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Topological features without a lattice in Rashba
spin-orbit coupled atoms
A. Valdés-Curiel1, D. Trypogeorgos1,2, Q.-Y. Liang1, R. P. Anderson1,3 & I. B. Spielman 1✉

Topological order can be found in a wide range of physical systems, from crystalline solids,

photonic meta-materials and even atmospheric waves to optomechanic, acoustic and atomic

systems. Topological systems are a robust foundation for creating quantized channels for

transporting electrical current, light, and atmospheric disturbances. These topological effects

are quantified in terms of integer-valued ‘invariants’, such as the Chern number, applicable to

the quantum Hall effect, or the Z2 invariant suitable for topological insulators. Here, we

report the engineering of Rashba spin-orbit coupling for a cold atomic gas giving non-trivial

topology, without the underlying crystalline structure that conventionally yields integer Chern

numbers. We validated our procedure by spectroscopically measuring both branches of the

Rashba dispersion relation which touch at a single Dirac point. We then measured the

quantum geometry underlying the dispersion relation using matter-wave interferometry to

implement a form of quantum state tomography, giving a Berry’s phase with magnitude π.

This implies that opening a gap at the Dirac point would give two dispersions (bands) each

with half-integer Chern number, potentially implying new forms of topological transport.
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The topology of Bloch bands defines integers that serve to
both classify crystalline materials and precisely specify
properties, such as conductivity, that are independent of

small changes to lattice parameters1. Topologically non-trivial
materials first found application in metrology with the definition
of the von Klitzing constant as a standard of resistance, which is
now applied in the realization of the kilogram2. Today, topolo-
gical systems have found applications in the engineering of low
loss optical waveguides3 and present a promising path to fault-
tolerant quantum computation4. Ultracold atomic systems are an
emerging platform for engineering topological lattices, from the
Harper-Hofsdater model5,6, the Haldane model7, to the Rice-
Mele model8,9 as well as spin-orbit coupled lattices without
analogues in existing materials10,11.

A central tenet in the topological matter is the existence of
integer-valued invariants that are independent of small changes to
parameters. For an arbitrary closed manifold M and a suitable
choice of a vector field (i.e., a two-form) Ω the surface integral

1
2π

Z
M

Ω � dS ð1Þ

serves to define both the Euler characteristic and the Chern
number3,12. When Ω is equal to the local Gaussian curvature of
M, Eq. (1) yields the Euler characteristic, an invariant related to
the number of handles, or genus, of M. In contrast, when M is a
torus describing a two-dimensional Brillouin zone (BZ) and Ω is
the Berry curvature characterizing the underlying quantum states,
Eq. (1) instead gives the Chern number. Both the Euler char-
acteristic and the Chern number are integer-valued, but the Euler
characteristic depends only on the manifold M and its intrinsic
curvature, whilst the Chern number depends both on a manifold
(the BZ) and an additional vector field defined on M (the Berry
curvature).

Experimental realizations of topological materials have focused
on engineering different Berry curvatures in lattice systems,
where M is always a torus due to the periodic boundary condi-
tions of the BZ. Here we show that by eliminating the lattice
potential and thereby changing M from T2 to R2, i.e., from a
torus to a Cartesian plane, it is possible to create topological
branches of the dispersion relation with half-integer generalized
Chern numbers. In our experiments, we created both topological
and non-topological dispersion branches by introducing Rashba-
like spin-orbit coupling (SOC)13–15 to a cold quantum gas.

We engineered Rashba SOC by resonantly coupling three
internal atomic states using two-photon Raman transitions16 as
depicted in Fig. 1. The engineered system consisted of an effective
spin-1/2 subspace described by a Rashba-type SOC Hamiltonian
ĤSOC ¼ 2α=mðq ´ e1Þ � σ̂, with added tunable higher-order terms
describing quadratic and cubic Dresselhaus-like SOC13, along
with a topologically trivial high-energy branch. Here α is the SOC
strength and σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ is the vector of Pauli operators. The
total phase acquired when cyclically coupling all states adds an
additional contribution to ĤSOC that is proportional to σ̂z which
can break the degeneracy of the Dirac point13; the tripod con-
figuration in our experiment imprints a zero net phase to the
system. Our engineered Rashba system had a single Dirac cone
near q= 0, where the two lower dispersion branches become
degenerate and the Berry curvature becomes singular. Each of
these branches extends to infinite momentum, making the sup-
porting manifold a plane rather than a torus. We characterized
this system using both spectroscopy and quantum state tomo-
graphy. This allowed us to measure the dispersion branches and
directly observe the single Dirac point linking the lowest two
branches as well as to reconstruct the Berry connection to derive
the associated Berry’s phase.

