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Wilson loop and Wilczek-Zee phase from a non-Abelian
gauge field
Seiji Sugawa 1,2,3✉, Francisco Salces-Carcoba 1,4, Yuchen Yue1, Andika Putra1,5 and I. B. Spielman 1✉

Quantum states can acquire a geometric phase called the Berry phase after adiabatically traversing a closed loop, which depends
on the path not the rate of motion. The Berry phase is analogous to the Aharonov–Bohm phase derived from the electromagnetic
vector potential, and can be expressed in terms of an Abelian gauge potential called the Berry connection. Wilczek and Zee
extended this concept to include non-Abelian phases—characterized by the gauge-independent Wilson loop—resulting from non-
Abelian gauge potentials. Using an atomic Bose–Einstein condensate, we quantum-engineered a non-Abelian SU(2) gauge field,
generated by a Yang monopole located at the origin of a 5-dimensional parameter space. By slowly encircling the monopole, we
characterized the Wilczek–Zee phase in terms of the Wilson loop, that depended on the solid-angle subtended by the encircling
path: a generalization of Stokes’ theorem. This observation marks the observation of the Wilson loop resulting from a non-Abelian
point source.
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INTRODUCTION
The seemingly abstract geometry of a quantum system’s eigenstates
now finds application in fields ranging from condensed matter and
quantum information science to high-energy physics. The Berry
curvature—a geometric gauge field present for a single (non-
degenerate) quantum state moving in any parameter space1—is a
prime observable associated with this geometry. The Berry phase is
the direct analog to the Aharonov–Bohm phase for motion along a
closed loop with the enclosed Berry curvature playing the role of a
magnetic field. Berry’s curvature and phase have been measured in
a variety of physical systems throughout physics and chemistry2–6,
and even have an analog for planetary-scale atmospheric waves7.
Monopoles, or conical intersections, singular points in the energy
landscapes of a range of physical systems5,8–11, where the curvature
diverges, play a crucial role in geometric effects, since particles
encircling the singular point can acquire non-zero Berry phase.
The Wilczek–Zee (W.-Z.) phase12 extends these ideas to include

non-Abelian “operator-valued” geometric phases possible for
adiabatically evolving systems with a degenerate subspace (DS).
Initial nuclear magnetic resonance experiments13,14 inspired
holonomic quantum computation utilizing the W.-Z. phase to
affect noise-resistant geometric quantum gates15–19. A non-
Abelian phase has been also studied and characterized in “non-
degenerate” multi-band optical lattice on non-cyclic paths at the
strong-force limit20. Despite the universality of Wilczek and Zee’s
concept and the tremendous theoretical and experimental
interest in synthetic non-Abelian gauge fields19,21–31, there has
been no realistic cold-atom scheme for robust control of non-
Abelian geometric phase in an adiabatic matter, nor measurement
of non-trivial gauge-independent Wilson loop on a closed path
that characterizes the non-trivial non-Abelian geometric phase in
cold-atom systems.
Here, we observed and characterized the W.-Z. phase in an

atomic Bose–Einstein condensate (BEC) as it underwent near-

adiabatic motion in a five-dimensional (5D) parameter space with
a non-Abelian Yang monopole at its origin32,33. Each point in this
synthetic dimensional parameter space defined the Hamiltonian
for four atomic hyperfine states, and the W.-Z. phase, governed by
a non-Abelian SU(2) gauge field, described the adiabatic response
within a spin-1/2 DS. We obtain the analog to Stokes’ theorem,
connecting W.-Z. phase to the solid angle subtended by a closed
path by characterizing the phase with gauge-independent Wilson
loop (WL)34.
This geometric process, shown in Fig. 1c, can be viewed as

moving a test particle in 5D around the Yang monopole, the
source of the SU(2) gauge field32,33. The Yang monopole is a non-
Abelian generalization of Dirac monopole35, and characterized by
a non-zero second Chern number. Our manuscript is organized as
follows: (1) we introduce the essential physics of the WL, (2)
describe our experimental setup. We then (3) show the non-
Abelian operator character of the W.-Z. phase factor using
quantum process tomography, and (4) characterize it in terms of
the gauge-independent WL. Lastly, (5) we comment on extensions
of these techniques to larger gauge groups, such as the SU(3)
gauge group of the strong nuclear force.
Although the usual Berry connection, the gauge potential

associated with the Berry curvature, is gauge-dependent1, both the
Berry phase and Berry curvatures are gauge-independent. Specifi-
cally, they are invariant under the local gauge transformation U= eiΦ
(q) for any choice of position-dependent phase Φ(q). In contrast, non-
Abelian extensions of Berry’s phase and curvatures need not be
gauge invariant. The WL, defined as trace of the W.-Z. phase factor
(non-Abelian holonomy) is a gauge-independent geometric quantity
that reduces to the Berry phase for a single non-degenerate state
(the WL is not uniquely defined: in the condensed-matter literature
the non-Abelian holonomy Û is used synonymously with the WL,
whereas in other contexts such as high-energy physics, trðÛÞ is
associated with the WL. Both conventions are present in the
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quantum-gas literature, and we have adopted the latter definition). It
was originally considered for the problem of quark-confinement34,36

and is often used in formulating gauge theories. In topological
quantum computation, the WL describes braiding evolution of non-
Abelian anyons37,38. Moreover, in crystalline systems—including both
conventional materials and synthetic quantum matter—the eigen-
spectrum of the WL can characterize the topology of multiple
Bloch bands20,39–41.
In the framework of differential geometry42, adiabatic motion is

described in terms of fiber bundles, where the fibers represent the
gauge degree of freedom. As the state adiabatically evolves, a
parallel transport condition sets the choice of basis state leading
to a vertical lift along the fiber (Fig. 1d). After tracing out a closed
loop C in space, the state will have evolved according to the
unitary transformation

