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Foreword

Dear imaginary reader, if you are looking for a reference in one or more of the following

topics: laser cooling and trapping of alkali gases, production of quantum degenerate Bose

gases, measurement of first and second Chern numbers, in-situ resonant absorption imaging,

digital processing tools for absorption imaging, trapped one-dimensional Bose gases, experi-

mental determination of equations of state, or digital holography, you seem to be in the right

place and I hope this document satisfies you.
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Chapter 1: Introduction

Quantum simulation is powerful. It probes aspects of quantum sytems that escape so-
phisticated theoretical tools with fully fledged experiments. The degree to which a quantum
simulation realizes a physical system is left to the experiment. Ever challenging and exciting
progress in quantum simulation feeds from novel experimental techniques and platforms.
The RbChip laboratory at NIST, where the experiments described in this thesis take place,
specializes in Bose–Einstein condensate (BEC) based quantum simulation. The choice of
platform is well justified as BECs consitute a well-understood, fundamental form of quan-
tum matter. In addition to hosting versatile control, they provide us with a rich experimental
toolbox, of which a large section comes from optics. This is not surprising, as light-matter
interaction is at the heart of the information throughput, or the exchange of information in
measurement and control, in a majority of atomic systems.

A bosonic ensemble reaches quantum degeneracy when a significant number of particles
occupy the same quantum state. While Bose enhancement leads to such a degenerate conden-
sate, the Pauli exclusion principle dictates the occupation statistics of a degenerate fermionic
ensemble. In either case, degenerate ensembles may display macroscopic coherent behavior,
making them remarkable platforms for the simulation of quantum matter. To date, quantum
degeneracy has been experimentally attained for ensembles of light [1], bound light-matter
quasiparticles [2], and dilute clouds of very cold atoms and molecules [3–5], showing the two
kinds of bosonic and fermionic degeneracy. Similarly, a number of naturally ocurring degen-
erate Fermi gases include electrons in metals, liquid 3He near the superfluid transition [6],
and electrons in a superconductor [7]. In the case of cold atomic ensembles, a larger than
unity phase-space density in the microscopic variables, position and momentum normalized
by the appropriate power of ~, marks the classical to quantum degenerate transition. Macro-
scopically, high spatial density and low temperature maximize the phase-space density of the
thermal ensemble. Since cold atomic gases are extremely dilute compared to air in practice,
we find the quantum degenerate transition at ultra low temperatures.

The electronic level structure in our quantum degenerate gases (one of the internal atomic
degrees of freedom) has a characteristic energy scale of a few eV. Under typical experimental
conditions, the density of a BEC is 1014 atoms/cm3. That is 105 to 108 times more dilute
than the density of air under standard atmospheric conditions. Typically, these dilute gases
are confined to regions in space of a few 1000µm3, and in the context of this thesis resemble
white-blood cells in size, although not in shape. Their temperature can be of the order of
a few tens of nK, which represents a part in 108 of the coldest naturally ocurring temper-
ature ever recorded of the cosmic microwave background [8], making them remarkably cold
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objects. Nevertheless, their phase-space density exceeds our everyday experience by ∼ 10
orders of magnitude, starkly separating our lives from quantum degeneracy. For most of
their ephemeral existence, these gases are suspended against gravity in an ultra high vac-
uum (UHV) environment, isolated from everything but for the presence of electromagnetic
fields and our scientific curiosity.

We use a robust apparatus to produce BECs in our laboratory, usually referred to as the
RbChip laboratory, allowing for relatively simple transitions in our setup when investigating
different physics, and giving us new technical challenges every day. Nevertheless, this appa-
ratus has some drawbacks, and we address them through a cycle of iterative design with a
new, future apparatus. In Chapter 2, I describe the production of BECs in RbChip, touch-
ing on a few aspects of the current and future apparatus. In addition, I include a record of
several procedural scripts representing the standardized hardware instructions. The descrip-
tion in Chapter 2 complements those found in previous dissertations emanating from our
laboratory, giving a new perspective on the experiment and paving the way for upcoming
experiments in the new apparatus.

I review in Chapter 3 a quantum simulation of Abelian and non-Abelian gauge fields with
nontrivial topologies in single-particle state manifolds. This is an example of the BEC based
quantum simulation possible in RbChip. Topologically nontrivial physics is not exclusive
to quantum systems, although topological classifications find extensive applications in con-
densed matter physics and high-energy physics. There, gauge field theories host topological
observables quantifying the global properties of a system. We measure these observables in
our simplified quantum simulation of the associated gauge fields, providing valuable physical
insight for future experiments and applications.

A quantum simulator has two fronts; measurement and control. Chapter 3 describes our
excellent control over the internal degrees of freedom of our BEC. Chapter 4 introduces our
microscopy toolbox used as the basis for most of our measurements. Since high quality mea-
surement is rooted in calibration and optimized signal processing, I give a technical overview
of the different methods that we use every day. Eventually, the measurement quality directly
impacts the extracted information, potentially limiting or broadening our physical under-
standing.

One of the unfulfilled milestones in quantum simulation is to reliably prepare, control,
and probe arbitrarily entangled many-body quantum states. These highly-correlated states
are a cornerstone in various fields of physics, from high-energy, condensed matter, nuclear,
and plasma physics, regardless of the fundamental nature of the interaction (strong nuclear,
weak nuclear, or electromagnetic). Examples abound showing how neither approximate the-
ories nor powerful classical computers can reveal the intricate properties of these emergent
forms of matter. A path forward is studying strongly-correlated atomic systems through a
controlled addition of strong effective interactions.

Various strategies exist to make cold and ultracold atoms interact strongly. The most
notable example is using Feshbach resonances [9], where an external magnetic field is used to
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effectively tune the strength of interatomic interactions. Similarly, isolating a set of one or
more modes of the electromagnetic field around an atomic ensemble can mediate long-range
interactions between the atoms [10]. Some rare-earth atomic species have ground states
with large magnetic moments giving strong dipole interactions [11]. Alternatively, engineer-
ing single-particle dispersion relations modifies interactions in trapped degenerate gases [12]
and can significantly alter their impact. For instance, a deep periodic (lattice) potential can
drive contact interacting Bose gases into a strongly correlated Mott insulating phase [13].
Promoting atoms to higher excited states gives a larger polarizability through which they can
interact at long distances [14]. Finally, external potentials confine systems into effectively
lower dimensions, where the modified density of states affects the role of interactions [15].
In Chapter 5, I introduce three models for one-dimensional Bose gases, highlighting the role
of interactions.

We probe in Chapter 6 the strongly interacting regime by experimentally isolating di-
lute, individual one-dimensional Bose gases. These systems represent a first step towards
the strongly correlated regime as their interactions become more relevant when the linear
density decreases. We probe these extremely dilute gases with the quantitative bright-field
microscopy introduced in Chapter 4. In a first experiment, we recover their thermodynamic
equations of state to identify the presence of strong interactions using the models from Chap-
ter 5.

Finally, in Chapter 7 we expand the imaging toolbox for quantum gas based quantum
simulation by importing the well-established methods of digital holographic microscopy. This
form of microscopy translates a fraction of the hardware complexity to software, enhancing
the signal to noise ratio with robust algorithmic tools. In a first experiment, we demon-
strate the simultaneous absorptive and dispersive imaging of cold atom clouds. Then, we
probe novel spatial field correlation functions revealing the aberrations of our microscope.
Remarkably, we access optical transfer functions without sampling a localized point source
in real space, but rather use point-correlations from atomic shot-noise. Inverting the transfer
functions relieves our absorption images of most of the imperfections caused by aberrations.
I end with a list of ideas for future experiments enabled by this powerful tool.

I present in Appendix A a simple transistor bank circuit for driving our high-current elec-
tromagnets in the future apparatus. The improvement with respect to the original design
is a doubling of the density of transistor elements to reduce the power dissipation. Then,
in Appendix B, I provide detailed documentation on the computer-aided design (CAD)
files comprising the design of the future apparatus. Departing from the main issues in our
apparatus, I include all the proposed design features and extensive detail on the CAD sub-
assemblies. In Appendix C, I describe the numerical implementation to solve the Yang–Yang
thermodynamics system of coupled integral equations. I include a copy of the working code
as a reference. Finally, in Appendix D, I summarize the design parameters of our homemade
compound objective. We base our lens design the popular five-element design by Wolfgang
Alt [16], and include a description of the ring spacers to achieve optimized performance.

This dissertation is a comprehensive compilation of methods for in-situ microscopy of
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elongated quantum gases, including calibrations and measurement techniques. Figure 1.1
shows the quantum simulator our laboratory at the end of the summer of 2019. This appa-
ratus continues to thrive.

Figure 1.1: RbChip quantum simulator in the summer of 2019. The surrounding µ-metal
enclosure is to shield atoms from external magnetic fields. Broadband UV/VIS light used to
desorb 87Rb reflects off the enclosure near bottom of the apparatus. The coordinate system
indicates the frame of reference of our laboratory.
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Chapter 2: Quantum degenerate gases

This chapter describes our scientific apparatus, from here on referred to as “RbChip”, the
experimental sequence used to produce ultracold degenerate Bose gases, and design features
for an upgraded revision of the apparatus. RbChip is described in [17] and used throughout
the experiments in this dissertation. A reliable and consistent daily operation motivated a
“bugfix” release (to use a software metaphor) which we call “future apparatus”, in which
we copy the core RbChip design and revisit minor flaws. The future apparatus is being
deployed at UMD during the writing of this thesis, and I briefly mention some design up-
grades. Along the different stages of the sequence, we include Python scripts illustrating the
procedures for the Labscript suite [18], our choice of versatile, open-source control software.
Altogether, these elements provide enough information for the reader to understand how we
experimentally produce quantum degenerate Bose gases.

This chapter is organized as follows. In Section 2.1 we briefly review the relevant elec-
tronic level structure of 87Rb, how we introduce 87Rb it into our vacuum system, and the
methods that follow to cool it down using Doppler and sub-Doppler laser cooling. In Section
2.2, we introduce the optimized magnetic transport, and describe the stages of radiofre-
quency (RF) evaporation, decompression, and evaporation in an optical dipole trap stages
that precede the transition to BEC.

2.1 Making a cold atomic gas

The atomic species in this thesis is 87Rb. This bosonic alkali is probably the most popular
atom in cold and ultracold gas experiments. The combination of a single valence electron
(shared by all alkali and singly ionized alkali-earth atoms), and addressable electronic tran-
sitions (with commercially available diode lasers), make it a friendly atom for experiments.
Previous theses from the RbChip [17, 19], RbK [20], and RbLi [21] teams, as well as from
beyond the group [22], cover the details of the atomic structure of 87Rb in fantastic detail.
We leverage their content and adopt their common notation for this dissertation.

We show in Figure 2.1 the ground and first excited states of 87Rb, along with the most
relevant energy perturbations in leading order of magnitude in the presence of static magnetic
fields of up to 20 G. Within the electronic ground |52S1/2〉 state of 87Rb, the energy splittings

arising from these perturbations obey ~∆F � ~∆HF � ε(1) ≥ ε(2), where ~∆F is the fine
structure splitting, ~∆HF is the hyperfine splitting, and ε(1) and ε(2) represent the linear
and quadratic contributions of the Zeeman shift respectively. The quadratic Zeeman shift
becomes more obvious in the |52P3/2 F = 1,mF = −1〉 state in Figure 2.1 in the range of
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|B|= 10 G field.
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Figure 2.1: 87Rb D-line. Schematic level structure (not to scale) of the D1 and D2 lines in
87Rb. Exact numerical diagonalization in order of the leading perturbations yields the energy
levels above. Starting after the fine structure (i.e. spin-orbit coupling) (blue), the hyperfine
(green) and Zeeman split (red) manifolds appear on the right. The latter covers the range
of experimentally attainable static magnetic fields |B|= [0, 20] G. Finally, the last panel to
the right (gray) shows the magnetic mF sublevel manifolds under a static magnetic field of
|B|= 20 G. Annotated frequency splitting factors indicate the magnitude of the perturbed
energy scales.
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2.1.1 Rb source

The source of 87Rb in RbChip is a 1 g breakseal ampoule inside a mini (� = 1.33 in)
conflat-flange (CFF) short bellows placed under UHV. Near room temperature, and well
bellow its melting point, the vapor pressure of metallic 87Rb is high enough to diffuse into the
nearby UHV regions, including a magneto-optical trap (MOT) glass cell. There, it reaches an
equilibrium pressure determined by the conductance of the UHV manifold, active pumping
elements, and alkali source temperature. We use a thermo-electric cooler (TEC) to maintain
a constant temperature at the source. The TEC is in contact with the mini-CFF bellows
through an aluminum collar, and sits on top of a � = 1.0 in aluminum pedestal. Chilled
(T ∼ 15 ◦C) water runs through a straight � = 3/8 in copper tube across the pedestal. The
source subassembly is covered by a thermally insulating blanket inside of which we flow dry,
gaseous N2 to mitigate water vapor condensation. Figure 2.2 shows a schematic of the source
in RbChip.

Figure 2.2: RbChip source. The TEC is mounted between a cooling pedestal and a collar
surrounding the mini-CFF with the 87Rb ampoule. The collar provides thermal contact to
the TEC. The TEC heat is drained by the pedestal running cooling water. A dry air (N2)
pocket prevents water condensation around the TEC.

The 87Rb source TEC is prone to failure. Figure 2.3 depicts a damaged source TEC still
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mounted on the pedestal (no bellows or collar shown) that failed when condensed water
vapor short-circuited the TEC connections. We identify two risks leading to such potential
failure. First is the risk of high humidity, which when combined with a large dewpoint can
cause water vapor to condense near the TEC or thermocouple electric contacts. This is
already mitigated by flowing the dry gaseous N2. Second is the risk of poor thermal contact
between the TEC, bellows, and water cooled pedestal depleting the TEC from a heat drain.
The alkali source in the future apparatus has improved thermal conductance through an
upgraded pedestal design [21]. To quantify the temperature stability of the 87Rb source over
a timescale comparable with the duration of a simple experiment, we command the TEC to
T = −0.500 ◦C, and log the temperature for ∼ 30 min. Figure 2.3 shows the histogram, with
an approximate standard deviation of σT ≈ 0.03 ◦C.

(a) (b)

Figure 2.3: Damaged TEC and temperature log. (a) Damaged TEC unit. (b) Histogram of
the logged temperature for 30 min. every 30 s under typical cycling experiment conditions
(with the chilled water running and the regular heat load of the apparatus). The standard
deviation of the histogram represents the temperature stability of the 87Rb source.

