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Topological charge pumping with subwavelength Raman lattices
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Recent experiments demonstrated deeply subwavelength lattices using atoms with N internal states Raman
coupled with lasers of wavelength λ. The resulting unit cell was λ/2N in extent, an N-fold reduction compared to
the usual λ/2 periodicity of an optical lattice. For resonant Raman coupling, this lattice consists of N independent
sinusoidal potentials (with period λ/2) displaced by λ/2N from each other. We show that detuning from Raman
resonance induces tunneling between these potentials. Temporally modulating the detuning couples the s and
p bands of the potentials, creating a pair of coupled subwavelength Rice-Mele chains. This operates as a
topological charge pump that counterintuitively can give half the displacement per pump cycle of each individual
Rice-Mele chain separately. We analytically describe this behavior in terms of infinite-system Chern numbers
and numerically identify the associated finite-system edge states.
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I. INTRODUCTION

The behavior of one-dimensional (1D) systems is fre-
quently tractable by analytic and numerical methods, often
making them ideal prototypes for understanding phenomena
that are intractable in higher dimensions. Even noninteract-
ing systems such as those described by the Rice-Mele (RM)
model [1] can have nontrivial topology manifesting as pro-
tected edge states and quantized topological charge pumping
[2]. Here we focus on a recently implemented 1D subwave-
length lattice for ultracold atoms built from N Raman-coupled
internal states [3,4] and show that adding temporal modulation
to the detuning away from Raman resonance can drive transi-
tions between the s- and p-band Wannier states in adjacent
lattice sites. In the tight-binding limit, this gives rise to a pair
of coupled RM chains with new regimes of topological charge
pumping as well as topologically protected edge states.

Conventional optical lattices for ultracold atoms rely on
the ac Stark shift to produce potentials proportional to the
local optical intensity. As a result, the lattice period cannot be
smaller than half the optical wavelength λ without resorting
to multiphoton transitions [5,6]. Recently, several techniques
have emerged to create lattices with deeply subwavelength
structure [3,4,7–10]; each can be understood in terms of
“dressed states” created by coupling internal atomic states
with one- or two-photon optical or radio-frequency fields
[4,11–16]. Here we consider the scheme depicted in Fig. 1(a)
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relying on sequentially coupling N internal atomic states us-
ing two-photon Raman transitions. For resonant couplings of
equal strengths, this results in independent adiabatic potentials
for each of the N dressed states, displaced by λ/2N from each
other, as shown by the dashed curves in Fig. 1(b).

This idealized situation is disturbed by unbalancing the
coupling strengths, as studied in Ref. [3], or by detuning one
or more of the transitions from resonance; the latter situation
is plotted in Fig. 1(b). The addition of such perturbations
makes evident the λ/(2N ) periodicity of the adiabatic poten-
tial, giving rise to nearest-neighbor (NN) tunneling between
sites spaced by a single reduced unit cell. This induced tunnel-
ing is generally much stronger than the natural N th neighbor
tunneling of the undisturbed lattice.

Here we focus on the effects of an additional time-
modulated detuning which gives rise to an effective tunneling
matrix element between s- and p-band Wannier states spaced
by ±λ/(2N ), leading to a distinctive subwavelength optical
lattice. In this lattice the proximity between adjacent sites
allows the modulation-induced matrix element to be com-
parable to or larger than that of the NN tunneling induced
by static detuning. Figure 1(c) shows the resulting lattice
geometry arising from this description, and Fig. 1(d) unwraps
this into a pair of coupled RM chains described by a highly
tunable two-leg ladder Hamiltonian with unique topological
properties that are the focus of this paper.

We study the topological aspects of this lattice both by
considering adiabatic pumping and in terms of edge states.
In the former case we show that the added interchain tun-
neling enables simple pumping trajectories giving per-cycle
displacements of zero, one, or two unit cells; by contrast
only displacements in units of two sites are possible for the
uncoupled RM chains. A displacement by one unit site is
also possible in an interacting spinful Rice-Mele chain [17];
however, this falls outside the classification of noninteracting
topological systems.
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FIG. 1. Lattice concept. (a) Experimental geometry with a
single-frequency Raman beam traveling along ex and N Raman laser
beams sharing the same spatial mode traveling along −ex . The level
diagram for cyclic coupling is depicted on the right. (b) Dressed-state
energies for N = 3 and �0 = �1 = �2 = 2ER. The dashed curves
are computed for zero detuning, whereas the solid ones are calculated
for a detuning described by Eq. (17) with l = 1 and δ = 0.5ER.
All curves are colored according to the ternary plot on the right,
marking the occupation probabilities in the three dressed states (not
the bare internal atomic states) obtained by diagonalizing Eq. (16).
(c) Tight-binding model. Resonant driving gives nearest-neighbor
coupling J±1 between the s and p bands. Coupling within bands
is induced by a static detuning with matrix elements J0s and J0p.
(d) The same lattice unraveled into coupled RM chains. The red and
green horizontal bars in (c) and (d) represent atomic positions in the
lattice.

This paper is organized as follows. In Sec. II we formally
derive the subwavelength Hamiltonian described above. Sec-
tion III focuses on the subwavelength symmetry operations
and solves the resulting band-structure problem. In Sec. IV
we obtain a tight-binding description of this lattice in terms of
localized s- and p-band Wannier orbitals. The band-changing
tunneling induced by time-dependent detuning is derived in
Sec. V. Section VI discusses the regimes of topological pump-
ing in the ladder. The regimes of topological edge states are
discussed in Sec. VII. Finally, in Sec. VIII we expound on the
implications of this work and conclude.