ÛC ¼ P exp i
Z
C

Âq � dq
0
@

1
A; (1)

the W.-Z. geometric phase factor, i.e., the non-Abelian holon-
omy. Here P indicates that the exponential should be evaluated
in a path-ordered manner and Âq is a non-Abelian gauge field
(non-Abelian Berry connection). The cyclic property of the trace
makes the WL W ¼ trðÛÞ manifestly gauge-independent. Pre-
vious experimental work on a multi-band system in an optical
lattice characterized the matrix elements of the non-Abelian
holonomy along a non-cyclic path in crystal-momentum space
and reconstructed the gauge-dependent Wilson line20. Similar to
this work, we characterize the non-Abelian holonomy. However,
we measured its process matrices instead to include potential

imperfection in the analysis to prove the near-unity fidelity of
our robust control, in addition to the reconstruction of the WL.
We demonstrate that a gauge-independent WL on a closed path
can be fully tuned, in contrast to the previous study in multi-
band system20 where gauge-independent WL on a closed path
was trivial.

RESULTS
Experimental setup
We prepared 87Rb BEC with ≈ 1 × 105 atoms in F;mFj i ¼ 1;�1j i in
a crossed optical dipole trap formed by two horizontal 1064 nm
optical trapping beams. We engineered a non-Abelian SU(2)
gauge field with the BECs, using four F;mFj i hyperfine ground
states33: f 1; 0j i; 1;�1j i; 2; 0j i; 2; 1j ig respectively labeled
f 1j i; 2j i; 3j i; 4j ig. The 19.8 G bias magnetic field (with 2.5 ppm
long-term stability), resolved the rf and microwave transition
frequencies within the hyperfine states (Fig. 1a). As shown in
Fig. 1b, we coupled these states with rf and microwave fields
parameterized by two Rabi frequencies ΩA and ΩB with phases ϕA

and ϕB. We parameterize the coupling ratio ΩB=ΩA ¼ tan θ2 in
terms of an angle θ2. The system then evolved according to the
Hamiltonian

Ĥ ¼ � _

2

X5
i¼1

qi Γ̂ i; (2)

expressed in terms of the reduced Planck constant ℏ, and
the five Dirac gamma matrices Γ̂ i . In addition, the vector q= (q1,
q2, q3, q4, q5) defines coordinates in a 5D parameter space,
and is determined by laboratory parameters q1 ¼ �ΩB cosϕB,

Fig. 1 Experimental and conceptual schematic. a Experimental setup. A 87Rb BEC subject to uniform bias magnetic field was illuminated
with rf and microwave fields which coupled its hyperfine ground states. b Cyclically coupled four-level system realized with hyperfine ground
states of 87Rb. The total phase of the four complex coupling is π33. c W.-Z. phase measurement. A test particle encircling the Yang monopole
along a path C acquires a W.-Z. phase. (inset) Energy landscape. The synthesized Yang monopole is a singularity at four-fold degenerate point,
where the energy gap ΔE= 0. d Fiber-bundle description of the W.-Z. phase. Left: the vertical lift along the SU(2) fiber bundle describes the
W.-Z. phase. Right: The state evolution in our DS is represented by the trajectory of the Bloch vector. The final state differs from the initial state
by a factor of the holonomy.
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q2 ¼ �ΩA cosϕA, q3 ¼ �ΩA sinϕA, q4= δZ, and q5 ¼ �ΩB sinϕB.
The detuning δZ, from the linear Zeeman shift, is set to zero
throughout our measurement. The Hamiltonian can be repre-
sented by a 4-by-4 matrix by taking the four hyperfine states as
the basis, where the diagonal part shows the detuning, and the
non-zero off-diagonal elements show the coupling between the
hyperfine states. The resulting spectrum, insensitive to environ-
mental noise such as magnetic field fluctuations, always consisted
of a pair of two-fold degenerate energy manifolds with
eigenstates f "�ðqÞj i; #�ðqÞj ig for the ground-state manifold
(see Eq. 5) and f "þðqÞ

�� �
; #þðqÞ
�� �g for the excited state manifold.

Throughout this manuscript, the gap (ΔEðqÞ ¼ _jqj ¼
_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2
A þ Ω2

B

q
) is h × 2.0 kHz, and was measured by inducing

coherent Rabi-like oscillations between the eigenstates [see
“Methods” section]. Due to the two-fold DS, the underlying gauge
field Â is non-Abelian and has SU(2) symmetry. When q is
adiabatically changed along a closed path, the quantum state
evolves within the subspace and acquires W.-Z. phases.

