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Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates
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Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-
Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the
stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation has
hindered experimental progress. Here we create dark solitons in highly anisotropic cigar-shaped BECs with
arbitrary position and velocity by simultaneously engineering the amplitude and phase of the condensate wave
function, improving upon previous techniques which explicitly manipulated only the condensate phase. The
single dark soliton solution present in true one-dimensional (1D) systems corresponds to the kink soliton in
anisotropic three-dimensional systems and is joined by a host of additional dark solitons, including vortex ring
and solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound speed. The
observed soliton oscillation frequency suggests that we imprinted solitonic vortices, which for our cigar-shaped
system are the only stable solitons expected for these velocities. Our numerical simulations of 1D BECs show
this technique to be equally effective for creating kink solitons when they are stable. We demonstrate the utility
of this technique by deterministically colliding dark solitons with domain walls in two-component spinor BECs.
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Localized excitations such as vortices and kink solitons
in atomic Bose-Einstein condensates (BECs) have attracted
much attention. Solitons are long-lived shape-preserving soli-
tary waves typically stabilized by a balance between linear
and nonlinear effects [1–5]. Experiments with dark solitons
in repulsively interacting systems first identified different
regimes of stability for solitons [6–8] before exploring ef-
fects including soliton interactions [9] and diffusion [10]. For
all their success, these experiments could deterministically
produce solitons within only a narrow range of velocities.
Inspired by Ref. [11], we demonstrate a straightforward tech-
nique for creating dark solitons that provides full control over
their position and velocity.

The propagation velocity of dark solitons in quasi-one-
dimensional (1D) systems determines many of their proper-
ties; indeed, their maximum speed is bounded by the local
speed of sound c in their host BEC. A pair of colliding dark
solitons will, long after the collision, have unchanged shape
and velocity, with the effect of interaction being only in a
displacement in their asymptotic trajectories [12]. For suffi-
ciently small relative velocities the collision can be viewed as
if the two solitons reflect from each other like equal-mass hard
spheres [13], giving the same asymptotic velocity and shapes
as if they had passed through each other. This is sometimes
referred to as a “noninteracting” collision.

A dark soliton manifests as a moving density depletion
in a BEC (we call a stationary density depletion a “black
soliton”), whose width increases with velocity and whose
depth decreases with velocity. Across a soliton, the underlying
BEC wave function has a phase difference that determines
its velocity. In anisotropic three-dimensional (3D) systems
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such as ours, this overall longitudinal phase drop can be
accompanied by transverse structure, leading to a host of
distinct dark solitons. The single dark soliton solution present
in true 1D systems, for which a transverse structure is absent,
corresponds to the kink soliton in anisotropic 3D systems.
The solitonic vortex is another example of a solitonic exci-
tation present in 3D systems; although its velocity-dependent
longitudinal phase drop and density profile are qualitatively
similar to those of kink solitons, as a vortex, it also has a phase
singularity where the density vanishes. In three-dimensional
traps, kink solitons are stable only for a range of velocities
that depend on the trap geometry [1]. In regimes where kink
solitons are unstable, solitonic vortices are stable. For our
system, the kink soliton is predicted to be unstable except
for velocities very close to c, and for almost all parameters,
the solitonic vortex is predicted to be the only stable solitonic
excitation [14].

There is no single and universally agreed upon definition of
a solitonic vortex in the literature. One definition hinges on the
fact that a vortex in a channel whose transverse size is much
smaller than its length and has the same asymptotic phase
profile as a soliton in the longitudinal direction [15]. While
the other definition notes that when the transverse harmonic
oscillator length becomes comparable to the healing length,
the vortex density profile is reminiscent of a kink soliton [16].
In this paper we remain agnostic about the choice of defini-
tion, but our experiment corresponds to the first definition.

The established technique for producing dark solitons sim-
ply consists of laser-imprinting a longitudinal phase differ-
ence onto the BEC wave function. A soliton at rest typically
has a density profile width of about 0.5 μm, while its phase
profile is a step function. Imaging systems used to optically
imprint the phase change typically have resolution limits of
1.5 μm or more. Furthermore, the established technique does
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not reduce the density in a controllable way at the soliton
position. Instead, the optical dipole force resulting from in-
tensity change at the soliton position changes the density
in a way that is not generally consistent with the imprinted
phase difference. All these features give poor overlap with
the desired soliton wave function [6,7,10]. As a result, these
experiments have only successfully produced solitons moving
at a substantial fraction of the sound velocity. We overcome
this limit by simultaneously engineering the BEC density and
phase. This control allows us to improve the spatial mode-
matching between the applied potential and the desired soliton
wave function. This allows us to create solitons with speed
ranging from zero to half the velocity of sound.