A reliably cold alkali source providing low background 87Rb pressure is essential for con-
sistent experimental cycles. We may suddenly increase the equilibrium pressure inside the
MOT glass cell by shining broadband ultraviolet (UV/VIS) light from an LED on the alkali
atoms bound to the glass surface. This process is called light induced atomic desorption
(LIAD), and was first investigated in experiments with paraffin coated vapor cells [23]. We
use several 87Rb “UV-soaking” cycles to make our experimental cycles more consistent. For
instance, shining ∼ 10 min of UV light at the beginning of the day gives enough 87Rb vapor
for a normal daily operation. Then, depending on the duration of a single experimental
cycle, we may add a few additional seconds of UV light between consecutive repetitions. We
sometimes soak the MOT glass cell with 87Rb by commanding a controlled temperature rise
of a couple of degrees, holding it constant over for up to a couple of days (e.g. the weekend),
and then lowering it slowly.
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2.1.2 Doppler cooling

At the start of an experiment, we load a MOT with N = 5× 108 atoms in t & 2.5 s. We
say we load a UV-MOT when we simultaneously shine ≈ 100 mW of broadband UV light as
we load a MOT. A UV-MOT loads faster and ends up with slightly more atoms. To compare
the MOT and UV-MOT, we collect the scattered λ = 780 nm fluorescence and look at the
loading traces of MOT and UV-MOT as in Figure 2.4. Furthermore, we investigate the effect
of the daily 10 min UV-soaking described in the preceding section. For this, we load a MOT
and UV-MOT and collect the scattered fluorescence (Figure 2.4) first in the absence of any
preliminary UV-soaking, and then after a preliminary 10 min stage of UV-soaking. We find
that the 1/e characteristic loading times from exponential rising fits (solid lines in Figure
2.4) to the fluorescence traces of a MOT and UV-MOT change from τUV−MOT = 1.20(1) s,
and τMOT = 0.17(1) s to τUV−MOT = 2.01(1) s, and τMOT = 0.50(1) s, depleting the loading
efficiency, and final atom number as the background gas pressure changes. The UV-soaking
impacts the background 87Rb pressure, and along with it, the associated collisional loss and
final equilibrium atom number in a MOT. While further investigation is required to validate
this picture, it is consistent with the observed changes in final atom number and loading
rates in Figure 2.4.

Figure 2.4: MOT and UV-MOT loading. Fluorescence photo-diode (P.D.) voltage traces
during the loading of a MOT and UV-MOT for (a) no previous UV treatment and (b) after
10 min of UV-soaking the glass cell. Fits to the loading traces (solid lines) quantify the
changes in loading rate and final atom number.

Loading a UV-MOT is the first stage in our experimental sequence. Below is a set of
scripted hardware instructions comprising “stage methods” for our Python-based control
software to complement the description of our experimental sequence. Scripted instructions
like the ones below qualitatively describe the minimum set of hardware instructions that
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implement various stages, and do not comprise working code.

def prep(t):
# Shine light
UV_LED_digital_switch.go_high(t)
for intensity, beam in zip(MOT_intensities, [cooling, repump]):

set_beam(t, beam, intensity)

# Set magnetic field coil currents
for j, bias in enumerate([x_bias, y_bias, z_bias]):

bias.constant(t, MOT_bias_field[j], units='A')
MOT_quadrupole.constant(t, MOT_quad_current, units='A')

# Frequency lock offsets
MOT_lock.setfreq(t, zero_field_detuning, units='MHz')
MOT_lock.setamp(t, amp=0, units='dBm')
return 30*ms

def MOT(t):
""" Load a UV-MOT; essentially wait for MOT_load_time """
# Sample MOT fluorescence during MOT loading
MOT_scope_trigger.go_high(t - 100 * ms)

# Laser cooling
open_shutters(t, [cooling, repump])
return MOT_load_time

A first prep (preparation) stage sets all the laser intensities, frequency offsets, and mag-
netic fields ready for the following MOT stage, where we cool atoms by resonantly scattering
λD2 = 780.24 nm photons off the closed cyclic transition (i.e. cooling transition [19]) going
from |52S1/2, F = 2〉 to |52P3/2, F = 3〉 with ≈ 16 MHz of detuning from the zero-field res-
onance, and a quadrupole field strength of ≈ 10 G/cm. In the presence of a quadrupole
magnetic field, atoms localize near the field minimum, where three pairs of well balanced
resonant laser beams intersect, effectively cooling atoms in three-dimensions (3D). An addi-
tional repump beam restores atoms that off-resonantly fall into |52S1/2, F = 1〉, where they
are no longer subject to laser cooling and trapping. The ultimate temperature achievable by
ideal Doppler cooling (plane waves incident on two-level atoms) is the Doppler temperature

TD =
~Γ

2kB
,

where ~ is the reduced Planck’s constant, Γ/2π = 6.067 MHz is the linewidth of the D2

line [24], kB is Boltzmann’s constant, and which for 87Rb is TD ≈ 146µK. We most likely
never reach under 1 mK after the MOT stage due to several “real-life” limiting factors. First is
the presence of multiple levels in the electronic level structure of 87Rb (Figure 2.1), followed
by suboptimal scattering rates from the intensity, and frequency detuning of cooling and
repump light beams. Poorly balanced cooling beams typically result in warmer MOTs, and
the final size and shape of the cloud attenuate the cooling lasers as they propagate inside the
MOT volume, further adding to the cooling inhomogeneities from imperfect polarizations
and background stray magnetic fields. After reaching equilibrium at the end of the MOT

stage, we turn off the cooling and repump light simultaneously. The atomic ensemble then
ends up randomly distributed in the |52S1/2, F = 1, 2〉 ground hyperfine states, with an esti-
mated normalized peak phase-space density (at the center of the cloud) of ρ = 1× 10−6 [25].
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The future apparatus includes various strategically placed holes with the goal of pre-
aligning the MOT beams with the coil axis as it is assembled. Rectangular slots hold sliding
golden mirrors that reflect beams along two of the three arms of the MOT (for more details
see Appendix B). Finally, an imaging path along the main transport axis provides novel
optical access for MOT diagnostics.

2.1.3 Sub-Doppler cooling

As noted, our atoms are not two-level atoms, allowing us to use polarization gradient
cooling (PGC), a form of sub-Doppler cooling [26]. In preparation for PGC, we raise the
quadrupole field to spatially compress the MOT, temporarily reducing the volume of the
cloud by a factor of ∼ 10 making it less susceptible to stray magnetic field gradients. We
raise the quadrupole strength slowly to avoid heating the atoms during the execution of the
compressed MOT stage script below.

def compressed_MOT(t):
"""Load compressed MOT in preparation for molasses."""
MOT_quadrupole.customramp(t, compressed_MOT_duration, CubicRamp,

MOT_quad_current, compressed_MOT_quad_current,
initial_deriv=0, final_deriv=compressed_MOT_quad_current_final_deriv,
samplerate=1/compressed_MOT_step, units='A')

for j, bias in enumerate([x_bias, y_bias, z_bias]):
bias.customramp(t, compressed_MOT_duration, CubicRamp,

MOT_bias_field[j], compressed_MOT_bias_field[j],
samplerate=1/compressed_MOT_step, units='A')

# Initial frequency ramp for optical molasses
MOT_lock.frequency.customramp(t, compressed_MOT_duration, CubicRamp,

compressed_MOT_frequency, molasses_start_frequency,
samplerate=1/compressed_MOT_step, units='MHz')

return compressed_MOT_duration

We implement PGC by suddenly zeroing the magnetic field to within a few 10 mG in ∼ 1 ms,
while simultaneously scanning the frequency detuning of the cooling laser from an initial
28.8 MHz to 192 MHz for 14.5 ms. This cools the atoms down to a measured 575(75)µK,
where it remains in excess of the Doppler temperature. We measure the temperature by
allowing the cloud to freely expand and track its size after some time. The uncertainty in
this thermometry comes from an uncertainty in the magnification due to reduced field of view,
an effect which will be easier to mitigate in the future apparatus. The optical molasses

stage script below performs PGC.

def optical_molasses(t):
# Drop quadrupole and offset bias field currents
MOT_quadrupole.constant(t, MOT_quad_current, units='A')
for j, bias in enumerate([x_bias, y_bias, z_bias]):

bias.constant(t, molasses_bias_field[j], units='A')

# Shine optical molasses, scanning frequency detuning
MOT_repump.constant(t, molasses_repump_intensity)
MOT_lock.frequency.customramp(t, molasses_time, ExpRamp,

molasses_start_frequency, molasses_end_frequency,
molasses_detuning_ramp_width, samplerate=1/molasses_step,
units='MHz')

return molasses_time
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A fundamental temperature “limit” is the recoil temperature given by

Tr =
~2k2

r

mkB
,

where ~kr = ~/λ̄D2 is the recoil momentum associated with a single photon of reduced wave-
length (λ̄ = λ/2π), and which for 87Rb is 362 nK. State of the art laser cooling experiments
are able to reach a few Tr with highly optimized Doppler and sub-Doppler techniques [27].
Here, we are substantially hotter than most temperatures achieved by sub-Doppler cooling,
suggesting that it might be possible to improve this by using different parameters than those
used in our optimized stage. In addition to the usual polarization and stray gradient issues,
some of our measurements suggest that we are limited by time as the cloud of atoms diffuse
freely during this stage. Nevertheless, we find that achieving a higher spatial density seems
more benefitial for the upcoming evaporative cooling where the cooling rates are dependent
on the temperature and peak spatial density. It is not obvious that lower MOT tempera-
tures are globally benefitial, and while the normalized phase-space density needs to increase,
the optimal trajectory is hard to predict. The future apparatus is designed to be a better
platform for optimizing and better diagnosing the PGC stage.

The current apparatus is vertically oriented, with gravity pointing along ey, and the
principal quantization axis along ez, aligned to the axis of the quadruopole coil pair (see
Figure 1.1 for the reference coordinate system). Atoms are in either of the two |52S1/2, F = 1〉
and |52S1/2, F = 2〉 states after the optical molasses stage. In order to prepare for the
next stage of magnetic transport, we optically pump atoms into the low-field seeking state
|52S1/2, F = 2,mF = 2〉. We do this by briefly pulsing a circularly polarized optical pumping
beam propagating along -ex for τ = 605µs in the presence of a negative bias magnetic field
along ez during the scripted optical pumping stage.

def optical_pump_2_2(t):
""" Pulse optical pumping into 2,2 """
MOT_lock.frequency.constant(t - 100*ms, optical_pumping_frequency,

units='MHz')

# Setup bias field (mostly along z)
for j, bias in enumerate([x_bias, y_bias, z_bias]):

bias.constant(t, optical_pumping_bias_field[j], units='A')

pulse_beam(t, optical_pumping_beam,
intensity=optical_pumping_intensity, pulse_time=optical_pumping_time)

pulse_beam(t, MOT_repump,
intensity=optical_pumping_repump_intensity,
pulse_time=optical_pumping_time)

return optical_pumping_time

Following the optical pumping stage, we turn the quadrupole field back on to trap the
freely falling |F = 2〉 cloud, ramping the current up until it levitates the |F = 2,mF = 2〉
atoms against gravity. The vector field

B(x, y, z) = Q

[
xex + yey −

(
2z +

B0

Q

)
ez

]
(2.1)
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formed by a quadrupole of strength 2Q centered at the origin and a nonzero bias field B0

along ez provides hyperbolic confining potentials

Uq(x, y, z) = µBgFmFQ

√
x2 + y2 +

(
B0

Q
− 2z

)2

, (2.2)

where the low-field seeking mF > 0 states get trapped (if the atoms were in F=1, mF < 0
will be trapped). Tipping the bias field along an arbitrary direction so that it points other
than a principal axis produces conical section potentials (typically at this point we don’t
add shifting bias fields). The magnetic trapping stage script is below.

def magnetic_trap(t):
""" With all light off, load 2,2 atoms into a magnetic trap """
# Ramp magnetic trap
MOT_quadrupole.customramp(t, magnetic_trap_MOT_time, HalfGaussRamp,

magnetic_trap_MOT_quad_current, initial_transport_current,
magnetic_trap_MOT_ramp_width, samplerate=1 / magnetic_transport_step,
units='A')

for j, bias in enumerate([x_bias, y_bias, z_bias]):
bias.customramp(t, magnetic_trap_MOT_time, HalfGaussRamp,
magnetic_trap_MOT_bias_field[j], molasses_bias_field[j],
magnetic_trap_MOT_ramp_width,samplerate=1/magnetic_trap_MOT_step,
units='A')

return magnetic_trap_MOT_time

The final quadrupole field ramp not only raises the field strength, but simultaneously ramps
the bias field strength, shifting the center of the magnetic trap. There, the magnetic trap
smoothly intersects the trajectory of the falling cloud without depleting its number by much
or heating the cloud. We find that if we don’t ramp the bias field then the magnetic transport
doesn’t work so well. We suspect one reason for this is the presence of magnetized objects
around the atoms, and we believe that the bias field cancels such stray fields. The final
quadrupole strength is made strong to provide an effectively deeper potential during magnetic
transport. This stage marks the end of laser cooling in preparation for BEC in RbChip.

2.2 Making an ultracold atomic gas

Laser cooling alone is insufficient to reach quantum degeneracy, so we turn to forced evap-
orative cooling. Evaporative cooling combines a selective loss in atoms from the high energy
tail of the thermal distribution with a collision driven thermalization which repopulates the
high energy tail which results in an overall cooling of the gas. The estimated thermaliza-
tion rates in a magnetic trap of 10− 100 ms (implied by collisional rates, which depend on
temperature, and spatial density) are low enough that forced evaporation in the MOT cell
region is impractical. In other words, the nonselective loss from the background gas pres-
sure overwhelms the selective loss of forced evaporation. For instance, we may compare the
vacuum-limited lifetime of a magnetically trapped cloud in the MOT glass cell, measured
to be 2.14(22) s in Figure 2.5, with the t ≥ 10 s duration of evaporative cooling. The largely
different timescales show just how unfeasible it is to evaporate atoms directly in the MOT
cell. Both the current and future apparatus are designed to magnetically transport the laser
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Figure 2.5: Lifetime of a magnetically trapped MOT. (a) Normalized atom number vs hold
time (circles) in a magnetic trap measured right after the optical molasses stage. A
weighted least-squares fit accounts for lower uncertainty measurements in low atom number.
Fitting to the simple exponential N = N0 exp (−t/τ) (solid line) gives a 1/e lifetime of
τ = 2.14(22) s. (b) Fit residuals. Larger atom number uncertainties near t = 0 come from
counting errors in saturated cloud images.

cooled atoms to a second (science) glass cell with a desirable ∼ 100 times lower pressure (and
proportionally larger vacuum-limited trap lifetime). In the current apparatus, the lifetime is
well in excess of 30 s, implying a modest UHV improvement factor, but giving enough time
for evaporative cooling. Transport is the price to pay for using a LIAD 87Rb source in our
apparatus.

We keep the LIAD source and dual glass cell UHV system in the future apparatus. The
glass cells, atomic source(s), and transport coils heavily constrain the UHV manifold. The
future apparatus UHV system is indirectly pumped by two 25 L/s ion pumps through two
� = 3/8 in differential pumping tubes, in contrast with the single differential pumping tube
and two ion pumps in RbChip. In addition, the glass cells are single ended with only one
mini-CFF. This allows a clear line of sight along the magnetic transport axis. We provide
further documentation for the future apparatus UHV manifold in Appendix B.

