern numbers, the overall Z2 invariant is defined

n2 = (c↑ − c↓)/2 mod 2. (8.5)
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Figure 8.7: Pseudospin resolved micromotion and Berry curvature used to calculate the topolog-
ical Floquet winding number. (a) State reconstruction (left: theory, right: filtered and normalized
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8.4 Dispersion Away from q = 0

We also present data describing the dispersion of the system found by measuring the drift

velocity at finite crystal momentum. We achieve this by applying a kick to the BEC by moving

one of our dipole trap beams after loading the lattice, in a similar manner to our dephasing

technique, but over a short duration to avoid the spread in q. For the data in this section we

use a kick duration of 5 ms with the strength controlled by the magnitude of the dipole beam

movement.

We calculate the displacement as before, but take into account the nonzero crystal momen-

tum. Revising Eq. 6.12 to account for the nonzero value of q gives

⟨p⟩ =
∑
n

ℏ(2nkR + q)| ⟨k = q + n(2kR)|ψ⟩ |2. (8.6)

This reveals a weaknesses of the method: the result depends highly on the calibrated value of q,

corresponding to how much momentum is imparted by the kick. We determine q after the kick

by observing the average displacement of the momentum orders in ToF as a fraction of the BZ

size, giving the value of q in units of kR. We find this method only works well for relatively small

kicks up to around 10% of BZ, because larger kicks resulted in spreading of the ToF distribution.

Our results for the displacement during our Floquet driving for a range of kick strengths are

shown in Fig. 8.8, starting from the |q, ↓⟩ initial state. Based on theory, we expect the displace-

ment to show the same slope in all cases, with any deviation corresponding to slight curvature

of the Floquet bands in Fig 8.1. The displacement is consistent between the data by ≈ 40%,

showing the qualitative behavior we expect but not providing quantitative confirmation of the q-
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independent drift velocity. The deviation between the slope for different q values does not seem

to follow a trend, suggesting it is likely caused by measurement issues rather than underlying

physics beyond our model.

One possible explanation of this discrepancy is the non-uniformity of our probe imaging

field. Unfortunately our probe has spatial intensity structure on the scale of kR in our ToF dis-

tribution, leading to possible bias in the atom counting. We overcome this for the q = 0 case by

aligning the pattern so that the +2kR and −2kR peaks, which provide the bulk of the signal for

our drift velocity measurements, receive nearly equivalent illumination for q = 0, but this is not

the case for finite q. It is also possible that the timing of the Floquet modulation was not tuned as

to perfect timing as well as the data presented in Sec. 8.2.3.

Stronger kicks produce results where the average slope differed from the q = 0 value by

significantly more than the data reported here. This is likely due to the distorted shape resulting

in an incorrect calibration value for q.

8.5 Conclusion

In this chapter we demonstrated a 1D linearly dispersing system based on nontrivial Flo-

quet topology. The exquisite control and measurability of our ultracold atom system allowed

us to tune our system to the topological configuration and measure the underlying topological

Floquet winding number. The linear dispersion of our system, along with the ability to open

a tunable band gap suggests future application in quantum simulating relativistic massless and

massive particles described by the Dirac equation. It is possible we could combine the periodic

modulation developed in this chapter with the dimerization experiments discussed in Sec. 7.3 to
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Figure 8.8: Displacement at finite q over two Floquet periods.

create states with higher (static) winding number (|ν| > 2). Our result from Sec. 7.3 essentially

used a single tunneling π-pulse to create a state with an effective bond between ↑ and ↓ subsites

separated by one unit cell, giving ν = 2. Applying another tunneling π-pulse under the opposite

configuration, as in our Floquet modulation protocol, would move the effective bond to be ↑ and

↓ subsites separated by two unit cells, corresponding to a model with ν = 3, and so on.

Although the experiment was successful, the required fine-tuned timing was onerous, lim-

iting the applicability of this type of Floquet engineering. This presents an interesting direction

for future work: can this type of system be generalized to be more robust? The fragility of our

system to imperfect timing leads to a general question of robustness. The system is robust against

perturbations to the Floquet Hamiltonian that preserve the spin rotation symmetry. This is rather

limited because such terms result from time-dependent perturbations in the lab frame, and in gen-
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Dataset ΩRF/ER Ω+/ER Ω−/ER

Fig. 8.3 4.371 (7)∗ 12.7 (2) 5.71 (4)
Figs. 8.5, 8.6 4.371 (7)∗ 13.12 (2) 5.3 (3)

Fig. 8.7 4.371 (7)∗ 12.71 (2) 5.7 (1)
Fig. 8.8 4.371 (7)∗ 13.2 (1) 5.3 (3)

Table 8.1: Calibrated lattice parameters used throughout the chapter. ∗Calibrated value for con-
figuration I.

eral static perturbations in the lab frame lead to symmetry breaking in the Floquet frame. Despite

this limitation, we note the connection between our Floquet symmetry protection and dynamical

decoupling [121] where systems becomes immune to particular types of time-varying noise.

Table 8.1 includes the calibrated parameters for the experiments used throughout this chap-

ter. While the details of the lattice parameters are important in determining the microscopic

details of our experiment, the key physics can be understood in terms of the effective tunnel-

ing period and modulation period, hence our choice to express time and crystal momentum in

dimensionless units. Because we commanded positive and negative voltages to the RF mixer

during configurations I and II, they can have slightly different coupling strengths (although we

tried very hard to make them equal). The presented values are from the positive mixer voltage

corresponding to configuration I.
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Chapter 9: Conclusion and Outlook

9.1 Conclusion

The main thrust of this thesis was to explore new ways topology can manifest itself in

quantum systems. We achieved this by quantum simulating the dynamics of 1D bipartite lattice

systems, measuring changing topology during out-of-equilibrium evolution, as well as space-time

topology defined by the dynamics of a periodically modulated Floquet system. In both cases we

were able to directly reconstruct to relevant topological invariants using our crystal momentum-

resolved pseudospin quantum state tomography.

In Ch. 6 we introduced our Raman-RF bipartite lattice implementation, demonstrating our

ability to reconstruct crystal momentum-resolved sublattice populations, as well as our quantum

state tomography technique to reconstruct the full pseudospin state, and our ability to measure

motion and displacement from the time-resolved momentum distribution. We demonstrated the

utility of these control and measurement techniques by measuring the Zak phase in static lattice

configurations as well as the displacement during a tunneling oscillation between sublattice sites.

In both cases our results were in very good agreement with theory. These demonstrations em-

phasize the level of control we have over the lattice system as well as our ability to make detailed

measurements, showing two key features of a good quantum simulation platform.

In Ch. 7 we presented studies of out-of-equilibrium evolution of atoms in our bipartite
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lattice system. We observed changing topology quantified by the Zak phase and winding number,

categorizing evolution scenarios by the presence or absence of symmetries in the initial state and

evolution Hamiltonian. We observed explicit as well as dynamically induced symmetry breaking,

seeing qualitative agreement with theory including states where the winding number jumps by 2

compared to the starting equilibrium state, resulting in topology not present in equilibrium states

of our lattice.

In Ch. 8 we presented a topological Floquet system based on time-modulating our bipartite

lattice. This system has pseudospin-momentum locked linear Floquet bands, making it analogous

to a massless particle described by the Dirac equation. The system’s linear bands are connected

to a topological Floquet winding number related to the micromotion; we measured this topo-

logical invariant as well as the drift velocity for both bands, finding very good agreement with

theory. Although the system required precise tuning, this experiment marks the ability of Floquet

engineering to produce exotic band structures, including features not possible in static systems.

9.2 Outlook

The results presented here are a springboard for future studies of topological physics with

ultracold atoms or other systems. Our pseudospin measurement technique should be applicable

to a range of topological models, so we hope our techniques can be applied to other physics prob-

lems. Future work on the RbK apparatus will likely center on improved imaging and projection

systems, allowing future work to extend our studies to disordered systems. The addition of time-

dependent noise, coupling to auxiliary states, or weak measurement could also extend our results

to noisy or open quantum systems.
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Our experiments used weakly interacting bosons in 1D. The interactions were in fact so

insignificant that non-interacting models yielded very good agreement in most of the cases we

studied. As a result, these experiments do not address the promise of quantum simulation to study

computationally difficult quantum models. Instead our experiments represent a stepping stone

towards more complex quantum simulation efforts and a proof of concept for the experimental

techniques we used. We hope future experiments will take inspiration form our work to study

quantum dynamics in interacting topological models.

One future goal of quantum simulation experiments is studying computationally difficult

models, addressing problems that are difficult or intractable using classical computers [3]. Many

physics models can be studied using quantum Monte Carlo methods on classical computers;

models that have a sign problem are not suited to this approach [122] and thus present potential

opportunities for quantum simulation of classically hard problems. Such problems often involve

interacting systems of Fermions or spins, but topological models with bosons can also be limited

by the sign problem [123]. For example, both the fermionic and bosonic versions of the Laughlin

state associated with the fractional quantum Hall effect [124] suffer from sign problems [123]

making them both potential targets for future ultracold atom quantum simulation efforts.

Other atomic physics systems such as Rydberg atoms [125] or trapped atomic ions [126]

show promising progress toward novel quantum simulation because their strong interaction can

potentially be used to simulate correlated quantum matter. Within the realm of ultracold neutral

atoms, degenerate Fermi gases [4] provide a complimentary set of physical systems for quantum

simulation and quantum gas microscopes [127] provide potential to measure the microscopic

details of quantum simulated systems. It remains to be seen how these tools could be used to

extend our study of topology in dynamical quantum systems.
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Appendix A: RF Source Design

In this appendix, we present a DC powered device to drive oscillatory (AC) magnetic fields

in the megahertz regime. In order to drive reactive loads over a wide frequency range, our device

has a low output impedance and is not impedance matched to a 50 Ω transmission line. Although

our prototype suffers from reliability and ringing issues, it produced AC fields with peak-peak

amplitudes as large as 80 µT at f = 1 MHz at a distance of 4.0 cm from the load coil. Our

prototype operated up to 5 MHz, but future devices based on our design could operate at higher

frequencies. The design uses four transistors in an H-bridge (full bridge) configuration. Our

implementation used gallium nitride field effect transistors (GaN FETs), taking advantage of

their fast switching speed and low on-state resistance. The design has the potential to produce

strong couplings between the internal quantum states of ultracold atoms and could also be used

in nuclear magnetic resonance (NMR) experiments.

