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Coherence and decoherence in the Harper-Hofstadter model
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We quantum simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry—
three sites in circumference—using an atomic Bose-Einstein condensate. In addition to the usual transverse
(out-of-plane) magnetic flux, piercing the surface of the tube, we threaded a longitudinal flux �L down the axis
of the tube. This geometry evokes an Aharonov-Bohm interferometer, where noise in �L would readily decohere
the interference present in trajectories encircling the tube. We observe this behavior only when transverse flux
is a rational fraction of the flux quantum and remarkably find that for irrational fractions the decoherence is
absent. Furthermore, at rational values of transverse flux, we show that the time evolution averaged over the
noisy longitudinal flux matches the time evolution at nearby irrational fluxes. Thus, the appealing intuitive
picture of an Aharonov-Bohm interferometer is insufficient. Instead, we quantitatively explain our observations
by transforming the HH model into a collection of momentum-space Aubry-André models.
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Understanding how and when closed quantum systems lose
or retain coherence is a central intellectual and practical ques-
tion for quantum technologies. For example, modern optical
atomic clocks operate in highly optimized decoherence-free
subspaces created by using “clock” states [1] that are insen-
sitive to the environment, as well as using lasers at magic
wavelengths and polarizations that give only common mode
energy shifts. In rare cases, such as collisional narrowing [2]
or environment assisted tunneling [3], random processes can
enhance coherence. Here we add to this list the quasiperiodic
lattice described by the Harper-Hofstadter (HH) model [4,5]
in a highly-elongated tube geometry—a 1D quasicrystal—by
showing that the dynamics can be made immune to environ-
mental noise.

Ultracold atomic gases in optical lattices can mimic
Aharonov-Bohm (AB) phase factors using the optical phase
of interfering laser beams [6,7]. Even in units of the magnetic
flux quantum �0 = h/q, these systems realize large tunable
magnetic fluxes � = a2B/�0 per lattice plaquette, where h,
q, a, and B denote Planck’s constant, charge, lattice constant,
and a uniform magnetic field, respectively. Planar geometries
[8–10], narrow Hall ribbons [11,12], and even tubes [13,14]
have been realized in experiment. In the tube geometry, the
longitudinal flux �L threading the tube has significant physi-
cal consequences [15,16]. For example, adiabatically ramping
�L by one flux quantum would drive one cycle of Laughlin’s
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topological charge pump [17] that can probe both noninteract-
ing and many-body topological systems [18].

The HH model was initially formulated to describe elec-
trons moving in a 2D crystalline lattice with a transverse
magnetic field; in terms of the AB phase � the HH
model is

Ĥ = −Js

∑
m,n

ei(2π�n+φ) |m + 1, n〉 〈m, n|

− Jx

∑
m,n

|m, n + 1〉 〈m, n| + H.c. (1)

For isotropic tunneling Js = Jx, the resulting “Hofstadter but-
terfly” energy spectrum was one of the first quantum fractals
ever predicted [5]. In planar geometries a uniform Peierls
phase φ has no physical consequence; however, for a tube
M sites in circumference [M = 3 depicted in Fig. 1(a)], the
uniform Peierls phase contributes Mφ/(2π ) to the longitu-
dinal flux �L [19]. Using the synthetic dimension approach
[11,12,20], we assembled our 2D lattice by combining the
sites of a 1D optical lattice with three internal atomic states
to respectively define the longitudinal (ex) and azimuthal (es)
directions of our tube. We performed interference experiments
[Fig. 1(a)] akin to AB interferometers: Particles prepared at
site m = 1 along es, but extended along ex, were released and
potentially interfered as they rapidly encircled the tube.

In this Letter, we report three key observations summarized
in Fig. 1(b), where 〈·〉 denotes the average over φ ∈ [0, 2π ),
and 〈·〉t marks the time average. (i) For rational transverse
flux � = P/Q (expressed in reduced form), the time-evolving
population in each m site depends strongly on φ and therefore
exhibits large uncertainties, as one would expect for an AB
interferometer. (ii) This dependence decreases with increasing
Q and vanishes for irrational �. (iii) The φ-averaged dy-
namics at rational � are equal to those at nearby irrational
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FIG. 1. Schematic and summary of results. (a) The HH model
in the tube geometry. (b) Average fractional population 〈Pm=1〉 at
� = 2/3 (i) and � = 2/3 − 1/141 (ii), along with their difference
(iii). The pink uncertainty bars denote the standard deviation from the
mean across 14 to 22 experimental runs and result from the sensitiv-
ity to φ along with technical noise from: variations in magnetic field,
Raman coupling strength, and rf field strength, along with statistical
detection uncertainties. The dark blue curves and error bands plot
our numerical simulations. (c) Numerically simulated phase noise
sensitivity quantified by the normalized variance time averaged over
the range [0, 1.8] ms. (d) Raman coupling scheme and schematic of
experimental setup. The optical lattice beam was retroreflected form-
ing a standing wave. The Raman beams were orthogonally polarized
and collinear with the lattice beams.

�. In all cases, our numerical simulations are in excellent
agreement with our observations. While we experimentally
probed � near 2/3, these observations are generalized by
the numerical simulation shown in Fig. 1(c) that plots the
time-averaged sensitivity to φ; this curve is approximated by
an everywhere discontinuous Thomae-like function [21]. Our
system’s spatial extent w limits the degree to which � can
be distinguished to ≈a/w, broadening the otherwise singular
peaks.

Implementation. We performed these experiments using
87Rb BECs in the |5S1/2, F = 1〉 electronic ground state man-
ifold in a crossed optical dipole trap [22]. The longitudinal
Thomas-Fermi radius RTF = 11.5(5) μm was obtained both
by direct in situ imaging and mean-field driven expansion
[23]. We used continuous dynamical decoupling (CDD) to
eliminate the magnetic field sensitivity [24,25] of this man-
ifold’s three |mF 〉 states, giving three dressed |m〉 states

that served as sites along es, with m = 0, 1, 2. Our experi-
ments took place in a B0 ≈ 31.47 G bias field, along with
a resonant 22.1 MHz radio-frequency (rf) magnetic field Brf

with 150 kHz Rabi frequency for CDD. The resulting en-
ergy differences δεm ≡ εm − εm+1 in the CDD basis were
(δε0, δε1, δε2) = h × (−308.3, 118.6, 189.7) kHz.