Wilczek–Zee phase
The consequence of the acquired W.-Z. phase can be experimen-
tally captured by explicitly following an initial state as it evolves
within the DS as a result of adiabatically moving q in parameter
space. We demonstrated this by preparing an eigenstate
( "�ðq0Þj i ¼ 1=

ffiffiffi
2

p
1j i � 1=2 2j i þ 1=2 4j i) at q0= (−ΩB,−ΩA, 0, 0,

0) with θ2= π/4 in the ground-state manifold. After the state
preparation, we linearly ramped the rf phase (ϕA(t)= 2πt/T, where
T= 2 ms), tracing out a closed loop Cþ. We performed state
tomography within the DS to compare the initial and final states.
The state within the DS is described by the Bloch vector on a

Bloch sphere. The states before (blue) and after (red) the control
sequence are shown in the left panel of Fig. 2a. The Bloch vector is
rotated even though the final control parameters are the same as
the initial ones, manifesting the operator content of the W.-Z.
phase factor. This is striking in contrast with the Abelian Berry

phase, which would leave the orientation on the Bloch sphere
unchanged.
Geometric phases depend on ramp direction, however, for the

Abelian case reversing the ramp direction along the same closed
path simply inverts the sign of the phase. For the non-Abelian case,
this relation does not hold, indeed, the right panel of Fig. 2a shows
the final state is quite different when the ramp is reversed. We
denote motion along the same path in the reversed direction by C�.
The trajectories can be varied by changing θ2, with initial eigenstate
"�ðq0Þj i ¼ ð 1j i � cos θ2 2j i þ sin θ2 4j iÞ= ffiffiffi

2
p

. Figure 2b shows the
dependance of the final state on θ2 for both ramp directions. The
control vector q traces out a closed loop C in parameter space with
qðtÞ ¼ ð�ΩB;�ΩA cosð2πt=TÞ;�ΩA sinð2πt=TÞ; 0; 0Þ, a circle in
5-space subtending a solid angle Ξ ¼ 2πð1� sin θ2Þ with respect
to the origin. In the following sections, we will see that the states
resulting from the ± ramps can be related by process tomography
and WL measurement.

Quantum process tomography
We fully characterize the process of W.-Z. phase acquisition using
quantum process tomography43,44 within the ground DS. An
arbitrary transformation (operation) on a quantum system with an
initial density operator ρ̂ini can be described by the action of Kraus
operators K̂k : ρ̂fin ¼ P

k K̂k ρ̂iniK̂
y
k . The Kraus operators K̂k comple-

tely describe the whole process, and can be expanded by a
basis for operators fÊig as K̂k ¼

P
icki Êi , where ckið2 CÞ is the

coefficient. Thus, the density operator encoding the state within
the DS transforms as ρ̂fin ¼ P

i;j Êi ρ̂iniÊ
y
j χ ij , with weights given by

the process matrix χ ij ¼
P

kckic
�
kj . The process matrix χ completely

and uniquely represents arbitrary transformations. In our experi-
ment, the path-dependent process matrix χ describes the
transformation from the initial quantum state at q(t= 0)= q0 to
the final state at q(t= T)= q0, characterizing the W.-Z. phase
acquisition process including any potential experimental imper-
fection. Under ideal unitary evolution, each element χ ij ¼
trðÛÊiÞtrðÛÊjÞ�=4 is derived from the non-Abelian W.-Z. phase.
We experimentally obtain the process matrix χ by repeating the

measurement illustrated in Fig. 2 for four-independent initial
states ( Aj i ¼ "�ðq0Þj i, Bj i ¼ #�ðq0Þj i, Cj i ¼ ð Aj i þ Bj iÞ ffiffiffi

2
p

,
Dj i ¼ ð Aj i þ i Bj iÞ ffiffiffi

2
p

) and applying maximum likelihood estima-
tion to obtain a positive semi-definite and Hermitian matrix χ. We
took fÊig ¼ f̂I0; σ̂x; σ̂y; σ̂zg as the basis.
Figure 3a, b illustrates the reconstructed process matrices of the

non-Abelian W.-Z. phase obtained for the forward and the reverse
ramps at θ2= π/4. The two results for opposite ramps along
the same path show that the real part of χ takes almost the same
values, whereas the imaginary parts of χ have the opposite sign.
This trend can be explained from the definition of the W.-Z. phase
(Eq. (1)) satisfying the relation ÛCþ ¼ Û

y
C� and thus χ ijðCþÞ ¼

χ�ijðC�Þ for the process matrices of the non-Abelian W.-Z. phase.
The above behavior of the process matrix elements holds for
different coupling ratios (i.e., θ2) as shown in Fig. 3c, where
different non-Abelian W.-Z. phases are realized (see “Methods”
section). The result, which is in stark contrast to the Abelian Berry
phase, is in excellent agreement with the generalized relation
for holonomy.
The process matrix allows us to evaluate the fidelity of our

holonomic control within the DS. Using the analytical expression
for the non-Abelian holonomy ÛC , the fidelity of the process
shown in Fig. 3a, b reached as high as FCþ ¼ 0:98 for forward
ramp and FC� ¼ 0:96 for reverse ramp even for finite ramp time.
Here the fidelity is defined as F ¼ trðχthχÞ, where χth is theoretical
expected process matrix. This high fidelity then enabled us to
characterize the W.-Z. phase with high accuracy. It has been
argued that the non-adiabatic effect does not contribute to the
state evolution in the DS up to first order, even though the state
deflects from the adiabatic limit33,45.