This manuscript is organized as follows: First, we sum-
marize the essential properties of dark solitons in repulsively
interacting 1D BECs, which still captures the essential physics
for dark solitons in anisotropic 3D systems; second, we de-
scribe our experimental methods for imprinting and detecting
solitons; third, we demonstrate our protocol and explore its
range of applicability; and lastly, we exhibit the utility of this
approach by colliding a dark soliton with a domain wall in a
two-component spinor BEC.

I. DARK SOLITONS IN REPULSIVE BECS

Bose-Einstein condensates well below their transition tem-
peratures, i.e., with negligible thermal fraction, are well de-
scribed by the Gross-Pitaevskii equation (GPE). Solitons are
exact solutions of the one-dimensional GPE [17,18],

ih̄
∂

∂t
�(z, t ) =

[
− h̄2
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∂2

∂z2
+ U (z) + g1D|�(z, t )|2
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(1)
for particles of mass m, which approximately describes highly
anisotropic systems where transverse motion is frozen out
by strong confinement, leaving behind only longitudinal dy-
namics. For harmonic transverse confinement with transverse
trapping frequencies ωx and ωy, the 1D interaction constant
is g1D = 2h̄a(ωxωy)1/2, where a is the 3D s-wave scattering
length. In the GPE, �(z, t ) is interpreted as the condensate
wave function whose magnitude gives the local 1D atomic
density n(z, t ) = |�(z, t )|2. An infinite homogeneous system
is characterized by the chemical potential μ = g1Dn and
has low-energy phonon excitations with speed of sound c =√

g1Dn/m [19].
A dark soliton appears as a moving depletion in the back-

ground BEC; for an infinite and homogeneous system a dark
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The healing length ξ = h̄/mc is the typical minimum length
scale on which the condensate wave function can appreciably

change. This soliton solution can be characterized by φ, the
change in the condensate phase across the soliton. The soliton
velocity, characteristic density profile width ws, and depth ns

are all derived from the phase via
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ws

ξ
= csc

φ

2
= 1√

1 − v2/c2
, (3b)

ns

n
= sin2 φ

2
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The phase change across a stationary black soliton, i.e.,
with zero central density, is therefore π . This result further
shows that as the soliton velocity approaches that of sound,
its wave function smoothly connects to the ground-state wave
function.

Like most experiments with solitons, ours takes place in a
highly elongated system with ωz � ωx,y, but with ωx,y < μ/h̄,
requiring the 3D GPE for a proper description. The 3D GPE
supports many solitonic solutions [14], from kink solitons—
the analog to dark solitons in 1D—to vortex rings and soli-
tonic vortices. Reference [1] showed that with sufficient trans-
verse confinement, kink solitons can be unconditionally stable
in anisotropic 3D systems; however, our system is in a regime
where only rapidly moving kink solitons with v/c � 0.9 are
stable.

The most common method to create solitons writes the
phase drop φ associated with the soliton wave function onto
initially homogeneous BECs. In practice, this phase is im-
printed by briefly applying an external potential V (z), for
example, a step function, that changes the wave-function
phase by φ = V (z)tp/h̄, where tp is the duration of the ap-
plied pulse. Typically, V (z) is generated by a far-detuned
laser, and tp should be shorter than tc = h̄/μ, the time it
takes an excitation moving at the speed of sound to traverse
a single healing length, so the density remains unchanged
over the pulse duration. Ideally, the imprinted phase would
determine the initial soliton velocity; however, the phase
imprinting system always has a finite resolution limiting
the lowest possible soliton velocity. In our experiment c ∼
2 mm/s giving ξ ∼ 0.4 μm, so that a slowly moving soliton
with velocity 0.1c will have a width ws ∼ 0.4 μm, which is
much smaller than our resolution of 2.8 μm.1 This rightly
suggests that a BEC following such a phase imprinting pro-
cess will differ significantly from the desired soliton wave
function.