A retroreflected λL = 532.008(5) nm laser beam along ex

defined our tube’s longitudinal sites |n〉 with spacing a =
λL/2, and the V = 5.0(1)EL lattice depth set the tunnel-
ing matrix element Jx = 0.066(2)EL. Here, EL = h̄2k2

L/(2Ma)
and kL = 2π/λL are the single-photon recoil energy and wave
vector, respectively, for atoms with mass Ma. A pair of Ra-
man laser beams [Fig. 1(d)] resonantly coupled the |m〉 states
with equal strength �R = 0.296(6)EL, providing hopping
Js = 0.111(3)EL along es. Raman 2 contained three frequency
components εR + δεm in the CDD basis to realize the cylin-
drical geometry, and εR + δε2 was removed to realize a planar
geometry. Because |m = 2〉 was Raman coupled to |m = 0〉,
we adopt periodic labels, i.e., |m〉 ≡ |mod(m, 3)〉. Since � =
kR/kL [26], with Raman recoil wave vector kR = 2π/λR, we
tuned � = 2/3 + 	� by varying the Raman wavelength λR

from 770.94(1) nm (	� = 2/87) to 806.46(1) nm (	� =
−1/141). The tuning range was limited by the increasing
power requirement as the detuning from the excited states
increased. Each experimental run randomly sampled a Peierls
phase φ uniformly distributed from 0 to 2π , by phase shifting
the CDD rf field Brf [27].

We began with BECs in |m = 1〉, adiabatically loaded into
the ground state of the optical lattice, and initiated dynamics
by abruptly introducing Js for a time t up to 1.8 ms, when
the lattice, Raman, and dipole trap lasers were simultaneously
extinguished. During the subsequent 21 ms time of flight
(TOF) we applied a magnetic field gradient to spatially sep-
arate atoms in the three |m〉 states. We then used absorption
imaging to detect the resulting density distribution, yielding
the longitudinal momentum distributions of each |m〉 state.

Model. We quantitatively analyze our experiment by
Fourier transforming the HH Hamiltonian along ex giving
Ĥ = ∑

q0
ĤAA(q0) with

ĤAA(q0) = −2Jx

∑
j

cos
[
2π

(
j� + q0

2h̄kL

)]
| j〉 〈 j|

− Js

(
eiφ

∑
j

| j + 1〉 〈 j| + H.c.

)
, (2)

labeled by crystal momentum q0. Each ĤAA(q0) is a re-
alization of the 1D Aubry-Andrey (AA) lattice [29] with
nearest-neighbor hopping strength Js, sinusoidal potential
with depth 4Jx, and phase set by q0. The sites of this
AA lattice | j〉 ≡ |m0 + j, q0 + j� × 2h̄kL〉 are labeled by
azimuthal site index m along with longitudinal crystal mo-
mentum q. As shown in Fig. 2(a), the sinusoidal potential
originates from Raman transitions changing the crystal mo-
mentum by 2h̄kL� as m is incremented, in effect sampling
the lowest band of the longitudinal lattice. For rational �,
each ĤAA(q0) describes a ring [Fig. 2(b)] of size NAA =
LCM(M, Q) (LCM denotes the least common multiple) since
|m0 + NAA, q0 + NAA� × 2h̄kL〉 coincides with the initial
state |m0, q0〉. For irrational � (incommensurate potential) the
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FIG. 2. Momentum space AA model. (a) Lowest band of the
longitudinal lattice. The filled gray curve represents a Gaussian
wave packet of width 0.064 × 2h̄kL. The hollow and solid green
rectangles, horizontally spaced by 2h̄kL, are equivalent points.
The arrows mark Raman-induced coupling starting in | j = 0〉 =
|m0 = 1, q0 = 0〉 with 	� = 1/30. (b) AA ring corresponding to
(a). The bottom panel zooms into the section −5 � j � 5. The
rectangles marking the on-site energy resulting from sampling the
dispersion in (a), are colored in accordance to their |m〉 state, and
the gray bars indicate the discretely sampled Gaussian wave packet.
(c) TOF data taken at t = 1.506 ms show the momentum distribution
associated with each |m〉 site. Each crystal momentum state of the
longitudinal lattice consists of momentum states that are imaged
as horizontally spaced diffraction orders with spacing 2h̄kL. The
synthetic lattice sites are resolved vertically; the diffraction orders
in these sites are shifted by 2h̄kL� for each synthetic hopping event
as expected from (a).

AA model is 1D quasicrystal with a prototypical metal (Js >

Jx) to insulator (Js < Jx) transition [30,31], and at criticality
Js = Jx it is a quantum fractal, showing features of quantum
chaos [32].

We focus on the case relevant to our experiment, with M =
3 and initial site m = 1. Given the BEC’s RMS spatial ex-
tent w ≈ 0.46RTF = 20(1)a (Appendix A), the corresponding
momentum-space density distribution had RMS width wq ≈
h̄/(2w) = 4.0(2) × 10−3 × 2h̄kL, schematically indicated by
the gray Gaussian in the left panel. The azimuthal tunneling
from Raman coupling induces transitions (tan arrows) that
change the crystal momentum by 2h̄kL�, as well as imparting
the phase φ. Together with �, the momentum space width
wq specifies the initial occupation of AA lattice sites: Every
third AA site potentially samples the initial wave packet until
3 j|	�| × 2h̄kL � wq when the site’s crystal momentum falls
outside the initial wave packet. A representative AA lattice
is shown in Fig. 2(b) where the gray bars result from sam-
pling the filled gray curve in Fig. 2(a). In the AA model’s
metallic phase, where our experiments took place, amplitude
ballistically expands from each initially occupied site, while
in the insulating phase it remains exponentially localized near
each initial site [31]. When 3|	�| × 2h̄kL � wq, the AA
ring contains multiple initially occupied sites; as the system

evolves, amplitude originating in different sites can overlap
and interfere. In contrast, for 3|	�| × 2h̄kL � wq, interfer-
ence is absent due to lack of initial adjacent occupancy. Any
interference depends strongly on φ, which appears in the
tunneling term of Eq. (2). We quantify the degree of interfer-
ence by the normalized variance var[Pm(t )]/〈Pm(t )〉2, which is
proportional to