2.2.1 Magnetic transport

The thesis of Abigail Perry [17] describes our implementation of magnetic transport origi-
nally demonstrated in [28]. The transport sequence displaces the minimum of the quadrupole
field gradient vertically along the transport axis, moving the cloud along the way. While a
net displacement can be achieved by using two adjacent coil pairs, three adjacent coil pairs
have the advantage of maintaining a nominal cloud aspect ratio. As shown in Figure 2.6,
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keeping the field gradient aspect ratio of three-coil pairs β3 = ∂zBz/∂yBy constant locks
the aspect-ratio of a cloud during transport. Only at the beginning and the end, where the
cloud is accelerated/decelerated, does the aspect ratio change suddenly. During transport,
we energize no more than three pairs of quadrupole coils at any given time.

Our apparatus has a “push” coil placed below the MOT to help launch the cloud into
transport. The push coil is a single square-shaped coil aligned with the transport axis, but
never used it in our sequence, and since removed in the future apparatus design. To retain
the capability of assisting the beginning of transport with a displacement, we replace the
push coil with an additional bias coil pair oriented along the principal quantization axis. Ad-
ditionally, we design the a smaller transport coil pair spacing and optimize the coil shapes
to cut down on heat dissipation and free optical access. Power dissipation causes thermally
driven magnetic field drifts and hysteresis. To drive the transport currents with optimized
power dissipation, we put toghether an improved set of power transistor banks, described in
Appendix A.

We use the magnetic transport stage below to begin transport of magnetically trapped
clouds.

def magnetic_transport(t, **kwargs):
""" Magnetic transport of 2,2 cloud """
transport_oscilloscope_trigger.trigger(t, duration=0.1)

# Compute switchover times and supply selection logic
t_switch, flags = transport.t_switchover

# Enable supply to feed coil pairs at switchover times
for switch_time, flag in zip(t_switch[:7], flags[:7]):

agilent_logic(t + switch_time, mode='transport', line=flag)

# Switch bias field control to top servo near the end of transport
kepco_logic(t + t_switch[7], enable=True, side='top')
for j, bias in enumerate([x_bias, y_bias, z_bias]):

bias.customramp(
t + t_switch[7],
t_switch[8] - t_switch[7],
LineRamp,
molasses_bias_field[j],
transport_shim_field[j],
samplerate=1/magnetic_transport_step,
units='A',

)

# Carry on with final transport and deceleration
for switch_time, flag in zip(t_switch[8:], flags[8:]):

agilent_logic(t + switch_time, mode='transport', line=flag)

# Smooth vertical decompression and shift to end
y_bias.customramp(

t + t_switch[9],
transport_time - t_switch[9],
LineRamp,
transport_shim_bias[1],
top_shim_bias[1],
samplerate=1/magnetic_transport_step,
units='A',

)
for j ,transport_current in enumerate([transport_current_1,
transport_current_2, transport_current_3, transport_current_4]):
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transport_current.customramp(
t,
transport_time,
transport.currents_for_channel,
j + 1,
samplerate=1/magnetic_transport_step,
units='A',

)
return transport_time

Figure 2.6: Optimized magnetic transport. (a) Calculated aspect ratio from two (β2), and
three (β3) coil pairs. (b) Transport current traces per coil pair. (c) Vertical position and
speed of the cloud. (d) Magnetic field z-gradient along ez.

A genetic optimization algorithm [17] found a local optimum in the ∼ 40-dimensional
parameter space spanned by the transport stage in the early days of RbChip. More recently,
we implement a Gaussian process algorithm first used in [29] through the open-source package
MLOOP, and maximize the final atom number at the end of transport, and after an inefficient
stage of RF evaporation (see Section 2.2.2) as a proxy for phase space density. We find
an improvement in the total transport time going from 2.2 s to 1.7 s, a reduction of ≈ 22 %
with respect to the original value. While an improvement of 22% seems relatively low, it
affects the long term stability of the apparatus and gives higher experimental reproducibility.
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Figure 2.6 summarizes various features of the optimized transport, where we calculate the
two and three-coil aspect ratio, the quadrupole coil currents, the position and speed of the
cloud, and the quadrupole field gradient along ez as a function of time. We are unable to
reconstruct the transport trajectory in our apparatus as we lack imaging along the transport
axis, a “bug” that will no longer be present in the future apparatus.

2.2.2 RF evaporation

We dress the |F = 2,mF = 2〉 cloud with a∼ 200 mW radiofrequency (RF) field produced
by a single loop antenna located a few centimeters below the atoms to begin forced evapora-
tion in the strong (100 G/cm magnetic quadrupole trap. The RF field opens a fixed energy
gap in the dressed state energy spectrum. We then chirp down the RF tone from 12 MHz to
3.5 MHz at a constant rate in an attempt to remain adiabatic with respect to the energy gap
while addressing atoms with enough kinetic energy that approach resonance. As the chang-
ing RF tone addresses different sectors of the magnetically trapped cloud, adiabatic spin
transitions flip the magnetically trapped |mF > 0〉 atoms into antitrapped |mF ≤ 0〉 states.
From the geometry of the magnetic trap, the ejected atoms belong to the high energy tail
of the thermal distribution. After a ∼ 10− 100 ms period of collisional thermalization, the
temperature of the cloud drops. Nonadiabatic spin transitions near the quadrupole center
limit RF evaporation at sufficiently low temperatures. These nonadiabatic Majorana losses
remove atoms on the low energy of the thermal distribution, causing effective heating [30].
This impedes the RF evaporation to continue cooling our gases. Below is the script describing
RF evaporation in RbChip.

def rf_evaporate(t, **kwargs):
""" RF evaporation out of magnetic quadrupole """
# Broadcast chirped RF tone
RF_mixer.constant(t, rf_evaporation_mixer_voltage)
RF_switch.go_high(t)
RF_evap.frequency.ramp(t, rf_evaporation_time,

rf_evaporation_initial_frequency,
rf_evaporation_final_frequency,
samplerate=1/rf_evaporation_step, units='MHz')

return rf_evaporation_time

We seek to improve the RF evaporation in the future apparatus by incorporating a printed
circuit board antenna with tunable RF polarization and nominally flat frequency response
in the band [0.1, 30] MHz. The independent control of the RF field, bias magnetic fields, and
gradient cancellation coil pairs in planes parallel to the quadrupole coil plane gives us more
control over the spin degree of freedom of the atoms without compromising optical access.

2.2.3 Decompression

Following the hybrid approach described in [25], while we begin evaporation in a mag-
netic trap, we then load into a spin-independent optical dipole trap and finish evaporating
there. For this, we relax the quadrupole field strength to the point where gravity assists the
cloud transfer into the dipole potential. The decompress stage below implements magnetic
decompression.
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def decompress(t, **kwargs):
""" Decompress from magnetic trap to dipole trap"""
decompress_time = 0

# Stop rf evaporation
RF_evap.setamp(t, -80*dBm)
RF_switch.go_low(t)
RF_mixer.constant(t, 0)

# Initial decompression
y_bias.customramp(t, initial_decompress_time, LineRamp,

y_rf_shim_bias, y_decompress_initial_bias,
samplerate=1/decompress_step, units='A')

science_quadrupole.customramp(t, initial_decompress_time, LineRamp,
move_final_current, intermediate_decompress_current,
samplerate=1 / decompress_step, units='A')

decompress_time += initial_decompress_time

# Intermediate decompression
t += initial_decompress_time
science_quadrupole.customramp(t, intermediate_decompress_time, LineRamp,

intermediate_decompress_current, final_decompress_current,
samplerate=1/decompress_step, units='A')

y_bias.customramp(t, intermediate_decompress_time, LineRamp,
y_decompress_initial_bias, y_decompress_intermediate_bias,
samplerate=1 / decompress_step, units='A')

decompress_time += intermediate_decompress_time

# Final decompression, ramp dipole on
t += intermediate_decompress_time
dipole_intensity.customramp(t, final_decompress_time, ExpRamp,

initial_dipole_intensity, intermediate_dipole_intensity,
initial_dipole_tau, samplerate=1/(2*decompress_step))

dipole_split.customramp(t, final_decompress_time, ExpRamp,
initial_dipole_split, intermediate_dipole_split,
initial_dipole_tau, samplerate=1/(2*decompress_step))

science_quadrupole.customramp(t, final_decompress_time, ExpRamp,
final_decompress_current, 0.0,
initial_dipole_tau, samplerate=1/(2*decompress_step), units='A')

y_bias.customramp(t, final_decompress_time, LineRamp,
y_decompress_intermediate_bias, y_decompress_final_bias,
samplerate=1 / (2*decompress_step), units='A')

decompress_time += final_decompress_time
t += final_decompress_time
return decompress_time

The are three substages of decompression; initial, intermediate and final, where we sometimes
include a microwave (µ-wave), and then an RF adiabatic rapid passage (ARP) stage to
transfer from |F = 2,mF = 2〉 to |F = 1,mF = 1〉 states. A reason to insert the µ-wave ARP
stage between the first and second substages of decompression is that dipole evaporation is
more efficient outside of |F = 2,mF = 2〉 at low temperatures and higher density where
three-body recombination begins to drive rapid nonvelocity selective loss. The reason to
insert the RF ARP stage near the end of decompression is for state preparation purposes,
as the spin-independent dipole potential is able to hold atoms with mF ≤ 0. As the ARP
stages are not needed for making a BEC, we omit their hardware instructions above.

2.2.4 Evaporation from a dipole trap

The ground state of a two-level atom will shift in energy due to the AC stark shift in the
presence of an off-resonant optical field with frequency ω/2π and a detuning ∆ = ω − ω0,
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away from the resonant frequency ω0/2π. Furthermore, in the presence of intensity gradients,
spatially local energy shifts give rise to an external potential

U(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r) (2.3)

known as optical dipole potential [31], where Γ is the linewidth, c is the speed of light, and
I(~r) is the intensity distribution of light. The induced dipole scatters light in proportion to
the intensity with a scattering rate

Γd(~r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r) (2.4)

as long as the intensity is low enough that coherent scattering dominates. For multilevel alkali
atoms such as 87Rb we employ far detuned optical dipole traps such that ~∆� ~∆F � ~∆HF .
For 87Rb atoms in the hyperfine manifold of their electronic ground state |52S1/2, F,mF 〉, an
optical dipole trap realizes the spin-dependent potential

U(~r) =
πc2

2

(
ΓD2

ω3
D2

2 + PgFmF

∆D2,F

+
ΓD1

ω3
D1

1− PgFmF

∆D1,F

)
I(~r) (2.5)

where ωD1,2 represents the resonant D-line transition frequency, and ∆D1,2,F
= ω−ωD1,2 is the

detuning away from resonance including the specific hyperfine state F . Taking the possibility
that ∆HF matters resulting in differential mF scalar shifts, the polarization of light enters
through the factor P = ±1, 0, accounting for σ±, π polarized light respectively, and where
gF is the Landé factor. Because the fine structure splitting exceeds the hyperfine structure
splitting by seven orders of magnitude (see Figure 2.1), the perturbative form

U(~r) =
3πc2

2ω3
0

Γ

∆

(
1 +
PgFmF

3

∆F

∆

)
I(~r) (2.6)

is appropriate for 87Rb. Furthermore, the explicit choice of π polarized light makes P = 0,
giving the spin-independent potential

U(~r) =
3πc2

2ω3
0

Γ

∆
I(~r). (2.7)

A blue-detuned (red-detuned) ∆ > 0 (∆ < 0) beam provides repulsive (attractive) potential
energy to the atoms. We use a crossed optical dipole trap with two red-detuned Gaussian
beams of intensity

I(r, z) =
4P

πw2
0(1 + z2/z2

R)
exp

[
− 2r2

w2
0(1 + z2/z2

R)

]
(2.8)

of power P , minimum waist parameter w0, and Rayleigh length zR = πw2
0/λ. The two beams

have slightly different frequencies, so we get away with adding intensities (rather than fields)
to estimate the total dipole potential. The two beams cross at near 90 ◦ close to the center
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of the magnetic quadrupole trap. We separately control both the total power and the ratio
of the individual powers so as to optimize both the initial aspect ratios of the trap, and
the final desired trapping potential. Our setup is versatile, with a pair of different minimum
waists of order 100µm and total power P ∼ 5.0 W. The combined crossed dipole trap has an
effective depth U0 limiting the temperature of a thermal gas to T ≤ U0/10kB in equilibrium.
The dipole evaporation stage begins immediately after decompression, and lasts for 2 s,
cooling the gas below the transition temperature Tc ≈ 250 nK. We image the clouds at
different points during the final stages of dipole evaporation, where a bimodal momentum
distribution signals the appearance of a Bose–Einstein condensate. The temperature of our
BEC can be decreased to T ∼ 25 nK before the optical dipole potential is overcome by
gravity. The final temperature in RbChip is T = 35(5) nK with a normalized phase-space
density well in excess of 1. This is the starting point of almost every experiment that we do.

(a) (b) (c)

Figure 2.7: Thermal to BEC transition. Absorption images in time-of-flight giving the atomic
momentum distributions after t = 24 ms of free expansion. The BEC transition is marked
by the change from (a) purely thermal (Maxwell–Boltzmann) to (b) bimodal, and (c) almost
pure Thomas–Fermi (inverted potential shape) momentum distribution. BECs are optically
denser than thermal clouds, as illustrated by the higher optical depths (colorbar). The scale
of the pure BEC in (c) is ∼ 100µm.

def dipole_evaporate(t, **kwargs):
""" Dipole evaporation in cross dipole trap """
dipole_intensity.customramp(t, dipole_evaporation_time, LineRamp,

intermediate_dipole_intensity, final_dipole_intensity,
samplerate=1/dipole_evaporate_step)

dipole_split.customramp(t, dipole_evaporation_time, LineRamp,
intermediate_dipole_split, final_dipole_split,
samplerate=1 / dipole_evaporate_step)

return dipole_evaporation_time

Our Bose–Einstein condensates form in harmonic traps, where they would condense onto
the ground state of the simple harmonic oscillator in the absence of interactions, but the
otherwise weak interparticle interactions play a dominant role at sufficiently low tempera-
tures where the kinetic energy can be neglected. There, the Thomas–Fermi approximation
gives the correct energy eigenvalue related to the global chemical potential µ0 in the mean-
field approximation. The result is a difference in the equation of state of the system which
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affects the momentum distribution after a period of free expansion. The image sequence in
Figure 2.7 shows the thermal to BEC transition. In the absence of interactions the density
distribution of a trapped thermal nondegenerate ensemble

n(~r) = n0e
−U(~r)/kBT (2.9)

gives a Gaussian profile for a harmonic potential with a width that depends on temperature.
Ultracold, mean-field interacting atoms in a BEC distribute according to the Thomas–Fermi
distribution [32]

n(~r) =

{
n0(1− U(~r)/µ0), U(~r) ≤ µ0.