Our improved method overcomes this limitation by first
depleting the density at the desired soliton location with two
important outcomes: (1) the imprinted phase profile can better
match that of a soliton because decreasing the density locally
increases the healing length, thereby increasing the soliton
width ws; and (2) the density depletion is better mode matched
to the density depletion at a soliton’s center.

1Defined as the distance between the central peak and the first
minimum of the Airy disk.
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FIG. 1. Experimental concept. (a) Far-detuned laser light illumi-
nates the surface of a DMD, which is programmed to reflect the
light with the desired pattern. The DMD patterns are demagnified
and imaged onto the atoms, which are represented as the red cloud.
The trap laser beams are not shown in this figure. (b) Time sequence
used to create solitons with the DMD pattern. The laser power during
each phase of the experiment (vertical axis) was controlled using
an acousto-optic modulator. The insets depict the potential resulting
from the DMD patterns, accounting for the 2.8 μm (see footnote
1) resolution of our imaging system (because of the finite aperture,
but neglecting any aberrations). (c) Absorption image of a typical
BEC after TOF without solitons. (d) A BEC created with similar
experimental conditions including a soliton.

II. EXPERIMENTAL SYSTEM

Our experiments begin with 87Rb BECs having N =
2.4(2) × 105 atoms2 in the | f = 1, m f = 0〉 internal state
in a time-averaged crossed optical dipole trap of wave-
length λ = 1064 nm. One of the beams is rastered along
ez, with maximum displacement of about one waist, paint-
ing an elongated trap with frequencies (ωx, ωy, ωz ) = 2π ×
[94.5(6), 153(1), 9.1(1)] Hz. The measured (see below) lon-
gitudinal Thomas-Fermi (TF) radius of our BEC is Rz

TF =
55(1) μm, and the chemical potential is μ = h × 1.1(1) kHz.
We create arbitrary repulsive potentials V (z) using far blue-
detuned laser light of wavelength λ = 777.6 nm, spatially
patterned by a digital micromirror device (DMD, Texas In-
struments DLP LightCrafter Module, DLP3000).3 The light

2All uncertainties herein reflect the uncorrelated combination of
single-sigma statistical and systematic uncertainties.

3Certain commercial equipment, instruments, or materials are iden-
tified in this paper in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommenda-
tion or endorsement by the National Institute of Standards and Tech-

reflected by the DMD is imaged onto the atoms (the DMD
surface is focused at the BEC) using an imaging system
that demagnifies (×12) the pattern as schematically shown in
Fig. 1(a). There we illustrate the situation where the DMD is
programmed to reflect half of the laser profile.

We engineer the local BEC density with a dimplelike
potential created by programming the DMD to reflect the
light in a stripe which, after demagnification, is about 270 μm
wide along ey and 1.8 μm along ez, as shown in the first
inset to Fig. 1(b), including the impact of finite resolution.
We ramp the optical potential from zero to h × 0.78(4) kHz in
15 ms, reducing the local atomic density by about 70%. Next,
the light is extinguished for td = 100 μs, while the DMD is
updated4 to display a step function, illuminating the BEC to
one side of the dimple. The step potential is applied for a
time tp up to 170 μs, which, for our potential of magnitude
V = h × 5.5(3) kHz, results in an accumulated relative phase
up to 1.9(1) π . To avoid abrupt changes in the BEC density
after phase imprinting, we reapply the dimple potential and
ramp its magnitude to zero in 3 ms. The times to ramp the
dimple up and down were chosen to be slow enough to be
reasonably adiabatic and fast enough so that the soliton does
not propagate very far during the ramp down. For comparison
we create solitons without density engineering by applying the
same time sequence with the dimple potential set to zero.

After a variable evolution time, the dipole trap potential
is removed, allowing the BEC to expand for a 15 ms time
of flight (TOF), after which time the BEC is imaged using
standard absorption imaging [20]. A typical image of a TOF-
expanded BEC with no soliton imprinted is shown in Fig. 1(c);
each dark soliton appears as a local dip in the density as in
Fig. 1(d). Note that because of the trap geometry, the cloud
in the ey direction expands faster than in ez, such that the two
directions have similar sizes at this particular expansion time.
Because the BEC expands so slowly in the ez direction, our
analysis of the TOF images assumes that the z positions in
TOF correspond to the z positions in trap at the time of release.