a

b

Fig. 2 Acquisition of W.-Z. phase within the DS. a Bloch vector
within the DS before (blue arrows) and after (red arrows) adiabatically
following paths C ± , which traced the same loop with opposite
direction (inset). The initial Bloch vector was hσ̂i ¼ ð0; 0; 1Þ and the
path-dependent final Bloch vectors were hσ̂þi ¼ ð�0:62ð3Þ;
�0:70ð5Þ; 0:47ð2ÞÞ and hσ̂�i ¼ ð�0:68ð1Þ; 0:59ð5Þ; 0:40ð5ÞÞ. The
laboratory parameters are ΩA=ΩB= h × 1.4 kHz. b The angle
dependence of the final Bloch vectors for paths with forward ramp
(left) and reverse ramp (right). The dots are individual data and the
solid curves are the theory. The error bars show the standard
deviation of the data.
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Wilson loop
The above measurements depend on a choice of basis, i.e., of
gauge, whereas the WL does not. The absolute value of the WL is
jWCj ¼ 2

ffiffiffiffiffiffi
χ00

p
, derived from a single component of the process

matrix shown in Fig. 3. Figure 4 shows jWCj for forward (Cþ) and
reverse ramps (C�) as the path C is varied by changing the solid
angle Ξ(θ2). The expected relation jWCþ j ¼ jWC� j is evidenced in
experimental data, which also shows good agreement with the
analytical curve for adiabatic control. At Ξ= 2π (θ2= 0) our system
decomposes into two uncoupled two-level systems; the geometric
phase is ÛC ¼ �̂I0 and WC ± ¼ �2 results from the ± π Berry phase
of these two-level systems separately. The experimental result
shows the maximum change of the possible jWCj (from 0 to 2),
manifesting the non-Abelian nature of the geometric property.
Since the system is time-reversal (TR) invariant (our physical
system has a magnetic field present, so TR symmetry is not
present, however, a pseudo-TR is present. This distinction
was discussed in ref. 46), the global phase factor should be ± nπ
(n is an integer) making the WL real valued. Stokes’ theorem,

which equates the Berry phase to the enclosed Berry curvature, is
valid for the Abelian case, but not for the non-Abelian case. Still,
for closed circular paths on a hypersphere centered at the
monopole, the WL is WC ± ¼ 2 cosðΞ=2Þ, determined by the solid
angle subtended. Like the Aharonov–Bohm phase from a Dirac
monopole, equal to half the solid angle, the angle dependence of
the WL characterizes the Yang monopole (but is not proportional
to the solid angle, as would be implied by Stokes’ theorem).
We gained further insight to the WL using the eigenvalues of

the W.-Z. phase factor obtained from our measurements. Since
holonomy UC is unitary, its unit-magnitude eigenvalues expðiλjÞ
are given by the arguments λ1 and λ2. This immediately relates the
WL to the gauge-independent difference δλ= ∣λ1− λ2∣ via
jWCj ¼ 2j cosðδλ=2Þj. Figure 4b shows the phase difference
inferred from WL measurements in good agreement with the
theory. The inset illustrates that for our TR invariant system,
the real-valued WL implies λ1=−λ2 and shows that the WL
directly provides the eigenvalues of W.-Z. phase factor up to a nπ
phase uncertainty.

c

a b

Fig. 3 Quantum process tomography. a, b Reconstructed process matrices χij of the non-Abelian holonomy ÛC for a forward and b reversed
ramps at θ2= π/4. The real part (Re[χij]) and the imaginary part (Im[χij]) are shown separately. Values in brackets are theoretical. The fidelity of
the geometric process reached FCþ ¼ 0:98 and FC� ¼ 0:96 for forward and reversed ramp, respectively. c Process matrix components (χij) for
forward (left panels) and reverse (right panels) ramps for different W.-Z. phase realizations. The top panel shows the real parts [χ00 (red),
χxx (green), χzz (purple), χxz (blue)] and the bottom panels show the imaginary parts [χ0x (red), χ0z (orange)]. We note that χ is Hermitian. The
solid curves are the theory. Matrix components that are constantly zero in the theory are not shown for clarity.
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DISCUSSION
Our experiment realized Wu and Yang’s Gedanken experiment47

to apply the generalized Aharonov–Bohm effect to the SU(2)
isospin doublet of neutron and a proton, as an isospin gauge field
detector. Such experiments remain impractical for probing the
standard model’s combined U(1) × SU(2) × SU(3) gauge symmetry,
but further progress in quantum analogs such as ours can shed
light on the operation of such experiments. An exciting next step
in this direction would be creating a monopole source of a SU(3)
gauge field (requiring a three-fold degenerate manifold), in analog
to the Dirac monopole’s U(1) gauge field (for a single non-
degenerate state) and the Yang monopole’s SU(2) gauge field (the
two-fold degenerate manifold discussed here).
Our experiments demonstrated essentially the full set of high-