II. HAMILTONIAN

A. Physical geometry

As illustrated in Fig. 1(a), we consider an ensemble of
ultracold atoms with N internal atomic ground or metastable
states | j〉, with j = 0, 1, . . . , N − 1. These states have
nominal energies h̄ω j , giving frequency differences δω j =
ω j+1 − ω j , where here and below we adopt a periodic label-
ing scheme for which the labels j and j + N are equivalent;
for example, this implies | j〉 = | j + N〉 and ω j = ω j+N . No-
tice that for the specific energies depicted in Fig. 1(a), the
state vector |N − 1〉 has the largest energy, and |0〉 has the
smallest energy, making their frequency difference δωN−1 =
ω0 − ωN−1 negative.

The atoms are illuminated by the pair of counterpropa-
gating laser beams depicted in Fig. 1(a) with wavelength λ,
defining the single-photon recoil momentum h̄kR = 2π h̄/λ

and energy ER = h̄2k2
R/2m for atoms of mass m. The right-

going beam (green arrow) has angular frequency ω+, while
the left-going beam (red-blue arrow) has angular frequen-
cies ω−

j = ω+ − δω j . These lasers drive two-photon Raman
transitions that cyclically couple the internal atomic states;
each transition from | j + 1〉 to | j〉 is characterized by an
independent coupling strength � j . The overall transition am-
plitude −� je−i2kRx includes a phase factor accounting for the
two-photon recoil momentum 2h̄kR imparted by the counter-
propagating lasers. The resulting light-matter interaction is
described by

V̂ (x) = −
N−1∑
j=0

� je
−i2kRx| j〉〈 j + 1| + H.c., (1)

where the hat signifies an operator that acts on the internal
atomic states and we leave implicit the operator nature of
spatial variables such as the atomic position x. Each state can
be detuned in energy by δ j from Raman resonance, giving the
following contribution to the Hamiltonian:

Û =
N−1∑
j=0

δ j | j〉〈 j|. (2)

Finally, including the kinetic energy yields the full Hamil-
tonian,

Ĥ = p2

2m
+ V̂ (x) + Û , (3)

where p = −i∂x is the momentum operator, and in what fol-
lows we take h̄ = 1.

B. Dressed-state basis

Because the internal states | j〉 can be interpreted as sites
in a synthetic dimension [18,19], it is convenient to adopt a
synthetic “momentum” representation, giving a new basis of
(position-independent) dressed states:

|εn〉 = 1√
N

N−1∑
j=0

| j〉ei2πn j/N , n = 0, 1, . . . , N − 1. (4)

As above, we periodically label states implying |εn+N 〉 =
|εn〉.
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The light-matter-coupling operator [Eq. (1)] can be repre-
sented in the basis of dressed states as

V̂ (x) =
∑

l

V̂l (x), (5)

with terms

V̂l (x) = −�̃l

N−1∑
n=0

ei[2π (n+l )/N−2kRx]|εn〉〈εn+l | + H.c. (6)

resulting from the lth Fourier component of the transition
amplitudes

�̃l = 1

N

N−1∑
j=0

� je
i2π l j/N . (7)

C. Dressed-state potential V0(x)

We now consider the situation where the l = 0 Fourier
component is dominant, so

�̃0 � �̃l , l �= 0. (8)

The component

� ≡ �̃0 = 1

N

N−1∑
j=0

� j (9)

is the average of the Rabi frequencies � j . The corresponding
contribution to V̂ (x) is diagonal in the basis of dressed states
|εn〉, giving

V̂0(x) =
N−1∑
n=0

εn(x)|εn〉〈εn|, (10)

where each

εn(x) = −2� cos (2kRx − 2πn/N ) (11)

is a sinusoidal potential for atoms moving in |εn〉. The po-
tentials εn±1(x) for the neighboring dressed states |εn+1〉 and
|εn−1〉 are each spatially shifted from εn(x) by a distance a =
a0/N , giving a new unit cell that is N times smaller than the
a0 = λ/2 period of a conventional optical lattice. The dashed
curves in Fig. 1(b) illustrate the lattice potentials εn(x) for the
case of three internal states (N = 3).

D. Coupling between dressed states

1. Coupling between dressed states via laser coupling

The Fourier components �̃l , with l �= 0, induce tunable
couplings Vl (x) [Eq. (6)] between atoms in dressed states
|εn+l〉 and |εn〉; the corresponding potential minima are sep-
arated by a distance la0/N . The total contribution of these
components is

V̂ ′(x) =
∑
l �=0

V̂l (x). (12)

Since each �̃l is a discrete Fourier transform of the coupling
matrix element � j , changing its j dependence can generate a
range of tunneling amplitudes �̃l that can vary from short to
long range. In the following we consider a uniform atom-light

coupling � j = �, and thus V̂ (x) = V̂0(x), and concentrate on
the effects of the detunings to be considered next.

2. Coupling between dressed states via detuning

The dressed states are also coupled via inhomogeneous
( j-dependent) detunings δ j . In the dressed-state basis the de-
tuning operator (2) is

Û =
N−1∑
n=0

∑
l

Ul |εn〉〈εn+l |, (13)

where

Ul = 1

N

N−1∑
j=0

δ j exp

(
i
2π l j

N

)
(14)

describes coupling between dressed states |εn〉 and |εn+l〉 sep-
arated by l . The l = 0 term provides a uniform energy offset
and will be omitted.