A.1 Introduction

Radio frequency (RF) magnetic fields can drive transitions between different internal quan-

tum states of electrons, atoms, molecules, and other quantum systems. Such techniques are

widely used in quantum physics experiments, including NMR, quantum control, and even during

forced evaporative cooling in magnetic traps, an important step in the rapid production of atomic
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(a) The basic model of a load driven by an AC
voltage source.

(b) The basic schematic of an H-bridge. VIn is
provided by an external DC power supply.

Figure A.1: In our design the AC voltage drive for our coils is provided by an H-bridge. During
operation, current flows from the input power supply through one of the two ‘high-side’ switches,
through the load, then through the complimentary ‘low-side’ switch to ground.

Bose–Einstein condensates [128]. These fields are often generated by passing an oscillatory (AC)

current through a wire coil, as shown in Fig. A.1 (a). The required AC drive is typically gener-

ated by an RF amplifier impedance matched to a 50 Ω coaxial transmission line. When driving

an inductively dominated coil, this approach requires a tuned impedance matching network for

the load, which trades off efficiency for broadband operation. In contrast our design does not

rely on resonant elements, and allows for broadband performance without tuning. Our design is

a potential alternative to RF amplifiers for applications from ≈ 10 kHz to 5 MHz.

Our design is based on an H-bridge (full bridge), which consists of four switches as shown

in Fig. A.1 (b). The switches are synchronized so that current flows through the load element

in opposite directions during complimentary parts of the cycle. Even in the ideal case, our de-

vice produces a magnetic field containing many harmonics, which may not be suitable for all

applications. Any field effect transistor capable of high frequency switching could be used to

implement our design. We implemented a version based on gallium nitride field effect transistors

(GaNFETs), motivated by their high maximum switching frequency.
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A.2 Operating Principle

The H-bridge circuit in our design ideally outputs a square wave alternating between +Vin

and −Vin, where Vin is the voltage of the DC input power supply. The output has frequency f and

phase ϕ set by a digital square wave input. The design is similar to a resonant full bridge DC-AC

converter (inverter) without resonant elements. The load element in our design is a coil that acts

as a load with lumped inductance L and series resistance R.

Our maximum operating frequency of 5 MHz corresponds to a vacuum wavelength of

λ = c/f ≈ 60 m, putting any reasonably sized coil safely within the lumped element limit. Our

design also requires that the transmission lines connecting the device to its load be short enough

to be considered lumped elements. In this case the transmission lines add a series inductance

and resistance to the load. Since all our components and transmission lines can be considered

lumped elements, we do not need to operate in an impedance matched configuration. We are

primarily interested in the inductive near-field magnetic field produced by a load coil, which is

proportional to the current driven by our device. The output impedance of our device is low,

allowing for maximum voltage transfer rather than maximum power transfer. This configuration

is desirable for driving an inductive load, where the current is limited by the voltage delivered.

Similar circuits based on metal oxide field effect transistors (MOSFETs) have been used

to generate RF pulse sequences for use in NMR experiments, with [129] or without resonant

elements [130, 131].
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A.2.1 Performance

The load is characterized by its LR time constant τ = L/R. The performance of the device

is particularly simple in two limits: a high frequency limit (τ ≫ 1/f ) where the load resistance

is negligible compared to the inductive impedance and a low frequency limit (τ ≪ 1/f ) where

the inductive impedance is negligible compared to load resistance.

In the inductively limited case the load current will increase linearly at a rate of Vin/L over

each half period, forming a periodic triangle wave. Therefore the maximum current will be

Imax,ind =
1

4f

Vin
L
. (A.1)

In the resistive limit, the load current quickly reaches a maximum value of

Imax,res =
Vin
R
, (A.2)

making a square wave pattern.

In general the load current will increase or decrease as one minus a decaying exponential

over each half period, depending on the sign of the square wave output voltage. The current

waveform is given by

I(t) = ±
(
Vin
R

−
(
Imax +

Vin
R

)
e−t/τ

)
, (A.3)

where t denotes the time after the last voltage switch and the +(−) sign applies when the output

voltage is +(−)Vin. As in the limiting cases, the waveform reaches its peak value after one-half
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period at t = T/2. The peak current is

Imax =
Vin
R

tanh

(
1

4fτ

)
. (A.4)

Configurations representative of these three regimes are shown in Fig. A.2. The conditions for

the two limiting cases as well as the general result are summarized in Table A.1.

The maximum current is always proportional to the input voltage, so we can control the

amplitude of the load current by setting Vin. In principle this allows for the creation of a wave-

form where the amplitude changes with time. The rate of change in amplitude is limited by the

response time of the DC power supply.

Limit Condition Timescale Maximum Current

Inductive fL≫ R τ ≫ 1/f Vin/(4fL)
Restive R ≫ fL 1/f ≫ τ Vin/R
General None All (Vin/R) tanh(1/4fτ)

Table A.1: Comparison of the two limiting cases of operation where the load is dominated by
resistance or inductance, as well as the general expression.

In all cases, we are primarily concerned with the amplitude of the first harmonic component

(i.e. the fundamental component, or the carrier) of the Fourier decomposition of the current.

This is the desired component of the waveform, while higher frequency components are “side

products” of the design. When f is close to resonance with an atomic transition, higher frequency

components will have negligible physical impact (as long as there are no other transitions resonant

with higher harmonics), so the effective AC field will be equivalent to the fundamental component

of the Fourier decomposition. Our approach is similar one used with non-resonant circuits in

NMR, in which the nuclear spins can be treated as band-pass filter that rejects frequencies far
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Figure A.2: The output voltage waveform for our circuit (red) and the resulting load current
in three regimes: inductively dominated load (small τ ), restively dominated load (large τ ), and
intermediate.

from resonance [130].

We quantify the theoretical performance of our device by calculating the Fourier series

decomposition for its current waveform, which is proportional to the magnetic field waveform

in the lumped element limit. Our Fourier series convention is described in Sec. A.6. In general

the Fourier decomposition of the current for our ideal device only includes odd multiples of the

fundamental frequency, as can be seen in the well known limiting cases of the triangle wave and

square wave, where the amplitude of the nth Fourier component is zero for even n and for odd n

decreases as 1/n for the square wave case or 1/n2 for the triangle wave case [132]. The relative

amplitude of the different Fourier components for three representative cases is shown in Fig. A.3.

In all three cases the fundamental frequency component has a significantly larger amplitude than

all other components. The second most significant Fourier component has amplitude around 33%

of the fundamental in the small τ (resistive) limit and under 20% of the fundamental component

in the other cases. The relative amplitude of the higher harmonics decreases as the load enters

the inductively dominated (large τ ) limit.
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Figure A.3: (a) The magnitude of each component in the Fourier decomposition of the current
waveform, normalized in the three cases of operation shown in Fig. A.2. The cases are an in-
ductively dominated load, where the load current is approximately a triangle wave, a resistively
dominated load, where the current is approximately a square wave, and an intermediate case
where the load has significant resistance and inductance. (b) The amplitude of the fundamen-
tal Fourier component as a function of L with fixed R = 1 and as a function of R with fixed
L = 1/2π (|ZL| = 1).

The impedance for our ideal load is [133]

Z = ZR + ZL

= R + i(2πf), (A.5)

with magnitude

|Z| =
√

(2πfL)2 +R2. (A.6)

The amplitude of the fundamental Fourier component is determined by the total load impedance

|Z|—varying L or R while holding |Z| constant does not change the amplitude. The carrier

amplitude decreases inversely with |Z|. Fig. A.3 (b) shows how the amplitude of the fundamental

component changes with variable R and L while the other parameter is held fixed.
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(a) The input and signal buffering stages for our
prototype circuit.

(b) The gate driver and H-bridge portion of our
circuit. The upper and lower PE29102 differ
only in the nets connected to their respective
phase control pins, and the inclusion of a TVS
diode, which helps protect both gate drivers.

Figure A.4: The schematic of our prototype design. In this iteration the power for the board (the
digital buffers and gate drivers) is supplied by a separate input from the main coil power. Earlier
prototypes had one set of power inputs, with board power provided by the main coil power supply,
controlled by a linear regulator.

A.3 Prototype

We implemented the design with a prototype circuit using GS61004b FETs from GaN

Systems [134] for the four main switches. The GanFETs are rated for a drain-source voltage of

100 V and a drain current of 45 A. Their on state resistance is rated at 5 mΩ. The GaNFET gates

are driven by a pair of PE29102 half-bridge gate driver integrated circuits from pSemi [135].

The relative phase of the gate drive waveforms is set by the phase control pin of each PE29102.

Setting the two gate drivers to be one half cycle out of phase allows the FETs to operate as an H-

bridge. At the rated source current of 2 A, the PE29102 can supply the specified maximum gate

charge of 6.2 nC for each FET in 3.1 ns. With a rated current sink capability of 4 A, the drivers

can discharge the gates in half the charging time. The PE29102 supports switching frequencies
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Figure A.5: The prototype GaN FET based H-bridge PCB. The two forward facing banana con-
nectors connect to DC supplies that power the board and the main coils, while the rear banana
connectors connect the prototype to the coils. We also worked with smaller prototype boards
powered by a single DC supply.

up to 40 MHz and includes a tunable deadtime to prevent cross conduction. 1 We tuned our

deadtime to be 4 ns based on the parameters provided in the PE29102 datasheet. The PE29102

gate drivers are used with an external bootstrap diode and 100 nF capacitor that acts as a reservoir

of charge when the driver energizes the ‘high-side’ gates.

