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Engineered quantum systems can help us learn more about fundamental physics top-

ics and quantum technologies with real-world applications. However, building them could

involve several challenging tasks, such as designing more noise-resistant quantum com-

ponents in confined space, manipulating continuously-measured quantum systems without

destroying coherence, and extracting information about quantum phenomena using ma-

chine learning (ML) tools. In this dissertation, we present three examples from the three

aspects of studying the dynamics and characteristics of various quantum systems. First, we

examine a circuit quantum acoustodynamic system consisting of a superconducting qubit,

an acoustical waveguide, and a transducer that nonlocally couples both. As the sound sig-

nals travel 105 times slower than the light and the coupler dimension extends beyond a few

phonon emission wavelengths, we can model the system as a non-Markovian giant atom.

With an explicit result, we show that a giant atom can exhibit suppressed relaxation within

a free space and an effective vacuum coupling emerges between the qubit excitation and

a confined acoustical wave packet. Second, we study closed-loop controls for open quan-



tum systems using weakly-monitored Bose-Einstein condensates (BECs) as a platform.

We formulate an analytical model to describe the dynamics of backaction-limited weak

measurements and temporal-spatially resolved feedback imprinting. Furthermore, we de-

sign a backaction-heating-prevention feedback protocol that stabilizes the system in quasi-

equilibrium. With these results, we introduce closed-loop control as a powerful instrument

for engineering open quantum systems. At last, we establish an automated framework

consisting of ML and physics-informed models for solitonic feature identification from

experimental BEC image data. We develop classification and object detection algorithms

based on convolutional neural networks. Our framework eliminates human inspections and

enables studying soliton dynamics from numerous images. Moreover, we publish a la-

beled dataset of soliton images and an open-source Python package for implementing our

framework.
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Chapter 1: Introduction

Advancing quantum information science and engineering quantum technologies have

both scientific and practical motivations [1–3]. Quantum devices not only help expand

our knowledge horizon by studying quantum many-body phenomena [4–7], astronomical

signals [8, 9], and even biology [10], but they may also provide values for solving clas-

sically challenging combinatorial optimization problems [11], simulating chemical reac-

tions involving large molecules and materials [12], securing communication for confiden-

tial data [13], and sensing microscopic signals with high accuracy [14].

With these motivations, the primary purpose of this dissertation is to broaden our un-

derstanding of varieties of quantum systems dynamics in multiple aspects and accordingly

help in converting science into advancing quantum technology. The scope of this disserta-

tion includes: designing more noise-robust and compact quantum device components [15],

engineering and preparing an innovative, continuously-observed quantum state [16], and

identifying and extracting information about quantum phenomena with machine learning

(ML) approaches [17].

The following chapters in this dissertation cover the topics above in more detail. In Chap-

ter 2, we study an artificial superconducting atom coupled with a surface acoustical waveg-

uide via a nonlocal piezoelectric component, such that the coupling region covers a many-

emission-wavelength-long area [18]. We applied analytical tools and a Lorentzian toy

model to simplify the system and compared our results with spectroscopy from numerical

simulations. We observe that this non-Markovian giant atom exhibits suppressed relax-
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ation and an effective vacuum coupling exists between a qubit excitation and a localized

wave packet of sound, even in the absence of spatial emission constraints—thus realizing a

quantum bound-in-continuum system.

Chapter 3 investigates a weakly monitored quasi one-dimensional (1D) Bose-Einstein

condensate (BEC) and designs feedback protocols for cooling the atom cloud to quasi-

equilibrium [19]. Using backaction-limited weak measurements and temporal-spatially

resolved feedback imprinting, we create a theoretical tool for quantum feedback control

of quantum systems, including BECs. We describe the intuitions and protocols of our

feedback cooling that prevents excess heating caused by measurement backaction. Our

findings demonstrate that closed-loop quantum control of BECs can offer a potent new tool

for quantum engineering in cold-atom systems.

In Chapters 4 and 5, we start by noticing two difficulties in studying cold atom data

from explicit images: first, we usually rely on human inspections for identifying features

that bottleneck our research scale, and second, our preconceived notions about the existing

patterns may constrain our capacity to analyze them. Therefore, we consider two different

ML architectures for analyzing experimental cold atom data to automatically detect dark

solitons appearing as local density depletions in BECs [20, 21]. Thus we eliminate hu-

man analysis requirements. Furthermore, we integrate ML models with physics-informed

heuristics to distinguish solitonic excitations. Combining these models enables us to find

the solitonic excitations, extract physical parameters, and categorize each solitonic excita-

tion. For future ML research, we provide our labeled dataset of dark solitons in a public

data repository [22, 23], and an open-source Python package for detecting solitonic excita-

tion [24], which is pre-trained from our data and adaptable for any user-defined cold atom

absorption image dataset.

Even though we developed these new techniques within the scope of specified types of

quantum systems, they can be further generally implemented on other types of quantum
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systems. The giant atom and its suppressed spontaneous emission can be re-engineered

with any quantum non-Markovian system, such as optomechanical systems [25], cold atom

systems [26], and the ones that have collective emissions via multiple coupling points [27].

The feedback cooling strategy may be implemented on any quantum device that allows

partial measurements and rapid fine-resolution controls by altering its potential or interac-

tion terms of Hamiltonian within the coherent time [28]. Finally, the classical ML can go

beyond the scope of dark solitons and help us extract information from a quantum system

from classical readout raw data either from direct images, a spectroscopy, or a series of

pulse sequences [29–32].

In the remainder of this chapter, first we introduce the background and motivations

from both physics and ML perspectives in the next two subsections, then we compare the

benefits and limitations of them in the last subsection.

1.1 Physics backgrounds

The works presented in this dissertation contribute to various field topics of physics

and quantum information science, including quantum non-Markovian systems [33], bound-

state in the continuum [34], giant atoms [35], superconducting circuits [36], circuit quan-

tum acousto-dynamics (QAD) [37], ultracold atoms and BECs [38], weak quantum mea-

surement [39], real-time quantum feedback [40], nonlinear quantum dynamics [41], and

solitons [42, 43].

The topic in the first half of this dissertation focuses on non-Markovian circuit QAD

systems [37, 44, 45]. Within a quantum non-Markovian system, coherence travels via

multiple mechanisms with different speeds and interferes nonlocally through space, and

therefore these systems often show unconventional dynamical properties.

There are at least two exciting physics topics related to quantum non-Markovian sys-
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tems: the bound-state in the continuum (BIC) and the giant atom. A BIC is a discretized

eigenstate of a continuous system, which lives in an infinitely large Hilbert space [34, 46].

Those states are attractive to quantum scientists as they are fully decoupled from the envi-

ronment in principle, even with no spatial confinements. A giant atom is another example

of a quantum non-Markovian system [35]. It can be an artificial emitter with a spatial size

comparable to or greater than its emission wavelength, an emitter with multiple coupling

points separated for at least a few wavelengths, or a collection of emitters communicating

via other channels than its emitting media. Unlike a typical point-like atom, those fab-

ricated giant atoms show strong frequency-dependent couplings to the emission modes.

Giant atoms are investigated for related physics concepts, including ultrastrong coupling

and superradiance, and may serve as quantum device components due to their intrinsic

robustness to noise and decoherence.

A common choice of mechanism combination to experimentally build a quantum non-

Markovian system is phonons and photons. For example, an optomechanical system can be

modeled in the non-Markovian regime as it couples laser modes with the vibrational modes

of a crystal via radiation pressure [47]. This dissertation focuses on a circuit QAD system,

which consists of a superconducting qubit, a surface acoustic wave waveguide, and an in-

terdigital transducer (IDT) mounted on a piezoelectric substrate. Superconducting qubits

are one of the most popular types of artificial atoms. They are often constructed by Joseph-

son junction in experiments. Leveraging their nonlinear energy gaps, they make effective

two-level systems. An IDT interlocks two comb-shaped arrays of electrodes printed on a

piezoelectric substrate that can transduce electric signals to surface acoustic waves into the

waveguide, where the spacing of the ‘combs’ provides spatial selectivity.

We find the non-Markovian circuit QAD systems intriguing and promising for a few

reasons. First, since the wavelengths of sounds 105 times shorter than lights, these systems

may deliver much more compact transmon-like qubits and on-chip quantum time-delay
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relays and phononic transmission lines [48]. Second, their non-Markovianity enables cre-

ative engineering for dissipations and interactions beyond the limitations of typical su-

perconducting systems or even natural atoms [49]. Third, circuit QAD converts signals

between two forms, opening opportunities for quantum signal filtering and transducing.

Lastly, these systems make a great platform to study giant atoms and make long-coherence

quantum memories leveraging their reduced emission rate.

Ultracold atoms and BECs set the foundation for topics discussed in the second half

of this dissertation [38]. An ultracold atom cloud is a group of atoms trapped with lasers

and magnetic fields and cooled down until its quantum property merges. BEC is a phase of

matter commonly realized with bosonic ultracold atom gas. BECs have become one of the

most well-studied and mature macroscopical quantum systems. The states and dynamics

of BECs could be expressed as wavefunctions evolving under Gross-Pitaevskii equations

(GPE) [41].

BECs establish an ideal platform for our research in quantum physics from at least two

aspects. First, many high-precision observing and controlling methods are achieved for

BECs [50], allowing so-called analog quantum simulation and explorations of condensed

matter physics and open quantum systems [51]. BEC also promises two prerequisites for

studying quantum closed-loop feedback control: stroboscopic weak measurements with

phase-contrast imaging and rapid real-time feedback by imprinting engineered external

fields. Second, following the interactions among composing atoms shown as the nonlinear

term in GPE, BECs make a great medium to study many-body interacting quantum systems,

including topics like phase transitions [52], non-equilibrium [4], and thermalization [53].

This dissertation is particularly interested in dark solitons [54], the self-fortifying, localized

wave packets as solutions of nonlinear dispersive systems.

Weak measurements refer to a generalized version of quantum measurements that do

not entirely collapse the state and collect less information by associating engineered noises
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to the measured results [55]. In order to conduct a weak measurement, we may couple

the primary system with an ancilla, which gains incomplete information about the system.

By tuning the coupling parameters, we could choose what type of information is needed.

Then we may perform quantum measurement on the ancilla, estimate the information of the

original system and complete a weak measurement. With the acquired measured result, the

post-weakly-measured quantum states update according to descriptions of Kraus operators.

Rapid real-time feedback control for a quantum system is often achieved either by ap-

plying an external field or by changing the couplings between its component sub-system

and therefore changing the potential or the interaction terms of its Hamiltonian [56]. For

effectiveness, those feedbacks must be fast enough to beat the coherent time of the system.

Furthermore, these feedbacks could learn from previous measurement results to determine

the form of the external fields of coupling strengths. Such quantum feedback may help us

extend the coherent time or apply innovative operations and channels.

Measurement and control comprise the two channels for a human agent to exchange

information with a system. We may create quantum closed-loop feedback control by com-

bining weak measurements and real-time feedback, creating a powerful tool to manipulate

open quantum systems [50, 57, 58]. Closed-loop feedback control could allow new oppor-

tunities, including adaptive measurement and tomography [59], artificial interactions and

dissipations [19], or open system quantum simulation [60].

A soliton is a singular, localized, and robust excitation emerging from the interactions

among media components. It exists in nature, such as localized waves in a canal. It can also

live as a quantum excitation in BEC [42, 43, 61], where we can benefit from sophisticated

controls and little environmental noise to understand these many-body phenomena. Soli-

tons are not only robust to local disruptions as topologically protected excitations, but they

are resilient to each other as well. Two solitons both remain their waveforms unchanged

after a collision. Therefore, solitons may serve as media for quantum communication and
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long-living quantum memory.

Beyond the scientific values they deliver to many-body physics, solitons are essential

to us for another interdisciplinary reason. Leveraging our well-established experimental

apparatus, collecting the raw absorption imaging data of dark solitons in BECs is not a de-

manding job. These numerous physical data are significantly helpful for studying the inter-

section between ML-based data analysis techniques and quantum mechanical phenomena.

1.2 Machine learning backgrounds

As the field of ML algorithms has developed to a more mature stage in recent years,

more applications are being found in scientific research, including quantum physics [17].

In the last few chapters of this dissertation, we used ML-based models as our primary

approach to detect dark solitons. ML is an ideology that lets algorithms regulate them-

selves at a certain level through experience without precisely defined instructions. This

idea resonates with many historical discoveries in physical science that originated from ex-

perimental observations, from Kepler’s laws of planetary motion to the Michelson-Morley

experiment and black-body radiation. As new physics becomes more delicate and requires

more data to refine, we might eventually encounter a barrier that humans cannot compre-

hend these concepts. However, research today using ML for science might ultimately help

overcome such barriers in the future.

Recent ML prosperity is partially fueled by the success of artificial neural networks

(ANNs) [62]. The scheme of ANN is inspired by biological neural systems, which link the

input and output with multiple layers of neurons, each described as a nonlinear activation

function. Those layers are often referred to as dense layers. By updating the weights

and biases of the linear functions that connect the inter-layer neurons with ground truth

data, ANNs can predict unforeseen data with high accuracy in many use cases, such as in
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computer vision.

Computer vision (CV) is a subfield for image processing in ML and computer sci-

ence [63]. The goal of CV is to find mappings between image data and descriptions of

these images. Some specific tasks of CV include classification, finding the catalog corre-

sponding to the image; localization, finding the location of an object within an image; and

object detection, finding multiple locations and catalogs of all target objects in the image.

Convolutional neural networks (CNNs) are among the most commonly used ML ar-

chitectures for CV problems [64]. A CNN consists of particularly regularized ANN layers

called convolutional layers, which apply filters to take the weighted average of a local range

of pixels from the previous layer. Leveraging the fact that pixels in an image correlate more

likely with its neighboring pixels than those on the other side of the image, convolution lay-

ers reduce many neuron connections from complete dense layers. Convolution layers often

combine with pooling layers in a CNN. The pooling layers can reduce the size of an image

by merging neighboring pixels into a single pixel. Pooling layers may lose some detailed

information but can allow the following layers to learn about more extensive features in the

original image.

We exploit CNN as our primary approach to analyze soliton data for two main rea-

sons. First, CNN shows excellent performance for classification and object detection on

the image data, to which our soliton data belong. Second, our target features are local and

have specific shapes, where the convolution layers are designed for in principle. We trained

CNN classifiers to classify images into three catalogs. We improved from that result and

customized the objective detector model based on our data and tasks.

Achieving satisfactory ML performance often requires model customization based on

the characteristics of features and problems. For example, we take five considerations

into designing the object detection model: (1) As our soliton features mostly have a width

greater than four pixels, we use cells with that width to divide the images into regions for
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locating features. (2) As our target features are vertical, we design our output as arrays that

map to vertical cells across the image. One Array for a binary decision of if a soliton exists

within a cell or not. The other for the relative position of a soliton within the cell is detected.

(3) For some convolutional layers, we used filters and kernels that have longer horizontal

widths than vertical heights to allow characterizing horizontal profiles of the features; (4)

We only used convolutional layers and pooling layers but no dense layers for the object

detector because both input image and output array have special meanings associated. (5)

We added a post-process that merges two soliton detections of nearest neighbor cells to

prevent the edge case where a soliton exists at the boundary between two cells.

1.3 Comparing physics and machine learning

In this dissertation, we used analytical and numerical physics tools and data-driven

ML models in the context of quantum mechanical physics. Since we might be standing

at a historical transition point from human-intuition-based towards algorithmic scientific

discoveries, it could be helpful to compare the benefits, limits, and common usages among

analytical models, numerical simulations, and ML algorithms.

Analytical physics methods help simplify the expression of complex systems and reach

an explicit closed-form solution for the interesting physical quantities. Those methods

include but are not limited to applying well-known approximations, developing toy models,

or designing phenomenological models.

However, these methods inevitably constrain the system within the regime where our

simplified version behaves similar to the original one. Therefore, the achieved simple re-

sults often need additional validations to be generalized to regimes beyond the original

designated ones. In addition, we often have limited choices for regimes and approxima-

tions for an existing experiment. One of the most used cases for the analytical methods is
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in thought experiments. Once meaningful analytical solutions achieved from imagined sce-

narios may help us to seek feasible ways to implement them numerically or experimentally

and produce new physics.

With given system configuration and initial and boundary conditions, simulating the

time evolution of systems helps us learn numerical results of states, which is especially

valuable when approximate methods are limited by the systems’ complexities or the prob-

lems’ generalities. Utilizing numerical simulation, we can prove if a specific experimental

design would yield the desired outcomes, and we may study phase transitions by scanning

through parameter spaces.

However, since numerical results do not have explicit form, we often need to run simu-

lations extensively to scan through a specific set of configurations or get results at a long-

time limit. In addition, the capability of simulation is restricted by the capacity of our

digital computers. As most simulations require operations on matrices, we often find our

dimension of simulated Hilbert space is limited at about 103 for a laptop. Simulating a

quantum system with greater degrees of freedom could be challenging. Nevertheless, that

might change in the next few decades if we could leverage quantum computers to simulate

them.

ML helps derive the underlying pattern from a dataset or an oracle. Based on its philos-

ophy of self-learning, ML models often neither have many assumptions about the system

nor physics laws. They often have more trainable parameters than needed to describe and

predict features or phenomena. The performance of ML models may heavily rely on their

training dataset attributes such as the quantity of data, quality of labels, and noise from ob-

servations. The current ML techniques could be practically useful when the research goals

focus on predicting the outcomes or enhancing the performance, and the chosen system is

overly complicated such that adequate analytical models are few, yet collecting observa-

tions is relatively easy.
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Meanwhile, there are a few concerns about using current ML techniques in scientific

research. First, as its capability relies on the data, the dataset’s quality needs to be exam-

ined thoroughly, or it may jeopardize the models’ functionality and reliability. Second, it is

hard to guarantee that a trained ML model can process data that may be beyond its training

set distribution without any validations. The reliability of out-distribution data needs to

be tested before use. Last but not least, these models usually work as black boxes with

few physical interpretations, and it is hard to understand how they operate from human

perspectives. However, all these concerns might be resolved with more profound research.

For example, integrating physics-informed steps into ML models may enhance their relia-

bility and interpretability, and implementing physics simulations may help validate dataset

quality.

11



Chapter 2: Beyond spontaneous emission: Giant atom bounded in contin-

uum

The quantum coupling of superconducting qubits to microwave photons opens the door

to many exciting experimental possibilities. In this chapter, we consider the phononic sit-

uation, in which the qubit is piezoelectrically coupled to a surface acoustic wave antenna,

allowing the qubit oscillations to propagate supersonically through space. This device can

be treated as a giant atom with several phonon wavelengths long. We investigate an explic-

itly solvable toy model that captures these effects. This non-Markovian giant atom exhibits

suppressed relaxation as long as an effective vacuum coupling exists between a qubit ex-

citation and a localized wave packet of sound, even in the lack of a cavity for the sound

waves, as demonstrated by the results our experiments. We used spectroscopy of numer-

ical simulation in the discretized frequency domain to confirm our findings. Finally, we

examine these ideas implemented in a realistic setting with existing surface acoustic wave

devices.

2.1 Introduction

The coupling of resonant, compact systems to continuous media has a rich history,

underlying phenomena ranging from musical instruments to complex machinery to the

spontaneous emission of light from an atom [65, 66]. The strong coupling regime of such

systems has also led to a plethora of applications in cavity quantum electrodynamics (QED)
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[67], circuit QED [68, 69], and waveguide QED [69–72], all of which work in the regime

where light propagation is fast relative to appropriate coupling time scales such as the

coherence time. However, collective effects, such as Dicke superradiance, have shown

that pre-existing coherence across multiple wavelengths of the medium excitations can

dramatically alter the simple dynamics of such open quantum systems [73, 74].

In this chapter, we examine an example of such long-range coherence in the form of a

superconducting qubit nonlocally coupled to a long, quasi-1D phononic waveguide. This

system can be realized in, for example, surface acoustic wave (SAW) devices [75]. Working

in the lumped element limit, the electrical antennae that couple to the mechanical waveg-

uide have practically simultaneous coupling to distant regions of the system, while the

motional degrees of freedom are constrained to propagate at the speed of sound. This leads

to a variety of supersonic phenomena in the quantum acousto-dynamics (QAD) regime

which has been heretofore largely unexplored.

Pioneering work in this domain have labeled this the “giant atom” regime of SAW de-

vices [44, 48, 49, 76]. This model breaks locality in the lumped element limit and inevitably

becomes non-Markovian, requiring a more detailed theoretical treatment [27, 33, 46, 77–

82]. Furthermore, recent experiments show the robustness of systems that couple mechan-

ical with electromagnetic parts in the quantum regime and open the opportunity to realize

giant atoms in experiments [37, 49, 83–89].

We show that these devices have remarkable properties, particularly that of strong cou-

pling without the presence of a cavity, in which a long-lived atomic excitation dynamic

emerges due to the coupling to the electrical circuit directly, and the formation of long-

lived states of sound in the unbounded continuum. We describe this as the bounded giant

atom phenomenon.

While our simple theoretical model predicts this phenomenon directly, a more compli-

cated numerical approach shows that specific additional phase matching condition must be
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Figure 2.1: A sketch of a circuit QAD device viewed from the top. Black lines show electrodes and the blue area shows the surface of
piezoelectric material substrate. The substrate extends deeply in +z direction.

satisfied for experimental observation of the strong coupling of this emergent of bounded

effect to the quantum bit. Furthermore, in this regime, boundary-based damping of the

sound exponentially decreases with the atom size, leading to substantial improvements in

coherence times. Our study suggests a pathway to more compact superconducting qubit

designs that can leverage sound, rather than microwave photons. Key aspects of circuit

QED-based architectures, such as using a photon in a resonator as an intermediary between

two transmon qubits, and using dispersive coupling of a transmon to a waveguide have

natural analogues using coupling to phonons instead. However, transducer efficiencies and

parametric amplification, two key elements of circuit QED systems, are not at an appropri-

ate level yet for replacement by sound. This suggests substantial research may be necessary

before a sound-based architecture could be realized.

The rest of this chapter is organized as follows: In section II, we review the Weisskopf-

Wigner theory for spontaneous emission [65], which provides the structure for our model

later; throughout the chapter we refer to the superconducting qubit with antennae as a giant

atom. We calculate the coupling between the artificial atom and phonons of the circuit

QAD device, and we simplify it to a Lorentzian toy model in section III. In section IV,

we derive our main results from the toy model and compare our results with the numerical
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simulation. We conclude in section V and show future applications of the general method

presented in this chapter.

2.2 Background

2.2.1 The General Theory

We consider a two-level giant atom with ground state 〉g| and excited state 〉e| with

a frequency difference ν that non-locally couples to an infinitely-long 1-D bosonic field,

governed by the following Hamiltonian in the rotating wave approximation:

Ĥ =
ν

2
σz +

∫
dK
[
ω(K)â†

K âK +g(K;N)(σ̂+âK +h.c.)
]
, (2.1)

where σ̂+(σ̂−), and â†
K(âK) are creation (annihilation) operators for atomic excitation and

field, respectively. They satisfy (σ̂−)† = σ̂+ = |e〉〈g|, σz = |e〉〈e|−|g〉〈g|, and [âK, â
†
K′] =

δ (K −K′). ν is the atomic transition frequency. We assume that the field has a linear

dispersion ω(K) = cs|K| with the speed of sound cs, for momentum K. We set h̄ = 1 for

simplicity.

We consider the coupling g(K;N) to depend on the momentum K. As the Fourier trans-

form of the position-dependent coupling, it is also parameterized by the spatial length of

the atom N. One can expect that the parameter N will change the atom relaxation dynam-

ics via tuning the shape of g(K;N). We shall discuss two different models for g(K;N) in

section III.

We denote the vacuum state by |g,0〉, and limit our system to a single excitation Hilbert

subspace with basis states |e,0〉= σ̂+|g,0〉 and |g,K〉= â†
K|g,0〉, such that any time-dependent

state can be described as |ψ(t)〉 = α(t)|e,0〉+ ∫+∞

−∞
dKβK(t)|g,K〉, where α(t), and βK(t)

are time-dependent amplitudes. In a frame rotating with frequency ν , we derive the equa-
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tions of motion

α̇(t) =−2i
∫ +∞

−∞

dkg(k;N)βk(t), (2.2)

β̇k(t) =−iδ (k)βk(t)− ig(k;N)α(t). (2.3)

Note that as the coupling is real in position space in our case, such that g(K;N)= g(−K;N),

so the two branches for K > 0 and K < 0 contribute symmetrically and can be merged in

equation 2.2. The momentum in the rotating frame is redefined as k = |K|−ν/cs, such that

the field frequency becomes δ (k) = ω(K)−ν = csk for the near-resonance regime. Then,

by taking the Laplace transform from the time domain into the complex frequency domain

by α̃(s) = L [α(t)], and β̃k(s) = L [βk(t)], we get:

sα̃(s)−α(0) =−2i
∫ +∞

−∞

dkg(k;N)β̃k(s) , (2.4)

sβ̃k(s)−βk(0) =−iδ (k)β̃k(s)− ig(k;N)α̃(s) . (2.5)

We set α(0) = 1 and βk(0) = 0 to investigate the relaxation of an atomic excita-

tion. Then we have β̃k(s) = −ig(k;N)α̃(s)/(s+ iδ (k)) and the response function χ(s) ≡

α̃(s)/α(0) becomes

χ(s) =
(

s+2
∫ +∞

−∞

dk
|g(k;N)|2
s+ iδ (k)

)−1

. (2.6)

From the residue theorem and initial conditions, we can derive that α(t) =L −1[χ(s)]α(0)

= ∑n Res[χ(s),sn]esnt given that g(k;N) is an analytic function, where sn is the nth pole of

χ(s) that satisfy the equation: [χ(sn)]
−1 = 0 for n ∈ {1,2, ...,nmax}. nmax is the number

of the poles of χ(s). Causality confines sn to be in the left half complex plane or on the

imaginary axis, i.e., Re(sn)≤ 0 [90]. Note that the inverse Laplace transform requires that
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the contour path of integration is in the region of convergence of χ(s). This can be satisfied

by integrating equation 2.6 with the condition Re(s)> 0.

Armed with the solution for the poles sn, we describe the atomic relaxation process

as a composition of damped oscillation modes with effective vacuum Rabi oscillation fre-

quencies Im(sn) and decay rates−2Re(sn). In the long-time limit, only the slowest damped

modes can survive, and we thus define the long-time relaxation rate as γ ≡Minn[−2Re(sn)].

To understand the giant atom relaxation, we study how the poles of response function

sn change according to the atom size N. In the next section, we consider a realistic circuit

QAD model and a simpler Lorentzian toy model to characterize g(k;N) with N being a

changing parameter, and study the response function χ(s) and its poles.

2.2.2 The Weisskopf-Wigner limit

Before moving into the giant atom case, we first review the Weisskopf and Wigner

approach to the point-like atom case[65]. A point-like atom couples to all wavelengths

emission equally, i.e., g(k;N) = g0, independent of k. In this situation, one can calculate

the real part of the equation [χ(s)]−1 = 0, which results in

γ1 ≡−2Re(s1) = 4π|g0|2/cs. (2.7)

This textbook result shows when a point-like atom couples to an 1-D field, the atom decays

with its spontaneous emission rate γ1. In the giant atom case, we also define γ1 as the

weak-coupling relaxation rate for a unit cell (e.g., N = 1) for later discussion. Now we can

proceed and study g(k;N) for the circuit QAD and the toy models that simplify it.
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2.3 The circuit QAD and toy models

2.3.1 The circuit QAD model

We examine a simplified 1-D model for the circuit QAD device shown in figure 2.1. A

circuit QAD device comprises a superconducting artificial atom (as a Josephson junction

parallelized with IDT as a capacitor) and a surface acoustic wave (SAW) cavity. The qubit

couples to the cavity via an inter-digital transducer (IDT), where two interlocking comb-

shaped arrays of electrodes are fabricated on the surface of a piezoelectric substrate. Such

systems have been used to achieve strong coupling, where the vacuum Rabi coupling ex-

ceeds dephasing and damping [37, 84–86]. We can map the spatial atom size to the length

of the IDT d, and the resonance emission wavelength to the IDT characteristic wavelength

λ (the finger spacing of the IDT). We use the number of fingers of the IDT N = d/λ as the

atom size parameter for this circuit QAD model.

Since the electromagnetic wave travels about 105 faster than sound through the IDT, we

take the lumped element limit for the circuit, and the electronic subsystem can be regarded

as a two-level system that interacts with SAW at different positions simultaneously. Notice

that this system inevitably becomes non-Markovian under this assumption, thus necessi-

tating our use of the Laplace transform solutions in what follows, rather than more typical

quantum optics approximations. We also assume the mass loading of all electrodes to be

zero to remove additional mechanical resonances. And we approximate the uniform electric

field between each pair of electrodes, such that E(x, t) = [V (t)/λ ]sgn[cos(πx/2λ )], where

V (t) is the voltage applied on the IDT. We also assume the substrate has no loss through

intrinsic material dissipation or via acoustic energy radiated in directions perpendicular to

x̂

We take the atom transition frequency to equal the IDT resonance frequency, i.e.,
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Figure 2.2: The momentum-dependent coupling g(k;N) for (a) N = 30, (b) N = 75. Red solid lines correspond to circuit QAD model
2.8, blue dashed lines to Lorentzian toy model 2.15. The vertical axes for (a) and (b) share the same scale.

ν = 2π/T = 2πcs/λ , where cs is the speed of SAW propagation, and T is the designed

fundamental period of the SAW. We calculate the coupling g(k;N) for circuit QAD device

as [91]

gcQAD(k;N) =

√
γ1cs

2π

sin(Nkλ/2)cot(kλ/4)
2+ kλ/π

. (2.8)

We illustrate gcQAD(k;N) in figure 2.2 for N = 30, and 75. This model has a finite band-

width about 2π/Nλ , with the on-resonance coupling proportional to N. Note that the poles

of the response function 2.6 are hard to find analytically with this model. Therefore, we

establish a toy model in the next subsection to capture the long-time dynamics and where

we can analytically express its poles. Then, we compare the toy model to numerical results

using the circuit QAD model in section IV. B.
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2.3.2 Derivation of the circuit QAD model

In this subsection, we give both the derivation of equation 2.8 and a discussion of ex-

perimental feasibility of this model. Consider the system described by figure 2.1, where

the IDT aligns to the [110] direction of a cubic crystal substrate. We assume the electrodes

of the IDT do not change the mass density on the surface, and we model the Josephson

junction as an LC circuit with inductance LJ and capacitance CJ . The Lagrangian of the

system is [92]

L =
LJ

2
Q̇2− 1

2CΣ

Q2−We14

∫
∞

0
dz
∫ d/2

−d/2
dx
[

∂V
∂x

(
∂ux

∂ z
+

∂uz

∂x
)

]
+

W
2
×

∫
∞

0
dz
∫

∞

−∞

dx
[

ρ(u̇x
2 + u̇z

2)− c′11(
∂ux

∂x
)2− c11(

∂uz

∂ z
)2−2c12

∂ux

∂x
∂uz

∂ z
− c44(

∂ux

∂ z
+

∂uz

∂x
)2
]
,

(2.9)

where variables Q(t) and ~u(x,z, t) = {ux,uz}(x,z, t) are the charge and strain degrees of

freedom, respectively. The total capacitance CΣ = CJ +CIDT, where the capacitance of

IDT CIDT can be calculated according to [93]. W is the width of the IDT. The material

parameters ρ , c11, c12, c44, e14 are the density, elements of elastic tensor, and piezoelectric

tensor of the substrate. For the cubic crystal, we have c′11 = (c11 + c12 +2c44)/2 [94]. To

represent SAW modes, we take the ansatz [94]:

ux(x,z, t) =
∞

∑
j=−∞

C j(t)ξ j(z)ψ j(x), (2.10)

uz(x,z, t) =
∞

∑
j=−∞

C j(t)ζ j(z)ψ j(x), (2.11)

where ψ j(x) =
√

2/Le−iK jx, ξ j(z) =
√

2/Le−qK jz−iφ , and ζ j(z) =
√

2/Lre−qK jz−iφ with

periodic boundary conditions in x, and ~u = 0 at z→ ∞. L, and K j = π j/L are the length

of the system, and the momentum of modes, where j ∈ Z. The fitting parameters q,r ∈ C,
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and φ ∈ R can be derived from [94]. The electric field oscillates rapidly enough that the

electric potential V (x) is always quasi-static by the comparison of electron transmission.

Therefore, we make the approximation:

∂V
∂x

=





− 2Q
CΣλ

, for 2η−N
2 λ ≤ x < 2η+1−N

2 λ

+ 2Q
CΣλ

, for 2η+1−N
2 λ ≤ x < 2η+2−N

2 λ

, (2.12)

where η = 0,1,2, ...,N−1. Substituting equation (2.10-2.12) into equation 2.9, we get

L =
LJ

2
Q̇2− 1

2CΣ

Q2 +
W
2L

∞

∑
j=−∞


 ρ ′

K j
|Ċ j|2−c′K j|C j|2−

e′

CΣ

sin
(

K jλN
2

)
tan
(

K jλ

4

)

K jλ
QC j


 .

(2.13)

The new parameters ρ ′ = ρ(1 + |r|2)/Re[q], c′ = {c′11 + c44|r|2+(c44 + c11|r|2)|q|2

+i[c12(r∗q∗− rq) + c44(rq∗− r∗q)]}/Re[q], and e′ = 8e14Re[(i− r/q)e−iφ ] are effective

density, elastic constant and piezoelectric constant, respectively. Then we define the mo-

mentum conjugates as: V = LJQ̇, Pj = M jĊ j, where M j = Wρ ′/(LK j). And then we

can calculate the quantized Hamiltonian by mapping C j →
√

h̄/(2M jω j)(â j + â†
j), Pj →

−i
√

h̄M jω j/2(â j− â†
j), Q→

√
h̄/(2LJν)(σ̂−+ σ̂+), V →−i

√
h̄LJν/2(σ̂−− σ̂+). Then

we have

Ĥ =h̄νσ̂+σ̂−+
∞

∑
j=−∞

h̄ω jâ
†
j â j+

h̄g0
√

π√
L

∞

∑
j=−∞

sin
(
K jλN/2

)
tan
(
K jλ/4

)

K jλ/π
(σ̂−+σ̂+)(â j+ â†

j),

(2.14)

where ν ≡ 1/
√

LJCΣ, ω j ≡ csK j (and cs =
√

c′/ρ ′), and g0 ≡ e′
√

πWν/(CΣ

√
c′ρ ′). Tak-

ing the rotating wave approximation, the limit L→∞ then moving in to the rotating frame,

we get the Hamiltonian equation 2.1 with equation 2.8.

