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Self-Bayesian aberration removal via constraints for ultracold atom microscopy
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High-resolution imaging of ultracold atoms typically requires custom high numerical aperture (NA) optics,
as is the case for quantum gas microscopy. These high NA objectives involve many optical elements, each
of which contributes to loss and light scattering, making them unsuitable for quantum backaction limited
“weak” measurements. We employ a low-cost high NA aspheric lens as an objective for a practical and
economical—although aberrated—high-resolution microscope to image 87Rb Bose-Einstein condensates. Here,
we present a methodology for digitally eliminating the resulting aberrations that is applicable to a wide range of
imaging strategies and requires no additional hardware. We recover nearly the full NA of our objective, thereby
demonstrating a simple and powerful digital aberration correction method for achieving optimal microscopy
of quantum objects. This reconstruction relies on a high-quality measure of our imaging system’s even-order
aberrations from density-density correlations measured with differing degrees of defocus. We demonstrate
our aberration compensation technique using phase-contrast imaging, a dispersive imaging technique directly
applicable to quantum backaction limited measurements. Furthermore, we show that our digital correction
technique reduces the contribution of photon shot noise to density-density correlation measurements which
would otherwise contaminate the desired quantum projection noise signal in weak measurements.

DOI: 10.1103/PhysRevResearch.3.043087

In many fields of study—from biophysics [1] and medicine
to astrophysics [2,3] and atomic physics [4]—images are a key
source of data, making high-quality imaging systems essen-
tial. In all cases, experimenters desire the maximum possible
information from their images: imaging apertures limit the de-
tected information; system inefficiencies discard information;
and aberrations obfuscate what is finally detected. In optics,
sophisticated multielement (and high cost) objectives are able
to image objects with resolutions approaching fundamental
limits [5]. In many cases, either because of technical incom-
patibilities, conflicting requirements, or simply expense, these
objectives cannot be employed. In quantum gas experiments,
the object is an atomic sample encased in an ultrahigh-vacuum
system that introduces aberrations and limits optical access.
Here we describe a versatile microscope for cold-atom imag-
ing that fully uses the available optical access with low-cost
optical elements in conjunction with a powerful image re-
construction method, giving a combined hardware/software
system that recovers near-diffraction limited performance,
i.e., it uses the full numerical aperture (NA) of the lens.

Even “quantum gas microscopes” [6,7], the highest-
resolution imaging systems employed in cold-atom exper-
iments, use algorithmic reconstruction techniques. These
systems employ custom-designed, high NA objectives to
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detect individual atoms in optical lattices by detecting their
incoherent fluorescence. The distribution of atoms can be
reconstructed using algorithms similar to the CLEAN algo-
rithm [8] from radio astronomy that construct distributions of
point sources that are most consistent with the data given the
system’s point spread function (PSF).

In the case of coherent imaging, the observed aberrated
images of cold atoms are related to the desired aberration-free
images by multiplication of a contrast transfer function (CTF)
in the spectral (Fourier) domain. Because the CTF can reduce
or eliminate the signal at some wave vectors, information is
lost and direct inversion is not possible. This can be resolved
with a pseudoinverse that uses a Bayesian prior in the vicinity
of wave vectors with large information loss [9,10], but the
resulting reconstructions suffer from artifacts and added noise
[11–13].

Inspired by the application of constraints to the phase
retrieval problem in optics [14,15], we present a versatile
method that reduces artifacts in reconstructed images while
increasing the signal-to-noise ratio (SNR). Spatially compact
systems have a finite spectral width. In the vicinity of the
zeros in the CTF, our method effectively uses as a prior the
weighted average of data from nearby wave vectors that are
unresolvable given the system’s assumed spectral width. In
this sense, data from the same image effectively serve as a
Bayesian prior for nearby points in the same image. As such,
we have introduced a finite-size constraint to the problem of
refocusing and correcting aberrations in images of ultracold
atoms.

In many cold-atom experiments, further information is
contained in density fluctuations often parametrized by the
power spectral density (PSD). Example sources of correla-
tions include thermal noise at finite temperature, quantum
fluctuations at zero temperature, or quantum projection noise
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from the measurement process. Other noise sources parasit-
ically contribute to the PSD in experiments, and in our case
photon shot noise is the largest such contributor. In perfect
imaging systems, this can be minimized by first windowing
the data to contain only the region with atoms; however, in
defocused or highly aberrated systems, the atom signal is
dispersed over much of the sensor, and windowing becomes
impractical. We show that our aberration correction method
overcomes this: by correcting for aberrations, we first recover
near-perfect images that then can be windowed to minimize
the contribution of photon shot noise.

Our data consist of images of ultracold atom ensembles of
roughly 105 atoms that both phase-shift and absorb an illumi-
nating probe beam. Together the absorption and phase shift
encode the density of atoms integrated along the propagation
direction of the probe beam giving a two-dimensional (2D)
image of atomic density that we denote as an abstract “data”
vector d. We focus on linear imaging systems where, as we
describe below, aberrations and losses can be encoded as a
linear transform described by the operator H, the CTF. Here
the actual measurement outcome m is related to the desired
data via the linear transformation m = H d. For aberrated or
lossy imaging systems, information is lost going from d to m,
making H noninvertible, or leading to noise amplification.

We therefore face an ill-posed inverse problem and instead
seek the pseudoinverse H(PI) that most faithfully recovers d ≈
H(PI)m. For example, the expression

H(PI)(α) = 1

H†H + |α|2 H† (1)

defines a Tikhonov pseudoinverse [16]. The eigenvalue ex-
pansion for H†H indicates that |α|2 introduces a minimum
eigenvalue into the denominator of Eq. (1), thereby avoiding
singular behavior when any eigenvalue of H†H becomes zero.
Wiener deconvolution in signal processing [17,18] is an ex-
ample of a Tikhonov pseudoinverse, where different values of
|α|2 are associated with each eigenvalue of H†H. Here, we
derive a pseudoinverse of the Tikhonov form by combining
a noise model of the measurement process with a Bayesian
prior for the density distribution, asserting that the distribution
is confined in a compact region of space.

This paper is organized as follows: In Sec. I, we present a
basic description of light propagating through a dilute atomic
cloud. Next, in Sec. II we provide a unified description of
imaging cold-atom clouds, and identify absorption and phase-
contrast imaging methods in suitable limits. In Sec. III, we
discuss our aberration correction algorithm and test it on simu-
lated data. In Sec. IV, we describe our microscope for imaging
87Rb Bose-Einstein condensates (BECs) and detail our im-
plementation of phase-contrast imaging. Lastly, in Sec. V
we apply our regularization method to experimental data and
compare with existing techniques, and demonstrate the utility
of our method by nondestructively imaging the thermal to
BEC phase transition in situ.

I. FUNDAMENTALS OF LIGHT-WAVE–MATTER
INTERACTIONS

The majority of ultracold atom measurements rely on im-
ages of light that has interacted with an atomic ensemble.

As such, in this section we summarize the theoretical descrip-
tion of laser light propagating along ez through a dilute atomic
cloud: a nonpermeable dielectric medium. We relate the ab-
sorption and phase shift of the incident laser to a fundamental
quantity in ultracold atom experiments: the 2D column den-
sity ρ2D(r⊥) = ∫

ρ(r)dz, where ρ(r) is the 3D atomic density
with spatial coordinates r = xex + yey + zez and transverse
coordinates r⊥ = xex + yey.

A. The paraxial Helmholtz equation

We consider a monochromatic laser with wavelength λ,
wave number k0 = 2π/λ, and angular frequency ω0 = ck0

propagating in a medium with complex relative permittivity
ε(r) = ε/ε0. Here c is the free-space speed of light, ε is the
permittivity, and ε0 is the electric constant. The optical electric
field E (r) is described by the vectorial wave equation

∇2E (r) + k2
0ε(r)E (r) = −∇[E (r) · ∇ ln ε(r)]. (2)

The right-hand side of Eq. (2) can be omitted when ε(r) is
slowly varying. Since we consider an incident laser beam
traveling along ez, we isolate the z derivative to obtain the
scalar wave equation

−∂2E (r)

∂z2
= [∇2

⊥ + k2
0

]
E (r) + k2

0χ (r)E (r) (3)

for each polarization. Here ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is the

transverse Laplacian and χ (r) = ε(r) − 1 is the relative sus-
ceptibility. Next, we assume that the variations of the field
along r⊥ are on a scale that is large compared to λ, and express
the field as E (r⊥, z) = E (r⊥, z)eik0z emphasizing the propaga-
tion axis ez. Inserting this expression into Eq. (3) and making
the paraxial approximation by dropping the ∂2E (r⊥, z)/∂z2

term, we obtain the paraxial Helmholtz equation

−2ik0
∂E (r⊥, z)

∂z
= [∇2

⊥ + k2
0χ (r)]E (r⊥, z), (4)

describing the paraxial wave field E (r⊥, z). In free space, with
χ = 0, Eq. (4) is exactly solved by the differential operator

K(�z) = exp

(
i
∇2

⊥
2k0

�z

)
(5)

that transforms a field at position z to position z + �z
according to E (r⊥, z + �z) = K(�z)E (r⊥, z) for any �z.
In the spectral domain K(�z) is diagonal, allowing free-
space propagation to be implemented by simple scalar
multiplication.