Our design also includes an interlock circuit that enables the gate drivers when there is an

input signal, and disables them when there is no input. The interlock consists of a non-inverting

digital buffer that shifts the HIGH level of the input transistor-transistor logic (TTL) signal to 5

V, an RC low pass filter, and an inverting digital buffer capable of level shifting the filtered signal

from 1.65 V to 5 V. The inverting, level-shifting buffer outputs 0 V when the device receives an

input signal, and 5 V when there is no input. This signal is sent to the EN pin of each PE29102

gate driver. Our full circuit schematic is shown in Fig. A.4.

Our prototype consists of a two-layer printed circuit broad (PCB) fabricated on 1 oz. cop-

per, shown Fig. A.5. The control signal is sent to the board through a BNC connector, while

1Cross conduction (“shoot through”) refers to current passing through a complementary pair of FETs during the
switching portion of the cycle.
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the main and board power cables attach via banana connectors. The load coil is also attached

by banana connectors. We were able to use this prototype to test its performance, but experi-

enced several failures of components after moderate use, including the gate drivers, GaNFETs,

and buffers in the the interlock system.

When testing an early prototype, we increased the input voltage over 20 V, resulting in

some of the GaNFETs releasing a small amount of smoke and becoming discolored. The device

stopped working after this. Although this input voltage is well within the specific drain sink

voltage range for our GaNFETs, we believe this configuration results in spikes on the 5 V power

rail. Since this rail powers the gate drivers, its level determines the voltage delivered to the FET

gates during the ON portion of the cycle. GaNFETs are very sensitive to gate-source voltages

above 7 V, and we believe transient gate voltages resulted in board failure at input voltages above

20 V.

We decided to use a secondary power supply for the on board electronics and include

transient voltage suppression diodes in order to reduce the fluctuations on the 5 V power rail.

We did see a reduction in transients on the 5 V rail, but the prototype based on this design

ultimately failed due to gate driver issues. We recommend that future implementations of the

design make use of a four-layer PCB to enhance ground plane connectivity and shield components

from electromagnetic pickup.

A.4 Testing and Performance

We tested our prototype with a load coil mounted a distance of z = 4.0 cm from a smaller

test coil. This configuration represents one half of our design configuration, which includes two
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coils separated by 8.0 cm, so that the field at our desired location would be double the field

produced by one coil.

We determined the AC magnetic field at the test location by measuring the voltage that

develops across the test coil due to the changing magnetic flux it experiences. From Faraday’s

law we can infer Vt = −Φ̇t [136]. Φt can be found from the time integral of Vt up to an offset,

which we set so that the Φt waveform has averages to zero. We can find the spatially averaged

magnetic field by dividing Φt by the pickup coil area.

The performance of our prototype is primarily characterized by the Fourier amplitude of

the magnetic field waveform at the fundamental frequency f . The amplitudes of higher frequency

components characterize undesirable side products of our device.

Fig. A.6 shows a simple example of our analysis for data at a carrier frequency of f = 1.0

MHz taken with an n = 2 turn coil and a series load resistance of 0.66 Ω (consisting of two

resistors with 0.33 Ω). High frequency noise in the measured coil voltage waveform is suppressed

by the integration, so theB(t) waveform closely resembles the ideal case discussed in Sec. A.2.1.

The relative size of the different Fourier components closely resembles the ideal case shown in

Fig. A.3. Even multiples of f have much smaller amplitude than odd ones, and the relative

amplitudes of the odd components falls off as nearly 1/n2, the theoretical scaling for a triangle

wave.

We compared the inferred current waveform to the voltage drop measured across one of the

load resistors. We converted the load current to an on axis magnetic field by dividing by the load

resistance and multiplying by an expression from magnetostatics.

B(z) =
µ0R

2I

2(z2 +R2)3/2
(A.7)
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This yielded the waveform shown in Fig. A.6b. This approach introduces extra noise owing to

EMF pickup from the leads used to measure the voltage drop. Aside from the high frequency

noise, the resistive measurement agrees qualitatively with our inductive approach, though the

amplitude is approximately 70% of the inductive measurement. One potential explanation for

this moderate discrepancy is the connection wires used in the inductive measurement increasing

the effective pickup coil area.

Since the performance of our design should improve with reduced overall impedance, we

switched to a single turn coil with minimal load resistance (measured to be 0.10 Ω) for further

testing. We took data in this configuration at frequencies from 1.0 MHz to 5.0 MHz with in-

put voltages from 6.0 to 14.0 V. Fig A.7 (a) shows the inferred magnetic field for 1.0 MHz at

14.0 V along with three truncated Fourier decompositions. This waveform shows that the pro-

totype suffered from significant ringing (undesirable high frequency noise). This ringing should

be inconsequential for our proposed atomic physics applications, since it is far from resonance

with any transition, but it may make the devices less attractive for other applications, and may

contribute to reliability issues.

We compare the carrier amplitudes across our range of test parameters in Fig. A.7 (b).

As expected, the carrier amplitude decreases monotonically with frequency and increases with

input voltage. For an ideal device driving a purely inductive load, the amplitude should decrease

linearly with frequency and increase linearly with voltage. We see minor deviations from this

prediction, but the general trend is reflected in our data. We were, however, surprised to find

that the carrier amplitude for the magnetic field in this configuration was significantly smaller in

this configuration than in our higher impedance configuration, with our highest amplitude case

(f = 1.0MHz, VIn = 14.0 V) having roughly one fifth the amplitude of the previous case. This
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suggests that our prototype performs better with a moderate impedance load.

Fig. A.7 (c) shows the Fourier amplitudes for a fundamental frequency of 1.0 MHz and

5.0 MHz. In both cases there are secondary spikes around 35 MHz and 90 MHz, and the ampli-

tudes of those frequency components are similar in the two cases, but for a 1 MHz carrier, the

fundamental frequency is the largest peak, while in the 5 MHz case the carrier is smaller than

the secondary peak at 35 MHz. This indicates that ringing amplitude does not depend strongly

on the carrier frequency, and contributes a larger portion to the signal when operating at higher

frequencies. We note with some surprise that even multiples of the carrier frequency feature

strongly in our measured signal, in contrast to the ideal theoretical case shown in Fig. A.3 and

our measurements with a higher impedance load in Fig. A.6.

We can tell from the partial Fourier decomposition shown in Fig. A.7 (a) that components

with frequency below 20 MHz determine the general shape of the waveform, while the peak

around 35 MHz accounts for the persistent ringing. The high frequency ringing present mainly

near the switching points corresponds to the broad peak around 90 MHz.

The qualitative differences between the data in Figs.A.6 and A.7 indicate that using a higher

impedance load with some load resistance might reduce ringing and provide better performance.

A.5 Conclusion

Our design is a potential broadband alternative to commercial RF amplifiers for atomic

physics experiments; however, a more robust implementation will be required for the design to

be useful in a laboratory setting. The design is well suited to situations where a large coupling

strength is required, and the coupling strength is constant for a long duration or changes slowly.
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Figure A.7: Performance with negligible load resistance and a single loop coil across a range of
frequencies and input voltages. (a) Measured pickup coil voltage and average magnetic field from
an inductive measurement at f = 1.0 MHz. The blue waveform is the integral of our measured
pickup coil voltage, while the red and purple waveforms are Fourier decompositions including
only a finite number of terms. (b) Carrier Fourier amplitudes at f = 1.0 MHz through 5.0 MHz
at all tested input voltages. (c) Fourier amplitudes at f = 1.0 MHz and 5.0 MHz up to 100 MHz.
The values shown are for an input voltage of 14V and reflect the qualitative shape of the Fourier
components for lower input voltages.
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This makes the design attractive for producing a field for RF “dressing,” a technique that can be

used to reduce negative the effects of low frequency environmental noise [137]. The design could

also be modified for use in NMR experiments.

We designed the device to drive a single coil, with the intention for a pair of devices to

drive two coils separated by several cm. Using two devices allows the coils to be operated in

a Helmholtz configuration (producing a spatially homogeneous field) or anti-Helmholtz config-

uration (producing a spatially inhomogeneous field) depending on the relative phase of the two

devices. Additionally using a separate device for each coil allows for cable length to be mini-

mized, reducing the effective load inductance. Should larger coupling strengths be required, new

implementations of the design could in principle allow for input voltages up to 100 V.

A.6 Fourier Coefficients

We quantify the different frequency components waveform with period T = 1/f0 using

complex Fourier coefficients [132]. For a time domain function f(t) the coefficients are defined

cn =
1

T

∫ T/2

−T/2

dtf(t) exp

(
−i2πn

T
t

)
, (A.8)

so that the time domain function is given by

f(t) =
∞∑

n=−∞
cn exp

(
+i

2πn

T
t

)
. (A.9)
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The cn coefficients map to the cos and sin coefficients (an and bn) as

c0 = a0

cn = 1
2
(an + ibn) : n > 0

cn = 1
2
(an − ibn) : n < 0. (A.10)

Conversely,

an = cn + c−n

bn = i(c−n − cn). (A.11)

The phase of cn determine the relative phases of the different frequency components of

f(t) . We are interested in total amplitude at a give frequency; this is given by

√
a2n + b2n =

√
(cn + c−n)2 − (cn − c−n)2

=
√

(2Re(cn))2 − (2i Im(cn))2

= 2|cn|. (A.12)

In our intended use case, performance is determined by the Fourier amplitude at the carrier fre-

quency. Note that the peak-to-peak amplitude for a given frequency component is twice the

Fourier amplitude of Eq. A.12.
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Appendix B: Imaging systems

In this appendix, we describe the design and construction of a new custom imaging objec-

tive for the RbK experiment. We begin by introducing the basic operating principles of imaging

systems and how to quantify their performance. Next, we describe the design of our custom

objective. Finally, we conclude with the performance of prototypes based on our design.

B.1 Imaging Basics

An imaging system is a set of optics that collects light from points in the object plane and

focus them to points in the image plane. We can use a ray optics picture to understand many

aspects of imaging systems. Each point in the object plane can be thought of as emitting a set

of rays in all directions. Of those rays, a subset will be able to propagate through our imaging

system and will be focused by the optics to converge at a point in the image plane. The ray at the

center of each bundle is called the chief ray, while the rays at the edge (i.e the rays with the largest

angle from the chief ray that can propagate through the imaging system) are called marginal rays.