We experimentally calibrate the phase imprinting and den-
sity engineering potential by adiabatically loading the BEC
into the steplike potential usually used for phase imprint-
ing described above. From the time-of-flight images and
the Castin-Dum scaling theory of BEC expansion [21] we
determine the difference in the mean-field energy, i.e., the
local chemical potential μ(z) between the two sides of the
steplike potential. This calibrates the step potential. For more

nology, nor is it intended to imply that the materials or equipment
identified are necessarily the best available for the purpose.

4This DMD can refresh every 250 μs, which includes about 150 μs
of signal and/or electronics delay and about 100 μs for the me-
chanical response of the mirrors. Therefore, we command the DMD
to change 150 μs before extinguishing the dimple light, and we
wait another 100 μs while the mirrors change mechanically before
applying the phase imprinting light. We leave the phase imprinting
light on for the desired time. We anticipate reapplying the dimple
by commanding the DMD to change to the dimple configuration at
an appropriate time sufficiently long before reapplying the dimple
light. The light is turned on/off in much less than 1 μs using an
acousto-optic modulator.
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details and discussion about the approximation involved, see
Appendix A.

We measure the sound velocity in the BEC by intentionally
inducing density perturbations in the condensate launched by
abruptly turning on the dimple potential at the trap center,
creating a pair of density waves traveling in opposite direc-
tions at the speed of sound [22]. We associate the average
speed of these waves with a 1D speed of sound, giving c =
1.65(5) mm/s, which is related to the 3D speed of sound
by c = c3D/

√
2, as is appropriate for highly elongated 3D

BECs such as ours [19]. This speed is consistent with the
3D speed of sound derived from the chemical potential c3D =
2.2(1) mm/s, which would imply c = 1.58(7) mm/s.

Even our improved protocol does not result in the perfect
soliton wave function, resulting in undesired excitations that
manifest as density modulations propagating at the speed of
sound. These reach the extremes of the BEC and dissipate in
less than 100 ms. We therefore take our earliest data 150 ms
after phase imprinting to obtain a clean background for track-
ing solitons.

III. RESULTS

Here we compare the standard phase imprinting protocol
with our improved protocol for creating solitons. Figure 2
illustrates our main result: (a) the standard protocol can only
create solitons with a velocity so large that they have an oscil-
lation amplitude comparable to the Thomas-Fermi radius; (b)
the improved protocol can create solitons with no discernible
motion, i.e., black solitons. In this section, we quantitatively
compare the ability of these two techniques to create solitons
on demand.

We first turn to a more detailed discussion of the data
presented in Fig. 2, for which the phase imprinted was φ =
1.8(1) π . Both (a) and (b) include 1D cross-sectional slices of
our BEC after TOF as a function of time, illustrating the rep-
resentative density profiles from which we obtain the soliton
position by fitting the dip to a Gaussian function. These posi-
tions, for three repetitions of the experiment, are displayed by
the semitransparent symbols in the accompanying panel and
follow approximately sinusoidal trajectories. This raw data
shows key differences between solitons created via these two
protocols: the shallower solitons created using the standard
protocol oscillate with larger amplitude, implying a higher
peak velocity. This is consistent with our expectations that
more rapidly moving solitons are associated with a shallower
density depletion.

In Fig. 2, when fewer than three symbols are displayed,
no soliton was observed in one or more of the trials at
that time. Our data therefore indicates that fast solitons,
created using the standard protocol, have shorter lifetimes
than the stationary solitons. We suspect that this results in
part from friction dissipation mechanisms, leading to a more
rapid destabilization of fast-moving solitons similar to those
discussed in Refs. [10,23,24]. In the latter two references,
diffusion and damping resulted from the interaction with
a dilute background of impurities. In the present case, the
computation of the collision integral would result from the
reflection of phonons rather than impurities.