By contrast, no general solution exists when χ (r) �= 0.
However, for �z small compared to the depth of field (DOF)
dDOF = 2k0/k2

max, the operator

R(�z) = exp

[
i
k0

2

∫ z+�z

z
χ (r)dz

]
(6)

approximately transforms the field a distance �z via
E (r⊥, z + �z) ≈ R(�z)E (r⊥, z), where kmax (bounded above
by k0) is the largest transverse wave vector in the detected
optical field. kmax is first set by the object plane field and then
further limited by the NA of the imaging system (see Sec. IV).
In the thin object limit δz � dDOF, where δz is the total thick-
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ness of the object, Eq. (6) gives the field E (r⊥, z + δz) just
following the object without further consideration.

To describe the propagation of E (r⊥, z) through extended
objects, Eq. (4) can be evaluated numerically, for example
with split-step Fourier techniques [19]. For this purpose, we
divide the evolution into spectral and coordinate steps [20].
The symmetrized expression

E (r⊥, z + �z) ≈ K(�z/2)R(�z)K(�z/2)E (r⊥, z) (7)

is valid through second order in �z, as can be readily derived
from the Baker-Campbell-Hausdorff identity.

The optical field following the object E+ travels through an
imaging system to the image plane, where its time-averaged
intensity I+(r) = cε0|E+(r)|2/2 (not field) is detected by a
charge-coupled device (CCD). The time average results from
the fact that a typical �5 μs imaging time is vast compared to
the 2π/ω0 optical period.

B. Depth-of-field effects

In this section, we consider extended objects for which the
thin object limit is inapplicable. A realistic object is present
only in some compact domain from z− to z+ along the axis of
light propagation ez. We divide the field into two components,

E+(r⊥, z) ≡ E0(r⊥, z) + δE (r⊥, z), (8)

where E0(r⊥, z) describes the field with no object [I0(r⊥, z)
is the associated intensity] and therefore obeys the free-space
paraxial wave equation, and δE (r⊥, z) describes the light scat-
tered by the object. We focus on the normalized scattered field

f (r⊥, z) = δE (r⊥, z)

E0(r⊥, z)
, (9)

subject to the boundary condition δE (r⊥, z) = 0 for z < z−.
When the DOF of E0(r⊥, z) greatly exceeds the δz = z+ − z−
extent of the object [21], f (r⊥, z) obeys

i
∂ f (r⊥, z)

∂z
+ 1

2k0
[∇2

⊥+k2
0χ (r⊥, z)] f (r⊥, z)=−k0

2
χ (r⊥, z),

a paraxial wave equation as in Eq. (4) with a source term. In
the limit of small χ (r⊥, z) and f (r⊥, z), we obtain the first-
order approximate expression

i
∂ f (k⊥, z)

∂z
− 1

2k0
k2
⊥ f (k⊥, z) = −k0

2
χ (k⊥, z) (10)

in the spectral domain [22]. This expression is exactly solved
by

f (k⊥, z+) = ik0

2

∫ z+

z−
χ (k⊥, z) exp

[
−i

k2
⊥

2k0
(z+ − z)

]
dz.

(11)

In the following, we consider an imaging system focused
at z = 0, and we ask, “What infinitely thin object located at
z = 0 yields the same scattered field as an extended object
does?” This is answered by first finding f (k⊥, z+) (z > z+
obeys the free-space paraxial equation), then backpropagating
f (k⊥, z+) to z = 0, and finally giving

feff (k⊥) = ik0

2

∫ z+

z−
χ (k⊥, z) exp

(
+i

k2
⊥

2k0
z

)
dz. (12)

Extending the bounds of integration to ±∞ converts the z in-
tegral to a 1D Fourier transform with a wave vector −k2

⊥/2k0,
leading to the final expression

feff (k⊥) = ik0

2
χ̃

(
k⊥,

k2
⊥

2k0

)
≡ ik0

2
χeff (k⊥). (13)

The tilde in χ̃ (k⊥, k2
⊥/2k0) emphasizes that the z index is

Fourier-transformed as well. Here we interpret the field feff

as resulting from an effective 2D susceptibility χeff (k⊥).
In many cases of physical interest, the 3D susceptibility can

be expressed in the separable form χ (r) = Z (z) × χ2D(r⊥),
where Z (z) is a normalized real-valued longitudinal mode
function. In this case, χeff (k⊥) = hDOF(k⊥)χ2D(k⊥), where,
anticipating the notation that will be used in Sec. II C, we
define the DOF contrast transfer function hDOF(k⊥) ≡ Z̃ (kz =
−k2

⊥/2k0) in terms of the Fourier-transformed mode func-
tion, with Z̃ (0) = 1 implied by Z’s normalization. Throughout
this paper, we will take Z (z) to be symmetric, implying
hDOF(k⊥) = hDOF(−k⊥) is real-valued.

For the special case of a Gaussian mode function with 1/e
width wz, the DOF transfer function is

hDOF(k⊥) = exp

[
− 1

4

(
wz

dDOF

)2( k⊥
kmax

)4]
. (14)

As a consequence, the amplitude is suppressed for increasing
k⊥, but the phase is unaltered. At kmax, the suppression is
exp[(−wz/2dDOF)2], implying that there is negligible loss of
information for objects appreciably thinner than the DOF, i.e.,
wz � dDOF.

C. Atomic susceptibility

For an ensemble of two-level atomic systems, the atom-
light interaction is captured by the electric susceptibility

χ (r) = σ0

k0

[
i − 2δ̄

1 + Ī (r) + 4δ̄2

]
ρ(r), (15)

where δ̄ = δ/� is the normalized detuning from atomic reso-
nance in terms of the detuning δ = ω0 − ωge and the natural
atomic linewidth �, h̄ωge is the atomic transition energy,
Ī (r) = I (r)/Isat is the optical intensity in units of the satura-
tion intensity Isat, and σ0 = 6π/k2

0 is the resonant scattering
cross-section.

The atomic susceptibility χ (r) is a complex quantity in
which the real and imaginary parts result from distinct physi-
cal processes. The real part derives from stimulated emission
(i.e., forward scattering) resulting in a dispersive atomic
medium with a density-dependent index of refraction. The
imaginary part derives from spontaneous emission (i.e., nom-
inally isotropic scattering) resulting in a density-dependent
absorption coefficient. As a result, the optical field will be
phase-shifted and attenuated as it travels through the atomic
cloud. We correspondingly express the field just after inter-
acting with the atomic medium

E+(r⊥, z + δz) = e−α(r⊥ )+iφ(r⊥ )E0(r⊥, z) (16)

in terms of an absorption coefficient

α(r⊥) = σ0ρ2D(r⊥)

2

1

1 + Ī (r⊥) + 4δ̄2
(17)
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and a phase shift

φ(r⊥) = −2δ̄α(r⊥). (18)

These are both proportional to the optical depth

OD(r⊥) ≡ − ln

[
I+(r⊥)

I0(r⊥)

]
(19)

via the relations

α(r⊥) = OD(r⊥)

2
and φ(r⊥) = −δ̄OD(r⊥). (20)

The 2D column density is related to the optical depth in terms
of both the detuning and intensity,

σ0ρ2D(r⊥) = [1 + 4δ̄2]OD(r⊥) + Ī0(r⊥)[1 − e−OD(r⊥ )].
(21)

This expression shows that irrespective of how it was ob-
tained, the optical depth serves to define the column density.
In the limit of small optical depth, Eq. (21) reduces to

σ0ρ2D(r⊥) ≈ [1 + Ī0(r⊥) + 4δ̄2]OD(r⊥); (22)

this could result from any combination of low density, large
detuning, or high intensity. For a spatially thin medium (δz �
dDOF) and imaging with low intensity laser light (I0 � Isat)
on resonance (δ̄ = 0), the optical depth following Eq. (21) is
OD(r⊥) = σ0ρ2D(r⊥).

II. IMAGING TECHNIQUES WITH COLD ATOMS

In this section, we describe two well-established
imaging methods that are frequently employed in cold-atom
experiments: phase-contrast imaging (PCI) and absorption
imaging (AI). We begin with the analysis of the general
imaging scheme illustrated in Fig. 1, which includes a small
phase shifter (phase dot) that is absent (i.e., gives 0 phase
shift) for AI.

The object attenuates and diffracts the incident light, as
described by Eq. (16), which can be reexpressed in terms
of unscattered and scattered components. Using Eq. (8), this
gives the object plane field

E+(r⊥, z) ≡ E0(r⊥, z) + E0(r⊥, z)[eiφ(r⊥ )−α(r⊥ ) − 1]. (23)

A phase dot shifts the optical phase of the unscattered light by
θ , giving the image plane field E ′

0(r⊥, z) = E0(r⊥, z) exp(iθ ),
while leaving the scattered component unchanged. The re-
sulting expression for the normalized image plane field after
interacting with the atoms and the phase dot is

E ′
+(r⊥, z)

E ′
0(r⊥, z)

= 1 + e−iθ [eiφ(r⊥ )−α(r⊥ ) − 1]. (24)

Equation (20) leads to the relation

E ′
+(r⊥, z)

E ′
0(r⊥, z)

= 1 + e−iθ

{
exp

[
−

(
1

2
+ iδ̄

)
OD(r⊥)

]
− 1

}
(25)

between the normalized field and the optical depth. Exper-
imentally, we detect the intensities I ′

0(r⊥) and I ′
+(r⊥), the

image plane intensities associated with the object plane inten-
sities I0(r⊥) and I+(r⊥). Equation (25) leads to the normalized

signal

g′
θ (r⊥) = 2 cos(θ ) − e−OD(r⊥ ) − 1 + 2e−OD(r⊥ )/2

× [cos (δ̄OD(r⊥)) − cos (θ + δ̄OD(r⊥))], (26)

where g′
θ (r⊥) ≡ 1 − I ′

+(r⊥)/I ′
0(r⊥). This noninvertible ex-

pression is applicable to both AI and PCI.
In the following sections, we derive the optical depth

from this transcendental equation in limits appropriate for AI
and PCI, and thereby leading to the column density through
Eq. (21).