Results
All of our experiments started with about 106 87Rb atoms in the
ground state F= 1 hyperfine manifold, just above the transition
temperature for Bose-Einstein condensation. A bias field B0e3
gave a ω0/2π= 23.9 MHz Larmor frequency along with a quad-
ratic shift of ϵ/2π= 83.24 kHz. An RF magnetic field oscillating at
the Larmor frequency with strength ΩRF= 1.41(2)ϵ implemented
continuous dynamical decoupling (CDD)17. This generated a set
of magnetic field insensitive states18,19 that we denote by xj i, yj i
and zj i as they are closely related to the XYZ states of quantum
chemistry20 rather than the conventional mF angular momentum
states. We Raman-coupled atoms prepared in any of the xyz
states using the three cross-polarized ‘Raman’ laser beams shown
in Fig. 1b, tuned to the tune-out wavelength λL= 790 nm, where
the scalar light shift vanishes. We arranged the Raman lasers into
the tripod configuration shown in Fig. 1c, bringing each pair into
two-photon resonance with a single transition between the xyz
states with strengths (Ωzx, Ωxy, Ωyz)/2π= (12.6(5), 8.7(8), 10(1))
kHz. This coupling scheme simultaneously overcomes three

Fig. 1 Experimental system. a Our engineered dispersion consisted of a two-level Rashba subspace (red and blue) with a single Dirac point linking the
lowest two branches and a topologically trivial higher branch (gray). b We generated xyz states by combining a bias magnetic field B0e3 with an RF
magnetic field BRF cosðω0tÞe1. These states were coupled by three mutually cross-polarized Raman laser beams with wave vectors kx,y,z and propagating
along e1, e2− e1, and −e1− e2. c In a frame rotating with angular frequency ω0, each pair of Raman lasers was in two-photon resonance with a single
transition between the xyz states which we coupled strengths (Ωzx, Ωxy, Ωyz)/2π= (12.6(5), 8.7(8), 10(1)) kHz.
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limitations of earlier experimental realizations of two-
dimensional SOC14,15: (1) working in the same hyperfine mani-
fold eliminates spin-relaxation collisions21; (2) unlike mF states,
the xyz states can be tripod-coupled with lasers far detuned
relative to the excited state hyperfine splitting greatly reducing
spontaneous emission20; and (3) CDD renders the xyz states
nearly immune to magnetic field noise.

Each pair of Raman lasers coupled states ji; ki ! j j; k þ ki;ji
where: ij i and jj i denote the initial and final xyz states; k is the
initial momentum; and ki,j= ki− kj is the two-photon Raman
recoil momentum. Dressed states with quasimomentum q are
comprised of superpositions of three bare states j; kj i with
momentum k= q− kj. The eigenstates of our Rashba SOC
Hamiltonian therefore take the form

ΨnðqÞj i ¼
X
j2xyz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
an;jðqÞ

q
eiϕn;jðqÞ j; k ¼ q� kj

��� E
; ð2Þ

where the quasimomentum q is a good quantum number and the
amplitudes are parametrized by an,j(q) and ϕn,j(q). We leveraged
the wide momentum distribution of a non-condensed ensemble
(T ≈ 180 nK and T/Tc ≈ 1.1) to sample a wide range of momen-
tum states simultaneously. By in addition starting separately in
each of the xyz states we sampled the range of quasimomentum
states shown in Fig. 2a, where the momentum distributions of an
initial state j; kj i is shifted from q= 0 by the corresponding
Raman wave vector kj.