In general, an artificial qubit (e.g. a DC SQUID as a generalization of Josephson junc-

tion) has tunable frequency from 0.1∼ 10 GHz. Taking the speed of sound as 3000∼ 5000
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ms−1, the corresponding phonon wavelength range is 0.5 ∼ 30 µm. Engineering IDTs

at this length scale has been achieved by multiple references such as Ref. [37]. Then

we use parameters provided in Ref. [91] to estimate γ1 and to validate the experimen-

tal feasibility of our model: c11 = 12.26, c12 = 5.71, c44 = 6.00, c′11 = 14.99 (×1010

Nm−2), q = 0.5+ 0.48i, r = −0.68+ 1.16i, φ = 1.05, ρ = 5307 kgm−3, e14 = 0.157

Cm−2, and assume reasonable parameters as ν ≈ 5 GHz, CΣ = 2.5×10−11 F, W = 50 µm.

Then our numerical estimations of parameters are: ρ ′ = 14902 kgm−3, c′ = 28.73×1010

Nm−2, e′=−1.248 Cm−2, g0 =−19.34
√

µmMHz, cs = 4391 ms−1. γ1 = 4πg2
0/cs≈ 1.07

MHz. As γ1 > π×10−5ν is possible, we conclude that experimental realization can be even

easier than our analysis.

2.3.3 The Lorentzian toy model

To evaluate the integral in equation 2.6, we use a Lorentzian toy model gLor(k;N) de-

fined as

gLor(k;N)≡
√

γ1cs

2π

N
(Nkλ/π)2 +1

, (2.15)

instead of equation 2.8. Such a model satisfies the following criteria: it has a finite band-

width about 2π/Nλ and an on-resonance coupling proportional to N, it is non-local in

position with the scale of Nλ , and it decays exponentially in position and quadratically in

momentum. In figure 2.2, we illustrate that the shape of the Lorentzian toy model matches

the central peak of the circuit QAD model, while it does not capture the oscillation behavior

at large |k|. This toy model greatly simplifies the calculations and allows us to analytically

describe the poles of the response function χ(s), leading to our main results in section IV.

A. We can then analyze corrections to this model from the QAD picture.

22



2.4 Results

2.4.1 Analytic solutions from the Lorentzian model

First, we substitute equation 2.15 into the equation defining the poles of the response

function, [χ(sn)]
−1 = 0, which yields

sn +
N2γ1ν(Nsn +ν)

(ν +2Nsn)2 = 0. (2.16)

This equation can be reduced to a cubic polynomial of sn. In figure 2.3(a-b), we set γ1 =

π × 10−5ν and plot the −2Re(sn) and Im(sn), which indicate the damping rates and the

effective Rabi frequencies. We mark the solutions associated with the slowest damped

modes with solid lines.

The explicit form for the roots of equation 2.16 is:

sn =−
ν

3N
+

e−(2iπ/3)nν
(
ν−3γ1N3)

6A
+

Ae(2iπ/3)n

6N2 , (2.17)

where n= 1,2,3, and A=
3

√
−18γ1ν2N6 +ν3N3 +3

√
3
√

γ1ν3N9
(
γ2

1 N6 +11γ1νN3−ν2
)
.

We can find the transition point NT by take the square root part of A equals zero, i.e.

γ2
1 N6

T +11γ1νN3
T −ν2 = 0.

In figure 2.3(a-b), we observe a dramatic change of dynamics at the transition point

NT . When N � NT , increasing the atom size only creates a larger coupling region and

therefore accelerates the relaxation process. And at the transition point N = NT , we find

the imaginary parts of two poles merge, while their real parts split. And when N ≈ NT ,

the atom decays quickly into the 1-D waveguide, as all the modes have large damping

rates. However, when N > NT , the effective relaxation rate γ drops almost exponentially

with N, while the effective Rabi frequency becomes non-zero and increases. Note that
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Figure 2.3: (a-c) Transition from the point-like atom to the giant atom, with the Lorentzian toy model: (a) The blue lines represent decay
rates −2Re(sn) versus atom size N in the semi-log scale, where sn are roots for equation 2.16. The solid blue lines are the effective
relaxation rate γ ≡Minn[−2Re(sn)], and the dashed blue ones represent other roots. The red dotted line shows the transition point NT .
The inset is plotted in a linear scale. (b) The effective Rabi oscillation frequency Im(sn), corresponding to (a). (c) The effective relaxation
rate γ in the N-γ1 parameter plane. The red dashed line shows the transition point NT , which separates two regimes for point-like atom
and giant atom. (d) The power spectrum |Fω [α(t;N)]|2 of the simulated time evolution with the circuit QAD model, in the log scale.
We note that the discrete resonances observed arise from the phase matching condition in the circuit QAD model that is absent in the
Lorentzian model. All figures are in rotating frame with frequency ν , and all log scales are in log10 base.

both phenomena are the results of the atom excitation state overlapping with bound states.

This result shows that a bounded giant atom regime exists at N � NT , where some of

the atomic excitation energy is localized and oscillates between atomic excitation and a

stationary phonon wave packet. We also find that in the limit N→∞, equation 2.16 reduces

to sn→±(i/2)
√

Nγ1ν . As Re(sn)→ 0, a part of the excitation lives in bound states in this
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limit. We can derive the transition point NT from the roots of equation 2.16:

NT =
3

√
(5
√

5−11)ν
2γ1

≈ 0.448× 3
√

ν/γ1. (2.18)

For γ1 = π×10−5ν , we have NT ≈ 14.2. In figure 2.3(c), we show the effective relaxation

rate γ in the N-γ1 parameter plane. We find two slow relaxation regions corresponding to

the point-like atom case and the bounded giant atom case, which are on either side of NT .

2.4.2 Numerical results from the circuit QAD model

Although it is hard to analytically evaluate the integral in equation 2.6 with the circuit

QAD model, we can discretize the Hamiltonian and simulate the dynamics of the system

via solution of the Schrodinger equation for the case of a single initial excitation, i.e.,

〉ψ(t = 0)| = 〉e,0|. We choose the cutoff momentum kc = ±0.1π/λ and the density of

states dk = 2π × 10−4/λ , and time step dt = 0.1T . We keep γ1 = π × 10−5ν to compare

with analytic results from the last subsection.

In figure 2.4(a), we show the time evolution of the atomic excitation, |α(t)|2. As ex-

pected, we find that for some N � NT , such as N = 45, and 75, a fraction of the energy

remains in the system after the phonons travel through the atom, i.e., tb = NT , and this en-

ergy oscillates between mechanical and atomic excitation. Next, we choose a final time t f ,

such that |α(t f )|2≈ 0 for all the N values we chose, and plot the magnitude of the phonon

wavefunction |Ψ(x, t f )|2 in figure 2.4(b). Again, we find that for N = 45, and 75, a portion

of energy remains confined within the range of the IDT after a long time.

We also show the logarithm of the power spectrum |Fω [α(t;N)]|2 in figure 2.3(d),

where Fω [ f (t)] represents the Fourier transform of f (t). We observe qualitative agree-

ment between figure 2.3(b) and 2.3(d) in terms of the locations of peaks when peaks are

observed, but with discrete frequencies rather than continuous as a function of N. For ex-
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Figure 2.4: (a-b) Simulation for the circuit QAD model for different atom sizes N: (a) The time evolution of atom excitation amplitude
|α(t)|2, for different N. The dashed lines show the time that the phonons travel through the atom length tb = NT . For N above the onset
of normal mode splitting and phase matched, the system settles into a long-lived state after a short time. (b) The magnitude of phonon
wave function |Ψ(x, t f )|2 frozen at t f = 267T (also indicated by the black dashed line on figure 2.4(a)), for different N. We chose t f such
that |α(t f )

2|≈ 0 for all N values shown. The inset shows the same plot zoomed in near the atom region identified by the bars of color
below the axis for different N. (c) The Lorentzian theory prediction and the circuit QAD simulation result of the bounded atom size Nm.
(d) The ratio between Nm,cQAD/Nm,Lor.

ample, from figure 2.4(a-b), we also find that for some other N� NT , such as N = 60, the

atom still decays fast into the continuum and no peak is seen in the power spectrum. This

behavior is caused by a mismatch between the atom length Nλ and the effective “vacuum

Rabi wavelength” λR(N) = 2πcs/Maxn[Im(sn(N))], as the circuit QAD model introduces

a hard spatial boundary to the atom. Therefore, the circuit QAD model requires the atom

size Nm to satisfy an additional phase matching condition Nmλ ≈mλR(Nm) for the bounded

giant atom phenomenon, where m ∈N. We have discussed the first two cases, N1 = 45 and
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N2 = 75, and we further observe 1 ∼ 2 peaks that correspond to m in figure 2.4(b). In

figure 2.4(c), we show a comparison between a numerical simulation of the circuit QAD

model (by finding largest resonances on the power spectrum, i.e., the brightest points on

figure 2.3(d)), and analytic calculations of Nm using the Lorentzian model (by solving the

equation Nmλ = 2πcsm/Maxn[Im(sn(Nm))]). Again, we find a qualitative agreement be-

tween two models. We also plot the ratio between Nm,cQAD and Nm,Lor, which is stabilized

around 0.93 for m≥ 3.

Here we present an intuitive picture of understanding how phase matching conditions

for bounded giant atoms arise even in a continuous model. Consider the case where the

atom is set to the excited state at t = 0: During the first half of the effective vacuum Rabi os-

cillation t = (0,T/2) the nominal outgoing phonon wavefunction becomes approximately

ψ1(x) ∝ exp(−a|x|), where a is some geometrical parameter with a 1/x unit. During the

second half of the period, this undergoes destructive interference with the newly emitted

phonon state ψ2(x) ∝ −exp(−ab|x|) while ψ1 moves outward a distance λR/2. The sec-

ond portion has a π phase shift and some loss b due to energy being emitted in the first

half. Therefore, the total emission in the far field (|x|� Nλ ) within the whole cycle is:

ψ(x) ∝ exp(−a|x + λR/2|)− exp(−ab|x|). For the Lorentzian model in the giant atom

regime, b∼ aλR/2 and these can cancel.

2.4.3 Top-hat model and bound states in continuum

If γ = 0, then there exists at least one bound state in the 1-D continuum. Such a state is

known as a bound state in continuum (BIC) [34, 81, 95] or a decoherence-free state[76, 96–

98]. A BIC is an eigenstate of the Hamiltonian with eigenenergy within the continuum of

the spectrum. Its existence usually requires symmetry protection or fine-tuning [34]. We

27



illustrate the bound state in the continuum using the top-hat toy model

gTH(k;N)≡





√
γ1cs
2π

N |k|≤ 2π

Nλ

0 |k|> 2π

Nλ

. (2.19)

Note that though this toy model may seem simple, it is unphysical as it requires infinite

spatial extent. Here, we report that a pair of purely imaginary solutions exist in our top-hat

toy model. With equation 2.19, we can write the equation [χ(sn)]
−1 = 0 as

πsn + iN2
γ1 log

(
Nsn− iν
Nsn + iν

)
= 0, (2.20)

where the complex function log(z) is the multiple-valued. Now we seek for purely imagi-

nary solution sn = iωn, and we separate the real and imaginary part of equation 2.20, which

results in

2πωn +N2
γ1 log

[(
ν−Nωn

ν +Nωn

)2
]
= 0, with |ωn|>

ν

N
. (2.21)

Although equation 2.21 is transcendental, there always exists a pair of solutions for all

N: We define the left-hand side of equation 2.21 as f (ωn), when ωn→±ν/N, f (ωn)→

∓∞; when ωn → ±∞, f (ωn)→ ±∞. As f is analytic, there exist a ω1 < −ν/N and a

ω2 > ν/N, such that f (ωn) = 0.

2.5 Discussion and conclusion

In this chapter, we have generalized the Weisskopf-Wigner theory from a point-like

atom to a bounded giant atom that interacts with the medium instantaneously over a con-

tinuous spatial length Nλ , with a simple Lorentzian toy model. When the coherence of the
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atom travels through the antenna much faster than the emission, we have observed that if

its size N satisfies both (1) the atom size N is larger than the transition size NT and (2) the

phase matching condition Nλ ≈ mλR(N), a giant atom dynamic emerges, which is char-

acterized by suppressed relaxation and effective vacuum Rabi oscillation with a phononic

wave packet bound to the antenna, even in the absence of a cavity. To verify our results,

we have compared it with the exact numerics of a realistic circuit QAD coupling model.

We have specifically studied the circuit QAD apparatus, but our analysis can be applied

similarly to other quantum electro-mechanical systems with a large coupling spatial range

[26, 47, 99]. For example, an optomechanical system where a membrane and a microwave

waveguide coupled via radiation pressure could have similar effects.
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Chapter 3: Feedback cooling for weakly monitored Bose-Einstein con-

densates

Combined with real-time feedback control, weak measurement opens up a new avenue

for developing unique non-equilibrium quantum materials. We provide a theoretical frame-

work for quantum feedback control of single component BECs by combining backaction-

limited weak measurements with spatially resolved feedback. We demonstrate in this chap-

ter how to construct a feedback cooling approach to minimize runaway heating caused by

measurement backaction. We offer an analytical model and compare it to numerical sim-

ulations that averaged an ensemble of quantum trajectories to demonstrate its usefulness.

Our finding reveals that closed-loop quantum control of BECs is a novel and potent tool

for quantum engineering in cold-atom systems. Our feedback cooling strategy provides

opportunities for many potential applications, such as novel states preparation and phase

transition engineering.

3.1 Introduction

Laser-cooled quantum gas experiments have shown excellent control over the low-

energy Hamiltonian regulating system dynamics, allowing for the study of interacting

many-body quantum systems with high accuracy in the laboratory. The ultracold atom

has therefore emerged as an essential platform in the field of so-called “analog quantum

simulation” [51, 100–104], where studies have successfully studied condensed-matter phe-
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nomena such as the superfluid-Mott insulator transition [52], the BEC-BCS crossover [105,

106], and spin-orbit coupling in ultracold atoms [107]. Systems with long-range interac-

tions [108] or non-equilibrium dynamics [109, 110] have also been realized in cutting-edge

studies.

In contrast, quantum simulation of open systems, i.e., systems that interact with their

environments, has remained unexplored [60]. The sophisticated application of feedback

control to many-body quantum systems is a novel method for achieving this aim in quan-

tum simulation. Quantum simulations of open systems promise to understand fundamental

physics and enable a wide range of applications in research and development. Observation

of a variety of novel phenomena in dynamical steady state, where a potentially more con-

siderable class of states is feasible than in thermal equilibrium, might be made possible,

for example, through feedback management of many-body systems [111, 112]. Existing

proposals include preparation of many-body states via potential engineering [28, 113–115],

nonthermal steady states [53, 116], stable non-Abelian vortices [117], or even time crys-

tals [118].

In this chapter, we use a BEC model system to demonstrate the flexibility of weak

measurements in conjunction with spatially resolved feedback for quantum simulation of

time-dependent effective Hamiltonians [119–121]. Using the framework of quantum con-

trol theory, we establish a theory of weak measurement and classical feedback in weakly

interacting quantum systems [40]. We study the steady-state phases of BEC exposed to

weak measurement and classical feedback through an applied potential using our generic

formalism, which allows for the development of density feedback protocols.

We further develop a signal filtering and cooling system to reduce heating, and we

demonstrate that the condensate stays intact even when subjected to feedback and mea-

surement feedback. Our finding opens the door to the development of novel dynamical

and spatially dependent effective interactions in quantum gases via closed-loop feedback
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control, as shown here.

Previous works have examined quantum control protocols for BECs [50, 57, 58, 122–

127]. Thus feedback strategies have focused on driving a condensate to its ground state

by manipulating the positions and amplitudes of harmonic trapping potentials [50, 57, 58,

122, 123], or to deterministically prepare a target state [124, 127], possibly for quantum

memory applications [125, 126]. In this work, the implementation of designed effective

Hamiltonians with potentially unknown dynamical stable states takes us beyond particular

state control and into designing effective Hamiltonians.

This chapter is structured as follows: In section 3.2 we set up the scope and format

used in this chapter and introduce a toy model illustrating the prominent features of the

control protocol. In section 3.3 we elaborate and formulate our feedback cooling protocol,

describe our theoretical approaches, and characterize the resulting steady states. We show

that feedback cooling can effectively mitigate heating due to measurement backaction. We

conclude and compare with other of our work in section 3.4.

3.2 Toy model

Our goal is to build feedback methods that reduce quantum projection noise as much as

possible. Here we establish a toy model of quasi one-dimensional (1D) single component

BEC to demonstrate weak measurement and feedback concepts.

3.2.1 Weak measurement

We use phase-contrast imaging [128] to model dispersive imaging of a quasi 1D single

component BEC of length L. We consider time and space resolved measurements of atomic

density n̂(x, t) using a Gaussian measurement model designed in Ref. [129]. Stroboscopic
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weak measurements with strength ϕ result in the measurement signal

M (x, t) = 〈n̂(x, t)〉+ m(x)
ϕ

, (3.1)

where m(x) describes spatiotemporal quantum projection noise associated with the mea-

surement. The measurement is characterized by Fourier domain Gaussian statistics m̃k = 0

and m̃km̃k′ = LΘ(|k|−kc)dWkdWk′/2dt2, where dWk is a Wiener increment with dWk = 0

and dWkdWk′ = dtδkk′ for a time increment dt [130]. The Heaviside function Θ enforces a

momentum cutoff at kc = 2π/λ , accounting for the fact that the physical measurement pro-

cess can only resolve information with length scales larger than λ/2π . With this protocol,

the observer does not immediately acquire information of the condensate phase.

We use the aggregate measurement result M , a function of x, to guide the engineering

of the feedback signals in the form of a single-particle potential V [M ]. We consider this

potential to be local in space in this work.

We describe the condensate in the mean-field approximation using an order parameter

ψ(x), which is a classical field describing the BEC dynamics. The total density is n(x) =

ψ†(x)ψ(x) and the order parameter is normalized to the number of particles, N =
∫

dx n(x).

From Eq. (3.1) the measurement results at the mean-field level therefore depend on the field

amplitude via 〈n̂(x)〉 → |ψ(x)|2. Measurement backaction leads to stochastic evolution of

the order parameter, which results in condensate heating [55, 129] in the absence of a

cooling protocol, which we describe in Sec. 3.3.

The combined measurement and quantum control process is described by a stochastic

equation of motion

dψ(x) = dψ(x)|H + dψ(x)|M + dψ(x)|F , (3.2)
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for the condensate order parameter ψ(x). Here

dψ(x)|H =− i
h̄

[
Ĥ (x)−µ

]
ψ(x)dt, (3.3)

dψ(x)|M =

[
−ϕ2kc

4π
+ϕm(x)

]
ψ(x)dt, (3.4)

dψ(x)|F =− i
h̄

V [M ](x)ψ(x)dt, (3.5)

denote contributions from unitary (i.e., closed system) evolution, measurement backaction,

and feedback, respectively and µ represents the chemical potential. For simplicity we set

h̄ = 1.

The measurement backaction is described by equation (3.4). Backaction noise m(x) is

determined by measuring the density of the condensate. The potential term V [M ] is used

in Equation (3.5) to describe the feedback. A deterministic term comprising information

of the condensate dynamics is combined with a stochastic term due to quantum projection

noise in the feedback potential. As a result, both dψ|F and dψ|M play a role in stochastic

condensate dynamics. The density of noncondensed particles stays low when each individ-

ual measurement is relatively weak. As a result, we suppose that throughout its evolution,

ψ(x) is well characterized by the lowest order Hartree-Fock theory. In Sec. 3.3.2, we vali-

date this assumption.

3.2.2 Feedback

In this section, we examine a simple measurement and feedback model for single com-

ponent BEC systems. We take a weak density measurement and then apply a proportionate

feedback potential

V [M ] (x, t) = g0M (x, t), (3.6)
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where the gain parameter g0 denotes the feedback strength. Inserting Eq. (3.1) into Eq. (3.6)

gives a feedback potential with two contributions. The first is an effective mean-field inter-

action

V eff(x, t) = g0n(x, t), (3.7)

and the second is a stochastic contribution

V fluct(x, t) =
g0m(x)

ϕ
. (3.8)

By direct substitution of V [M ] into Eq. (3.5), the dynamical Eqs. (3.3)-(3.5) reduce to two

equations dψ(x) = dψ(x)|H′ + dψ(x)|M′ with modified unitary evolution and stochastic

terms,

dψ(x)|H′ =−i
[
Ĥ eff(x)−µ

]
ψ(x)dt (3.9)

dψ(x)|M′ =
[
−ϕ2kc

4π
+

(
ϕ− i

g0

ϕ

)
m(x)

]
ψ(x)dt. (3.10)

The effective Hamiltonian Ĥ eff(x) is modified by V eff, and the noise in the stochastic

evolution is modified due to the contribution of V fluct(x, t).

We will utilize this toy model to design a measurement and feedback cooling protocol

in the following sections. Due to runaway heating caused by the repetitive and uncompen-

sated application of the stochastic potential in Eq. (3.10) [129], the more straightforward

approach given in this section is ineffective. In section 3.3, we introduce a cooling proce-

dure that avoids runaway heating, thus completing our quantum control toolbox.
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3.3 Feedback cooling

Measurement backactions could introduce phononic excitations into the condensate.

Feedback cooling aims to reduce the number of excitations by applying feedback based on

information from the measured signal, eventually stabilizing the condensate and avoiding

runaway heating. In this section, we create a feedback cooling protocol for condensates

that could remove energy and entropy from the condensate after one cycle of measurement

and feedback processes. We design such a protocol using a single discrete measurement as

the building block. The final result demonstrates that the condensate fraction and entropy

approach stable states throughout this procedure, though the Grossı́ ÓPitaevskii equation

(GPE) energy functional continues to grow throughout the process slowly.

3.3.1 Single measurement protocol

Typically, the continuous measurement limit is established a priori by using dt → 0.

Eq. (3.1) specifies that the variance of the measurement record is proportional to 1/dt,

which means that this record diverges in this limit. However, an indefinitely fast physical

measurement does not exist in reality. A “single measurement” is obtained by integrating

Eq. (3.1) over a small time window. When we take this type of measurement into consid-

eration, we can quantify a measurement protocol that can extract the maximum amount of

information from condensates while reducing the negative impacts from backaction.

Now consider the time-integrated version of Eq. (3.1) over an interval ∆t, giving a

single measurement of density. The measurement result is M (x) = n(x)+ m̄(x)/κ , where

κ =
√

∆tϕ is the measurement strength. m̄(x) is the spatial quantum projection noise where

˜̄mk has the same Fourier space statistics previously discussed, with ˜̄mk = 0 and ˜̄mk ˜̄mk′ =

Lδkk′Θ(|k|−kc)/2. Directly after measurement, the wavefunction updates to ψ|M(x) ≈
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ψ(x)+κm̄(x)ψ(x). Thus, there exists an optimal measurement strength

κ∗ ≈
√

1
2 max[n(x)]

, (3.11)

such that the measurement outcome is equivalent to the post-measurement density n|M ex-

actly, i.e., M (x) = n|M(x). In principle, the optimal measurement strength is determined by

the local density; however, this is difficult to apply practically in experiments. Instead, we

approximate κ∗ to be constant, and we then utilize this coupling value to provide feedback

cooling for the system.

If we can find a potential Vc|M(x) that projects the post measurement state to the ground

state, ψ|M(x) would satisfy the stationary GPE

µψ|M =
[
Ĥ0 +u0n|M +Vc|M

]
ψ|M. (3.12)

To compose our feedback cooling protocol, first, we instantly apply the potential Vc|M(x) for

the post-measurement state would be the ground state of the total Hamiltonian if we assume

a uniform phase. Next, we approach the initial state by slowly–adiabatically–ramping off

the applied potential. We approximate Vc|M using the Thomas-Fermi (TF) approximation

of Eq. (3.12), yielding Vc|M(x) = µ−u0n|M(x). We then make the substitution u0n|M(x)→

gcM (x) where gc is the cooling gain, an externally adjustable parameter for which the

expected value of u0 is found to be optimal. This gives our feedback cooling potential

function

Vc|M(x, t) = [µ−gcMtm(x)] f (t− tm) , (3.13)

where tm is the time of the measurement and f (t) is a ramp off function where f (0) = 1

and f (t→∞) = 0. Practically, we can use f (t− tm)≈ 1−γ(t− tm) where γ is the ramp-off

rate.
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3.3.2 Bogoliubov theory for single measurement protocol

In this section, we present an analytical expression for the phonon distribtion after sin-

gle measurement-feedback protocol mentioned above utilizing Bogoliubov theory [131]

and periodic boundary conditions. Small excitations above the ground state of a spinless

BEC with density n after the Bogoliubov transformation has been performed are character-

ized by the Hamiltonian

Ĥph = ∑
k

εkb̂†
k b̂k, (3.14)

where b̂†
k (b̂k) is the creation (annihilation) operator of a Bogoliubov phonon with momen-

tum k and energy εk = µξ |k|
√

ξ 2k2 +2. To render our analytic analysis easier, we concen-

trate on the weak measurement regime, in which only at most one phonon mode is occu-

pied, resulting in wavefunctions of the form |ψ〉= α|vac〉+∑k βk|k〉, where |k〉= b̂†
k |vac〉,

and |vac〉 is the phonon vacuum.

Measurement backaction is described by the Kraus operator

K̂ = exp

{
−κ2

2

∫
dx
[

δ n̂(x)− m̄tm(x)
κ

]2
}
, (3.15)

with the density difference operator δ n̂(x) ≡ n̂(x)− n. In the phonon basis δ n̂(x) can be

expressed as a sum δ n̂(x) =
√

n/L∑k(cke−ikxb̂k+h.c.) of phonon creation and annihilation

operators, with ck = [1+2/(ξ k)2]−1/4.

In this representation, the feedback cooling operator derived from (3.13) is

V̂c|M(t) =
∫

dx Vc|M(x, t)n̂(x). (3.16)

Assuming adiabatic evolution, with ramp-off rate γ → 0, and using first-order perturbation
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approximation, the operator describing the cooling protocol is

R̂|m = 1+∑
k

gcck
√

n
κεk
√

L

[
˜̄mtm(k)b̂k−h.c.

]
. (3.17)

This expression is valid for gcck
√

n� κεk
√

L. The probability of finding a phonon in state

|k〉 after a measurement-feedback cycle is

P̄k = |〈k|R̂|mK̂|vac〉|2 = nκ2c2
k

2

(
1− gc

κ2εk

)2

Θ(|k|−kc). (3.18)

We draw two most important conclusions from this result: (1) Setting gc = 0 gives the

probability nκ2c2
k/2 that the measurement created a phonon in state |k〉; and (2) the phonon

mode with energy εk,opt = gcκ−2 can be perfectly cooled with this protocol. Eq. (3.18)

is compared to our stochastic GPE simulation with a linear ramp-off function f (t) in

Figure 3.1(a). The analytic approach accurately reproduces the numerically anticipated

phonon distribution immediately after a single measurement (red curve). However, the re-

sults with cooling show extra periodic patterns due to the finite ramp-off time of the simu-

lation. We also notice that our perturbation theory becomes inapplicable for the parameters

on the gray area where single phonon energy is small.

In the thermodynamic limit L � ξ , the per-particle energy after one measurement-

feedback cycle

∆E =
1

2πn

∫
dk εkP̄k = A(gc−gc∗)2 +∆E∗ (3.19)

is parabolic. With ξ� 1/kc, the minimal per-particle energy increase ∆E∗/µ = κ2φ 2
c (πφc−
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Figure 3.1: Comparison between Bogoliubov theoretical results and stochastic GPE simulations for a single measurement-feedback
cycle, where the system initially in the BEC ground state. (a) Phonon population. Black, green, blue, orange, and red curves indicate
γ = 0ms−1, γ = 0.12ms−1, γ = 0.61ms−1, γ = 3.07ms−1 and γ = ∞. Dashed curves result from Bogoliubov theory [Eq. (3.18) with
gc = u0 and gc = 0, corresponding to γ = 0 and γ = ∞ respectively], while solid curves derive from GPE simulations (3000 trajectories).
The Bogoliubov and GPE results coincide for γ = ∞ (red). The grey region marks wavenumbers for which first order perturbation theory
fails. (b) Gain gc∗ (red circles) for which the energy increase ∆E∗ (black squares) is minimized, plotted as a function of γ . For each point,
we fit Eq. (3.19) to the GPE simulation result with A,gc∗, and ∆E∗ as free parameters. Horizontal dashed lines indicate the Bogoliubov
prediction of ∆E∗ and gc∗, and dash-dotted line shows energy increase without feedback cooling (i.e., γ = ∞).

6
√

2)/(6π2ξ ) occurs for a gain

gc∗
u0

=
2
√

2κ2nφc

π
, (3.20)

where φc = kcξ/
√

2 parameterizes the cutoff and A = (4
√

2κ2µξ )−1.
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Figure 3.1 (b) compares the optimal energy increase predicted by Eq. (3.19), with that

obtained from numerical simulations of the stochastic GPE (horizontal black dashed line

and black squares, respectively), and the corresponding optimal gains are denoted by the

red circles. In this figure, the GPE simulation exhibits three regimes: (1) For very rapid

ramps γ → ∞, the adiabatic assumption is invalid, and the GPE optimal gain is larger than

anticipated from the analytic model. (2) In the adiabatic ramping regime where γ → 0, we

find both gc∗ and ∆E∗ converge, with ∆E∗ greater than our predicted value. This results

from phonon-phonon scattering processes redistributing phonons between modes, which

is not included in our Bogoliubov theory. And, (3) in the intermediate regime (γ between

3ms−1 and 10ms−1) our theory performs optimally and ∆E∗ coincides with the analytic

prediction, albeit with much higher gain. We note that the optimal gain gc = u0 obtained

in Sect. 3.3.1 is close to that predicted by Eq. (3.20), where for the parameters in Fig. 3.1,

gc∗ ≈ 2.8u0.

3.4 Discussion and conclusion

Hamiltonian engineering for Bose gases has been achieved at the level of the single-

particle Hamiltonian via synthetic gauge fields [132, 133], spin-orbit coupling [107, 134,

135], and spin-dependent potentials [136, 137]. Going beyond previous works [57, 129],

we created a cooling strategy to prevent the condensate from overheating during the monitoring-

feedback process. For optimal experimental implementation, further improvement of the

cooling process is required. For example, Eq. (3.18) predicts that the k dependent gain

gc(k) = nκ2εk would result in near-perfect cooling for all momentum states. Actual mea-

surements include limited resolution, inefficient detectors, and technical noise. The realistic

cooling performance might be improved by tweaking the details of this feedback technique

according to these imperfections.
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This work enables real-time feedback control, allowing us to explore both quasi-steady-

state behavior and dynamics in the same experiment. Furthermore, it provides the op-

tion for developing feedback-controlled systems in stabilized modes. As illustrated in our

publication in Appendix B, Hamiltonians can be tuned and engineerable for customized,

spatially dependent effective interaction terms. Nonlocal or time-dependent interactions,

which have no analog in closed systems, might be included in future work. Our protocols

have the potential to be applied to higher dimensions and to stabilize topological defects

like non-Abelian vortex anyons, which are unstable in closed systems [117].
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Chapter 4: Machine-learning enhanced dark soliton detection in Bose-Einstein

condensates

The majority of information obtained from cold-atom studies comes with images, while

the interpretation of these images is constrained by our expectations about the patterns pre-

sented in the data. In this chapter, we investigate the well-defined problem of finding dark

solitons, which appear as local density depletions in a BEC. In order to study soliton dy-

namics across a broad range of parameters, it is necessary to analyze big datasets, which

means that the currently available human-inspected approach for soliton identification and

classification is a substantial bottleneck. We combine CNN with traditional fitting tech-

niques to categorize and extract quantitative information from atomic physics data. Using

deep CNNs to detect localized excitations in atomic BECs, we provide an automated clas-

sification and positioning method for recognizing localized excitations in atomic BECs,

therefore eliminating the requirement for manual evaluation. In addition, we publish our

labeled dataset of dark solitons, which is the first of its kind, available for future machine

learning research.

4.1 Introduction

ML-based image classification has found applications across a wide range of scientific

disciplines, including analyzing of experimental data in high-energy physics [138–140],

searching for dark matter and energy [141, 142] identifying excitations in quantum dots
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experiments [143–146] predicting properties of materials [147–149] to studying molecu-

lar representations and properties [150–152]. In particular, the field of atomic physics has

made use of ML for identifying topological phase transitions [153], assisting absorption

imaging techniques [154], describing particles in disordered environments [155], and dis-

covering quantum vortices in BECs [156].

We focus on solitons in cold-atom Bose-Einstein condensates. Since the first ob-

servation of solitons in canals [157], they have been found in many physical systems

involving fluid dynamics, such as rivers and seas [158, 159]; BECs [54, 160]; optical

fibers [161, 162]; astronomical plasmas [163]; and even human blood vesicles [164, 165].

Solitons are resilient solitary waves that preserve their size, shape, and travel speed as

they are traveling [166, 167]. These characteristics are the result of a dynamic interac-

tion between nonlinearity and dispersion. For their application, solitons in optical fibers

have found practical uses in long-distance, high-speed transmission lines because of their

inherent stability [168, 169].

While the natural environment does not permit the controlled study of quantum solitons,

BECs provide an ideal medium in which one or multiple solitons may be generated on

demand with all of their features, such as location and velocity, tailored to meet the needs

of the experiment [43, 170]. When doing soliton studies in BECs, raw data in the form

of images offer information on characteristics, including positions, of solitons inside the

BEC. However, the inability to effectively and accurately determine the number of solitons

and their positions is the bottleneck that prevents us from understanding their dynamics. It

is possible to refine the position of a soliton provided a reasonable current estimation using

typical least-squares fitting techniques if the number of solitons is known before the fitting

process begins. As of right now, the number of solitons is decided manually [43], and this

human involvement makes it difficult to do an automated analysis of massive datasets.

Here we describe a reliable automatic soliton identification and positioning system in
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Figure 4.1: Schematic of the soliton detection and positioning system. Red boxes and solid arrows represent the flow of the complete
system. The dashed red boxes and arrows represent additional components required for a closed-loop implementation. The green boxes
and arrows represent additional out-of-loop steps of preparing the classifier and establishing the training dataset.

this chapter. This system receives input picture data and outputs information on whether

or not a single soliton is present in addition to the location of that single soliton if one

is there. Given that solitons are generally distinguishable by human analysis of images,

this topic has a natural connection with computer vision and the categorization of images

using CNNs [171]. Our algorithm is composed of a data preprocessor that transforms raw

data into a CNN-compatible format; a CNN image classifier that assesses whether or not

a single soliton has been spotted; and, when relevant, a position regressor that locates the

soliton inside the BEC (see figure 4.1 for a schematic of the analysis flow).

As part of our research, we construct a dataset of 6,257 labeled experimental images of

BECs with and without solitonic excitations, which is now accessible via the National In-

stitute of Standards and Technology (NIST) Science Data Portal [22] and at data.gov. Next,

we demonstrate that our automated system outperforms our current human image classifier

by autonomously reproducing the data analysis described in Ref. [43] and completing a

similar task.

The following content of this chapter is organized as follows: in section 4.2, we discuss

the dataset and illustrate the workflow of the soliton detector and its training process. Then

in section 4.3, we discuss the quality of the labeled dataset and demonstrate the quantified

performance of our system. Finally in section 4.4, we conclude and discuss possible future
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directions.