A. Phase-contrast imaging

In 1932, Frits Zernike invented PCI as a phase-sensitive
imaging method utilizing the nonuniform refractive index of
an object to reveal features that are invisible in other imaging
techniques [23,24]. Since then, PCI has found application in
various fields as a noninvasive in situ imaging method [25,26].
In this section, we first introduce the basic principle of PCI
and then derive the theoretical toolbox enabling a quantitative
treatment of PCI in ultracold atom systems.

1. Principle of phase-contrast imaging

PCI is an interferometric technique sensitive to the phase
shift of light having propagated through an object. The ex-
tensive application of the technique stems from the elegant
simplicity of the required instrumentation. By imprinting a
position-dependent phase shift φ(r) onto the incident field,
the object diffracts part of that light (see Fig. 1). PCI can
be understood as an interferometer in which the unscattered
component is the reference beam (the local oscillator) and
the scattered component carries information about the object.
These two components share the same optical path, making
PCI robust against vibrations in the imaging system.

Both components are collected by an imaging lens that
is positioned at its focal distance f1 from the object. The
unscattered light comes to an intermediate focus at the back
Fourier plane of the lens, spatially separating the scattered and
the unscattered components. A small dielectric dot (phase dot)
just larger than the focused unscattered beam is positioned at

f2

Phase dotLens LensObject CCD

f1 f1 f2

FIG. 1. Schematic illustrating the principle of phase-contrast
imaging. A refractive object scatters light from an incident probe
laser into two components: unscattered (solid) and scattered
(dashed). An objective lens placed a focal distance f1 from the
object spatially separates the two components at the back Fourier
plane a distance f1 from the lens. The phase dot is positioned at the
Fourier plane and predominately phase-shifts the unscattered light
passing through it. After the second lens with focal length f2, the
two components interfere in the image plane and a CCD records the
resulting intensity.
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the Fourier plane as shown in Fig. 1. The phase dot shifts the
phase of the unscattered light by θ but leaves the scattered
component unchanged [27]. A second imaging lens with fo-
cal length f2 forms an image plane where scattered, and the
unscattered components of the wave field interfere. At the im-
age plane intensity is detected, with an overall magnification
M = f2/ f1.

2. Phase-contrast imaging with ultracold atoms

The PCI intensity encodes information about the object-
plane phase from which we extract the optical depth of the
atomic cloud. In the limit of large laser detuning, where PCI
is typically applied, we neglect absorption because α � φ. In
this limit, Eq. (26) for the normalized intensity reduces to

g′
θ (r⊥) = 2{cos θ + cos φ(r⊥) − cos [θ + φ(r⊥)] − 1}.

(27)
In the limit of small phase shift (i.e., φ � 1), the normalized
PCI intensity

g′
θ (r⊥) ≈ 2φ(r⊥) sin θ

θ=π/2−−−→ 2φ(r⊥) (28)

is linearly proportional to the phase shift imparted by the
object and maximized for θ = π/2. PCI yields an increased
sensitivity for weak phase objects compared to other disper-
sive imaging methods [27]. Lastly, we obtain the optical depth

ODPCI(r⊥, δ̄ � 1) = 1

2δ̄
g′

θ=π/2(r⊥) (29)

using Eq. (20).
The minimally destructive nature of PCI measurement be-

comes evident for large detunings. In the limit δ � � while
the phase shift imparted by the atomic system is ∝1/δ,
the spontaneous emission rate is ∝ 1/δ2. As a result, atom
loss due to radiation pressure becomes negligible. Hence,
in ultracold atom experiments, PCI is typically employed to
nondestructively image high column density atomic clouds in
situ and at large detuning [4,28,29].

B. Absorption imaging

AI of ultracold atoms usually employs resonant or near-
resonant laser light, i.e., |δ| � �, where the spontaneous
scattering of photons creates a shadow in the outcoming light
wave. We measure this shadow and infer the column density
of the object from the resultant images.

The imaging system in Fig. 1, introduced in the context of
PCI, is applicable to AI provided the phase dot is removed.
Accordingly, we apply the formalism in Eq. (26), with θ = 0.
The on-resonance (δ̄ = 0) optical depth in terms of the de-
tected normalized intensity in the image plane is

ODAI(r⊥) = − ln [1 − g′
θ=0(r⊥)]. (30)

Partial transfer absorption imaging

The high-optical density of most BECs prevents the direct
observation of their density in situ using standard AI. Dense
clouds absorb the vast majority of the incident probe laser,
leading to ODs greatly in excess of 1. This compromises the
SNR, and in practice, background light and the dynamic range

of typical CCDs limit AI measurements to OD � 4. Although
detuning the probe beam reduces the atomic cross-section, the
cloud behaves like a gradient index lens leading to imaging
distortions [4,30]. Dispersive imaging techniques such as PCI
[27], dark-field imaging [4], and Faraday imaging [31] can
operate at large detuning δ � �, where phase shifts are small
and lensing effects are thereby reduced. Partial transfer ab-
sorption imaging (PTAI) is an alternate approach for imaging
high-density atomic ensembles. In PTAI, an RF or microwave
pulse transfers a fraction of the atoms from a dark state to
a bright detection state where they are absorption-imaged
[32,33]. In this way, PTAI mitigates large OD effects and
can yield minimally destructive repeated images of the same
atomic system [34].

In our specific experiment, PTAI has additional quantum
projection noise effects. For deeply degenerate interacting
BECs, number fluctuations are greatly suppressed [35]; the
RF/microwave transfer process in PTAI then leads to en-
hanced atom shot noise similar to how a beam splitter
introduces vacuum port noise in quantum optics. In Sec. V A,
we utilize this fact when measuring the pupil function of our
microscope.

C. Aberrations

Here we model aberrations as a Fourier pupil function that
both phase-shifts and attenuates the optical field as a function
of wave vector. Importantly, this model can only treat aberra-
tions where the PSF—the magnitude squared of the impulse
response function—is the same everywhere in the observed
field of view.

Motivated by our introduction of regularization, we intro-
duce the forward transfer function

hE (k⊥) = e−γ (k⊥ )+iβ(k⊥ ), (31)

describing the navigation of fields through our imaging
system (neglecting the PCI phase dot) via E ′

+/0(k⊥) =
hE (k⊥)E+/0(k⊥). Here γ (k⊥) describes attenuation and
β(k⊥) describes phase shifts. Even ideal imaging systems will
have contributions from these terms. For example, defocus
will contribute a quadratic β ∝ k2

⊥ term, and the NA limits the
maximum accepted wave vector to kNA = NA × k0, implying
γ (k⊥) → ∞ for |k⊥| > kNA.

In our discussion of PCI, we assumed that the field E0(r⊥)
with the atomic ensemble absent is slowly varying and there-
fore contains Fourier components only near k⊥ = 0. Thus
following the imaging system it is transformed to E ′

0(r⊥) =
hE (0)E0(r⊥). Including the impact of the phase dot as well as
DOF effects introduced in Sec. I B, we arrive at the image-
plane field ratio

f ′(k⊥) = hDOF(k⊥)
hE (k⊥)

hE (0)

δE (k⊥)

E0(r⊥)
e−iθ . (32)

Linearizing Eq. (23) connects the image-plane field ratio to
the optical depth via

f ′(k⊥) = htot (k⊥)OD(k⊥), (33)

in terms of the total transfer function

htot (k⊥) =
√

1

4
+ δ̄2hDOF(k⊥)

hE (k⊥)

hE (0)
ei(ϕ−θ ). (34)
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Here ϕ, defined via tan ϕ = 2δ̄, describes the complex angle
associated with the atomic susceptibility. We see that the k⊥ =
0 contributions to the pupil function have no impact, implying
that any inferred dc component to the pupil function only
results from detuning and the PCI phase shift as parametrized
by ϕ − θ .

Expressing this ratio as an intensity in coordinate space and
converting back to the spectral domain gives

g′(k⊥) =
h(k⊥ )︷ ︸︸ ︷

[htot (k⊥) + h∗
tot (−k⊥)] OD(k⊥), (35)

where the quantity in square brackets is the contrast transfer
function that encodes the optical depth as a change in frac-
tional intensity.

This expression takes on a more conventional form when γ

and β are expressed in terms of their symmetric and antisym-
metric contributions, i.e., γ±(k⊥) = [γ (k⊥) ± γ (−k⊥)]/2,
and making the reasonable assumption of symmetric attenua-
tion (γ− = 0). Then we obtain

h(k⊥) =
√

1 + 4δ̄2hDOF(k⊥)e−γ+(k⊥ )+iβ−(k⊥ )

× cos[β+(k⊥) + ϕ − θ ]. (36)

For absorption imaging (θ = 0) of thin objects [hDOF(k⊥) =
1] with no loss (γ = 0) and a quadratic phase shift
β = zk2

⊥/2k0, we arrive at the well-known result h(k⊥) =
cos(zk2

⊥/2k0) + 2δ̄ sin(zk2
⊥/2k0), which results from defocus

by a distance z [see Eq. (5)] [11,13]. Furthermore, our re-
sult shows that up to an overall sign, far-detuned PCI with
|ϕ| = |θ | = π/2 obeys the same CTF as resonant AI.