∑
j 	=0 S(3	� j × 2h̄kL), for 3|	�| × 2h̄kL �

wq [Eq. (D8)]. S(δq) ≡ | ∫ dqψ∗(q + δq)ψ (q)|2 is the static
structure factor, and ψ (q) is the momentum-space wave
function.

Discussion. Figure 3 summarizes our data for three values
of 	� and compares the experimental data with our numeri-
cal modeling using parameters obtained from fits to the data in
Fig. 1(b). These parameters are within the uncertainties (Ap-
pendix C) of independent calibrations. To achieve quantitative
agreement with our data, we include a phenomenological de-
phasing parameter obtained from fitting the decaying sinusoid
of Fig. 3(a). The top row depicts the AA lattice along with the
initial state (gray bars), showing the transition from multiple
sources for 	� ≈ 0, to a single isolated source for 	� =
1/84. In the ribbon case [Fig. 3(a)], the disconnected links
in the lattice, resulting from removing the Raman coupling
between |m = 0〉 and |m = 2〉, prevent any potential interfer-
ence, and the φ sensitivity vanishes for all transverse flux �.

The second row of Fig. 3 plots the three diffraction peaks
in the range −1/2 < q/(2h̄kL) < 1/2, derived from our TOF
data [see Fig. 2(c) for example]. When 	� was small enough
to allow interference between atoms originating from different
AA lattice sites [Figs. 3(b) and 3(c)], the corresponding crystal
momentum difference between different paths to the same
order is too small to be resolved. When 3|	�| × 2h̄kL � wq,
the momentum difference became resolvable, causing each
order in the TOF image to fragment into multiple overlapping
suborders. In the ribbon case, only three orders are present
irrespective of 	�.

The third row of Fig. 3 compares the observed fractional
population in the initial state Pm=1 for individual measure-
ments without averaging (top) with the prediction of our
model (bottom). The experimental data is highly variable
only for small 	� with a manifestly non-Gaussian distribu-
tion. The noisy dynamics begin at t ≈ π h̄/(3Js ) = 0.185 ms
when population was significantly transferred out of the initial
state, and interference became possible [33]. The numerical
model fully captures the observed spread of data, its time de-
pendence, and even the non-Gaussian distribution, including
singular features, i.e., caustics [34]. The ribbon case lacks
interference and exhibits only technical noise.

The time-averaged normalized variance [Fig. 4(a)] exhibits
a sharp peak at � = 2/3 for the tube geometry, despite being
featureless for the ribbon geometry. The measured time de-
pendence of the normalized variance, shown in Fig. 4(b), is
peaked at 	� = 0 for all times but with variable amplitude.
In both cases, the numerical calculations [Fig. 4(c), and solid
curve in Fig. 4(a)] are nearly indistinguishable from the data.
Lastly, the φ-averaged time evolution for both experiment
[Fig. 4(d)] and numerics [Fig. 4(e)] shows no feature at 	� =
0 where the noise feature is maximal in Figs. 4(b) and 4(c).
This can be directly understood with the HH model which, by
a suitable change of φ, transforms site n to n = 0 [Eq. (1)]. For
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FIG. 3. Representative data. Each column depicts a value of 	�, from 0 (showing significant φ dependence) to 1/84 (showing negligible
φ dependence), along with a ribbon geometry as a control case. The top row depicts representative AA lattices | j = 0〉 = |m0 = 1, q0 = 0〉
for each 	�, along with the initial wave packets calculated from RTF = 11.5 μm (gray bars). The AA lattice schematic for 	� = 0 was
calculated with 	� = 1/10 000 since the AA ring only has three sites at 	� = 0. The middle row shows TOF data for each case measured at
t = 1.506 ms. Since diffraction orders outside q/(2h̄kL ) ∈ [−1/2, 1/2) replicate those inside, with amplitude governed by the Wannier orbitals
of the longitudinal lattice [28], we focus on the regime inside. The bottom row plots the time evolution of single experimental run data (top)
and histogram of the predicted trajectories for all φ (bottom). The shaded regions mark t < 0.185 ms.

irrational transverse fluxes, the system uniformly samples φ,
leading to spatially self-averaged time evolution. Although in-
dividual systems at rational flux lack the spatial self-averaging
effect, averaging over φ recovers the uniform sampling in the
irrational case, resulting in similar mean time evolution as
nearby irrational fluxes (Appendix D 3).

Outlook. The realization of the HH model in the highly-
asymmetric geometry proved an ideal testbed of the phenom-
ena in this study, and the choice � ≈ 2/3 minimized the
distance between the adjacent initially occupied AA lattice

sites for M = 3. The onset time for noisy dynamics should
increase with M, and if M were comparable to the longitudinal
extent, we would not have observed any phase sensitivity
within the experimental time scale.

Our AA model makes additional predictions beyond the
experimental observations presented here. At longer evolution
times than in our experiments, AA rings in the metallic phase
with just one initially occupied site can exhibit long-time
interference as amplitude fully encircles the ring. While this
work did not address the question of giving φ explicit time

FIG. 4. 	� dependance. (a) Phase sensitivity characterized by the time averaged normalized variance is plotted for the fully connected
(black) and fragmented (gray) AA rings. The solid line results from the numerical simulation of the full model with RTF = 11.5 μm, with
baseline shifted by the averaged value of the experimental data away from the peak. Normalized variance (b) and mean time evolution
(d) data were linearly interpolated from unequally spaced transverse fluxes probed experimentally. (c) and (e) are their corresponding numerical
simulations, respectively.
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dependence, we might expect that the dynamics will be un-
changed, provided that both Js and Jx are large compared to
the energy shift from the effective electric field ξdφ/dt , over
the extent of the AA localization length ξ . If true, this would
be a new type of quasidisordered-stabilized decoherence-free
subspace.