Only a finite set of points emit rays that can travel through the imaging system at all; these

points define the field of view. The field stop is whatever aperture in the system limits the field of

view (i.e. the surface the blocks chief rays outside the field of view from propagating through the

system). In contrast, the aperture stop is the aperture in the system that limits the marginal rays.
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B.1.1 Keplerian telescope

A common modality of image forming systems is the Keplerian telescope, consisting of

two positive focal length lenses separated by a distance of f1 + f2. This setup can act both as a

microscope, taking diverging rays from an object plane and focusing them to an image plane, or

as a telescope, taking in parallel rays (corresponding to an infinite distance object) and outputting

parallel rays. These two configurations are shown in Fig. B.1. When acting as a microscope the

first lens is place a distance f1 from the object plane, and the image plane is located a distance f2

from the second lens.

The magnification of a Keplerian imaging system is m = −f2/f1, with the minus sign

corresponding to the inverted image produced by the system. In a similar way to magnification

of an image, a Keplerian telescope can be used to expand or compress a laser beam.

We call the first element in a Keplerian imaging system the objective lens (or just objective).

For the simplest case the objective is a single lens; it may also be multiple lenses forming a

compound objective. The second lens in the system is called the tube lens (equivalently this lens

is called the eye lens in a telescope [138]). The tube lens can also be a compound lens system,

although it is commonly a single lens. This is because in a microscope configuration, the tube

lens is on the low numerical aperture (NA) side of the imaging system (as seen in the shallow cone

angle on the right side of Fig. B.1 (b)) and thus its optical performance is typically not a limiting

factor. Typically commercially available achromatic doublets are used in this roll because of their

flexibility, good optical performance, and simplicity to implement.

We can use multiple imaging systems in series; in this case the second imaging system is

called an optical relay, which uses the image formed by the primary imaging system as its object.
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Figure B.1: Schematic of Keplerian telescope operating as a telescope (a) and microscope (b)
along with ray labels (c). The telescope configuration corresponds to an object at infinite distance
while the microscope corresponds to a finite object distance. In both cases the lenses have a 1/5
focal length ratio giving a magnification of m = −5.
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We will elaborate on optical relays in Sec. B.1.5

B.1.2 Numerical aperture and resolution

All imaging systems accept rays at a finite set of angles, leading to a finite resolution. This

is connected to the wave nature of light, so the best possible optical performance for a given

acceptance angle is called the diffraction limit. We call the angle between the chief ray and the

marginal ray α and use it to define the numerical aperture

NA = sinα, (B.1)

where we have assumed the imaging medium has index of refraction of n = 1. Fig B.1 (c) shows

the chief and marginal rays along with the angle α for NA = 0.25. The NA corresponds to how

much light—the total illumination as well as what angular components—from a small region of

object space is allowed through the imaging system [138]. A system with |m| > 1 will have

a wider cone angle in the object plane compared to the image plane, meaning the object space

NA, NAO is larger than the image space NA, NAI by a factor of |m|. This means that the optical

performance required for the tube lens is typically less demanding than the objective lens in a

microscope, as we introduced in the previous section.

To model an ideal imaging system, we start with the electric field distribution associated

with the object. We will assume the object is illuminated with monochromatic light of wavelength

λ. It is useful to think about image formation in terms of the transverse distribution of the optical

field and intensity. Fourier components of the object field with transverse spatial frequency less
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than

kNA = NA
2π

λ
(B.2)

will be able to pass though the imaging system. All field components with higher spatial fre-

quency will be blocked by the aperture stop, resulting a truncated field. To model the resulting

image, we take the inverse Fourier transform of the field, giving the distribution at the image

plane, then take its magnitude squared to find the image intensity:

I(x) = |FT (E(k)) |2. (B.3)

As we will explore in the next section, the resulting image has finite resolution, quantified by the

NA of the system.

B.1.3 Performance

It is illuminating to consider how a finite NA imaging system modifies light from a point

source (i.e. an object having infinitesimal x-space size and infinite k-space size). For a diffraction

limited system, the resulting pattern is an Airy disk, with size determined by the NA of the

system.1 This defines the point spread function (PSF), which describes an imaging system’s

response to a point source. Along with the PSF, which quantifies performance in real space,

imaging performance is captured by the optical transfer function (OTF), which describes how the

system transmits different Fourier components of the image pattern. The OTF is defined as the

Fourier transform of the PSF. The modulus of the OTF, or the modulation transfer function (MTF)
1The Airy pattern results from a circular aperture in 2D. Note that if the calculation is done in 1D the result is a

sinc2 function which is qualitatively similar but quantitatively different from the Airy pattern.

183



−3 −2 −1 0 1 2 3

x (µm)

0.0

0.5

1.0

2π/(2kNA)
Rayleigh 2π/kNA

PSF(a)

0 100 200 300 400 500 600 700 800

k/2π (cycles per mm)

0.0

0.5

1.0 1/RkNA 2kNA

MTF(b)

Figure B.2: Point spread function and corresponding MTF for an ideal imaging system with
NA=0.25. Dotted lines give the lengths and wavevectors associated with the Abbe resolution, the
Rayleigh criterion, and the spatial cutoff frequency.

describes how different spatial frequency components will be attenuated by the imaging forming

process. The lowest spatial frequency that is nonzero for the MTF is the cutoff frequency, which

for an ideal imaging system is 2kNA. Fig. B.2 shows the PSF (Airy disk) and MTF for an ideal

imaging system with NA = 0.25 using imaging light with λ = 780 nm, generated using the

truncation and Fourier transform method discussed in the context of Eq. B.3.

The most commonly used quantifier for the resolution of an imaging system is the Rayleigh

criterion, which is based on the image space size of a diffraction limited spot. Specifically the

resolution is R = 0.61λ/NA, corresponding to the distance to the first minimum of the Airy

disk. If we assume two point sources produce an image consisting of two overlapping Airy

disks, we find we can easily resolve the points as separate if they are separated by at least R.
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A competing, though less popular definition is the Sparrow criterion: we can just barely tell the

difference between two overlapping points and a single point if they are separated by at least

0.5λ/NA = 2π/(2kNA) [138].

Considering the Fourier space representation of spatial features of the object leads to the

Abbe resolution criterion. By considering a spatial feature with a particular wavevector as a

diffraction grating, we find that for on-axis illumination, the smallest features that are allowed

through the system have k = NA/λ. Generalizing to oblique illumination can allow higher

wavevector components through, up to k = 2NA/λ [139]. The on-axis limit corresponds to

the case we will discuss in the context of coherent illumination in Sec. B.1.4, while the oblique

illumination case gives a resolution corresponding to the OTF cutoff frequency and the Sparrow

criterion.

The cutoff frequency, defined based on Fourier space analysis, corresponds to the length

scale of the Sparrow criterion and a slightly smaller length than the Rayleigh criterion, as shown

in Fig. B.2. Based on the coordinate space definition of the Rayleigh criterion, this means that

images produced by a diffraction limited imaging system will have subtle features on a length

scale below what is easily discernible.

As we have seen, even ideal imaging systems have finite resolution controlled by the nu-

merical aperture of the system; with the exception of super resolution techniques [140], all op-

tical systems are subject to the diffraction limit. Other effects, in particular optical aberrations

can further limit the optical performance of a real-world imaging system. To quantify this loss

of performance, we use the Strehl ratio, which compares the height of the PSF for an imaging

system to that of an ideal system. This can be thought of as quantifying how much aberrations

spread out the imaging-forming light beyond a diffraction-limited spot. The Strehl ratio can also
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be calculated by comparing the area under the MTF to the area for an ideal imaging system [138].

B.1.4 Coherent and Incoherent Illumination

In the previous section, we considered the spatial frequency components from an infinites-

imal (pinhole) source, and found that spatial frequency components up to 2kNA appeared in the

image. This corresponds to the resolution cutoff for ‘incoherent’ imaging, where the image is

formed by interference between different transverse frequency components of the scattered field,

with maximum transverse frequency kNA, so that the maximum frequency in the interference pat-

tern is 2kNA. In contrast in the ‘coherent’ imaging modality, the image is predominately formed

by interference between a strong ‘probe’ field and the scattered field. As with incoherent imaging,

the scattered fields have maximum transverse frequency kNA, but because the image is formed

by interference between these fields and the spatially uniform (k = 0) probe field, the maximum

spatial frequency component in the image is kNA. Because our absorption imaging uses a probe

field, it is coherent imaging, and the resolution limit corresponding to kNA applies.

This physics is equally applicable to describe imaging and projection, for example of digital

micromirror device (DMD) patterns. In Fig. B.3 we consider light reflected by a random subset

of DMD pixels, propagating through an ideal imaging system. (a) shows the resulting image

after passing through an ideal imaging system with NA = 0.25. (b)-(d) describe the spatial

Fourier components of the resulting image. We find that the image contains a ‘DC’ peak at

k=0, a strong plateau bounded by kNA corresponding to the coherent imaging component, and a

much weaker component at higher k corresponding to incoherent image formation. For practical

purposes the dominant part of the projected image can be assumed to have a spatial resolution
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Figure B.3: Fourier analysis of imaging or projection of a random pattern. (a) Coordinate space
image after propagating through a system with NA = 0.25. (b) 2D Fourier space decomposition
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187



limit corresponding to kNA; components with finer spatial features are approximately two orders

of magnitude weaker.

B.1.5 Optical relays

A second imaging system can be added in series with the primary to change the magnifica-

tion or extend the system. In this configuration, the object for the secondary ‘relay’ system is the

image formed by the primary system. The total magnification is the product of the magnification

for the two systems M = mobjmrelay. This makes relay systems an attractive option to achieve a

high magnification with limited size. Additionally when using a Keplerian relay with a Keplerian

primary imaging system, the net magnification will be positive, corresponding to a non-inverted

image.