For harmonically trapped 1D BECs, solitons follow sinu-
soidal trajectories described by z(t ) = A sin(ωst + φ), with
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FIG. 2. Oscillation of dark solitons created using a 1.8(1) π

phase imprint showing: (a) the standard protocol and (b) the im-
proved protocol. In both cases, the top panel plots 1D longitudinal
slices taken through our TOF-expanded BECs as a function of soliton
evolution time for a single realization of the experiment at each time.
The bottom panels plot the resulting soliton positions (symbols),
with three realizations of the experiment for each time. The curve
in (a) is a sinusoidal fit to the data described in the main text.
Because the data in (b) reveals a stationary soliton, we used the
procedure described in Appendix C to plot a sinusoidal oscillation
with amplitude A = 0.19 μm and ωs = 2π × 3.0 Hz. Dashed lines
represent the edges of our BECs.

predicted oscillation frequency ωsol = ωz/
√

2, which is also
valid for kink solitons in 3D. The factor of

√
2 is often

described in terms of the ratio between the “inertial” and
“physical” (or “bare”) masses of a dark soliton, η = min/mph,
ωsol = ωz/

√
η, with ηk = 2 for a kink soliton. The bare mass

is related to the number of missing particles, and the inertial
mass is related to the response to an external force. We
measure an oscillation frequency of ωs = 2π × 3.0(1) Hz.
This differs significantly from the expected ωz/

√
2 = 2π ×

6.4(1) Hz for a kink soliton. Therefore, we consider the possi-
bility that we are observing a solitonic vortex. The mass ratio
for solitonic vortices exhibiting small-amplitude oscillations
depends on the chemical potential and transverse trapping fre-
quency ω⊥ [14], which for our case gives ηsv ≈ 9. For ηsv ≈ 9
the computed oscillation frequency is ωs ≈ 2π × 3 Hz, con-
sistent with the observed frequency. Because our transverse
frequencies are unequal, it is not a priori clear how to average
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TABLE I. Transverse trapping frequencies ω⊥ and typical aver-
ages and the associated solitonic vortex mass ratio.

ω⊥
Expression Value ηsv ≈
ωx 2π × 94.5(6) Hz 13√

ωxωy 2π × 120.2(5) Hz 9
(ωx + ωy )/2 2π × 123.8(6) Hz 9
ωy 2π × 153(1) Hz 7

them, or if averaging is suitable at all. Table I displays the
transverse trapping frequencies and possible averages; we find
both the geometric and arithmetic averages to be consistent
with the observed soliton oscillation frequency.

Figure 3(a) plots the TOF soliton oscillation amplitude,
obtained from a sinusoidal fit (except for imprinting time
160 μs, where we used the procedure described in Appendix
C), as a function of the imprinting phase, and compares
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FIG. 3. Soliton oscillation amplitude (a) and velocity (b) for
different imprinted phases. The imprinted phase (top axis) is related
to the imprinting time (bottom axis) by our calibration of the DMD
potential. Solid curves show the results of numerical simulations, and
filled symbols are experimental data for the standard (orange) and
improved (green) protocols.

our experimental data (filled symbols) to results of 1D GPE
simulations (solid curves, see Appendix B), which we expect
to provide only qualitative guidance for solitonic vortices.
This figure shows that the standard protocol (orange) creates
solitons within a very narrow window of amplitudes, all com-
parable to RTF, while the improved protocol (green) can tune
the oscillation amplitude from this large value through zero.
We observe experimentally that visible solitons are not created
for phase imprints below about π , while above 2π , multiple
solitons are created. Figure 3 therefore focuses on phase
imprinting within this interval. The velocities, extracted from
the sinusoidal fits and normalized by our measured sound
velocity, are plotted in Fig. 3(b). This data shows that when
standard phase imprinting is used (orange squares), solitons
can only be created with velocities around 0.4c, which is
consistent with previous works [9,25]. In contrast, when the
improved method is used (green circles) we acquire almost
full control over the soliton velocity, including the ability to
generate nearly stationary solitons. In this case, the oscillation
amplitude is AI = 0(2) μm, resulting in a peak velocity of
0.00(4)c, which corresponds to a stationary soliton within our
experimental uncertainty (see Appendix C).

IV. SOLITON–DOMAIN WALL COLLISIONS

We conclude with an application of our technique, de-
terministically colliding a dark soliton with a domain wall
formed at the interface between the spin components of an
immiscible binary BEC. The latter can be seen as a solitonic
excitation in the sense that it is localized and long-lived
magnetic excitation in a two-component BEC. The addition
of the spin degree of freedom enriches the physics of solitons,
both introducing new localized solitonic objects as well as
altering the physics of dark solitons. For example, dark-bright
solitons—a dark soliton in one component whose core is filled
with the other component—have been created and collided
[9]. This is also similar to earlier experiments creating vortices
in spinor BECs in which the vortex core was filled with atoms
in a different internal state [26].