4.2 Soliton detection and position system

Here we explain our automated approach to soliton recognition and localization in im-

ages of BECs. Our four-step approach, which is described in detail in later subsections and

shown in figure 4.1, is outlined as follows.

Step 1: Measurement. From experimental measurements, the atomic density distribution is

represented by three raw images that are merged to form one image of the atomic density

distribution. The experimental design is discussed in depth in our article C.

Step 2: Data preprocessing. As shown in figure 4.1, the image frame is rotated with respect

to the BEC cloud orientation, and the region of interest is focused on where atoms are

confined, which is a tiny fraction of the complete series of images (3×648×488 pixels).

The data is rotated and cropped accordingly before going through the classification stage

to make the soliton pinpointing process without unnecessary information.

Step 3: Image classification. The pre-trained CNN classifier detects whether or not a single

soliton can be found in a given picture using the input image. If this is the case, step four

is carried out; otherwise, the analysis is terminated and yields no soliton or other excitation

results based on CNN prediction.

Step 4: Soliton positioning. The soliton location with respect to the BEC center of im-

ages that contain only one soliton is computed using a least-squares fit based on a one-

dimensional (1D) model function.

4.2.1 Data preprocessing

6257 images were collected for CNN training from several experiments conducted in a

single lab over a two-month period. The raw images were captured using a 648×488 pixel
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camera. And pixels in the horizontal and vertical directions are labeled with the letters i

and j, respectively.

Absorption imaging is a technique that integrates three raw images into a single atomic

density record. In the first image IA
i, j, the BEC is shined by a probe laser, and the resultant

intensity measures the probe to the BEC’s shadow. The second image IP
i, j records only

the pure probe intensity, and the third image IBG
i, j is a dark frame that only contains any

potential background signal with no probe lights. We extract the 2D column density

σ0ni, j ≈− ln

[
IA
i, j− IBG

i, j

IP
i, j− IBG

i, j

]
(4.1)

from these three images, where the resonant cross-section σ0 = 3λ 2/(2π) is calculated

from the wavelength λ of the probe laser. And we express density in terms of the dimen-

sionless product σ0ni, j for our data. Figure 4.1 displays an example of the probe beam with

atoms and the final density in the ‘Raw data’ and ‘Step 3: Image classification’ frames,

respectively.

After examining all of our data, we found that the BEC only covers a minor portion of

the image in our raw data, and that the long axis of the BEC is rotated by about 43 degrees

with regard to the camera in our raw data. (Except for very few shots that failed to capture

the BEC, which are removed from our dataset.) To facilitate CNN training, the images are

rotated to align the BEC with the image frame and cropped to eliminate the significant part

of the image that does not include information about the BEC. The BEC’s location and

form might alter across multiple realizations of the same experiment; thus, we use a fitting

technique to identify the BEC’s position and size.

Then, we fit all 2D images to depth-integrated 3D Thomas-Fermi distributions [172],

47



giving us the global 2D distribution of BEC:

nTF
i, j = n0 max

{[
1−
(

i− i0
Ri

)2

−
(

j− j0
R j

)2
]
,0

}3/2

+δn. (4.2)

This function expresses the 3D BEC density distribution summed along the imaging axis.

We use six parameters in this fit: the BEC center coordinates [i0, j0]; the peak density of

BEC n0; the Thomas-Fermi radii [Ri, R j]; and an offset δn from subtle changes in probe

intensity between images.

A successful fitting needs appropriate initial guesses for all fit parameters. The guesses

for i0 and j0 were determined by summing the picture in the vertical and horizontal dimen-

sions to create two 1D projections, from which we chose the average location of the five

greatest values as our first estimations. We took the largest value in the image as the guess

for n0 and used [Ri,R j] = [66,55] pixels, based on our estimation as the typical radii over

the whole dataset. The guess for the offset δn is zero. The results of these fits are included

in our released dataset.

We determined the 164× 132 pixel of the cropping region by examining the radii

[Ri,R j] = [66(5),58(3)] obtained from fits to 6257 images. We then centered the crop-

ping region at [i0, j0] as determined from the fits of each image separately. The process

was validated on an additional 104 images that are not captured but included in this release.

Dark solitons show as vertically aligned density depletions in the preprocessed images, and

they could be distinguished by their appearance (see the top-left panel in figure4.2(b)).

4.2.2 Labeling

Three independent human labelers participate in categorizing the preprocessed data,

classifying the images into three categories: “no soliton”, “single soliton”, and “other exci-

tations”. The “no soliton” class includes images that unambiguously show no solitons; the
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Figure 4.2: (a) CNN classifier structure. The first rectangular-shaped component represents a preprocessed input image. The left-most
five architecture sets of rectangular-shaped components represent convolutional layers with their filter number and image size specified,
each followed by a ReLU activation function and a max-pooling layer. The following three line-shaped components represent fully
connected layers with specified neuron numbers, each followed by a ReLU activation function and a dropout layer. The last component
represents a dense output layer with a softmax activation function. (b) Visualization of the input image, second, and fourth max-pooling
layers for a correctly classified single soliton image. The top left panel shows the input image, the 16 images in the top right panel show
the output of the second max-pooling layer, and 64 images in the bottom panel show the output of the fourth max-pooling layer. The red
boxed output indicates one of the filters that capture the single soliton feature. The blue boxed filter would be activated if more than one
soliton is present (see figure 4.3 for no soliton and other excitation case). (c) Confusion matrix of the classification result of test dataset,
comparing between human allocated labels (HL) and ML classifier prediction (ML). The images show sample data for correct (diagonal)
and misclassified (off-diagonal) cases. The numbers above show the number of images associated with a certain circumstance.

“single soliton” class depicts images with one and only one soliton; and “other excitations’

class covers all other image that can neither be described as ‘no soliton’ nor ‘single soliton.’

A separate “two soliton” class is not included in our presentation since the limited number

of images with two solitons may result in inadequate training.

Due to human capacity and limited focus span, we separate the labeling process into

eight batches, with the size of each batch determined by how long each labeler was able

to maintain their focus. Once we finish the labeling process of a batch of images, we

compare the three resultant labels and save only images in the total agreement. The overall

labeling agreement ratio was 87% (table 4.1 shows a comparison of the labeling agreement

scenarios across all three classes), consistent across all batches. The remaining images are

further investigated and debated until a final agreement is achieved. The distribution of
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Table 4.1: Human labeling result. The first two columns (Full) indicate image counts and percentages of
each class. The last two columns (3-agree) compare the tallies and ratio in all data per class for the images
with labels that human labelers initially agreed on.

Dataset Full 3-agree
Class Count Percentage [%] Count Agreement ratio [%]

No soliton 1 237 19.8 1 184 95.7
Single soliton 3 468 55.4 3 077 88.7
Other excitations 1 552 24.8 1 184 76.3

Total 6 257 100.0 5 445 87.0

images among classes is as follows: 19.8% in no soliton class, 55.4% in single soliton

class, and 24.8% in other excitations class. Figure 4.2(c) shows representative labeled

images from each class. This labeled dataset was used to train the CNN classifier and

assess the accuracy and reliability of the classifier and positioning protocol.

4.2.3 Image classification

We design our CNN classifier based on the input image size (164×132) and the num-

ber of possible output labels (3), shown in figure 4.2(a). This CNN consists of five con-

volutional layers and four fully connected layers. Each convolutional layer is followed

by a rectified linear unit (ReLU) activation function defined as f (x) = max(0,x), then a

max-pooling layer, which down-samples the input (km× ln) array, partitiones into a set of

non-overlapping rectangles of equal (k× l) size, into a smaller (m× n) array with entries

representing the maximum value of the corresponding sub-region. The final max-pooling

layer is flattened and fully connected to a complete neural network with three dense lay-

ers (256, 128, and 64 neurons, respectively) and then an output layer (three neurons), all

fully connected to the subsequent layers. All dense layers are followed by ReLU activation

functions and dropout layers that randomly eradicate neural connections with a possibility

of 0.5 during the training phase to regulate and facilitate overfitting. Finally, the output

vector ~ξ = (ξ1,ξ2,ξ3) is normalized by the softmax activation function, giving the output
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Table 4.2: Classification performance summary for training with the full training dataset with performance measured using cross-
validation (first column), testing on the full test dataset (second column), and testing on a subset of the test dataset that labelers initially
agreed on (last column).

Cross-validation Full test set Labelers initially agreed subset

Accuracy [%] 89.6(5) 89.4 91.6
Weighted F1 0.896(6) 0.894 0.916
No soliton F1 0.938(10) 0.959 0.983
Single soliton F1 0.920(4) 0.913 0.935
Other excitations F1 0.806(6) 0.807 0.782

predictions Pm(~ξ ) = exp(ξm)/∑n exp(ξn).

We split the labeled dataset into two subsets, with 640 images (10.2% of the dataset)

being put aside as the test dataset, and the remaining 5 617 images (89.8%) are utilized for

training throughout the model architecture construction process.

Considering that our training dataset’s unbalanced, i.e., different classes contain dra-

matically varying numbers of images, we use an augmentation approach to balance the

dataset. We implement our augmentations with three physically acceptable transforma-

tions: horizontal and vertical reflections and a 180-degree rotation. All three transforma-

tions were performed to the no soliton and other excitations classes, resulting in a four-fold

increase in the size of these classes. We applied one randomly determined transformation

per picture for the single soliton class, thereby doubling the amount of data for this class.

After augmentations, the number of data within the three classes has a 0.28 : 0.38 : 0.34

fractional distribution.

To model a slight rotation angle that may exist in different realizations, we rotate images

by a random angle in the range ±1 degree every time they are used during the training

process.

The classifier learns to distinguish between the BEC and the background during the first

few training attempts. Therefore, we applied an elliptical mask with radii [Ri,R j] to each

image, removing any technical noise outside of the BEC to speed up the training process.

In the end, we preconditioned the data by uniformly scaling the image values to the [0,1]
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range to make them appropriate for CNN input.

Since our testing dataset is not augmented and remains unbalanced, we evaluate the

performance of trained CNN models using the weighted F1 score [173]. When two models

have comparable weighted F1 scores, we first compare their accuracies as a tie-breaker, and

if accuracies are also a tie, we use the F1 score of the single soliton class to pick a winner.

Here we use the F1 score of the single soliton class to resolve any remaining ties since we

will be comparing to single-soliton dynamics data in the next sections 4.3.1.

To identify the best-performing model, we conducted a semi-structured search over the

model parameter space. We employed k-fold cross-validation to determine the generaliz-

ability of trained models throughout this phase. The training set was divided into k = 5

smaller sets (‘folds’) for each set of hyperparameters defining the CNN model, four sets of

which were used for training and one for validation. After training the model with all five

cross-validation combinations, the mean score was calculated and compared to scores ob-

tained from networks with previous hyperparameters settings. We prioritize the following

parameters: the number of filters in each convolutional layer, the number of dense layer

neurons, the optimizer, the kernel sizes of the convolution layers, the dropout rate, and the

batch size. The parameters are optimized in this order, and the tuning history is given in

table 4.3. Once we had chosen the best-performing model, we utilized 95 percent of the

training set randomly picked for the final training. As our final trained model, we used the

model that is halted before five consecutive non-improving epochs.

Figure 4.2(b) depicts typical intermediate convolutional layers of the trained model,

using an input that can be successfully categorized as a single soliton by the CNN classifier.

We see that certain filters, such as the one highlighted with a red box, can effectively capture

the information contained for a single soliton. By contrast, the identical intermediate layers

are shown in figure 4.3(a) and (b) for the correctly classified sample images from the no

soliton and other excitations classes, respectively. In both cases, we emphasize two filters:
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Table 4.3: Tuning history of model parameters. We present the number of filters used in all convolutional layers (Filters), the number of
nodes in fully connected layers (Dense), the kernel sizes in all convolutional layers (K), the dropout rate (D), the batch size (B), and the
optimizer used in training (SGD: Stochastic gradient descent, SGD+M: SGD with moment, SGD+M+D: SGD+M with decay). On the
training set, the mean performance is averaged using five-fold cross-validation. The F1 score is weighted according to three categories.
The best model is highlighted in grey. Parameters that change at each iteration is emphasized in italic.

Filters Dense K D B Optimizer Weighted Accuracy Binary
F1 [%] [%] F1 [%]

8×8×8 256×128 5 0.5 32 Adam 65(23) 74(15) 71(18)
8×16×32 256×128 5 0.5 32 Adam 56(23) 61(25) 63(19)
8×16×32×64 256×128 5 0.5 32 Adam 67(24) 75(16) 72(20)
8×16×32×64×128 256×128 5 0.5 32 Adam 78(20) 82(14) 81(16)
8×16×32×64×128 256×128×64 5 0.5 32 Adam 48(20) 62(13) 56(16)
8×16×32×64×128 256×64 5 0.5 32 Adam 58(25) 69(17) 65(20)
8×16×32×64×128 256×64×16 5 0.5 32 Adam 61(19) 75(16) 69(17)
8×16×32×64×128 512×128 5 0.5 32 Adam 47(20) 54(22) 56(16)
8×16×32×64×128 512×128×32 5 0.5 32 Adam 67(24) 76(16) 72(20)
8×16×32×64×128 256×128×64 5 0.5 32 Adamax 86(6) 89(1) 88(3)
8×16×32×64×128 256×128×64 5 0.5 32 SGD 70(6) 87(2) 76(4)
8×16×32×64×128 256×128×64 5 0.5 32 SGD+M 64(22) 74(15) 70(18)
8×16×32×64×128 256×128×64 5 0.5 32 SGD+M+D 39(4) 60(9) 49(2)
8×16×32×64×128 256×128×64 5 0.6 32 Adamax 77(5) 90(0) 85(3)
8×16×32×64×128 256×128×64 5 0.7 32 Adamax 51(17) 68(15) 61(16)
8×16×32×64×128 256×128×64 5 0.8 32 Adamax 44(13) 62(13) 54(12)
8×16×32×64×128 256×128×64 3 0.5 32 Adamax 86(1) 90(1) 88(1)
8×16×32×64×128 256×128×64 7 0.5 32 Adamax 88(1) 89(1) 90(1)
8×16×32×64×128 256×128×64 9 0.5 32 Adamax 89(0) 89(0) 90(0)
8×16×32×64×128 256×128×64 11 0.5 32 Adamax 78(20) 82(14) 82(17)
8×16×32×64×128 256×128×64 9 0.5 16 Adamax 79(21) 83(13) 82(17)
8×16×32×64×128 256×128×64 9 0.5 8 Adamax 78(20) 82(13) 81(17)

the red box indicates a filter activated by images with a single soliton, while the blue box

indicates a filter activated by images from the other excitation class. Neither highlighted

filter is active for a picture belonging to the no soliton class. This result demonstrates that

our model has been adequately trained to recognize and find distinctive characteristics of

each class in an unforeseen image.

Figure 4.2(c) and the second column of table 4.2 show the prediction results of our final

trained soliton CNN classifier. In conclusion, our model achieves weighted F1 ≈ 0.9 and

accuracy ≈ 90%, in excess of the 87.0% human labeler agreement ratio. The predominant

classifier errors happen between images from single soliton and other excitations class:

6.9 % of single soliton images is wrongly allocated to the other classes (P1 < 0.2), and

4.3 % has no clear assignment (0.2≤ P1 < 0.8).
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Figure 4.3: Visualization of the activation of the input, second, and fourth max-pooling layers for a correctly categorized image from
(a) no soliton and (b) other excitations class. In both figures, the top left panels depict the input images, while the top right panels depict
the 16 output images of the max-pooling layer. The bottom panels depict the 64 output images of the fourth max-pooling layer. The red
box denotes one of the filters learned to capture the single soliton feature in figure 4.2(b). If an image from “other excitation” is present,
the blue boxed filter is likely activated.

Figure 4.4(b) demonstrates that the classifier performs well for both the no soliton and

single soliton classes in this case. The classifier functions with better results tested against

human-initially-agreed data than when tested against human-initially-disagreed data, in-

dicating that specific images that have been disagreed upon may be confusing (see also

the last column in table 4.2 for more information). In addition, we detect an abnormally

high misclassification rate for human accepted data in the other excitations class, which

we attribute to the human labelers’ adoption of this class when confronted with a difficult

choice between two options. Figure 4.4(a) also shows that the incorrectly categorized data

is clustered around the corners of the figure, indicating a high degree of confidence in that

error.
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Figure 4.4: Soliton data classification results. (a) Distribution of CNN output for test data, colored by human labels. The scattered
dots with various labels overlay each other in random order. (b) Histogrammed probabilities. The upper panels histogram the classifier
outputs from human-initially-agreed data, while the lower panels histogram those from human-initially-disagreed data. The vertical axes
are depicted in square root scales to highlight the small amount of misclassified data.

4.3 Results

4.3.1 Soliton detector

To evaluate the performance of the fully automated soliton detection and positioning

system, we use two sets of images containing oscillating dark solitons, which comprise the

data published in figure 2 of Ref. [43] and are presented in figure 4.5. They were launched

using standard and improved protocols, with 60 and 59 images, respectively.

In the first test, we employ the improved-protocol data-set, with typical summed data

ni shown in the top panel from figure 4.5(a). As the solitons in these images are very

apparent, we believe the CNN will simply categorize them. Out of 59 images, 52 are

labeled as a single soliton, while the remaining seven images are classified as different

excitations, according to one human labeler. Single solitons are then pinpointed by the

position regressor (described in Section 2.5 of Appendix C). The middle and bottom rows

in figure 4.5(a) depict the soliton positions changing with time from manual and CNN

identification, respectively. We fit i(t) = Asin(ωt +Φ)+ i0 to the soliton positions, and

we compare the fitting parameters from those acquired by our automated protocol and the
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Figure 4.5: Oscillation of dark solitons constructed by applying 1.8(1)π phase employing the (a) improved and (b) standard protocol
described in [43]. The top panels exhibit samples for the residuals ∆i, obtained after removing the fit from the 1D profile. The middle and
bottom panels show the soliton positions and sinusoidal fits based on human identification and the outputs of our automated protocol,
respectively. Dashed lines at j =±66 pixels in all four panels illustrate the boundaries of BECs.

earlier manual method. As can be noticed by comparing the middle and bottom panels of

figure 4.5(a), the results of the automated technique are practically indistinguishable from

the human inspections. The physical parameters from the CNN classifier (A = 2(2) pixels

and ω/2π = 2.3(7) Hz) are within one standard deviation of those acquired from manual

identification (A = 2(2) pixels and ω/2π = 2.3(6) Hz).

In the second test, we employ images containing solitons created by the conventional

phase imprinting process. As remarked in the top panel of figure 4.5(b), solitons in these

images are shallower compared to those in figure 4.5(a), causing them potentially more

challenging to distinguish from the no soliton and other excitations classes. Out of 60

images in this test, 22 are predicted by the CNN as no soliton, and 11 as other excitations.

The remaining 27 are categorized as a single soliton and forwarded to the position regressor.

The lower panels in figure 4.5(b) show soliton position as a function of evolution time,

obtained from manual [43] and CNN identification, respectively. Since [43] examined the
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soliton oscillation amplitude resulting from the two imprinting techniques, the authors did

not restrict themselves to images with a single soliton. Instead, when more than one soliton

is generated, the authors recognized all the solitons but monitored just those connected

with a given trajectory. Our CNN classifier is trained to select images with single soliton

excitations. Therefore, the middle panel in figure 4.5(b) includes 12 additional observations

than the bottom panel. Even with fewer data points, however, the fitting parameters from

the CNN classifier (A = 34(3) pixels and ω/2π = 3.34(9) Hz) are within one standard

deviation of those obtained for human identification (A= 35(2) pixels and ω/2π = 3.39(5)

Hz).

The whole analysis resulting in both oscillation charts took under 148 seconds per series

on a 2014 MacBook Pro. The estimated performance relevant for in-situ operation is 2.4

seconds per image, a relatively tiny overhead on top of the measurement time (around 12

seconds). In many circumstances, however, the analysis of an image would take place with

the capture of the following image.

4.3.2 Soliton dataset

As with most ML topics, the availability of the training data is critical for the excellent

performance of the trained classifier. Therefore, we further published our labeled soliton

dataset used in this analysis along with our protocol.

Three labelers independently labeled the whole dataset to confirm the trustworthiness

of our assigned labels, as detailed in section 4.2.1. Our whole soliton image collection

consists of 6 257 labeled images. The dataset comprises 1 237, 3 468, and 1 552 images for

no soliton, single soliton, and other excitations classes.

While most of the images the assigned labels were consistent amongst labelers, there

are some images that at least one labeler disagreed with others. These images are fur-
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ther discussed until an agreement is achieved. As can be observed in table 4.1, the most

problematic case is to judge between images from the single soliton and other excitations

classes. This is likely caused by the phase imprinting approach used to imprint solitons

may also cause other excitations that show as density fluctuation or fringes in the BEC.

Examples of such fluctuation may be observed in the off-diagonal images in figure 4.2(c).

Additional explanation of the misclassified and mislabeled data can be found in Appendix

A.3. of our publication C.

Our dataset comprises the full-frame raw images, the cropped and rotated images as

utilized in this work, as well as the set of the fitted integrated 2D Thomas-Fermi distribution

parameters. This dataset is adequate to reproduce our findings but also to evaluate fitted

alternative models with different cropping sizes or image resolutions [22].

4.4 Discussion and conclusion

In this chapter, we offer an automated dark soliton identification and positioning sys-

tem that combines ML-based image classification with traditional fitting approaches to

track soliton dynamics in experimental images of BECs. We demonstrate that this system

works on par with more conventional techniques that depend on human input for soliton

identification, offering the potential to analyze soliton dynamics in big datasets. We also

make public the first dataset collecting images from a dark soliton BEC experiment, which

allows the data science community to create more advanced analytic tools and to compre-

hend nonlinear many-body physics better.

The performance of the classifier, as assessed by the weighted F1 score, leaves space

for improvement. While adjusting the hyperparameters helped greatly enhance the initial

performance, more data is essential to push this boundary. However, human labeling is

not only labor-intensive but, as the examination of the misclassified image graphs demon-
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strated, is also not always reliable. Our system provides a necessary tool to automatically

expand the dataset’s size. Such an enlarged dataset, in turn, will enable refining the soliton

classifier and performing model uncertainty quantification [174, 175], which currently is

not accounted for. Together, these refinements may enable reliable in-situ deployment.

This investigation was preconditioned on the assumption of a certain structure in the

data, resulting in our three classifications. Therefore, other approaches, such as active

learning ML [176], may be more suitable for this task. An enlarged dataset may also permit

unsupervised learning algorithms [177] to perhaps uncover more categories within the data

without presumptions. This unsupervised learning of soliton data might be a prototype for

ML-based discovery using cold-atom data.
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Chapter 5: Combining machine learning with physics: A framework for

tracking and sorting multiple dark solitons

Cold atom imaging data may suffer information losses due to the inadequacies of the

measurement and preparation processes, including not limited to phase imprinting, time-

of-flight, and interferometry. Therefore, our simulation approaches may fail to attempt to

comprehend them. In this case, we face a challenge to develop more sophisticated data

analysis methods for investigating complex processes that may involve dynamics and in-

teractions among excitations.

In this chapter, we integrate ML models with physics-based heuristics to identify multi-

ple solitons from absorption images of BEC and automate the image analysis process. First,

we improve from our previous result (Chapter 4) and develop a CNN-based object detector

to locate the solitonic excitations. Then we design physics-informed models for extracting

physical characteristics and categorizing each solitonic feature into one of three more re-

fined categories: kink soliton, solitonic vortex, or “partial” soliton. In addition, we provide

an open-source Python package to implement solitonic excitation detection protocol from

both the pre-trained model using our data and any user-defined cold atom absorption image

data.
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5.1 Introduction

In the context of quantum technologies, machine learning (ML) methods improved

data analysis as well as more resilient performance. Research has shown that technolo-

gies have progressed in the following areas: automated detection of states, excitations,

and phases [178–182], automated parameter space search and optimization [30, 31, 183–

186]; automated quantum control [187, 188], phase transition classification and interpola-

tion [153, 189, 190], simulation acceleration [191], quantum noise characterization [192],

and quantum tomography [193–195]. Taken together, these findings demonstrate how ML

algorithms can detect and categorize ambiguous data, exploring huge parameter spaces

effectively, and discovering optimum solutions.

On the other hand, physics-based heuristics and classic statistical procedures have been

vastly implemented in the research of quantum technologies [25, 196, 197]. Compared to

ML techniques, which sometimes function as “black boxes,” traditional fitting tools pro-

vide human-appreciable standards. In addition, ML methods may encounter overfitting

problems that limit their usage to data similar to the training dataset. Overfitting often hap-

pens when the number of fit parameters exceeds the number of independent data points in a

given sample size calculation. Compared to ML models, statistical tools use a substantially

lower number of fitting parameters, making them more resilient to overfitting and reliable

on data with diverse features. We suspect a good technique for scientific research may

combine both ML and traditional methods since they could benefit the results in different

ways.

Our goal in this chapter is to provide a hybrid two-module feature identification frame-

work that brings together the flexibility of ML with the interpretability and resilience of tra-

ditional fitting methods. Research has proven the effectiveness of such hybrid methods in a

variety of subjects, including landslide prediction [198], medical image processing [199],
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Figure 5.1: Framework overview. The colored arrows link the preparation (Secs. 5.2.1, 5.2.2, and 5.2.3), validation (Secs. 5.3.1), and
implementation (Sec. 5.4.1) phases of this framework. The red path indicates the preparation and application of the physics-based
approximation module of the framework. The blue path indicates the ML modules.

and cyber-attack detection [200].

As shown in Figure 5.1, our framework starts with a labeled dataset, which enables

training the ML module and configuring the physics-based module. We then independently

develop each module iteratively to enhance the performance and check the data quality by

cross-validating two modules. Finally, we combine the modules into a single system as the

new predicting tool for any unforeseen data.

A notable example of experimental physics that can benefit from this framework is

laser-cooled BEC. BEC is an excellent platform for researching quantum physics that cov-

ers a wide range of applications, from achieving collective many-body physics [52] to de-

veloping accurate atomic clocks [201]. However, some techniques for preparing and mea-

suring these systems, such as phase imprinting [197] and time-of-flight expansions [202],

might cause information loss in the measured image data. Therefore, these data provide an

excellent test-bed to challenge our hybrid framework.

Within the scope of the BEC study, we are particularly interested in the problem of iden-

tifying dark kink solitons (or referred to as dark solitons interchangeably), which are spa-

tially localized excitations that present as depletions in atomic density traversing through

BECs [197, 203, 204]. Using our established dark soliton dataset [22, 182] (sample data
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shown in Figure 5.2). We aim to extract high-quality solitons from an existing dataset,

regardless of the background noise and the number of solitons within each image.

The dark solitons in BECs appear as vertical density depletions in time-of-flight images

[top image in Figure 5.2 (b)(i)]. Depending on the technique we used to induce them, dark

solitons may be placed in between two shoulder-like density peaks [see the bottom plot

in Figure 5.2 (b)(i)]. In our experiments, dark solitons are expected to oscillate in the

horizontal direction or remain stationary, preserving their shape as they travel. Preparation

of solitons can be delicate and may yield various forms of solitonic excitations, such as

solitonic vortices [205], and bring additional chains of wiggles onto the cloud. As a result,

spatial characteristics of dark solitons in these images are hard to determine, especially

when multiple solitons exist. In order to better understand the conditions to excite solitonic

excitations and to study their dynamics and interactions, both automated detection protocol

and quantitative analysis are necessary.

Using our framework, we develop a protocol that can serve both needs. As the first com-

ponent of our framework, our ML module leverages existing computer vision algorithms to

locate features. The objectives of computer vision include image classification [64], both

supervised and unsupervised, object detection [206] and semantic segmentation [207], syn-

thetic image generation [208]. One of the most successful computer vision algorithms is

CNN, which has been shown to perform remarkably well on most of the tasks listed above.

Improving from our previous work described in Chapter 4, we employ a CNN-based object

detector (OD) to go beyond simple classification and provide the location of all solitonic

excitations in a given image. In addition to our ML module, our physics-based modules

utilize traditional fitting methods to quantitatively describe the characters of dark solitons

and to differentiate types of solitonic excitations.

There are three main advantages to using this hybrid protocol. First, though our hybrid

framework is developed primarily from a training dataset whose images had either zero
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Figure 5.2: Representative data from labeled dataset. The top panels illustrate pre-processed images from our dataset, while the bottom
panels illustrate harizontal profiles of the entire image (green), TF fits (black), and the density fluctuations (blue). The red lines and
arrows denote the location of the deepest depletion in the density fluctuations, and the orange lines and arrows indicate the sites of the
solitons discovered in our OD. (a) An image in the no excitation class. (b) Three images from the single excitation class: (i) a single
kink soliton, (ii) an off-centered kink soliton, and (iii) a solitonic vortex. (c) Two images from the other excitations class.

or one soliton, it can perform well on more complex data comprising multiple excitations.

Second, detailed examinations of the coefficients from the physics-based module enables

us to differentiate between certain solitonic excitations and others (kink and solitonic vor-

tex [203–205, 209]). Third, integrating findings from the ML and physics modules enabled

us to automatically generate an enlarged, reliable dataset, including details such as the soli-

ton locations and the types and qualities of detected solitons. This dataset is described in

detail in Ref. [23] and is available for download from the NIST data repository [22].

The remainder of this chapter is structured as follows: Sec. 5.2 introduces the dataset,

both modules, and describes their training and initialization. Sec. 5.3 describes the vali-

dations of both modules. In Sec. 5.4, we describe the open-source Python package that

implement our protocol: SolDet [24], and its performance on new data that may include

multiple solitonic excitations. Lastly, in Sec. 5.5 we conclude and discuss possible future

directions.

64



5.2 Data and modules

In addition to traditional physics-based methods, it has been proved that solitonic ex-

citations can also be discovered and described using ML approaches [179, 182, 210]. Our

framework leverage a curated dark soliton dataset (section 5.2.1), and uses an OD (sec-

tion 5.2.2) to provide an initial estimate of the positions of all solitonic excitations, and

then uses a skewed Mexican hat fit function (section 5.2.3) to accurately describe the den-

sity profiles of all solitonic excitations.

5.2.1 Data

To initialize the proposed framework, we draw on a collection of about 5,400 exper-

imental images of BECs with and without solitonic excitations that are curated from our

previous dataset. The details for data collection and curation are described in Ref. [23].

Figure 5.2 shows a selection of six images from the labeled dataset taken from the

labeled dataset. The dataset includes labels for three classes of images: “no excitation,”

which are images that do not contain any excitations; “single excitation,” which are im-

ages that contain one solitonic excitation; and “other excitations,” which are images that

do not fall into any of the preceding classes but contain excitations (including those with

multiple solitonic excitations, high degrees of noise, and those human labelers could not

agree upon). Additionally, the dataset contains information about the human-examined

horizontal location of excitations within the single excitation class.

Specifically, figure 5.2(a) shows an image from the no excitation class, which does not

have the prominent stripes. In figure 5.2(b), we show three cases of the single excitation

class, each of which has a single dark vertical fringe: (b-i) an iconic dark kink soliton; (b-ii)

an off-center single kink soliton; and (b-iii) a solitonic vortex. In figure 5.2(c), we show

three elements of the single excitation class, each of which has a single dark vertical fringe
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(see section 5.2.3). Two members of the other excitations class, each bearing more than

one dark vertical fringe, are shown in (c).

5.2.2 ML module: Object detector

In chapter 4 we developed a dark soliton detection and location system based on the

CNN [182]. The proposed system may assess the atom cloud into three possible classes.

However, the ML part does not provide any information about the excitation locations.

Instead, the positioning stage uses the deepest depletion location throughout the image to

initialize a least-square fit based on a 1D model function to achieve the best result. In

Figure 5.2 (b), we present three examples of how to implement this locating method: The

1D profile is initially created by summing along the vertical axis (green lines), then the

background is eliminated (blue lines) using the Thomas Fermi fit (solid black lines), then

the soliton is found at the deepest depletions (red dashed lines and arrows).

There are two drawbacks to using this algorithm: (1) it is possible that the soliton

does not represent the deepest depletion for all human-labeled single soliton images (as in

Fig. 5.2(b-ii)), and (2) we add a bias for depletions at different points of the atom clouds as

we remove the atom backdrop as we remove the atom background (as in Fig. 5.2(c)).

Inspired by the detection of vortices in BECs [179], we develop an object detection

(OD) neural network. The OD enhances the performance of the CNN classifier in two

ways: (1) it identifies soliton positions rather than classifying images into three classes;

and (2) even though trained with single-soliton data, OD is capable of locating multiple

excitations in the same image.

OD consists of only six convolution layers and four max-pooling layers, with no fully

connected layers. Such that the OD has 70 times fewer trainable parameters than the CNN

classifier (7× 104 versus ∼ 106 parameters), as the fully connected layers contain many
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parameters. OD also uses less training data than the CNN classifier. As a result, OD is

significantly more cost-efficient for training and predicting.

In the OD process, each image (164×132 pixels) is divided into 41 vertical cells (4×

132 pixels each). Here we choose a cell size of 4 pixels for each of the output cells since the

width of the soliton is approximately 3-5 pixels. This ensures that each output describes at

most one soliton, and no cell contains more than one distinct solitonic excitation at a time.

The OD produces two vectors of length L = 41 as the output Ỹ, each element in the vector

is the range ∈ [0,1]. Each cell’s predicted probability of containing a soliton is described

by the first vector Ỹ`,1, and the second vector Ỹ`,2 describes the normalized relative position

of the soliton center within that cell, where 0 or 1 correspond to the left or right edge of the

cell, respectively. OD considers any cell with Ỹ`,1 more than 0.5 as holding an excitation,

and it calculates the location of the excitation from Ỹ`,2. And if Ỹ`,1 is less than 0.5, it

ignores Ỹ`,2.

To facilitate the training process and to compare the OD predictions with the labels of

training data represented by Y, we utilize the cost function

F =
41

∑
`=1




−w1 log(Ỹ`,1)+w2(Y`,2− Ỹ`,2)2, if Y`,1 = 1

− log(1− Ỹ`,1), if Y`,1 = 0
(5.1)

for each training data, where the label Y`,1 identifies the existence of excitation in a cell with

100% confidence, i.e., 0 or 1. The coefficients w1,w2 are hyper-parameters that control each

term’s relative significance.

When the OD misidentifies solitons, the log terms raise the cost function, whereas the

quadratic term contributes when a soliton is mislocated inside a cell. Because our training

set only contains images with one soliton, cells with Y`,1 = 1 are considerably less common

than cells with Y`,1 = 0. As a consequence, we use w1,w2 = 10 to assure the three terms
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Figure 5.3: Architecture llustrations of (a) OD and (b) CNN classifier. Yellow-orange boxes indicate convolutional layers, orange-red
boxes indicate max-pooling layers, the horizontal lengths of the boxes indicate the number of filters, and the remaining two dimensions
indicate the image sizes. The blue and purple horizontal rectangles in (a) represent the output vectors. And the vertical blue-green
rectangles in (b) represent three fully connected layers and the output layer. The lengths of edges are logarithmically scaled.

in equation 5.1 have comparable weights. In each training iteration, we update the OD

outcome Ỹ by minimizing the cost function summed across all training images.