Because ray cone size is different at different part of the imaging system, the effective

numerical aperture is different at different parts of the relay. For a Keplerian imaging system

with an object space space NAO,p, the image space will have NAI,p = NAO,p/|m|. Since a

relay takes the intermediate image formed by the primary imaging system as its object, the final

image space NA will be further modified to NAI,r = NAO,p/(|mp||mr|). When using a relay for

magnification, this means the optical performance requirement of the relay optics are lower than

the requirements for the primary optics.

B.2 Imaging Objective Design

Next, we move from the basics of imaging systems to describe our imaging system design.

The starting point for our imaging objective is the well known design of Alt [141], which uses four
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singlet lenses and achieves diffraction limited performance while compensating for the presence

of a vacuum window. Bennie et. al. extended this approach, creating a similar design using

only commercially available singlet lenses [142]. Our choice of imaging solutions is limited by a

relatively long working distance (30. mm from the object plane to the window, and at minimum

39 mm from the object plane to the first lens of the objective) and the presence of our vacuum

window (9 mm fused silica). This marks an advantage of cell based ultracold atom experiments

which are often compatible with commercial objectives with shorter working distances.

Our goal was to achieve diffraction-limited performance at the highest NA possible, while

using off-the-shelf optical components. Our criterion for desired performance was a Strehl ratio

greater than 3/4 over a field of view of at least 100µm. To this end we used a commercially

available imaging aspheric lens [Edmund Optics #12-448]. We used this lens as an element

in the general form of the Alt/Bennie objective, then optimized the performance, using Zemax

OpticStudio to change the surfaces and spacing of the remaining three lenses. Because of the

high design NA (up to 0.5) our largest design challenge was spherical aberration from the flat

window as well as any spherical lenses we included in the design. Following this optimization,

we went through a a process of stock lens matching, finding suitable catalog lenses to replace

the optimized lenses in our optical design. We proceeded in cycles of optimization and stock

matching until all the lenses in the design were comically available, and the performance met our

goal.

We produced two prototype designs in this way. In the first, we matched the aberrations

of a compound objective to a compound tube lens, using four lenses total. The cross section and

technical description for this design are shown in Fig. B.4. In the second we designed a corrected

compound objective consisting of four lenses that could be used with any tube lens (Fig. B.5).
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Figure B.4: Prototype acting as a complete imaging system.

The second approach is greatly preferred since it groups the system into individual elements,

with the aberrations corrected within each element. Furthermore it allows the magnification to

be changed by replacing the tube lens with any appropriately performing optic, where the first

would require a careful redesign to give optimal performance.

Figs. B.6 and B.7 show the PSF, obtained by measuring the image produced from a 1µm

pinhole, for our two prototypes. For the first case (design Fig. B.4 and results Fig. B.6) the

primary objective has a magnification of mp = 4.5 (obtained from Zemax simulations); we

combined with with a relay having mr = 5 for a total magnification of 22.5. For the second

(design Fig. B.5 and results Fig. B.7) we used a tube lens with f = 500mm for a primary

magnification of mp = 9.6 and a relay with mr = 10 so that the total magnification was 96.

In both cases the observed system performance approximately corresponds to an NA of

around 0.2, much less than the design NA of 0.45, although the limiting aperture in our system

would be compatible with NA up to 0.45. We suspect that the deviation is due to uncorrected
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Figure B.5: Prototype acting as an infinity corrected objective.

spherical aberration. This could be caused by deviations in the lens spacing of our prototype

compared to the design, or by deviations in the optics from their specified parameters. The rays

from parts of the aperture beyond the cone angle given by NA = 0.2 are not focused at the

focal plane and thus show up as background in the measured PSF. The radial averaging and

fitting in Figs. B.6 and B.7 was done after a background subtraction, where the background was

approximately 20% of the peak brightness, including contributions from noise, stray light as well

as aberrated components of the image.

B.2.1 Measuring the vacuum window thickness

The optimal lens placement in our design depends strongly on the thickness of our vacuum

window. Our specification for the window had a tolerance of 0.25 mm (approximately 3%)

which is too large for the optical performance we want. Based on this, we decided to measure the

window thickness using reflected laser light, using the specified index of refraction and measuring
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Figure B.6: Measured PSF for imaging system prototype for design in Fig. B.4. Because of
an additional optical relay the total magnification was M = 22.5. (a) 2D image. (b) Radially
averaged image and fit to the ideal PSF, given by an Airy disk. (c) Cross sections of the 2D
Fourier transform, corresponding to the MTF. The “x” marks the location of the cutoff frequency
corresponding to the first 0 in the PSF.
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Figure B.7: Measured PSF for imaging system prototype for the infinity corrected design in
Fig. B.5. Because of an additional optical relay the total magnification was M = 96. (a) 2D
image. (b) Radially averaged image and fit to the ideal PSF, given by an Airy disk. (c) Cross
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the cutoff frequency corresponding to the first 0 in the PSF.
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Figure B.8: Window thickness measurement geometry.

the separation between two reflected spots to infer the thickness. Fig. B.8 shows the geometry

and the measured quantities: θ1 and m. By fixing the angle of the CCD screen to θ1, we set the

relative screen angle ϕ to zero, so that the measured spacing equals d. Deviation between the

camera angle and θ1 is quantified by ϕ, which ideally would be 0, but is a potentially large source

of systematic error. θ2 can be obtained from θ1 using Snell’s law and tabulated values for n for

air and fused silica n0 = 1.00029, n1 = 1.4607 [143].

θ2 = sin−1

(
sin(θ1)

n0

n1

)
(B.4)

The thickness can be obtained from the measured quantities via

l = d sec θ1, (B.5)

t =
l

2
cot θ2. (B.6)

To perform the measurement, we used a 532 nm laser and a fiber collimator mounted to

a rotational stage acting as a makeshift goniometer, set so that the beam left at an angle of 45.0

degrees relative to the window (θ1). We chose this so that we could set the angle of the camera
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to 45 degrees using a level (no goniometer was available to mount the camera.) Our measured

value of d = 7.1(2)mm corresponds to a thickness of 9.0(3)mm, agreeing with the specified

value of 9.0mm. The uncertainty in the calculated value is not an improvement over the specified

tolerance, so this method may require better equipment to deliver a precision result.
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Appendix C: Creating solitons with controllable and near-zero velocity in Bose–

Einstein condensates
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Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates

A. R. Fritsch , Mingwu Lu , G. H. Reid , A. M. Piñeiro, and I. B. Spielman *

Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20899, USA

(Received 29 January 2020; accepted 14 April 2020; published 20 May 2020)

Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-
Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the
stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation has
hindered experimental progress. Here we create dark solitons in highly anisotropic cigar-shaped BECs with
arbitrary position and velocity by simultaneously engineering the amplitude and phase of the condensate wave
function, improving upon previous techniques which explicitly manipulated only the condensate phase. The
single dark soliton solution present in true one-dimensional (1D) systems corresponds to the kink soliton in
anisotropic three-dimensional systems and is joined by a host of additional dark solitons, including vortex ring
and solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound speed. The
observed soliton oscillation frequency suggests that we imprinted solitonic vortices, which for our cigar-shaped
system are the only stable solitons expected for these velocities. Our numerical simulations of 1D BECs show
this technique to be equally effective for creating kink solitons when they are stable. We demonstrate the utility
of this technique by deterministically colliding dark solitons with domain walls in two-component spinor BECs.

DOI: 10.1103/PhysRevA.101.053629

Localized excitations such as vortices and kink solitons
in atomic Bose-Einstein condensates (BECs) have attracted
much attention. Solitons are long-lived shape-preserving soli-
tary waves typically stabilized by a balance between linear
and nonlinear effects [1–5]. Experiments with dark solitons
in repulsively interacting systems first identified different
regimes of stability for solitons [6–8] before exploring ef-
fects including soliton interactions [9] and diffusion [10]. For
all their success, these experiments could deterministically
produce solitons within only a narrow range of velocities.
Inspired by Ref. [11], we demonstrate a straightforward tech-
nique for creating dark solitons that provides full control over
their position and velocity.

The propagation velocity of dark solitons in quasi-one-
dimensional (1D) systems determines many of their proper-
ties; indeed, their maximum speed is bounded by the local
speed of sound c in their host BEC. A pair of colliding dark
solitons will, long after the collision, have unchanged shape
and velocity, with the effect of interaction being only in a
displacement in their asymptotic trajectories [12]. For suffi-
ciently small relative velocities the collision can be viewed as
if the two solitons reflect from each other like equal-mass hard
spheres [13], giving the same asymptotic velocity and shapes
as if they had passed through each other. This is sometimes
referred to as a “noninteracting” collision.

A dark soliton manifests as a moving density depletion
in a BEC (we call a stationary density depletion a “black
soliton”), whose width increases with velocity and whose
depth decreases with velocity. Across a soliton, the underlying
BEC wave function has a phase difference that determines
its velocity. In anisotropic three-dimensional (3D) systems

*ian.spielman@nist.gov; http://ultracold.jqi.umd.edu

such as ours, this overall longitudinal phase drop can be
accompanied by transverse structure, leading to a host of
distinct dark solitons. The single dark soliton solution present
in true 1D systems, for which a transverse structure is absent,
corresponds to the kink soliton in anisotropic 3D systems.
The solitonic vortex is another example of a solitonic exci-
tation present in 3D systems; although its velocity-dependent
longitudinal phase drop and density profile are qualitatively
similar to those of kink solitons, as a vortex, it also has a phase
singularity where the density vanishes. In three-dimensional
traps, kink solitons are stable only for a range of velocities
that depend on the trap geometry [1]. In regimes where kink
solitons are unstable, solitonic vortices are stable. For our
system, the kink soliton is predicted to be unstable except
for velocities very close to c, and for almost all parameters,
the solitonic vortex is predicted to be the only stable solitonic
excitation [14].

There is no single and universally agreed upon definition of
a solitonic vortex in the literature. One definition hinges on the
fact that a vortex in a channel whose transverse size is much
smaller than its length and has the same asymptotic phase
profile as a soliton in the longitudinal direction [15]. While
the other definition notes that when the transverse harmonic
oscillator length becomes comparable to the healing length,
the vortex density profile is reminiscent of a kink soliton [16].
In this paper we remain agnostic about the choice of defini-
tion, but our experiment corresponds to the first definition.