To create a domain wall, we apply a radio frequency π

pulse to our | f = 1, m f = 0〉 BEC, putting each atom into an
equal superposition of | f = 1, m f = +1〉 and | f = 1, m f =
−1〉. The small, negative spin-dependent scattering length
a2 in 87Rb, with a2/a ≈ −0.005 makes this binary mixture
immiscible [27–29], leading to the formation of stable do-
main walls with size given by the spin-healing length ξs =
ξ
√|a/a2| ≈ 5 μm. The BEC is held for 2 s in the presence

of a small magnetic field gradient to initialize a domain wall
between the two spin states.5 After the soliton creation and a
chosen propagation time, we perform spin-sensitive imaging
by applying a magnetic field gradient (≈0.6 mT cm−1) during

5The gradient is not strictly necessary to initiate the domain wall,
but the addition of gradient along the longitudinal direction of the
BEC decreases the time for the system to reach equilibrium. We adi-
abatically apply a bias of the order of 10−4 T along the longitudinal
direction, which due to imperfection in the alignment is enough to
produce the gradient necessary to deterministically create the domain
wall.
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FIG. 4. Soliton crossing a domain wall. (a) Domain wall formed
by atoms in different spin states. Absorption images of two-
component BECs: (b) without a soliton present, (c) with a soliton
in the | f = 1, mf = −1〉 component, and (d) with a soliton in the
| f = 1, mf = +1〉 component. (e) Cross-sectional images resolving
the domain wall and the soliton motion. (f) Extracted soliton and
domain position averaged over three repetitions of the experiment.

TOF so that atoms in different magnetic states separate be-
fore absorption imaging. Figure 4(a) we plot the theoretical
expected local density n±1(r) of each spin component in a
ground-state BEC containing a domain wall, where n+1(r) is
displayed in red and n−1(r) is displayed in blue. In Fig. 4(b)
we plot the magnetization mz(r) ≡ n+1(r) − n−1(r) of such
a system after TOF in a color scale normalized by the total
density nT(r) ≡ n+1(r) + n−1(r).

We create solitons on one side of the domain wall by
offsetting the optical potential, patterned by the DMD, from
the BEC center. Typical absorption images with solitons on
either side of the domain wall are shown in Figs. 4(c) and 4(d).
In Fig. 4(e) we show a sequence of normalized magnetization
slices at different times as the solitons cross the domain wall.
Figure 4(f) shows the soliton position averaged over three
different experimental realizations. From these images we can
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FIG. 5. Solitons oscillating in condensates including a domain
wall. Position of solitons oscillating in a single-spin condensate (top)
and a condensate with a domain wall present (center). For each time
there are ten realization of the same experiment, and fewer points
indicate that no soliton was observed in one or more realization. Solid
curves are fits to eγ sin(ωt + φ), where γ accounts for the possibility
that soliton decay is associated with change in the oscillation ampli-
tude (if these were kink solitons and if the decay mechanism were to
involve reduction in the soliton depth, this would increase the soliton
velocity and hence its oscillation amplitude). Dashed lines represent
the edges of our BECs. The survival probability obtained from these
ten realizations is shown in the bottom panel. Solid curves are the fit
to the survival probability function.

see that the soliton oscillates as in Fig. 2 and is transmitted
through the domain wall with no perceptible reflection or
change in its trajectory, suggesting that the submicrometer
scale soliton travels undistorted through the much thicker
domain wall.

Figure 5 shows that the mean soliton trajectory is essen-
tially indistinguishable without (top) and with (middle) the
domain wall present, even after multiples passages through
the domain wall. Although the mean trajectories are in-
distinguishable, the fate of solitons differs greatly between
these two cases. The bottom panel shows that successive
soliton–domain wall collisions reduce the soliton’s survival
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probability. In the presence of the domain wall (purple dia-
monds), the soliton survival probability decays to only 10%
after ≈0.7 s, which is much lower than the survival proba-
bility for solitons created in single-component BECs (black
squares), which is about 70% for the same time.