These pupil functions can be calibrated using the fluctua-
tions δOD(r⊥) ≡ OD(r⊥) − 〈OD(r⊥)〉, where 〈· · · 〉 denotes
the average over an ensemble of images of cold atoms [36].
Assuming spatially uncorrelated density correlations, i.e.,
〈δOD(r)δOD(r′)〉 ∝ δ(3)(r − r′), where δ(3)(r⊥) denotes the
3D Dirac delta function, the power spectral density is

〈|δOD(k⊥)|2〉 ∝ e−2γ+(k⊥ ){cosh[2γ−(k⊥)]

+ hDOF(k⊥) cos[2β+(k⊥) + 2(ϕ − θ )]}.
(37)

This signal is sensitive to all components of the pupil function
except β−. In Sec. V A, we use this signal obtained at a
range of image planes to extract low noise maps of the pupil
function.

D. Signal-to-noise ratio

In this section, we compare the SNR of PCI and AI. In
our measurements, we detect probe pulses of duration �t on
a CCD sensor of square pixel size �x and quantum efficiency
η. The intensity at pixel coordinates i is Ii = NiIpe, where Ni
is the number of photoelectrons and Ipe = h̄ω0/ηA�t is the
intensity required to generate a single photoelectron given the
single-photon energy h̄ω0 = ch̄k0. In a single experimental
shot, our measurement techniques employ three images that
yield (i) I+,i of the probe in the presence of atoms, (ii) I0,i
of the probe field without the atoms, (iii) ID,i with no probe
light. For the remainder of the manuscript, we will omit the
prime notation that distinguishes the image plane from the

object plane. We subtract ID,i from I+,i and I0,i to eliminate
any baseline from background illumination.

In bright field detection techniques, photon shot noise is the
dominant source of noise, thereby we neglect other sources of
technical noise such as dark current and read noise. Photon
counting can be modeled as a classical Poisson process where
individual photon detections are treated as independent events
with an uncorrelated temporal distribution. Photon shot noise
(more specifically the shot noise of the detected photoelec-
trons) explains the width of this distribution, which has its
variance equal to its mean. We model each detected image
Ii = 〈Ii〉 + δIi as the sum of its mean 〈Ii〉 and measurement
noise δIi (we will only consider zero mean random variables,
i.e., 〈δIi〉 = 0). Then the spatially uncorrelated photon shot
noise is described by

〈δIiδIi′ 〉 = δi,i′ Ipe〈Ii〉, (38)

where δi,i′ is the Kronecker δ function. Next we consider
the noise in the fractional intensity gθ . In practice, we con-
struct the background image I0,i by averaging many images
of the probe beam with no atoms present, and as a result
it contributes negligible photon shot noise. With this as-
sumption and following Eq. (38), the noise in the fractional
intensity is

〈δgiδgi′ 〉 = δi,i′
Ipe

I0,i
[1 − 〈gi〉]. (39)

Assuming that both the phase shift and OD are small, the
noise variance of the OD deduced from PCI using Eq. (29) is

〈δODiδODi′ 〉PCI = δi,i′
1

4δ̄2

〈
δg2

i

〉
. (40)

For AI using Eq. (30), noise variance is

〈δODiδODi′ 〉AI = δi,i′

〈
δg2

i

〉
[1 − 〈gi〉]2

. (41)

Together these expressions show that near resonance the SNR
of AI exceeds that of PCI, while far from resonance PCI has
the larger SNR [13]. In addition, the noise variance for AI
diverges at large optical depth (where 〈gi〉 → 1) because the
fractional photon shot noise increases with increasing absorp-
tion; this emphasizes the importance of PCI or PTAI for large
OD systems.

Comparing the expressions for PCI and AI, we see that for
fixed I0,i (fixed backaction on atoms) the noise variance in PCI
is lower by a factor of δ̄ compared to that of AI for large
detuning and small absorption, i.e., low optical depth. This
implies that AI cannot be a backaction-limited measurement
in this limit.

III. REGULARIZATION

We consider the general inversion problem where the linear
operator H describes a forward transformation to the measure-
ment basis described by vectors m, according to m = H d,
where we read m as the measurement outcome and d as
the desired data. Our approach follows a Bayesian line of
reasoning, where we include a pair of priors and seek the most
likely vector d given these priors.
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A. Bayesian framework

Before moving forward, we introduce a Gaussian prior
distribution function

Pd (d; p,�) ∝ exp

[
− (d − p)†�−1(d − p)

2

]
, (42)

giving the probability of finding the data vector d conditioned
on knowing a prior p with confidence expressed by the co-
variance matrix �. The diagonal entries of the covariance
matrix � j j = ξ 2

j derive from the conventional single-sigma
uncertainties ξ j . An analogous distribution Pm(m0; m,�) ap-
plies for measurements, giving the probability that the “true”
measurement outcome was m0 conditioned on having ob-
served m and knowing the covariance matrix �, with diagonal
entries σ 2

i .
By combining these expressions, we obtain

P(d) ∝ Pd (d; p,�) × Pm(H d; m,�), (43)

the probability of finding the data vector d, with forward
transform H d, conditioned on both p and m. Here we se-
lect the most likely d as our pseudoinverse, i.e., we employ
maximum-likelihood estimation.

By taking −2 ln P(d), we recast the inversion problem as a
minimization problem with the quadratic objective function

E = α2(d − p)†�̄
−1(d − p)

+ (H d − m)†�̄
−1(H d − m). (44)

Here we introduced normalized covariance matrices �̄ =
�/ξ 2

max and �̄ = �/σ 2
min, where ξ 2

max is the largest eigenvalue
of �, σ 2

min is the smallest eigenvalue of �, and α2 = σ 2
min/ξ

2
max

will function as a regularization parameter. The first term in
Eq. (44) describes the uncertainty-weighted difference be-
tween the prior p and the reconstruction d, and the second
term measures the uncertainty-weighted difference between
the measurements m and the prediction of the reconstruction
H d.

The objective function can be simplified by making use of
the Cholesky decomposition, where the symmetric covariance
matrices are expressed as �̄ = C�C†

� and �̄ = C�C†
�. This

leads to the simplified objective function

E = |Jd′ − m′|2 + α2|d′ − p′|2 (45)

in terms of a new operator J = C−1
� HC�, and new vectors

m′ = C−1
� m, d′ = C−1

� d, and p′ = C−1
� p.

Since Eq. (45) is a quadratic form, it has a unique mini-
mum, which we obtain by setting the gradient

∇d′E = 2[(α2 + J†J)d′ − J†m′ − α2p′] (46)

equal to zero, where ∇d′ is the gradient with respect to the d′
vector. This gives the root

d′
0 = (α2 + J†J)−1(J†m′ + α2p′) (47)

→ (α2 + J†J)−1J†m′, (48)

where in the second line we selected the p′ = 0 null prior,
thereby replicating the generic Tikhonov form presented in
Eq. (1).

B. Specific implementation

Having employed a standard Bayesian framework to obtain
a maximum-likelihood reconstruction, we now specialize to
our imaging application.

Our method uses this framework by adding new informa-
tion: outside some window no atoms exist, but the atomic
distribution within that window is completely unknown. We
thereby accept the p = 0 prior outside the window by setting
ξ j → 0 in that region, and reject the prior inside the window
by setting ξ j = 1 with α � 1, implying that � is diagonal
in the final spatial basis. In principle, � includes all known
sources of uncertainty: in our case, only photon-shot noise in
the detection system is significant, making � diagonal in the
initial detection basis. Lastly, we constrain our implementa-
tion to imaging imperfections described by Eq. (35), giving
a forward transfer function hk that is diagonal in the spectral
basis.

Typical images are on the scale of ≈103 × 103 pixels
and therefore reside in a ≈106 dimensional vector space.
Since the resulting ≈106 × 106 matrices in Eq. (48) are too
large to manipulate directly with today’s desktop computers,
in the following we describe implementations that do not
require their explicit construction. In addition, Appendix B
discusses further considerations involved in selecting a real-
space grid large enough for artifact free reconstruction. In
general, padding the measured image m may be required.

1. Spectral Tikhonov from uniform uncertainties

In the special case of uniform uncertainties—with �̄i1,i2 =
�̄i1,i2 = δi1,i2 and α = σ/ξ—it is natural to work in the spec-
tral basis where H is diagonal and Eq. (48) reduces to

dk = h∗
k

α2 + |hk|2 mk. (49)

This special-case expression is again of the Tikhonov form,
but by contrast to the general solution in Eq. (48) it is diagonal
in the spectral basis, making its deployment straightforward.
In practice, the regularization parameter α is empirically cho-
sen, and this inversion approach has been previously used
to correct for the quadratic order aberrations resulting from
defocus in cold-atom systems [11–13] as well as electron
microscopy of biological systems [37].

2. Ad hoc convolution approximation

Motivated by the simplicity of Eq. (49), we now derive an
approximation to Eq. (48) that can still be implemented by
multiplication in the spectral basis.

We again assume uniform detection uncertainties, but
now we allow �̄ to be a window function that is di-
agonal in real space (and therefore implemented by a
convolution in the spectral basis via the Fourier convolu-
tion theorem). In the following discussion, we use explicit
summations rather than linear-algebra notation for an un-
ambiguous presentation. These assumptions lead to the
simplification

∑
k2,k3

�̄k1k2 Hk2k3 mk3 = ∑
k2

�̄k1−k2 hk2 mk2 , al-
lowing the zero-gradient condition to be written as∑

k2

(
α2δk1k2 + �̄k1−k2 |hk2 |2

)
dk2 =

∑
k2

�̄k1−k2 h∗
k2

mk2 .
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We then make the ad hoc approximation of pulling dk outside
of the convolution, giving the simplified result

dk ≈
∑

k1
�̄k−k1 h∗

k1
mk1

α2 + ∑
k1

�̄k−k1 |hk1 |2
. (50)

The intuition behind this expression is that any zeros in the
denominator are lifted by convolving with the Fourier trans-
form of the window function—a smoothing process—thereby
providing a form of regularization even for α = 0, making this
a self-Bayesian method where the data serves as its own prior.
However, when the zeros of the CTF are broad in the spec-
tral domain as compared to the inverse width of the window
function, this method will still lack sufficient information to
estimate the recovered function, and a nonzero value of α will
be required.