0, otherwise.
(2.10)

with the inverted shape of the potential U(~r) and in terms of a global chemical potential
µ0 in the approximation where we can ignore the kinetic energy of the atoms. The global
chemical potential represents the mean-field energy of the center of the trap ... The signature
of Bose–Einstein condensation in a harmonically trapped gas is the emergence of a bimodal
momentum distribution combining a Gaussian (thermal) component and a quadratic (con-
densed) component. After putting together all the stages in this Chapter we compile a full
sequence. The minimal BEC production script reads

start()
""" Begin experiment at t=0. Add returned durations from every stage """
t = 0
t += prep(t)
t += MOT(t)
# Add a 60 Hz trigger wait line
if wait_before_compressed_MOT:

wait(label='compressed_MOT_wait', t=t, timeout=2)
t += compressed_MOT(t)
t += optical_molasses(t)
t += prep_optical_pumping(t)
t += optical_pump_2_2(t)
t += magnetic_transport(t)
t += rf_evaporate(t)
t += decompress(t)
t += dipole_evaporate(t)
t += off(t)
stop(t, target_cycle_time=40.0*s, cycle_time_delay_after_programming=True)
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2.3 Conclusion

We described in this Chapter the production of 87Rb BECs. We include different stages
of the minimal experimental sequence required to make BECs while highlighting features
of the current and future apparatus. Similarly, the descriptive Python scripts provide a
reference for hardware instructions. The production of quantum degenerate 87Rb detailed
here precedes all the experiments detailed in later Chapters.
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Chapter 3: Topology of a spin 3/2 system

This chapter describes quantum simulated Abelian and non-Abelian gauge fields. We first
dress the internal states of a BEC with radiofrequency (RF), and microwave (µ-wave) fields,
encoding geometric phases in the dressed eigenstates as gauge degrees of freedom. Under
this approach, the n-dimensional parameter space spanned by the parameters of the Hamil-
tonian host artificial gauge fields. When driven diabatically, but within the linear response
regime, deflections in the states trajectories reveal the underlying gauge field curvatures.
We measure these deflections using quantum state tomography, and after integrating the
reconstructed curvatures around closed manifolds in parameter space, we measure the topo-
logical invariant known as Chern number. After benchmarking this method by measuring
the first Chern number of a two-level system, we extend it to a four-level system with two
pairs of twofold degenerate eigenstates, and measure the higher order topological invariant
known as second Chern number for the first time. In general, the n-th Chern number is the
topological invariant characterizing the topology of quantum systems with n-fold degener-
ate bands. Lastly, by parametrically inflating and displacing manifolds, we characterize the
non-Abelian field strength, and drive a topological transition respectively.

This chapter is organized as follows. In Section 3.1, I review the role of geometry and
topology in quantum systems using a spin 1/2 Hamiltonian as an example. Here, I introduce
local and global quantities characterizing the abstract parameter spaces. Then, in Section
3.1.2 I review these quantities in the context of non-Abelian gauge fields. As a benchmarking
experiment, I present the measurement of the first Chern number in Section 3.2. Later, I
introduce the concept of generalized forces in the linear dynamical response of a driven
quantum system in Section 3.2.1. Then, I present the measurement of the Abelian curvature
component giving the first Chern number in Section 3.2.2. Finally, I extend the experiment to
a spin 3/2 system comprised of doubly degenerate subspaces, where we characterize the gauge
field curvatures, measure the first and second Chern numbers, and drive their topological
transitions in Section 3.2.3. The results in this Chapter are published in [33].

3.1 Parameter space, geometry and topology

Hamiltonians are central to exploring, solving, and ultimately classifying a wide range
of quantum mechanical systems. While in their different representations, mathematical
properties like symmetries and transformations give insight to physical reality, topology
emerges as a new and important tool for their high level classification [34,35].
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3.1.1 Topology of a spin 1/2 system

While geometry describes local properties of a surface embedded in a higher-dimensional
space, or manifold, topology describes its global qualities. In quantum mechanics, geometry
and topology describe manifolds in the abstract parameter space of a Hamiltonian. For
instance, the general two-level Hamiltonian describing the physics of a spin-1/2 particle
coupled to an external magnetic field

Ĥ = ασ̂0 + ~λ · ~σ =

(
α + λz λx − iλy
λx + iλy α− λz

)
, (3.1)

has a total of four independent parameters in the Pauli representation, where ~σ = (σ̂x, σ̂y, σ̂z)

is the Pauli vector, σ̂0 denotes the identity operator, ~λ = (λx, λy, λz) is a coupling vector,
and α is an arbitrary energy offset. Solving the Schrödinger equation gives a pair of (unnor-
malized) eigenstates

|Ψ±〉 =

(
λz ∓ |~λ|
λx + iλy

)
, (3.2)

here in cartesian parametrization. Similarly, a spherical parametrization related to the
cartesian parameters by the transformations λx = λr sinλθ cosλφ, λy = λr sinλθ sinλφ, and
λz = λr cosλφ gives the eigenstates

|Ψ±〉 =

(
cosλθ ∓ 1
eiλφ sinλθ

)
, (3.3)

While the Hilbert space spanned by |Ψ±〉 is always two-dimensional, the parameter space of

all possible values {α, ~λ}, is four-dimensional. The two eigenstates and their corresponding
eigenenergies in the two parametrizations

E± = α∓ |~λ|= α∓ λr

are specific to a point P0 = {α0, ~λ0} in parameter space. Figure 3.1 is a visualization of a
three-dimensional cartesian parameter space where α = 0. In such a parameter space, a con-
tinous transformation of the Hamiltonian (through a continous variation of its parameters)
defines a trajectory. Furthermore, closed trajectories bound surfaces, which may enclose
volumes (e.g. Figure 3.1). Geometry and topology describe and classify quantum systems
through the local and global properties of these constrained parametric manifolds. In an
experiment, the ultimate constraint preventing full access to the parameter space is set by
the tunability of the Hamiltonian.

While there is nothing quantum about geometry or topology (see [36–38] for beauti-
ful examples of topological states in classical systems), their relevance was first highlighted
in optics through the Pancharatnam phase [39], and later in electrodynamics through the
Aharonov-Bohm effect [40]. Both of these instances match the Berry’s phase [41] from the
adiabatic evolution of quantum systems. Then, other instances such as the Zak phase [42] in
discrete one-dimensional systems, and the Wilczek–Zee phase [43] in systems with degener-
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Figure 3.1: Parameter space. Visualization of a three-dimensional cartesian parameter space
where a Hamiltonian, its eigenstates, and eigenenergies are specific to a point represented by
the vector ~λ (solid magenta arrow). A continous variation of Ĥ defines a trajectory (dashed
magenta line), and a closed trajectory defines a surface (yellow). Closed surfaces enclose
subspaces of the full parameter space.

ate subspaces, were highligthed for their relevance. Nowadays, topology plays a central role
in understanding the quantized conductance of the integer quantum Hall effect (IQHE), a
link first established in [44], where the parameter space is spanned by the quasimomenta of
the underlying the two-dimensional electron gas.

Following [41] closely, as the Hamiltonian 3.2 is adiabatically transformed, an eigenstate

acquires a phase when evolving from {α0, ~λA} to {α0, ~λB}. The final state

|Ψ±〉B = eiΦd eiΦg |Ψ±〉A, (3.4)

has two separable phase contributions. The first contribution, Φd, is the dynamic phase
associated with the unitary time evolution of |Ψ±〉. The second contribution

Φg =

∫
A→B

i〈Ψ±|∇̂~λ|Ψ±〉 · d~λ, (3.5)

is the geometric phase associated with the trajectory traced when going from A to B, and
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∇̂~λ is a parametric gradient operator along such trajectory. The vector-valued integrand

~A± = i〈Ψ±|∇̂~λ|Ψ±〉 (3.6)

is the Berry connection linking the initial and final states. Finally, the Berry curvature

~B± = ∇~λ × ~A± (3.7)

appears when taking the curl of the Berry connection. The components of the curvature
may be defined more generally through Stokes theorem using the eigenstate in Equation 3.5
as

~Bk = Im
∑
k 6=l

〈Ψk |∇̂~λH(~λ)|Ψl〉 × 〈Ψl |∇̂~λH(~λ)|Ψk〉
(Ek − El)2

. (3.8)

An interesting feature of Berry’s curvature is the possible divergence in the denominator.
Taking the definition in Equation 3.8, using the Hamiltonian in Equation 3.10, and its
eigenstates in Equation 3.3, we evaluate the curvature

~B± = ±2 sin2(λθ)

λ2
r

êλr ∝ ±
~λr
λ3
r

(3.9)

in the spherical parametrization where

∇̂~λ = ∂λr êλr + λ−1
r ∂λθ êλθ + (λr sinλθ)

−1∂λφ êλφ .

We now draw the analogy with classical electromagnetism, letting the curvature take on the
role of the gauge independent magnetic field strength, while the Berry connection acts as the
gauge dependent vector potential. Then, the magnetic field in Equation 3.9 is sourced by a
magnetic monopole centered in (λr = 0). The analogy maps Gauss law to the definition of
the first Chern number

C
(±)
1 =

1

2π

∫
S

~B± · d~S, (3.10)

counting the number of monopoles enclosed by the spherical manifold. We cannot use Stoke’s
theorem to directly evaluate the Chern number using Equation 3.10 due to the singular point
in ~B±. We can nevertheless find C

(±)
1 = ±1 by carrying out the appropriate path integrals

around the singularity, as is done in [45].

The nonzero first Chern number as we evaluate it reveals that a spin 1/2 system described
by the Hamiltonian in Equation 3.1 is singular in at least one point in the parameter space
enclosed by the spherical manifold around λr = 0. The first Chern number is a topological
invariant since its value does not depend on the local properties of the system or the choice
of parametric representation of the manifold (we use spherical manifolds for their symmetry,
leading to simple integrals). The gauge symmetry associated with the parametric transfor-
mations of the spin 1/2 eigenstates is the U(1) gauge, just like in electromagnetism. This
means that under a gauge transformation |Ψ〉 → eiφ|Ψ〉, while the connection changes, the

curvature remains the same, i.e. ~B± is gauge independent.

27



3.1.2 Non-Abelian gauge fields

A non-Abelian gauge field is one where the different components of the connection fail
to commute

[Aµ, Aν ] 6= 0, (3.11)

where ~A = Aµ is now expressed in tensor notation, adopting the Einstein summation con-
vention for repeated indices. In the context of quantum systems, this is only possible in the
presence of degenerate subspaces, where the connections linking the states |ψi,j〉 within a
degenerate space give rise to matrix-valued vector connection

Aijµ = i〈ψi|∂µψj〉. (3.12)

The matrix elements Aijµ encode the non-Abelian Wilczek–Zee phase [43]

Φij =

∮
C

Aijµ dλµ, (3.13)

the matrix-valued geometric phase acquired by the degenerate subspace eigenstates. Simi-
larly, the matrix-valued, non-Abelian field curvature

F ij
µν(
~λ) =

∂Aijν
∂λµ

− ∂Aijµ
∂λν

+ i[Aijµ , A
ij
ν ], (3.14)

is a generalization of the electromagnetic field tensor. In fact, under this notation, when the
commutator vanishes (Abelian case), the first Chern number becomes

C1 =
1

4π

∫
S2

εηµνFµνd
2Sη, (3.15)

where εηµν is the third-rank Levi–Civita symbol. The extension of the first Chern number
for twofold degenerate non-Abelian gauge potentials is the second Chern number

C2 =
1

32π2

∫
S4

εµνηξTr(F ij
µνF

ij
ηξ)ijd

4S (3.16)

evaluated in the four-dimensional manifold S4, where εijkl is the fourth-rank Levi–Civita
symbol, taking into account only the antisymmetric components of the generalized curvature
F̂µν . The trace on the integrand is over the ij matrix elements of the curvature F ij

µν in its
final representation. For higher-dimensional systems with n-fold degeneracies, the n-th Chern
number

Cn =
1

wn

∫
S2n

Tr (F̂ ∧ F̂ ∧ ... ∧ F̂ )︸ ︷︷ ︸
n

d2nS (3.17)

involves an n-th order wedge product of the curvature acting as a generalized antisymmetric
exterior product (e.g. generalized curl) [33]. The wedge product is traced out and inte-
grated over the 2n-dimensional manifold, with a normalizing factor wn that depends on the
dimensionality of the parameter space. Chern numbers count the number of singular points
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enclosed by a manifold in parameter space.

While a few interpretations for Chern numbers abound in different contexts (e.g. winding
number for parallel transport, conductance quanta, etc...), we adopt the interpretation that
Chern numbers count the number of monopole sources for the gauge fields in parameter
space. Under this analogy, a nonzero first Chern number may count the number of Dirac
monopoles sourcing a U(1) Abelian gauge field in three-dimensional parameter space. Sim-
ilarly, a nonzero second Chern number may count the number of Yang monopoles sourcing
an SU(2) non-Abelian gauge field in five-dimensional parameter space.

A spin-3/2 system may host degenerate submanifolds as either two pairs of doubly de-
generate states or a triad of degenerate states and single state (a tetradegenerate manifold
does not comprise a submanifold as it involves all eigenstates). We study a four-level system
described by the Hamiltonian

Ĥ = −~
2
~q · ~Γ, (3.18)

comprised by a pair of twofold degenerate subspaces, where ~q = (q1, q2, ..., q5) is the five-

dimensional coupling vector, ~Γ = (Γ̂1, Γ̂2, ..., Γ̂5) are the five gamma matrices, and Γ̂0 the
identity operator. We use a representation in terms of the Pauli operators in the degenerate
submanifolds, where

Γ̂0 = σ̂0 ⊗ σ̂0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Γ̂1 = σ̂y ⊗ σ̂y =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

Γ̂2 = σ̂0 ⊗ σ̂x =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , Γ̂3 = −σ̂z ⊗ σ̂y =


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 ,

Γ̂4 = σ̂0 ⊗ σ̂z =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , Γ̂5 = σ̂x ⊗ σ̂y =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 .

3.2 Measuring topological invariants

3.2.1 Generalized forces in parameter space

It is not a simple task to extract topological invariants in the adiabatic limit (i.e. by
directly measuring geometric curvatures and integrating them), although a few precedents
have been set in [46, 47]. The reason is twofold; on one hand dynamical phases tend to
overwhelm geometric phases, making their practical detection challenging. On the other
hand experiments in high-dimensional parameter spaces quickly become impractical for the
number of measurements required to sample enough closed trajectories. In order to detect
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the gauge field curvatures, and ultimately measure the associated topological invariants, we
employ generalized forces in parameter space, first introduced in this context by [48]. The
expectation is that systems following diabatic trajectories with a constant velocity λ̇ν deflect
away from the driving direction with relative strength

fµ = λ̇νFµν , (3.19)

proportional to the curvature component along λµ. In the case of systems with degenerate
subspaces, the linear response gives a state dependent deflection

fµ = λ̇νTr(ρ̂ F̂µν) = λ̇ν
∑
i,j

ρijF
ij
µν , (3.20)

where ρij = |ψi〉〈ψj| are the density matrix elements in the degenerate subspace.