Our measurement protocol consisted of abruptly removing the
confining potential and the Raman lasers, initiating a 21 ms time-
of-flight (TOF). During this TOF we adiabatically transformed
each of the xyz states back to a corresponding mFj i state (see
“Methods”) and spatially separated them using a ‘Stern-Gerlach’
magnetic fields gradient. Finally, we used resonant absorption
imaging to measure the resulting density distributions, yielding
the spin-resolved momentum distribution.

We directly measured the 2D dispersion relation using Fourier
transform spectroscopy22. In this technique we considered the
evolution of an initial state i; kj i suddenly subjected to the Raman
coupling lasers. This atomic Rabi-type interferometer is analo-
gous to the three-port beam-splitter depicted in Fig. 2b. During a

pulse time tp we followed the dynamics of the populations in the
xyz states evolving with oscillatory components proportional toP

j≠nan;jðqÞ cosð½EnðqÞ � EjðqÞ�tp =_Þ, with frequencies deter-
mined by the eigenenergy differences En− Ej. Figure 2c shows the
momentum-dependent populations for a fixed pulse time tp and
Fig. 2d shows representative final populations as a function of tp
for a fixed quasimomentum state. We Fourier transformed the
populations with respect to tp and for a given quasimomentum
state to produce spectral distributions as a function of quasimo-
mentum q. The spectral maps in Fig. 3b depict planes of constant
q1 in this three-dimensional distribution, whose extrema are the
energy differences En− Ej in the engineered dispersion (Fig. 1a).
Together these show the presence of a single Dirac point in the
Rashba subspace, evidenced by the gap closing near q= 0 and the
photon-like lower branch. The dashed curves correspond to the
energy differences computed for our system using the dispersions
shown in Fig. 3a, and are in clear agreement with our experiment.

However, the energies shed no light on the topology of the
different branches of the dispersion, which instead requires
knowledge of the eigenstates. The Berry curvature present in Eq.
(1) can be derived from the Berry’s connection AnðqÞ ¼
i ΨnðqÞh j∇q ΨnðqÞj i which behaves much like a vector potential in
classical electromagnetism. The Berry curvature Ωn(q)=∇q ×A
(q) is the associated magnetic field and the flux through any
surface is the line integral of A(q) along its boundary, after
neglecting the contributions of Dirac strings which we will discuss
later. The Berry connection derived from Eq. (2)

AnðqÞ ¼ �
X

j2fx;y;zg
an;jðqÞ∇qϕn;jðqÞ ð3Þ

depends on both the phase and amplitude of the wave function.
We obtained an,j(q) and ϕn,j(q) using a three-arm time-domain
Ramsey interferometer, implementing a variant of quantum state
tomography23–25. The use of a multi-path interferometer allowed
us to transduce information about the relative phases into state
populations, which we readily obtained from absorption images.

Figure 4a shows our experimental protocol. We adiabatically
mapped an initial j; kj i state into a corresponding eigenstate
jn; q ¼ k þ kji, either in the topologically trivial highest

Fig. 2 Fourier spectroscopy. a The initial thermally occupied xyz states j; kj i lead to the displayed quasimomentum distribution. The black dots represent
k= 0 for each of the xyz states which is mapped to non-zero q, the red dot represents q= 0 and the blue star indicates the quasimomentum (q1, q2)=
(−0.55,−0.18)kL. We used non-condensed atoms with a broad momentum distribution (T≈ 180 nK and T/Tc≈ 1.1) and performed our experiments
starting separately in each of the xyz states, sampling a large range of quasimomentum states. b We applied the Raman lasers for a variable time tp: a
Rabi-type atomic interferometer analogous to a three-port beam splitter. c Probabilities as a function of quasimomentum for a fixed Raman pulse time tp=
420 μs d Dynamics of the final populations of the x (blue), y (red) and z (green) states with quasimomentum (q1, q2)= (−0.55, −0.18)kL (red star in
panels a and c) after initializing the system in the zj i state.
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dispersion branch (n= 3) or in the topological ground branch
(n= 1) by dynamically tailoring both the Raman coupling
strength and detuning (see Methods). We suddenly turned off the
Raman coupling, thereby allowing the three bare state compo-
nents of the Rashba eigenstates to undergo free evolution for a
time tfree, constituting the three arms of our time-domain inter-
ferometer. Finally we applied a three-port beam splitter using a

brief Raman ‘recombination’ pulse to interfere the three arms. At
the end of this procedure, the population in a final state l; qj i is