Algorithm 1 outlines the computational steps to implement
the ad hoc convolution approximation. In this pseudocode,
the Fourier transform FTk (mx ) indicates that the resulting
vector will have the momentum index k. Expressions such
as �̄x IFTx(|Hk|2) describe element-by-element multiplica-
tion and do not follow the Einstein summation convention,
which would contract this quantity to a scalar. We evaluate the
required convolutions via the Fourier transform-convolutions
theorem, and hence Algorithm 1 does not require the explicit
construction of large matrices.

Algorithm 1: Ad hoc approximation.

Data:
mx: Measured vector
Hk : Forward transform
ξ̄x: Normalized prior uncertainties
α: Regularization parameter

Result:
dx: Data vector

// Compute numerator
dk = FTk

(
ξ̄ 2

x IFTx (H∗
k′ FTk′ (mx′ ))

)
// Divide by denominator
dk /= α2 + FTk

(
ξ̄ 2

x IFTx (|Hk′ |2)
)

dx = IFTx (dk )

3. Full method

In the full evaluation of Eq. (48), we employ a conjugate-
gradient algorithm [38], an efficient method that can be
implemented without explicit construction of large matrices.
Appendix A details a convergent infinite series expansion of
Eq. (48). However, this approach yielded poor performance
compared to conventional numerical methods, and we did not
use it.

Algorithm 2 charts our conjugate gradient approach im-
plementation. Using this method, the objective function in
Eq. (44) converges to within ≈0.1% of its asymptomatic value
within 50 iterations. We also implemented an adaptive step-
size gradient descent method with similar performance, but
added complexity. Therefore, we use the conjugate gradient
algorithm to implement the full method reconstruction, both
for simulations and experimental data.

Algorithm 2: Conjugate gradient implementation solving 0 =
Qd − b. Here Q = α2 + �̄H†�̄

−1H and b = �̄H†�̄
−1m. This algo-

rithm assumes that �̄ and �̄ are diagonal matrices with entries given
by the vectors ξ̄ 2

j and σ̄ 2
j , respectively.

Data:
mx: Measured vector
Hk : Forward transform
ξ̄x: Normalized prior uncertainties
σ̄x: Normalized measurement uncertainties
α: Regularization parameter
L: Number of iterations

Result
dx: Data vector

// Initialize algorithm
bx = ξ̄ 2

x IFTx

(
H∗

k FTk

(
σ̄−2

x′ mx′
))

rx = px = bx

ε = r†r
// Implement algorithm
while L > 0 do
// Precompute Qp

Qp
x = ξ̄ 2

x IFTx

(
H∗

k FTk

(
σ̄−2

x′ IFTx′ (Hk′ FTk′ (px′′ ))
))

Qp
x += α2 px

γ = ε/(p†Qp)
dx += γ px

rx −= γ Qp
x

ε ′ = r†r
β = ε ′/ε
px = rx + βpx

L −= 1
end

C. Numerical comparison: Images

In this section, we numerically compare the reconstruc-
tion methods described above: the conventional spectral
“Tikhonov” method (Sec. III B 1), the ad hoc method
(Sec. III B 2), and the full method (Sec. III B 3).

We modeled PCI imaging of an anisotropic BEC with
1.2 × 105 atoms and Thomas-Fermi (TF) radii of Rx =
43.6 μm and Ry = 3.5 μm. In our model, we simulated
the imaging system described in Sec. IV with aberration
coefficients given in Table I, and we used representative
experimental measurement parameters (see Sec. V); both pho-
ton and atom shot noise were included as Poisson random
processes.

We use the same overall analysis procedure both for simu-
lated and experimental data:

(i) For each measurement j, we obtain three raw images
I ( j)
+ , I ( j)

0 , and I ( j)
D (for simulated data, I ( j)

D is not needed).
(ii) We compute the averaged dark frame ID = 〈I ( j)

D 〉, and
we remove it from the remaining images: I ( j)

+ → I ( j)
+ − ID and

I ( j)
0 → I ( j)

0 − ID.
(iii) To reduce noise and artifacts, I ( j)

PCA is reconstructed
using principal component analysis (PCA) techniques [39,40]
from the full set of {I ( j)

0 } j . For simulated data, there are no
imaging artifacts and I ( j)

PCA is replaced with a modeled shot-
noise noise-free probe.
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FIG. 2. Numerically modeled PCI images of 1.1 × 105 atoms
in a 3D Thomas-Fermi distribution as described in Sec. V. In all
cases, the modeling included photon and atom shot noise and used
parameters matching those in our experiments with probe detuning
δ̄ = 106, intensity Ī = 2.0, overall system efficiency of 0.6 (corre-
sponding to about 400 photoelectrons detected per pixel), a factor of√

2 added noise from the EMCCD’s electron-multiplication stage,
and a 20 μs pulse duration. Full images are depicted in the left
column, and vertical cross-sections are plotted in the right. (a) Image
following an ideal NA-limited imaging system. (b) Aberrated image
from an imperfect imaging system. (c) Reconstruction using the
Tikhonov method with α = 0.1. (d) Reconstruction using the ad hoc
method with α = 0.1. (e) Reconstruction using the full method with
α = 0.1. The dashed curve in each cross-section replots the ideal
NA-limited case for reference, and the dashed black ellipses denote
real-space window functions that are relevant both for reconstruction
(ad hoc and full method) as well as the computation of the PSD (ideal
imaging, imperfect imaging, and Tikhonov method).

(iv) We construct the PCI signal g( j)
PCI = 1 − I ( j)

+ /I ( j)
PCA.

(v) Except when otherwise stated, we apply a Fourier win-
dow to g( j)

PCI describing the known aperture to eliminate photon
shot noise present at wave vectors where no signal is present.

(vi) An image recovery technique of choice (or none at all)
is applied to g( j)

PCI.
The left column of Fig. 2 depicts modeled PCI data under

different conditions. Panel (a) begins by showing an image
from an ideal NA-limited imaging system, while (b) intro-

duces aberrations. Panel (c) shows that conventional Tikhonov
reconstruction using α = 0.1 gives significant added noise
and introduces small artifacts parallel to the main reconstitu-
tion [41]. Panels (d) and (e) show reconstructions from the ad
hoc and full methods, respectively, using an elliptical Tukey
window with major and minor axes (1.25 × Rx, 1.5 × Ry)
depicted by black ellipses, and Tukey parameter 0.25. Both
methods appear virtually indistinguishable from the ideal case
in (a). The vertical cross sections plotted in the right column of
Fig. 2 compare the uncorrected data and our three reconstruc-
tion methods to the ideal data in more detail; the regularization
parameter α = 0.1 was used in all cases. The uncorrected
data [(b) orange curve] bare virtually no resemblance to the
true signal (dashed curve), while the reconstructed signals
approximate the true signal with differing degrees of accuracy.
The Tikhonov method [(c) blue curve] accurately recovers the
overall shape of the desired distribution, but adds significant
noise; increasing α decreases the added noise at the expense of
reduced accuracy in the recovered signal. The ad hoc method
[(d) green curve] has greatly reduced noise but introduces
artifacts at the edge of the Thomas-Fermi distribution. Lastly,
the full method [(e) red curve] retains the low noise of the ad
hoc method while eliminating its artifacts, thereby recovering
the true signal with even increased accuracy. We note that
all three of these methods underestimate the PCI signal; this
results from the small signal linearization leading to Eqs. (33)
and (35). In principle this is not needed, but the resulting
minimization problem is nonlinear and beyond the scope of
this paper.

D. Numerical comparison: Correlations

Density-density correlations present in the fluctuations
(noise) of cold-atom images can be directly related to the
static structure factor [36]. As established in the previous
section, our ad hoc and full methods produce low noise
reconstructions; this section takes the next step by analyz-
ing correlations in these reconstructions. Here we quantify
structure in the fluctuations in terms of the PSD given by
PSD(δd) ≡ 〈|FT(δd)|2〉, where δd = d − 〈d〉 describes the
fluctuations observed in a single experiment. Artifacts in
the PSD introduced by imperfect imaging systems can be
compensated for [36]; however, previous work did not con-
sider refocusing images. It is far from clear if refocusing
techniques correct correlations. Indeed, contrast transfer func-
tions introduce correlations in otherwise uncorrelated noise
[13], potentially rendering these methods unsuitable for cor-
relation analyses. Figure 3 illustrates the viability of these
refocusing methods via simulations of systems with spatially
uncorrelated atom shot noise giving uniform PSDs.

The left panel in Fig. 3(a) plots the PSD resulting from an
ideal NA-limited imaging system evidencing a signal within a
central circle defined by the system’s NA, i.e., |k| < kNA. Out-
side this circle, the PSD takes on a nonzero background value
from photon shot noise. The central image plots the PSD when
no atoms are present, showing that the photon shot noise sig-
nal is constant, as is expected for spatially uncorrelated noise
unaffected by the microscope’s NA or aberrations. In these
simulations, the photon shot noise contribution is minimized
by applying the elliptical Tukey window plotted in Fig. 2(a).
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FIG. 3. Numerically modeled PSDs from images computed as in
Fig. 2 averaged over 200 repetitions. The left column of figures plots
the modeled PSD with atoms present, the next column is the PSD
computed with no atoms, and the third column shows their differ-
ence. The right column plots a horizontal cross-section through the
difference. (a) Ideal imaging system. (b) Aberrated imaging system
modeling experimental imperfections. These data were processed
with a window 10× larger along ey. To compare with the remaining
images, these data were simulated with a pulse duration increased
by a factor of 10 to an unrealistic 200 μs. Parts (c)–(e) show the
PSD computed following Tikhonov, ad hoc, and full reconstructions,
respectively.