Similar to the case of inhomogeneous Rabi frequencies,
the coupling matrix element Ul between dressed states |εn〉
and |εn+l〉 is a discrete Fourier transform of the detunings δ j .
Therefore, Ul can achieve a desired long-range structure on
demand with the proper choice of the j dependence of δ j .

It is useful to represent Eq. (3) for the full Hamiltonian as

Ĥ = Ĥ0 + Û , (15)

where the zeroth-order Hamiltonian

Ĥ0 = p2

2m
+ V̂0(x) (16)

consists of the kinetic-energy operator and the dressed-state
potential V̂0(x) defined by Eq. (10). In what follows we treat
the detuning operator Û as a perturbation which couples the
dressed states.

E. Coupling dressed states with sinusoidal detuning

When the detuning

δ j,l = 2δ cos (2π l j/N − ϕ) (17)

is a sinusoidal function of the internal state index j, the detun-
ing operator (13) takes the simplified form

Ûl = δ

N−1∑
n=0

|εn〉〈εn+l |eiϕ + H.c., (18)

which couples dressed states |εn〉 and |εn+l〉 separated by l
“sites” in a synthetic-dimension picture.

In what follows we consider detunings of the form

δ j = 2
∑

p

δ(p) cos(2π j/N − ϕ(p) ), (19)

coupling only neighboring dressed states (i.e., l = 1, so we
suppress the l index) with time-dependent phases ϕ(p) ≡
ϕ(p)(t ) and amplitudes δ(p). In the remainder of this paper we
focus on the specific case of three phases,

ϕ(p)(t ) = pωt + γ (p) (p = 0,±1), (20)
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with drive frequency ω and phase shifts γ (p). This leads to the
detuning operator

Û =
N−1∑
n=0

F (t )|εn〉〈εn+1| + H.c., (21)

where

F (t ) =
∑

p=0,±1

δ(p)eipωt+iγ (p)
(22)

contains a time-independent component (p = 0) and a pair
of components (p = ±1) with oscillatory exponents ∝
exp(±iωt ).

III. SYMMETRIES AND BLOCH STATES

A. Spatial shift by a0 and Bloch solutions

The complete state vector of the system is

|ψ〉 ≡
∫

dx|ψ (x)〉 ⊗ |x〉, (23)

where |ψ (x)〉 = 〈x|ψ〉 is the state vector of the atomic internal
states at the position x and |x〉 is the eigenvector of the position
operator.

The atom-light-interaction operator V̂ (x) = V̂ (x + a0) in
Eq. (1) has an obvious spatial periodicity of a0 = π/kR.
As a result the Hamiltonian Ĥ commutes with the spa-
tial displacement operator T (ξ ) ≡ exp(ipxξ ) for ξ = a0, i.e.,
[Ĥ, T (a0)] = 0. The operators Ĥ and T (a0) can be simulta-
neously diagonalized, giving Bloch states

|ψ (k)(x)〉 = eikx|g(k)(x)〉, (24)

where

|g(k)(x + a0)〉 = |g(k)(x)〉 (25)

is the spatially periodic contribution and the crystal momen-
tum k lies within the standard Brillouin zone (BZ) −π/a0 �
k < π/a0. In the next section we identify an additional sym-
metry that reduces the unit cell to a = a0/N .

B. Spatial shift by a

In addition to being invariant with respect to a spatial trans-
lation of a0, the Hamiltonian Ĥ commutes with a combined
translation operator

Ŝ(ξ ) = Q̂T (ξ ) (26)

when ξ = a. The operator T (a) implements a spatial shift
by a distance N times smaller than the original lattice
constant a0.

The shift is accompanied by a change in the atomic internal
state described by

Q̂ =
N−1∑
j=0

| j〉〈 j|ei j2π/N =
N−1∑
n=0

|εn+1〉〈εn|. (27)

This is the synthetic-dimension displacement operator for the
dressed-state basis. The combined symmetry operator Ŝ(a) is
closely related to the magnetic displacement operators that ap-
pear in the study of the Hofstadter model of charged particles
in a square lattice [20–22].

Because the Hamiltonian Ĥ is invariant with respect to
the combined shift Ŝ(a), the operators Ĥ and Ŝ(a) have a
common set of eigenstates analogous to the Bloch states in
Eq. (24), but with N times smaller periodicity a = a0/N .
Thus, the eigenvectors |ψ (k)(x)〉 of Ŝ(a) have eigenvalues
exp(ika) characterized by a crystal momentum k covering an
N-fold enlarged BZ with −Nπ/a0 � k < Nπ/a0.

The periodic part of these states has the property

Q̂|g(k)(x + a)〉 = |g(k)(x)〉, (28)

so that

|g(k)(x)〉 =
N∑

n=1

g(k)(x + na)|εn〉, (29)

with g(k)(x + Na) = g(k)(x).

IV. TIGHT-BINDING APPROACH

A. Wannier functions

We begin by considering maximally localized Wannier
states associated with each dressed-state potential εn(x) in the
zeroth-order Hamiltonian Ĥ0 given by Eq. (16). The Wannier
functions χ (α)(x − ar) for the nth dressed state are localized
around each local minimum of εn(x) at x/a = r = n + Nl .
The integer l defines a periodic array of lattice sites, and
α = 0, 1, . . . (or, equivalently, α = s, p, . . .) labels the differ-
ent Bloch bands.