A single soliton may sit on the boundary between two cells and span over them since

the cell size is comparable to the soliton size. To avoid double-counting, when two exci-

tations in neighboring cells are detected, they will be merged into one, and the position is

taken as the average of previous ones. If our training data has a soliton position similar to

the predicted one, we consider the OD’s detection successful (within 3 pixels in our imple-

mentation). And ailing to detect a labeled solitonic excitation and reporting an excitation

that is not there are the two possible failure modes.

Same as the CNN classifier, OD is built and trained using the TensorFlow (v.2.5.0)

Keras Python API [211]. Fig. 5.3(a) and (b) show the visualization of the network ar-

chitecture for the OD and the CNN classifier, respectively. The model parameters of OD

are presented in Tab. 5.1. The model parameters for the CNN classifier are presented in

Ref. [182]. As seen in Fig. 5.3, there are three main differences between the two architec-
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Table 5.1: The OD architecture parameters. Middle rows are for the convolutional layers and bottom rows are for max-pooling layers.

Layer 1 2 3 4 5 output
Filter 8 16 32 64 128 2

Kernel 5×5 5×5 5×5 1×5 1×5 1×5
Padding same same same same same same

Activation ReLu ReLu ReLu ReLu ReLu sigmoid
Pool size 4×2 4×2 4×1 2×1 N/A N/A
Strides 4×2 4×2 4×1 2×1 N/A N/A
Padding valid valid same same N/A N/A

tures: (1) the OD outputs 41 local probabilities and positions while the CNN classifier only

outputs 1 of 3 possible classes; (2) the CNN classifier contains three fully-connected layers,

which dramatically increase the number of trainable parameters, while OD does not; (3)

the OD has asymmetric pool size and strides for vertical and horizontal directions, which

are customized to the features in our dataset; the pool size and strides are symmetric for the

CNN classifier. As a result, the OD has more than an order of magnitude fewer trainable

parameters (7×104) than the CNN classifier (106).

5.2.3 Physics-based module: Quality estimator

In this subsection, we describe our physics-based module, which employs a confined

least-squares fitting to estimate soliton parameters and generates a quality estimate indicat-

ing the likelihood that a given feature is a dark soliton.

First, we obtain the horizontal 1-D profile of fluctuation on an atom cloud (blue curves

in the bottom row of Fig. 5.2): To compress 2D images to 1D, we first sum the pixel values

vertically (green curves). Then, we fit the summed 1D distribution to a Thomas-Fermi (TF)

model modeled as

nTF(i) = n0 max
{[

1−
(

i−i0
R0

)2
]
,0
}2

+δn, (5.2)
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where i is the horizontal pixel index, and n0, i0, R0, and δn are fitting parameters repre-

senting peak density, center position, TF radius, and an overall offset, respectively. The

fit (represented by the black curves) acts as a cloud background from which we removed

the 1D profiles, leaving behind the 1D density fluctuations (blue curves). Within the 1D

fluctuations, the deepest depletion in single soliton data is shown by the red dashed lines.

We fit the Ricker wavelet [212], i.e., an inverted “Mexican hat” function

f (i) = δn− nTF(ic)Aexp
[
−1

2

( i−ic
σ

)2
]
×
[
1−a

( i−ic
σ

)2
+b
( i−ic

σ

)]
, (5.3)

to the 1D density fluctuations described section 5.2.1, where nTF(ic) is evaluated with δn =

0. The function takes six parameters: normalized amplitude A, center position ic, soliton

width σ , symmetrical shoulder height a, asymmetrical shoulder height b, and an offset

δ . When a and b are both zero, this function is a simple Gaussian; however, if a is non-

zero, the distribution gains symmetric shoulders, and if b is non-zero, the shoulders gain

asymmetricity. Because our excitations show as density depletions, the second term in

equation 5.3 is negative.

Our constrained least-squares fit requires initial estimations to be successful. The guess

for the center location ic must be provided. And it also yields the initial estimate for A as the

1D density fluctuations assessed at ic. The starting settings σ = 4, a= 0.2, b= 0, and δ = 0

are found by observations average over the labeled dataset. The following two restrictions

are used to achieve trustworthy fits: To avoid numerical fitting mistakes, ic must stay within

three pixels of the provided initial guess, and 10−13 < A < 104, and 10−13 < a < 104 to

prevent numerical fitting errors.

We now calculate a quality estimate for the likelihood of a candidate excitation being

solitonic from the fitting parameter. A fitting parameter vector Θ = [A, ic,σ ,a,b] is chosen

from a prior distribution with k = 5 dimensions that spans the observations of dark solitons.
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We remove δ since it correlates with the other five parameters and would not enhance the

quality estimate performance.

We assume that the fitting parameters follow the multivariate normal distribution as a

reasonable choice for our purpose. Since parameters in Theta are not precisely following

a normal distribution, we used a Yeo-Johnson power transformation [213] to turn each of

them into 1D Gaussian distributions with zero mean and unit variance. Although we cannot

precisely match the processed parameter distributions to Gaussian distributions with this

treatment, we can change them into balanced distributions with single peaks and long tails.

And at last, we compute the covariance matrix Σk for the transformed 5D distribution.

To measure the quality of a detected candidate excitation in an image, we:

1. Fit the subtracted background 1D profile to Mexican hat function 5.3 giving Θ.

2. Use the established Yeo-Johnson power transformation on Θ to obtain Θ′.

3. Return our quality estimate: M(Θ′) = 1−χ2
k

(
D2(Θ′)

)
, the likelihood between 0 and

1 that the excitation being dark soliton.

Assuming no previous knowledge of the distribution of fit results for non-solitonic ex-

citation features, the chi-squared cumulative distribution function χ2
k (p) relates the Ma-

halanobis distance [214] D2(Θ′) = Θ′†Σ
−1
k Θ′ to the likelihood that an outcome is drawn

from the specified distribution. D(Θ′) is unbounded above and decreases to zero as Θ′

approaches 〈Θ′〉, the average over the prior distribution.

5.3 Results

5.3.1 ML modules

We train both the CNN classifier [182] and the OD using the dataset introduced in

section 5.2.1 and Ref. [23]. We implement five-fold cross-validation to evaluate the perfor-
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Figure 5.4: Performance of the OD in comparison to the ground truth (top) and CNN classifier prediction (bottom), The ticks ”0”, ”1”,
and ”other” denote no, single, and other excitation classes for the ground truth and CNN classifier, respectively. Horizontal ticks indicate
the total number of OD-detected´ c©excitations in an image.

mance of both modules. This means that we use 80 percent of the data to train a certain

module and the remaining 20 percent to test it, and we repeat this procedure five times to

cover the whole labeled dataset.

The classification outcomes are represented in the two cumulative confusion matrices

displayed in Fig. 5.4. The top panel compares the result of OD to the original labels, which

demonstrates almost perfect demarcation between classes with no excitations and classes

with single excitations. This class of candidate solitonic excitations is further subdivided

by the OD, which counts anything from 0 to 4 candidate solitonic excitations inside it. This

outcome is because non-solitonic excitations and multiple solitons can happen within this

class. The bottom panel shows the analogous comparison to CNN categorization labels is
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essentially identical to the top panel’s, demonstrating the accuracy of the CNN predictions.

Together, these ML algorithms successfully classify and locate excitations in the data.

5.3.2 Quality estimator

To validate our quality estimator, we started with a subset of the single excitation class

known as dark kink solitons [23]. Figure 5.5(a) shows the power-transformed distribution

of Mexican hat fit coefficients Θ′, with the non-transformed coordinates noted on the top

axis for comparison. After the transformation, we see that the training data (orange) are

nearly normally distributed for all five parameters. And the distributions of the remaining

excitations from the single excitation class are similar to dark kink solitons (green).

In comparison, we collect the Θ′ distribution from every local minimum in the training
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set except for solitonic excitations (blue). We observe that these distributions are qualita-

tively different from dark kink soliton ones. Here the “local minimum” refers to an area of

at least 7 pixels wide, i.e., a minimum at pixel i must obey n1D
i± j < n1D

i±( j+1) for j = 0,1,2.

These distributions exhibit the capability of the quality estimator to differentiate between

solitonic excitations and other features within our data.

We then compare the quality estimates M derived from the human-assured dark kink

soliton positions from the single excitation class as the orange curve in Fig. 5.5(b). As

expected, most kink solitons are related to higher M values. The other solitonic excitations

(green) concentrated to small M value; While almost all non-soliton local minima (blue)

have a M value smaller than 0.1. As a side remark, we see that the kink soliton distribution

has a tiny peak at near-zero M that includes an insignificant proportion of the kink soliton

dataset (about 1.3 percent). This peak is more notable for the other excitations, which is

expected considering that the power transformer is initialized with only dark kink soliton

data.

In Fig. 5.5(c), we show the quality estimator’s performance measured in terms of F1

scores for kink solitons (orange) and all other solitonic excitations (green). It is theoreti-

cally possible to optimize the F1 score for kink solitons for the M = 0.05 threshold (stars).

To reduce the number of false positives, we assign a feature to be solitonic when M > 0.2

(circles). Although this option results in a slight change in the F1 score, it results in a

significant gain in accuracy with only a minor drop in the recall, as seen by the inset. We

also remark that the quality estimate’s performance on the other solitonic excitations is

mediocre, though it is better than a random guess.
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5.4 SolDet: Open-source Python package for solitonic excitation detec-

tion

In this chapter, we introduce our open-source software package SolDet, including both

the ML modules (CNN classifier and object detection) and the fitting physics-based mod-

ules (Quality estimator and physics-informed excitation (PIE) classifier, described in sec-

tion II.C.1 in Appendix D), and its performance of the new dataset. The previous sections

show that the ML modules can successfully categorize images and reliably find one or more

candidate kink solitons in a given image. Then, those candidates can be further sorted into

subclasses by the physics-based modules, which can also assess the quality of the kink soli-
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ton. As a result, the ML and physics-based modules can contribute to the work of soliton

identification, and the SolDet framework uses their complementary qualities to maximize

its effectiveness. We note that soliton detection is only one kind of feature identification in

quantum gases, and thus SolDet is created to be generally applicable to other kins of quan-

tum phenomena. The SolDet contains a CNN classifier, an object detector, a PIE classifier,

and a quality estimator trained and initialized using our public soliton dataset [22].

As shown in figure 5.6, SolDet is a multi-module kink soliton identification tool, and

its component blocks function in the following order:

Data processing Preprocess raw data into 164×132 image format enclosing the elliptical

atom clouds [182]. This preprocessing is specifically designed for our task and the

experimental parameters.

CNN classifier Apply a trained CNN classifier to processed data, yield labels among no

excitation, single excitation, or other excitations.

Object detection Apply trained OD to processed data, yield a list of positions of solitonic

excitations.

CNN:0 OR OD:0 If either the CNN classifier or OD finds no soliton, SolDet terminates.

PIE classifier Apply the PIE classifier to each OD detected solitonic excitation and yield

the excitation types.

Quality estimator The quality estimator is applied to each excitation identified as “kink

soliton” by the PIE classifier.

This approach is designed for a laboratory setting that requires real-time identification, and

for the automatic labeling of large datasets, as in Section 5.4.2 and Ref. [23].
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Figure 5.7: Quality estimation performance for other excitation (orange) and mislabeled (red) classes. (a) Power transformed fit coeffi-
cient distributions, with the original variables indicated on the top axis. (b) Distribution of quality estimates of all kink solitons (main),
and other type of solitonic excitations (inset) (c) Representative pictures from the other excitation (i-ii) and mislabeled (iii-iv) classes,
with arrows indicating the OD+PIE detected kink soliton. The quality estimates for these samples are as follows: M(i) = [0.74,0.86],
M(ii) = [0.00,0.01], M(iii) = [0.92,0.02] (all from left to right), and M(iv) = 0.82.

5.4.1 Application to other excitation and misclassified data

In this part, we extend our use of the SolDet framework to the other excitation classes

and the misclassified data from our curation process. The images in these categories in-

clude images with several solitonic excitations, such as the one in Fig. 5.2(c), and images

with complex architecture that make human classification problematic. As a result, these

datasets are excellent testbeds for SolDet since they have defeated past labeling efforts.

After the CNN classification stage, the framework first utilizes the OD to discover soli-

ton candidates, then sorts them by the PIE classifier. Here we only focus on those features

that have been recognized as kink solitons. Figure 5.7(a) shows the frequency distribu-

tion of power transformed Mexican hat fit outcomes Θ′, which produces distributions that
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are both qualitatively similar to those seen in figure 5.5(a), indicating labeled single soli-

tons. In panel (b), the histograms of quality estimates for kink solitons discovered in these

two groups are different. The distribution is about uniform for the other excitations class

(M > 0.4). However, for mislabeled data, the distribution follows the same pattern as fig-

ure 5.5(b).

Consider the distinctions between the two courses to understand this difference fur-

ther. OD result shows that most other excitation class images contain two or more excita-

tions (78 %). The separation between the features may affect this result as the fluctuations

next to the soliton can affect Mexican hat fitting. The two well-separated excitations in

figure 5.7(c-i) I have a relatively high quality estimate (M(i) = [0.74,0.86]). In contrast,

solitons in figure 5.7(c-ii) are assigned lower values (M(ii) = [0.00,0.01]) despite both ex-

citations resembling kink solitons. Since most of these data involve multiple excitations,

the overall quality estimate distribution can be influenced.

By contrast, the mislabeled class contains images that are possibly mislabeled dur-

ing the manual labeling phase (for more information on the data curation procedure, see

Ref.citeFritsch21-DSD). Most of those images contain one solitonic feature that might be a

dark kink soliton, or a clear kink soliton associated with other ambiguous features. Humans

cannot easily decide between the single soliton and other excitation classes for these data.

The OD detected one excitation in about 83 % of these data. And therefore, the quality

estimate distributions for both kink soliton and other excitations [the inset in Fig. 5.7(b)]

are similar to the ones in figure 5.5(b). The figure 5.7(c-iii,iv) depicts two example images

from this group, with M(iii) = [0.92,0.02] and M(iv) = 0.82.

The performance on these qualitatively distinct test datasets demonstrates SolDet’s ca-

pability. SolDet autonomously locates many excitations inside BECs combining CNN clas-

sifier and OD modules, exceeding the previous deepest-depletion-based methods. The PIE

classifier offers further systematic confirmation that the desired sort of excitation previ-
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ously required human assessment. Finally, the quality estimate quantifies the excitation

quality, enhancing the classification’s reliability. Together, these tools provide a solid and

trustworthy analytical framework capable of handling substantially more complex data.

5.4.2 Application to new dataset

In this section, we leverage SolDet to help analyze our new dataset containing more than

104 images with no labels and have neither been labeled nor used in the training process.

This dataset includes images shown in Fig. 5.10 as examples of no solitons, single and

multiple solitonic excitations, and obfuscating structures that may hinder human labeling.

Our goal is to enlarge the dataset with SolDet.

In figure 5.8, we illustrate the results from SolDet components applied to the unlabeled

new dataset. In figure 5.8(a), we summarize the results in the three cumulative confusion

matrices of the outcomes of the CNN classifier and OD. We notice that the distribution

is nearly indistinguishable from the matrix shown in Fig. 5.4 validating the usage of Sol-

Det for data beyond our original labeled dataset and the qualities of both OD and CNN

predictions. As expected, the ML models agree with each other for no excitations and sin-

gle excitations classes, while OD further subdivides the other excitations class, counting

anywhere from 0 to 4 candidate solitonic excitations within it.

In figure 5.8(b), we show the distribution of fine-grained categories as the result of the

PIE classifier, for all OD detection, OD and CNN classifier agreed detections, and the ones

they agree to single soliton. We find that the distribution of excitation types is similar to

those in the training dataset, showing that our PIE classifier performance and data quality

are consistent.

In figure 5.9 (a-b), we compare the distributions of Mexican hat fitting parameters Θ′

for both the new data and the training data. We found these distributions are quantitatively
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the same, especially when we only consider the detected kink solitons (red). Figure 5.9

(d) histograms the quality estimate for these detected kink solitons. We observe that most

kink solitons, especially those on single detection images, accumulate on the high-quality

estimate side of the figure, which coincides with figure 5.9 (c) for labeled kink solitons.

Together, these results suggest that the effectiveness of the OD/PIE combination is com-

parable to manual identification for locating potential kink solitons in the new dataset,

according to the quality estimate.

In figure 5.10, we depict 30 examples for a variety of classification and position re-
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sults in the new dataset. We present images with zero or one solitonic feature in the first

three rows. We observe SolDet can accurately interpret most data, especially for “no soli-

ton” (figure 5.10 (a)) and “kink soliton” with high quality estimates (figure 5.10 (i)), which

are the focus of this work. For other solitonic excitation cases (figure 5.10 (b-f)), we ob-

serve SolDet can also provide reasonable guideline classifications for them, leaving some

room for improvement. Since our primary goal is to provide kink soliton data with con-

fidence, Our PIE classifier is set to have strict thresholds for a feature to be identified as

kink solitons. Therefore, some other solitonic excitations might also include data that can

be interpreted as kink solitons.

Figure 5.10 (a) present two images classified as no solitons, as we observe no clear ver-
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(a) No excitations (b) Top partial (c) Bottom partial

(d) CW solitonic vortex (e) CCW solitonic vortex (f) Canted

(g) Kink Soliton, QE=1 (h) Kink Soliton, QE=0.25 (i) Kink Soliton, QE=0

(j) Two Kink Solitons, QE>0.6 (k) Two Kink Solitons, QE<0.01 (l) Two other excitations

(m) Three excitations

Figure 5.10: Iconic data in the new dataset. The red arrows show the detection of kink soliton excitations, whereas the orange arrows
indicate the detection of other kinds of solitonic excitations.

tical depletions anywhere on the atom cloud. Figure 5.10 (b-c) present four images clas-

sified as top/bottom “partial” solitons, as we observe the vertical depletions do not fully

penetrate the whole atom cloud. Figure 5.10 (d-e) present four images classified as clock-

wise/counterclockwise solitonic vortices, as we observe the uneven vertical distributions

for the two shoulders around the depletion. At last, figure 5.10 (f) presents two images

classified as canted kink solitons where the deletions do not fully align with the vertical

axes of the images.

As shown in figure 5.10 (g-i), we notice that even for features that are classified as kink

solitons by OD and PIE classifier, the quality may vary. In figure 5.10 (g), we show two

examples with a perfect quality estimate M(g) = 1 as we see apparent and deep depletion

penetrating the whole cloud. In figure 5.10 (h), we show two examples with borderline
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M(h) = 0.25. Furthermore, in figure 5.10 (i), we show two examples with low quality

estimates M(i) = 0, as we see blurred shallow depletions at the OD detected positions.

Therefore, we further assign the quality estimate for these features to indicate the qualitative

confidence in addition to our ML results. Our new dataset contains much more high-quality

kink solitons rather than low-quality ones, as shown in Fig. 5.9(d).

Images in the last two rows are classified as other excitations by the CNN classifier

and have more than two soliton candidates identified by the OD. Figure 5.10 (j) depicts

images containing two high quality kink soliton with M( j) = [[0.80, 0.70], [0.92, 0.71]],

as we observe two clear kink solitons. Notice that we are particularly interested in this

type of data as they are related to soliton collisions. In comparison, figure 5.10 (k) shows

images containing two low-quality kink solitons, all with quantity estimates close to zero,

as they show two obscure depletions on the data. Moreover, in figure 5.10 (l), we show

images containing two other excitations. Specifically, the first image contains a bottom

partial soliton and a top partial soliton, and the second one contains a top partial soliton

and a bottom partial soliton, described from left to right.

In figure 5.10 (m), we sample some data that OD suggests three or more excitations.

Specifically, the types for excitations in that row are T(m) = [[Bottom, Bottom, Kink],

[Kink, Kink, Kink], [Bottom, Top, Bottom], [Kink, Kink, Kink], [Clockwise solitonic ver-

tex, Top, Kink], [Bottom, Kink, Kink]], and the quantity estimates for kink soliton in them

are M(m) = [[0.00], [0.81, 0.17, 0.00], [], [0.06, 0.27, 0.01], [0.86], [0.51, 0.01]]. Both types

and quantity estimates are described from left to right. Even with background noise and

other excitations, we identify three high-quality kink solitons with SolDet in the second,

fifth, and last images, as we can validate them by observing clear depletions throughout the

clouds that are far from other features.

We conclude that applying SolDet to unforeseen experimental data containing multiple

dark solitons can yield high reliability and quality results. As a result, SolDet provides
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us with an enlarged, automatically-labeled dataset with fine-grained solitonic excitation

categories and quantitative estimates of kink soliton qualities, opening the opportunity for

more profound research into cold atom physics and computer science.

5.5 Discussion and conclusion

This chapter established a high-level framework that integrates ML approaches with

physics-based analysis, resulting in an integrated platform for evaluating experimental data

suitable for other applications. SolDet, as our implementation of this framework, is de-

signed to focus on the identification, classification, and tracking of dark kink soliton fea-

tures in cold atom image data.

Using a public dark soliton dataset [23], we show the training process and the perfor-

mance of SolDet. Our analysis shows SolDet can successfully automate locating and clas-

sifying solitonic features on BEC absorption images, even in the cases of multiple solitons

or in noisy backgrounds. The patterns are learned effectively on most testing images using

SolDet starting from OD, which is trained with only the no excitation and single soliton

data. In conclusion, our hybrid framework is a powerful data analysis tool for discovering

features from the soliton dataset.

For future directions, the new version dataset also contains a label indicating the amount

of time that has passed since the excitations are formed, which opens the door to further

research into the relationship between system control parameters and the SolDet generated

labels. It could also be interesting to use the PIE classifier results to train an OD that directly

yields solitonic excitation types information. From the ML point of view, we expect to add

modules based on unsupervised [215], active learning [216], and synthetic data generation

with generative models [217] to the SolDet framework would improve the performance and

help identify previously unknown features.
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Chapter 6: Discussion and conclusion

This dissertation discusses three quantum mechanical system topics that could help

extend knowledge of quantum information science and advance quantum technologies in

many aspects, such as building compact quantum memory with long coherence time, ini-

tializing quantum systems to a variety of states, designing tunable many-body interactions,

creating engineered cooling and heating channels, formulating error correction feedback

loops, and reading out quantum information into the form of classical data.

With our generalized theory for giant atoms, we opened a new field of physics of artifi-

cial systems that have never been observed in nature. Usually, a natural atom takes a much

smaller space than its emission wavelength. We take one step further from the existing

Wigner-Weisskopf spontaneous decay theory by softening its point-like atom assumption.

We investigated a new phase diagram that includes the parameter of atom size. Moreover,

we also learned that for a circuit QAD device, observing the giant atom physics requires an

additional constraint that the ratio of the atom size and characteristic emission wavelength

need to be close to an integer.

Based on this work, many benefits and opportunities for engineering quantum systems

become available. For example, engineering emission rate and excitation amplitude, cre-

ating relaxation dynamics beyond exponential decay, unlocking circuit QAD as a new ap-

paratus to study BIC physics, and most importantly, providing a new route to achieve long

coherent time qubits.

We open opportunities to engineer closed-loop feedback control for quantum systems
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with our feedback cooling result. As the closed-loop feedback has been advantageous for

many classical systems, from controlling the temperature of rooms to navigating satellites,

we believe there would be many use cases in quantum engineering. These opportunities

may include developing synthetic interactions, dissipations, and other dynamics; preparing

novel states; inducing phase transition; implementing error correction and mitigation pro-

tocols; extending coherent time; understanding quantum chaos; simulating open quantum

systems; and creating new quantum matters.

In addition, continuously monitoring quantum systems without destroying their quan-

tum mechanical properties may help us better understand the effect and nature of quantum

measurements, study the dynamical behaviors of equilibrium and non-equilibrium states,

and observe quenched quantum systems. This research also paves the way for adaptive

weak measurements to help quantum tomography and error corrections. For example, we

may stop measuring or lower the measurement rate as we become more confident about

our current state estimate.

In Chapters 4 and 5, we prove that ML techniques can extract information that we

previously could not acquire from raw measured data. In other words, we can train ML

models with a simpler dataset and apply it to more sophisticated data, and it could yield

reasonable results. From a data processing perspective, we believe more opportunities

can be investigated for quantum topics, such as automated phase recognition, parameter

space scanning for novel states, auto-tuning for best control parameters of the experimental

setting, generating artificial data to interpolate and extrapolate data that experimentally hard

to prepare, estimating experiment or simulation results by learning from real or simulated

oracles.

With this project, we developed an automatic protocol to process new raw cold atom

absorption image data for solitonic excitations. We established a soliton dataset that con-

sists of more than 1.6×104 images with a complete description of soliton types, positions,
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and quality estimates. Furthermore, we introduced a general framework that combines ML

and physics-informed modules.

With the automated protocol, we unlock the opportunity to study solitonic excitation

dynamics without human inspections. These dynamics may include oscillations, stabiliza-

tion, collisions of solitons, and rotations of solitonic vortices. It may also help improve

techniques for imprinting, controlling, and measuring multiple solitonic excitations, reduc-

ing noise and phonons, and understanding the physics of so-called “partial solitons”.

To our best knowledge, the dark solitonic excitations dataset that we collected from our

cold atom lab is the very first of its kind. Leveraging this dataset, researchers can develop

new ML techniques for controlling and measuring solitons and BECs. This dataset may

open the door to ML-assisted quantum control, studying solitonic features, unsupervised

learning of physical excitations, and investigating the noise patterns and phonons for cold

atom experiments.

We also introduced a framework that combines physics-informed models to assist ML.

By doing so, we can enhance the overall performance and cross-validate ML results more

reliably. We believe this framework may help many more quantum physics research that

relies on data, such as tomography and quantum error correction.

We find at least two profound aspects that ML can improve quantum information sci-

ence, with or without assistance from physics-informed modules. First, ML could help re-

construct information about the quantum state, process, or channels from measured results.

ML models are proficient in finding patterns from large amounts of classical data associ-

ated with some noise, similar to our resource for observing a quantum system. This aspect

may include examples like learning quantum information with adaptive measurements and

shadow tomography, recognizing errors and states from weak measurements results, opti-

mizing post-selection strategies, and estimating partial derivatives of a variational quantum

operation.
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Second, ML could help create high-fidelity quantum states, equilibrium, operations,

and dynamics by applying ML to quantum device control channels. ML shows the ca-

pability of predicting future dynamics and stochastic correlated noise. Quantum systems

are often fragile to noise from environments, including the surrounding controlling and

measuring apparatus components. Using ML may help minimize the effect of a specific

type of noise and help us to achieve better global control. Some examples may cover ex-

ploring feedback strategies for steady states with weak measurement results; engineering

better pulse sequences for high-fidelity rapid quantum operations and state preparations;

ML-assisted zero noise extrapolations; and ML-assisted quantum error decoding.
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Appendix A: Publication for Chapter 2: Beyond spontaneous emission:

Giant atom bounded in the continuum
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The quantum coupling of individual superconducting qubits to microwave photons leads to remarkable
experimental opportunities. Here we consider the phononic case where the qubit is coupled to an electromagnetic
surface acoustic wave antenna that enables supersonic (electromagnetic) propagation of the qubit oscillations.
This can be considered as a giant atom that is many phonon wavelengths long. We study an exactly solvable toy
model that captures these effects, and find that this non-Markovian giant atom has a suppressed relaxation, so
long as an effective vacuum coupling exists between a qubit excitation and a localized wave packet of sound,
even in the absence of a cavity for the sound waves. Finally, we consider practical implementations of these ideas
in current surface acoustic wave devices.

DOI: 10.1103/PhysRevA.102.033706

I. INTRODUCTION

The coupling of resonant, compact systems to continuous
media has a rich history, underlying phenomena ranging from
musical instruments to complex machinery to the spontaneous
emission of light from an atom [1,2]. The strong coupling
regime of such systems has also led to a plethora of appli-
cations in cavity quantum electrodynamics (QED) [3], circuit
QED [4,5], and waveguide QED [5–8], all of which work
in the regime where light propagation is fast relative to ap-
propriate coupling time scales such as the coherence time.
However, collective effects, such as Dicke superradiance, have
shown that preexisting coherence across multiple wavelengths
of the medium excitations can dramatically alter the simple
dynamics of such open quantum systems [9,10].

Here we examine an example of such long-range coherence
in the form of a superconducting qubit nonlocally coupled to a
long, quasi-one-dimensional (quasi-1D) phononic waveguide.
This system can be realized in, for example, surface acoustic
wave (SAW) devices [11]. Working in the lumped element
limit, the electrical antennae that couple to the mechanical
waveguide have practically simultaneous coupling to distant
regions of the system, while the motional degrees of freedom
are constrained to propagate at the speed of sound. This leads
to a variety of supersonic phenomena in the quantum acous-
todynamics (QAD) regime which has been heretofore largely
unexplored.

Pioneering works in this domain have labeled this the
“giant atom” regime of SAW devices [12–15]. This model
breaks locality in the lumped element limit and inevitably
becomes non-Markovian, requiring a more detailed theo-
retical treatment [16–24]. Furthermore, recent experiments
show the robustness of systems that couple mechanical
with electromagnetic parts in the quantum regime and

open the opportunity to realize giant atoms in experiments
[12,25–32].

We show that these devices have remarkable properties,
particularly that of strong coupling without the presence of
a cavity, in which a long-lived atomic excitation dynamic
emerges due to the coupling to the electrical circuit directly,
and the formation of long-lived states of sound in the un-
bounded continuum. We describe this as the bounded giant
atom phenomenon.

While our simple theoretical model predicts this phe-
nomenon directly, a more complicated numerical approach
shows that a specific additional phase matching condition
must be satisfied for experimental observation of the strong
coupling of this emergent of bounded effect to the quantum
bit. Furthermore, in this regime, boundary-based damping of
the sound exponentially decreases with the atom size, leading
to substantial improvements in coherence times. Our study
suggests a pathway to more compact superconducting qubit
designs that can leverage sound, rather than microwave pho-
tons. Key aspects of circuit QED-based architectures, such
as using a photon in a resonator as an intermediary be-
tween two transmon qubits and using dispersive coupling of
a transmon to a waveguide, have natural analogs using cou-
pling to phonons instead. However, transducer efficiencies and
parametric amplification, two key elements of circuit QED
systems, are not at an appropriate level yet for replacement by
sound. This suggests substantial research may be necessary
before a sound-based architecture could be realized.

The rest of this paper is organized as follows: In Sec. II, we
review the Weisskopf-Wigner theory for spontaneous emis-
sion [1], which provides the structure for our model later;
throughout the paper we refer to the superconducting qubit
with antennae as a giant atom. We calculate the coupling
between the artificial atom and phonons of the circuit QAD

2469-9926/2020/102(3)/033706(8) 033706-1 ©2020 American Physical Society
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device, and we simplify it to a Lorentzian toy model in
Sec. III. In Sec. IV, we derive our main results from the toy
model and compare our results with the numerical simulation.
We conclude in Sec. V and show future applications of the
general method presented in this paper.

II. BACKGROUND

A. The general theory

We consider a two-level giant atom with ground state
|g〉 and excited state |e〉 with a frequency difference ν that
non-locally couples to an infinitely long 1D bosonic field,
governed by the following Hamiltonian in the rotating wave
approximation:

Ĥ = ν

2
σz +

∫
dK[ω(K )â†

K âK + g(K ; N )(σ̂+âK + H.c.)],

(1)
where σ̂+ (σ̂−) and â†

K (âK ) are creation (annihilation) opera-
tors for atomic excitation and field, respectively. They satisfy
(σ̂−)† = σ̂+ = |e〉〈g|, σz = |e〉〈e| − |g〉〈g|, and [âK , â†

K ′ ] =
δ(K − K ′). ν is the atomic transition frequency. We assume
that the field has a linear dispersion ω(K ) = cs|K| with the
speed of sound cs, for momentum K . We set h̄ = 1 for
simplicity.

We consider the coupling g(K ; N ) to depend on the
momentum K . As the Fourier transform of the position-
dependent coupling, it is also parametrized by the spatial
length of the atom N . One can expect that the parameter N
will change the atom relaxation dynamics via tuning the shape
of g(K ; N ). We shall discuss two different models for g(K ; N )
in Sec. III.

We denote the vacuum state by |g, 0〉, and limit our
system to a single excitation Hilbert subspace with ba-
sis states |e, 0〉 = σ̂+|g, 0〉 and |g, K〉 = â†

K |g, 0〉, such that
any time-dependent state can be described as |ψ (t )〉 =
α(t )|e, 0〉 + ∫ +∞

−∞ dKβK (t )|g, K〉, where α(t ) and βK (t ) are
time-dependent amplitudes. In a frame rotating with fre-
quency ν, we derive the equations of motion

α̇(t ) = −2i
∫ +∞

−∞
dk g(k; N )βk (t ), (2)

β̇k (t ) = −iδ(k)βk (t ) − ig(k; N )α(t ). (3)

Note that as the coupling is real in position space in our case,
such that g(K ; N ) = g(−K ; N ), the two branches for K > 0
and K < 0 contribute symmetrically and can be merged in
Eq. (2). The momentum in the rotating frame is redefined
as k = |K| − ν/cs, such that the field frequency becomes
δ(k) = ω(K ) − ν = csk for the near-resonance regime. Then,
by taking the Laplace transform from the time domain into the
complex frequency domain by α̃(s) = L[α(t )], and β̃k (s) =
L[βk (t )], we get

sα̃(s) − α(0) = −2i
∫ +∞

−∞
dk g(k; N )β̃k (s), (4)

sβ̃k (s) − βk (0) = −iδ(k)β̃k (s) − ig(k; N )α̃(s). (5)

We set α(0) = 1 and βk (0) = 0 to investigate the re-
laxation of an atomic excitation. Then we have β̃k (s) =
−ig(k; N )α̃(s)/[s + iδ(k)] and the response function χ (s) ≡

α̃(s)/α(0) becomes

χ (s) =
(

s + 2
∫ +∞

−∞
dk

|g(k; N )|2
s + iδ(k)

)−1

. (6)

When g(k; N ) is an analytic function, we can derive
that α(t ) = L−1[χ (s)]α(0) = ∑

n Res[χ (s), sn]esnt from the
residue theorem and our initial conditions, where sn is the
nth pole of χ (s) that satisfies the equation [χ (sn)]−1 = 0 for
n ∈ {1, 2, . . . , nmax}. nmax is the number of the poles of χ (s).
Causality confines sn to be in the left half complex plane or on
the imaginary axis, i.e., Re(sn) � 0 [33]. Note that the inverse
Laplace transform requires that the contour path of integration
is in the region of convergence of χ (s). This can be satisfied
by integrating Eq. (6) with the condition Re(s) > 0.

Armed with the solution for the poles sn, we describe the
atomic relaxation process as a composition of damped oscilla-
tion modes with effective vacuum Rabi oscillation frequencies
Im(sn) and decay rates −2 Re(sn). In the long-time limit, only
the slowest damped modes can survive, and we thus define the
long-time relaxation rate as γ ≡ Minn[−2 Re(sn)].