In this way, photon shot noise from regions with no atoms
is eliminated. Lastly, the right image plots the atom-signal
alone, obtained by subtracting the PSD with no atoms (photon
shot noise only) from that with atoms (containing signal and
photon shot noise). The final panel plots a horizontal cross-
section illustrating the SNR ≈ 10 of the correlations.

Figure 3(b) plots the same quantities computed for our
aberrated imaging system showing the appearance of structure
in the PSD from aberrations. These data required a real-space
window function ×10 larger along ey to capture the full
diffraction pattern [Fig. 2(b)]. To compensate for the added
photon shot noise, we increased the imaging pulse duration
from 20 to 200 μs. In practice, this imaging time is unrealis-
tically large, so further averaging would be required instead;
this makes correlation analyses of highly aberrated PCI im-
ages impractical.
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FIG. 4. Noise analysis of integrated PSD. Each symbol marks
the PSD (computed as described in Fig. 3) integrated within the
NA-limited disk. The black, green, blue, and red data, respectively,
plot the results for ideal imaging, the Tikhonov method, the ad hoc
method, and the full method. The dashed lines show the expected
1/δ̄2 scaling of the PSD signal, with a factor of 2 scale factor
between the lines. The inset plots the standard deviation �PSD of
the integrated PSD over the ensemble of 200 images, with the gray
data resulting from the aberrated case.

Figures 3(c)–3(e) address the degree to which our reg-
ularization methods recover the PSD of the ideal imaging
system. Figure 3(c) shows that the Tikhonov method adds
significant structure to the photon shot noise background as
well as greatly reducing the SNR of the differenced PSD. By
contrast, (d) and (e) show that the ad hoc and full methods
imprint sequentially less structure to the photon shot noise and
recover the ideal PSD with increased fidelity.

Figure 4 plots the integrated PSD within the allowed NA
window as a function of detuning δ̄ along with a pair of dashed
lines showing the expected 1/δ̄2 scaling [42]. The dashed lines
differ only by a factor of 2, showing that the three reconstruc-
tion methods yield a signal about a factor of 2 below the ideal
case, resulting from the actual information loss in the process
of being aberrated. As was anticipated by the individual PSDs,
the Tikhonov (green) method exhibits excess noise somewhat
in excess of the ad hoc (black) and full (red) methods. The
reduced PSD signal of the reconstructions at small δ̄ result
from the PCI signal g′

π/2 > 1, invalidating the small-signal
approximation used in deriving the CTF. The inset plots the
standard deviation �PSD of the integrated PSD over an en-
semble of 200 images; all three reconstruction methods show
similar noise performance at small δ̄, and as noted above, the
Tikhonov method shows excess noise at large δ̄. The gray
symbols plot the noise of the aberrated case, which, due to the
×10 larger real-space window function, suffers from excess
photon shot noise. The knee in the aberrated data results from
a regime (small δ̄) where atom shot noise is a significant
contribution to a regime (large δ̄) where photon shot noise
dominates.

IV. ULTRACOLD ATOM MICROSCOPE

We imaged BECs at high resolution using an ultracold
atom microscope based on a single low-cost and high NA
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FIG. 5. Diagram of the ultracold atom microscope. The cold
atoms reside in a vacuum system with a square cross-section glass
cell with ≈50 mm sides. The NA = 0.32 objective lens maximizes
the NA given the constraint of the illustrated coil holders. Not shown
are three additional dichroic mirrors that center the probe beam on
the final lens and the EMCCD.

aspheric lens as the objective lens, shown in Fig. 5. The
optical system consisted of back-to-back Keplerian telescopes
with total magnification M = 36.3. The first stage used an
objective lens (L1, with focal length f1 = 31 mm, Edmund
Optics part number 49-115) with numerical aperture NA =
0.32 (larger NA is not possible in our apparatus because of
the coil holders shown in Fig. 5). The second lens (L2) with
f2 = 300 mm was an achromat with a 50.8 mm diameter,
selected to minimize vignetting effects. The second Keplerian
telescope consisted of a pair of lenses (L3 and L4) with focal
lengths f3 = 100 mm and f4 = 400 mm. The resolution of
our microscope, defined by the Rayleigh criterion [43], was
diffraction-limited with ≈0.61λ/NA = 1.5 μm at the imag-
ing wavelength of λ = 780 nm. An electron multiplying CCD
(EMCCD [44]) with 1024×1024 square pixels (with 13 μm
pixel size) was placed at the image plane located at the focus
of L4, where a diffraction-limited spot was about 4 pixels in
radius.

Our imaging system included an adjustable mask at the
intermediate image plane, allowing us to image elongated
atomic ensembles while leaving the majority of the sensor
dark. This enables repeated minimally destructive (ideally
quantum backaction limited) measurements of the same en-
semble, using the “fast kinetics mode” available on some CCD
sensors. All PCI images reported in this paper were taken with
the mask fully open, i.e., nonmasked and hence the mask is not
shown in Fig. 5.

We implemented PCI using a 25.4-mm-diam phase plate
(manufactured by Lexitek, Inc.) containing a phase dot 37 μm
in radius and 19.5 μm thick. This plate was positioned at the
Fourier plane of the second Keplerian telescope. The nom-
inally Gaussian probe beam, i.e., light which has not been
scattered by the atoms, was focused by L3 to a 26 μm 1/e2

radius in the phase dot. By contrast, the scattered light was
confined to a much larger ≈3.8 mm radius disk. As a result,
virtually all of the unscattered light traveled through the phase
dot, while nearly none of the scattered light did.

V. EXPERIMENTAL RESULTS

We imaged highly elongated 87Rb BECs in situ us-
ing PCI and PTAI. The N = 1.2(2) × 105 atom BECs
were created in the |F = 1, mF = 1〉 electronic ground
state, and were confined in an elongated crossed optical
dipole trap (ODT) with frequencies (ωx, ωy, ωz ) = 2π ×
[12.2(1), 153.2(3), 175.4(5)] Hz. We obtained N from the in
situ long-axis TF radius Rx = 43.6(9) μm [45], resulting in
Ry = 3.5(1) μm and Rz = 3.0(1) μm. In addition, we applied
the Castin-Dum scaling theory [46] to separately measured
time-of-flight (TOF) images, and we found N = 1.9(3) × 105,
which would imply an Rx = 48(2) μm that is inconsistent
with our in situ observations.

Our probe laser couples the ground |F = 2, mF = 2〉 state
to the excited |F ′ = 3, m′

F = 3〉 state. As a result, we trans-
ferred the atoms from |F = 1, mF = 1〉 to |F = 2, mF = 2〉
using a 68 μs resonant microwave pulse prior to PCI imag-
ing. For PTAI we used a weaker microwave pulse to transfer
≈10% of the population to |F = 2, mF = 2〉. In both cases,
the imaging pulse was 20 μs in duration and had intensity
I/Isat ≈ 2, where Isat ≈ 1.67 mW/cm2.

Our near-resonance “absorption imaging” measurements
were altered by the presence of a phase dot in our microscope.
The OD in this case is given by

ODAI(r⊥) = 1

2δ̄
g′

θ=π/2(r⊥), (51)

where we evaluated Eq. (26) assuming both OD � 1 and δ̄ �
1. Interestingly, this is the same expression as for PCI given in
Eq. (29), although the resulting signal is from absorption not
phase shift.

The remainder of this section proceeds as follows. First
we describe our experimental protocol extending Eq. (37) for
characterizing the microscope’s Fourier pupil function using
PSDs obtained from near-resonant PTAI images. We then
contrast high-resolution PCI images of our BEC reconstructed
using the standard Tikhonov method with those from our full
method. We conclude by applying our full method to in situ
imaging of the thermal to BEC phase transition, which is
difficult to resolve in our aberrated raw data.

A. Fourier pupil function measurements

We experimentally characterized the Fourier pupil function
of our ultracold atom microscope utilizing density-density
correlations and the BEC’s TF distribution. As discussed in
Sec. II C, PSDs provide information about aberrations present
in imaging systems. We extracted density correlations in the
fluctuations of cold-atom images and obtained experimental
PSD similar to the numerical model shown in Fig. 3(b). The
PSD contains no information about the antisymmetric phase
β− contributions to the pupil function, and instead we used
the difference between the reconstruction and the expected TF
distribution to constrain β−.

Our strategy for measuring the Fourier pupil function via
PSDs combines two critical elements to deliver increased pre-
cision. First, we obtained the PSD from in situ PTAI images.
As described in Sec. II B, PTAI introduces uncorrelated atom
shot noise to deeply degenerate BECs; the observed PSDs
then carry the imprint of our microscope’s aberrations upon
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a featureless background. Second, we deliberately defocused
our microscope by translating L4, the lens immediately pre-
ceding the EMCCD (see Fig. 5), away from the established
focal position at δzL4 = 0 cm. Changing the focus by a small
distance z adds a quadratic phase shift zk2

⊥/2k0 to the pupil
function as introduced in Sec. II C. Then PSD measurements
taken at different image planes differ only in their k2

⊥ terms.
Consequently, by performing a joint fit to a family of such
PSDs, we quantified the imaging system’s even-order aberra-
tions with increased precision.