The abstract state vector

|r, α〉 =
∫

dxχ (α)(x − ar)|εr〉 ⊗ |x〉, (30)

corresponding to the Wannier function χ (α)(x − ar), includes
the dressed state |εr〉 = |εn+Nl〉 = |εn〉. Figures 2(a) and 2(b)
plot Wannier functions for the two lowest bands, and the
colors denote the different dressed states.

In the Wannier basis, the combined shift operator becomes

Ŝ(a) =
∑
r, α

|r + 1, α〉〈r, α|, (31)

and the zeroth-order Hamiltonian reduces to

Ĥ0 =
∑
α,r

[ε (α)|r, α〉〈r, α|

+ J (α)(|r, α〉〈r + N, α| + H.c.)]

in the tight-binding limit with only NN tunneling. Here J (α) is
a matrix element for tunneling between NN Wannier functions
in the same internal state, and ε (α) is the on-site energy. The
tight-binding approximation holds for the lowest two bands
(the s and p bands corresponding to α = 0 and 1) when � �
4ER. The vanishing of long-range tunneling in these bands is
plotted in Figs. 2(c) and 2(d).

Although each dressed state is subject to a lattice with
period a0, the spacing between neighboring Wannier func-
tions is a = a0/N . These adjacent functions are in different
dressed states with |εn〉 and |εn±1〉. This spacing is N times
smaller than the original lattice constant a0. This provides
a one-dimensional lattice [shown by the dashed curves in
Fig. 1(b) for N = 3] with a periodicity a = a0/N , in which
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FIG. 2. Two-band model. (a) and (b) Wannier functions for the s
band and p band, respectively, computed for � = 4ER, δ = 0ER, and
N = 3. The colors correspond to Wannier states for each of the three
dressed states. (c) and (d) Natural tunneling J (α) dependence on Rabi
frequency � for the s and p bands. The solid and dashed curves plot
the nearest-neighbor (NN) and next-nearest-neighbor (NNN) tunnel-
ing. The black lines denote the threshold for the applicability of the
tight-binding approximation: for α = s this threshold is � > 1.6ER,
and for α = p it is � > 4.0ER.

the “natural tunneling” occurs between Wannier functions of
the same dressed state separated by a0.

As we will see in Sec. IV B, including the detuning opera-
tor Û as a perturbation introduces tunneling between Wannier
functions of different dressed states. Furthermore, as dis-
cussed in Sec. V, different Bloch bands—such as the s and
p bands—can be coupled by making the detuning oscillatory
in time.

B. Coupling between Wannier functions via detuning

The interaction operator Û in Eq. (21) describes detuning-
induced coupling between neighboring atomic internal
dressed states |εn〉 and |εn+1〉. In the Wannier basis [defined
in Eq. (30)], the leading-order contribution to Û is

Û = F (t )
∑
r,α,α′

|r, α〉Gα,α′ 〈r + 1, α′| + H.c., (32)

where

Gα,α′ =
∫ +∞

−∞
χ (α)∗(x − a)χ (α′ )(x) dx (33)

is the overlap integral between the neighboring Wannier func-
tions.

When the detuning is small compared to the energy differ-
ence between Bloch bands, Û can be treated as a perturbation
that induces transitions between spatially separated Wannier
functions in different dressed states. For deep lattices (e.g.,
when � � ER), the matrix element of the direct tunneling
J (α) can be negligible in the lowest Bloch bands. This allows

detuning-induced coupling between Wannier functions spaced
by a (i.e., coupling neighboring dressed states) to become the
dominant source of tunneling.

V. INTERBAND COUPLING VIA TIME-DEPENDENT
DETUNING

The function F (t ) entering the detuning operator Û (t ) in
Eqs. (21) and (32) contains a constant term δ(0) and two
Fourier components δ(±1) exp(±iωt ). As we found in the last
section, a constant detuning δ(0) generates tunneling between
neighboring Wannier functions in the same Bloch band, but
for different dressed states. As we will see, the oscillatory
terms ∝ δ(±1) exp(±iωt ) can resonantly couple Wannier func-
tions in different Bloch bands and different dressed states |εn〉
and |εn+1〉.

The three-term form of F (t ) is in contrast to conventional
periodic driving [23], where the tunneling matrix elements
acquire phases such as ∝ cos(ωt ). In that case, the tunneling
elements are described by an infinite sum of Fourier compo-
nents with amplitudes given by Bessel functions; this creates
additional possibilities for unwanted coupling to higher Bloch
bands.

A. Transition to the rotating frame

We focus on resonant driving where the energy difference
between the ground (s) and first excited (p) bands is close to
the driving frequency, i.e.,

|ε (p) − ε (s) − ω|  ω.