fidelity SU(2) holonomic control in a subspace that was protected
against environmental noise and imperfections. In the Bloch
sphere picture, the process can be regarded as holonomic single-
qubit gate operation15, where the Bloch vector is rotated by an
angle of ± 2π sin θ2 around an axis ð� cos θ2; 0; sin θ2Þ depending
on the path C ± . Universal operation are possible with a more
general path for Eq. (2), since there is no experimental limitation in
our implementation. We note that our four-level system can be
used to code two qubits simultaneously—one per degenerate
manifold—this may have application for redundant encoding, or
possibly even independent holonomic control.
This scheme forms a building-block broadly applicable to a

wide range of systems including trapped ions, superconducting

qubits28, NV centers and other solid-state spins. Applications in
this broader setting include precision measurement (e.g., magne-
tometry48), quantum gate operations, and quantum simulation
using adiabatic W.-Z phases46.

METHODS
Atom preparation and atom number counting
Bose–Einstein Condensates (BECs) of rubidium-87 of ≈1 × 105 were
prepared in a crossed optical dipole trap formed by two horizontal 1064
nm optical trapping beams with the trapping frequencies (fx, fy, fz) ≈ (50,
110, 70) Hz, where the y-axis is along the direction of gravity. Initially, the
BECs were prepared in the 1;�1j i state. Atoms were then transferred to
prepare a superposition state of 1; 0j i and 2; 0j i by rf and microwave
pulses, which is the ground state of our Hamiltonian in Eq. (2)
at qN= ∣qN∣(0, 0, 0, 1, 0). The bias magnetic field of 19.8 G pointing along
the z axis was stabilized for long-term drift at 2.5 ppm.
We performed an absorption imaging and Stern–Gerlach measurements

to resolve the atoms in the hyperfine ground states. After the rf and
microwave control were finished, we abruptly turned off the optical dipole
trap beams for time-of-flight (TOF). During the TOF, a magnetic field
gradient pulse was applied to perform Stern–Gerlach measurement, which
separated atoms in 1; 0j i and 2; 0j i from those in 1; 1j i and 2;�1j i in
space. We imaged the atoms in F= 2 manifold by illuminating a probe
pulse resonant to 5S1/2, F= 2→ 5P3/2, F= 3 transition after TOF of 23.2 ms.
A short repump laser pulse resonant with the 5S1/2, F= 1→ 5P3/2, F= 2
transition was applied before the probe pulse in order to image atoms
in F= 1 and F= 2 manifolds. When we focused on the state in ground DS,
we apply a π-pulse resonant with the microwave transition 1; 0j i $ 2; 1j i
to swap the population between the two states right before the TOF and
only measure atoms in the F= 2 manifold. This allowed us to measure
the relative population (N↑− N↓)/(N↑+ N↓) with a single shot image. Here
N↑(N↓) is the atom number in "j i ¼ 1; 0j ið #j i ¼ 2; 0j iÞ state before the
microwave π-pulse was applied.

The Dirac matrices
As the representation of the Dirac matrices, we take Γ̂1 ¼ σ̂y � σ̂y ,
Γ̂2 ¼ Î0 � σ̂x , Γ̂3 ¼ �σ̂z � σ̂y , Γ̂4 ¼ Î0 � σ̂z and Γ̂5 ¼ σ̂x � σ̂y . Here σ̂i ; ði ¼
x; y; zÞ are the Pauli operators, Î0 is the identity operator, and⊗ is the
Kronecker product. The left (right) Pauli operators in the products operate
on the F= {0, 1} (∣mF∣= {0, 1}) space. Each Dirac matrix has eigenvalues
of ±1, each of which is two-fold degenerate.

Pulse control for state preparation and state mapping
For state preparation and mapping, we applied rf and microwave pulses
with the same coupling configuration as in Fig. 1b. The unitary operator
corresponding to these operations can be expressed using the following
time-independent Hamiltonian.

ĤmapðqÞ ¼ � i_
2
ðI0 � σzÞðq1Γ̂1 þ q2Γ̂2 þ q3Γ̂3 þ q5Γ̂5Þ: (3)

Note that only the relative phases of the cyclic coupling are different from
the Hamiltonian in Eq. (2) with zero detuning (q4= 0). The unitary
evolution during the pulsing is then

Ûtransðt;qÞ ¼ expð�iĤmapðqÞtÞ; (4)

where t is the pulse duration, and the state oscillates at a period determined by

the energy gap (ΔE). For tprep ¼ π=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2
A þ Ω2

B

q
Þ, the basis states at qN, which

are "j i ¼ 1j i and #j i ¼ 3j i, are mapped to "�ðq0Þj i and #�ðq0Þj i at ϕA=ϕB

= 0, respectively. For tmap ¼ 3π=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2
A þ Ω2

B

q
Þ, the basis states at q along C,

which are "�ðqÞj i and #�ðqÞÞj i, are mapped back to "j i and #j i, respectively.
The former pulse operation (Ûtransðtprep;q0Þ ¼ Ûprep) is applied for preparing
the eigenstates at q0 before the phase ramp, whereas the latter
(Ûtransðtmap;qÞ ¼ Ûmap) is applied after the phase ramp along the loop C to
read out the state.