To understand the giant atom relaxation, we study how the
poles of response function sn change according to the atom
size N . In the next section, we consider a realistic circuit QAD
model and a simpler Lorentzian toy model to characterise
g(k; N ) with N being a changing parameter, and study the
response function χ (s) and its poles.

B. The Weisskopf-Wigner limit

Before moving into the giant atom case, we first review the
Weisskopf and Wigner approach to the pointlike atom case
[1]. A pointlike atom couples to all wavelength emissions
equally, i.e., g(k; N ) = g0, independent of k. In this situation,
one can calculate the real part of the equation [χ (s)]−1 = 0,
which results in

γ1 ≡ −2 Re(s1) = 4π |g0|2/cs. (7)

This textbook result shows that, when a pointlike atom cou-
ples to a 1D field, the atom decays with its spontaneous
emission rate γ1. In the giant atom case, we also define γ1 as
the weak-coupling relaxation rate for a unit cell (e.g., N = 1)
for later discussion. Now we can proceed and study g(k; N )
for the circuit QAD and the toy models that simplify it.

III. THE CIRCUIT QAD AND TOY MODELS

A. The circuit QAD model

We examine a simplified 1D model for the circuit QAD
device shown in Fig. 1. A circuit QAD device comprises a
superconducting artificial atom [as a Josephson junction par-
allelized with an interdigital transducer (IDT) as a capacitor]
and a surface acoustic wave (SAW) cavity. The qubit couples
to the cavity via an IDT, where two interlocking comb-shaped
arrays of electrodes are fabricated on the surface of a piezo-
electric substrate. Such systems have been used to achieve
strong coupling, where the vacuum Rabi coupling exceeds
dephasing and damping [26–28,30]. We can map the spatial
atom size to the length of the IDT d , and the resonance emis-
sion wavelength to the IDT characteristic wavelength λ (the
finger spacing of the IDT). We use the number of fingers of
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FIG. 1. A sketch of a circuit QAD device viewed from the top.
Black lines show electrodes and the blue area shows the surface of
piezoelectric material substrate. The substrate extends deeply in the
+z direction.

the IDT, N = d/λ, as the atom size parameter for this circuit
QAD model.

Since the electromagnetic wave travels about 105 faster
than sound through the IDT, we take the lumped element
limit for the circuit, and the electronic subsystem can be
regarded as a two-level system that interacts with SAW at
different positions simultaneously. Notice that this system
inevitably becomes non-Markovian under this assumption,
thus necessitating our use of the Laplace transform solutions
in what follows, rather than more typical quantum optics
approximations. We also assume the mass loading of all elec-
trodes to be zero to remove additional mechanical resonances.
We approximate the uniform electric field between each pair
of electrodes, such that E (x, t ) = [V (t )/λ] sgn[cos(πx/2λ)],
where V (t ) is the voltage applied on the IDT. We also
assume the substrate has no loss through intrinsic mate-
rial dissipation or via acoustic energy radiated in directions
perpendicular to x̂

We take the atom transition frequency to equal the IDT res-
onance frequency, i.e., ν = 2π/T = 2πcs/λ, where cs is the
speed of SAW propagation and T is the designed fundamental
period of the SAW. We calculate the coupling g(k; N ) for the
circuit QAD device as [34]

gcQAD(k; N ) =
√

γ1cs

2π

sin(Nkλ/2) cot(kλ/4)

2 + kλ/π
. (8)

In Appendix A, we give both the derivation of Eq. (8) and
a discussion of experimental feasibility of this model. We
illustrate gcQAD(k; N ) in Fig. 2 for N = 30, and 75. This model
has a finite bandwidth about 2π/Nλ, with the on-resonance
coupling proportional to N . Note that the poles of the response
function (6) are hard to find analytically with this model.
Therefore, we establish a toy model in the next subsection to
capture the long-time dynamics and where we can analytically
express its poles. Then, we compare the toy model to numeri-
cal results using the circuit QAD model in Sec. IV B.

B. The Lorentzian toy model

To evaluate the integral in Eq. (6), we use a Lorentizian toy
model gLor(k; N ) defined as

gLor(k; N ) ≡
√

γ1cs

2π

N

(Nkλ/π )2 + 1
, (9)

instead of Eq. (8). Such a model satisfies the following
criteria: it has a finite bandwidth about 2π/Nλ and an

FIG. 2. The momentum-dependent coupling g(k; N ) for (a) N =
30, (b) N = 75. Red solid lines correspond to circuit QAD model (8),
blue dashed lines to Lorentzian toy model (9). The vertical axes for
(a) and (b) share the same scale.

on-resonance coupling proportional to N , it is nonlocal in
position with the scale of Nλ, and it decays exponentially
in position and quadratically in momentum. In Fig. 2, we
illustrate that the shape of the Lorentzian toy model matches
the central peak of the circuit QAD model, while it does not
capture the oscillation behavior at large |k|. This toy model
greatly simplifies the calculations and allows us to analytically
describe the poles of the response function χ (s), leading to our
main results in Sec. IV A. We can then analyze corrections to
this model from the QAD picture.

IV. RESULTS

A. Analytic solutions from the Lorentzian model

First, we substitute Eq. (9) into the equation defining the
poles of the response function, [χ (sn)]−1 = 0, which yields

sn + N2γ1ν(Nsn + ν)

(ν + 2Nsn)2
= 0. (10)

This equation can be reduced to a cubic polynomial of sn,
and we give the explicit form of its solutions in Appendix B.
In Figs. 3(a) and 3(b), we set γ1 = π × 10−5ν and plot the
−2 Re(sn) and Im(sn), which indicate the damping rates and
the effective Rabi frequencies. We mark the solutions associ-
ated with the slowest damped modes with solid lines.

In Figs. 3(a) and 3(b), we observe a dramatic change of
dynamics at the transition point NT . When N � NT , increas-
ing the atom size only creates a larger coupling region and
therefore accelerates the relaxation process. At the transition
point N = NT , we find the imaginary parts of two poles
merge, while their real parts split. When N ≈ NT , the atom
decays quickly into the 1D waveguide, as all the modes have
large damping rates. However, when N > NT , the effective
relaxation rate γ drops almost exponentially with N , while
the effective Rabi frequency becomes nonzero and increases.
Note that both phenomena are the results of the atom excita-
tion state overlapping with bound states. This result shows that
a bounded giant atom regime exists at N 
 NT , where some
of the atomic excitation energy is localized and oscillates be-
tween atomic excitation and a stationary phonon wave packet.
We also find that, in the limit N → ∞, Eq. (10) reduces to
sn → ±(i/2)

√
Nγ1ν. As Re(sn) → 0, a part of the excitation
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FIG. 3. (a)–(c) Transition from the pointlike atom to the giant
atom, with the Lorentzian toy model: (a) The blue lines represent
decay rates −2 Re(sn) versus atom size N in semilogarithmic scale,
where sn are roots for Eq. (10). The solid blue lines are the effective
relaxation rate γ ≡ Minn[−2 Re(sn)], and the dashed blue ones rep-
resent other roots. The red dotted line shows the transition point NT .
The inset is plotted in a linear scale. (b) The effective Rabi oscillation
frequency Im(sn), corresponding to (a). (c) The effective relaxation
rate γ in the N-γ1 parameter plane. The red dashed line shows
the transition point NT , which separates two regimes for pointlike
atom and giant atom. (d) The power spectrum |Fω[α(t ; N )]|2 of the
simulated time evolution with the circuit QAD model, in logarithmic
scale. We note that the discrete resonances observed arise from the
phase matching condition in the circuit QAD model that is absent
in the Lorentzian model. All figures are in rotating frame with fre-
quency ν, and all logarithmic scales are in log10 base.

lives in bound states in this limit. We can derive the transition
point NT from the roots of Eq. (10):

NT = 3

√
(5

√
5 − 11)ν

2γ1
≈ 0.448 × 3

√
ν/γ1. (11)

For γ1 = π × 10−5ν, we have NT ≈ 14.2. In Fig. 3(c), we
show the effective relaxation rate γ in the N-γ1 parameter
plane. We find two slow relaxation regions corresponding to
the pointlike atom case and the bounded giant atom case,
which are on either side of NT .

B. Numerical results from the circuit QAD model

Although it is hard to analytically evaluate the integral
in Eq. (6) with the circuit QAD model, we can discretize
the Hamiltonian and simulate the dynamics of the system
via solution of the Schrodinger equation for the case of a
single initial excitation, i.e., |ψ (t = 0)〉 = |e, 0〉. We choose
the cutoff momentum kc = ±0.1π/λ, the density of states
dk = 2π × 10−4/λ, and time step dt = 0.1T . We keep γ1 =
π × 10−5ν to compare with analytic results from the last
subsection.
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FIG. 4. (a)–(b) Simulation for the circuit QAD model for differ-
ent atom sizes N : (a) The time evolution of atom excitation amplitude
|α(t )|2, for different N . The dashed lines show the time that the
phonons travel through the atom length tb = NT . For N above the
onset of normal mode splitting and phase matched, the system settles
into a long-lived state after a short time. (b) The magnitude of phonon
wave function |(x, t f )|2 frozen at t f = 267T [also indicated by the
black dashed line on Fig. 4(a)], for different N . We chose t f such that
|α(t f )2| ≈ 0 for all N values shown. The inset shows the same plot
zoomed in near the atom region identified by the bars of color below
the axis for different N . (c) The Lorentzian theory prediction and the
circuit QAD simulation result of the bounded atom size Nm. (d) The
ratio between Nm,cQAD/Nm,Lor.

In Fig. 4(a), we show the time evolution of the atomic ex-
citation, |α(t )|2. As expected, we find that for some N 
 NT ,
such as N = 45 and 75, a fraction of the energy remains in
the system after the phonons travel through the atom, i.e.,
tb = NT , and this energy oscillates between mechanical and
atomic excitation. Next, we choose a final time t f , such that
|α(t f )|2 ≈ 0 for all the N values we chose, and plot the mag-
nitude of the phonon wave function |(x, t f )|2 in Fig. 4(b).
Again, we find that for N = 45 and 75 a portion of energy
remains confined within the range of the IDT after a long time.

We also show the logarithm of the power spectrum
|Fω[α(t ; N )]|2 in Fig. 3(d), where Fω[ f (t )] represents the
Fourier transform of f (t ). We observe qualitative agreement
between Figs. 3(b) and 3(d) in terms of the locations of
peaks when peaks are observed, but with discrete frequen-
cies rather than continuous as a function of N . For example,
from Figs. 4(a) and 4(b), we also find that for some other
N 
 NT , such as N = 60, the atom still decays fast into the
continuum and no peak is seen in the power spectrum. This
behavior is caused by a mismatch between the atom length
Nλ and the effective “vacuum Rabi wavelength” λR(N ) =
2πcs/Maxn[Im{sn(N )}], as the circuit QAD model introduces
a hard spatial boundary to the atom. Therefore, the circuit
QAD model requires the atom size Nm to satisfy an additional
phase matching condition Nmλ ≈ mλR(Nm) for the bounded
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giant atom phenomenon, where m ∈ N. We have discussed
the first two cases, N1 = 45 and N2 = 75, and we further ob-
serve 1–2 peaks that correspond to m in Fig. 4(b). In Fig. 4(c),
we show a comparison between a numerical simulation of
the circuit QAD model [by finding largest resonances on
the power spectrum, i.e., the brightest points on Fig. 3(d)],
and analytic calculations of Nm using the Lorentzian model
(by solving the equation Nmλ = 2πcsm/Maxn[Im{sn(Nm)}]).
Again, we find a qualitative agreement between two models.
We also plot the ratio between Nm,cQAD and Nm,Lor, which is
stabilized around 0.93 for m � 3.

Here we present an intuitive picture of understanding how
phase matching conditions for bounded giant atoms arise even
in a continuous model. Consider the case where the atom
is set to the excited state at t = 0: During the first half of
the effective vacuum Rabi oscillation t = (0, T/2) the nom-
inal outgoing phonon wave function becomes approximately
ψ1(x) ∝ exp(−a|x|), where a is some geometrical parameter
with a 1/x unit. During the second half of the period, this
undergoes destructive interference with the newly emitted
phonon state ψ2(x) ∝ − exp(−ab|x|) while ψ1 moves out-
ward a distance λR/2. The second portion has a π phase
shift and some loss b due to energy being emitted in the
first half. Therefore, the total emission in the far field (|x| 

Nλ) within the whole cycle is ψ (x) ∝ exp(−a|x + λR/2|) −
exp(−ab|x|). For the Lorentzian model in the giant atom
regime, b ∼ aλR/2 and these can cancel.

V. DISCUSSION AND CONCLUSION

In this work, we have generalized the Weisskopf-Wigner
theory from a pointlike atom to a bounded giant atom that

interacts with the medium instantaneously over a continuous
spatial length Nλ, with a simple Lorentzian toy model. When
the coherence of the atom travels through the antenna much
faster than the emission, we have observed that if its size N
satisfies both (1) the atom size N is larger than the transition
size NT and (2) the phase matching condition Nλ ≈ mλR(N ),
a giant atom dynamic emerges, which is characterized by
suppressed relaxation and effective vacuum Rabi oscillation
with a phononic wave packet bound to the antenna, even in the
absence of a cavity. To verify our results, we have compared
it with the exact numerics of a realistic circuit QAD coupling
model. We have specifically studied the circuit QAD appara-
tus, but our analysis can be applied similarly to other quantum
electromechanical systems with a large coupling spatial range
[35–37]. For example, an optomechanical system where a
membrane and a microwave waveguide coupled via radiation
pressure could have similar effects.

Note added. Recently, we learned of a similar result
in Ref. [38].
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APPENDIX A: DERIVATION OF THE CIRCUIT QAD MODEL

Consider the system described by Fig. 1, where the IDT aligns to the [110] direction of a cubic crystal substrate. We assume
the electrodes of the IDT do not change the mass density on the surface, and we model the Josephson junction as an LC circuit
with inductance LJ and capacitance CJ . The Lagrangian of the system is [39]

L = LJ

2
Q̇2 − 1

2C�

Q2 + W

2

∫ ∞

0
dz

∫ ∞

−∞
dx

[
ρ
(
u̇x

2 + u̇z
2
) − c′

11

(
∂ux

∂x

)2

− c11

(
∂uz

∂z

)2

− 2c12
∂ux

∂x

∂uz

∂z
− c44

(
∂ux

∂z
+ ∂uz

∂x

)2
]

− We14

∫ ∞

0
dz

∫ d/2

−d/2
dx

[
∂V

∂x

(
∂ux

∂z
+ ∂uz

∂x

)]
, (A1)

where variables Q(t ) and �u(x, z, t ) = {ux, uz}(x, z, t ) are the charge and strain degrees of freedom, respectively. The total
capacitance C� = CJ + CIDT, where the capacitance of IDT CIDT can be calculated according to [40]. W is the width of the
IDT. The material parameters ρ, c11, c12, c44, e14 are the density, elements of elastic tensor, and piezoelectric tensor of the
substrate. For the cubic crystal, we have c′

11 = (c11 + c12 + 2c44)/2 [41]. To represent SAW modes, we take the ansatz [41]

ux(x, z, t ) =
∞∑

j=−∞
Cj (t )ξ j (z)ψ j (x), (A2)

uz(x, z, t ) =
∞∑

j=−∞
Cj (t )ζ j (z)ψ j (x), (A3)

where ψ j (x) = √
2/Le−iKj x, ξ j (z) = √

2/Le−qKj z−iφ , and ζ j (z) = √
2/Lre−qKj z−iφ with periodic boundary conditions in x, and

�u = 0 at z → ∞. L and Kj = π j/L are the length of the system and momenta of the modes, where j ∈ Z. The fitting parameters
q, r ∈ C and φ ∈ R can be derived from [41]. The electric field oscillates rapidly enough that the electric potential V (x) is
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always quasistatic by the comparison of electron transmission. Therefore, we make the approximation

∂V

∂x
=

⎧⎨
⎩

− 2Q
C�λ

for 2η−N
2 λ � x <

2η+1−N
2 λ,

+ 2Q
C�λ

for 2η+1−N
2 λ � x <

2η+2−N
2 λ,

(A4)

where η = 0, 1, 2, . . . , N − 1. Substituting Eqs. (A2)–(A4) into Eq. (A1), we get

L = LJ

2
Q̇2 − 1

2C�

Q2 + W

2L

∞∑
j=−∞

[
ρ ′

Kj
|Ċj |2 − c′Kj |Cj |2 − e′

C�

sin
(KjλN

2

)
tan

(Kjλ

4

)
Kjλ

QCj

]
. (A5)

The new parameters ρ ′ = ρ(1 + |r|2)/ Re[q], c′ = {c′
11 + c44|r|2 + (c44 + c11|r|2)|q|2 + i[c12(r∗q∗ − rq) + c44(rq∗ −

r∗q)]}/ Re[q], and e′ = 8e14 Re[(i − r/q)e−iφ] are effective density, elastic constant, and piezoelectric constant, respectively.
Then we define the momentum conjugates as V = LJQ̇, Pj = MjĊj , where Mj = W ρ ′/(LKj ). Then we can calculate the
quantized Hamiltonian by mapping Cj → √

h̄/(2Mjω j )(â j + â†
j ), Pj → −i

√
h̄Mjω j/2(â j − â†

j ), Q → √
h̄/(2LJν)(σ̂− + σ̂+),

V → −i
√

h̄LJν/2(σ̂− − σ̂+). Then we have

Ĥ = h̄νσ̂+σ̂− +
∞∑

j=−∞
h̄ω j â

†
j â j + h̄g0

√
π√

L

∞∑
j=−∞

sin
(
KjλN/2

)
tan

(
Kjλ/4

)
Kjλ/π

(σ̂− + σ̂+)(â j + â†
j ), (A6)

where ν ≡ 1/
√

LJC� , ω j ≡ csKj (and cs = √
c′/ρ ′), and g0 ≡ e′√πW ν/(C�

√
c′ρ ′). Taking the rotating wave approximation,

the limit L → ∞ then moving in to the rotating frame, we get the Hamiltonian (1) with Eq. (8).
In general, an artificial qubit [e.g., a DC superconducting quantum interference device (SQUID) as a generalization of

Josephson junction] has tunable frequency of 0.1–10 GHz. Taking the speed of sound as 3000–5000 m s−1, the corresponding
phonon wavelength range is 0.5–30 μm. Engineering IDTs at this length scale has been achieved by multiple references such as
Ref. [30]. Then we use parameters provided in Ref. [34] to estimate γ1 and to validate the experimental feasibility of our model:
c11 = 12.26, c12 = 5.71, c44 = 6.00, c′

11 = 14.99 (×1010 N m−2), q = 0.5 + 0.48i, r = −0.68 + 1.16i, φ = 1.05, ρ = 5307
kg m−3, e14 = 0.157 C m−2, and assume reasonable parameters as ν ≈ 5 GHz, C� = 2.5 × 10−11 F, W = 50 μm. Then our
numerical estimations of parameters are ρ ′ = 14902 kg m−3, c′ = 28.73 × 1010 N m−2, e′ = −1.248 C m−2, g0 = −19.34√

μm MHz, cs = 4391 m s−1, γ1 = 4πg2
0/cs ≈ 1.07 MHz. As γ1 > π × 10−5ν is possible, we conclude that experimental

realization can be even easier than our analysis.

APPENDIX B: EXPLICIT SOLUTIONS OF THE LORENTZIAN MODEL

Here we provide the explicit form for the roots of Eq. (10):

sn = − ν

3N
+ e−(2iπ/3)nν(ν − 3γ1N3)

6A
+ Ae(2iπ/3)n

6N2
, (B1)

where n = 1, 2, 3, and A = 3

√
−18γ1ν2N6 + ν3N3 + 3

√
3
√

γ1ν3N9(γ 2
1 N6 + 11γ1νN3 − ν2). We can find the transition point NT

by taking the square root part of A equal zero, i.e., γ 2
1 N6

T + 11γ1νN3
T − ν2 = 0.

APPENDIX C: TOP-HAT MODEL AND BOUND STATES IN CONTINUUM

If γ = 0, then there exists at least one bound state in the 1D continuum. Such a state is known as a bound state in continuum
(BIC) [22,42,43] or a decoherence-free state [13,44–46]. A BIC is an eigenstate of the Hamiltonian with eigenenergy within the
continuum of the spectrum. Its existence usually requires symmetry protection or fine tuning [42]. We illustrate the bound state
in the continuum using the top-hat toy model

gTH(k; N ) ≡
⎧⎨
⎩

√
γ1cs

2π
N, |k| � 2π

Nλ
,

0, |k| > 2π
Nλ

.

. (C1)

Note that though this toy model may seem simple, it is unphysical as it requires infinite spatial extent. Here, we report that a pair
of purely imaginary solutions exist in our top-hat toy model. With Eq. (C1), we can write the equation [χ (sn)]−1 = 0 as

πsn + iN2γ1 ln

(
Nsn − iν

Nsn + iν

)
= 0, (C2)
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where the complex function ln(z) is multiple valued. Now we seek a purely imaginary solution sn = iωn, and we separate the
real and imaginary parts of Eq. (C2), which results in

2πωn + N2γ1 ln

[(
ν − Nωn

ν + Nωn

)2
]

= 0, with |ωn| >
ν

N
. (C3)

Although Eq. (C3) is transcendental, there always exists a pair of solutions for all N : We define the left-hand side of Eq. (C3)
as f (ωn): when ωn → ±ν/N , f (ωn) → ∓∞; when ωn → ±∞, f (ωn) → ±∞. As f is analytic, there exist a ω1 < −ν/N and
a ω2 > ν/N , such that f (ωn) = 0.
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Weak measurement in tandem with real-time feedback control is a new route toward engineering novel
nonequilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of mul-
ticomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction
with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective
interactions that enter into the stochastic equation governing system dynamics. The effective interactions are
tunable and can be made analogous to Feshbach resonances—spin independent and spin dependent—but
without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement
backaction and we present an analytical model to explain its effectiveness. We showcase our toolbox by studying
a two-component BEC using a stochastic mean-field theory, where feedback induces a phase transition between
easy-axis ferromagnet and spin-disordered paramagnet phases. We present the steady-state phase diagram as a
function of intrinsic and effective spin-dependent interaction strengths. Our result demonstrates that closed-loop
quantum control of Bose-Einstein condensates is a powerful tool for quantum engineering in cold-atom systems.

DOI: 10.1103/PhysRevResearch.2.043325

I. INTRODUCTION

Quantum gas experiments have exquisite control over
the low-energy Hamiltonian governing system dynamics,
providing demonstrated opportunities to study interacting
many-body quantum systems with great precision. As a re-
sult, ultracold atoms have emerged as a leading platform in
“analog quantum simulation” [1–6], where experiments have
successfully explored condensed-matter phenomena such as
the superfluid-Mott insulator transition [7], the BEC-BCS
crossover [8,9], and spin-orbit coupling [10]. Cutting-edge
experiments now realize systems with long-range interactions
[11] or novel nonequilibrium dynamics [12,13]. In contrast,
quantum simulation of open systems remains relatively un-
explored [14], and careful application of feedback control to
many-body quantum systems is a different approach toward
this goal.

Feedback control of many-body systems could enable
observation of a wide range of new phenomena in the dy-
namical steady state, where a potentially larger class of
states is possible than in thermal equilibrium [15,16]. Exist-
ing proposals include preparation of many-body pure states
via reservoir engineering [17–20], nonthermal steady states
[21,22], stable non-Abelian vortices [23], or time crystals
[24]. Here, we showcase the flexibility of weak measurements

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

coupled with spatially resolved feedback for the quantum
simulation of time-dependent effective Hamiltonians using a
two-component Bose-Einstein condensate (BEC) as a model
spinor system [25–27].

We develop a theory of weak measurement and classical
feedback in weakly interacting quantum systems framed in
the context of quantum control theory [28]. Using our gen-
eral formalism, we investigate the steady-state phases of a
two-component BEC subject to weak measurement and classi-
cal feedback via a spin-dependent applied potential, enabling
both density- and spin-dependent feedback protocols.

Spatially local feedback can result in spin-dependent ef-
fective interaction terms in the stochastic equation governing
condensate dynamics. Depending on the interplay of in-
trinsic and effective (i.e., feedback induced) spin-dependent
interactions, the condensate steady-state phase is either an
easy-axis ferromagnet or spin-disordered paramagnet. The
effective interaction is tunable via the gain of the feedback
signal, enabling a reversible, feedback induced phase tran-
sition. The transition is reminiscent of what is achieved by
tuning intrinsic interactions via a spin-dependent Feshbach
resonance [29]; however, here the atomic scattering lengths
remain unchanged. We develop a signal filtering and cooling
scheme to minimize heating and show that the condensate
remains intact under feedback and measurement backaction.
Our result opens the door to engineering dynamical and/or
spatially dependent effective interactions in quantum gases via
closed-loop feedback control.

Previous works have considered quantum control protocols
for BECs [30–38]. Feedback schemes thus far presented have
focused on driving a condensate to its ground state by altering
the position and strength of a harmonic trapping potential

2643-1564/2020/2(4)/043325(12) 043325-1 Published by the American Physical Society
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[30–34], or to deterministically prepare a target state [35,38],
possibly for quantum memory applications [36,37]. Here we
move beyond the realm of specific state control toward imple-
mentation of designer effective Hamiltonians or Liouvillian
functions with possibly unknown dynamical steady states.

The paper is structured as follows: In Sec. II, we present
our main formal results, including the stochastic equation
describing condensate dynamics, and introduce a toy model il-
lustrating the salient features of the control protocol. We show
that locally applied feedback induces a phase transition be-
tween easy-axis ferromagnetic and disordered paramagnetic
phases in a two-component condensate.

In Sec. III, we elaborate on our feedback cooling protocol
and characterize the resulting steady state via condensate frac-
tion, von Neumann entropy, and energy. We show that heating
due to measurement backaction can be effectively mitigated
by feedback cooling. In Sec. IV, we discuss the feedback
induced steady-state phases in more detail and elucidate the
nature of the phase transition in our system. We conclude in
Sec. V.

II. SUMMARY OF RESULTS

A. General formalism

We model dispersive imaging of a quasi-one-dimensional
(1D) multicomponent Bose-Einstein condensate of length L
via spin-resolved phase-contrast imaging [39] and we label
individual components by an index s. We consider time-
and space-resolved measurements of atomic density n̂s(x, t )
in each component using the Gaussian measurement model
developed in detail in Ref. [40]. Stroboscopic weak measure-
ments with strength ϕ result in the measurement signal

Ms(x, t ) = 〈n̂s(x, t )〉 + ms(x)

ϕ
, (1)

where ms(x) describes spatiotemporal quantum projection
noise associated with the measurement. The measurement is
characterized by Fourier domain Gaussian statistics m̃s,k = 0
and m̃s,km̃s,k′ = L�(|k| − kc)dWs,kdWs′,k′/2dt2, where dWs,k

is a Wiener increment with dWs,k = 0 and dWs,kdWs′,k′ =
dtδss′δkk′ for a time increment dt [41]. The Heaviside function
� enforces a momentum cutoff at kc = 2π/λ, accounting
for the fact that the physical measurement process can only
resolve information with length scales larger than λ/2π . The
observer does not directly obtain information about the con-
densate phase using this protocol.

Here, we do not impose any additional resolution limits on
the measurement results. In any real experiment, an additional
momentum-space transfer function modeling the imaging sys-
tem’s exit pupil should be applied to Ms(x, t ) to account for
imperfect imaging resolution [42]. This process will depend
on the specific details of the imaging system, therefore we
consider it beyond the scope of this work.

We use the aggregate measurement result M, a function
of x and s, to generate feedback signals in the form of a
single-particle potential V̌ [M], where ·̌ indicates an operator
in component space. In this work, we consider a potential
which is local in space.

We describe the condensate in the mean-field approx-
imation using a complex spinor order parameter �(x) =
[ψ1(x), ψ2(x), . . .]T , where ψs(x) is a classical field describ-
ing the dynamics of component s. The total density is n(x) =
�†(x)1̌�(x) and the order parameter is normalized to the
number of particles, N = ∫

dx n(x). From Eq. (1), the mea-
surement results at the mean-field level therefore depend
on the field amplitude via 〈n̂s(x)〉 → |ψs(x)|2. Measurement
backaction leads to stochastic evolution of the order parame-
ter, which results in condensate heating [40,43] in the absence
of a cooling protocol, which we describe in Sec. III.

The combined measurement and quantum control process
is described by a stochastic equation of motion,

d�(x) = d�(x)|H + d�(x)|M + d�(x)|F, (2)

for the condensate order parameter �(x). Here,

dψs(x)|H = − i

h̄
[Ĥss′ (x) − μδss′ ]ψs′ (x)dt, (3)

dψs(x)|M =
[
−ϕ2kc

4π
+ ϕms(x)

]
ψs(x)dt, (4)

dψs(x)|F = − i

h̄
Vss′ [M](x)ψs′ (x)dt (5)

denote contributions from unitary (i.e., closed-system) evolu-
tion, measurement backaction, and feedback, respectively, and
μ is the chemical potential. We adopt the implied summation
convention over repeated indices and set h̄ = 1.

Using this general formalism, we study a condensate of
87Rb atoms from which we select two hyperfine states, yield-
ing a two-component condensate [27,44] with components
denoted by s =↑,↓. The Hamiltonian in Eq. (3) is the usual
Gross-Pitaevskii equation (GPE) describing closed-system
dynamics, which takes the explicit form

Ĥss′ψs′ = [Ĥ0 + u0n]1ss′ψs′ + u2Szσ
z
ss′ψs′ , (6)

for two-component condensates, with (x, t ) indices sup-
pressed for clarity. Here, Sz(x) = �†(x)σ̌ z�(x) indicates the
spin density and σ̌ = (σ̌ x, σ̌ y, σ̌ z ) is a vector of the Pauli
operators. The single-particle Hamiltonian is Ĥ0 = p̂2/2ma

for atoms of mass ma. The intrinsic spin-independent u0 and
spin-dependent u2 interaction strengths serve to define ξ =
1/

√
2maμ and ξs = ξ

√
u0/2|u2|, the healing length and spin-

healing length, respectively.
Equation (4) describes measurement backaction. Separate

measurements of each condensate component result in in-
dependent backaction noise ms(x). Equation (5) describes
feedback, applied via the potential term V̌ [M]. The feedback
potential combines a deterministic part containing informa-
tion about the condensate dynamics with a stochastic part
due to quantum projection noise. Therefore, both d�|F and
d�|M contribute to stochastic condensate dynamics. When
each individual measurement is very weak, the density of
noncondensed particles remains low. Therefore, we assume
�(x) to be well described by a lowest-order Hartree-Fock
theory throughout its evolution. This assumption is validated
in Secs. III B and III C.
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B. Key feedback concepts

Our aim is to develop feedback schemes which add new
effective interaction terms to the Hamiltonian while minimiz-
ing quantum projection noise. We illustrate the core concept
of feedback using a toy model. The toy model is a simplified
version of the feedback protocols developed in later sections,
which nonetheless illustrates a key result: weak measurements
combined with feedback can be used to engineer new effective
Hamiltonians.

1. Toy model

Here we construct a minimal model of measurement and
feedback for single-component systems, and therefore sup-
press the component index s. We weakly measure the density,
then apply a proportional feedback potential,

V [M](x, t ) = g0M(x, t ), (7)

where the gain parameter g0 denotes the feedback strength. In-
serting Eq. (1) into Eq. (7) gives a feedback potential with two
contributions. The first is an effective mean-field interaction,

V eff (x, t ) = g0n(x, t ), (8)

and the second is a stochastic contribution,

V fluct (x, t ) = g0m(x)

ϕ
. (9)

By direct substitution of V [M] into Eq. (5), the dynamical
Eqs. (3)–(5) reduce to two equations d�(x) = d�(x)|H′ +
d�(x)|M′ with modified unitary evolution and stochastic
terms,

dψ (x)|H′ = −i[Ĥeff (x) − μ]ψ (x)dt, (10)

dψ (x)|M′ =
[
−ϕ2kc

4π
+

(
ϕ − i

g0

ϕ

)
m(x)

]
ψ (x)dt . (11)

The effective Hamiltonian Ĥeff (x) has the same form as the
spin-independent term in Eq. (6), but with u0 replaced by
an effective interaction constant ueff

0 = u0 + g0. Likewise, the
noise in the stochastic evolution is modified due to the con-
tribution of V fluct (x, t ). This simple model illustrates how
feedback can be used to create new effective Hamiltonians
with modified interaction terms.

Returning to the two-component case, we consider the
spin-dependent feedback potential,

V̌ [M](x, t ) = g0Mn(x, t )1̌ + g2Mz(x, t )σ̌ z, (12)

describing separate contributions to the density and spin sec-
tors controlled by independent gain parameters g0 and g2,
respectively. Measurement signals Ms are used to calcu-
late total density and spin density, given by Mn = M↑ +
M↓ and Mz = M↑ − M↓, respectively. Following the same
algebraic arguments, the feedback potential (12) leads to
effective interaction strengths ueff

0 = u0 + g0, ueff
2 = u2 + g2,

along with modified stochastic noise on each component ψs.
In the following, we use this guiding principle to de-

velop a measurement and feedback scheme which controls the
magnetic properties of a two-component condensate without
changing the internal interaction parameters. The simplified

protocol presented in this section is impractical due to run-
away heating [40], from the repeated and uncompensated
application of the stochastic potential in Eq. (11). In Sec. III,
we introduce a feedback cooling protocol that prevents run-
away heating and thus completes our toolbox for quantum
feedback control.

2. Signal filtering

In the toy model above, the feedback potential is governed
only by local-in-time measurement results. Because Eqs. (3)–
(5) describe continuous time evolution, the effect of V fluct (x, t )
in Eq. (9) would seem to diverge as dt → 0. However, any
measurement signal Mi(x, t ) can be filtered in time to provide
a running best estimate of the measured observable i (where
i = n, z, etc.).

The resulting estimator εi is derived from Mi via the low-
pass filter

τiε̇i(x, t ) + εi(x, t ) = Mi(x, t ), (13)

i.e.,

εi(x, t ) = 1

τi

∫ t

−∞
dt ′ Mi(x, t ′)e−(t−t ′ )/τi , (14)

where τi is the filter time constant and Mi(x, t ) indicates
the unfiltered measurement signal. This process filters the
contribution of projection noise present at timescales below
τi, making τi the effective measurement time associated with
the estimator εi.

We derive all of our feedback potentials using estimators
εi instead of measurement signals Mi, thereby controlling
the noise applied to the system via feedback. In our feedback
scheme, we use separate estimators of the total density, spin
density, or density in component s, denoted εn, εz, εs, respec-
tively, which can have different filter time constants τn, τz,
and τs.