In this limit it is convenient to transform the tight-binding
Hamiltonian into the rotating frame with the unitary transfor-
mation

Ŝ = exp

(
− iωt

∑
α,r

α|r, α〉〈r, α|
)

. (34)

The transformed Hamiltonian is

H̃ = H̃0 + Ũ ; (35)

because Ŝ commutes with the zeroth-order Hamiltonian Ĥ0

but not Ũ , we have

H̃0 = Ĥ0 − iŜ†∂t Ŝ, Ũ = Ŝ†Û Ŝ, (36)

where tildes mark transformed operators. In the Wannier basis
the transformed operators are

H̃0 =
∑
α,r

[ε̃ (α)|r, α〉〈r, α|

+ J (α)(|r, α〉〈r + N, α| + H.c.)]

and

Ũ =
∑
α,α′,r

[Gα,α′F (t )ei(α′−α)ωt |r, α〉〈r + 1, α′| + H.c.],

where

ε̃ (α) = ε (α) − αω (37)

are the shifted energies of the Bloch bands.
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B. Rotating-wave approximation

We now make the rotating-wave approximation (RWA) by
omitting the oscillating terms remaining in the transformed
operator Ũ . We express the RWA detuning operator as the sum

Ũ = Ũ0 + Ũ1 + Ũ−1 (38)

over three terms,

Ũ0 =
∑
α,r

[Gα,αδ(0)eiγ (0) |r, α〉〈r + 1, α| + H.c.], (39)

Ũ1 =
∑
α,r

[Gα,α−1δ
(1)eiγ (1) |r, α〉〈r + 1, α − 1| + H.c.], (40)

Ũ−1 =
∑
α,r

[Gα,α+1δ
(−1)eiγ (−1) |r, α〉〈r + 1, α + 1| + H.c.],

(41)

where each term results from the corresponding term in F (t ).
The time-independent detuning δ(0) leads to Ũ0, which, as
discussed above, describes tunneling between neighboring
Wannier functions in the same Bloch band α. On the other
hand, Ũ±1 describe tunneling between neighboring Wannier
functions in consecutive Bloch bands, where a transition from
α to α ± 1 is accompanied by moving from site r to r − 1
(and vice versa). These two processes are independent, as they
are separately controlled by the amplitudes of the oscillating
detunings δ(1) and δ(−1). Additionally, changing the drive fre-
quency ω alters the RWA energy offsets of the Bloch bands
ε̃ (α).

We now specialize to the case where only the two lowest
bands (identified by α = s or p) are coupled, in which case
the components of Ũ reduce to

Ũ0 =
∑
α=s,p

∑
r

J0,αeiγ (0) |r, α〉〈r + 1, α| + H.c.,

Ũ1 =
∑

r

J1eiγ (1) |r, p〉〈r + 1, s| + H.c.,

Ũ−1 =
∑

r

J−1eiγ (−1) |r, s〉〈r + 1, p| + H.c.,

with constants

J0α = Gα,αδ(0), J±1 = ±Gp,sδ
(±1), Gp,s = −Gs,p.

We find that Gs,s is strictly positive, while Gp,p is negative for
� � 4ER, as indicated by the ratio J0p/J0s = Gp,p/Gs,s plotted

in Fig. 3. We also note that for � � 4ER coupling to higher
bands cannot be neglected.

Altogether, this realizes a pair of RM chains [vertical lines
in Fig. 1(c)] coupled by the static detuning δ0 [diagonal lines
in Fig. 1(c)]. The resulting physics, going beyond that of the
RM model, is the focus of the remainder of this paper.

C. Coupled Rice-Mele chains

Because the full RWA Hamiltonian commutes with the
combined translation operator Ŝ(a) given by Eq. (31), the
eigenstates |k, β〉 are labeled by crystal momentum k (cov-
ering the extended Brillouin zone −π/a � k < π/a) as well
as a band index β. Because the periodic modulation couples
the initial bands (labeled by α), the eigenstates take the form

|k, β〉 =
∑

α

c(β )
α, k|k, α〉 (42)

in terms of the eigenstates

|k, α〉 = 1

L1/2

∑
r

|r, α〉eikra

of H̃0 for a system L sites in extent.
When we consider only the two lowest bands, i.e., α ∈

{s, p}, Eq. (42) reduces to

|k, β〉 = c(β )
s, k |k, s〉 + c(β )

p, k|k, p〉, (43)

with β = ±. Therefore, the eigenvalue equation H̃ |k, β〉 =
Ek,β |k, β〉 can be expressed as a 2 × 2 matrix equation:

H̃k

(
c(β )

s, k

c(β )
p, k

)
= Ek,β

(
c(β )

s, k

c(β )
p, k

)
, (44)

where H̃k is the Hamiltonian matrix,

H̃k =
(

�s,k �∗
k/2

�k/2 �p,k

)
. (45)

The off-diagonal matrix elements

�k

2
= J1 exp[i(ka + γ (1) )] + J−1 exp[−i(ka + γ (−1))]

that couple the bands are due to the modulated detuning δ±1.
On the other hand, the diagonal matrix elements

�α,k = ε̃ (α) + 2J (α) cos (kNa) + 2J0,α cos(ka + γ (0) )

are due to the static detuning δ0 and the natural tunneling J (α).
In what follows we fix the modulation phases to be

γ (±1) = 0 and γ (0) = −π/2 and define the energy shift and
detuning as

�k = �s,k + �p,k

2
, �k = �s,k − �p,k . (46)

Subtracting the overall �k energy shift gives

H̃k = 1

2

(
�k �∗

k
�k −�k

)
. (47)

Here �k and �k are

�k = ε̃ + 2J cos (kNa) + 2J0 sin (ka) (48)
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and
�k

2
= J1eika + J−1e−ika, (49)

with

ε̃ = ε̃ (s) − ε̃ (p), J = J (s) − J (p), J0 = J0,s − J0,p.

For most parameters J0,s and J0,p < 0, so in what follows
we take J0 � 0.