Figure 3.2: Generalized forces. Schematic effect from generalized forces under the influence
of Abelian (left) and non-Abelian (right) field curvatures. As the system is driven along its
trajectory (yellow), a Lorentz-like force (green) arises in the parameter space proportional
to the magnitude of the curvature component orthogonal to the driving speed (red). The
differences in the trajectory from the drive encode the magnitude of the curvature. A state-
dependent force arises in the non-Abelian case, leading to multiple deflections (red, orange,
and crimson arrows) and trajectories (dark blue, blue, and light blue curves) under a single
drive.

Generalized forces are analogous to the Lorentz force in electromagnetism, deflecting a
system from its trajectory in proportion to the component of the curvature perpedincular to
the driving speed. In contrast with the Abelian case, the non-Abelian field curvatures give
state-dependent Lorentz-like deflections, a difference depicted in figure 3.2. The emergence
of the gauge field curvature in the linear dynamical response of a driven system yields a
scheme to probe the topology of Abelian and non-Abelian gauge fields beyond the adiabatic
limit. In fact, generalized forces are behind the recent realizations of atomic charge pumps
in ultracold gases [49,50], and find an application in topological materials beyond the IQHE
paradigm [51].
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3.2.2 First Chern number

As an experimental benchmark, we dress a spin 1/2 system comprised by the two hyper-
fine states |F = 1,mF = −1〉, and |F = 2,mF = 0〉 with a single µ-wave control field. The

Figure 3.3: Two-level scheme. Bare states used to measure first Chern number with the
generalized force deflections and a single control field.

dressed state Hamiltonian in the rotating frame of the µ-wave field

H =
~
2

(
∆ Ωeiφ

Ωe−iφ 0

)
(3.21)

has three independent parameters spanning a three-dimensional space given by the coupling
strength Ω, phase φ, and detuning ∆. We constrain the parameters of the system to lie on a
two-dimensional spherical surface described by the set of points ~λ = Ω(sin θ cosφ, sin θ sinφ, cos θ)
in a three-dimensional parameter space. By sheer coincidence, this space resembles the Bloch
sphere used to represent quantum states, but the radius Ω is not restricted to 1, and θ rep-
resents the relative phase between simultaneously ramping detuning and external drive. We
keep the ratio between the coupling strength and detuning to be Ω/∆ ∼ 10−2. As we re-
quire a robust two-level system, we actively control the bias magnetic field of B0 = 18 G
to δB0/B0 ≈ 1 ppm, or in terms of the residual fluctuations in the linear Zeeman splitting,
δε(1) ∼ h× 10 Hz.

The experiment to detect the field curvature happens in three stages; state preparation,
diabatic drive, and state tomography to measure the deflected state trajectory (Figure 3.4).
During the state preparation, we adiabatically dress the bare |F,mF 〉 states with a single µ-
wave tone into the Hamiltonian in 3.21, ramping Ω (and ∆) from 0 to 12 kHz with variable
phase θ. Then, the Hamiltonian and its local eigenstates traverse parameter space with
velocity φ̇ as we ramp the phase of the coupling field. Finally, we perform state tomography
at different times during the parametric evolution to reconstruct the trajectory from the
generalized force

fθ = −Ω sinφ

2
〈σ̂z〉 (3.22)
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Figure 3.4: Experimental sequence to measure state deflection. We prepare a state su-
perposition from an initial |↑〉 state, and then drive the system at constant speed along φ
(green). Finally, we perform projective state tomography (blue) in different points along the
trajectory (purple) to reconstruct the expectation value of the magnetization 〈~σ〉.

along θ. Using the definition in Equation 3.19, the Abelian curvature component

Fφθ = −Ω sinφ

2φ̇
〈σ̂z〉 (3.23)

is directly proportional to the expectation value of σ̂z and inversely proportional to the driv-
ing speed φ̇. The reconstructed state evolution in Figure 3.5 is for an equal superposition

Figure 3.5: Two-level state tomography. Magnetization 〈~σ〉(t) for an initial equal superpo-
sition state at different times during the driven evolution along φ.
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initial state (θ = π/2). While the adiabatic limit predicts Larmor precession (〈σ̂z(t)〉 = 0)
about the equator for an equal superposition of |↑↓〉, the linear dynamical response clearly
shows a deflected trajectory during the diabatic evolution along φ. The Bloch vector trajec-
tory in Figure 3.6 is reminiscent of the cycloids observed in [52]. The spherical symmetry of

Figure 3.6: Projected Bloch trajectory. Projected spin 1/2 magnetization 〈~σ〉(φ(t)) in the
Bloch sphere during the diabatic drive along φ. Even if the Bloch space is not parameter
space, the Bloch vector shows the deflected trajectories due to the proportional relation in
Equation 3.23.

the constrained spherical manifold, and the calibrated linear drive along φ allow a straight-
forward computation of the first Chern number through the numerically evaluated integral

C1 =

∫ π

0

Fθφ dφ = −2φ̇

Ω

∫ tπ

0

〈σ̂z〉 sin(φ̇t) dt = 1.07, (3.24)

counting a singular point enclosed by the spherical manifold of the spin 1/2 system.

Following this measurement, we add a second, parallel control field such that, if we insist
on keeping the spherical radius constant, it acts to offset the location of the sphere with
respect to the singular point (monopole source) by an amount r0 ∝ Ω/Ω′ proportional to the
ratio of the two coupling strengths. We then repeat the measurement of C1 as a function of
r0 to observe the topological transition, going from a sphere surrounding the monopole to a
sphere enclosing no source (Figure 3.7).
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Figure 3.7: Topological transition of a spin 1/2 system. Two control fields shift the enclosing
manifold in parameter space from a region with a (monopole) singularity in the left where
r0 < 1, to a region without one. The topologically trivial region for r0 > 1 has C1 = 0. The
black lines show the sharp topological transition expected to occur only in the true adiabatic
limit, in the absence of any high-order dynamical response.

3.2.3 Second Chern number

Armed with the generalized force measurement scheme, we turn to the Hamiltonian in
Equation 3.18. We use the bare hyperfine states shown in Figure 3.8, close to mF = 0
for optimized robustness against magnetic field fluctuations. We relabel the bare hyperfine
states as |1, 0〉 = |1〉, |1,−1〉 = |2〉, |2, 0〉 = |3〉, and |2, 1〉 = |4〉. Additionally, we constrain
the parametric manifold to a four-dimensional hypersphere with points represented by the
set of points

~q = (ΩB cosφB,−ΩA cosφA,−ΩA sinφA, δ,−ΩB sinφB),

defined by four independent parameters and a fixed relative phase (the two phases are driven
together φA = φA(φB)), where ΩA, ΩB are the µ-wave and RF coupling strengths respectively,
δ is a common single photon detuning, and φA, φB are the phases of the µ-wave and RF fields
respectively.

We repeat the protocol from the measurement of the first Chern number. This time, even
with the hyper-spherical symmetry present, the higher dimensional parameter space demands
more measurements. The protocol is equally split into three stages; state preparation, linear
drive, and projective state tomography. In figure 3.9, I show a representation of the manifold,
a four-dimensional hyperspherical surface in five-dimensional parameter space. In a given
point in parameter space, the energy spectrum has two, twofold degenerate subspaces, where
the non-Abelian geometric phases arise, given that the phase accumulated around the four
level plaquette adds up to π. Since the degenerate subspaces are twofold degenerate, Bloch
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(a)

(b)

Figure 3.8: Second Chern number level scheme. Four levels realize the spin 3/2 system from
Equation 3.18. (a) Different initial superpositions of the bare hyperfine states are coupled
with two pairs of RF (blue) and µ-wave (green) fields. (b) In the dressed state basis, cyclically
coupled states wrap a total phase of Φ = π around the plaquette to guarantee the pair of
twofold degenerate subspaces.

spheres represent the two states within a subspace, along with the expectation value of
the magnetization 〈~σ〉. We perform all measurements in the degenerate subspaces, later

constructing the generalized magnetization 〈~Γ〉 with the above representation. For instance,
in Figure 3.10 I show a measurement of the degenerate subspace magnetization 〈~σ〉. We first
prepare the system at ~q0 = (q0/

√
2)(−1,−1, 0, 0, 0), where q0/2π = 2 kHz, and the initial

magnetization 〈~Γ〉 = (1/
√

2)(−1,−1, 0, 0, 0). We then drive the system around a “two-
dimensional” circular trajectory ~q(t) = −(q0/

√
2)(1, cos φ̇At, sin φ̇At, 0, 0) (3.10) in the range
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Figure 3.9: Second Chern space schematics. Four-dimensional hypersphere S4 embedded in
the five-dimensional parameter space. In some points q = ~q, the dressed state Hamiltonian
3.18 may turn into a pair two-fold degenerate bands (middle) with eigenstates |↑±↓±〉. Each
degenerate subspace has a two-level Bloch sphere representing the degenerate state.

Figure 3.10: Subspace trajectory and tomography. In the left, a representation of the param-
eter space trajectory. On the right, the reconstructed state evolution during the trajectory
inside a degenerate submanifold. For a given band, the two-level state trajectory may be
used to construct the expectation value of Γ̂i. The straight lines are numerical solutions to
the time dependent Schrodinger equation with Equation 3.18.

φA = [0, 2π] . From the local subspace magnetization 〈σ̂〉, we construct for example

〈Γ̂4〉 = 〈σ̂0 ⊗ σ̂z〉 =
N|1〉 +N|3〉 −N|2〉 −N|4〉
N|1〉 +N|3〉 +N|2〉 +N|4〉

, (3.25)
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ultimately in terms of the atomic bare state populations N|1,2,3,4〉. For a full, four-dimensional
circular trajectory

~q(t) = (q0/
√

2)(− cos φ̇At,− cos φ̇At,− sin φ̇At, 0, sin φ̇At), (3.26)

along φA = −φB, the reconstructed spin 3/2 magnetization 〈~Γ〉 for the initial ground de-
generate eigenstate |↑−〉 = (

√
2|1〉 − |2〉 + |4〉)/2 is in figure 3.11. Small deflections in the

different projections of 〈~Γ〉 for the near-parallel transport of |↑−〉 are a manifestation of the
curvature components in the four-dimensional parameter space.

We continue by investigating the state-dependence of the non-Abelian force in Equation
3.23. For this, we prepare different initial states and drive them along the same trajectory in
parameter space. Here, we adopt the explicit spherical coordinates (q, θ1, θ2, φ1, φ2) related
to our control parameters by the transformations

ΩA = q sin θ1 cos θ2,

ΩB = q sin θ1 sin θ2,

δ = q cos θ1,

φ1 = (φA + φB)/2,

φ2 = (φA − φB)/2.

After preparing different initial states, we drive them along

~q±(t) = (q0/
√

2)(− cos φ̇1t,− cos φ̇1t,± sin φ̇1t, 0,± sin φ̇1t), (3.27)

at a rate φ̇1 = 2π × 0.167 kHz, and measure the integrated deflections along θ1, directly
obtained by 〈Γ̂4〉. The left plot in Figure 3.12 shows how the magnitude of the deflection
changes with four initial states

|A〉 = (
√

2|1〉 − |2〉+ |4〉)/2 = |↑−〉,

|B〉 = (
√

2|3〉 − |2〉 − |4〉)/2 = |↓−〉,
|C〉 = (|A〉+ |B〉)/

√
2,

and
|D〉 = (|A〉+ i|B〉)/

√
2

in the drive along ~q−(t). These four independent measurements after a single, T = 250µs
ramp allow us to determine the four matrix elements of the dimensionless curvature compo-
nent

2q2
0F̂θ1φ1 = 0.01σ̂0 − 0.06σ̂x + 0.08σ̂y + 0.98σ̂z (3.28)

=

(
0.99 −0.06− 0.08i

−0.06 + 0.08i −0.97

)
(3.29)
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Figure 3.11: Four level state tomography. We reconstruct the generalized magnetization
along a four-dimensional circular trajectory from the expectation value of the different Γ̂i
(black circles). Continous lines are the numerical solutions to the time dependent Schrodinger
equation with Equation 3.18 in the adiabatic limit (red) and including the linear dynamical
response (black).

in the Pauli matrix representation. The theoretical prediction is 2q2
0F̂θ1φ1 = σ̂z. Similarly,

an additional set of four independent measurements give

2q2
0F̂θ2φ2 = −0.08σ̂0 − 0.12σ̂x − 0.07σ̂y + 1.00σ̂z (3.30)

=

(
0.92 −0.12 + 0.07i

−0.12− 0.07i −1.08

)
, (3.31)

in agreement with the theoretical prediction 2q2
0F̂θ2φ2 = σ̂z.
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(a)

(b)

Figure 3.12: State dependent deflections. (a) Different initial states (|A〉, |B〉, |C〉, |D〉 in
red, blue, green and yellow respectively) within the degenerate subspace deflect by different
amounts under the same semi-circular trajectory ~q−(t) along φ1. The amplitude of the
deflection is inferred from〈Γ̂4〉. (b) Comparison between theoretical and experimental survey
of the dimensionless curvature component 2q2

0F̂θ1φ1 for different initial states. The colors
represent the magnitude of the curvature experienced by different states on the Bloch sphere.
Black dots on the colored Bloch sphere show the four initial states |A〉, |B〉, |C〉, |D〉.

Finally, we record state deflections for 225 different initial states and represent the mag-
nitudes of the same curvature component F̂θ1φ1 on the surface of the Bloch sphere (in Figure
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3.12) to survey the state dependence, in good agreement with theory.

Prior to the measurement of the second Chern number, we probe how the strength of the
non-Abelian gauge field depends with the distance away from the singular point (source).
For this, we measure the magnitude of the curvature components with varying coupling
strength q0. Since the value of q0 represents the hypershperical radius, increasing q0 has the
effect of increasing the distance from the hyperspherical surface S4 to the monopole.

We perform similar experiments to reconstruct 〈F̂φ2θ2〉 for different values of q0, keeping
the linear response parameter 2π/q0T = 0.25 constant. We find that the non-Abelian Yang
monopole is the source of a 1/q2 decaying field curvature, with the reconstructed matrix
elements of the curvature component as a function of the radius q in Figure 3.13. Our mea-
surement confirms the prediction made by C.N. Yang back in 1967 [53], that monopole fields
of the SU(2) Yang–Mills field theory source 1/r2 decaying fields.

Figure 3.13: Non-Abelian field strength. Matrix elements of the field curvature component
F̂φ2θ2 at increasing distances from the source. The curvature component F̂φ2θ2 , expected to
be proportional to σ̂z, shows a decaying magnitude in the nonzero diagonal elements F 11

φ2,θ2

(red), and F 22
φ2,θ2

(blue), and vanishing magnitude in the off-diagonal element F 12
φ2,θ2

= 0
(yellow and green), with coupling strength q = q0. The remaining element F 21

φ2,θ2
(complex

conjugate of F 12
φ2,θ2

) is not shown.