C. Feedback induced magnetic phases

We now focus on feedback-tuned spin-dependent interac-
tions with g2 
= 0 and g0 = 0. Guided by our toy model, we
expect the steady-state phase diagram of a two-component
BEC to resemble the ground-state phase diagram for u2. The
ground-state density n(x) and spin density Sz(x) are shown
in Fig. 1(a). For u2 > 0, the ground state is an easy-plane
ferromagnet with Sz(x) = 0, while for u2 < 0, the ground
state is an easy-axis ferromagnet, consisting of spin-polarized
domains [25,44–46], separated by a domain wall.

Using the measurement and feedback procedure outlined
in Sec. II B 1, we apply a forcing potential

V̌f (x, t ) = g2εz(x, t )σ̌ z, (15)

along with a cooling potential V̌c, to be described in Sec. III.
Equation (15) changes the effective spin-dependent interac-
tion strength via the gain g2, based on the estimator of the
spin density εz. The effective Hamiltonian for this protocol is

ˇ̂Heff ≈ [Ĥ0 + u0n]1̌ + V̌c + [u2Sz + g2εz]σ̌
z. (16)

The phase diagram is now a function of two variables: spin-
dependent interaction strength u2 and signal gain g2, which
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FIG. 1. (a) Ground-state density (black dashed curve) and spin
density (solid curve) for (a.i) u2 < 0 and (a.ii) u2 > 0. (b) Steady-
state density (black dashed curve) and spin density (solid curve) for
(b.i) ueff

2 � 0 and (b.ii) ueff
2 � 0, averaged over 100 ms. Semitranspar-

ent curves indicate Sz without time averaging. (c) Steady-state phase
diagram as a function of u2/u0 and g2/u0 (defined in text), showing
magnetically ordered, easy-axis ferromagnet (red/lower left) or spin-
disordered paramagnet (blue/upper right) phases. The black dashed
line indicates the expected phase boundary at ueff

2 = 0, and the
hatched region indicates bistability depending on the initial phase.
The system enters an easy-axis ferromagnet if the initial condition
is (a.i), and a spin-disordered paramagnet if the initial condition
is (a.ii).

give an effective interaction strength ueff
2 ≈ u2 + g2. Exam-

ples of the two steady-state phases are shown in Fig. 1(b).
Both phases have uniform density, but with very different spin
character. For ueff � 0, the system is an easy-axis ferromag-
net with well-defined, spin-polarized domains. For ueff

2 � 0,
the system enters a spin-disordered paramagnetic phase, with
large spin fluctuations. Figure 1(b) shows the spin density
averaged over 100 ms (darker solid curve) and 10 individ-
ual time traces (semitransparent curves). The individual time

traces show that the spin is essentially static in the ferromag-
netic phase, but has large spatiotemporal fluctuations in the
paramagnetic phase.

Figure 1(c) shows the steady-state phase diagram as a
function of u2/u0 and g2/u0. As expected, the phase diagram
is divided into two regimes delineated by ueff

2 = 0 (black
dashed curve). We quantify the steady-state phase using a
time-separated correlation function of magnetization,

η = 1

A

∫
dτ

∫
dt dx

Sz(t + τ, x)Sz(t, x)

n(t + τ, x)n(t, x)
, (17)

where A is an overall normalization factor. A condensate
with well-defined domains gives η � 0.5; for the ground state
with a single domain wall, η ≈ 1. The disordered paramagnet
phase with fluctuating magnetization has η ≈ 0 because the
local magnetization at any point x fluctuates strongly in time.

Like many magnetic systems, this system exhibits hys-
teretic behavior. When g2 < 0, the easy-axis phase is robust to
the initial condition of the system and over many different rep-
etitions of the simulation with different noise realizations. The
phase in the region where ueff � 0 with u2 < 0 and g2 > 0
is sensitive to the initial state, denoted by the hatched region
in Fig. 1(c). In this region, the steady state of the system
is an easy-axis ferromagnet only if it was initially in the
ferromagnetic ground state with u2 < 0, as in [Fig. 1(a.i)]. For
the easy-plane ground state, as in Fig. 1(a.ii), domains do not
form. We discuss this steady-state behavior for the easy-plane
initial condition in Appendix B.

In the following sections, we examine the robustness of
the feedback induced magnetic phases and feedback cool-
ing. We show that despite repeated weak measurements and
feedback, the condensate remains largely intact over the ∼4 s
time period of the simulation. Furthermore, by changing the
effective interaction via feedback, we demonstrate tunabil-
ity between different steady-state phases. Spatially resolved,
time-dependent feedback therefore provides a tool to dynam-
ically change effective interactions in cold-atom systems.

III. FEEDBACK COOLING

Measurement backaction adds excitations to the conden-
sate. The aim of feedback cooling is to apply feedback using
information from the measurement signal to suppress the
excitations, thereby stabilizing the condensate and prevent-
ing runaway heating. In this section, we develop a feedback
cooling protocol for single and multicomponent condensates,
which ensures the stability of the condensate during measure-
ment and feedback. We connect the continuous measurement
limit presented in Sec. II A to the experimental reality of
discrete measurements. We then develop a feedback cooling
protocol using a single discrete measurement as a building
block. Finally, we show that during this protocol, the conden-
sate fraction and entropy reach a steady state, but the GPE
energy functional continues to slowly increase.

A. Single-measurement protocol

The continuous measurement limit is typically assumed
a priori by taking dt → 0. Since the variance of the mea-
surement signal in Eq. (1) is ∝1/dt , the variance in the
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measurement record diverges in this limit. However, no phys-
ical measurement is infinitely fast. Integrating Eq. (1) over a
small time window therefore yields a “single measurement.”
By considering this type of measurement, we can quantify
a measurement protocol which extracts maximal information
from the condensate while minimizing the negative effects of
backaction. As in Sec. II B 1, here we consider measurements
of a single-component condensate and drop the s index. It is
straightforward to generalize this procedure to multicompo-
nent condensates.

Consider a time-integrated version of Eq. (1) over an
interval �t , giving a single measurement of density. The
measurement result is M(x) = n(x) + m̄(x)/κ , where the
measurement strength κ = √

�tϕ. The spatial quantum pro-
jection noise is m̄(x), where ˜̄mk has the same Fourier space
statistics previously discussed, with ˜̄mk = 0 and ˜̄mk ˜̄mk′ =
Lδkk′�(|k| − kc)/2. Directly after measurement, the updated
wave function is ψ|M(x) ≈ ψ (x) + κm̄(x)ψ (x). Thus, there
exists an optimal measurement strength,

κ∗ ≈
√

1

2 max[n(x)]
, (18)

such that the measurement outcome matches the postmeasure-
ment density n|M exactly, i.e., M(x) = n|M(x). In principle,
the optimal measurement strength depends on the local den-
sity; however, as this is difficult to implement experimentally,
we instead approximate κ∗ to be constant. We then use this
coupling value for feedback cooling.

If we could find a potential Vc|M(x) for which the postmea-
surement state is the ground state, ψ|M(x) would satisfy the
stationary GPE,

μψ|M = [
Ĥ0 + u0n|M + Vc|M

]
ψ|M. (19)

In our feedback cooling protocol, we first apply the poten-
tial Vc|M(x) for which the postmeasurement state would be
the ground state (assuming a uniform phase). Then we ap-
proach the initial state by slowly—adiabatically—ramping
off the applied cooling potential. We approximate Vc|M using
the Thomas-Fermi (TF) approximation of Eq. (19), giv-
ing Vc|M(x) = μ − u0n|M(x). We then make the substitution
u0n|M(x) → gcM(x), where gc is the cooling gain, an exter-
nally adjustable parameter (for which the expected value of
u0 is found to be optimal). This gives the feedback cooling
potential function,

Vc|M(x, t ) = [μ − gcMtm (x)] f (t − tm ), (20)

where tm is the time of the measurement and f (t ) is a ramp-off
function where f (0) = 1 and f (t → ∞) = 0. In practice, we
use f (t − tm ) ≈ 1 − γ (t − tm ), where γ is the ramp-off rate.

B. Bogoliubov theory for single-measurement protocol

Here we provide an analytical solution of the single-
measurement-feedback protocol described above using Bo-
goliubov theory [47], with periodic boundary conditions.
After making the Bogoliubov transformation, small excita-
tions above the ground state of a weakly interacting spinless

BEC with density n are described by the Hamiltonian

Ĥph =
∑

k

εkb̂†
kb̂k, (21)

where b̂†
k describes the creation of a Bogoliubov phonon with

momentum k and energy εk = μξ |k|
√

ξ 2k2 + 2. To facilitate
our analytic treatment, we focus on the weak-measurement
regime, in which, at most, one phonon mode is occupied, lead-
ing to wave functions of the form |ψ〉 = α|vac〉 + ∑

k βk|k〉,
where |k〉 = b̂†

k|vac〉, and |vac〉 is the phonon vacuum.
Measurement backaction is described by the Kraus

operator

K̂ = exp

{
− κ2

2

∫
dx

[
δn̂(x) − m̄tm (x)

κ

]2}
, (22)

with the density difference operator δn̂(x) ≡ n̂(x) − n. In the
phonon basis, δn̂(x) can be expressed as a sum, δn̂(x) =√

n/L
∑

k (cke−ikxb̂k + H.c.), of phonon creation and annihi-
lation operators, with ck = [1 + 2/(ξk)2]−1/4.

In this representation, the feedback cooling operator de-
rived from (20) is

V̂c|M(t ) =
∫

dx Vc|M(x, t )n̂(x). (23)

Assuming adiabatic evolution, with ramp-off rate γ → 0, and
using first-order perturbation theory, the operator describing
the cooling protocol is

R̂|m = 1 +
∑

k

gcck
√

n

κεk

√
L

[
˜̄mtm (k)b̂k − H.c.

]
. (24)

This expression is valid for gcck
√

n � κεk

√
L. The proba-

bility of finding a phonon in state |k〉 after a measurement-
feedback cycle is

P̄k = |〈k|R̂|mK̂|vac〉|2 = nκ2c2
k

2

(
1 − gc

κ2εk

)2

�(|k| − kc).

(25)

We draw two conclusions from this result: (1) Setting
gc = 0 gives the probability nκ2c2

k/2 that the measurement
created a phonon in state |k〉; and (2) the phonon mode
with energy εk,opt = gcκ

−2 can be perfectly cooled with this
protocol. Figure 2(a) compares Eq. (25) with our stochastic
GPE simulation with a linear ramp-off function f (t ). The
analytic calculation exactly reproduces the numerically pre-
dicted phonon distribution immediately following a single
measurement (red curve), while the results with cooling have
additional periodic features resulting from the finite ramp-off
rates in the simulations. The shaded region denotes the param-
eters for which our perturbation theory is inapplicable.

In the thermodynamic limit L � ξ , the per-particle energy
after one measurement-feedback cycle,

�E = 1

2πn

∫
dk εkP̄k = A(gc − gc∗)2 + �E∗, (26)

is parabolic. With ξ � 1/kc, the minimal per-particle energy
increase �E∗/μ = κ2φ2

c (πφc − 6
√

2)/(6π2ξ ) occurs for a

043325-5

103



HURST, GUO, AND SPIELMAN PHYSICAL REVIEW RESEARCH 2, 043325 (2020)

0 100π 200π

kL

102

100

10−2

P
k

(a)

γ = 0

γ = 0.12 ms−1

γ = 0.61 ms−1

γ = 3.07 ms−1

γ = ∞

1 10

γ [ms−1]

0

4

8

g
c
∗/

u
0

(b)

0

5

10

(Δ
E

∗
/
μ
) ×

1
0
3

FIG. 2. Comparison between Bogoliubov theory and stochastic
GPE simulation for a single-measurement-feedback cycle for a sys-
tem initially in the ground state. (a) Phonon population. Black, green,
blue, orange, and red curves indicate γ = 0 ms−1, γ = 0.12 ms−1,
γ = 0.61 ms−1, γ = 3.07 ms−1, and γ = ∞. Dashed curves re-
sult from Bogoliubov theory [Eq. (25) with gc = u0 and gc = 0,
corresponding to γ = 0 and γ = ∞, respectively], while solid
curves derive from GPE simulations (3000 trajectories). The Bogoli-
ubov and GPE results coincide for γ = ∞ (red). The gray region
marks wave numbers for which first-order perturbation theory fails.
(b) Gain gc∗ (red circles) for which the energy increase �E∗ (black
squares) is minimized, plotted as a function of γ . For each point,
we fit Eq. (26) to the GPE simulation result with A, gc∗, and �E∗
as free parameters. Horizontal dashed lines indicate the Bogoliubov
prediction of �E∗ and gc∗, and the dash-dotted line shows the energy
increase without feedback cooling (i.e., γ = ∞).

gain,

gc∗
u0

= 2
√

2κ2nφc

π
, (27)

where φc = kcξ/
√

2 parameterizes the cutoff and A =
(4

√
2κ2μξ )−1.

Figure 2(b) compares the optimal energy increase pre-
dicted by Eq. (26) with that obtained from numerical
simulations of the stochastic GPE (horizontal black dashed
line and black squares, respectively), and the corresponding
optimal gains are denoted by the red circles. The GPE simula-
tion exhibits three regimes: (1) For very rapid ramps γ → ∞,
the adiabatic assumption is invalid, and the GPE optimal gain
is larger than anticipated from the analytic model. (2) In the

adiabatic ramping regime where γ → 0, we find that both
gc∗ and �E∗ converge, with �E∗ greater than our predicted
value. This results from phonon-phonon scattering processes
redistributing phonons between modes, which is not included
in our Bogoliubov theory. (3) And in the intermediate regime
(γ between 3 ms−1 and 10 ms−1), our theory performs opti-
mally and �E∗ coincides with the analytic prediction, albeit
with much higher gain. We note that the optimal gain gc = u0

obtained in Sec. III A is close to that predicted by Eq. (27),
where, for the parameters in Fig. 2, gc∗ ≈ 2.8u0.

C. Continuous feedback cooling protocol

The single-measurement procedure described in Sec. III A
is a building block for continuous feedback cooling. We peri-
odically measure the condensate with measurement strength
κ = κ∗

√
�t/τ , where κ∗ is the ideal single-measurement

strength in Eq. (18) and τ is the filtering time constant for
the measurement signal. The cooling potential is derived from
the density estimator ε(x, t ) [48] and is decreased between
measurements, as described by Eq. (20).

The effect of the cooling potential is to drive ψ (x)
toward its ground state between measurements. This pro-
cedure leverages the optimal single-measurement strength
and signal filtering to measure the condensate more weakly.
We implement this protocol numerically and simulate con-
densate evolution under measurement and feedback using
Eqs. (3)–(5).

Here we simulate an elongated condensate with N = 105

particles, healing length ξ = 0.8 m, and total system size
L = 80 m, computed for kc = 2π/λ with λ = 780 nm. The
interval between measurements is set to dt = 200 s to match
typical image acquisition times in experiment, and the esti-
mator time constant and cooling ramp-off rate were set to
τ = 1/γ = 4.6 ms. We characterize the quasisteady state by
three metrics: condensate fraction, von Neumann entropy,
and energy, and find that the condensate remains remark-
ably coherent throughout the feedback cooling protocol. Upon
implementing continuous feedback cooling, the condensate
fraction and von Neumann entropy reach a steady state, while
the GPE energy functional slowly increases, as shown in
Fig. 3.

We calculate the condensate fraction using the Penrose-
Onsager criteria [49]. Per this criteria, upon diagonalizing the
one-body density matrix ρ̂ as ρ̂|n〉 = Nn|n〉, a condensate is
present in mode |n〉 if its eigenvalue is Nn ∼ O(N ), where N
is the total number of particles. We obtain ρ̂ from an ensemble
of stochastic trajectories of pure states [50], starting from
the GPE ground state. In Fig. 3(a), we show the four largest
eigenvalues of ρ̂, normalized by N , giving a measure of the
fractional occupation in each mode. The condensate fraction
is the largest eigenvalue, which stabilizes at ≈0.99, with a
secondary mode having an occupation fraction of ≈0.01.
The remaining eigenvalues are orders of magnitude smaller
than the leading two; therefore, those modes have negligible
occupation.

The second metric we use to characterize the steady state
is the von Neumann entropy, defined as S = Tr[ρ̂ ln ρ̂]. As
shown in Fig. 3(b), S saturates at ≈0.01 of its maximum pos-
sible value log(D), where D is the Hilbert-space dimension.
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FIG. 3. Properties of a single-component condensate under feed-
back cooling with gain gc = u0 and measurement strength κ∗ =
2.2×10−3. Statistical properties were calculated from 128 indepen-
dent stochastic trajectories. (a) Fractional occupation of the first
four modes in the single-particle density matrix. The condensate
fraction (solid curve) is ≈0.99 in the quasisteady state. (b) The von
Neumann entropy (red/light gray) and average energy (black) of the
condensate. The gray curve is the energy for a single trajectory.

This is consistent with the final condensate fraction of ≈0.99.
We extract an equilibration time τeq ≈ 200 ms by fitting S to
the function S(t ) ≈ S0(1 − e−t/τeq ).

The third metric, energy, does not reach a constant value,
rather it slowly increases even after the condensate fraction
and entropy saturate, as shown in Fig. 3(b). Here we define
energy in terms of the per-particle GPE energy without any
feedback terms present. The final energy after 4 s of evolution
is ∼0.15 μ, indicating a 15% increase from the ground-state
value throughout the protocol. We determined that this energy
increase is due to the gradual population of modes above
the momentum cutoff which cannot be directly addressed by
feedback cooling. However, this increase is slow enough to
provide ample time (on the order of seconds) for additional
experiments while the condensate is being measured.

Cooling for the two-component case proceeds similarly,
but with cooling applied in the spin and density channels
separately. Weak measurements add magnons (spin waves)
in addition to phonons [27]. For the easy-axis ground state
with u2 < 0, the results are qualitatively the same as as the
single-component case, with the final condensate fraction re-
duced to ≈0.85, indicating cooling is not quite as efficient

for the two-component system. However, in the easy-plane
case (i.e., u2 > 0), cooling is not as effective at long times and
the condensate enters a spin-disordered phase with large spin
fluctuations and a lower condensate fraction of ≈0.35. The
cooling protocol for two-component condensates is discussed
in Appendix C.

IV. FEEDBACK INDUCED MAGNETIC PHASES

In this section, we elaborate on the steady-state magnetic
phases and their measurement signatures. The phase diagram
in Fig. 1(c) was computed for a gas of N = 105 87Rb atoms
with healing length ξ = 0.8 m and total system length L =
80 m, with feedback both to control the effective interac-
tions and cool the system. In all of our simulations, feedback
cooling is continuously applied. We add the forcing feedback
V̌f (x, t ) = g2εz(x, t )σ̌ z in the time window from 1 to 3 s and
allow the simulations to continue until the total run time
reaches 4 s.

Figure 1(c) shows that the magnetic phase of the sys-
tem reaches a steady state governed by the effective
spin-dependent interaction strength ueff

2 = g2 + u2 while the
forcing potential is on, leading to the easy-axis ferromag-
net and spin-disordered paramagnetic phases discussed in
Sec. II C. The spin-dependent interaction strength u2 and gain
g2 serve as tunable parameters.

The easy-axis ferromagnetic phase for ueff
2 < 0 exhibits

well-defined, spin-polarized domains. The order parameter η

for this phase is the time-separated correlation function of
the magnetization, given in Eq. (17). We find that η � 0.5
indicates the existence of persistent domains. We can identify
an effective spin-healing length ξs ∝ 1/

√
|ueff

2 | in this phase,
similar to the spin-healing length in closed two-component
systems [44]. Changing ueff

2 via the feedback strength thus
alters the spin-healing length in the steady state.

Figure 4 shows the effective spin-healing length, obtained
by fitting the spin density Sz(x) to a function with Nd domains,
where

Sz(x) = ±S �
Nd−1
n=1 tanh

(
x − xn

ξs

)
. (28)

Here, xn are the positions of each domain wall, S is the overall
amplitude of domains, and ξs is the spin-healing length. The
± sign in front accounts for the polarity of the domain signal
(i.e., which domain is at the edge), as the measurement and
feedback process spontaneously breaks a Z2 symmetry to
determine the domain orientations [40,51].

The spin-healing length diverges upon approaching the
transition at ueff

2 = 0, indicating system behavior that is
analogous to the expected phase transition from changing the
interaction parameters. The markers in Fig. 4 are color-coded
based on the value of the η, where we can see that for lower
values, there is more variability in the data. This is because
lower values of η generally correspond to a spin texture with
multiple domains, where there is movement of the domain
boundaries over time due to fluctuations parameterized by
the nonzero entropy [40]. The black diamonds in Fig. 4
show the spin-healing length obtained for the corresponding
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FIG. 4. Spin-healing length as a function of effective spin-
dependent interaction strength ueff

2 = g2 + u2 for data shown in the
Fig. 1(c) phase diagram with ueff

2 < 0. The colored markers indic-
ate the calculated spin-healing length averaged over a 1.6 s window.
The black markers indicate the spin-healing length for a ground-state
system (i.e., no feedback) with u2 equal to the marked value of
ueff

2 . The dashed curve indicates the predicted spin-healing length
ξs = ξ/

√
2|ueff

2 /u0| with no fitting parameters.

closed-system ground state, and the dashed curve is the
computed functional dependence ξs = ξ [u0/2|ueff

2 |]1/2

for ueff
2 < 0, which shows excellent agreement with the

simulations.
The disordered paramagnetic phase is characterized by a

spatially and temporally fluctuating spin structure. An exam-
ple of these fluctuations in real space is shown in Fig. 5(a).
In the disordered paramagnetic phase, a spin-healing length
is not well defined. The power spectral density (PSD) of the
spin,

PSDz(k, t ) = |S̃z(k, t ) − ¯̃Sz(k, t )|2, (29)

provides a measure of how much the spin fluctuates [44].
Here, S̄z(x) is the time-averaged value of the spin density and
S̃z(k, t ) is the Fourier transform of Sz(x, t ).

Figure 5(a) shows PSDz(k) in the steady-state magnetic
phase averaged over 1 s. At low momenta, the signature for the
disordered phase is significantly higher than for the easy-axis
ferromagnetic phase. The large fluctuations in spin are thus a
signature of the paramagnetic phase, which can be deduced
from the measurement signals. Above the cutoff kcλ = 200π

indicated by the black dashed line, we see additional spectral
features at multiples of kc, indicating higher-order resonances
due to the measurement process. The population of modes
above the cutoff leads to a gradual increase in energy and
affects cooling, as discussed in Sec. III C.

V. OUTLOOK

Hamiltonian engineering for multicomponent Bose gases
has been achieved at the level of the single-particle Hamil-
tonian via synthetic gauge fields [52,53], spin-orbit coupling
[10,54,55], and spin-dependent potentials [56,57]. The ability
to tune the character and strength of interactions beyond those
already present in the system has heretofore been limited to
using Feshbach resonances [29], which typically change only
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FIG. 5. (a) Real-space spin density Sz(x) computed in the ferro-
magnetic and disordered paramagnetic phase. The solid curve shows
the time-averaged signal over 1 s and the semitransparent curve
indicates a single time trace. (b) The corresponding power spectral
density of fluctuations in each phase. The vertical dashed line indi-
cates the momentum cutoff kc.

one interaction constant at a time, or via coupling to an exter-
nal cavity field [58–60]. In contrast, our feedback technique
can simultaneously change all the spin-dependent effective
interaction strengths in situ: not possible with Feshbach reso-
nances or cavity-mediated interactions.

Our result shows that spatially local feedback control based
on a record of weak measurements is a viable route to-
ward engineering effecting interactions in quantum gases. We
demonstrated that a dynamical steady state can be engineered
in a two-component Bose-Einstein condensate where the mag-
netic phase is determined by the interplay of the intrinsic and
feedback induced interaction strengths.

Going beyond previous works [34,40], we implemented a
cooling scheme which avoids runaway heating of the con-
densate during the feedback process. Further optimization
of the cooling protocol will be important for experimen-
tal implementation. For example, Eq. (25) suggests that the
k-dependent gain gc(k) = nκ2εk would lead to near-perfect
cooling for all momentum states.

Actual imaging systems have additional limitations beyond
backaction noise, including decreased resolution, detector
inefficiencies, and technical noise. These effects can be in-
corporated into our formalism by applying an appropriate
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transfer function to the measurement record Ms(x, t ) prior
to calculating the feedback signals. Broadly speaking, this
process will introduce another, lower momentum cutoff set by
the imaging resolution, thus limiting the information content
in the applied feedback potential.

The typical spin-healing length (on the order of microns) is
already accessible by modern imaging techniques, and there-
fore we expect that manipulating the spin texture via feedback
is presently possible. We also expect that feedback cooling
will be less efficient since the decreased detector resolution
will limit the excitations that can be cooled. Future work
should quantify the effectiveness of feedback cooling for real
imaging systems. Additionally, more novel signal filtering
schemes beyond the low-pass filter used here might help to
address the parasitic effects of measurement resolution on
cooling efficiency. We note that cooling only needs to be good
enough to maintain a condensate over the timescale required
to study the relevant spinor physics.

The feedback control method of engineering effective
Hamiltonians is flexible and allows for the introduction
of tailored, spatially dependent effective interaction terms.
Future work could implement nonlocal or time-dependent
interactions which have no analog in closed systems. Our
protocols can be generalized to higher dimensions and could
stabilize topological defects such as non-Abelian vortex
anyons which are unstable in closed systems [23]. Finally, our
methods enable real-time feedback control, so over the course
of one experiment we can study both quasi-steady-state
behavior and dynamics.
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APPENDIX A: SIMULATION PARAMETERS

Here we briefly review the simulation method for Eqs. (3)–
(5) and the parameters we use in this work. All simulations
have N = 105 atoms and we consider a quasi-1D system of
length L = 80 m with hard-wall boundary conditions such
that �(x = −L/2) = �(x = L/2) = 0. Hard-wall boundaries
can be implemented using flat-bottomed traps instead of a
harmonic one [61]. The momentum cutoff is kc = 2π/λ,
with λ = 780 nm being the wavelength of imaging light. We
simulate a single-component condensate in order to study
steady-state behavior under feedback cooling in Sec. III. Else-
where, we simulate a two-component condensate with an
easy-axis magnetic ground state, i.e., u2 < 0, or easy-plane
ground state with u2 > 0. In the main text, the results are
presented using the easy-axis ground state with u2 = 0.01u0

as the initial condition.
The system is initialized in its ground state by solving the

GPE in imaginary time. The natural units for this setup are the
total system length L and the chemical potential μ = h̄2/2mξ 2

as the unit of energy, where ξ = 0.8 m is the healing length.

Upon rescaling the variables to unitless quantities x → xL,
t → t (2maξ

2/h̄), ψ↑(↓) → √
N/Lψ↑(↓), the Hamiltonian in

Eq. (19) is

ˇ̂H =
[
− ξ 2

L2

∂2

∂x2
+ n(x)

]
1̌ + u2

u0
Sz(x)σ̌ z, (A1)

where
∫

dx n(x) = 1. Therefore, the spinless case has one
free parameter ξ/L and the two-component case has the ad-
ditional free parameter u2/u0. For our parameters, we have
ξ/L = 0.01 and we consider different values of u2. We simu-
late the nonlinear dynamics using a second-order symplectic
integration method [62]. In these units, it is natural to express
u2 and the gain strengths g0, g2, etc. in units of u0.

In order to simulate a small measurement interval (ap-
proaching the continuous measurement limit), we consider a
separation of timescales dt � τ such that the measurement
interval dt of the system is much shorter than the signal
filtering timescale τ for any observable. This enables us to
write the evolution Eqs. (3)–(5) as continuous time stochastic
differential equations.

APPENDIX B: STEADY-STATE PHASE DIAGRAM
FOR EASY-PLANE INITIAL CONDITION

As indicated by the hatched region in Fig. 1(c), the steady-
state phase diagram has a region of bistability depending on
the initial state of the system. In this Appendix, we present the
results for the phase diagram calculated using the easy-plane
ground state as the initial condition, shown in Fig. 6. In the
steady-state magnetic phase, the system forms domains for
ueff

2 < 0 and g2 < 0. An example of the density and spin
density in this region is shown in Fig. 6(a.i), where we see
that there are multiple domains in the spin texture. This is in
contrast to the case presented in the main text where there is
only one domain, due to the single domain being the ground
state. The number of domains depends on many parameters
including u2, g2, and the timescale over which feedback is
turned on. We consider further investigation of these variables
to be outside the scope of this work.

Unlike the easy-axis initial condition, the spin-disordered
phase occurs for a wider range of parameters, most notably
in the hatched region where ueff

2 = 0 but g2 > 0. The spin
texture in this regime is shown in Fig. 6(a.ii), which indicates
relatively uniform density but a highly fluctuating spin texture.
We suspect that the observed bistability could be due in part
to the underlying cooling protocol for the two-component
system, which can also affect the spin texture, as discussed
in Appendix C.

APPENDIX C: TWO-COMPONENT FEEDBACK COOLING

The density is measured in each component s with strength
κ = κ∗

√
�t/τn where �t is the measurement duration and τn

is the low-pass filtering time constant for the total density.
Measurements M↑ and M↓ are then combined to give a
measurement of total density (M↑ + M↓) or spin density
(M↑ − M↓), which is used in a low-pass filter to calculate the
estimators εn and εz. Crucially, the filtering works best when
εn and εz have different filtering time constants; we use τn =
4.6 and τz = 46 ms, respectively. This is due to the different
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FIG. 6. (a) Steady-state density (black dashed curve) and spin
density (solid curve) for (a.i) ueff

2 � 0 and (a.ii) ueff
2 � 0, averaged

over 100 ms. Semitransparent curves indicate Sz without time averag-
ing. (b) Steady-state phase diagram as a function of u2/u0 and g2/u0

(defined in text), showing magnetically ordered, easy-axis ferromag-
net (red/lower left) or spin-disordered paramagnet (blue/upper right)
phases. The black dashed line indicates the expected phase boundary
at ueff

2 = 0, and the hatched region indicates bistability depending on
the initial phase.

types of excitations in the two-component case, which can be
phonons or magnons. Phonons have faster time dynamics than
magnons, which necessitates different time constants in each
channel.

The spin-dependent cooling potential is

V̌c(x, t ) = Vc,n[εn, t]1̌ + Vc,z[εz, t]σ̌ z. (C1)

As in the spinless case, the potentials Vc,n and Vc,z are calcu-
lated after each measurement and then exponentially ramped
off between measurements. Cooling in the density channel is
done via the potential

Vc,n(x, t ) = [μ − gcεn(x, t )]e−γn (t−tm ), (C2)

where gc is the gain. This potential drives the total density
toward a uniform state based on estimator εn with ramp-off
rate γn. Cooling for the spin sector is via the spin-dependent
potential

Vc,z(x, t ) = gc,z[ε̄z(x, t ) − εz(x, t )]e−γz (t−tm ), (C3)

where γz is the spin ramp-off rate, gc,z is the cooling gain
for the spin sector, and ε̄z indicates a running time av-
erage of εz. This potential drives the spin density Sz(x)
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FIG. 7. Properties of a two-component condensate under mea-
surement and feedback cooling. (a), (b) Fractional occupation of first
four modes in the single-particle density matrix for (a) u2 < 0 and
(b) u2 > 0. The eigenvalue of the four highest-occupied modes is
pictured. The condensate fraction (solid curve) is ≈0.85 in the steady
state for u2 < 0 and ≈0.35 for u2 > 0. (c) Average energy (black) for
a condensate with u2 < 0 (solid curve) and u2 > 0 (dashed curve)
calculated from 124 independent stochastic trajectories. As in the
spinless case, energy computed from the GPE energy functional
increases slowly. (d) The von Neumann entropy for a condensate
with u2 < 0 (solid curve) and u2 > 0 (dashed curve).

toward its time-averaged value, effectively cooling short-
wavelength (high-momentum) spin fluctuations, but allowing
long-wavelength spin textures such as domain walls to remain
intact. In practice, we use γ −1

n = τn and γ −1
z = τz, with the

other parameters the same as for the spinless case. We cal-
culate ε̄z by averaging the original signal over a 120 ms time
window. Cooling is most effective when the gain parameters
are g = u0 and gc,z = u2.

As in the spinless case, feedback cooling drives the two-
component condensate to a quasisteady state. The condensate
fraction and von Neumann entropy stabilize around constant
values and the energy per particle increases slowly over the
course of the simulation. We compute the energy from the
GPE energy functional without any feedback terms present.
The steady-state properties for cooling a two-component con-
densate are presented in Fig. 7. The results are qualitatively
different for the case with u2 < 0 (easy-axis ground state) and
u2 > 0 (easy-plane ground state).

The easy-axis case is similar to the spinless cooling re-
sults presented in the main text. In Fig. 7(a), we present
the condensate fraction for u2 < 0, which can also be calcu-
lated for multicomponent condensates [63]. The condensate
fraction is ≈0.85 in the steady state, with one additional
mode having occupation ≈0.15 and other modes having neg-
ligible occupation. The energy increase, shown in Fig. 7(c),
is ≈0.25μ. The von Neumann entropy, shown in Fig. 7(d)
(solid curve), increases to about 10% of its maximum value.
These metrics indicate that the cooling protocol is effective for
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two-component condensates with u2 < 0. Furthermore, we
find that at the end of the cooling protocol, the domain wall is
still intact, showing that this spin-dependent cooling protocol
is effective both at maintaining a high level of condensation
and preserving the spin structure. The equilibration time ex-
tracted from the entropy is τeq ≈ 400 ms.

In the case of an easy-plane initial condition (i.e., u2 > 0),
the cooling protocol is not as effective. In Fig. 7(b), we
show the fractional occupation of the first four modes from
the one-body density matrix. The condensate fraction (blue
solid curve) decreases to ≈0.35, while the other modes also
have fractional occupations of O(0.1). This indicates that the

Penrose-Onsager criterion for condensation is violated in this
regime. Furthermore, we find that the entropy S increases
considerably more than the easy-axis case, reaching a con-
stant value of ≈0.4 log(D) after 2 s of time evolution. The
entropy increase is likely being driven by an instability toward
spin separation in the condensate. Under our current feedback
protocol, the easy-plane ground state eventually enters a spin-
disordered phase with large spin fluctuations, which accounts
for the higher entropy and lower condensate fraction that we
observe. Future work could develop a feedback cooling pro-
tocol specifically for u2 > 0 systems to combat this instability
more effectively.
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Abstract
Most data in cold-atom experiments comes from images, the analysis of which is limited by our
preconceptions of the patterns that could be present in the data. We focus on the well-defined case
of detecting dark solitons—appearing as local density depletions in a Bose–Einstein condensate
(BEC)—using a methodology that is extensible to the general task of pattern recognition in images
of cold atoms. Studying soliton dynamics over a wide range of parameters requires the analysis of
large datasets, making the existing human-inspection-based methodology a significant bottleneck.
Here we describe an automated classification and positioning system for identifying localized
excitations in atomic BECs utilizing deep convolutional neural networks to eliminate the need for
human image examination. Furthermore, we openly publish our labeled dataset of dark solitons,
the first of its kind, for further machine learning research.