It is worth noting that spatially 1D systems, in which inter-
action and correlation effects become important—a Hall tube
like ours— may host exotic topological and magnetic states
[35–39]. We hope our study will inspire more research in such
systems.
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APPENDIX A: EXPERIMENTAL DETAILS

Each experiment began with a BEC of 87Rb in a
far-detuned crossed dipole trap, with trap frequencies
( fx, fy, fz ) ≈ (44, 53, 159) Hz in |F = 1, mF = −1〉 sub-
level, where F and mF are the total atomic and magnetic
angular momentum, respectively. Owing to the central role
of the system size in our discussion, we independently deter-
mined the longitudinal Thomas-Fermi radius RTF of the BEC
using both TOF and in situ images. We used the Castin-Dum
equations [23] to obtain RTF = 11.6(5) μm from TOF images.
In addition, digitally refocused in situ images [40,41] gave
RTF = 11.4(6) μm. Because these two measurements share
the same magnification, their uncertainties are correlated and
take the average RTF = 11.5(5) μm.

The rf field for the dynamical decoupling Brf [Fig. 1(d) in
the main text] was assigned a randomized phase just prior to
adiabatically loading the atoms into the |m = 0〉 pseudospin
state. This mapped the |mF = −1,+1, 0〉 magnetic sublevels
to the |m = 0, 1, 2〉 pseudospin states [24], which are insensi-
tive to the magnetic field and facilitate cyclic Raman coupling
[42]. The magnetic field B0 and rf strength �rf were stabilized
using the procedure detailed in Sec. A 2. We then applied an
rf π pulse to prepare the atoms in the |m = 1〉 state. This
field was linearly polarized in the direction orthogonal to both
Brf and B0. We removed any remaining atoms in |m = 0〉
by transferring them to the F = 2 hyperfine manifold and
blowing them away with a resonant light pulse. Meanwhile,
the atoms were adiabatically loaded into the 1D optical lattice
with a ramp duration of 200 ms. We then studied dynamics by
switched on the Raman coupling for the evolution time t , at
which point the Raman, optical lattice, and dipole trap beams
were suddenly extinguished, initiating TOF.

To achieve the momentum and pseudospin resolved imag-
ing, we reversed the process of loading the atoms into the
rf dressed states. Namely, during the 21.3 ms TOF, we adi-
abatically ramped down the magnetic field and then ramped

�rf to zero. As a result, states |m = 0, 1, 2〉 mapped back to
|mF = −1,+1, 0〉, respectively, which were then separated
using the Stern-Gerlach effect with a bias field perpendicu-
lar to the lattice beam propagation direction. The absorption
image in Fig. 2(b) in the main text does not show the |m〉
states in the same relative positions as they appeared on our
camera (|m = 1〉 and |m = 2〉 states were switched for logical
clarity). Additionally, due to the high magnetic field gradient
applied, a harmonic potential perpendicular to the bias field
stretches |mF = +1〉 and compresses |mF = −1〉 states by
3 ∼ 4%. The optical density profiles of |mF = ±1〉 sublevels
were rescaled such that the distances between the neighboring
orders, equal to the two-lattice-photon recoil momenta, were
the same for all three sublevels.

1. Raman setup

The Raman beams were almost collinear with the coun-
terpropagating optical lattice beams, with the lattice beam
bisecting the angle β = 0.34(6)◦ between the two Raman
beams. In this configuration, the transverse flux per lattice
plaquette was � = kR cos[β/2]/kL ≈ kR/kL. The tiny angle
β was introduced to avoid retroreflected beams off of com-
mon optics. The Raman beams were carefully aligned such
that there was no momentum transfer along the transverse
direction making the dynamics of our system essentially one-
dimensional.

We locked the relative phase between Raman beams, the
optical lattice beams, and Brf . We detected the beatnote of the
two Raman beams in the vicinity of the retro mirror of the
optical lattice. The beatnote had two or three frequency com-
ponents corresponding to the two or three Raman transitions.
The |m = 0〉 ↔ |m = 1〉 transition had the largest intensity
and was relatively far from the other transitions, and was
therefore chosen as the locking frequency. The local oscillator
was taken from the same direct digital synthesized (DDS)
signal generator as Brf , such that the rf field for the dynamical
decoupling and the Raman beatnote were in phase. We applied
feedback to applied to the Raman beam with one frequency
component [Raman 1 in Fig. 1(d) in the main text]. In the
rotating frame, the energy differences between the two Raman
beams were δεm ≡ εm − εm+1, where m = 0, 1, 2. In the lab-
oratory frame, they are δεm − εrf , so the beatnote frequencies
were ≈22 MHz [25].

2. Magnetic field and rf locks

We then applied two microwave pulses of duration Tμw =
100 μs, separated by 1/60 s to partially transfer ∼5% of
the atoms to |F = 2, mF = −1〉 sublevel. At the locking
point, the two pulses were blue and red detuned by 1/(2Tμw )
from the resonance. The lock point Block ≈ 3.137 mT gave
an rf frequency ωrf/(2π ) = 22.1 MHz resonant with the
|F = 1, mF = −1〉 ↔ |F = 1, mF = 0〉 transition. The error
signal was the imbalance of the two transfers

ε = OD(1)
int − OD(2)

int

OD(1)
int + OD(2)

int

,

where OD(i)
int, i = 1, 2, was the integrated optical density of

the two images. This error signal drove a slow proportional-
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integral-differential (PID) lock that set the magnetic fields in
subsequent reputations of the experiment. Our procedure ex-
tends earlier work [43], and for further specifics see Ref. [44].