Finally, we exploit the hyperspherical symmetry of our parametric hyperspherical man-
ifold S4 to evaluate the second Chern number. It is sufficient to reconstruct the aforemen-
tioned components F̂φ1θ1 , and F̂φ2θ2 and numerically integrate the reduced form of the second
Chern number

C2 =
3q4

0

4π2

∫
S4

Tr(F̂φ1θ1F̂φ2θ2)d
4S (3.32)

where d4S = sin3 θ1 sin 2θ2dθ1dθ2dφ1dφ2 is the hyperspherical surface element. From the
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curvatures, we evaluate the second Chern number

C
(−)
2 = 2q4

0Tr(F̂φ1θ1(~q−(t))F̂φ2θ2(~q−(t))) = 0.97(6)

for the degenerate ground band |↑↓−〉, consistent with the theoretical expectation C
(−)
2 = 1.

The same measurement in the degenerate excited band |↑↓+〉 gives

C
(+)
2 = 2q4

0Tr(F̂φ1θ2(~q+(t))F̂φ2θ1(~q+(t))) = −0.93(6),

also in agreement with the theoretical expectation C
(+)
2 = −1, and the sum of the Chern

numbers across all bands is zero. We estimate the uncertainty in the measured topological
invariants by propagating the uncertainty in atom number ratios (e.g. from Equation 3.25)
as uncorrelated variables, since the absorption images in time-of-flight are dominated by
photon shot noise and we separate bare state populations with a 3 ms Stern–Gerlach gradient
pulse. The nonzero second Chern numbers indicate the manifold is topologically nontrivial,
counting the number of SU(2) Yang monopoles enclosed by S4.

Figure 3.14: Schematic of a topological transition. A second control field displaces the
enclosing manifold in parameter space away from the singular point by an amount qoffset/q0.
The critical point qoffset = q0 marks the transition where the manifold no longer encloses the
monopole.

Lastly, we drive a topological transition analogous to the one in the spin 1/2 system,
by displacing the manifold away from the location of the singular point (Figure 3.14). For
this, we scan the radial offset qoffset in units of q0, the original control field coupling strength,
across the transition point qoffset = 1 until the hyperspherical manifold no longer encloses the
Yang monopole. By simultaneously evaluating the first Chern number for the degenerate
subspaces, we observe that the non-Abelian topological transition is signaled only by the
second Chern number (Figure 3.15) in both bands. We conclude that the topology of the
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twofold degenerate spin 3/2 system is characterized by the second Chern number.

Figure 3.15: First and second Chern numbers across the topological transition. We evaluate
both the first and second Chern numbers for the two degenerate submanifolds (ground in red
and excited in blue) and observe the driven topological transition only in the second Chern
number. As with the spin 1/2 topological transition, the transition sharpens near the true
adiabatic limit, which we explicitly avoided. This is confirmed by the numerical predictions
in the top, where increasing ramp rates (decreasing drive speed in parameter space) sharpen
the topological transition. The first Chern number remains trivial across the transition.
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3.3 Conclusion

We reviewed the topology of a spin 3/2 system with a pair of twofold degenerate sub-
spaces. After defining the geometric and topological quantities that characterize gauge fields
in the phase of the wavefunctions, we extracted the first Chern number in a spin 1/2 sys-
tem. For this, we used the concept of generalized forces arising in the artificial parameter
space of the Hamiltonian’s parameters. We extended the measurement protocol to a higher
dimensional quantum system, comprised of two pairs of twofold degenerate bands. Here,
we measured the first and second Chern numbers characterizing the non-Abelian gauge field
topology. The ideas from this experiment may be extended into other systems to establish
new transport paradigms from higher order nontrivial topologies. The work comprising this
Chapter is published in [54].
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Chapter 4: Methods for in-situ microscopy

This chapter describes various methods for imaging quantum gases in-situ with modest
spatial resolution and optimal signal-to-noise ratio (SNR). I describe basic imaging systems
in the context of scalar diffraction, followed by the relevant aspects of light-matter interaction
giving rise to the recorded intensity signals. I then present a number of practical calibra-
tion methods, and measurements including magnification, spatial resolution, and saturation
intensity. I end with a detailed analysis of image processing methods, from estimating un-
certainties to implementing linear reconstruction algorithms that improve our SNR.

This chapter is organized as follows. In the first section 4.1, I introduce basic consider-
ations for imaging quantum gases, beginning with scalar diffraction theory and a survey of
basic imaging systems in 4.1.1, followed by the semiclassical framework of light-matter inter-
action in 4.1.2. Later, in section 4.2, I present a few experimental techniques for optimized
imaging. These techniques are important for high quality measurements of atomic density
or density-density correlations. While some techniques are not specific to in-situ imaging,
we focus on imaging trapped atomic systems. Beginning with magnification in 4.2.1, spatial
resolution in 4.2.2, and saturation intensity in 4.2.3, and finally, in section 4.3, describe im-
age uncertainty estimation and propagation in 4.3.1, ideal and realistic signal-to-noise ratio
from resonant absorption bright-field microscopy in 4.3.2, and a detailed account of image
reconstruction algorithms in 4.3.3.

4.1 Microscopy of two-level atoms

In the context of imaging, we may treat a quantum gas as a collection of dipole antennas.
Under this powerful abstraction, near-resonant optical fields couple with atomic ensembles,
and relay information by absorbing, re-emitting, or shifting the phase of the incident light.
The core task in the experiments presented in this thesis is microscopy, or the optimal
retrieval of optical information emanating from microscopic systems.

4.1.1 Diffraction and the angular spectrum

A linearly polarized, monochromatic, and time-harmonic complex optical field satisfies
the scalar Helmholtz equation

[∇2 + k2
0(1 + χ(~r))]E(~r) = 0 (4.1)
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as it propagates through an inhomogeneous medium with complex electric susceptibility
χ(~r), and negligible magnetic susceptibility, and where k0 = ω0/c, the free-space dispersion
relation in terms of the angular frequency ω0 and the speed of light c. It is possible to
separate the Helmholtz equation

[∇2
⊥ + k2

0]E(~r) + k2
0χ(~r)E(~r) +

∂2E(~r)

∂z2
= 0, (4.2)

in the transverse and longitudinal differential operators. This equation can be formally
integrated in z for a known field

E(~r ± δzez) = exp

[
±iδz

√
∇2
⊥ + k2

0(1 + χ(~r))

]
E(~r) (4.3)

propagating by ±δz along ez. A convenient representation of the transverse optical field is
the angular spectrum

Ẽ(kx, ky; z) = F̂ [E(~r)] =
1

4π2

∫∫ ∞
−∞

E(x, y; z)e−i(kxx+kyy) dx dy, (4.4)

in terms of a plane-wave decomposition. The angular spectrum Ẽ(kx, ky; z) in the transverse
spatial frequency space (kx, ky) forms a Fourier transform pair with the optical field E(x, y; z)
in the coordinate space (x, y), located at z. The angular spectrum transforms to

E(kx, ky; z ± δz) = E(kx, ky, z)e
±ikzδz (4.5)

under a displacement ±δz in free space propagation. Meanwhile, the longitudinal wavenum-
ber

k2
z = k2

0(1 + χ0)− k2
x − k2

y

sets a spatial frequency cutoff for evanescent (k2
z < 0), stationary (k2

z = 0), and propagating
(k2
z > 0) modes in the homogeneous medium with susceptibility χ0. In vacuum (or air),

Equation 4.5 becomes the formal solution in Equation 4.3 for χ(~r) = 0, as in Fourier space
the transverse operator transforms to F̂ [∇⊥] = ik⊥. When passing through an aperture
described by the function A(x, y), the angular spectrum transforms according to

Ẽ+(kx, ky; z ± δz) = F̂ [E−(x, y, z)A(x, y)]. (4.6)

Similarly, upon propagating through a thin lens, the field giving rise to the angular spectrum

Ẽ+(kx, ky; z) = F̂ [E−(x, y; z)e
ik0
2f

(x2+y2)] (4.7)

acquires a quadratic phase factor adding a constant curvature scaled by the focal length f
to the wavefront. In the previous two situations, the different momentum components of
the angular spectrum Ẽ+ evolve according to 4.5 if propagating through free space. One of
the key insights of the angular spectrum representation is that most imaging systems act as
effective low pass filters for the incident angular spectra. The high-frequency cutoff gives a
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diffraction-limited spatial resolution

∆ ' 0.61λ

NA
, (4.8)

derived from the Airy pattern an image would show, and related to the largest transverse
wavenumber kNA = π/∆ entering the numerical aperture NA = n sin θ, where θNA is the half
angle of the aperture collecting the scattered field. This limit is valid for small apertures
where the incident ray angles satisfy sin θNA ≈ θNA, an insight first provided by Abbe in
1867 [55]. We define the field of view using the Strehl ratio convention ... that a lateral
translation degrading the spatial resolution by more than ∼ 20% sets the field of view.
Longitudinal translations preserve the spatial resolution limit within a depth of field

ζ =
λ

NA2 . (4.9)

While maximizing the numerical aperture gives finer spatial resolution, the depth of field
decreases more rapidly. The depth of field may be related to the Rayleigh range of a
Gaussian beam matching the NA at z >> zR through the half angle described by the
focusing/diverging waist away from focus. In this limit, the Rayleigh range zR = ζ/π is
approximately a third of the depth of field.

4.1.2 Imaging systems

An imaging system is the collection of optical elements that map optical fields into other
planes along their propagation. Since detection is typically carried out in a two-dimensional
plane, an imaging system transforms the transverse optical field from an object plane to the
detection, or imaging plane. Different elements of an imaging system perform close to linear
transformations on the propagating optical fields in the limit when the index of refraction
experienced by the optical fields is independent of the intensity. The following examples of
imaging systems are intended for the advanced undergraduate or graduate student starting
the design of a simple imaging system.

A lensless imaging system (Figure 4.1) may contain flat mirrors, and apertures, but no
lenses or other curved surfaces. Lensless imaging systems have no magnifying effect on
the objects encoded by the optical field distributions. Since the intensity in the far field
decays with the squared distance, for significantly distant objects the intensity becomes
quite small, making recording more difficult in practice. Nevertheless, lensless microscopy
does not compromise the image quality (i.e. reduced aberrations) at the detector.

A single lens imaging system may contain mirrors, apertures and one lens. Single lens
microscopes are practical for either large or small values of the magnification, especially
in applications with constrained longitudinal space. A single (thin) lens imaging system
produces images in different planes according to the lens-maker equation

1

zo
+

1

zi
=

1

f
, (4.10)
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Figure 4.1: Lensless imaging system. The distance from the aperture to where an image is
formed is zi.

with magnification

M = −zo
zi

(4.11)

equal to the ratio of the distances from the lens to the object zo and to the image zi. The
negative sign signifies a vertical inversion with respect to the orientation of the object. As
an example, to demagnify an object by a factor of 1/3, equation 4.11 relates the distances
from object to image as 3zo = zi. Then, picking an f = 100 mm singlet to realize this gives
the values zo = 133 mm and zi = 400 mm through 4.10. In single lens imaging systems, when
the object is placed at zo < f it forms a virtual image, i.e. with no projection.

Figure 4.2: Single lens imaging system. The distance from the object to the lens is zo, while
the distance from the lens to the image is zi. The lens has focal length f .

A two lens imaging system may contain mirrors, apertures, and two lenses. Two lens
microscopes are a popular choice as they image optical fields in a more general way, and
give access to Fourier planes. A Fourier plane is the plane where the angular spectrum of an
optical field becomes diagonal in real space and the intensity represents a Fourier transform.
This allows additional control on the angular spectrum (e.g. adding an aperture performs a
spatial frequency filter). We can work out the effect of a two lens imaging system by chaining
two single lens imaging systems. The distance from the object to the first (objective) lens
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with focal length f1 is zo, forming an image in

z−1
1 = f−1

1 − z−1
o (4.12)

with magnification M1 = −zo/z1. Then, a second (eyepiece) lens with focal length f2, at a
distance z2 behind z1 forms an image in

z−1
i = f−1

2 − z−1
2 (4.13)

with additional magnification M2 = −z2/zi. The total magnification becomes M = M1M2.
An interesting case arises when zo = f1, and zi = f2. There, the total magnification M =
−f2/f1 given by the ratio of the focal lengths. As an example, to magnify an object by

Figure 4.3: Two lens imaging system. The ray diagram corresponds to the path traveled
by light. An image will form f2 away from the second lens when the object is exactly at a
distance f1.

M = 8 using a two lens imaging system, using an f1 = 40 mm objective lens, we need to
place an f2 = 320 mm eyepiece a distance zd = 360 mm behind the objective.

4.1.3 Light-matter interaction

The theory of scalar atom-light interaction describes how near-resonant light induces an
electric dipole on the atom, which then scatters the light field. Several frameworks capture
this interaction for a two-level system, including the minimal set of optical Bloch equations
for the density matrix in the rotating frame of the incident field [56]

ρ̇ee = i
Ω

2
(ρeg − ρge)− Γρee

ρ̇gg = −iΩ
2

(ρeg − ρge) + Γρee

ρ̇ge = −
(
iδ +

Γ

2

)
ρge − i

Ω

2
(ρee − ρgg)

ρ̇eg = −
(
−iδ +

Γ

2

)
ρeg + i

Ω

2
(ρee − ρgg)
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describing the evolution of the driven system with coupling strength Ω, detuning δ = ω−ω0

from resonance, and damping Γ capturing the spontaneous emission from the excited state.
The optical Bloch equations account for the evolution of ground |g〉, and excited |e〉 state
populations through the matrix elements ρgg+ρee = 1, as well as the atomic state coherences
in ρeg = ρ∗ge. The steady state solution obtained by setting ρ̇ = 0 in the optical Bloch system
above gives the excited state population

ρssee =
Ω2

Γ2

1

1 + 2δ2

Γ2 + 2Ω2

Γ2

(4.14)

from which the unitarity of ρ̂ gives ρgg = 1 − ρee. Similarly, the steady-state off-diagonal
element related to the coherence is

ρsseg = −iΩ
Γ

1 + 2iδ
Γ

1 + 2δ2

Γ2 + 2Ω2

Γ2

, (4.15)

from which the hermiticity of ρ̂ gives ρeg = ρ∗ge. The two-level atomic polarizability can be
rewritten to give the macroscopic linear, electric susceptibility

χ(~r, δ) =
α(s0, δ)

ε0
n(~r)

=
σ0

k0

i− δ̄
1 + s0 + δ̄2

n(~r) (4.16)

from the off-diagonal density matrix element solution. The steady state susceptibility gov-
erns light propagation inside the atomic medium, and gives its optical properties such as
absorption, and phase shifts proportional to the atomic density distribution n(~r). The sus-
ceptibility in Equation 4.16 is in terms of the saturation parameter s0 = 2Ω2/Γ2, reduced
detuning δ̄ = 2δ/Γ, driving field wavenumber k0 = 2π/λ, and resonant atomic cross sec-
tion σ0 = 3λ2/2π. Figure 4.4 illustrates the near-resonant absorption and phase-shift of a
homogeneous cloud.