The basis states for the DS
We take the following eigenstates for the basis of the ground DS at q
for the region in parameter space we have experimentally explored (δ= 0,

Fig. 4 Wilson loop. a jWC ± j for forward (WCþ , blue diamonds) and
reverse (WC� , red circles) ramps are plotted along with theory (solid
curve). At Ξ= 0 (θ2= π/2), the circular paths reduce to a point,
which we trivially measure with T= 0 ms (green diamond). b The
phase difference of the eigenvalues of W.-Z phase factor jδλC ± j
obtained from the WL measurement in a, with the same symbols.
Inset: In the complex plane, the eigenvalues appear on the unit
circle (pink and green points), and sum to WC (red arrow).
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ϕB= 0, ϕA ∈ [0, 2π], θ2 ∈ [0, π/2]),

"�ðqÞj i ¼ ð 1j i � e�iϕA cos θ2 2j i þ sin θ2 4j iÞ= ffiffiffi
2

p

#�ðqÞj i ¼ ð� sin θ2 2j i þ 3j i � eiϕA cos θ2 4j iÞ= ffiffiffi
2

p (5)

Using the basis states, the pure state within the DS at q is described by

ΨðqÞj i ¼ c" "�ðqÞj i þ c# #�ðqÞj i; (6)

which can be represented by a two-component spinor Ψ ¼ ðc"; c#ÞT, where
∣c↑∣2+ ∣c↓∣2= 1 is met.
Each eigenstate can be prepared by applying the cyclic coupling pulse

as described above to one of the bare spin states.

"�ðqÞj i ¼ Ûtransðtprep;qÞ "j i;
#�ðqÞj i ¼ Ûtransðtprep;qÞ #j i;

(7)

where "j i ¼ 1j i and #j i ¼ 3j i is the basis state of the ground DS at qN.
Therefore, the four initial eigenstates ( Aj i, Bj i, Cj i, and Dj i) at q0 can be
prepared by applying the pulse for the duration tprep with the parameter
vector q0 to the states "j i, #j i, ð "j i þ #j iÞ= ffiffiffi

2
p

, and ð "j i þ ij#Þ= ffiffiffi
2

p
,

respectively. For the state mapping, the basis states of the DS at q can
be mapped to the bare spin states.

"j i ¼ �Ûtransðtmap;qÞ "�ðqÞj i;
#j i ¼ �Ûtransðtmap;qÞ #�ðqÞj i;

(8)

Quantum state tomography
After the state acquired the W.-Z phase, we measured the final state within
the DS by evaluating the Bloch vector ðhσ̂xðqÞi; hσ̂yðqÞi; hσ̂zðqÞiÞ. Here the
Pauli operators are defined from the basis states of the DS at q.
Using the state mapping procedure described above, the target Bloch

vector is obtained by performing state tomography for the superposition
states in the microwave clock transition ( 1; 0j i $ 2; 0j i). The z-component
was obtained from the population imbalance (N↑− N↓)/(N↑+ N↓). The x or
y-component was obtained by rotating the Bloch vector with a π/2-pulse
with an appropriate microwave phase before measuring the population
imbalance.

Quantum process tomography using maximum likelihood
estimation
Quantum process tomography is a scheme to characterize the unknown
quantum process by the knowledge of final output states for different
input states. This information is used to reconstruct the process matrix that
characterizes an arbitrary transformation. To determine χ, d2 linearly
independent input states are required for a d-dimensional Hilbert space.
For our DS with d= 2, four inputs states, Aj i; Bj i; Cj i; Dj i are taken as a set
of inputs. In order to the find physical process matrix χ that represents the
W.-Z. phase from our measurement, we adopted maximum likelihood
estimation in the quantum process tomography. For the process matrix to
be physical, we define χ as

χ ¼ T yT=trðT yTÞ; (9)

where T is the lower triangular matrix of the form

T ¼

t1 0 0 0

t5 þ it6 t2 0 0

t11 þ it12 t7 þ it8 t3 0

t15 þ it16 t13 þ it14 t9 þ it10 t4

2
6664

3
7775 (10)

where ti, (i= 1, . . . , 16) is real. We define a minimizing function f(t) as

f ðtÞ ¼
X
j

ρ̂fin;j �
X
m;n

Êmρ̂iniÊ
y
n

T yT
trðT yTÞ

� �
mn

( )
j

2
4

3
5
2

; (11)

where t= (t1, t2,⋯ , t16), j ∈ {A, B, C, D} distinguish the four initial states in
the W.-Z. phase measurements, ρ̂ini ¼ jj i jh j, and ρ̂fin is the density operator
for the state after it traced out the (open or closed) loop C. An average of
measurements was used for each ρ̂fin;j . We numerically minimize f(t) for the
parameter vector t to obtain optimum T and the process matrix χ.