The eigenenergies of H̃k are

Ek,± = ±
√

�2
k + |�k|2, (50)

and the corresponding eigenstates [24,25]

|k,−〉 =
(

e−iφ sin (θ/2)
− cos (θ/2)

)
, |k,+〉 =

(
e−iφ cos (θ/2)

sin (θ/2)

)
can be represented in terms of the angles θ and φ, given by

eiφ = �k/|�k|, cos θ = 2�k/�k . (51)

VI. ADIABATIC PUMPING

Here we consider the response of the system when one or
more parameters are changed adiabatically and periodically in
time with period T , making the eigenstates |k,±; t〉 explicit
functions of time. In what follows the time dependence will
be implicitly assumed.

A. Berry connection

In general any state |ψ (u)〉 parameterized by a set of vari-
ables u j can be characterized by the geometric vector potential
(Berry connection)

Aj = i〈ψ (u)|∂ j |ψ (u)〉. (52)

In the present case we consider the eigenstates |k,±〉 of H̃k

(which can be unambiguously defined only in the absence of
degeneracies), giving

A(±)
j = ∓ sin2 (θ/2)∂ jφ, (53)

with the parameters u j = (k, t ). Because |k,±〉 is periodic
in both k and t , u describe a torus embedded in a three-
dimensional space. We correspondingly introduce a fictitious
coordinate normal to the surface, giving

A(±) = (A(±)
k , A(±)

t , 0) = ∓ 1
2 (1 − cos θ )∇φ. (54)

The resulting geometric magnetic field (Berry curvature) is

B(±) = ∇ × A(±) = (0, 0, B) = ∓ 1
2∇φ × ∇ cos θ. (55)

We will focus exclusively on the lower band of the coupled
RM chain (consisting of a superposition of the ground and
first excited bands of the physical lattice) in the remainder of
this paper and therefore omit the ± superscript on A and B
and take the lower sign in Eq. (55).

B. Chern number and Zak phase

We now consider the properties of this system when Hamil-
tonian parameters u(t ) cyclically follow a closed path in
parameter space. It is convenient (although not strictly neces-
sary) to assume that this process is time periodic with period

ka

t

−π
−π

2
π
2

π

T
2

0

FIG. 4. Contours of integration. Due to the periodicity of the
vector potential the boundary integration vanishes. Thus, the integral
is fully defined by the small integrals around the excluded singular
points in A given by Eq. (60).

T . In this case and for a filled Bloch band, the system under-
goes quantized pumping [2,25] described by an integer

C =
∫ T

0

dt

2π

∫ π/a

−π/a
dkBz, (56)

quantifying the per-cycle spatial displacement in units of the
reduced lattice period a.

It is convenient to evaluate this integral using Stokes’s
formula to replace the planar integral in Eq. (56) with a line in-
tegral. The contribution by the boundary integration [Fig. (4)]
vanishes because the vector potential A has periodicity 2π/a
with respect to k and periodicity T with respect to t . Because
the Stokes integration contour must avoid the singular points
of A, applying Stokes’s formula to Eq. (56) with Eq. (54) for
A yields

C = − 1

4π

∑
sing

∮
(1 − cos θ )∇φ · d�. (57)

The sum runs over the singular points in A and the inte-
gration, around these points is counterclockwise; the overall
minus sign results from the clockwise orientation of the
original trajectories encircling the singular points, and the
differential line element is I� = (V k, ct, 0).

Adiabatic pumping can also be described by the Zak phase
[26],

γZak =
∫ π/a

−π/a
dk Ak . (58)

In general, aγZak/(2π ) gives the displacement of each
Wannier function’s mean position from an initial point (the
selection of the initial position is arbitrary, and its selection
behaves like a gauge-fixing condition). Therefore, changing
the Zak phase by 2π leads to an overall spatial translation by
the reduced lattice constant a: quantized pumping.

C. Modulation schemes

Here we describe two specific adiabatic modulation
schemes leading to topological charge pumping in the lowest
band of the coupled RM chain. Both of these schemes involve
modulations of J±1. The first, which we call the “ε scheme,” in
addition modulates ε̃, and the second, called the “J0 scheme,”
instead adds modulation to J0.
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To achieve quantized adiabatic pumping, one must satisfy
the following conditions. First, the periodicity of modulation
T should be much larger than the s-p driving period, T �
2π/ω. The second requirement is T �E± � 1, where �E± =
min(Ek,+ − Ek,−) is the minimum band gap of the coupled
RM chains during the pumping period. Note also that the
temporal dependence of interchain and intrachain couplings
(J0 and J±1) is obtained by modulating the detunings δ j of
the two-photon Raman couplings. On the other hand, the time
dependence of the on-site energy difference ε̃ is controlled by
modulating the s-p driving frequency ω.

We begin by considering the implications of modulating
J±1 for the computation of the Chern number via Eq. (57).
The singular points appearing in this expression occur when
�k = |�k|eiφ = 0 and thus are located at J1 = J−1 and ka =
±π/2.

Let us assume that the s → p tunneling elements J1 and
J−1 are modulated with opposite phases

J±1 = J̄ ± JR sin (2πt/T ), (59)

where JR � 0. In this case, the only time-dependent reduced
parameter in Eq. (47) is

�k = 4J cos(ka) + i4JR sin (2πt/T ) sin(ka).