1. Introduction

Machine-learning (ML)-based image classification has found application throughout science, from analysis
of experimental data in particle physics [1–3], dark matter search experiments [4, 5] or quantum dots
experiments [6–9] to predicting properties of materials [10–12] to studying molecular representations and
properties [13–15]. In atomic physics, ML has been used to locate topological phase transitions [16], to
complement absorption imaging technique [17], to characterize particles in disordered fields [18], and to
detect quantum vortices in rotating BECs [19]. In this paper, by combining convolutional neural networks
(ConvNets) with traditional fitting techniques, we first categorize many-body atomic physics data, and then
extract quantitative information from this data.

Using cold-atom Bose–Einstein condensates (BECs), we focus on solitons, robust solitary waves that
retain their size, shape, and speed at which they travel [20, 21]. These properties arise from an interplay
between nonlinearity and dispersion that is present in many physical systems. Indeed, since their first
observation in canals [22], solitons have been found in rivers and seas [23, 24]; BECs [25, 26]; optical
fibers [27, 28]; astronomical plasmas [29]; and even human blood vesicles [30, 31]. Due to their inherent
stability, solitons in optical fibers [32] have found commercial applications in long-distance, high-speed
transmission lines [33].

While the natural environment does not allow for the controlled study of quantum solitons, BECs are an
excellent medium where individual or multiple solitons can be created on-demand, with all their properties,
such as position and velocity, tuned according to necessity [34, 35]. Most measurements in BEC experiments
produce raw data in the form of images that, in our context, provide information about the solitons’
positions within the BEC. The challenge is to efficiently and reliably identify the number of solitons and their
locations. Traditional least-squares fitting techniques can locate solitons, provided that the soliton number is
known in advance. Currently, the number of solitons is determined manually [35], and this human
intervention inhibits the automated analysis of large datasets.

© 2021 The Author(s). Published by IOP Publishing Ltd 112
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Figure 1. Schematic of the soliton detection and positioning system. Red boxes and arrows represent the flow of the full system.
The dashed red boxes and arrows represent additional components required for a closed-loop implementation. The green boxes
and arrows represent additional out-of-loop steps of preparing the classifier and establishing the training dataset.

Here, we describe our reliable automated soliton detection and positioning system that takes as input
image data and outputs information whether a single soliton is present, and, if so, its location. Since solitons
are easily identifiable by human examination of images, this problem naturally connects to the field of
computer vision and ConvNet-based image classification [36]. Our algorithm consists of a data preprocessor
that converts raw data into a ConvNet-compatible format; a ConvNet image classifier that determines if a
single soliton has been detected; and a position regressor that locates the soliton within the BEC, when
applicable (see figure 1 for a schematic of the analysis flow).

We show that our fully automated system performs comparably to our existing human image classifier,
autonomously replicating the data analysis in Ref. [35]. In addition to developing a detection and positioning
tool, we established a dataset of over 6000 labeled experimental images of BECs with and without solitonic
excitations; this dataset is available via the National Institute of Standards and Technology (NIST) Science
Data Portal [37] and at data.gov.

The remainder of this paper is organized as follows: in section 2, we illustrate the workflow of the soliton
detector and its preparation process. Then in section 3, we demonstrate the system, quantify its performance,
and discuss the quality of the labeled dataset. Finally in section 4, we conclude and discuss possible future
directions.

2. Soliton detection and position system

In this section we describe our fully automated method of soliton detection and positioning in images of
BECs. Our four-step protocol, detailed in the following sections and depicted in figure 1, is outlined as
follows.

Step 1: Measurement. The measurement consists of three raw images that are combined to produce a
single image of the atomic density distribution.

Step 2: Data preprocessing. As shown in figure 1, the BEC is rotated with respect to the image frame
orientation, and the region of interest where atoms are captured is a small fraction of the full image. To
simplify soliton positioning, the data is first rotated to align the BEC orientation with the image frame and
then cropped prior to the classification step.

Step 3: Image classification. The pre-trained ConvNet classifier determines whether a lone soliton is
present in a given image. If so, step four is executed, otherwise the image analysis terminates.

Step 4: Soliton positioning. The soliton position with respect to the BEC center is determined using a
least-squares fit based on a one-dimensional (1D) model function.

2.1. Experimental setup andmeasurement
In our experiments, solitons are created and propagate the nonlinear media of a 87Rb atomic BEC. We create
BECs using well-established techniques for cooling and trapping atoms [38], allowing us to obtain
N = 2.4(2)× 105 atom3 condensates in a time-averaged crossed optical dipole trap. Since solitons are only
stable in quasi-1D systems [39], i.e., resulting from highly anisotropic trapping geometries, our potential is
elongated, with trapping frequencies [ωx,ωy,ωz] = 2π × [9.1(1),153(1),94.5(6)] Hz.

We launch solitons using our recently developed ‘improved’ protocol, that simultaneously engineers the
density and phase of the BEC wave function [35]. By contrast with the ‘standard’ protocol that only modifies

3We use a notation value(uncertainty) to express uncertainties, for example 1.5(6) cm would be interpreted as (1.5 ± 0.6) cm. All uncer-
tainties herein reflect the uncorrelated combination of single-sigma statistical and systematic uncertainties.
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the BEC phase and can only create solitons within a small range of initial velocities, our protocol can create
solitons with arbitrary initial velocity. The potentials for density engineering and phase imprinting are both
generated by far-detuned laser light, spatially patterned by a digital micromirror device (DMD). Our protocol
is summarized as follows: After the BEC is created, we reduce its local density by applying a repulsive dimple
potential. Next, the DMD is reprogrammed to display a step function that illuminates only half of the BEC,
imprinting the soliton’s phase profile. To minimize creating additional density perturbations, the dimple
potential is reapplied and its magnitude slowly ramped to zero. We note that in our data there are additional
solitonic excitations that, while representing different physical states (e.g. kink solitons, solitonic vortices,
soliton rings and so forth [40]), can result in similar image and we identify simply as solitons in our analysis.

After solitons are created, we let them oscillate in the harmonic trapping potential for a variable
evolution time. For evolution times much less than the trap period, additional density excitations from the
soliton imprinting process are present. We then turn off the trapping potential and let the BEC evolve for a
15ms time of flight, before absorption imaging the resulting density distribution [41].

2.2. Data preprocessing
We established a dataset of over 6.2× 103 images for ConvNet training; these images were taken from
multiple experiments performed in a single lab over a span of two months. The raw images were obtained
with a 648× 488 pixel camera (Point Grey FL3) with 5.6 µm square pixels, labeled by i and j. Including the
≈ 6× magnification, each pixel has effective 0.93 µm size. The diffraction limit of the imaging system gives
an optical resolution of ≈ 2.8 µm (roughly three pixels).

Absorption imaging combines three raw images into a single record of atomic density. In the first image
IAi,j, a probe laser illuminates the BEC and the resulting intensity records the probe with the BEC’s shadow.

The second image IPi,j records only the probe intensity, and the third image IBGi,j is a dark frame containing any
ambient background signal. The 2D column density

σ0ni,j ≈ − ln

[
IAi,j − IBGi,j
IPi,j − IBGi,j

]
(1)

can be derived from these images, where the resonant cross-section σ0 = 3λ2/(2π) is derived from the
wavelength λ of the probe laser. The dimensionless product σ0ni,j is of order 1 in our data, so we express
density in terms of this product. Figure 1 shows an example of the probe beam with atoms and the resulting
density in the ‘raw data’ and ‘image classifier’ frames, respectively.

In our raw data, the BEC occupies only a small region of the image, and the long axis of the BEC is rotated
by about 43 degrees with respect to the camera. To facilitate the ConvNet training, the images are rotated to
align the BEC with the image frame and cropped to discard the large fraction of the image that does not
contain information about the BEC. Since the BEC’s position and shape can vary for different realizations of
the same experiment, we implement a fitting approach to determine the position and size of the BEC.

Next, we fit every image to a column-integrated 3D Thomas–Fermi distribution [42], giving the 2D
distribution:

nTFi,j = n0max

{[
1−

(
i− i0
Ri

)2

−
(
j− j0
Rj

)2
]

,0

}3/2

+ δn. (2)

This function describes the density distribution of 3D BECs integrated along the imaging axis. We use six
parameters to fit: the BEC center coordinates [i0, j0]; the peak 2D density n0; the Thomas–Fermi radii [Ri, Rj];
and an offset δn from small changes in probe intensity between images.

Successful fitting requires acceptable initial guesses for all fit parameters. We obtained guesses for i0 and
j0 by summing the image along the vertical and horizontal directions to obtain two 1D projections, from
which we select the average position of the five largest values as the initial guesses. We took the largest value
of the image as the guess for n0 and used [Ri,Rj] = [66,55] pixels, based on the typical radii over the whole
dataset. The guess for the offset δn is zero. The result of these fits are included in our released dataset.

We determined the 164× 132 pixel extent of the cropping region by examining the radii
[Ri,Rj] = [66(5),58(3)] obtained from fits to 6.2× 103 images. We then centered the cropping region at [i0, j0]
as determined from fits of each image separately. The process was validated on an additional 104 images not
included in our dataset. In the preprocessed images, dark solitons appear as vertically aligned density
depletions and are easily visually identified (see top-left panel in figure 2(b)).

2.3. Labeling
Three independent human labelers labeled the preprocessed data, categorizing the images into three classes:
‘no soliton’, ‘single soliton’, and ‘other excitations’. The ‘no soliton’ class contains images that unambiguously
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Figure 2. (a) ConvNet classifier structure. The first box represents a preprocessed input image. Each of the following left-most five
architecture components represent a combination of a convolutional layer with a ReLU activation function and a max pooling
layer, with their filter number and image size specified. Each of the following three components represents a combination of a
fully connected layer with a ReLU activation, and a dropout layer, with their neuron number specified. The last component
represents a fully connected output layer with softmax activation. (b) Visualization of the input, second, and fourth max pooling
layer activation for a successfully classified single soliton image. The top left panel is the input image, the 16 images in the top
right panel are the output of the max pooling layer, and 64 images in the bottom panel are the output of the fourth max pooling
layer. The red boxed filter indicates one of the filters that captures the lone soliton feature. The blue boxed filter would activate if
more than one soliton is present (see appendix A.1 for no soliton/other excitation). (c) Confusion matrix of the test set,
comparing between human assigned labels (HL) and ML classifier prediction (ML). The images show sample successful
(diagonal) and misclassified (off-diagonal) cases. The numbers above indicate how many images are assigned to a given class.

Table 1.Human labeling result. The first two columns (Full) show image counts and percentages of each class. The last two columns
(3-agree) compare the counts and ratio in the all data of each class for the images with labels that humans initially agreed on.

Full 3-agreeDataset
Class Count Percentage [%] Count Agreement ratio [%]

No soliton 1237 19.8 1184 95.7
Single soliton 3468 55.4 3077 88.7
Other excitations 1552 24.8 1184 76.3
Total 6257 100.0 5445 87.0

contains no solitons; the ‘single soliton’ class describes images with one and only one soliton; and ‘other
excitations’ class covers any image that can neither be interpreted as ‘no soliton’ nor ‘single soliton’. We did
not include a separate ‘two soliton’ class in our demonstration because the small number of images with two
solitons led to ineffective training.

The labeling process was carried out in eight batches, with each batch size limited by the attention span of
the labelers. Once a given batch was completed, the resulting labels were compared and images with full
agreement were set aside. The overall labeling agreement rate was 87% (table 1 shows a comparison of the
labeling agreement for all three classes), consistent across all batches. The remaining images were further
analyzed and discussed until an agreement was reached. The final distribution of images between classes is as
follows: 19.8% in the no soliton class, 55.4% in the single soliton class, and 24.8% in the other excitations
class. Figure 2(c) shows representative labeled images from each class. This labeled dataset was employed to
train the ConvNet classifier and to test the positioning protocol.

2.4. Image classification
Our ConvNet classifier, shown in figure 2(a), consists of five convolutional layers. Each layer is followed by a
rectified linear unit (ReLU) function defined as f (x)=max(0, x), then a max pooling layer4. The final max
pooling layer is flattened and fully connected to a deep neural network with three hidden layers (256, 128,
and 64 neurons, respectively) and an output layer (three neurons). Each hidden layer is followed by the ReLU

4Max pooling is a form of non-linear down-sampling that converts the input (km× ln) array, partitioned into a set of non-overlapping
rectangles of equal (k× l) size, into a smaller (m× n) array with entries representing themaximumvalue of the corresponding sub-region.
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Table 2. Classification performance summary for the best classifier when training with the full training dataset with performance
measured using cross-validation from the training, when testing on the full test dataset, and when testing on a subset of the test dataset
with labels that labelers initially agreed on.

Cross-validation Full test set Labelers initially agreed subset

Accuracy [%] 89.6(5) 89.4 91.6
Weighted F1 0.896(6) 0.894 0.916
No soliton F1 0.938(10) 0.959 0.983
Single soliton F1 0.920(4) 0.913 0.935
Other excitations F1 0.806(6) 0.807 0.782

activation function, and to reduce overfitting, a dropout layer that randomly eliminates neural connections
with a frequency of 0.5 during each training stage. The output vector ξ = (ξ1, ξ2, ξ3) is normalized by the
softmax activation function, giving the final output probabilities Pm(ξ) = exp(ξm)/

∑
n exp(ξn).

The labeled dataset was divided into two subsets: 640 images (10.2% of the dataset) were set aside as
testing set, while the remaining 5617 images (89.8%) were used for training during the model architecture
development. Since our training dataset is unbalanced, i.e. its different classes have a significantly different
number of images, we balance it using augmentation techniques. We augment using three physically
acceptable transformations: horizontal and vertical reflections, as well as a 180 degree rotation. All three
transformations were applied to the no soliton and other excitations classes, increasing their size by a factor
of four. For the single soliton class we used one randomly chosen transformation per image, doubling the
size of this class. After augmentations, the size of the three classes has a 0.28 : 0.38 : 0.34 fractional
distribution. To model a small rotation angle present in different realizations of our BEC, we randomly rotate
images by an angle in the range ±1 degree every time they are used during the training process. We applied
an elliptical mask with radii [Ri,Rj] to each image, eliminating all technical noise outside the BEC, to
accelerate the training process5. Lastly, we preconditioned the data to have a range suitable for ConvNet
input by uniformly scaling the image-values to the [0, 1] range.

Since our testing dataset remains unbalanced, we assess the performance of trained models using the
weighted F1 score [43]. When two models have similar weighted F1 scores, we first compare their accuracies
as a tie-breaker, and if that fails we use the F1 score of the single soliton class6.

We used a semi-structured search through the model parameter space, and the resulting performance for
varying hyperparameters is detailed in the appendix A.2. Once we determined the best performing model,
we used randomly selected 95% of training set for the final training. Training terminated when the F1 score
of the remaining 5% did not increase for five epochs. We took the model prior to these five non-improving
epochs as our final trained model.

Figure 2(b) shows representative intermediate convolutional layers of the trained model, with a correctly
classified single soliton as the input. We observe that some filters, such as the one marked with a red box,
successfully capture the information of a single soliton (further examples are presented in appendix A.1).

Figure 2(c) and the second column of table 2 show the results of our final soliton classifier. In summary,
our model has weighted F1 ≈ 0.9 and accuracy ≈ 90%, in excess of the 87.0% human agreement ratio. The
most frequent classifier errors conflate images from the single soliton class and the other excitations class:
6.9% of the single soliton images is wrongly assigned to the other classes (P1 < 0.2), and 4.3% has no clear
assignment (0.2 ⩽ P1 < 0.8).

Figure 3(b) shows that the classifier works very well for the no soliton and single soliton classes. The
classifier performs better when tested against human-initially-agreed data than human-initially-disagreed
data, suggesting that some disagreed upon images may be truly ambiguous (Also see the last column in
table 2). In addition, we observe an anomalously large misclassification rate for human agreed data in the
other excitations class, resulting from the human labelers use of this class when facing a dilemma.
Furthermore, the wrongly classified data are distributed near the corners of figure 3(a), indicating a high
degree of confidence in the misclassification.

5 In early training attempts, the classifier learned to separate the BEC from the background. Because the BEC resides within a well-defined
ellipse, we accelerated convergence by applying the elliptical mask prior to training.
6We use the F1 score of the single soliton class as the final tie-breaker, because we ultimately compare to single-soliton dynamics data in
section 3.1.
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Figure 3. Soliton classification results. (a) Distribution of test data, colored by ground truth label. The scattered dots with
different labels overlap each other in a randomized order. (b) Histogrammed probabilities. The upper panels histogram the
classification probabilities from human-initially-agreed data, while the lower panels histogram those from
human-initially-disagreed data. The vertical axes are in square root scale to emphasize the misclassified data.

2.5. Position regression
Once images containing only one soliton are identified, we locate the soliton position using a simple yet
robust least-squares fitting procedure [43]. The first step consists of summing each 2D image along the j
direction to obtain a 1D distribution ni =

∑
j ni,j. We fit the 1D distributions to the expected profile:

n1Di = n1D0 max

{[
1−

(
i− i0
Ri

)2
]

,0

}2

+ δn1D, (3)

that is, equation (2) integrated along the j direction. The initial guess for n1D0 was the max of the integrated
distribution, and the remaining guesses were taken from the successful 2D fit. We subtract the fit from the
integrated 1D profile to obtain the residuals ∆i = ni − n1Di . Ideally, this procedure would result in a flat
background containing a single dip, associated with the soliton, which we identified using a Gaussian fit7. We
use the minimum of ∆i as the initial guess for the Gaussian amplitude, the minimum position as the initial
center, 3 pixels for the width, and zero for the offset. This fit yielded the soliton width, amplitude and
position.

3. Results

3.1. Soliton detector
To test the performance of the fully automated soliton detection and positioning system, we use two sets of
images containing oscillating dark solitons8 that were launched using the standard and improved protocols
described in section 2.1, with 60 and 59 images, respectively.

In the first test, we used the improved-protocol data-set, with representative summed data ni presented in
the top panel of figure 4(a). As the solitons in these images are well pronounced, we expected the ConvNet
will easily classify them. Out of 59 images, 52 were classified as single soliton and the remaining seven were
classified as other excitations, in agreement with a human labeler. Solitons were then located in the first
group by the positioning regressor (see figure 1). The middle and bottom rows in figure 4(a) plot the soliton
position from manual and ConvNet identification, respectively. We fit i(t) = A sin(ωt+Φ) + i0 to the soliton
position data, and we compare the fitted parameters with those obtained from our previous manual
approach. As can be seen by comparing the middle and bottom rows of figure 4(a), the performance of the
automated protocol is basically indistinguishable from the manual approach. The physical parameters from
the ML classifier (A= 2(2) pixels and ω/2π = 2.3(7) Hz) were within one standard deviation of those
obtained for manual soliton identification (A= 2(2) pixels and ω/2π = 2.3(6) Hz).

In the second test, we used images with solitons generated by the standard phase imprinting protocol. As
can be seen in the top panel of figure 4(b), solitons in these images can be shallower than those in figure 4(a),
making them potentially more difficult to distinguish from the no soliton and other excitations classes. Out
of the 60 images in this test, 22 were classified by the ConvNet as no soliton, and 11 as other excitations, in

7We found that the Gaussian gave the highest quality of fit as compared to other peaked functions.
8These two sets of images contribute to the data published in figure 2 of [35], and are presented here in figure 4.
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Figure 4. Oscillation of dark solitons created by applying 1.8(1)π phase using the (a) improved and (b) standard protocol
described in [35]. Top panels show samples for the residuals ∆i, obtained after subtracting the fit from the 1D profile. Middle and
bottom panels show the soliton positions and sinusoidal fits (as described in the text) based on manually identified images and
the outputs of the automated system, respectively. Dashed lines at j=±66 pixels in all four panels represent the edges of the BEC.

agreement with a human labeler. The remaining 27 were classified as a single soliton and were sent to the
position regressor. The lower panels in figure 4(b) show soliton position as a function of evolution time,
obtained from manual [35] and ConvNet identification, respectively. Since [35] compared the soliton
oscillation amplitude resulting from the two imprinting protocols, the authors did not limit themselves to
images with a single soliton. Rather, when more than one soliton was created, the authors identified all the
solitons but tracked only that associated with a specific trajectory. Since the ConvNet classifier was trained to
select images with single soliton excitations, the middle panel in figure 4(b) includes 12 more points than the
bottom panel. Even with fewer data points, however, the parameters from the ML classifier (A= 34(3) pixels
and ω/2π = 3.34(9) Hz) were within one standard deviation of those obtained for manual soliton
identification (A= 35(2) pixels and ω/2π = 3.39(5) Hz).

The complete analysis resulting in both oscillation plots took under 148 s per series on a 2014 MacBook
Pro. The expected performance relevant for in-situ operation is ≈ 2.4 s per image, a relatively small overhead
on top of the measurement time (about 12 s). In many cases, however, the analysis of an image would take
place during the acquisition of the next image.

3.2. Soliton dataset
As with all ML techniques, the availability of the training data is essential for good performance of the trained
classifier. To assure the reliability of the assigned labels, the full dataset was independently labeled by three
labelers, as described in section 2.2. Our full soliton image dataset consists of 6 257 labeled images. There are
1237, 3468, and 1552 images for no soliton, single soliton, and other excitations classes, respectively.

While for 5445 (87.0%) of the images the assigned labels were consistent between labelers, for the
remaining 812 images (13.0%) there was a disagreement with at least one labeler. These images needed to be
further discussed until an agreement was reached. As can be seen in table 1, the most challenging was
distinguishing between images with single soliton and other excitations. This is likely due to the fact that the
phase-imprinting method used to imprint solitons can also create other excitations that appear as density
modulations or fringes in the BEC. Examples of such modulation can be seen in the off-diagonal images in
figure 2(c). Additional discussion of the misclassified and mislabeled data can be found in appendix A.3.

Our dataset includes the full-frame raw images, the cropped and rotated images as used in this study, as
well as the set of the fitted integrated 2D Thomas–Fermi distribution parameters. This dataset is sufficient to
reproduce our results but also to test fitted alternative models with varying cropping size or image
resolution [37].

4. Conclusion and outlook

In this manuscript, we present an automated dark soliton detection and positioning system that combines
ML-based image classification with standard fitting techniques to track soliton dynamics in experimental
images of BECs. We show that the system performs on par with more traditional approaches that rely on
human input for soliton identification, creating the opportunity to study soliton dynamics in large datasets.
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We also make available the first dataset of images from a dark soliton BEC experiment, which provides an
opportunity for the data science community to develop more sophisticated analysis tools and to further
understand nonlinear many-body physics.

The performance of the classifier, as measured by the weighted F1 score, leaves room for improvement.
While tuning the hyperparameters allowed us to substantially improve the initial performance, additional
data is necessary to push the limits. However, human labeling is not only time-consuming but, as the analysis
of the misclassified images revealed, is also not always reliable. Other approaches, such as active learning
ML [44], may be more suitable for this task. Such enlarged dataset, in turn, will enable refining the soliton
classifier and perform model uncertainty quantification [45, 46], which currently is not accounted for.
Together, these refinements may enable reliable in-situ deployment.

This study was preconditioned on the assumption of specific structure in the images, leading to our three
classes. Enlarged dataset will enable employing unsupervised learning strategies [47] to possibly discover
additional classes consistent with the data without presumptions. This unsupervised learning of soliton-data
is a prototype for ML based discovery with cold-atom data in general.
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Appendix

A.1. Additional visualization of intermediate convolutional layers
In addition to figure 2(b) in the main text (visualizing the single soliton case), figure A1 shows the same
intermediate layers for the correctly classified sample images from the (a) no soliton and (b) other excitations
classes. In both figures, we highlight two filters: red box indicates a filter that activates for an image with a
single soliton, while the blue box indicates a filter that activates for an image from the other excitations class.
For an image from the no soliton class (figure A1(a)), neither highlighted filter is activated. This confirms
that filters in our model are trained to properly detect and locate features that are characteristic of each class
in a previously unknown image.

A.2. Model parameter tuning
We used a naive semi-structure search approach to optimize our model parameter. During parameter tuning,
we used k-fold cross-validation to assess the generalizability of trained models. For each set of
hyperparameters defining the overall model (e.g. kernel size and number of layers, both convolutional and
hidden), the training set was split into k= 5 smaller sets (‘folds’), four of which were used for training and
one for validation. Once the model was trained using all five cross-validation combinations, the mean score
was recorded and compared against scores from networks with other hyperparameters. We arrange the
parameters by their importance: filter number of each convolutional layers, dense layer node number,
optimizer, convolution kernel size, dropout rate and batch size. The parameters are optimized in this order
and the history of hyperparameter tuning is shown in table A1.

A.3. Misclassified data
As discussed in section 2.1, in BEC experiments trapped condensates are often held for a certain period of
time after phase imprinting. This is necessary to smooth out the various other excitations resulting from the
phase imprinting process. However, by looking only at a single image (single holding time), all the
information about the soliton dynamics is lost, and other excitations can be confused with shallow solitons.
In the final 640 images in the test dataset, there are 68 misclassified images in one of six possible ways. As can
be seen in figure 2(c), for our model, the most confusion comes from distinguishing between the single
soliton and other excitations classes. Upon reviewing the 58 images misclassified in this way, we find that out
of 27 images classified as other excitations only two clearly contain lone solitons. The remaining 25 images are
confusing and thus should belong to the other excitations class. Interestingly, for this case, the classifier seems
to be nearly as likely to be wrong as confused (see middle columns in figure 3(b)). All 31 images classified as
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Figure A1. Visualization of the input, second, and fourth max pooling layer activation for a successfully classified (a) no soliton
image and (b) other excitations one. In both cases, the top left panels are the input images, the 16 images in the top right panels
represent the output of the max pooling layer, and 64 images in the bottom panels are the output of the fourth max pooling layer.
The red box indicates one of the filters that captures the lone soliton feature (see figure 2(b)). The blue boxed filter activates if
more than one soliton is present.

Table A1.Model parameter tuning history. For each model, we provide the number of filters for all convolutional layers (Filters), the
number of nodes in the fully connected layers (Dense), as well as the kernel size of all convolutional layers (K), the dropout rate (D), the
batch size (B), and the optimizer used of training (SGD: Stochastic gradient descent, SGD+M: SGD with moment, SGD+M+D:
SGD+Mwith decay). The mean performance is averaged by 5-fold cross-validation on the training set. F1 score is weighted by three
classes. Best model is highlighted. Parameters changed at each stage are highlighted in italic.

Weighted Accuracy Binary
Filters Dense K D B Optimizer F1 [%] [%] F1 [%]

8× 8×8 256× 128 5 0.5 32 Adam 65(23) 74(15) 71(18)
8×16×32 256× 128 5 0.5 32 Adam 56(23) 61(25) 63(19)
8× 16×32×64 256× 128 5 0.5 32 Adam 67(24) 75(16) 72(20)
8× 16×32× 64×128 256× 128 5 0.5 32 Adam 78(20) 82(14) 81(16)
8× 16×32× 64×128 256× 128×64 5 0.5 32 Adam 48(20) 62(13) 56(16)
8× 16×32× 64×128 256× 64 5 0.5 32 Adam 58(25) 69(17) 65(20)
8× 16×32× 64×128 256× 64×16 5 0.5 32 Adam 61(19) 75(16) 69(17)
8× 16×32× 64×128 512×128 5 0.5 32 Adam 47(20) 54(22) 56(16)
8× 16×32× 64×128 512× 128×32 5 0.5 32 Adam 67(24) 76(16) 72(20)
8× 16×32× 64×128 256× 128×64 5 0.5 32 Adamax 86(6) 89(1) 88(3)
8× 16×32× 64×128 256× 128×64 5 0.5 32 SGD 70(6) 87(2) 76(4)
8× 16×32× 64×128 256× 128×64 5 0.5 32 SGD+M 64(22) 74(15) 70(18)
8× 16×32× 64×128 256× 128×64 5 0.5 32 SGD+M+D 39(4) 60(9) 49(2)
8× 16×32× 64×128 256× 128×64 5 0.6 32 Adamax 77(5) 90(0) 85(3)
8× 16×32× 64×128 256× 128×64 5 0.7 32 Adamax 51(17) 68(15) 61(16)
8× 16×32× 64×128 256× 128×64 5 0.8 32 Adamax 44(13) 62(13) 54(12)
8× 16×32× 64×128 256× 128×64 3 0.5 32 Adamax 86(1) 90(1) 88(1)
8× 16×32× 64×128 256× 128×64 7 0.5 32 Adamax 88(1) 89(1) 90(1)
8× 16×32× 64×128 256× 128×64 9 0.5 32 Adamax 89(0) 89(0) 90(0)
8× 16×32× 64×128 256× 128×64 11 0.5 32 Adamax 78(20) 82(14) 82(17)
8× 16×32× 64×128 256× 128×64 9 0.5 16 Adamax 79(21) 83(13) 82(17)
8× 16×32× 64×128 256× 128×64 9 0.5 8 Adamax 78(20) 82(13) 81(17)
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single solitons are true misclassification. For these images, the classifier is confidently wrong (see last
columns in figure 3(b)). We suspect that it might be possible to improve the classifier by training with less
penalty for classifying an ambiguous image to other excitations class. This also suggests that active learning
strategy might be better for training model and labeling data than relaying on a dataset labeled by humans.
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In ultracold atom experiments, data often comes in the form of images which suffer informa-
tion loss inherent in the techniques used to prepare and measure the system. This is particularly
problematic when the processes of interest are complicated, such as interactions among excitations
in Bose-Einstein condensates (BECs). In this paper, we describe a framework combining machine
learning (ML) models with physics-based traditional analyses to identify and track multiple solitonic
excitations in images of BECs. We use an ML-based object detector to locate the solitonic excita-
tions and develop a physics-informed classifier to sort solitonic excitations into physically motivated
sub-categories. Lastly, we introduce a quality metric quantifying the likelihood that a specific fea-
ture is a longitudinal soliton. Our trained implementation of this framework—SolDet—is publicly
available as an open-source python package. SolDet is broadly applicable to feature identification
in cold atom images when trained on a suitable user-provided dataset.

I. INTRODUCTION

Machine learning (ML) techniques promise improved
data analysis and enhanced performance for today’s
quantum devices and technologies. Ultracold atomic
gases are a nearly ideal system to deploy ML-driven anal-
ysis, where the automated exploration and interpreta-
tion of very large dataset—in the form of images—can
lead to scientific enhancements and experimental opti-
mization [1] as well as new discoveries. Here we focus on
the general problem of feature identification, a commonly
recurring task in the analysis of such data, from locat-
ing vortices [2–4] or tracking solitons [5, 6], identifying
spin textures or magnetic domain walls [7–9] to locating
topological singular points [10]. While data from these
examples have been individually analyzed using task-
specific algorithms (or even manual inspection), they are
all feature identification problems that can be solved
using a single ML-enhanced analysis framework. This
manuscript introduces such a framework, and demon-
strates its utility on the specific problem of identifying
solitonic excitations in atomic Bose-Einstein condensates
(BECs), as well as quantifying the quality of each iden-
tified feature.

Traditional statistical analysis using physics-based
models, such as least-square fitting and hypotheses test-
ing, have been go-to techniques for data analysis since the
1800’s [11] and remain widely applied in quantum cold-
atom image analysis [12–14]. The outcome of physics-
model-based algorithms and fits are intuitive, physically
meaningful, and can help identify patterns present in the
data; even fits based on more heuristic functions can have
coefficients that are derived in obvious ways from the

∗ jpzwolak@nist.gov

data. By contrast, ML methods work as “black boxes,”
making their operation difficult to interpret. Conven-
tional statistical methods use fixed algorithms in con-
junction with preconceived models for data reduction.
Overfitting occurs when the number of fit parameters is
comparable or larger than the number of independent
data points. In this context, the process of training an
ML tool essentially co-designs the fitting algorithm and
the data model, as encoded by a large number of internal
parameters. Training ML models is itself a fitting process
that can be susceptible to overfitting, for example when
the training dataset has too little variability or the ML
model has too many internal parameters. ML involves a
class of data-driven techniques that do not rely on preex-
isting models, but also add additional opportunities for
overfitting that can make them less reliable on new data
than conventional techniques.

Here, we describe the hybrid two-module feature iden-
tification framework shown in Fig. 1, that combines the
flexibility of ML techniques with the intuition and ro-
bustness of conventional fitting methods. Furthermore
the separate outputs of these two very different modules
allow us to assess data quality by cross-validation. Hy-
brid approaches have been employed in other settings,
for example for landslide prediction [15], medical image
processing [16], and cyber attack detection [17].

The framework begins with a labeled dataset that is
used to train the ML module and initialize the physics-
based module. Before trusting either module, we inde-
pendently validate each module on a subset of the labeled
data that was not used for training. Model-redesign may
be needed until satisfactory performance of each mod-
ule is reached. We then combine both modules into an
integrated system able to analyze new data.

We demonstrate the performance of our framework
using data from atomic BECs, quintessential quantum
systems. Quantum research with BECs, and cold-
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Sec. IIID: Data 
classification system

with quality
assessment

Sec. IIA:
Labeled
dataset

Sec. IIC: Physics-based module

Sec. IIB: ML-based modules

Secs. IIIA and IIIB:
Iterative validation

on test set

FIG. 1. Overview of the framework. The colored arrows link the preparation (Secs. II A, II B, and II C), validation (Secs. III A.
III B), and application (Sec. III D) phases of the framework. The red path represents the preparation and implementation of
the physics-based-approximation module of the framework. The blue path represents the ML modules.

atom quantum gases more broadly, is multifaceted with
examples ranging from realizing collective many-body
physics [18] to creating today’s most accurate atomic
clocks [19]. In the vast majority of these experiments,
data is acquired in the form of noisy images that typi-
cally have undergone evolution—such as a time of flight—
before measurement. This often obfuscates the compu-
tation of the quantities of interest. Cold quantum gases
therefore make an ideal test-bed for our methodology
that combines physically motivated, but heuristic, fitting
functions with established computer vision techniques.

We focus on the specific problem of locating dark
solitons—spatially compact excitations that manifest
as reductions in the atomic density—as they move in
BECs [13, 20, 21]. This allows us to leverage our es-
tablished soliton dataset [22, 23] to train and validate
our framework; representative elements of the dataset
are shown in Fig. 2. These data consist of elliptical
atom clouds (top row) where solitons appear as verti-
cally aligned density depletions (bottom row). Not all
vertically aligned density depletions are created equal:
deep depletions mark the location of slowly moving kink
solitons; shallow depletions are associated with rapidly
moving kink solitons or “longitudinal” solitonic vortices
(where the vortex core is aligned in the image plane);
asymmetric depletions can result from “transverse” soli-
tonic vortices [24] (were the vortex core is aligned perpen-
dicularly to the image plane); and chains of stripes can
result from highly excited phonon modes. Our frame-
work is the first tool that can automatically locate all
the solitonic excitations in each image and distinguish be-
tween longitudinal solitons and transverse solitonic vor-
tices. Here we introduce the term “longitudinal soliton”
to include both kink solitons and longitudinal solitonic
vortices.