Plðq; tÞ ¼
X
i≠j

an;ian;j cosðωi;jðqÞt þ ϕn;iðqÞ � ϕn;jðqÞ þ ϕpl;i;jðqÞÞ;

ð4Þ
which directly reads out the relative phases, independent of the
output port l. Here ϕpl;i;jðqÞ is a smoothly varying phase imprinted
by the recombination pulse and is independent of q in the limit of
short, strong pulses. The angular frequencies ωi,j(q)= ℏq ⋅ ki,j/m
+ δi,j result from the known free particle kinetic energy and
detuning δi,j from the tripod resonance condition. Figure 4b
shows the momentum-dependent populations in each output
port at fixed tfree= 160 μs and Fig. 4c shows the populations as a
function of tfree for a representative quasimomentum state (q1,
q2)= (0.55, −0.92) kL. We obtained the relative phases from Eq.
(4) by fitting the measured populations to the sum of three
cosines with the known free particle frequencies but unknown
amplitudes and phases.

Figure 5a shows typical phase-maps for both the non-
topological and topological branches. In the non-topological
phase-maps the momentum dependence of the recombination
pulse ϕpl;i;jðqÞ causes a smooth variation of the phases along the
Raman recoil axes that do not affect the evaluation topological
index of our system. To recover the phases ϕn,j of the full spinor
wave function from the fits, we made the gauge choice described
in the “Methods” section.

We recovered the phases ϕn,j of the full spinor wave function
from the relative phases obtained from the fits by choosing a
particular gauge (see “Methods”). We then used the values of an,i
obtained from measuring the populations in the xyz states at
tfree= 0 in combination with the phases of the wave function to
compute the Berry connection26. Figure 5b shows the three
relative phases as a function of the polar angle ϕ for a loop of
radius q ≈ 0.77kL for both the topological and non-topological
branches. In addition to the smooth variations induced by the
recombination which are present in both columns, relative phases

Fig. 4 Quantum state tomography. a Experimental protocol for three-arm Ramsey interferometer (not to scale). (Top) We started with atoms in state
z; y; qi ¼ kþ kj
�� �

and with detuning δy= ± 5 EL and δz= ± 5 EL. We ramped the Raman lasers on in 750μs and then ramped the detuning to nominally zero.
We let the system evolve in the dark for times between 5 and 400 μs, followed by a 25 us Raman pulse. (Bottom) The implemented experimental protocol
was equivalent to a three-arm interferometer that split an initial state into three final states with amplitudes related to the initial wave function phases.
b Population as a function of quasimomentum for the three output ports of the interferometer at tfree= 160 μs. c Populations in the x (blue), y (red) and z
(green) states as a function of free evolution time tfree for an input state with quasimomentum (q1, q2)= (0.55, −0.92)kL indicated by the blue star on
b and in the topological ground branch (n= 1).

Fig. 3 Rashba dispersion relation. a Predicted dispersion relation as a
function of q2 for fixed q1=−0.09 kL (left) and 0.65 kL (right), computed
for the experiment parameters. The energy differences between the
branches enclosing the vertical arrows appear as peaks in the spectral maps
below. b Power spectral density (PSD) for the same parameters as above
which we obtained by Fourier transforming the populations in the xyz states
with respect to tp. The dashed lines correspond to the energy differences
computed using the dispersion curves on the top panel.
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of the topological branch have two gauge independent π valued
jumps that lead to non-zero Berry phases when the Berry con-
nection is integrated along a closed loop in momentum space.
Figure 5c shows the integrated Berry phase as a function of the
loop radius. The largest value of tfree in the experiment limits how
well we can resolve the phases of low frequencies ωij(q) near q= 0
as well as when two different frequencies ωij(q) and ωi0 j0 ðqÞ are
close to each other, as can be seen in the high noise present in the
phase-maps near q= 0 as well as in lines where the fit frequencies
become nearly degenerate. This limitation is reflected in the large
variation in the Berry phase depicted in the shaded region of
Fig. 5c near q= 0. For loops with q > 0.4 kL we obtain an inte-
grated Berry phase ΦB/2π= 0.01(1) for the non-topological
branch and ΦB/2π= 0.50(5) for the topological branch. How-
ever, Berry’s phase measurements including ours include the