The function �k is zero at four points shown in Fig. 4 corre-
sponding to the four possible combinations of

ka = ±π/2, t = jT/2, j = 0, 1. (60)

Integrating the phase gradient around each of these singular
points yields

C = 1

2

∑
±

1∑
j=0

(−1) j[sgn(�±, j ) − 1] (61)

via Eq. (57), where sgn(·) is the sign function and

�±, j = ε̃ ± 2J0 (62)

is the detuning �k given by Eq. (48) at ka = ±π/2 for t =
jT/2.

In writing Eq. (62) we omitted the second term in Eq. (48),
which is equal to zero for odd values of N . However, for even
N it provides a small level shift which can be included in the
detuning ε̃.

1. ε modulation scheme

Here we consider the impact of additionally modulating the
detuning

ε̃ = ε̄ + εR cos (2πt/T ) (63)

around a central value ε̄ with extent εR � 0. For t = jT/2,
Eq. (62) reduces to

�±, j = ε̄ + εR(−1) j ± 2J0. (64)

The red points in Fig. 5(a) mark the singular points in the
ε̃ − (J1 − J−1) plane, and the circles show parametric trajec-
tories in this plane.

As shown by the solid circle, both singular points are
enclosed when

|εR| > |ε̄ ± 2J0|. (65)

ε̃

(a)
J1 − J−1

−2J0 2J0 4J0 6J0 8J0 10J0

−2J0

2J0

4J0

Δ+ = 0 Δ− = 0

C = 2
C = 1

C = 0

0

0.0 0.2 0.4 0.6 0.8 1.0

t/T

0

1

2

γ
Z
a
k
/
2
π

(b)

FIG. 5. Adiabatic pumping in the ε scheme. (a) The three circles
show the cases when both critical points (±2J0, 0) are encircled
(solid), one of them is encircled (dashed), and neither is encircled
(dotted). (b) Zak phase γZak dependence on time t for the three
aforementioned trajectories.

In this case, �±, j alternates sign for even and odd values
of j [because sgn(�±, j ) = (−1) j], so Eq. (61) gives C = 2.
Thus, one arrives at the adiabatic pumping displacement of 2a
per pump cycle (like for uncoupled RM chains).

On the other hand, when only one of the conditions in
Eq. (65) holds, just one point (±2J0, 0) is encircled by the
evolution curve [dashed circle in Fig. 5(a)], and C = 1. This
leads to adiabatic pumping of a per cycle, a scenario which is
not possible for uncoupled RM chains.

Finally, when neither condition holds, both points
(±2J0, 0) are outside the evolution curve [dotted circle in
Fig. 5(a)], yielding the topologically trivial case with C = 0.
Figure 5(b) shows the changes in the Zak phase for the three
trajectories in Fig. 5(a), illustrating that the adiabatic pumping
indeed takes place in units of 2a, a, and 0 for these three cases.

2. J0 modulation scheme

Last, we consider modulating

J0 = J̄0 + J0,R cos (2πt/T ), J0,R > 0, (66)

rather than ε̃. Using Eq. (62), we arrive at the detuning

�±, j = ε̃ ± 2[J̄0 + J0,R(−1) j], (67)

where ε̃ is taken to be constant and, without loss of generality,
positive.

The red points in Fig. 6(a) denote singular points in the
J0-(J1 − J−1) plane, and like above, the circles plot different
illustrative trajectories in this plane. As shown by the solid
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J0

(a)
J1 − J−1

−3ε̃/2 −ε̃ −ε̃/2 ε̃/2 ε̃ 3ε̃/2

−ε̃/2

ε̃/2

ε̃

Δ+ = 0 Δ− = 0

C = 0
C = −1C = 1

0

0.0 0.2 0.4 0.6 0.8 1.0

t/T

−1.0

−0.5

0.0

0.5

1.0

γ
Z
a
k
/
2
π

(b)

FIG. 6. Adiabatic pumping in the J0 scheme. (a) Adiabatic
pumping via modulation of J±1 and J0 when both critical points
(±ε̃/2, 0) are encircled (solid circle), the right point is encircled
(dashed circle), and the left point is encircled (dotted circle). (b) Zak
phase γZak dependence on time t for the three aforementioned
trajectories.

circle, both singular points are enclosed when

|J0,R| >

∣∣∣∣ ε̃2 ± J̄0

∣∣∣∣. (68)

In this case, the detuning alternates for even versus odd
j, so Eq. (61) sums to zero, giving Chern number C = 0
and no adiabatic pumping. On the other hand, when either
condition in Eq. (68) holds, the point at (±ε̃/2, 0) is encircled
[the dotted and dashed circles in Fig. 6(a)], giving C = −1 or
C = 1, respectively. In these cases, adiabatic pumping gives
a displacement of a single lattice constant a (to the right or
to the left), once again, a scenario that is impossible for an
uncoupled RM chain. Last, when neither condition holds, no
singular point is encircled, and the system is again topologi-
cally trivial with C = 0.

Figure 6(b) shows the Zak phase for the three trajectories in
Fig. 6(a), illustrating that the adiabatic pumping indeed yields
displacement by 0 or ±a. We also evaluated the Wannier-
function centers by explicitly integrating the time-dependent
Schrodinger equation and found them to be in exact agreement
with the displacements predicted by the Zak phase. Changes
in the Zak phase and energy gaps are presented in the Ap-
pendix.