The established technique for producing dark solitons sim-
ply consists of laser-imprinting a longitudinal phase differ-
ence onto the BEC wave function. A soliton at rest typically
has a density profile width of about 0.5 μm, while its phase
profile is a step function. Imaging systems used to optically
imprint the phase change typically have resolution limits of
1.5 μm or more. Furthermore, the established technique does
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not reduce the density in a controllable way at the soliton
position. Instead, the optical dipole force resulting from in-
tensity change at the soliton position changes the density
in a way that is not generally consistent with the imprinted
phase difference. All these features give poor overlap with
the desired soliton wave function [6,7,10]. As a result, these
experiments have only successfully produced solitons moving
at a substantial fraction of the sound velocity. We overcome
this limit by simultaneously engineering the BEC density and
phase. This control allows us to improve the spatial mode-
matching between the applied potential and the desired soliton
wave function. This allows us to create solitons with speed
ranging from zero to half the velocity of sound.

This manuscript is organized as follows: First, we sum-
marize the essential properties of dark solitons in repulsively
interacting 1D BECs, which still captures the essential physics
for dark solitons in anisotropic 3D systems; second, we de-
scribe our experimental methods for imprinting and detecting
solitons; third, we demonstrate our protocol and explore its
range of applicability; and lastly, we exhibit the utility of this
approach by colliding a dark soliton with a domain wall in a
two-component spinor BEC.

I. DARK SOLITONS IN REPULSIVE BECS

Bose-Einstein condensates well below their transition tem-
peratures, i.e., with negligible thermal fraction, are well de-
scribed by the Gross-Pitaevskii equation (GPE). Solitons are
exact solutions of the one-dimensional GPE [17,18],

ih̄
∂

∂t
�(z, t ) =

[
− h̄2

2m

∂2

∂z2
+ U (z) + g1D|�(z, t )|2

]
�(z, t ),

(1)
for particles of mass m, which approximately describes highly
anisotropic systems where transverse motion is frozen out
by strong confinement, leaving behind only longitudinal dy-
namics. For harmonic transverse confinement with transverse
trapping frequencies ωx and ωy, the 1D interaction constant
is g1D = 2h̄a(ωxωy)1/2, where a is the 3D s-wave scattering
length. In the GPE, �(z, t ) is interpreted as the condensate
wave function whose magnitude gives the local 1D atomic
density n(z, t ) = |�(z, t )|2. An infinite homogeneous system
is characterized by the chemical potential μ = g1Dn and
has low-energy phonon excitations with speed of sound c =√

g1Dn/m [19].
A dark soliton appears as a moving depletion in the back-

ground BEC; for an infinite and homogeneous system a dark
soliton with velocity v is exactly described by

�s(z, t ) = √
n

{
i
v

c
+

√
1 − v2

c2

× tanh

[√
1 − v2

c2

(z − vt )

ξ

]}
exp

(
− iμt

h̄

)
. (2)

The healing length ξ = h̄/mc is the typical minimum length
scale on which the condensate wave function can appreciably

change. This soliton solution can be characterized by φ, the
change in the condensate phase across the soliton. The soliton
velocity, characteristic density profile width ws, and depth ns

are all derived from the phase via

v

c
= cos

φ

2
, (3a)

ws

ξ
= csc

φ

2
= 1√

1 − v2/c2
, (3b)

ns

n
= sin2 φ

2
= 1 − v2

c2
. (3c)

The phase change across a stationary black soliton, i.e.,
with zero central density, is therefore π . This result further
shows that as the soliton velocity approaches that of sound,
its wave function smoothly connects to the ground-state wave
function.

Like most experiments with solitons, ours takes place in a
highly elongated system with ωz � ωx,y, but with ωx,y < μ/h̄,
requiring the 3D GPE for a proper description. The 3D GPE
supports many solitonic solutions [14], from kink solitons—
the analog to dark solitons in 1D—to vortex rings and soli-
tonic vortices. Reference [1] showed that with sufficient trans-
verse confinement, kink solitons can be unconditionally stable
in anisotropic 3D systems; however, our system is in a regime
where only rapidly moving kink solitons with v/c � 0.9 are
stable.

The most common method to create solitons writes the
phase drop φ associated with the soliton wave function onto
initially homogeneous BECs. In practice, this phase is im-
printed by briefly applying an external potential V (z), for
example, a step function, that changes the wave-function
phase by φ = V (z)tp/h̄, where tp is the duration of the ap-
plied pulse. Typically, V (z) is generated by a far-detuned
laser, and tp should be shorter than tc = h̄/μ, the time it
takes an excitation moving at the speed of sound to traverse
a single healing length, so the density remains unchanged
over the pulse duration. Ideally, the imprinted phase would
determine the initial soliton velocity; however, the phase
imprinting system always has a finite resolution limiting
the lowest possible soliton velocity. In our experiment c ∼
2 mm/s giving ξ ∼ 0.4 μm, so that a slowly moving soliton
with velocity 0.1c will have a width ws ∼ 0.4 μm, which is
much smaller than our resolution of 2.8 μm.1 This rightly
suggests that a BEC following such a phase imprinting pro-
cess will differ significantly from the desired soliton wave
function.

Our improved method overcomes this limitation by first
depleting the density at the desired soliton location with two
important outcomes: (1) the imprinted phase profile can better
match that of a soliton because decreasing the density locally
increases the healing length, thereby increasing the soliton
width ws; and (2) the density depletion is better mode matched
to the density depletion at a soliton’s center.

1Defined as the distance between the central peak and the first
minimum of the Airy disk.
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FIG. 1. Experimental concept. (a) Far-detuned laser light illumi-
nates the surface of a DMD, which is programmed to reflect the
light with the desired pattern. The DMD patterns are demagnified
and imaged onto the atoms, which are represented as the red cloud.
The trap laser beams are not shown in this figure. (b) Time sequence
used to create solitons with the DMD pattern. The laser power during
each phase of the experiment (vertical axis) was controlled using
an acousto-optic modulator. The insets depict the potential resulting
from the DMD patterns, accounting for the 2.8 μm (see footnote
1) resolution of our imaging system (because of the finite aperture,
but neglecting any aberrations). (c) Absorption image of a typical
BEC after TOF without solitons. (d) A BEC created with similar
experimental conditions including a soliton.

II. EXPERIMENTAL SYSTEM

Our experiments begin with 87Rb BECs having N =
2.4(2) × 105 atoms2 in the | f = 1, m f = 0〉 internal state
in a time-averaged crossed optical dipole trap of wave-
length λ = 1064 nm. One of the beams is rastered along
ez, with maximum displacement of about one waist, paint-
ing an elongated trap with frequencies (ωx, ωy, ωz ) = 2π ×
[94.5(6), 153(1), 9.1(1)] Hz. The measured (see below) lon-
gitudinal Thomas-Fermi (TF) radius of our BEC is Rz

TF =
55(1) μm, and the chemical potential is μ = h × 1.1(1) kHz.
We create arbitrary repulsive potentials V (z) using far blue-
detuned laser light of wavelength λ = 777.6 nm, spatially
patterned by a digital micromirror device (DMD, Texas In-
struments DLP LightCrafter Module, DLP3000).3 The light

2All uncertainties herein reflect the uncorrelated combination of
single-sigma statistical and systematic uncertainties.

3Certain commercial equipment, instruments, or materials are iden-
tified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommenda-
tion or endorsement by the National Institute of Standards and Tech-

reflected by the DMD is imaged onto the atoms (the DMD
surface is focused at the BEC) using an imaging system
that demagnifies (×12) the pattern as schematically shown in
Fig. 1(a). There we illustrate the situation where the DMD is
programmed to reflect half of the laser profile.

We engineer the local BEC density with a dimplelike
potential created by programming the DMD to reflect the
light in a stripe which, after demagnification, is about 270 μm
wide along ey and 1.8 μm along ez, as shown in the first
inset to Fig. 1(b), including the impact of finite resolution.
We ramp the optical potential from zero to h × 0.78(4) kHz in
15 ms, reducing the local atomic density by about 70%. Next,
the light is extinguished for td = 100 μs, while the DMD is
updated4 to display a step function, illuminating the BEC to
one side of the dimple. The step potential is applied for a
time tp up to 170 μs, which, for our potential of magnitude
V = h × 5.5(3) kHz, results in an accumulated relative phase
up to 1.9(1) π . To avoid abrupt changes in the BEC density
after phase imprinting, we reapply the dimple potential and
ramp its magnitude to zero in 3 ms. The times to ramp the
dimple up and down were chosen to be slow enough to be
reasonably adiabatic and fast enough so that the soliton does
not propagate very far during the ramp down. For comparison
we create solitons without density engineering by applying the
same time sequence with the dimple potential set to zero.

After a variable evolution time, the dipole trap potential
is removed, allowing the BEC to expand for a 15 ms time
of flight (TOF), after which time the BEC is imaged using
standard absorption imaging [20]. A typical image of a TOF-
expanded BEC with no soliton imprinted is shown in Fig. 1(c);
each dark soliton appears as a local dip in the density as in
Fig. 1(d). Note that because of the trap geometry, the cloud
in the ey direction expands faster than in ez, such that the two
directions have similar sizes at this particular expansion time.
Because the BEC expands so slowly in the ez direction, our
analysis of the TOF images assumes that the z positions in
TOF correspond to the z positions in trap at the time of release.

We experimentally calibrate the phase imprinting and den-
sity engineering potential by adiabatically loading the BEC
into the steplike potential usually used for phase imprint-
ing described above. From the time-of-flight images and
the Castin-Dum scaling theory of BEC expansion [21] we
determine the difference in the mean-field energy, i.e., the
local chemical potential μ(z) between the two sides of the
steplike potential. This calibrates the step potential. For more

nology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

4This DMD can refresh every 250 μs, which includes about 150 μs
of signal and/or electronics delay and about 100 μs for the me-
chanical response of the mirrors. Therefore, we command the DMD
to change 150 μs before extinguishing the dimple light, and we
wait another 100 μs while the mirrors change mechanically before
applying the phase imprinting light. We leave the phase imprinting
light on for the desired time. We anticipate reapplying the dimple
by commanding the DMD to change to the dimple configuration at
an appropriate time sufficiently long before reapplying the dimple
light. The light is turned on/off in much less than 1 μs using an
acousto-optic modulator.
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details and discussion about the approximation involved, see
Appendix A.