Our ML module leverages and extends established
computer vision techniques. Computer vision is a broad
field with applications ranging from image classification
to semantic segmentation and object detection [25]. Ob-

ject detection refers to the capability of software systems
to locate and identify objects in an image. Convolutional
neutral networks (CNNs) underlie solutions to all of these
tasks, and unsurprisingly were employed in our previous
work classifying soliton image data into three categories:
no solitonic excitation, one solitonic excitation, and other
excitations [22]. Our ML module goes beyond simple
classification and uses a CNN based object detector (OD)
to provide the location of all candidate excitations in a
given image.

By contrast our physics-based module employs a least-
squares fit of an inverted and skewed Mexican-hat func-
tion to 1D background-subtracted projections of soliton-
candidates (shown in bottom row in Fig. 2). We initial-
ized this module using our previously labeled single soli-
ton data and employ a Yeo-Johnson transformation [26]
to produce a multivariate normal distribution yielding
the likelihood that an unknown feature is a soliton.

This approach yielded three immediate benefits. First,
a careful analysis of the coefficients from the physics
based module identified previously overlooked correla-
tions that allow us to distinguish between some solitonic
excitations (longitudinal solitons and transverse solitonic
vortex [20, 21, 24, 27]). Second, combining the results of
the ML and fitting modules allowed us to automatically
create a larger, more reliable dataset that includes fine-
grained information such as the soliton position and type
of excitation. This dataset is described in Ref. [28] and
published in the NIST data repository [23]. Third, our
hybrid framework was prepared solely from a training
dataset whose images contain either zero or one solitonic
excitation, however, it is performant on complex data
containing multiple excitations.

The remainder of this manuscript is structured as fol-
lows: Sec. II introduces both modules and describes their
training and initialization. Sec. III describes the valida-
tion of both modules and their performance on new data
that include multiple solitonic excitations. In Sec. III E,
we describe an open-source Python reference implemen-
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FIG. 2. Representative data. The top panels plot pre-processed images from our dataset and the bottom panels plot profiles:
(green) profile of full image, (black) TF fits, (blue) density fluctuations. The red lines mark the location of the deepest depletion
in the density fluctuations, while the orange lines mark the solitons locations found from our OD. (a) An element of the no-
excitation class. (b) Three elements of the single excitation class: (i) a single longitudinal soliton, (ii) an off-center longitudinal
soliton, and (iii) a solitonic vortex. (c) Two representative elements of the other excitations class.

tation of our framework: SolDet [29]. Lastly, in Sec. IV
we conclude and discuss the potential applications of the
framework as well as the possible future directions.

II. DATA AND MODULES

In addition to recent success of ML methods [22, 30,
31], solitonic excitations have also been located and char-
acterized using traditional fitting techniques. For ex-
ample, Ref. [13] began with the background-removed
atom density profiles (blue curves in Fig. 2) described
in Sec. II A, then identified the deepest depletion (or-
ange dashed line), and fit to a Gaussian function (a
physically motivated, but heuristic choice) centered near
the deepest depletion. This yielded physical information
including soliton width, depth, and position. Unfortu-
nately, this simple approach is failure prone, as for ex-
ample in Fig. 2(b-ii), where the deepest depletion is far
from the actual soliton. Moreover, it detects only single
solitonic features, making human intervention necessary
when many excitations are present. Rather than finding
the deepest minimum, our framework first uses an OD
(described in Sec. II B) to provide an initial estimate of
all solitonic excitations positions, and then uses a skewed
Mexican hat fit function (Sec. II C) that accurately de-
scribes their density profiles. The resulting fit coefficients
serve two purposes: qualitative likelihood assessment and
fine-grained categorization.

A. Data

Our framework is trained and initialized using a revised
dataset consisting of about 5.5 × 103 manually labeled
experimental images of BECs with and without solitonic

excitations [23, 28]. The experimental setup and pre-
processing techniques are described in [13].

Figure 2 shows six selected sample images from the la-
beled dataset. The dataset includes labels for five classes:
“no solitonic excitation,” images that do not contain any
excitations; “single solitonic excitation,” images contain-
ing one solitonic excitation; “other excitations,” images
not in the preceding classes (including those with multi-
ple solitonic excitations, high degrees of noise, and those
annotators could not agree up (on); “mislabeled”, data
determined to be potentially mislabeled during curation
process; and “unlabeled,” images that have not been
manually annotated. Additionally, for the single exci-
tation class the dataset includes the horizontal position
of excitations within BEC.

Figure 2(a) displays an image from the no excitation
class, which lacks the pronounced stripes present in the
remaining examples. In (b), we show three elements of
the single excitation class, each containing a single dark
vertical fringe: (b-i) a longitudinal soliton; (b-ii) an off-
center single longitudinal soliton; and (b-iii) a solitonic
vortex (see Sec. II C 2). In (c), we show two elements
of the other excitations class containing more than one
vertical fringe.

Horizontal 1D profiles (bottom row of Fig. 2) also have
features associated with vertically aligned solitonic exci-
tations and are amenable to least squares fitting. We
obtain these profiles by first summing the pixel values
vertically to compress 2D images to 1D; this sum can be
over all (green curves) or part (see Sec. II C 2) of the ver-
tical extent of the image. We then fit a 1D Thomas-Fermi
(TF) model

nTF(i) = n0 max

{[
1−

(
i−i0
R0

)2]
, 0

}2

+ δn (1)

to each summed 1D profile, where i is the horizontal pixel
index, and n0, i0, R0, and δn are fitting parameters repre-
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senting peak density, center position, TF radius, and an
overall offset, respectively. This fit (black curves) serves
as an overall background that we subtract from the 1D
profiles, leaving behind the 1D density fluctuations (blue
curves). The orange dashed lines represent the location
of deepest depletion in the 1D fluctuations.

B. ML Modules

Our previous dark soliton classifier [22] consisted of
a CNN model that returned one of the three predefined
classes: no solitonic excitation, single solitonic excitation,
or other excitations. However, this detector did not lo-
cate the excitations. To compare with experimental data,
we located the soliton by identifying the deepest deple-
tion and fitting to a Gaussian, as described above. This
algorithm has two limitations: (1) The soliton may not
be the deepest depletion [as in Fig. 2(b-ii)]; and (2) mul-
tiple solitons cannot be located [as in Fig. 2(c)]. Here we
retain the CNN classifier to globally organize the data,
but inspired by a highly successful recent result using
an OD to locate vortices in numerically simulated 2D
BECs [30], we employ an OD to locate solitonic excita-
tions in experimental images of highly elongated BECs.

The OD complements the CNN classifier in two ways:
(1) it identifies soliton positions rather than classifying;
and (2) even thought it is trained with single-soliton data,
it can locate multiple excitations in the same image. We
employ a neural network based OD with six convolution
layers and four max-pooling layers but no fully connected
layers (see App. A for more detail). The OD has an or-
der of magnitude fewer trainable parameters than our
previous CNN (7 × 104 versus ∼ 106 parameters), ac-
celerating the training process and making it lightweight
to deploy. Because the OD simply requires a dataset
with many representative instances of the object to be
detected, it requires far less training data than the CNN
classifier (which by design required substantial data from
all considered classes).

In our data, the solitonic excitations are roughly 4 pix-
els in width. Since our images are 164 pixels wide we
designed our OD to aggregate the image into 41 spa-
tial cells, each with 2 outputs in the range ∈ [0, 1]; the

OD therefore returns a 41× 2 array Ỹ. For our dataset
this aggregation guarantees that each output cell can de-

scribe the state of at most one soliton. Ỹ`,1 is a proba-

bility estimate that cell ` contains a soliton, and Ỹ`,2 is
the fractional position of the soliton center within that
cell, where 0 or 1 correspond to the left or right edge of
the cell, respectively. The OD considers any cell with

Ỹ`,1 > 0.5 as containing an excitation, and then obtains

its position from Ỹ`,2.

When comparing to the training dataset with labels

denoted by Y, we use the cost function [30]

F =
41∑

`=1

{
−w1 log(Ỹ`,1) + w2(Y`,2 − Ỹ`,2)2, if Y`,1 = 1

− log(1− Ỹ`,1), if Y`,1 = 0

(2)

for each training image, where the label Y`,1 identifying
the presence of an excitation in a cell is fully confident,
i.e., either 0 or 1. The coefficients w1, w2 are hyper-
parameters controlling the relative importance of each
term. The log terms increase the cost function when the
the OD misidentifies solitons, while the quadratic term
contributes when a soliton is mislocated within a cell.
Our training set uses images with at most one soliton, so
cells with Y`,1 = 1 are much less frequent than those with
Y`,1 = 0, as a result we expect that w1, w2 � 1 to give
similar overall weight to the three terms in Eq. 2. We
train the OD by minimizing the cost function summed
over all training images, updating the predicted OD val-

ues Ỹ in each iteration. Because the cell size is compa-
rable to the soliton size, a single soliton can span two
cells. To prevent double counting, we merge detections
occurring in adjacent cells and take the position to be
their average.

We deem the OD’s detection successful if our training
data contains a labeled soliton close to the detected one
(within 3 pixels in our implementation). The two fail-
ure modes are failing to detect a solitonic excitation and
reporting an excitation that is not present.

C. Physics-based modules

In this subsection, we introduce our physics-based
module that uses constrained least-squares fitting to es-
timate soliton parameters, and following a Yeo-Johnson
transformation [26], produces a quality estimate giving
the likelihood of a given feature being solitonic.

We fit the Ricker wavelet [32], i.e., a “Mexican hat”
function

f(i) = δn − nTF(ic)A exp
[
− 1

2

(
i−ic
σ

)2]

×
[
1− a

(
i−ic
σ

)2
+ b

(
i−ic
σ

)]
, (3)

to the 1D density fluctuations described Sec. II A, where
nTF(ic) is evaluated with δn = 0. The function takes six
parameters: normalized logarithmic amplitude A, center
position ic, width σ, logarithmic symmetrical shoulder
height a, asymmetrical shoulder height b, and an offset
δ. When a and b are zero this function is a simple Gaus-
sian, making a non-zero adds symmetric shoulders to the
distribution and b introduces an asymmetry. Our soli-
tonic features are well described by this function; since
our excitations manifest as density depletions, the second
term in Eq. 3 is negative.

Our constrained least squares fit requires initial guesses
for all of these parameters. The guess for the center po-
sition ic also provides the initial guess for A by setting
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it equal to the 1D density fluctuations evaluated at ic.
We found the initial values σ = 4, a = 0.2, b = 0, and
δ = 0 to lead to convergent fits across the whole dataset.
In order to produce reliable fits we apply the following
constraints: ic must remain within three pixels from the
initial guess, 10−13 < A < 104, and 10−13 < a < 104 to
prevent numerical fitting errors.

1. Physics-informed excitation classifier

Many candidate solitonic excitations are not vertically
symmetric as might be expected, see e.g., Fig. 2(b-iii).
The location of the largest “shoulder” in top half of the
excitation is reversed with respect to the bottom half;
in addition, the location of the minimum is slightly dis-
placed going from the top half to the bottom. Inspired
by these differences, we bisect each image into top and
bottom halves (labeled by + and −, respectively) and
separately apply the Mexican hat fit to fluctuations in
these data, giving vectors Θ±. Using this observation,
we develop a physics-informed excitation (PIE) classi-
fier based on the single-soliton dataset and discover that
correlations between these vectors allow for a more fine-
grained excitation classification.

Figure 3 shows the distribution of parameters from a
single soliton dataset that were useful for classifying ex-
citations. No meaningful correlations were found for pa-
rameters σ± and a±, thus these did not assist in classifi-
cation. The markers in the top panel show the amplitude
ratio ρA = A+/A− versus the top-bottom position differ-
ence δic = i+c −i−c , and show that they are not correlated.
By contrast, the bottom panel shows that the asymmet-
ric shoulder height difference δb = b+/σ+ − b−/σ− is
clearly anti-correlated with δic. Both panels are colored
based on the cut-off points discussed in Sec. III B (see
also Fig. 5).

This distribution and its correlation guide the classifi-
cation rules described in Sec. III B, yielding a PIE clas-
sifier based on cutoffs defined by human examination of
the data.

2. Quality estimation

Here we describe a quality estimate that a candidate
excitation in an image is solitonic. We derive the likeli-
hood that a vector of fit outcomes Θ = [A, ic, σ, a, b] is
drawn from a k = 5 dimensional prior distribution span-
ning the set of representative solitonic excitations [33].
Ideally this distribution would be an uncorrelated multi-
variate normal distribution, but it is not. As a result, we
developed the following procedure to bring the distribu-
tion into this desired form.

We first fit a Yeo-Johnson power transformation [26]
to each separate parameter distribution (having summed
the 5D distribution along the remaining parameters) to
transform them into independent zero-mean 1D Gaussian
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FIG. 3. Correlations between parameters implemented in PIE
classifier. The top panel shows the distribution of center po-
sition difference versus the amplitude ratio (on a logarith-
mic scale). The bottom panel shows the correlation between
the center position difference and the asymmetrical shoulder
height difference for the gray points from top panel. Both
panels are colored based on the cut-off points discussed in
Sec. III B.

distributions with unit variance. Note that this treat-
ment cannot transform the parameter distributions into
perfect Gaussians, nevertheless each resulting distribu-
tion is balanced, contains a single-peak, and has long
tails. The covariance matrix Σk is uncorrelated after this
treatment and the distribution is qualitatively Gaussian
in shape.

To calculate the quality estimate for a candidate exci-
tation detected in an image, we:

1. Fit the subtracted background 1D profile to Mexi-
can hat function 3 giving Θ.

2. Use the established power transformation on Θ to
obtain Θ′.

3. Return the quality estimate: M(Θ′) = 1 −
χ2
k

(
D2(Θ′)

)
, the likelihood between 0 and 1 that

the excitation is solitonic.

The chi-squared cumulative distribution function χ2
k(p)

relates the Mahalanobis distance [34] D2(Θ′) =
Θ′†Σ−1k Θ′ to the likelihood that an outcome was drawn
from the specified distribution [35]. D(Θ′) is unbounded
above and decreases to zero as Θ′ approaches 〈Θ′〉, the
average over the prior distribution.
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FIG. 4. OD performance compared to ground truth (top),
and the CNN classifier prediction (bottom), For ground truth
and CNN classifier, the ticks “0”, “1”, “other” represent no,
single, and other excitation classes. For OD, ticks represent
the total number of positive excitations within an image.

III. RESULTS

A. ML modules

We train both the CNN classifier and the OD using the
refined dataset with added soliton position labels (see
Ref. [28]). The CNN classifier is trained using the full
dataset while the OD training uses only the no solitonic
excitation and single solitonic excitation classes. We as-
sess the performance of both modules using 5-fold cross
validation, that is using 80 % of the data to train a given
module and the remaining 20 % to test it, and repeating
the process 5 times to fully cover the dataset (see App. A
for training details).

The results are summarized in the two cumulative con-
fusion matrices plotted in Fig. 4. The top panel compares
the outcome of the OD to the initial labels, showing near
perfect delineation between no excitations and single ex-
citations classes. However, the OD further subdivides
the other excitations class, counting anywhere from 0 to
4 candidate solitonic excitations within it. This results
from the existence of excitations in this class that are
not solitonic, as well as the possibility of having multiple
solitons in the same image. The analogous comparison
to CNN classification labels in the bottom panel is nearly
indistinguishable from the one presented in the top panel,
evidencing the quality of the CNN predictions.

Together, these ML tools effectively classify these data

and locate excitations, however, they do not provide any
fine-grained information on the nature nor the quality
of the identified excitations. This is addressed in the
following subsections.

B. PIE classifier

The PIE classifier operates by applying a sequence
of “cuts” driven by different combinations of the top-
bottom fit outcomes Θ±. The exact parameter values
described below are arrived at manually by exploring the
data accepted and rejected by the cut to minimize the
number of false positive longitudinal soliton identifica-
tions.

The following cuts are applied sequentially, and the
PIE classifier stops as soon as a classification is assigned.

A cut: The amplitude parameters A±, and their ratio ρA
allow us to identify excitations that do not span the
whole cloud. Data with ρA > 1.57 are classified
as “top partial excitation” and those with 1/ρA >
1.57 are classified as “bottom partial excitation”.
This threshold identifies large fractional jumps in
depth between the top and bottom that likely are
off-axis solitonic vortices. Applying A cuts first is
important because partial excitations interfere with
the subsequent steps.

δb cut: Figure 2(b-iii) illustrates a case with large shoul-
der height difference δb; Ref. [27] showed that such
data result from solitonic vortices. As a result, we
classify data with δb > 0.75 as “counterclockwise
solitonic vortex” and δb < −0.53 as “clockwise soli-
tonic vortex”.

δic cut: Since longitudinal solitons have a vertically
aligned density depletion [36], we classify data with
−3.0 < δic < 1.14 as “longitudinal soliton.”

A cut: 

δb cut: δi c  cut: 

Top  “Partial”: 378

Bottom “Partial”: 418

↻ Vortex: 28
↺ Vortex: 38

 
A cut: 

δb cut: δi c  cut: 

Top  “Partial”: 378

Bottom “Partial”: 418

↻ Vortex: 28
↺ Vortex: 38

 Canted: 121
Weaker
    cut: 147

δb

Longitudinal
Soliton: 2229

3212

2416 2376

FIG. 5. The flow of the PIE classifier with example images
for classification categories. Flow pathways and nodes are
square-root scaled.
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Weaker δb cut: Figure 3 shows that differences δic and
δb = b+/σ+−b−/σ− are anti-correlated, indicating
that asymmetries in position and shoulder height
are related. A closer look at Fig. 2(b-iii) indicates
that it is such a case, with δic < 0 and δb > 0.
We therefore add images with δic < −3.0 and
δb > 0.61 to the “counter-clockwise solitonic vor-
tex” class and those with δic > 1.14 and δb < −0.41
to the “clockwise solitonic vortex” class.

Other data: The remaining images have δic 6= 0 but δb ≈
0 are labeled as “canted excitations”, likely kink
solitons in the process of decay.

The flow chart in Fig. 5 shows the application of this
classifier to a single-soliton dataset. We found that of
the initial 3 212 images about 1/3 failed a cut and were
rejected as longitudinal soliton candidates.

This classification was also used in the preparation of
Ref. [28] in which we present a refined soliton dataset,
which includes improved single longitudinal soliton la-
bels. The cuts above are fairly aggressive to avoid false
positives in the longitudinal soliton classification. This
implies possible misclassification in the other categories

in order to ensure a high quality longitudinal soliton sub-
set and a reliability of the quality metric.

C. Quality estimator

The quality estimator is initialized on the subset of the
single excitation class identified as longitudinal soliton
using the PIE classifier. Figure 6(a) shows the power-
transformed distribution of Mexican hat fit coefficients
Θ′, with non-transformed coordinates marked on the top
axis for reference. As would be expected, the data from
the initialization dataset (orange) are nearly-normally
distributed; interestingly, the remaining elements of the
single excitation class (partial solitons, canted excita-
tions, and solitonic vortices, as labeled by the PIE filter)
collectively follow very similar distributions (green). By
contrast, the coefficients from every local minimum [37]
in the initialization set except solitonic excitations (blue
curve) obey a qualitatively different distribution.

Using this initialization, we compare quality estimates
M obtained from the single excitation class in Fig. 6(b).
The orange data show M for longitudinal solitons, and
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M(ii) = [0.00, 0.01], M(iii) = [0.92, 0.02] (all from left to right), and M(iv) = 0.82.

as intended the majority of this data is associated with
larger values of M . The green data for the remaining soli-
tonic excitations are nearly uniformly distributed, and
the non-soliton minima (blue) are highly concentrated
at small M . We note that the small peak in longitudi-
nal soliton distribution near-zero M contains a negligible
fraction of the longitudinal soliton dataset (about 1.3 %).
However, this peak is more pronounced for the remain-
ing excitations, which is not surprising because the power
transform was initialized using longitudinal soliton data.
These distributions demonstrate the ability of the quality
estimator to discriminate between solitonic excitations
and other features in the data, reinforcing the impor-
tance of the PIE filter for fine-grained classification.

We quantify the performance of the quality estimator
in terms of the F1 scores plotted in Fig. 6(c), for longitu-
dinal solitons (orange) and all other solitonic excitations
(green). The F1 score for longitudinal solitons is maxi-
mized with a threshold of just M = 0.02 (stars), however,
in practice we minimized false positives and assign a fea-
ture to be solitonic when M > 0.2 (circles). This choice
gives only small change in the F1 score, however, it gives
a marked increase in precision with only a small reduction
in recall, as shown in the inset. The performance of the

quality estimate on the other solitonic excitations, while
far better than random, is subpar; this reemphasizes the
importance of the PIE classifier in our framework.

D. Application to other excitation and mislabeled
data class

Here we discuss the performance of our SolDet frame-
work applied to two classes of data from the the dark
soliton dataset: other excitations (1 036 images) and mis-
labeled data (879 images). These classes consist of im-
ages with multiple solitonic excitations, such as shown in
Fig. 2(c), as well as confusing structures that made hu-
man annotation difficult. As such, they are an ideal test
dataset since they defeated previous labeling attempts.

As a reminder, after the CNN classification step, the
framework first uses the OD to locate all soliton candi-
dates that are then sorted by the PIE classifier. Here, we
focus only on features identified as longitudinal solitons.
Figure 7(a) plots the frequency of transformed Mexican
hat fit outcomes Θ′, giving distributions that for both
classes are qualitatively the same as those in Fig. 6(a)
for the labeled single solitons. By contrast, histograms
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of the quality estimate for longitudinal solitons detected
in these two classes [panel (b)] have important differ-
ences. For the other excitations class (Nlongitudinal =
877, Nimages = 669), the distribution is nearly uniform,
with a potential increase for the higher quality estimates
(M > 0.4). For the mislabeled data (Nlongitudinal = 415,
Nimages = 398), on the other hand, the quality estimate
distribution follows a trend consistent with that observed
in Fig. 6(b).

To better understand this discrepancy it is important
to consider more carefully the differences between the two
classes. According to the OD module, nearly 78 % of im-
ages in the other excitation class contains two or more
excitations. While for excitation spaced apart within the
BEC, as in Fig. 7(c-i), the individual fits to Mexican hat
do not affected one another, the contrary holds for exci-
tation captured in a close proximity, as shown in Fig. 7(c-
ii). Qualitative differences between these images are
quantified by the quality estimate. The quality estimate
for the two well separated excitation in image (i) is 0.74
and 0.86. In image (ii), in contrast, even though both ex-
citations are reminiscent of a longitudinal solitons, they
are assigned a low quality, with M(ii) = [0.00, 0.01] from
left to right. This is likely because the overlap in the
adjacent shoulders significantly affects the relative fits.
Given that majority of data in this class contains multi-
ple excitations, the unusually high frequency of the low
quality is to be expected.

The mislabeled class, on the other hand, consists of im-
ages determined to be potentially mislabeled during the
manual annotation (see Ref. [28] for details about the
data curation process). These include: over 320 images
that the annotators found confusing (but in which ODs
consistently found exactly one candidate excitation); over
190 images removed during curation from the single ex-
citation class; and about 30 images originally assigned to
the no excitation class (but in which the ODs also con-
sistently found exactly one candidate excitations). Un-
surprisingly, in almost 83 % of these images the OD
module found only one excitations. Two representative
images from this set are shown in Fig. 7(c-iii,iv), with
M(iii) = [0.92, 0.02] and M(iv) = 0.82. The distribution
of non-longitudinal soliton quality estimate, shown in in
the inset in Fig. 7(b), is consistent with that depicted in
Fig. 6(b).

The performance on these qualitatively different test
sets emphasizes the power of SolDet. By combining the
CNN and OD modules, SolDet autonomously and reli-
ably locates multiple excitations within the BECs, which
goes beyond the traditional state-of-the-art deepest-
depletion-based approach. The PIE classifier enables
further systematic validation that the desired type of
excitation—here, longitudinal solitons—has been ob-
served, which previously required visual inspection of
each acquired image. Finally, the quality metric pro-
vides a quantitative assessment of the excitation quality,
further reinforcing the classification reliability. Put to-
gether, these tools provide a robust and reliable analysis

Quality
estimator

Add quality

CNN:0
OR
OD:0

Data

Terminate

CNN
classifier
Add label

YES

NO

YES

NO

Data
processing

Object
detector
Add label

PIE
classifier
Add label

LONGI-
TUDINAL

FIG. 8. The SolDet flow chart. The black line follows the
SolDet dataflow and contains the labels added by each module
(rectangles). Blue blocks represents ML modules, red blocks
represent physics-based modules.

framework, capable of processing data significantly more
complex than possible given the current traditional state-
of-the-art approaches.

E. SolDet: Open-source Python package for
solitonic excitation detection

In this section, we describe our software package Sol-
Det that integrates both the ML modules (CNN classi-
fier and OD) with the fitting physics-based modules (PIE
classifier and quality estimator), as we described in pre-
vious sections. The above discussion showed that the ML
modules classify images effectively and can accurately lo-
cate one or many candidate solitons. The physics-based
modules can sort these candidates into subclasses and
provide a quality estimate for longitudinal soliton can-
didates. Therefore, the ML and physics-based modules
contribute to the task of soliton detection in different
ways, and the SolDet infrastructure leverages their com-
plementing strengths. We emphasize that soliton de-
tection is one of a larger class of feature identification
in quantum gases and that SolDet was designed to be
broadly applicable.

The SolDet distribution includes a CNN classifier, OD,
PIE classifier, and quality estimator trained and initial-
ized using the soliton dataset [23]. In addition, we pro-
vide training scripts to enable the ready application to
user-defined data with custom preprocessors, ML mod-
els, fitting functions, and even the overall process flow.

Figure 8 illustrates a single use of SolDet for the spe-
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cific example of longitudinal soliton detection, where the
individual blocks operate as follows:

Data processing: Preprocess raw data into 164× 132 im-
age format that just enclose the elliptical atom
clouds [22]. The preprocessing particulars are not
generic and instead are specific to both our task as
well as the experimental parameters.

CNN classifier: Apply a trained CNN classifier to pro-
cessed data, yield labels no excitation, single exci-
tation, or other excitations.

Object detection: Apply trained OD to processed data,
yield a list of positions of solitonic excitations.

CNN:0 OR OD:0: If either the CNN classifier or OD
finds no soliton, SolDet terminates.

PIE classifier: The PIE classifier is applied to each soli-
tonic excitation.

Quality estimator: The quality estimator is applied to
each excitation identified as “longitudinal soliton”
by the PIE classifier.

This algorithm is designed to be usable in a laboratory
environment where one needs real-time identification, as
well as for automated labeling of large datasets, as in
Ref. [28].

IV. DISCUSSION AND CONCLUSION

Here we described a new framework that adds to the
growing ML quantum science and technology toolkit,
with additional recent developments including: noise
characterization [38, 39]; quantum state detection [22,
30, 40–48]; parameter space exploration and optimiza-
tion [49–54]; and quantum control [55, 56]. Together,
these results show that ML techniques can extract in-
formation from ambiguous data, efficiently search large
parameter spaces, and optimally control quantum sys-
tems.

Our high level framework combines ML methods with
physics-based analysis, providing an integrated platform
for studying experimental data. Our implementation of
this framework, SolDet, currently targets the identifica-
tion, classification, and tracking of features in image data
generated by cold atom experiments. We demonstrated
its initialization and performance using a publicly avail-
able dark soliton dataset [28]. This investigation focused
only on properties of individual images, however, the
dataset also includes a label giving time elapsed since the
excitation’s were created. This opens the door for stud-
ies correlating system control parameters and the SolDet
labels.

While our initialization used only the no excitation and
single excitation classes, SolDet’s feature detection suc-
cessfully generalizes the learned patterns. This is con-
firmed by its performance on the other excitations and

mislabeled classes that were not part of training, where
the CNN classifier gave ambiguous results and human
classifiers often disagreed. Going beyond simple classi-
fication tasks, SolDet allowed us to identify unexpected
structure in the data, enabling a fine-grained division of
the single excitation class into physically-relevant sub-
classes, including solitonic vortices and partial solitons.

Moreover, for the multiple excitations class, the distri-
bution of the quality metric in Fig. 7 reveals a possible
correlation between the quality metric and the excita-
tions relative proximity. These observations illustrate the
power of our combined framework as a data analysis tool
for discovery.

An interesting application of SolDet would be an off-
line optimization of the experimental setup. Such opti-
mization strategy—successfully implemented to, e.g., im-
prove fabrication of quantum dot devices [1]—requires an
efficient analysis of large volumes of data to find the ap-
propriate correlations in a high dimensional parameter
space. The ML toolbox described in our manuscript al-
lows automatically locate multiple solitonic excitations
in the same cloud and produces a fine classification that
goes beyond longitudinal solitons. An analysis of the cor-
relations between the various control parameter ranges
used in our experiments and the resulting class of data
(as determined by SolDet) could enable a controlled gen-
eration of a desired number, type, and configurations
of excitations, with SolDet integrated on-line to provide
real-time data analysis and control feedback. Another
interesting extension of this work would be to train an
OD on a dataset containing a single subclass found by
the PIE classifier, e.g., longitudinal solitons, or solitonic
vortices.

An emerging area of ML is the derivation of effective
hydrodynamic equations of motion for biological, col-
loidal and active fluids based on time-series data [57].
Owing to the complexity of full 3D simulations of non-
zero temperature BECs, this data-driven approach could
also be applied to create effective kinetic theory of soli-
tons as well as the hydrodynamics of the underling fluid.

Going beyond solitonic excitations, the wakefield for
sub- and supersonic impurities moving in atomic super-
fluids have characteristic patterns that could be identified
by ML techniques [58–61]. This might be implemented
using a template based method such as used in the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
where a large set of numerical simulations provide a li-
brary of patterns to correlated with the data [62]. This
pattern matching is a form of object detection, and in
our context a CNN based object detector could also be
trained on such a template set. In this way, our method-
ology could be employed with a trained OD followed by
a LIGO-like algorithm playing the role of our quality es-
timator and PIE classifier.

From the ML perspective, adding modules based on
unsupervised [63], active learning [64], and synthetic data
generation with generative models [65] may further en-
hance the performance of the SolDet framework.
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Appendix A: Parameters of Machine Learning
Models

Both machine learning modules are built and trained
using the TensorFlow (v.2.5.0) Keras Python API [66].
Fig. 9(a) and (b) show the visualization of the network
architecture for the OD and the CNN classifier, respec-
tively. The model parameters of OD are presented in
Tab. I. The model parameters for the CNN classifier are
presented in the Appendix of Ref. [22].

As can be seen in Fig. 9, there are three main differ-
ences between the two architectures: (1) the OD outputs
41 local probabilities and positions while the CNN clas-
sifier only outputs 1 of 3 possible classes; (2) the CNN
classifier contains three fully-connected layers, which dra-
matically increase the number of trainable parameters,
while OD does not; (3) the OD has asymmetric pool size
and strides for vertical and horizontal directions, which
are customized to the features in our dataset; the pool
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FIG. 9. Illustration of (a) OD and (b) CNN classifier neu-
ral network architectures. Yellow-orange boxes show convolu-
tional layers while orange-red boxes show max-pooling layers.
The horizontal lengths of boxes represent number of filters
and the other two dimensions represent the image sizes. The
horizontal blue and purple rectangles in (a) denote output
vectors. Each cell of the blue vector describes the probability
that it contains a soliton and and the purple vector contains
the position of a soliton within the cell. And the vertical
blue-green rectangles in (b) are three fully connected layers
and the output layer. The lengths of edges are logarithmically
scaled.

size and strides are symmetric for the CNN classifier. As
a result, the OD has more than an order of magnitude
fewer trainable parameters (7× 104) than the CNN clas-
sifier (106).

TABLE I. The OD architecture parameters. The top four
rows are for for the convolutional 2D layers and the three
bottom rows are for maxpooling 2D layers.

Layer 1 2 3 4 5 output

Filter 8 16 32 64 128 2

Kernel 5×5 5×5 5×5 1×5 1×5 1×5

Padding same same same same same same

Activation ReLu ReLu ReLu ReLu ReLu sigmoid

Pool size 4×2 4×2 4×1 2×1 N/A N/A

Strides 4×2 4×2 4×1 2×1 N/A N/A

Padding valid valid same same N/A N/A
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putation in waveguide QED using decoherence free subspaces. New J. Phys.,
18(4):043041, apr 2016. doi: 10.1088/1367-2630/18/4/043041. URL https:

//doi.org/10.1088%2F1367-2630%2F18%2F4%2F043041.

[99] S. Kim, X. Xu, J. M. Taylor, and G. Bahl. Dynamically induced robust phonon
transport and chiral cooling in an optomechanical system. Nat. Commun., 8(1):
205, 2017. ISSN 2041-1723. doi: 10.1038/s41467-017-00247-7. URL https:

//doi.org/10.1038/s41467-017-00247-7.

[100] J Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation.
Nature Physics, 8(4):264–266, 2012.

[101] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod.
Phys., 86:153–185, Mar 2014.

[102] SS Hodgman, RG Dall, AG Manning, KGH Baldwin, and AG Truscott. Direct mea-
surement of long-range third-order coherence in bose-einstein condensates. Science,
331(6020):1046–1049, 2011.

[103] Christian Gross and Immanuel Bloch. Quantum simulations with ultracold atoms in
optical lattices. Science, 357(6355):995–1001, 2017.

[104] Torsten V. Zache, Thomas Schweigler, Sebastian Erne, Jörg Schmiedmayer, and
Jürgen Berges. Extracting the field theory description of a quantum many-body
system from experimental data. Phys. Rev. X, 10:011020, Jan 2020.

[105] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and
R. Grimm. Collective excitations of a degenerate gas at the bec-bcs crossover. Phys.
Rev. Lett., 92:203201, May 2004.

[106] Thomas Bourdel, Lev Khaykovich, Julien Cubizolles, Jun Zhang, Frédéric Chevy,
M Teichmann, L Tarruell, SJJMF Kokkelmans, and Christophe Salomon. Experi-
mental study of the bec-bcs crossover region in lithium 6. Phys. Rev. Lett., 93(5):
050401, 2004.

[107] Y-J Lin, K Jiménez-Garcı́a, and I. B. Spielman. Spin-orbit-coupled bose-einstein
condensates. Nature, 471(7336):83–86, 2011.

[108] Renate Landig, Lorenz Hruby, Nishant Dogra, Manuele Landini, Rafael Mottl, To-
bias Donner, and Tilman Esslinger. Quantum phases from competing short-and long-
range interactions in an optical lattice. Nature, 532(7600):476, 2016.

[109] J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, I. P. Mc-
Culloch, F. Heidrich-Meisner, I. Bloch, and U. Schneider. Expansion dynamics of
interacting bosons in homogeneous lattices in one and two dimensions. Phys. Rev.
Lett., 110:205301, May 2013.

147

https://doi.org/10.1088%2F1367-2630%2F18%2F4%2F043041
https://doi.org/10.1088%2F1367-2630%2F18%2F4%2F043041
https://doi.org/10.1038/s41467-017-00247-7
https://doi.org/10.1038/s41467-017-00247-7


[110] Thomas Kohlert, Sebastian Scherg, Xiao Li, Henrik P. Lüschen, Sankar Das Sarma,
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