After the atoms were transferred to |m = 0〉 state, we
used a similar technique to stabilize the strength of the rf
field �rf . The microwave pulses drove the transition with the
largest sensitivity to �rf and the least sensitivity to the B0,
namely, from |m = 0〉 to the state that asymptotically goes to
|F = 2, mF = −2〉 with decreasing magnetic field.

APPENDIX B: REDUCTION TO HH MODEL

We start with the full Hamiltonian

Ĥfull =
[

h̄2k̂2

2Ma
+ VL

2
cos(2kLx̂) + Vext (x̂)

]
⊗ 1̂

+
[∑

m

δm |m〉 〈m|
]

(B1)

−
[∑

m

�R,m

2
ei(2kRx̂+φ) |m + 1〉 〈m| + H.c.

]
,

describing the light-matter interaction of our three-state atoms
of mass Ma including a state independent confining potential
Vext (x̂). In our experiment, we measured the V = 5.0(1)EL lat-
tice depth by suddenly applying the lattice potential and fitting
the resulting Kapitza-Dirac time evolution [45]. We obtained
the Raman coupling strength �R,m = �R = 0.296(6)EL by
separately measuring the Rabi frequencies of each transition
and adjusting them to be equal within our uncertainties. This
process was repeated each time we changed the wavelength of
the titanium sapphire laser producing the Raman laser beams.
The parameters δm = 0.00(2)EL describe detuning from Ra-
man resonance. The stated uncertainties include the variation
across the measured transverse fluxes.

The ground-band behavior of Ĥfull can be approximated by
the tight-binding HH Hamiltonian

Ĥ (φ̄) = −Jx

∑
m,n

|m, n + 1〉 〈m, n|

− Js

∑
m,n

ei2π (�n+φ̄) |m + 1, n〉 〈m, n| + H.c., (B2)

where in analogy to the relation between the Planck constant h
and h̄ ≡ h/(2π ), we define φ̄ ≡ φ/(2π ). We connected these
two models by numerically solving the first term in Eq. (B1)
to obtain the ground-band Wannier orbitals w0(x − na) for
each lattice site n, from which we obtained the longitudinal
tunneling strength

Jx = −
∫

dx w∗
0 (a)

[
− h̄2

2Ma

d2

dx2
+ VL

2
cos(2kLx̂)

]
w0(0)

= 0.066(2)EL.

We then projected the second term in Eq. (B1) to the low-
est band subspace giving the synthetic dimension tunneling
strength

Js = �R

2

∫
dx|w0(x)|2e2ikRx = 0.111(3)EL,

where the integral defines a Lamb-Dicke suppression factor,
equal to 0.75 for our lattice depth.

APPENDIX C: SIMULATIONS

All of the numerical simulations presented in the main
paper were complete real space 1D discrete variable represen-
tation (DVR) simulations of the full light-matter Hamiltonian
[46]. Here we compare full-system simulations to those of
the reduced Hofstadter model and show: (1) Their qualitative
time evolution is the same, but after long times their behavior
differs quantitatively, and (2) the predicted peaks in normal-
ized variance as a function of � are indistinguishable. We
used a real space DVR method rather than momentum space
band structure approach for two reasons: (1) band structure
simulations are not possible for irrational flux, since there is
no periodic potential, and (2) our observed noise signature
depended critically on the spatial extent of our system.

Our simulations of noninteracting atoms included a har-
monic potential Vext that served to define the spatial extent of
the ground state wave function

ψHO(x) ∝ exp

[
−1

2

( x

�HO

)2
]
,

with harmonic oscillator length �HO. Because the static struc-
ture factor S(q) governs the coherence peak width, we selected
the frequency of the harmonic potential frequency so the
RMS width of S(q) from the numerical simulation was equal
to that resulting from n(x) ∝ [1 − (x/RTF)2]2, the 1D pro-
file derived by integrating a 3D Thomas-Fermi profile along
both transverse directions. This yields the harmonic oscilla-
tor length �HO = 20

√
2πRTF/77 ≈ 0.651RTF giving a spatial

density profile with RMS width w = �HO/
√

2 ≈ 0.460RTF.
The associated widths in momentum space are κHO = 1/�HO

with a momentum-density RMS width wq = 1/(2w). With
this definition of the potential, every term in both the light
matter Hamiltonian and the HH Hamiltonian are fully defined.

We validated our calibrations by performing least squares
fits to the data in the middle panel of Fig. 1(b), in-
cluding P0(t ) and P2(t ), for a ring-coupling geometry
at 	� = −1/141, as well as the data in Fig. 3(d) for
the ribbon geometry. The resulting best fit coefficients
(�R,0,�R,1,�R,2) = (1.04, 0.98, 0.98)�R and (δ0, δ1, δ2) =
(0, 0, 0.02)EL are consistent with the uncertainties of our in-
dependent calibrations. All of our simulations include a single
phenomenological fitting parameter τ = 1.5(2) ms, obtained
only from the fit to the ribbon geometry data, to capture the
slow decay of the observed coherent evolution.

We conclude with a side-by-side comparison of the dynam-
ics of these two descriptions, as depicted in Fig. 5, with the
full light matter simulation in (a) and the HH description in
(b). Firstly, the time-averaged noise variances, plotted in the
first row as a function of �, are indistinguishable confirming
that our key observation is a property both of our true physical
system as well as the reduced HH model. The second and third
rows display the time evolution of the initial state probabil-
ity Pm=1(t ) and the noise variance, respectively. These data
show that the time evolution of these simulations shares the
same dynamical time scale and qualitative features but differ
markedly in their quantitative evolution. Still in both cases,
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FIG. 5. Full and reduced model comparison. (a) Simulation us-
ing the full light matter Hamiltonian and (b) simulation using the
reduced HH Hamiltonian. Both cases modeled a 1.8 ms evolution
time. The first row plots the normalized variance averaged over
the evolution time as a function of �. The second row plots the
occupation probability Pm=1(t ) of the initial state, as a function of
both � and t . The third row shows the normalized variance, as a
function of both � and t .

the probability Pm=1(t ) shows no feature associated with the
peak in the noise variance.