1. Correlations fit function

Following the aberration model discussed in Sec. II C, we
employed a fit function that accounts for optical aberrations
as well as unwanted “surface effects” (including reflections,
along with losses within the optical elements) and aper-
ture limits. The attenuation parameter γ+(k⊥) = γ S

+(k⊥) +
γ A

+ (k⊥) describes the exit pupil apodization, where we have
introduced surface and aperture contributions γ S

+ and γ A
+ . Be-

cause our imaging system is well-aligned on the optical axis,
we assume γ−(k⊥) has no surface components, i.e., γ−(k⊥) ≡
γ A

− (k⊥). These variables allow us to reexpress Eq. (37) as

〈|δOD(k⊥)|2〉 ∝ e−2γ S
+(k⊥ )

{
1
2 [A2(k⊥) + A2(−k⊥)]

+ hDOF(k⊥)[A(k⊥)A(−k⊥)]

× cos[2β+(k⊥) + 2(ϕ − θ )]
}
, (52)

where A(k⊥) ≡ e−γ A (k⊥ ). We interpret A(k⊥) as a window de-
scribing the aperture [47]. We empirically determined A(k⊥)
based on prominent structures in the measured PSD that result
from the known experimental geometry of our apparatus. The
details of this procedure are given in the following section.

Second, we characterize the phase shift of the Fourier pupil
function using the polynomial representation

β(k⊥) =
∑
m,n

cmn

(
kx

k0

)m(
ky

k0

)n

. (53)

The PSD depends on β+, thus our fit function contains only
symmetric terms, i.e., those with even m + n. We thereby
model even-order aberrations such as astigmatism, defocus,
and spherical aberrations manifested in our microscope. Be-
cause our experimental aperture (described below) is not
circular, the conventional Zernike basis has no particular
meaning. While it would in principle be possible to construct
an orthogonal polynomial basis for our aperture, we adopt a
simple order-by-order polynomial expansion.

We performed a global fit of all 〈|δOD(k⊥)|2〉 measure-
ments discussed in the next section to Eq. (52) using the
following criteria. The degree of defocus is quantified by c20

and c02; these change by the same amount as δzL4 changes,
but the remaining cmn are fixed. As a result, the global fit
designates c20 and c02 as unshared parameters (constrained
to change by the same amount as δzL4 changes) while the
remaining cmn are held constant across the data sets. We
performed two supplementary measurements at δzL4 = 0 by
changing the detuning to δ̄ ≈ ±0.5. Equation (52) shows that
c00 = (ϕ − θ ) results from detuning and the PCI phase shift.

The fits to these supplementary measurements share all their
parameters with the δ̄ = 0 data set except c00.

The surface term in Eq. (52) is independent of δzL4

and δ̄, and we represent it as a Gaussian using γ S
+(k⊥) =

gS
2[(kx/k0)2 + (ky/k0)2], where gS is a shared fit parameter

in our aberrations model. Finally, following Eq. (14), the
DOF term hDOF is parametrized by the shared fit coefficient
cDOF ≡ wzk0/4, which depends on the thickness of the cloud
wz in the imaging direction. We include this effect in our
fits, but the resulting wz ≈ 18 μm is far from Rz, implying
that oscillatory structure is lost for reasons other than the
DOF effect. For example, the field of view discussion in
Appendix B implies such an effect.

2. Density correlation measurements

Figure 6 shows PSDs measured from in situ PTAI images
of BECs taken at a range of image planes (left half of plots,
i.e., ky < 0) along with a global fit to the aberrations model in
Eq. (52) (right half of plots, i.e., ky > 0). The best-fit values
for the shared parameters are reported in Table I. The defocus
parameters c20 and c02 are shown in Fig. 7 as a function of
δzL4 [48].

We determined the aperture term A(k⊥) for the fit via
the following procedure. The overall numerical aperture of
the main objective lens limits the maximum accepted wave
vector to kNA (dashed cyan arcs in Fig. 6) and thereby
〈|δOD(k⊥)|2〉 → 0 for |k⊥| > kNA. We observe a nonzero
background outside the NA circle, as expected from photon
shot noise. Our PSD measurements exhibit additional struc-
tures, and we focus on the pair at positive ky giving additional
limits to the effective vertical NA (because the PSD derives
from the Fourier transform of a real-valued quantity, the struc-
tures at ky < 0 replicate those at ky > 0). First, the horizontal
cutoff at ky ≈ 0.26 μm−1 results from an in-vacuum “atom-
chip” in our apparatus that intercepts wave vectors at large ky.
A second rectangle carved into the aperture results from screw
heads extending down from the atom-chip holder. Extending
the dashed cyan curves in Fig. 6 shows that the expected NA
limited disk is present for small |ky| where the atom-chip NA
limitations are not present. In our fit, A(k⊥) is modeled as a
window function that combines the NA disk of the objective
lens with the two additional vertical aperture limits resulting
from the atom-chip assembly at positive k⊥. While all the data
in Fig. 6(a) have NA limits from the atom-chip assembly, the
effects are most visible in (a), which is nearly in focus along
ey. We therefore determined the aperture window function
from the PSD signal in Fig. 6(a).

Equation (52) describes two key features of the aperture
limits that stem from the atom-chip assembly. First, although
only up-going scattered light is blocked by the atom-chip
assembly, we observe the atom-chip NA limit for both positive
and negative ky. In Eq. (52), the first term in curly brackets
is a symmetrized aperture that terminates the nonoscillatory
contribution to the PSD. This eliminates correlations outside
the kNA disk in the experimental data. In the second term, the
product A(k⊥)A(−k⊥) predicts that the oscillatory structure
given by cos(· · · ) terminates at the aperture boundaries. This
is observed at the aperture limit from the atom chip assembly
as well as the NA limit near ky = 0.
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FIG. 6. PSDs 〈|δODk⊥ |2〉 at differing degrees of defocus includ-
ing experimental data (left, ky < 0) and fits (right, ky > 0). These
data represent our full set of δzL4 values, and each measurement
was averaged over 100–200 images. The dashed arcs on the top and
bottom plot the NA limit |k⊥| = kNA expected for our objective lens.
The values for the model parameters in the fits are given in Table I
and Fig. 7.

The magnification of our microscope changes as a func-
tion of δzL4; at δzL4 = 0 cm the resolution is given by the
design magnification M = 36.3. We empirically identified the
magnification at each δzL4 �= 0 by aligning the observed and
expected NA circles. All of our data are presented including
these calibrated magnifications.

Similar to the simulated data analysis, photon shot noise
was subtracted from the experimental PSD to isolate the atom
shot noise. We begin by masking out the signal inside the
expected NA circle, where atom shot noise is dominant. We
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Offset in L4 position δzL4 (cm)
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0
,
c 0

2
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FIG. 7. Best-fit values for c20 and c02, extracted from fits to
PSD measurements, plotted as a function of δzL4. At the nominal
ex focal position δzL4 = 0 the coefficients are c20 = 24.9(5) and
c02 = −500(1).

then average the masked data along ky and subtract them from
the signal (eliminating structured noise along kx). Next we
repeat the same subtraction procedure by averaging along kx

(eliminating structured noise along ky).
As demonstrated in Fig. 6, our aberrations model, using

coefficients from our global fit, accurately characterizes our
microscope and consistently describes the observed aspects
in all PSD measurements. The imaging system is astigmatic:
Figs. 6(a) and 6(f) show data nearly focused along ey and
ex, respectively, where the c02 and c20 coefficients approach
zero in Fig. 7. Hence panel (a) has relatively little oscillatory
structure along ey, but significant structure along ex; this pat-
tern reverses progressively from (a) to (f) as δzL4 decreases.
The remaining data (g) and (h) show increasing oscillatory
structure in both directions as δzL4 becomes more negative.

Our global fit provides a measure of our phase dot’s
phase shift θ using c00 obtained for δ̄ = 0 along with
those measured at δ̄ = ±1/2. The best-fit values of c00 are
{1.510(6), 1.590(4), 1.812(5)} for detunings {0.5, 0,−0.5},
respectively. The fit function linearizes Eq. (26) around
a nonzero optical depth, avoiding the 1/δ̄ divergence in
the small OD expression. Combining these data gives θ =
−1.6(1) rad, which is in good agreement with the design
value of |π/2|, further demonstrating the accuracy of our
measurement protocol and aberrations model. We also note
that the resonance value obtained from c00 gives an offset of
δ̄ = −0.03(6) from that obtained by separately measuring the
Lorentzian absorption line shape with the phase dot absent,
which had uncertainty ±0.02; therefore, these values agree
within their respective uncertainties.

3. Determining antisymmetric pupil phase contributions

Imaging aberrations determined from PSD measurements
yield all components of the pupil function except the antisym-
metric β− described by the odd-order cmn parameters. In our
data, images reconstructed with β− = 0 have asymmetric dips
above and below the central density peak. We determined the

TABLE I. Best-fit parameter values. The shared global parameters gS, cDOF, and cmn (for n, m � 0 and even n + m) result from our PSD
fits. We additionally include c03 derived from coordinate space TF fits. All coefficients are dimensionless.

Parameter c00 c11 c03 c31 c13 c22 c40 c04 cdof gS

Value 1.590(4) −43.3(4) −0.52(2)×103 1.82(2)×103 2.71(3)×103 −0.26(4)×103 −1.85(2)×103 −3.35(2)×103 35.9(1) 3.033(2)
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FIG. 8. Final pupil wavefront model at δzL4 = 0 cm. (a) Pupil
phase wavefront mean and (b) standard deviation. The red dashed
curve outlines the complete aperture limit due to the ultrahigh-
vacuum apparatus geometry. Contour lines (black) are spaced
approximately every 8λ in (a) and λ/20 in (b).

c03 term by minimizing the difference between reconstructed
images and the expected TF distribution. We omitted the first-
order terms as they describe real-space translations. Because
our BEC’s density distribution is highly elongated along ex,
its spectral distribution contains only small kx components.
As a result, only coefficients c0m significantly alter the overall
density distribution. We then fit reconstructed images to the
2D TF distribution

ρ(y) = ρ0

[
1 −

(
x − x0

Rx

)2

−
(

y − y0

Ry

)2
]3/2

(54)

with c03 (the lowest-order remaining contributor to β−) in-
cluded as a fit parameter. The best-fit value for c03 is given in
Table I.