The imaginary part of the susceptibility represents the absorption of a two-level atomic
ensemble, where scattering of a near-resonant field causes intensity attenuation along the
propagation of light

dI

dz
= −nσ0I

1

1 + I/Isat

(4.17)

proportional to the density of the medium n [56]. The solution including saturation effects

ncolσ0 = − ln

(
Ia − Id
Ip − Id

)
+
Ip − Ia
Isat

, (4.18)

comprises the Beer–Lambert law giving the optical depth where ncol is the integrated column
density of the cloud, Ia represents the intensity in the presence of atomic scatterers, Ip
represents the intensity in the absence of scatterers, and the subtracted Id represents the
removal of the technical noise baseline.
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Figure 4.4: Two-level atomic susceptibility. Calculated (a) imaginary, and (b) real parts
of the two-level atomic susceptibility from Equation 4.16. The power broadening is evi-
dent by the different saturation parameters. Other parameters used in this calculation are
Γ/2π = 6.06 MHz, λ = 780.24 nm, Isat = 1.67 mW/cm2, and a density of n0 = 1013 cm−3 for
87Rb.

4.2 Calibration methods for imaging systems

4.2.1 Magnification

We calibrate the magnification of imaging systems using two different methods. One
method uses a testbench and the other uses the atoms.

We place in the first method a calibrated USAF-1951 test target with sets of vertical and
horizontal stripes sampling spatial frequencies down to 0.228µm−1 (∆xmin = 4.38µm). After
setting up an imaging system, we first image the back illuminated USAF-1951 test target in
focus, shown in Figure 4.5. Then, we take the cross-sectional intensity across multiple line
pairs, or elements labeled by e, belonging to a same group g. Finally, we find the line edges
and compute the distances between them. The spatial frequencies (multiple line pairs = lp)

klp = 2g+(e−1)/6 (4.19)

(in lp per mm) for group g and elements e, allow us to back out as many values of the
magnification as the number of sampled group elements. The magnification may vary across
the field-of-view due to resolution effects and/or uncertainty in line edge location, and we
therefore take the mean magnification out of a single group when the variance is not too large.
As an example, Figure 4.5 shows the measured magnification of 〈M〉 = 4.03(4) of a two-lens
imaging system with f2 = 150 mm, and f1 = 34.3 mm, where the expected magnification is
Mexp = 4.37, using group 6, and elements 2 through 6.
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(a)

(b)

Figure 4.5: Measured magnification using a USAF-1951 test target. (a) Image of test target
pattern and horizontal cross-section giving distances in pixels between 5 different sets of lines
(dashed gray). (b) Magnification from 5 different group 6 elements (red circles) and average
(dashed red line). Errors in the two-lens locations and focal lengths propagate into the
measured magnification M = 4.03(11), different from the expected two-lens magnification
(solid gray line) by ≈ 8%.
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In the second method we scan the time-of-flight (TOF) of a falling cloud of atoms and
measure its position as a function of time. The trajectory on the detector

yd(t) = M

(
y0 + v0t+

1

2
gt2
)
, (4.20)

is magnified by a factor M . We fit the trajectory of the cloud to a scaled parabola and back
out the magnification as a free parameter (assuming g = 9.81 m/s2). It is desirable to do
this experiment using an |mF = 0〉 cloud as it is insensitive to stray magnetic field gradients
that may change its trajectory. Figure 4.6 shows an example of this calibration method for
a different imaging system,

Figure 4.6: Measured magnification using free fall. By imaging a freely falling cloud of
atoms, we reconstructh the unmagnified vertical trajectory from t = −1 ms, before the cloud
is released in free fall, to t = 4 ms after. The fit parabolic trajectory (solid red) spanning
t > 0 gives the magnified trajectory, from which M = 5.72(7).

4.2.2 Spatial resolution

We only calibrate the spatial resolution of an imaging system directly on a test bench
setup. By using circular apertures with radius a � ∆, much smaller than the expected
diffraction-limited resolution of the imaging system, we produce images resembling Airy
patterns on the image plane. For most λ = 780 nm illumination microscopes, a a = 1µm
pinhole is sufficient. Two example intensity patterns are in Figure 4.7, corresponding to a
cut of the three-dimensional point-spread-function (PSF) of two different imaging systems.
In the absence of a perfect Airy intensity pattern, we take the effective spatial resolution as
the distance from the peak to the first minimum of the intensity distribution. A practical
consideration shown in Figure 4.7 is that while a larger magnification gives a larger number
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Figure 4.7: Measured point spread functions. (a) Point spread function (PSF) of a 1µm
pinhole imaged using an M = 6 imaging system dominated by spherical aberrations. (b)
Azimuthally integrated PSF giving an effective spatial resolution of ∆ = 4.2µm. (c) PSF of
a 1µm pinhole using an M = 42 imaging system. (d) Azimuthally integrated PSF giving an
effective spatial resolution of ∆ = 3.2µm.

of pixels per diffraction ring in favor of a more precise calibration, the signal-to-noise ratio
is worse under a similar exposure.

4.2.3 Saturation intensity

We probe our |F = 2〉 atomic ensembles with circularly polarized, resonant Gaussian
beams. The choice of circular polarization in combination with nonzero bias magnetic fields
addresses the effective two-level, stretched state (|F = 2〉 → |F ′ = 3〉) transition in the
D2 line of 87Rb. Following [57], we typically pulse our resonant probe for τ = 20µs, well
within the recommended τ ≤ 40µs for 87Rb to avoid changing the velocity enough so that
the Doppler shift moves the cloud significantly away from resonance within the pulse time
window. After the atoms scatter light, we image the scattered intensity Ia. Then, we pulse
the probe a second time and image the intensity in the absence of scatterers Ip. A third
image contains the dark field intensity Id representing the technical noise baseline and stray
background illumination. In the absence of saturation effects, we simply combine these im-
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ages using the first term in Equation 4.18. Nevertheless, in spite of the inhomogeneous probe
intensity over the cloud, an important calibration for the absorption profile of an atomic den-
sity distribution is Isat, the saturation intensity at the cloud calibrated in counts per pixel
at the image after a single exposure. Here, we present five different methods to calibrate the
saturation intensity parameter. Since each Isat calibration depends on the magnification of
the imaging system, the examples below represent different instances of our in-situ imaging
system and need not yield the same value.

First is the beam profiling method, combining the intensity of a probe beam and a
measurement of its power, assuming that the uncalibrated count rate from the intensity
profile match the measured power

P0 =
∑
i

Ii∆
2
p

where Ii is the intensity at pixel i and ∆p is the square pixel size. As an example of this

Figure 4.8: Beam profiling for Isat. Raw probe intensity profile and Gaussian fit contours
outlining σ, 2σ, 3σ, and 4σ away from the center.

method, we measure P0 = 23.3(7)µW with a calibrated 3% power meter in the probe from
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Figure 4.8 without taking into account any sensitivity or gain variations right after the ob-
jective lens, but estimate P0 ≈ 25.3(7)µW at the location of the atoms after correcting for
imperfect transmission factors (on the level of a few 0.1% per anti-reflection coated surface).
Then, a two-dimensional Gaussian fit to the intensity profile gives a peak Im = 1966 counts,
and minor, and major waists wu = 103.6µm and wv = 112.2µm. We then integrate to find
the power P0 = 2πImwuwv from the two-dimensional Gaussian fit depicted in Figure 4.8
as the contours. The power from the beam profile P0 = 143.6× 106 counts gives a con-
version factor of 5.76× 106 counts/µW. Taking the value for Isat = 1.67 mW/cm2 for the
stretched state imaging transition, the demagnified pixel area ∆2

p/M
2, and the conversion

factor (magnification M = 5.33(10)), we get a value Isat = 104(15) counts/pixel. A draw-
back of this method is that the calibration compares an estimated intensity near the atoms
with an intensity profile in the image plane, where the intensity is most certainly aberrated,
magnified, and sometimes depleted by spurious scattering (e.g. dust, clipping apertures),
causing this method to underestimate the saturation intensity value.

The second and third methods use the single photon recoil and power broadening effects
respectively. The second method first demonstrated in [58], uses an orthogonal imaging
system to look at the trajectory of the recoiling cloud in short time-of-flight following an
imaging probe pulse. There, the displacement is limited by the photon scattering rate

z(δ, s0) = z0 + η
Γ

2

s0

1 + s0 + δ̄2
(4.21)

where η is the conversion from scattering rate measured displacement for fixed scattering
time. For this method and the third one, it is sufficient to take a set of data comprising
the measured displacement of the cloud as a function of probe detuning and intensity. The
second method measures the resonant peak displacement

δz = δzmax
I/Isat

1 + I/Isat

, (4.22)

which reaches half of δzmax at exactly I = Isat. We demonstrate this method in Figure 4.9,
where an unweighted fit to the displacement gives Isat = 188(12)counts. We then use the
same dataset in Figure 4.9 (a) for the third method, where the effective linewidth

Γeff = Γ
√

1 + I/Isat (4.23)

broadens with increasing probe intensity [59]. Then, from a least squares fit to Equation
4.23, we find Isat = 225(19)counts. In this case both numbers are in reasonable agreement,
even though they come from slightly different physical effects.

The fourth method uses different approximations of the corrected Beer–Lambert law,
writing the mean difference in counts between Ip, and Ia at the location of the cloud. While
the exact Beer–Lambert solution and the approximations contain the same information,
solving for Isat using the difference in intensity rather than the nonlinear Equation 4.18 is
more convenient if the approximations hold.
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(a)

(b)

Figure 4.9: Displacement and power broadening for Isat. (a) Measured cloud displacement
across resonance for different probe intensities at fixed 20µs of probe pulse time. (b) The
measured peak displacement (diamonds) is proportional to the scattering rate (Equation
4.22), while the power broadened linewidth (circles)gives Isat from Equation 4.23.

We start with the corrected optical depth in Equation 4.18. In the first limit, we as-
sume a low probe intensity Ip � Isat, and low optical depth (low density) nσ0 � 1, first
allowing us to neglect the correction term so the absorbed fraction Ia = Ip exp (−nσ0) from
which we find a linear dependence Ip − Ia = nσ0Ip. We then linearize this relation to get
Ia ≈ Ip(1−nσ0). On the other hand, in the opposite limit of large probe intensity Ip � Isat,
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we see that the saturation correction term is well in excess of the first term in Equation 4.18,
allowing us to approximate nσ0 ≈ (Ip − Ia)/Isat. The transition from one approximation
to the other at constant optical depth marks the value for Isat. Finally we consider dilute
clouds with negligible absorption such that Ia ≈ Ip. There we may use the absorbed frac-
tion Ia/Ip = 1 − η to linearize the nonlinear term ln (1− η) ≈ −η. In this approximation
the optical depth reads nσ0 ≈ (Ip − Ia)/Ip + (Ip − Ia)/Isat, and the difference in counts is
Ip − Ia ≈ nσ0IpIsat/(Ip + Isat). Table 4.1 summarizes the different approximations and the
expected difference in intensities between Ip and Ia.

Low intensity, low density High intensity, any density Any intensity, low density

Ip � Isat, nσ0 � 1 Ip � Isat Ia ≈ Ip

Ip − Ia ≈ nσ0Ip Ip − Ia ≈ nσ0Isat Ip − Ia ≈ nσ0
IpIsat
Ip+Isat

Table 4.1: Beer–Lambert law approximations. Columns indicate the different regimes, ap-
proximations, and expected difference in counts between Ip and Ia.

Figure 4.10 illustrates a determination of Isat using all three approximations. We use a
dilute cloud of atoms (where all three approximations hold) and measure the mean difference
in counts per pixel between Ip and Ia at the location of the atoms. The dilute, elongated
cloud of atoms has uncorrected (first term of Equation 4.18) optical depth of nσ0 = 0.15(5).
Using both the crossover from linear to constant difference and the third approximation
valid for all intensities, we fit the data and extract the optical depth ncolσ0 = 0.436(42) and
the saturation intensity Isat = 226(34)counts/pixel. The diagonal elements of the covariance
matrix from the weigthed least-squares fit give the errors in the corrected optical depth and
the saturation intensity, with a reduced chi-squared parameter χ2 = 2.29 suggesting that
the photon shot noise uncertainty in the mean intensity difference is insufficient, especially
at high probe intensity, where saturated absorption images cause large fluctuations in Ip−Ia.

The final method uses the sensor specifications, and is by far the simplest, requiring no
atoms and a single set of measurements. In this method, we take a set of probe images at
varying intensities and analyze the count statistics over a region with small structural probe
fluctuations. Then, by fitting the variance with the power expansion model

σ2
I ≈ σ2

t + α〈Ip〉+ β〈Ip〉2 (4.24)

where the first term σ2
t represents the technical noise variance independent of Ip, the second

term represents photon shot noise with scaling factor α between counts and photoelectrons,
and the third term captures the probe intensity fluctuations from spatial inhomogeneities
over a region of interest. We are interested in isolating α from a single probe image to get
a direct measurement of the linear conversion factor between counts and photoelectrons.
Then, we may calibrate Isat by combining the measurement of α with other sensor specifi-
cations. In practice, since our Gaussian probes are dominated by spatial inhomogeneities,
we apply a set of spatial lowpass and highpass filters with different cutoff frequencies to
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Figure 4.10: Linearized Beer–Lambert law measurement. The mean difference in atoms and
probe images at the location of a dilute cloud of atoms nσ0 < 1 as a function of incident probe
intensity. The transition (dashed pink) point from the low intensity limit (dashed purple)
to high intensity limit (dashed blue) gives Isat. A weighted least squares fit (continous red
curve) in the low density approximation gives a full model regardless of the probe intensity.

systematically identify the mean (from the lowpass filtered intensity), and variance (from
the highpass filtered intensity). Figure 4.11 (a) shows the variance as a function of the mean
detected counts in the absence of a lowpass filter along with a fit to the model in Equa-
tion 4.24, and Figure 4.11 (b) shows the linear fit coefficients for different lowpass cutoff
frequencies, where the filtered fraction is the number of pixels within the spatial filter cutoff
frequency divided by total number of pixels. We extrapolate the nominal values of the differ-
ent coefficients from the linear intercept representing the unfiltered probe image to avoid low
number statistics from small filter cutoffs. After extrapolating all coefficients for an unfiltered
probe image, the background offset coefficient the technical noise gives σt(0) ≈

√
10 e−, while

α(0) = 0.239(11) counts/e−. We proceed with a chain of unit conversions using sensor speci-
fications and the characteristics of the probe pulse. First, a single λ = 780 nm photon carries
εγ = 2.53× 10−19 J of energy, and the transition saturates at Isat = 6.6× 1015 photons/s cm2.
Then, we use the object pixel area (∆p/M)2, where M is the magnification to convert into
photons per second per pixel. Finally, we use the measured coefficient α(0), the manufacturer
specified quantum efficiency of 0.35 to convert between photons and photoelectrons, a 20µs
pulse time, and the specified number of counts per photoelectron to get Isat = 122(10) counts.