(potential) contribution of any Dirac strings traversing the inte-
gration area. In our system, these are possible at the Dirac point
(red dot near q= 0) and contribute ± 2π to ΦB. Even with this 2π
ambiguity, we can associate a half-integer Chern number with the
topological branch. While the Chern number is only defined for
gapped systems, the local Berry connection associated with the
dispersion relation of our Rashba system becomes indis-
tinguishable from that of a gapped Dirac point for large enough
quasimomenta; the Dirac point can be gapped by adding addi-
tional lasers to the coupling scheme or changing the laser
polarization15. Unlike previous measurements of π valued Berry’s
phases in crystalline materials27,28, our measurements do not rely
on the adiabatic motion of particles within a band. A total Berry’s
phase ΦB/2π= 0.50(5) integrated over the whole BZ is possible
only for a topological dispersion branch in the continuum.

Discussion. In conventional lattices—for example, graphene, or
the topological Haldane model—it is well established that Dirac
points each contribute a Berry’s phase of ΦB/2π= ± 1/227, but
crystalline materials conspire for these to appear in pairs29,
always delivering integer Chern numbers. In contrast, our con-
tinuum system contains a single Dirac point, resulting in a non-
integer Chern number. This leads to intriguing questions about
edge states at interfaces with non-integer Chern numbers with
non-integer Chern number differences. Initial studies in the
context of electromagnetic waveguides30 and atmospheric
waves31 have applied Chern invariants and the bulk-edge corre-
spondence to continuous media.

While the true Rashba Hamiltonian features a ring of
degenerate eigenstates, our implementation including the quad-
ratic and cubic Dresselhaus-like SOC that lifts this macroscopic
degeneracy giving three nearly degenerate minima13. Already
these three minima could allow the study of rich ground-state
physics in many-body systems of bosons, for example, the
formation of fragmented BECs32 when the system does not
condense into a single-particle state. Furthermore, the use of
additional spin states or larger Raman couplings can partially
restore this degeneracy allowing the possible realization of
fractional Hall-like states33. Finally, by introducing quenches in
the location of the Rashba subspace our system can be used to
study other topological indices such as the linking number34–36.

Methods
System preparation. Our experiments began with N ≈ 1 × 10687Rb atoms in a
crossed optical dipole trap37, with frequencies (f1, f2, f3) ≈ (70, 85, 254) Hz. We
initially prepared the atoms in the F ¼ 1;mF ¼ �1j i state of the 5S1/2 electronic
ground state. We then transferred the atoms either to mF= 0 or mF=+1 by
applying an RF field with ~20 kHz coupling strength and ramping a bias magnetic
along e3 from 36 μT lower value to Bi= 3.39(9) mT in 50 ms. We prepared the xyz
states by starting in each of the mF states in a bias field 72 μT lower than B0 and
then ramping on the RF dressing field to ΩRF/2π= 117(2) kHz in 1 ms and then
ramped the bias field to its final value B0= 3.40(9) mT in 3 ms. We finally waited
for 40 ms for the fields to stabilize prior to applying any Raman coupling. We
adiabatically converted the xyz states back to the mF states in TOF before imaging.
We first ramped the bias field back to Bi in 2 ms and then turned off the RF field in
1 ms. Finally we apply the Stern-Gerlach gradient to spatially separate the mFj i
states for 14 ms.