Synthetic non-Abelian SU(2) gauge field and Wilson loop
Consider a quantum system with a Hamiltonian ĤðqÞ that depends
continuously on the position vector q= (q1, q2,… ). The system is

described by eigenstates and eigenenergies

ĤðqÞ ΨnαðqÞj i ¼ EnðqÞ ΨnαðqÞj i; (12)

where ΨnαðqÞj iðα ¼ 1; 2; ¼ ;NαÞ is Nα-fold degenerate eigenstate with
energy En forming an Nα-fold DS. For quantum states in a single energy
level En, a gauge potential called the Berry connection

Aαβ
qm
ðqÞ ¼ ihΨαðqÞj∂=∂qmjΨβðqÞi; (13)

is encoded in the systems’ eigenstates, where Aαβ
qm

is the mth component
of the vector gauge field A represented as Nα-by-Nα matrix. Here, we
omitted n in the l.h.s. for simplicity, and the matrix indices take α, β ∈ {1, 2,
… , Nα}. The gauge field (Berry connection) is non-Abelian when two
components of the gauge field do not commute with each other.
Now, we consider the gauge field for the Hamiltonian in Eq. (2). We

focus on the parameters relevant to the experiment (ΩA ¼
Ω cos θ2;ΩB ¼ sin θ2; δZ ¼ 0, and ϕB= 0). The non-Abelian SU(2) Berry
connection for the two-fold degenerate ground states is

AϕA
ðqÞ ¼ 1

2

cos2θ2 eiϕA sin θ2 cos θ2
e�iϕA sin θ2 cos θ2 �cos2θ2

� �
¼ ðcosϕA sin θ2 cos θ2σx � sinϕA sin θ2 cos θ2σy þ cos2θ2σzÞ=2:

(14)

From the definition in Eq. (1), we obtain W.-Z. phases factors and Wilson
loops (WLs) for the paths C ± ,

UC ± ¼ � cosðπ sin θ2Þ± i sin θ2 sinðπ sin θ2Þ ∓ i cos θ2 sinðπ sin θ2Þ
∓ i cos θ2 sinðπ sin θ2Þ � cosðπ sin θ2Þ ∓ i sin θ2 sinðπ sin θ2Þ

� �
:

(15)

WC ± ¼ �2 cosðπ sin θ2Þ: (16)

The physical process can be regarded as holonomic single-qubit gate
operation, where the two eigenstates of the degenerate level are taken as
the qubit basis states and the Bloch vector representing the qubit is
rotated by an angle of ±2π sin θ2 around an axis ð� cos θ2; 0; sin θ2Þ. The
dependence on the ramp direction for the W.-Z. phase factors (ÛCþ ¼ Û

y
C� ),

and the WLs (WCþ ¼ W�
C� ) can be clearly seen. Both the W.-Z. phases factor

and the WL do not depend on Ω, thus they are robust against fluctuation
in the coupling strength. By varying the rf phase ϕA, the SU(2) WL covers
the full range (�2 � WC � 2), realizing various non-Abelian SU(2)
holonomic controls.

Wilson line for an open path (theory)
In the following, we give an argument on non-cyclic W.-Z. phase and
Wilson line for an open path. The definition for non-cyclic W.-Z. phase and
Wilson line are essentially the same as the cyclic case, except the integral is
taken over for an open path C.

WC ¼ trðÛCÞ ¼ tr P exp i
Z

C
Âq � dq

� �� �
; (17)

where Â is non-Abelian Berry connection.
Consider a spinor state vector Ψj i representing the state within the

degenerate subspace (DS). Under local gauge transformation, the
wavefunction transform as

Ψj i ! V̂ðqÞ Ψj i; (18)

where V̂ðqÞ is a position-dependent unitary operator. This can be regarded
as a change in the basis states for the DS. Accordingly, the non-cyclic W.-Z.
phase factor transforms as

ÛC ! V̂ðqfÞÛCV̂
yðq0Þ; (19)

where q0 and qf are the start point and endpoint of the open path C,
respectively. Manifestly, the r.h.s depends on the unitary operators, V̂ðq0Þ
and V̂ðqfÞ. When the trace is closed (q0= qf), the Wilson line is equivalent
to the WL and is gauge-independent.
For our experimental parameters for Wilson line measurement in Fig. 5

(δZ= 0, ϕB= 0 and θ2= π/4), the non-cyclic non-Abelian W.-Z phase and
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Wilson lines along a segment are

UC ¼
eiϕ=2 cos ϕ

2
ffiffi
2

p
	 


� iffiffi
2

p sin ϕ
2
ffiffi
2

p
	 
h i

ieiϕ=2 sin ϕ
2
ffiffi
2

p
	 


=
ffiffiffi
2

p

ie�iϕ=2 sin ϕ
2
ffiffi
2

p
	 


=
ffiffiffi
2

p
e�iϕ=2 cos ϕ

2
ffiffi
2

p
	 


þ iffiffi
2

p sin ϕ
2
ffiffi
2

p
	 
h i

0
B@

1
CA;

(20)

WC ¼
ffiffiffi
2

p
sin

ϕ

2

� �
sin

ϕ

2
ffiffiffi
2

p
� �

þ 2 cos
ϕ

2

� �
cos

ϕ

2
ffiffiffi
2

p
� �

: (21)

Here we took the basis in Eq. (5) for the matrix representation.