We measure the sound velocity in the BEC by intentionally
inducing density perturbations in the condensate launched by
abruptly turning on the dimple potential at the trap center,
creating a pair of density waves traveling in opposite direc-
tions at the speed of sound [22]. We associate the average
speed of these waves with a 1D speed of sound, giving c =
1.65(5) mm/s, which is related to the 3D speed of sound
by c = c3D/

√
2, as is appropriate for highly elongated 3D

BECs such as ours [19]. This speed is consistent with the
3D speed of sound derived from the chemical potential c3D =
2.2(1) mm/s, which would imply c = 1.58(7) mm/s.

Even our improved protocol does not result in the perfect
soliton wave function, resulting in undesired excitations that
manifest as density modulations propagating at the speed of
sound. These reach the extremes of the BEC and dissipate in
less than 100 ms. We therefore take our earliest data 150 ms
after phase imprinting to obtain a clean background for track-
ing solitons.

III. RESULTS

Here we compare the standard phase imprinting protocol
with our improved protocol for creating solitons. Figure 2
illustrates our main result: (a) the standard protocol can only
create solitons with a velocity so large that they have an oscil-
lation amplitude comparable to the Thomas-Fermi radius; (b)
the improved protocol can create solitons with no discernible
motion, i.e., black solitons. In this section, we quantitatively
compare the ability of these two techniques to create solitons
on demand.

We first turn to a more detailed discussion of the data
presented in Fig. 2, for which the phase imprinted was φ =
1.8(1) π . Both (a) and (b) include 1D cross-sectional slices of
our BEC after TOF as a function of time, illustrating the rep-
resentative density profiles from which we obtain the soliton
position by fitting the dip to a Gaussian function. These posi-
tions, for three repetitions of the experiment, are displayed by
the semitransparent symbols in the accompanying panel and
follow approximately sinusoidal trajectories. This raw data
shows key differences between solitons created via these two
protocols: the shallower solitons created using the standard
protocol oscillate with larger amplitude, implying a higher
peak velocity. This is consistent with our expectations that
more rapidly moving solitons are associated with a shallower
density depletion.

In Fig. 2, when fewer than three symbols are displayed,
no soliton was observed in one or more of the trials at
that time. Our data therefore indicates that fast solitons,
created using the standard protocol, have shorter lifetimes
than the stationary solitons. We suspect that this results in
part from friction dissipation mechanisms, leading to a more
rapid destabilization of fast-moving solitons similar to those
discussed in Refs. [10,23,24]. In the latter two references,
diffusion and damping resulted from the interaction with
a dilute background of impurities. In the present case, the
computation of the collision integral would result from the
reflection of phonons rather than impurities.

For harmonically trapped 1D BECs, solitons follow sinu-
soidal trajectories described by z(t ) = A sin(ωst + φ), with
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FIG. 2. Oscillation of dark solitons created using a 1.8(1) π

phase imprint showing: (a) the standard protocol and (b) the im-
proved protocol. In both cases, the top panel plots 1D longitudinal
slices taken through our TOF-expanded BECs as a function of soliton
evolution time for a single realization of the experiment at each time.
The bottom panels plot the resulting soliton positions (symbols),
with three realizations of the experiment for each time. The curve
in (a) is a sinusoidal fit to the data described in the main text.
Because the data in (b) reveals a stationary soliton, we used the
procedure described in Appendix C to plot a sinusoidal oscillation
with amplitude A = 0.19 μm and ωs = 2π × 3.0 Hz. Dashed lines
represent the edges of our BECs.

predicted oscillation frequency ωsol = ωz/
√

2, which is also
valid for kink solitons in 3D. The factor of

√
2 is often

described in terms of the ratio between the “inertial” and
“physical” (or “bare”) masses of a dark soliton, η = min/mph,
ωsol = ωz/

√
η, with ηk = 2 for a kink soliton. The bare mass

is related to the number of missing particles, and the inertial
mass is related to the response to an external force. We
measure an oscillation frequency of ωs = 2π × 3.0(1) Hz.
This differs significantly from the expected ωz/

√
2 = 2π ×

6.4(1) Hz for a kink soliton. Therefore, we consider the possi-
bility that we are observing a solitonic vortex. The mass ratio
for solitonic vortices exhibiting small-amplitude oscillations
depends on the chemical potential and transverse trapping fre-
quency ω⊥ [14], which for our case gives ηsv ≈ 9. For ηsv ≈ 9
the computed oscillation frequency is ωs ≈ 2π × 3 Hz, con-
sistent with the observed frequency. Because our transverse
frequencies are unequal, it is not a priori clear how to average
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TABLE I. Transverse trapping frequencies ω⊥ and typical aver-
ages and the associated solitonic vortex mass ratio.

ω⊥
Expression Value ηsv ≈
ωx 2π × 94.5(6) Hz 13√

ωxωy 2π × 120.2(5) Hz 9
(ωx + ωy )/2 2π × 123.8(6) Hz 9
ωy 2π × 153(1) Hz 7

them, or if averaging is suitable at all. Table I displays the
transverse trapping frequencies and possible averages; we find
both the geometric and arithmetic averages to be consistent
with the observed soliton oscillation frequency.

Figure 3(a) plots the TOF soliton oscillation amplitude,
obtained from a sinusoidal fit (except for imprinting time
160 μs, where we used the procedure described in Appendix
C), as a function of the imprinting phase, and compares
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FIG. 3. Soliton oscillation amplitude (a) and velocity (b) for
different imprinted phases. The imprinted phase (top axis) is related
to the imprinting time (bottom axis) by our calibration of the DMD
potential. Solid curves show the results of numerical simulations, and
filled symbols are experimental data for the standard (orange) and
improved (green) protocols.

our experimental data (filled symbols) to results of 1D GPE
simulations (solid curves, see Appendix B), which we expect
to provide only qualitative guidance for solitonic vortices.
This figure shows that the standard protocol (orange) creates
solitons within a very narrow window of amplitudes, all com-
parable to RTF, while the improved protocol (green) can tune
the oscillation amplitude from this large value through zero.
We observe experimentally that visible solitons are not created
for phase imprints below about π , while above 2π , multiple
solitons are created. Figure 3 therefore focuses on phase
imprinting within this interval. The velocities, extracted from
the sinusoidal fits and normalized by our measured sound
velocity, are plotted in Fig. 3(b). This data shows that when
standard phase imprinting is used (orange squares), solitons
can only be created with velocities around 0.4c, which is
consistent with previous works [9,25]. In contrast, when the
improved method is used (green circles) we acquire almost
full control over the soliton velocity, including the ability to
generate nearly stationary solitons. In this case, the oscillation
amplitude is AI = 0(2) μm, resulting in a peak velocity of
0.00(4)c, which corresponds to a stationary soliton within our
experimental uncertainty (see Appendix C).

IV. SOLITON–DOMAIN WALL COLLISIONS

We conclude with an application of our technique, de-
terministically colliding a dark soliton with a domain wall
formed at the interface between the spin components of an
immiscible binary BEC. The latter can be seen as a solitonic
excitation in the sense that it is localized and long-lived
magnetic excitation in a two-component BEC. The addition
of the spin degree of freedom enriches the physics of solitons,
both introducing new localized solitonic objects as well as
altering the physics of dark solitons. For example, dark-bright
solitons—a dark soliton in one component whose core is filled
with the other component—have been created and collided
[9]. This is also similar to earlier experiments creating vortices
in spinor BECs in which the vortex core was filled with atoms
in a different internal state [26].

To create a domain wall, we apply a radio frequency π

pulse to our | f = 1, m f = 0〉 BEC, putting each atom into an
equal superposition of | f = 1, m f = +1〉 and | f = 1, m f =
−1〉. The small, negative spin-dependent scattering length
a2 in 87Rb, with a2/a ≈ −0.005 makes this binary mixture
immiscible [27–29], leading to the formation of stable do-
main walls with size given by the spin-healing length ξs =
ξ
√|a/a2| ≈ 5 μm. The BEC is held for 2 s in the presence

of a small magnetic field gradient to initialize a domain wall
between the two spin states.5 After the soliton creation and a
chosen propagation time, we perform spin-sensitive imaging
by applying a magnetic field gradient (≈0.6 mT cm−1) during

5The gradient is not strictly necessary to initiate the domain wall,
but the addition of gradient along the longitudinal direction of the
BEC decreases the time for the system to reach equilibrium. We adi-
abatically apply a bias of the order of 10−4 T along the longitudinal
direction, which due to imperfection in the alignment is enough to
produce the gradient necessary to deterministically create the domain
wall.
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FIG. 4. Soliton crossing a domain wall. (a) Domain wall formed
by atoms in different spin states. Absorption images of two-
component BECs: (b) without a soliton present, (c) with a soliton
in the | f = 1, mf = −1〉 component, and (d) with a soliton in the
| f = 1, mf = +1〉 component. (e) Cross-sectional images resolving
the domain wall and the soliton motion. (f) Extracted soliton and
domain position averaged over three repetitions of the experiment.

TOF so that atoms in different magnetic states separate be-
fore absorption imaging. Figure 4(a) we plot the theoretical
expected local density n±1(r) of each spin component in a
ground-state BEC containing a domain wall, where n+1(r) is
displayed in red and n−1(r) is displayed in blue. In Fig. 4(b)
we plot the magnetization mz(r) ≡ n+1(r) − n−1(r) of such
a system after TOF in a color scale normalized by the total
density nT(r) ≡ n+1(r) + n−1(r).