APPENDIX D: AA LATTICES IN MOMENTUM SPACE

To analytically describe the variance of the time evolution
in our experiments, we reduce the 2D HH model to a col-
lection of independent 1D AA models. We begin by Fourier
transforming the real dimension

|m, n〉 =
∫ 1/2

−1/2
dq e−i2πqn |m, q〉 , (D1)

to realize a series of AA lattices in momentum space:

ĤAA(qi ) = − 2Jx

∑
j

cos[2π (qi + j�)] | j; qi〉 〈 j; qi|

− Js

(
eiφ

∑
j

| j + 1; qi〉 〈 j; qi| + H.c.

)
.

In the main text, we approximated irrational transverse fluxes
by nearby rational numbers within the finite resolution of the
system. Here, we instead approximate rational numbers by
nearby irrational numbers. In this case, each AA Hamiltonian
ĤAA(qi ) describes an infinite chain and the total Hamiltonian
Ĥ sums over an infinite set of such AA chains, where the

crystal momentum qi is written in units of two-photon re-
coil momenta 2h̄kL. Here, both the pseudospin and crystal
momentum are labeled periodically, namely |m + M〉 = |m〉
and |q + 1〉 = |q〉. Each chain contains a countably infinite set
of sites labeled by | j; qi〉 ≡ |m, q〉 = |mi + j, qi + j�〉, where
j ∈ Z. In what follows, we take mi = 0 without any loss of
generality.

Figure 6 shows an example of an AA chain with � =
Pr/Qr + 	�, and 	� = 1/84 + (

√
5 − 1)/15 000, close to

the simple rational fraction Pr/Qr = 2/3. This chain is nearly
indistinguishable from the corresponding AA ring, with
NAA = LCM(M, Q) = 84 sites, where the sites around j = 84
are near replicas of those around j = 0. Thus, encircling a
rational-flux ring of size NAA corresponds to traveling be-
tween sites of an irrational-flux chain spaced by NAA sites.
We note that even AA rings can contain these near repli-
cas and they are spaced by Nrep = M/[LCM(M, Qr )|	�|],
provided |	�| � LCM(M, Qr )|	�| � wq. At long times,
beyond those probed in our experiments, we expect to see
additional growth of the variance as the atoms travel to the
nearest replica, even for the φ-sensitivity suppressed cases at
short time scales.

1. Mean time evolution

The initial state is a wave packet of width wq in momentum
space with initial pseudospin state |mi = 0〉:

|ψ̃〉 =
∫

dqiψ̃0(qi ) |0, qi〉 .

This is unraveled in the AA lattices as

|ψ̃〉 =
∫

dqiD(qi )
∑

j

ψ̃AA
0,M j (qi ) |M j; qi〉 , (D2)

where ψ̃AA
0, j (qi ) = ψ̃0(qi + j�) denotes the wave function in

the chain containing site | j = 0; qi〉 = |0, qi〉. The sum over
j includes all sites within a chain. D(qi ) is an everywhere
discontinuous function and takes the value of either 1 or 0,
reminiscent of the Dirichlet function, such that the integral
over qi (summing over infinite chains) includes all the mo-
menta within [0,1) without repeating the momenta already
connected within a chain.

At time t , an initial site | j; qi〉 evolves to

| j(t ); qi〉 =
∑

j′
α j, j′ (t ; qi )e

iφ( j′− j)| j′; qi〉,

where α j, j′ (t ; qi ) = 〈 j′; qi| ÛAA(t ; qi ) | j; qi〉 describes the time
evolution from site j to j′ with φ = 0. We can therefore
interpret α j, j′ (t ; qi ) as the wave function at time t for a particle
starting in | j′; qi〉 expressed in the | j; qi〉 basis, with φ = 0.

When φ 	= 0, the time evolution only contributes a phase
factor φ( j′ − j), as can be seen from the expansion of the
evolution operator:

ÛAA = e− iĤAA t
h̄ = I − it ĤAA

h̄
+ 1

2!

(
− it ĤAA

h̄

)2

+ · · ·
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FIG. 6. Irrational flux AA chains. An AA chain with qi = 0, � = Pr/Qr + 	� where 	� = 1/84 + (
√

5 − 1)/15000 and Pr/Qr = 2/3.
The grey bars show the unraveling of a Gaussian wave packet with width wq = 1/(2πw), where w = 23.

The initial state has pseudospin M j1, j1 ∈ Z. Consequently,
the total wave function of chain qi at time t evolves to

|ψ̃ (t ); qi〉 =
∑
j1, j2

ψ̃AA
0,M j1 (qi )αM j1, j2 (t ; qi )e

iφ( j2−M j1 ) | j2; qi〉

with the probability to arrive in the final site | j; qi〉 equal to

P̃j (t ; qi ) = |〈 j; qi|ψ̃ (t ); qi〉|2

=
∑
j1, j2

ψ̃AA∗
0,M j1 (qi )ψ̃

AA
0,M j2 (qi )α

∗
M j1, j (t ; qi )αM j2, j (t ; qi )

× eiφM( j1− j2 ). (D3)

Inserting 〈exp[iφM( j1 − j2)]〉φ = δ j1, j2 into the above equa-
tion leads to the averaged probabilities:

〈P̃j (t ; qi )〉φ =
∑

j1

∣∣ψ̃AA
0,M j1 (qi )

∣∣2|αM j1, j (t ; qi )|2.

This is an incoherent sum over the probabilities of the atoms
starting from each initial site weighted by the probability of
traveling from that site to the final site.

Assuming the initial wave packet is very narrow, the
Hamiltonian in the vicinity of an initially occupied site | j1; qi〉
is close to that at | j1 = 0; qi〉 and independent of qi. This
allows us to replace the evolution from site j1 to site j with

that from site 0 to j − j1, i.e., α j1, j (t ; qi ) → α0, j− j1 (t ), leading
to probability depending only on the distance traveled.