Wilson line for an open path (experiment)
We show measurement on the Wilson line on open paths by observing non-
cyclic W.-Z. phases. The non-cyclic W.-Z. phases are defined by simply replacing
the closed path for the integral in Eq. (1) with an open path C. The Wilson line,
defined as the trace of the non-cyclic W.-Z. phase factor, is not gauge-
independent, and thus it depends on the choice of the basis at both ends of
the path. The experimental procedure is the same as the WL measurement,
except the rf phase ramp is halted at variable phase ϕA=ϕ ranging from 0 to
2π. After preparing the eigenstates at q0, we ramp the control vector as
qðtÞ ¼ ð�ΩB;�ΩA cosð2πt=TÞ;�ΩA sinð2πt=TÞ; 0; 0Þ for t= [0,ϕT/2π] until
the control vector reaches qf ¼ ð�ΩB;�ΩA cosϕ;�ΩA sinϕ; 0; 0Þ. The final
state within the DS at qf is always mapped to the DS at q=q0 for the state
tomography. By performing the process tomography for the four-independent
initial eigenstates, the process matrix of the non-cyclic non-Abelian geometric
phase is reconstructed in the same manner as in Fig. 3 for each phase. Figure 5
shows the obtained Wilson lines from the reconstructed process matrices for a
choice of the basis states based on our experimental procedure. The Wilson
line is trivially WC ¼ 2 at ϕ= 0 and becomes gauge-independent at ϕ= 2π
where the trajectory is closed.
The whole unitary process including the state preparation and the state

mapping processes can be viewed as a local gauge transformation of the
W.-Z phase: ÛC ! VðqfÞÛCVyðq0Þ ¼ �ÛmapðϕÞÛCÛprep, where V(q) is a
position-dependent unitary operator, and Ûprep (Ûmap) is a unitary operator
that represents the pulse that maps the state within the DS at qN (qf) to the
state within the DS at q0. This clearly illustrates that the Wilson line is
gauge-independent only when qf= q0, where it becomes equivalent to
the WL.

Non-adiabatic effect due to finite ramp time
Although we have focused on evolution within the ground-state manifold,
a small fraction of atoms can be populated to the excited state manifold
due to the finite ramp time. We experimentally confirmed this by

measuring the fraction of atoms in the excited state manifold. After the
state mapping, we evaluated the fraction Ne/(Ne+ Ng), where Ne ¼
N 2j i þ N 4j i is the atom number in the excited state manifold, Ng ¼
N 1j i þ N 3j i is the atom number in the ground-state manifold, and N ij i is the
atom number in the bare spin state ij i; ði ¼ 1; 2; 3; 4Þ. The observed
fraction of atoms, which depends on the initial state is negligibly small, and
consistent with the numerical simulation (Fig. 6a). The dependence of the
excited atomic fraction on the initial state can be understood by the state-
dependent nature of the state deflection due to the local non-Abelian
gauge field33. Longer ramp time led to a smaller fraction in the excited
state manifold as confirmed by the numerical simulation (Fig. 6b).
Experimentally, the fidelity of our holonomic control is expected to be
degraded for a longer ramp time due to the small but finite energy gap
opening in the nearly-degenerate levels, which we assume to be about 1%
of the energy gap of the system.
Surprisingly, the fidelity in the W.-Z. phase measurement within the

DS is robust against a small non-adiabatic effect. Figure 7 shows the
numerically obtained fidelity of the W.-Z. phase by varying the ramp
time. For our experimental parameters with θ2 = π/4, the fidelity reaches
0.998% at T= 2 ms.

Measurement of the energy gap
The energy gap can be clearly measured by inducing coherent Rabi-like
oscillations between the eigenstates. Figure 8 shows that the time
evolution of the population imbalance (Ne− Ng)/(Ne+ Ng) after abruptly
turning on the cyclic coupling described by the Hamiltonian in Eq. (2).

Fig. 5 Wilson line. Absolute values of measured Wilson line ∣W(ϕ)∣
for open paths with variable path length characterized by rf phase
range ϕ. The theory curve (solid line) is also shown. The inset
illustrates the control sequence for Wilson line measurement of a
segment from q0 to qf on a circular loop. After preparing one of the
eigenstates at q0, the rf phase ϕA is ramped from 0 to ϕ. The red and
green curves represent the pulse controls for the state preparation
and the state mapping for the read-out. The laboratory parameters
are ΩA=ΩB= h × 1.4 kHz.

a

b

Fig. 6 Excited-state population after the W.-Z. phase acquisition.
a Experimentally and numerically obtained excited state population
at T= 2 ms for θ2= 11π/36. Experimental data for the paths Cþ
(green points) and C� (purple points) compared with numerical
simulation for the paths Cþ (green bar) and C� (purple bar).
b Fraction of atoms in the excited state manifold after the state
acquired W.-Z. phase along C� numerically simulated for the four
initial states at θ2= π/4. The four states are Aj i (red), Bj i (blue), Cj i
(green), and Dj i (purple). Due to finite ramp time T for tracing out
the loop, the non-adiabatic effect is non-negligible when the ramp
rate becomes comparable to the scale of the energy gap (ΔE= h ×
2 kHz).
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Since the system has only two eigenenergies, the state oscillates between
the ground and excited eigenstates at the frequency determined by the
energy gap.

DATA AVAILABILITY
The data are available from the corresponding author upon reasonable request.
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