We create solitons on one side of the domain wall by
offsetting the optical potential, patterned by the DMD, from
the BEC center. Typical absorption images with solitons on
either side of the domain wall are shown in Figs. 4(c) and 4(d).
In Fig. 4(e) we show a sequence of normalized magnetization
slices at different times as the solitons cross the domain wall.
Figure 4(f) shows the soliton position averaged over three
different experimental realizations. From these images we can
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FIG. 5. Solitons oscillating in condensates including a domain
wall. Position of solitons oscillating in a single-spin condensate (top)
and a condensate with a domain wall present (center). For each time
there are ten realization of the same experiment, and fewer points
indicate that no soliton was observed in one or more realization. Solid
curves are fits to eγ sin(ωt + φ), where γ accounts for the possibility
that soliton decay is associated with change in the oscillation ampli-
tude (if these were kink solitons and if the decay mechanism were to
involve reduction in the soliton depth, this would increase the soliton
velocity and hence its oscillation amplitude). Dashed lines represent
the edges of our BECs. The survival probability obtained from these
ten realizations is shown in the bottom panel. Solid curves are the fit
to the survival probability function.

see that the soliton oscillates as in Fig. 2 and is transmitted
through the domain wall with no perceptible reflection or
change in its trajectory, suggesting that the submicrometer
scale soliton travels undistorted through the much thicker
domain wall.

Figure 5 shows that the mean soliton trajectory is essen-
tially indistinguishable without (top) and with (middle) the
domain wall present, even after multiples passages through
the domain wall. Although the mean trajectories are in-
distinguishable, the fate of solitons differs greatly between
these two cases. The bottom panel shows that successive
soliton–domain wall collisions reduce the soliton’s survival
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probability. In the presence of the domain wall (purple dia-
monds), the soliton survival probability decays to only 10%
after ≈0.7 s, which is much lower than the survival proba-
bility for solitons created in single-component BECs (black
squares), which is about 70% for the same time.

Our data shows that solitons are able to cross the domain
wall at least two times with a high probability of survival,
suggesting that the effects of the passage accumulate, con-
tributing to subsequent decay. We fit (Fig. 5 bottom panel) the
survival probability to the cumulative log-normal distribution,

Ps(t ) = 1 − 1

2
erfc

[
− ln(t/τ )√

2σ

]
, (4)

which describes systems where the probability of decay at
time t depends on an accumulation of disrupting events. The
constant τ is the characteristic time when Ps falls to 1/2 and σ

is the distribution width. In the presence of a domain wall,
τdw = 0.51(1) s is significantly smaller than for the single-
spin case τ = 0.86(2) s. In both cases the BEC is prepared
with the same trap geometry and at a similar temperature
so the thermodynamic and transverse instabilities [1] should
contribute in the same way. One possible dissipation mech-
anism involves the transfer of energy from the soliton to the
domain wall, with each interaction incrementally destabilizing
the soliton. Furthermore, the lifetime difference might be
explained by a small thermally driven contamination of the
majority spin with the minority spin in both domains, as
investigated in Refs. [10,24].

Studies with different soliton velocities, soliton sizes, and
domain-wall thicknesses might find a regime where solitons
are reflected rather than transmitted when they impact a
domain wall.

V. OUTLOOK AND DISCUSSION

We implemented an improved method to create dark soli-
tons in BECs with controlled velocity and arbitrary position,
combining standard phase imprinting with density engineer-
ing. The observed soliton oscillation frequency along with the
theoretical stability diagram for kink solitons [1,14] suggests
that we created solitonic vortices; however, our direct exper-
imental evidence is not able to resolve the expected vortex
structure [30]. Our numerical simulations in 1D (which is
valid with greater transverse frequency or lower chemical
potential) show that this technique generates well-controlled
kink solitons.

We demonstrated the utility of the improved method by
studying solitons incident on a domain wall and found that
solitons pass through the domain wall and have increased
decay probability after crossing the domain wall a few times.
Even in 1D, collisions between solitons and magnetic domain
walls have received little attention, but we expect that they
have much in common with soliton-soliton collisions. When,
as in our experiment, the magnetic domain wall is large in
comparison with the soliton, we would expect the soliton—an
excitation residing in density and phase—to “adiabatically”
follow the slowly changing magnetization. This suggests that
the collision will leave the soliton’s shape unchanged, but
because atoms displaced by the soliton are of opposite spin
after the soliton has traversed the domain wall, we expect

the domain wall to shift by roughly the healing length in a
direction opposite to the soliton propagation direction. This is
similar to a “noninteracting” collision.

When the soliton and domain wall become comparable in
size, the soliton can no longer be thought of as a pointlike
particle and a number of outcomes are possible, ranging
from noninteracting to beam-splitter-like, to perfect reflection.
Further studies are needed to fully understand soliton behavior
in the presence of a domain wall.

Our capability for creating solitons with tunable veloci-
ties, including stationary solitons, enables the study of many
phenomena, including dissipative dynamics [23,24], soliton
stability and decay in different trap geometries [1,14], and
soliton-soliton collisions in both the “reflection” and “trans-
mission” regimes [13,25]. Furthermore, high-resolution non-
destructive imaging techniques could be used to track the in
situ soliton position and better understand their behavior [31].
Lastly, our technique could be used to study the predicted
velocity-dependent spin structure of solitons in spin-orbit
coupled BECs [32].
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APPENDIX A: CALIBRATING POTENTIALS

Our time-of-flight images give a 2D (y − z) column density
distribution having been integrated along x. We separately
integrate along z the density distributions on either side of
the step, giving us two distributions along y. We fit these two
distributions to find the two TF radii. We apply the Castin-
Dum procedure as if the two sides were separately expanded
from our 3D harmonic trap, ignoring the steplike potential. We
believe this procedure is justified because the confinement,
and hence the expansion, is much stronger in the transverse
x, y directions than in the longitudinal z direction. From the
in-trap TF radii we extract the chemical potential for each side
of the step. In the spirit of the local density approximation we
identify the difference between these two chemical potentials
as the difference of the local chemical potential on either side
of the step. According to the Thomas-Fermi approximation,
this is the height of the external step potentials.

APPENDIX B: NUMERICAL SIMULATIONS

We simulate the standard and improved phase imprinting
methods using a 1D GPE assuming a transverse profile of
the inverted-parabola Thomas-Fermi form, with width given
by the local chemical potential. This approach correctly pro-
duces the 3D collective mode frequencies when the transverse
dynamics are fast, allowing the transverse wave function to
adiabatically follow the “chemical potential” derived from
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FIG. 6. Spectral analysis for solitons created using our improved
protocol. Top panel shows in a color scale the amplitude for each
frequency ω′

s vs the imprinted phase. Vertical red line is placed at the
imprinted phase that creates stationary solitons. Bottom panel shows
the individual plots with a vertical displacement to avoid overlapping
the curves.

the time-changing 1D density. This gives the 1D GPE-like
equation

ih̄
∂

∂t
�(z, t ) =

[
− h̄2

2m

∂2

∂z2
+ U (z) + g′

1D|�(z, t )|
]
�(z, t ),

(B1)
where g′

1D = 2h̄(aωxωy)1/2, and is related to the usual g1D =
a1/2g′

1D.

The time evolution of the GPE is performed through the
split-step Fourier method [33] in steps of 0.2 μs, and the
ground state is found using imaginary time propagation. We
simulate 2.6 × 105 87Rb atoms, which for our trap frequencies
leads to a chemical potential of μ = h × 1.1 kHz and RTF =
56.4 μm. The grid ranges from −70 to 70 μm in steps of
z = 0.025 μm.

We account for the finite resolution of the lens system by
using potentials with smoothed edges, generated by removing
Fourier components above the maximum optical resolution.
The patterns used to engineer the density and step potential
to imprint the phase are shown in Fig. 1, along with the
resolution-limited intensity profile. We allow the simulated

BEC to expand in TOF for 15 ms after the soliton oscillation
time while quenching the interaction strength to model the
rapid Castin-Dum transverse expansion in this 1D simulation.
We analyze numerical results in the same way as we analyze
the experimental data.

The results for the numerical simulations shown in Fig. 3
were obtained using a step potential of magnitude Vt = h ×
5.5 kHz and a dimple Vdt = h × 0.78 kHz. Both potentials
have the same magnitude used in the experiment. We attribute
the small difference between numerical and experimental
data to our numerical 1D simulation not fully describing the
dynamics in our 3D system.

APPENDIX C: DISTINGUISHING BETWEEN SLOWLY
MOVING AND STATIONARY SOLITONS

Our experimentally observed soliton positions have uncor-
related shot-to-shot noise on the scale of a few micrometers.
Because most of our solitons oscillate with amplitude much
larger than this noise, it generally contributes minimal uncer-
tainty to our fits. This is not the case for our nearly stationary
solitons.

Solitons created with nonzero velocity have a characteristic
oscillation frequency. In contrast, solitons created at rest do
not oscillate but still are susceptible to displacements due to
shot-to-shot variation, and a fitting procedure with frequency
as a free parameter will misidentify stationary solitons as
moving solitons with frequency set by the noise spectrum.
To distinguish between these cases we implemented a Fourier
spectral analysis. Because our signal undergoes only about
three oscillations in our time window of duration T , the δω =
2π/T transform limit makes conventional Fourier methods
inapplicable.

For our spectral analysis, we fit the soliton dynamics to
z(t ) = A′ sin(ω′

st + φ), with the frequency held constant at ω′
s

for each fit. The fit-amplitude A′ provides the spectral weight
for that frequency; we then repeat the fitting procedure for
different values of ω′

s, ranging from ω′
s = 2π × 1.0 to 2π ×

6.0 Hz to obtain spectrograms.
Figure 6 shows the results of this technique, applied to

solitons produced using our improved method. The top panel
shows the amplitude in a color scale, while the bottom panel
depicts the data for different applied phases displaced verti-
cally to avoid overlapping the curves.

This figure clearly reveals the oscillation frequency at
around 2π × 3 Hz for all but the smallest oscillation, where
no motion is resolvable above the noise. For the phase imprint
of 1.8π there is no distinguishable feature at the expected
oscillation frequency. From the fit we obtain A′ = 0(2) μm
at ω′

s = 2π × 3 Hz. This is the argument underlying our state-
ment that we have created dark solitons with no discernible
motion within our experimental uncertainties.
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