Our experiments measured the probability

〈Pmf (t )〉φ =
∫

dqiD(qi )
∑

�

〈P̃mf +M�(t ; qi )〉φ

≈
∑

�

|α0,mf +M�(t )|2

to arrive at the final state with pseudospin mf + M�, � ∈ Z,
where we made the approximation α j1, j (t ; qi ) → α0, j− j1 (t )
and reversed the unraveling in Eq. (D2). This equation de-
pends only on the evolution of a particle starting at AA lattice
site | j = 0〉. We consider a small range of transverse fluxes
in the vicinity of a rational fraction �r of the flux quantum.
Within the range of propagation, the small deviation of the
transverse flux is not resolved, i.e., α�

0, j− j1
(t ) ≈ α

�r
0, j− j1

(t ). We
hereby conclude that the mean time evolution in the vicinity
of �r is a smooth function of �.

2. Variance of the time evolution

The time evolving variance for arriving in site m f over a
uniformly sampled ensemble of Peierls phase φ is

varmf (t ) ≡ 〈Pmf (t )2〉φ − 〈Pmf (t )〉2
φ. (D4)

We calculate varmf (t ) beginning with

〈
P2

mf
(t )

〉
φ

=
∫

dq1D(q1)
∫

dq2D(q2)
∑
�1,�2

〈P̃mf +M�1 (t ; q1)P̃mf +M�2 (t ; q2)〉φ

≈
∑

j

⎡
⎣∫

dq1D(q1)
∫

dq2D(q2)
∑
j′1, j′2

ψ̃AA∗
0,M( j+ j′1 )(q1)ψ̃AA

0,M j′1
(q1)ψ̃AA∗

0,M(− j+ j′2 )(q2)ψ̃AA
0,M j′2

(q2)

⎤
⎦

×
∑
�1,�2

[α∗
0,mf +M(�1− j)(t )α0,mf +M�1 (t )α∗

0,mf +M(�2+ j)(t )α0,mf +M�2 (t )],

(D5)

where we have used Eq. (D3) and 〈eiMφ( j1+ j2 )〉φ = δ j1,− j2 . The expression in the square bracket in the second line is

=
∣∣∣∣
∫

dq1ψ̃
∗
0 (q1 + M� j)ψ̃0(q1)

∣∣∣∣
2

≡ S(M� j), (D6)

where S is the static structure factor [47] and the normalization implies S(0) = 1. We arrived at this expression by reversing the
unraveling of the momentum space wave function [noted below Eq. (D2)], i.e.,

∫
dqiD(qi )

∑
j′i

→ ∫
dqi, i = 1, 2.
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FIG. 7. Irrational flux AA chains with M 	= LCM(M, Qr ). An AA chain with qi = 0, � = Pr/Qr + 	� where 	� = 1/615 + (
√

5 −
1)/500 000 and Pr/Qr = 1/2. The gray bars show the unraveling of a Gaussian wave packet with width wq = 1/(2πw), where w = 23. These
parameters were not probed in our experiments.

Combining Eqs. (D5), (D6) we arrive at

〈
P2

mf
(t )

〉
φ

≈
∑

j

S(M� j)

∣∣∣∣∣
∑

�

α∗
0,mf +M(�− j)(t )α0,mf +M�(t )

∣∣∣∣∣
2

. (D7)

Importantly, if we also perform a time average we dephase the cross terms in the double sum

〈· · · 〉t = δ j,0

〈[∑
�

|α0,mf +M�(t )|2
]2〉

t

+ (1 − δ j,0)
∑

�

〈|α0,mf +M(�− j)(t )|2|α0,mf +M�(t )|2〉t .
The Kronecker delta functions locate those cases that match conjugated terms with nonconjugated terms, and the last term avoids
double counting.

We now shift the first term in the last line to the LHS to get the time-averaged variance

〈varmf 〉t =
∑
j 	=0

S(M� j)
∑

�

〈|α0,mf +M(�− j)(t )|2|α0,mf +M�(t )|2〉t
〈var〉t =

∑
j 	=0

S(M� j)
∑

i

〈|α0,i−M j (t )|2|α0,i(t )|2〉t ,

having used S(0) = 1. In the second line, we defined the total
variance by summing over final states.

Due to the narrow wave-packet assumption, the sites that
could possibly contribute to the structure factor S are sep-
arated by LCM(M, Qr ), rather than M (Fig. 7), where the
nearby rational transverse flux �r = Pr/Qr with Pr and Qr

being co-prime. In the main text and the experiments, Pr/Qr =
2/3, while here we derive a general case. Therefore,

S(M� j) = S[M� j]δM j,LCM(M,Qr ) j

= S[	�M,Qr j]δM j,LCM(M,Qr ) j,

where we introduced 	�M,Qr ≡ 	�LCM(M, Qr ). Only the
noninteger part of the variable matters because the crystal
momentum q is periodically labeled. If |	�M,Qr | � wq, then
the structure factor and hence the variance approach zero for
j 	= 0. When |	�M,Qr | � wq, the closest distance between
initially occupied sites on the chain is LCM(M, Qr ) (Fig. 7).

This leads to the final form of the total variance

〈var〉t =
∑
j 	=0

S[	�M,Qr j]

×
∑

i

〈|α0,i−LCM(M,Qr ) j (t )|2|α0,i(t )|2〉t .