Our data shows that solitons are able to cross the domain
wall at least two times with a high probability of survival,
suggesting that the effects of the passage accumulate, con-
tributing to subsequent decay. We fit (Fig. 5 bottom panel) the
survival probability to the cumulative log-normal distribution,

Ps(t ) = 1 − 1

2
erfc

[
− ln(t/τ )√

2σ

]
, (4)

which describes systems where the probability of decay at
time t depends on an accumulation of disrupting events. The
constant τ is the characteristic time when Ps falls to 1/2 and σ

is the distribution width. In the presence of a domain wall,
τdw = 0.51(1) s is significantly smaller than for the single-
spin case τ = 0.86(2) s. In both cases the BEC is prepared
with the same trap geometry and at a similar temperature
so the thermodynamic and transverse instabilities [1] should
contribute in the same way. One possible dissipation mech-
anism involves the transfer of energy from the soliton to the
domain wall, with each interaction incrementally destabilizing
the soliton. Furthermore, the lifetime difference might be
explained by a small thermally driven contamination of the
majority spin with the minority spin in both domains, as
investigated in Refs. [10,24].

Studies with different soliton velocities, soliton sizes, and
domain-wall thicknesses might find a regime where solitons
are reflected rather than transmitted when they impact a
domain wall.

V. OUTLOOK AND DISCUSSION

We implemented an improved method to create dark soli-
tons in BECs with controlled velocity and arbitrary position,
combining standard phase imprinting with density engineer-
ing. The observed soliton oscillation frequency along with the
theoretical stability diagram for kink solitons [1,14] suggests
that we created solitonic vortices; however, our direct exper-
imental evidence is not able to resolve the expected vortex
structure [30]. Our numerical simulations in 1D (which is
valid with greater transverse frequency or lower chemical
potential) show that this technique generates well-controlled
kink solitons.

We demonstrated the utility of the improved method by
studying solitons incident on a domain wall and found that
solitons pass through the domain wall and have increased
decay probability after crossing the domain wall a few times.
Even in 1D, collisions between solitons and magnetic domain
walls have received little attention, but we expect that they
have much in common with soliton-soliton collisions. When,
as in our experiment, the magnetic domain wall is large in
comparison with the soliton, we would expect the soliton—an
excitation residing in density and phase—to “adiabatically”
follow the slowly changing magnetization. This suggests that
the collision will leave the soliton’s shape unchanged, but
because atoms displaced by the soliton are of opposite spin
after the soliton has traversed the domain wall, we expect

the domain wall to shift by roughly the healing length in a
direction opposite to the soliton propagation direction. This is
similar to a “noninteracting” collision.

When the soliton and domain wall become comparable in
size, the soliton can no longer be thought of as a pointlike
particle and a number of outcomes are possible, ranging
from noninteracting to beam-splitter-like, to perfect reflection.
Further studies are needed to fully understand soliton behavior
in the presence of a domain wall.

Our capability for creating solitons with tunable veloci-
ties, including stationary solitons, enables the study of many
phenomena, including dissipative dynamics [23,24], soliton
stability and decay in different trap geometries [1,14], and
soliton-soliton collisions in both the “reflection” and “trans-
mission” regimes [13,25]. Furthermore, high-resolution non-
destructive imaging techniques could be used to track the in
situ soliton position and better understand their behavior [31].
Lastly, our technique could be used to study the predicted
velocity-dependent spin structure of solitons in spin-orbit
coupled BECs [32].
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APPENDIX A: CALIBRATING POTENTIALS

Our time-of-flight images give a 2D (y − z) column density
distribution having been integrated along x. We separately
integrate along z the density distributions on either side of
the step, giving us two distributions along y. We fit these two
distributions to find the two TF radii. We apply the Castin-
Dum procedure as if the two sides were separately expanded
from our 3D harmonic trap, ignoring the steplike potential. We
believe this procedure is justified because the confinement,
and hence the expansion, is much stronger in the transverse
x, y directions than in the longitudinal z direction. From the
in-trap TF radii we extract the chemical potential for each side
of the step. In the spirit of the local density approximation we
identify the difference between these two chemical potentials
as the difference of the local chemical potential on either side
of the step. According to the Thomas-Fermi approximation,
this is the height of the external step potentials.