4. Final pupil model

Figure 8(a) presents our final model for the pupil phase
wavefront β evaluated at δzL4 = 0 cm. Figure 8(b) plots the
uncertainty δβ (k⊥) computed from our fits’ combined covari-
ance matrix (with a total of 41 parameters including shared
parameters) assuming a multivariate normal distribution of
parameters.

For a complete model of β, this would imply an rms wave-
front error 0.03λ associated with reconstructed images. In our
demonstrated fourth-order model, we were unable to model
the c12, c21, and c30 coefficients, which contribute unknown
wavefront errors, implying that 0.03λ is a lower bound for the
rms wavefront error of our reconstructions.

B. Digitally enhanced nondestructive imaging
with far-detuned PCI

With the aberrations of our ultracold atom microscope
quantified, we proceed to aberration compensation of images
of BECs taken in situ with far-detuned PCI. Figure 9(a)
presents the raw aberrated image, while (b) and (c) compare
reconstructions using the Tikhonov (with α = 0.1) and full
methods. The observed background noise in the aberrated
image (a) is consistent with that predicted by our numeri-
cal model [Fig. 2(b)]. The full method used a 2D elliptical
Tukey window function with semimajor and semiminor axes
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FIG. 9. Far-detuned in situ PCI images of BECs showing raw and
reconstructed signals. (a) Raw PCI signal at probe detuning δ̄ ≈ 106.
(b) Reconstructed PCI signal with the Tikhonov approach with α =
0.1. (c) Reconstructed PCI signal using the full method. For each
case, a vertical cross section is shown on the right.

(1.25 × Rx, 1.5 × Ry), and with Tukey parameter 0.25; Rx and
Ry are the TF radii determined in situ. The Tikhonov recon-
struction contains multiple artifacts and added noise, and as
discussed in Sec. III C, α in Eq. (49) presents a tradeoff: noise
is reduced, but the accuracy of the reconstruction is sacrificed.
On the other hand, the full method reduces both noise and
spectral artifacts while recovering the TF distribution with
increased accuracy.

Our reconstruction does not include the experimentally
determined aperture A(k⊥) in the contrast transfer function
h(k⊥). Both with experimental and simulated data, including
the rectangular structure from the atom chip assembly led to
significant artifacts in the ad hoc reconstruction and somewhat
degraded the performance of the full method.

In situ observation of BEC phase transition

Here we demonstrate an application of increased accuracy
of the full regularization method by directly and nondestruc-
tively observing condensate formation in a crossed ODT using
far-detuned PCI. Figure 10 reveals the BEC phase transition
in the refocused images (middle row) as we decrease the
ODT depth, cooling to lower temperatures from above the
critical temperature T > Tc in (a) to just below T � Tc in
(b) and to well below T � Tc in (c). We independently im-
aged the cold cloud in time-of-flight using AI to calibrate the
temperature.
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FIG. 10. Direct in situ observation of BEC phase transition. Top and middle: raw and refocused images with the same color scheme as
in Fig. 9. Bottom: horizontal cross sections for the raw (black) and reconstructed (red) data, and the fits (purple dashed) to 1D Gaussian,
bimodal, and TF distributions, respectively, for each regime. Each raw image was acquired at probe detuning δ̄ ≈ 106 and averaged over 20
images. (a) Thermal cloud at T > Tc. (b) Partially condensed system at T � Tc, with both thermal and condensate components visible. (c) Pure
condensate at T � Tc. (d) Condensate fraction measured from in situ images plotted as a function of temperature obtained separately from
TOF data, and the solid curve is a fit to the function described in the text.

In raw aberrated images (Fig. 10, top row) only very quali-
tative features of the density distribution are visible, stymieing
quantitative analysis. The bottom row of Fig. 10 compares
the horizontal cross-sections of raw images (black curves)
and refocused images (red curves) and the fits (purple dashed
curves) to the expected density profile for each case. We ob-
serve that the refocused data are generally in good agreement
with the expected thermal plus TF distribution. However, in
both cases with T < Tc we observe oscillatory structure in the
density around x ≈ −20 μm, potentially indicating a previ-
ously undetected fringe on our ODT laser beam. This structure
does not correlate with any features of the probe beam. Addi-
tional structure for x > 0 appears at higher temperature (both
here and in Fig. 9), which we interpret as arising from exci-
tations in moderate temperature quasi-1D BECs [49]. Lastly,
Fig. 10(d) shows the condensate fraction obtained from our
in situ nondestructively measured yet aberrated images, il-
lustrating the effectiveness of our reconstruction method to
yield images suitable for quantitative analysis. We fit the
measured condensate fraction to max ((1 − T/Tc)a, 0), where
a and Tc are fit parameters; this expression is valid both
for harmonically trapped and free noninteracting bosons. For
harmonic confinement in D � 2 dimensions, a = D, and for
free particles in 3D, a = 3/2. Our fit yields Tc = 136(20) nm,
and a = 1.4(6) is consistent with the free-space prediction;
however, given the known impact of interactions [50], this is
coincidental.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented a versatile high-resolution ul-
tracold atom microscope composed of two main components:
(i) an economical and practical imaging system based on
high NA off-the-shelf optics, and (ii) a high-fidelity digital
aberration removal technique that is compatible with a wide
range of imaging techniques. The combination of these two el-
ements yields an ultracold atom microscope that can be easily
integrated to existing cold-atom apparatus. This is in contrast
with quantum gas microscopes, which necessitate costly and

typically custom-designed optics. Imaging artifacts resulting
from the geometrical constraints of an existing vacuum system
or imperfections in the optical elements are mitigated using
our digital aberration removal technique. An important point
is that for NA � 0.25 compensation is required to account for
the vacuum windows; for example, using an uncompensated
NA = 0.6 objective in tandem with a vacuum cell requires
correction of some sort, either optical or digital. As such,
our high-resolution ultracold atom microscope is adaptable,
simple, and effective. Furthermore, our reconstruction algo-
rithms are not limited to cold-atom experiments, and they
can be applied in any case in which the real and imaginary
parts of the susceptibility are proportional to the quantity of
interest.

Our full method completely solves the minimization prob-
lem at the price of a numerically costly iterative algorithm.
We also showed that a simple ad hoc approximation leads to a
method with only slightly degraded performance, suitable for
real-time use in a laboratory setting.

All of our current implementations approximate the true
relationship between the detected signal and the ideal recov-
ered signal with a linear transformation that is valid only for
small signals. This leads to the visible underestimation of
the true density in the simulated reconstructions, which have
a peak signal g ≈ 1. Although it is doubtful that algebraic
progress beyond Eq. (44) can be made for the true nonlinear
transformation, we expect that nonlinear numerical methods
would be able to find the recovered signal without the small g
approximation. This would extend this method to be applica-
ble to the full range of available data.
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APPENDIX A: SERIES EXPANSION

The numerator of Eq. (48) can be evaluated using Fourier
methods, but because an inverse is required, the denominator
is difficult to evaluate. Reference [51] (see p. 186) showed that
nearly diagonal matrices have a compact series expansion that
in the present case allows for (somewhat) efficient evaluation.
One expression for the inverse is

(1 + J†J)−1 ≈ D−1 − D−1ND−1

+ D−1ND−1ND−1 − · · · ,

where D denotes any matrix of diagonal elements, where
1 + J†J = D + N. This whole expansion may be computed in
a straightforward manner, and while this method converges,
it does so slowly. The art in this method is in the selection
of D to give the most rapid convergence. We found superior
performance using the conjugate gradient method described
in the main text.

APPENDIX B: GRID SIZE AND PADDING

Our method acquires additional considerations when the
field of view is limited, i.e., when a significant fraction of the
aberrated diffraction pattern is outside the observed field of
view. Here we consider this case by analyzing Eq. (35).

In the general vicinity of some k0, the phase shift may be
Taylor-expanded as β(k0 + δk) ≈ β(k0) + δk · ∇kβ(k); thus

both terms in h(k) are approximated by displacement opera-
tors, with δx = ±∇kβ(k), for Fourier components centered
at k0. Our data consist of images with extent L; assum-
ing the object is centered on the image, this implies that
for δx > L/2 the information near k0 will not have been
detected.

Our algorithm uses standard Fourier methods with peri-
odic boundary conditions, in which case these components
will wrap around: a nonphysical behavior. To avoid this, we
require |∂kx,kyβ(k)| < L/2; when we discretize onto a momen-
tum lattice with spacing 2π/L, this implies

|β(k0 + 2π/L) − β(k0)| < π. (B1)

In other words, any phase change in a single momentum-space
pixel that is larger than π will give a signal outside the field
of view and should not be included. This is the Nyquist limit
associated with this signal.

In our implementation, we resolve this in two ways: (i) We
cap the gradient of the phase shift ∇kβ(k) as it approaches
the Nyquist threshold. (ii) If this is insufficient (for example,
if the Nyquist limit is violated inside the imaging aperture),
we pad the measurement m such that Eq. (B1) is satisfied,
and we set the inverse uncertainties σ̄−1 to zero at these
points, thereby assigning them zero weight in the objective
function.
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