VII. EDGE STATES

The bulk-edge correspondence links the properties of
bounded and unbounded topological systems [27–29]. This

0.0 0.5 1.0

0

2

E
/
E

R

(a)

0.0 0.5 1.0

0

2
(b)

20 40 60 80

Center of mass

0.0 0.5 1.0
t/T

−2

0

2

E
/
E

R

(c)

0.0 0.5 1.0
t/T

−2

0

2
(d)

FIG. 7. Energy spectrum of finite coupled RM chains with L =
100 sites on each branch during the adiabatic pumping cycle. Color
indicates the center-of-mass position of the instantaneous eigen-
states. (a) and (b) correspond to the J0 modulation scheme, while
(c) and (d) correspond to the ε scheme. (a) and (c) show the case
with both special points encircled, while (b) and (d) show the case
with only one point.

correspondence indicates that finite systems will acquire edge
modes—residing in the bulk energy gap—and that the number
of such modes will be equal to the infinite-system topological
invariant. We use this as an additional probe for the topology
of the coupled RM model and turn our attention to a finite
coupled RM chain with hard edges.

In Fig. 7, we plot the energy spectrum of eigenstates (col-
ored according to center-of-mass position) calculated for the ε

and J0 modulation schemes and for two different paths. Expo-
nentially localized edge states appear in the band-gap region,
signaled by yellow and blue curves connecting bulk bands.
When these states become degenerate, the system obeys a
chiral symmetry, making the static system Zak phase a robust
topological invariant. In this case these the degenerate states
are the edge states predicted by the bulk-edge correspondence.

The movement of the edge state between bands during a
pump cycle marks the transport of mass from one side of the
system to the other. The first path encloses both special points,
while the other encloses only one. The exact trajectories are
depicted in Fig. 5(a) (solid and dashed curves) for the ε mod-
ulation scheme and Fig. 6(a) (solid and dotted curves) for the
J0 scheme.

We find a strict adherence to the bulk-edge correspon-
dence: The number of edge states on each side of the system
that flow from one band to another during each pump cycle
is equal to the Chern number calculated in the previous sec-
tion. Although Figs. 7(b) and 7(d) qualitatively resemble the
edge-state flow of the conventional Rice-Mele model [30], the
per-cycle displacement is reduced by half. Special attention
should be given to Fig. 7(a), which shows edge states shift-
ing in energy between the bands but never entering the bulk
band and therefore not contributing to charge pumping. This
further reinforces our conclusion that the coupled RM chain
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−π −0.5π 0 0.5π π
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FIG. 8. Parameter regimes. (a) and (b) Zak phase γZak. (c) and
(d) Direct energy gap min(Ep − Es ). (a) and (c) correspond to the ε

scheme, while (b) and (d) correspond to the J0 scheme. All plots are
calculated for Javg = 0.1ER.

described in this work is inherently different and cannot be
explained by the superposition of two uncoupled RM chains.

VIII. CONCLUSION AND OUTLOOK

We described a lattice created by sequentially coupling
internal atomic states using two-photon Raman transitions;
this resulted in independent adiabatic potentials for each of the
N dressed states. We showed that introducing a static detuning
couples together these adiabatic potentials into a single lattice
with λ/(2N ) periodicity.

We then studied the effects of time-modulated detuning
to introduce effective tunneling matrix elements coupling the
s and p bands, leading to a subwavelength optical lattice.
We interpreted this lattice as a pair of coupled RM chains
described by a highly tunable two-leg ladder Hamiltonian
with unique topological properties. We showed that this lattice
exhibits unusual behavior in terms of topological pumping
and edge states. In the former case we showed that the added
interchain tunneling enables simple pumping trajectories giv-
ing per-cycle displacements of zero, one, or two unit cells,
in contrast to the zero- or two-cell displacements allowed for
uncoupled RM chains.

The present work suggests several directions for fu-
ture inquiry. Here we focused only on nearest-neighbor
detuning-induced tunneling; however, more complicated lat-
tice topologies can be created by exploiting the long-range

tunneling induced by detuning in Eq. (19). Even without cou-
pling s and p bands this may enable new ways to engineer
locally flat bands [31,32] where interaction effects can domi-
nate.

In addition, lattices in two and three dimensions can be
created by going to larger spin systems; going beyond the
suggestions in Refs. [3,4] for creating conventional lattices,
it is also possible to use coupled internal states to define a
discretized torus rather than a closed loop in the space of
coupled internal states.

The generic scheme described here is not limited to
crystalline order. For example, a bichromatic subwavelength
lattice can be created by adding Raman coupling with a
wave number incommensurate with kR. This would open up
possibilities to study localization phenomena with tunable
single-particle mobility edges [33,34]

Topological charge pumps obtain their robustness by fully
filling a collection of Bloch bands. One could investigate the
more general case of geometric charge pumping [35] that lifts
this constraint. Given the flexibility of this lattice, one might
engineer the local Berry connection Ak (k) to enhance the
performance of geometric charge pumps, either for improved
robustness or even for increased per-cycle displacement.
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APPENDIX: ZAK PHASE AND ENERGY GAPS

As shown in Figs. 8(a) and 8(b), to advance the Zak phase
by +2π , one has to encircle either of the singular points in
the same direction (counterclockwise) for the ε scheme but
in opposite directions for the J0 scheme (counterclockwise for
�+ = 0 and clockwise for �− = 0). Thus, both critical points
have the same topological charge for the ε case but opposite
charges in the J0 case.

As one approaches the critical points in parameter space,
the direct gaps grow smaller and smaller [see Figs. 8(c) and
8(d)]. Thus, if the encirclement radius is small, the adiabatic
pumping period T must be larger to satisfy the adiabaticity
condition.
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