APPENDIX B: NUMERICAL SIMULATIONS

We simulate the standard and improved phase imprinting
methods using a 1D GPE assuming a transverse profile of
the inverted-parabola Thomas-Fermi form, with width given
by the local chemical potential. This approach correctly pro-
duces the 3D collective mode frequencies when the transverse
dynamics are fast, allowing the transverse wave function to
adiabatically follow the “chemical potential” derived from
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FIG. 6. Spectral analysis for solitons created using our improved
protocol. Top panel shows in a color scale the amplitude for each
frequency ω′

s vs the imprinted phase. Vertical red line is placed at the
imprinted phase that creates stationary solitons. Bottom panel shows
the individual plots with a vertical displacement to avoid overlapping
the curves.

the time-changing 1D density. This gives the 1D GPE-like
equation

ih̄
∂

∂t
�(z, t ) =

[
− h̄2

2m

∂2

∂z2
+ U (z) + g′

1D|�(z, t )|
]
�(z, t ),

(B1)
where g′

1D = 2h̄(aωxωy)1/2, and is related to the usual g1D =
a1/2g′

1D.

The time evolution of the GPE is performed through the
split-step Fourier method [33] in steps of 0.2 μs, and the
ground state is found using imaginary time propagation. We
simulate 2.6 × 105 87Rb atoms, which for our trap frequencies
leads to a chemical potential of μ = h × 1.1 kHz and RTF =
56.4 μm. The grid ranges from −70 to 70 μm in steps of
z = 0.025 μm.

We account for the finite resolution of the lens system by
using potentials with smoothed edges, generated by removing
Fourier components above the maximum optical resolution.
The patterns used to engineer the density and step potential
to imprint the phase are shown in Fig. 1, along with the
resolution-limited intensity profile. We allow the simulated

BEC to expand in TOF for 15 ms after the soliton oscillation
time while quenching the interaction strength to model the
rapid Castin-Dum transverse expansion in this 1D simulation.
We analyze numerical results in the same way as we analyze
the experimental data.

The results for the numerical simulations shown in Fig. 3
were obtained using a step potential of magnitude Vt = h ×
5.5 kHz and a dimple Vdt = h × 0.78 kHz. Both potentials
have the same magnitude used in the experiment. We attribute
the small difference between numerical and experimental
data to our numerical 1D simulation not fully describing the
dynamics in our 3D system.

APPENDIX C: DISTINGUISHING BETWEEN SLOWLY
MOVING AND STATIONARY SOLITONS

Our experimentally observed soliton positions have uncor-
related shot-to-shot noise on the scale of a few micrometers.
Because most of our solitons oscillate with amplitude much
larger than this noise, it generally contributes minimal uncer-
tainty to our fits. This is not the case for our nearly stationary
solitons.

Solitons created with nonzero velocity have a characteristic
oscillation frequency. In contrast, solitons created at rest do
not oscillate but still are susceptible to displacements due to
shot-to-shot variation, and a fitting procedure with frequency
as a free parameter will misidentify stationary solitons as
moving solitons with frequency set by the noise spectrum.
To distinguish between these cases we implemented a Fourier
spectral analysis. Because our signal undergoes only about
three oscillations in our time window of duration T , the δω =
2π/T transform limit makes conventional Fourier methods
inapplicable.

For our spectral analysis, we fit the soliton dynamics to
z(t ) = A′ sin(ω′

st + φ), with the frequency held constant at ω′
s

for each fit. The fit-amplitude A′ provides the spectral weight
for that frequency; we then repeat the fitting procedure for
different values of ω′

s, ranging from ω′
s = 2π × 1.0 to 2π ×

6.0 Hz to obtain spectrograms.
Figure 6 shows the results of this technique, applied to

solitons produced using our improved method. The top panel
shows the amplitude in a color scale, while the bottom panel
depicts the data for different applied phases displaced verti-
cally to avoid overlapping the curves.

This figure clearly reveals the oscillation frequency at
around 2π × 3 Hz for all but the smallest oscillation, where
no motion is resolvable above the noise. For the phase imprint
of 1.8π there is no distinguishable feature at the expected
oscillation frequency. From the fit we obtain A′ = 0(2) μm
at ω′

s = 2π × 3 Hz. This is the argument underlying our state-
ment that we have created dark solitons with no discernible
motion within our experimental uncertainties.
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