Raman coupling the xyz states. The Raman coupling originates of the xyz states,
like in the regular mF, from the vector light shift from the local Raman field on the
ground hyperfine manifold, which can be cast into an effective magnetic Hamil-
tonian

Ĥeff ¼
gFμB
_

Beff � F̂; ð5Þ

with

Beff ¼
iuv
gsμB

ðE� ´ EÞ ð6Þ

where gs is the spin gyromagnetic, ratio, gF the Landé g-factor, μB the Bohr

Fig. 5 Berry phases from quantum state tomography. a Relative phases as
a function of quasimomentum from the z→ x transition of the n= 3 non-
topological branch (left) and the n= 1 topological branch (right). We can
not reliably measure phases for q < 0.4kL due to the limited frequency
resolution of the experiment. b Phase differences as a function of the polar
angle ϕ for a loop radius of 0.77 kL from the z→ x (top), x→ y (middle) and
y→ z (bottom) transitions. The phases associated with the topological
branch (right panels) are characterized by two π valued discontinuities.
Each row of phases was shifted by a constant value so that the three rows
of phases share the same vertical axis. The error bars represent the
uncertainties in the phase which were estimated using the covariance
matrix of the fitting function. All phases shown here were binned and
averaged using the phase uncertainties as weights. c Inferred Chern
number as a function of loop radius. For loops with q > 0.4kL we obtained an
integrated Berry phase and an inferred Chern number of ΦB/2π= 0.01(1)
for the non-topological branch and ΦB/2π= 0.50(5) for the topological
branch.
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magneton and uv the vector polarizability

uv ¼
jhjjdjjij2

12
1

Δ3=2
� 1
Δ1=2

 !
: ð7Þ

Here Δ3/2 and Δ1/2 represent the laser detuning from the P3/2 and P1/2 electronic
states and hjjdjji ¼ hl ¼ 0jdjl0 ¼ 1i is the reduced dipole matrix element.

In th frame rotating at the RF dressing frequency ω0 and after applying a
rotating wave approximation, the Raman matrix elements are

Ωij ¼ ih j ~̂Heff jj i ¼ jΩijjeiϕij . If E* × E has non-zero projections along e1, e2 and e3 it
is possible to drive transitions between all of the xyz states. In contrast, the mf states
can only be coupled when E* × E lies on a plane perpendicular to the quantization
axis and therefore the xyz states are better suited to use different laser geometries
producing dispersion relations that are closer to the true Rashba ring-like
dispersion.

The energies of the xyz states are ωx= 0 and ωz;y ¼ �ðϵ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ω2

RF þ ϵ2
p

Þ=2. We
set the frequencies of the Raman lasers to ωx= ωL+ ω0+ ωxy, ωy= ωL+ ω0 and
ωz= ωL− ωzx such that all transitions between the xyz states were in two-photon
resonance in the RF rotating frame. Here ωL= 2πc/λL and (ωzx, ωxy, ωzy)/2π=
(166.47, 83.24, 249.71) kHz are the transition frequencies between pairs of dressed
states are integer multiples of ϵ for our coupling strength Ω ¼ ffiffiffi

2
p

ϵ.
The Raman-coupled states are well described by the combined kinetic and light-

matter Hamiltonian

ĤðqÞ ¼
X

i2fxyzg

_2ðq� kiÞ2
2m

þ _δi

� �
ij i ih j þ

X
i≠j

_Ωij jj i ih j; ð8Þ

where ki are the Raman wave vectors, δi is a detuning from Raman resonance and
Ωij is the Raman coupling strength between a pair of RF dressed states. For a
detailed derivation of the Rashba Hamiltonian see ref. 16.

The location of the Rashba subspace is determined by the phase sum
�ϕ ¼ ðϕzx þ ϕxy þ ϕyzÞ=316. If �ϕ ¼ 0 the Dirac point connects the n= 1 and n= 2

branches, if �ϕ ¼ π the Dirac point connects the n= 2 and n= 3 and for all other
values of �ϕ the Dirac point becomes massive (non-degenerate). For the tripod
coupling scheme where each laser drives two transitions, the contribution of
individual laser phases is canceled and �ϕ is constrained to take the values 0 or π
depending on the magnitude of ∣ωx− ωy∣ and ∣ωy− ωz∣ relative to the RF frequency
ω0 and the sign of the vector polarizability uv16. In all of our experiments �ϕ ¼ 0.
The Raman phases could be used to continuously tune �ϕ by adding additional
Raman lasers to our setup such that the individual laser phases are not
canceled out.