We now consider the limiting behavior of this function.
(1) For |	�M,Qr | � wq, only S(0) is practically nonzero

and we get 〈var〉t = 0.
(2) For |	�M,Qr | � wq, assume that enough time has

passed so the wave packets have spread over a range wide
compared to the initial distribution, giving

〈var〉t ≈
∑
j 	=0

S[	�M,Qr j]

[∑
i

〈|α0,i(t )|4〉t

]
, (D8)

where we made the far-field replacement |α0,i−LCM(M,Qr ) j |2 ≈
|α0,i|2. Note that

∑
i 〈|α0,i(t )|4〉t is the inverse participation

ratio (IPR) in the AA lattice.
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(3) For 	� → 0, we find

〈var〉t =
∑

j,i

〈|α0,i−LCM(M,Qr ) j (t )|2|α0,i(t )|2〉t −
∑

i

〈|α0,i(t )|4〉t

≈ 1

LCM(M, Qr )
−

∑
i

〈|α0,i(t )|4〉t

→ 1

LCM(M, Qr )
, (D9)

where we assumed that the wave function is uniform
on the scale of LCM(M, Qr ) sites (a poor assumption
in the insulating phase, and even in our data there
is a ≈2× difference in typical averaged populations)
and broke the first term into LCM(M, Qr ) individual
terms |α0,i−LCM(M,Qr ) j−m(t )|2|α0,i(t )|2 with m from 0 to
LCM(M, Qr ) − 1. With that we introduced a new sum over
m, that we used to complete the j sum to be on every lattice
site, at which point we used the normalization condition to
do this double sum, and the → is assuming a spreading wave
packet for which the sum of the IPR i will fall to zero.

3. AA lattices in real space

To best align with our TOF data, we explained our observa-
tions in a momentum space picture. We note that an analogous
description in real space can be derived using the dual AA
model from that just presented, where the noise suppression
for irrational transverse flux is understood in terms of spatial
self-averaging. Inserting the Fourier expansion

|m, n〉 = 1√
M

∑
qm

e−i2πqmm |qm, n〉 , (D10)

into the Hamiltonian in Eq. (B2), where qm ∈
{0, 1

M , · · · , M−1
M }, leads to

ĤAA(φ̄ − qm) = −Jx

∑
n

(|qm, n + 1〉 〈qm, n| + H.c.)

− 2Js

∑
n

cos[2π (�n + φ̄ − qm)] |qm, n〉

× 〈qm, n| , (D11)

where Ĥ = ∑
qm

ĤAA(φ̄ − qm). The original HH model is
transformed into M decoupled AA chains in real space, where
the quasimomentum qm shifts the phase of the corresponding
chain.

Without repeating the analogous derivations as in momen-
tum space, we simply point out that we reach the same results
for the mean and variance of the time evolution. One key step
of the derivation takes advantage of the displacement property
of the Hamiltonian.

The Hamiltonian Eq. (D11) at longitudinal site n is
identical to the Hamiltonian at site n = 0 with the Peierls
phase factor changed to φ̄′ = �n + φ̄. Expressed in terms
of the displacement operator that shifts the longitudinal sites
as |n + δn〉 = D̂(δn) |n〉, the displacement property of the
Hamiltonian is

D̂(δn)Ĥ (φ̄)D̂†(δn) = Ĥ (φ̄ − �δn). (D12)

At irrational fluxes �, for a large system, summing over n
randomly samples the phases, equivalent to averaging over
φ̄. Therefore, each individual time evolution is expected to
evolve as the averaged evolution—a spatial self-averaging
effect. On the other hand, at rational fluxes, averaging over
n only allows sampling Qr different phases in each chain
and a total of LCM(M, Qr ) phases including all chains. For
example, at Pr/Qr = 2/3 and φ̄ = 0, only three phases 0,
2π/3, and 4π/3 are sampled, inequivalent to averaging over
φ̄. Thus, each time evolution is expected to have its own
unique trajectory.

APPENDIX E: SYSTEM SIZE

We define the relative variance

σ (	�M,Qr w) = 〈var〉t〈∑
mf

〈Pmf (t )〉2
φ

〉
t

.

Assuming an initial real space Gaussian wave packet,

ψ0(n) = 1

π1/4w1/2
exp

[
−1

2

( n

w

)2
]
,

with width w, from its momentum space counterpart, the static
structure factor can be obtained by using Eq. (D6)

S( j) = exp
[ − 1

2 (2π	�M,Qr w j)2].
Along with Eq. (D8) and 〈∑mf

〈Pmf (t )〉2
φ〉

t
≈ ∑

i 〈|α0,i(t )|4〉t ,
this allows us to directly compute the relative variance in the
long-evolution time limit

σ (	�M,Qr w) = ϑ3[0, i2π (	�M,Qr w)2] − 1 (E1)

in terms of ϑ3(z, τ ) = ∑∞
j=−∞ q j2

η j the third elliptic theta
function, where q = eiπτ and η = e2π iz.

For |	�M,Qr |w � 1/4, keeping only the j = 0,±1 terms,
the function is very well described by

σ (	�M,Qr w) → 2 exp
[ − 1

2 (2π	�M,Qr w)2
]
. (E2)

For |	�M,Q|w � 1/4, using one of the Jacobi identities
ϑ3(z/τ,−1/τ ) = αϑ3(z, τ ), where α = √−iτ exp [π iz2/τ ]
and keeping only the j = 0 term, the function is very well
described by

σ (	�M,Qr w) →
√

2π

2π |	�M,Qr |w
− 1.

However, it is worth noting that this limit requires a very long
evolution time to satisfy the approximation made in Eq. (D8),
from which we obtained σ (	�M,Qr w). Figure 8 demonstrates
the agreement of these two approximate limits with the ex-
plicitly evaluated summation and clearly marks the Gaussian
wings and enhancement for small σ (	�M,Qr w).
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FIG. 8. Time evolution uncertainty plotted in (a) linear and (b) log scale for a Gaussian wave function. In both cases, the thick red curve
comes from exactly evaluating Eq. (E1), while the black curve results from the small w	�M,Qr expansion and the black curve results from the
large w	�M,Qr expansion. The vertical gray line marks 2πw	�M,Qr = π/2 where we expect the validity of these expansions to crossover.
The pink lines mark the maximum possible noise for quantum states drawn completely at random: The top line at 2 is for M → ∞, and the
bottom line at 0.8 is for M = 3.
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