Our implementation of Rashba SOC is implemented entirely within the ground
hyperfine manifold and has the advantages of reduced losses from spin-relaxation
collisions and increased stability against environmental fluctuations due to the
clock-like nature of the xyz sates. The measured spontaneous emission limited
lifetime of our system is 320(17) ms. The lifetime is reduced to 40(2) ms when the
Raman couplings are resonant, which we attribute to technical noise in the relative
phase between the RF dressing field and the Raman laser fields. We did not phase
lock our Raman lasers.

The duration of all experiments with the xyz states was limited to 50 ms due to
overheating of the antenna producing the RF fields. We did not observe any decay
from the x or y states into the ground z during this time.

Floquet effects. We operated in a regime where the transition energies between
the xyz states were integer multiples of ωxy:ωzx= 2ωxy and ωzy= 3ωxy, and used
Floquet theory for a complete description of our system38. The Hamiltonian in Eq.
(8) is therefore an effective Hamiltonian that describes the stroboscopic dynamics
of the full Floquet Hamiltonian. We observed that the effective Raman coupling
strengths for the driven three-level system differed from our calibrations which
were performed by only driving one pair of states because of the presence of nearby
quasi-energy manifolds. This effect would be mitigated for larger values of ωxy as
the spacing between quasi-energy manifolds is increased.

Combining spectral maps from different states. In the Fourier spectroscopy
experiments, we initialized the system in any of the three xyz states. We indivi-
dually computed the Fourier transforms with respect to tp for a total of nine
distributions of j; qj i states (accounting for each of the three xyz states that were
split each into three states). We computed the spectral maps displayed in Fig. 2b by
averaging the PSD of each distribution, where each q state was weighted by the
mean population in tp.

State preparation for Ramsey interferometer. For the Rashba dressed states
preparation we started with RF dressed states with a different coupling strength
ΩRF/π2 ± 20 kHz. This change shifted the energies of the zj i and yj i states by about
±18.8 kHz. The change in the xyz state eigenenergies corresponded to non-zero δz
and δy in Eq. (8). We chose the detuning such that the initial state had a large
overlap with either the n= 1 or the n= 3 eigenstates of Eq. (8). We ramped the
Raman on in 750 μs and then ramped ΩRF to its final value in 1 ms, effectively
ramping δz and δy close to zero. This method allowed us to prepare dressed states

in either the n= 1 or n= 3 by initializing the system in the yj i or zj i states. When
we prepared the system in xj i the final dressed state corresponded to the n= 2
branch.

Adiabaticity in state preparation. The state preparation was not adiabatic in the
vicinity of the Dirac point. The detuning ramp in the state preparation protocol
had the additional effect of moving the location Dirac point through the atoms,
thereby creating a detuning dependent trajectory where the state preparation was
not adiabatic. We combined data where the ground state preparation had different
initial states and a different detuning values (different Dirac point trajectories).
Near the final location of the Dirac point (q= 0) the state preparation can not be
adiabatic regardless of the initial state or detuning used for the ground state
preparation.

Combining phases from different states. The phases of the fitted populations at
the output of the interferometer correspond to Δϕn;i;j;l ¼ ϕn;iðqÞ � ϕn;jðqÞ þ ϕpl;i;jðqÞ.
The last term in the expression has q-independent term that depends on the final
state and a q-dependent term that has no dependence on the final state, i.e.,
ϕpl;i;jðqÞ ¼ ϕ

p0
l þ ϕ

p1
i;j ðqÞ. When combining the phases from different initial states we

removed their final state dependence by shifting Δϕn,i,j,l by a constant number such
that they maximally overlap, effectively making ϕp0l the same for all states. Finally, we
averaged all the phase differences obtained from the fits, weighted by the inverse of
the uncertainties obtained from the fitting procedure. For the topological branch data,
we excluded the regions away from q= 0 where the Dirac point was moved from the
average. Finally we chose a gauge such that ϕ1(q)= 0 and used this to convert phase
differences into phases.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Code availability
The code used for analysis during the current study is available from the corresponding
author on reasonable request.
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