The different calibration methods do not overlap as we attempt them in alternating
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(a)

(b)

Figure 4.11: Probe intensity statistics. (a) Probe variance as a function of mean over a region
of interest (circles) and fit to Equation 4.24 (solid line) for an unfiltered image where the
dominant statistical coefficient is β. (b) Measured linear coefficient (circles) as a function of
filtered fraction (see text). The linear extrapolation (solid line) gives the background linear
coefficient α0.

imaging systems, where the magnification, atomic clouds, and probe intensity all change.
Nevertheless, Table 4.2 summarizes the different methods, the calibrated values, and their
biggest drawbacks.
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Method Isat

(counts/pixel)
Drawback(s)

Beam pro-
file

104(15) Typically underestimates calibration and assumes
independent power measurement calibration

Recoiling
cloud

188(12) Needs two orthogonal imaging systems, and is sub-
ject to increasing Doppler shifts for long pulses [57]

Power
broaden-
ing

225(19) Requires power and frequency stabilization of the
probe laser

Beer-
Lambert
approxi-
mations

226(34) Needs good atom number stability and only meets
two of the three approximations at low densities
(nσ0 < 1)

Counting
statistics

122(10) Needs careful analysis using spatial filtering on
probes with structure and other artifacts

Table 4.2: Isat calibrations. Summary of the different methods, example measured values,
and drawbacks. The different values differ from each other because they represent systems
with varying magnifications and pulse characteristics.

4.3 Image processing

This section summarizes a couple of image processing methods to obtain quantitative
atomic density distributions with optimal signal-to-noise ratio. We hone these methods for
the experiment in Chapter 6, but they are readily useful for absorption imaging of cold and
ultracold atomic gases. The methods from the last subsection are published in [60] as a
supplementary material.

We first estimate the uncertainty of the raw intensity signals in a photon shot noise
limited measurement and compute the optimal signal-to-noise ratio in a measurement of
linear optical depth. We then give an overview of the image reconstruction algorithms used
to remove the effects of spatial inhomogeneities in the images contaminating the signal of
interest.

4.3.1 Estimating uncertainty

The uncertainty of a recorded intensity in a photon shot noise limited detection is de-
scribed by the covariance matrix elements

σij = δij
√
IiIj, (4.25)
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here in the pixel basis where the index i labels the i-th pixel. The uncertainty shows the
uncorrelated pixel-to-pixel noise with magnitude σ

1/2
ii =

√
Ii in counts at pixel i. We may

propagate the uncertainty in quantities deriving from the measured intensity using the gen-
eral linear covariance transformation

Σ̂ = Û σ̂ÛT (4.26)

where the diagonal elements of the propagated covariance matrix Σ approximate the prop-
agated error if the transformation operator Û is band diagonal. In this way, we may prop-
agate the correlated and uncorrelated uncertainty contributions when the linear operator Û
is known in the same representation as the image covariance matrix σ. In the simpler case
when the functional form of a quantity deriving from the intensity is known, we may use the
normal uncorrelated error propagation.

For example the photon shot noise limited uncertainties in the intensity from the resonant
absorption images Ia, Ip, and Id propagate using the corrected Beer–Lambert law from
Equation 4.18. First, as Id is a direct measurement of technical noise, it is not limited by
photon shot noise, and for simplicity we subtract it directly from Ia and Ip. Then, the
uncertainty in the corrected optical depth

σod =

√(
1

Ip
+

1

Isat

)2

Ip +

(
1

Ia
+

1

Isat

)2

Ia, (4.27)

in terms of the measured intensities and the calibrated Isat.

4.3.2 Optimal signal-to-noise ratio

We now derive the general signal-to-noise ratio on the integrated optical depth from
resonant absorption imaging. We provide a measurement using a dilute cloud of atoms to
validate the qualitative features of this derivation.

We consider an imperfect detector (i.e. with technical noise sources) in a perfectly dark
environment, where it remains insensitive to stray light, and omit any kind of post-detection
amplification. We target detecting a column density ncol in focus using a microscope with
magnification M and a detector with pixel size ∆p. We use the saturation intensity at the
detector

Nsat = Isat ×Q×
(
τ

εγ

)
×
(

∆p

M

)2

(4.28)

expressed as the detected number of photons per pixel as the natural unit of intensity, where
Q is the quantum efficiency, Isat = 1.67 mW/cm2 is the saturation intensity, εγ = hν is the
energy of a single probe photon, and ∆p/M is the effective pixel size at the object plane.
Then, we cast Equation 4.18 into

y + ln
(x
s

)
− s (1− x) = 0, (4.29)
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in terms of the absorbed x = Na/Nsat, and unabsorbed s = Np/Nsat photon fractions. The
optical depth is y = σ0n. Given an incident photon number Np = sNsat, and target column
density ncol = y/σ0, we numerically solve for the absorbed photon number Na = xNsat.
Then, joining the uncorrelated photon shot noise and technical noise contributions, the
uncertainties become σa =

√
Na + σ2

t , and σp =
√
Np + σ2

t . The technical noise is dominated
by read noise σr and time integrated dark current background counts σd = jdτ , which add
in quadrature. The propagated squared uncertainty in y is

σ2
y =

(
∂y

∂Na

)2

σ2
a +

(
∂y

∂Np

)2

σ2
p (4.30)

= (1 + x)2

(
1 +

σ2
r + j2

dτ
2

N2
a

)
+ (1 + s)2

(
1 +

σ2
r + j2

dτ
2

N2
p

)
(4.31)

where jd is the dark current sensor specification in photons per second. This is just the
traditional result from independent error propagation. The “realistic” SNR becomes

SNR(r)
y = y/σy

=
s (1− x)− ln(x/s)

(1 + x)2
(

1 +
σ2
r+j2dτ

2

N2
a

)
+ (1 + s)2

(
1 +

σ2
r+j2dτ

2

N2
p

) (4.32)

including technical noise, while the “ideal” SNR becomes

SNR(i)
y =

s (1− x)− ln(x/s)

(1 + x)2 + (1 + s)2
(4.33)

without technical noise.
To compare the derived ideal and realistic SNR we numerically solve for the absorbed

fraction as a function of incident probe intensity for two different commercially available sen-
sors which we now call “typical” and “enhanced” CCDs. The main difference is a ∼ 2 orders
of magnitude price difference representing a factor of ∼ 10 in technical noise suppression,
and a factor of ∼ 2 in quantum efficiency at λ = 780 nm among other features. Figure 4.11
shows the side to side comparison, where each sensor displays the ideal and realistic SNR.
At first glance, a factor of > 3 improvement even in the ideal SNR seems too expensive from
one sensor to the other. This factor can be explained by a combination of larger quantum
efficiency and pixel size in the enhanced CCD. Additionally, the realistic SNR shows that
a reduced dark current and readout noise does not impact the SNR for the short imaging
pulses used in resonant absorption imaging. Simply put, a typical CCD is close to optimal
for absorption imaging, with the clear advantage of costing less than an enhanced CCD.
Another feature of the derived SNR is the tunability using the incident probe intensity. In
the ideal SNR case, the optimal probe intensity is Ip/Isat = 1, while the increasingly impor-
tant technical noise results in a shift away from saturation intensity depending on the target
optical depth.

We validate our derived model by measuring the tunable SNR as a function of probe inten-
sity in Figure 4.13, where we image a dilute, elongated cloud of optical depth ncolσ0 = 0.75(5)
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Figure 4.12: Comparison of SNR in optical depth. Modeled realistic (solid curve) and ideal
(dashed curve) SNR for the optical depth for (a) a typical CCD, and (b) an enhanced CCD.
The parameters used in the calculation above include a target optical depth of ncolσ0 = 0.726 ,
a τ = 20µs resonant probe pulse, and an imaging magnification of 5.33. The straight red lines
indicate the intensity for optimized SNR, while the dashed red lines indicate the Ip/Isat = 1
reference.

using a 20µs resonant probe pulse. We find a qualitative agreement in the features of Figure
4.11 with a typical CCD (SONY ICX618 Mono) with peak quantum efficiency of ∼ 0.35 at
780 nm from Figure 4.12 (b).
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Figure 4.13: Measured SNR in optical depth. We validate the presence of an optimal probe
intensity for the SNR in resonant absorption imaging.

4.3.3 Digital processing of intensity data

We process our raw probe intensity images to remove systematic noise contributions de-
grading the measurement of column and linear atomic densities. The process breaks down
into several subprocesses, including linear probe reconstruction to optimally match a probe
image to the atoms image Ia, dark field reconstruction to optimally match a dark image with-
out residual spatial structure, and dimensionality reduction for statistical averaging, and a
model of linear density in the case of spatiotemporal limited detection of atomic scatterers
during the probe pulse.

During the resonant absorption imaging sequence described at the end of Section 4.1.3,
mechanical vibrations between the consecutive Ip, and Ip images often shift spatial structure
present in the probe resulting in fringe artifacts in the optical depth. We perform linear
probe reconstruction to interpolate an optimal probe image Iopt

p using an ensemble of raw
probe images to construct a linear basis. From here on, we adopt the notation where I
represents a two-dimensional image, and I represents the same image as a rank-1 tensor
(vector) in the pixel basis representation, where each element is the value of the intensity in
a pixel. We seek to find the optimal probe intensity

Ioptp = Rc (4.34)

relating to a matrix R constructed from the ensemble of raw probe images as columns and
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a set of scalar coefficients c comprising the optimal linear combination. The optimal vector
c satisfies the weighted linear regression

R>WRc = R>WIa, (4.35)

with respect to the images containing atoms Ia, and where W is a diagonal masking matrix
of weights equal to zero for pixels containing atoms, and one elsewhere. We numerically
investigate different shapes and sizes for the mask, and find that as long as the unmasked
area is representative of the undesirable fringe artifacts, there is no significant difference
between different masks (i.e. an elliptical mask is not different from a rectangular mask
of similar dimensions). This way, we explicitly consider only spatial intensity fluctuations
in the probe and exclude intensity fluctuations from the absorption of light by the atoms.
We determine c by numerically solving the linear system represented by Equation 4.35, and
construct the intensity image Ioptp minimizing the sum squared error with Ia in the region
outside of the mask set by W. In addition, due to the dimensionality reduction in the
abstract vector space formed by the basis from the linear regression, it reduces photon shot
noise present in the reconstructed probes [61, 62]. Figure 4.14 shows the effect of probe
reconstruction using 50 images as a basis. Even for a cloud with rich spatial features, the
mask used in the linear probe reconstruction acts to only remove the fringe artifacts in the
optical depth.

(a) (b)

Figure 4.14: Linear probe reconstruction. Optical depth from absorption images of a cloud
with rich spatial structure features (a) without reconstruction, and (b) after reconstruction
using a 50 image basis.

Additionally to performing linear probe reconstruction, we correct for systematic effects
in the raw dark field images (see Section 4.1.3). One of these effects arises from variations in
ambient brightness over the line power cycle, an effect present when the CCD exposure inter-
vals are not syncronized with the ∼ 60 Hz line. Another effect is stray light from imperfect
extinction of laser beams (e.g. dipole trap beams, repump light). A last effect is structure
arising from the readout pattern of the CCD. The net result is a spatially inhomogeneous
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difference in counts in the background light illumination. The difference in counts is small,
contributing on the order of ≈ 1 count between Ia and Ip, but with an overall structure due to
aperture, scattering, and readout effects. To correct for this effect, we fit a two-dimensional
model to reconstruct the individual dark field images with a few contributions. The first
one is the average dark field intensity Īd vector representing the mean dark field common
to the atoms and probe images. The second contribution comes from feeding the raw dark
field intensities into the probe reconstruction linear regression, giving a systematic dark field
coefficient csysd indicating how much is present in each probe image relative to the atoms

image. Finally, we construct a principal component basis P
(j)
d from the set of all dark field

images, and use the first few principal components representing other sources of correlated
(structured) background illumination. The reconstructed dark field vectors

Irecd = Īd + csysd Id +
∑
l

P
(l)
d (4.36)

account for the slight differences in the atoms and probe intensity dark fields.

After reconstructing the probe and dark field images, we compute the absorbed fraction

f =
Ioptp − Ia
Ioptp − Irecd

(4.37)

in terms of the reconstructed images, as well as the calibrated saturation parameter

s =
Ioptp − Irecd

Isat
(4.38)

in terms of the saturation intensity Isat and the reconstructed images. These two quantities
give rise to the näıve optical depth

σ∗0n
∗ = −α log(1− f) + sf (4.39)

where n∗ is a näıve column density, and α = σ∗0/σ0 is the empirical ratio of the ideal two-level
and effective scattering cross sections from an imperfect probe. Typically the value of α is
close 1, and in the experiments relevant to this discussion, we use α = 0.92(4) to account for
residual ellipticity in circularly polarized probe and/or magnetic field orientation along an
axis different from the probe axis. In reality, the näıve optical depth is not exactly accurate
for systems narrower than either the optical scattering length

√
σ0/π =

√
3λ2/2π2, or the

imaging resolution ∆ in at least one direction. This is because either of these two conditions
violates the assumptions behind the Beer’s law. To improve this, we later present a model
of linear densities useful in the context of thin, 1D systems violating both of these conditions.

We often improve our SNR by repeating an experiment N times, and then computing
ensemble averages to get a

√
N factor improvement. We find that when we compute the

mean optical depth to statistically improve the SNR, it is better to first average the absorbed
fraction and saturation terms before using Equation 4.18. Doing so avoids amplifying the
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noise baseline as the nonlinear logarithm amplifies small value fluctuations in the signal.

Similarly, we are often interested in one-dimensional “cuts” of the two-dimensional optical
depth, especially when imaging elongated systems. There, we integrate column densities over
a number of pixels to produce a single pixel with a linear density distribution. While this
operation incorporates the total absorbed fraction, a quantity conserved by scalar diffraction,
integrating over a large number of pixels adds excess photon shot noise from pixels with no
atoms. We apply dimensional reduction of the mean absorbed fraction to mitigate the
effect of the integrated photon shot noise. This process suppresses the apparent integrated
absorption due to photon shot noise in regions where we know the approximate limited
response of our imaging system. We first crop our images to a region-of-interest containing
the full extent of our imaging response function (e.g. point spread function). Then, for each
position along the integration direction xi, we extract the full linear slice of mean absorbed
fraction 〈f(xi, y)〉 from all members of the dataset at that pixel in the central and few nearest
m pixels labeled by an index j. In the pixel basis representation, we obtain the set of vectors
{〈f(xi+j, y)〉}. Using this large set, we perform uncentered principal component analysis [63]
and extract only the first m normalized principal components to construct a dimensionally
reduced absorbed fraction 〈fr(xi)〉. The improved näıve optical depth becomes

σ∗0〈n∗r〉 ≈ −α log(1− 〈fr〉) + 〈sfr〉, (4.40)

from which the average näıve linear density

〈n∗r(x)〉 =
∆y

σ0

∑
y

σ∗0〈n∗r(x, y)〉 (4.41)

is an improved estimate of the linear density distribution.

Finally, we derive a model of linear density from the column density including diffusion
effects during the probe pulse. A problem for clouds with extremely narrow spatial extent in
at least one dimension is that they do not just absorb light in one location of space. During
the scattering process, many absorption and emission events take place, causing diffusion of
the atomic wavepacket around its originally narrow confinement. This implies that we cannot
infer the column density from the usual Beer’s law, which assumes a stationary, extended
absorber. Another consideration is the finite spatial resolution introduced by the diffraction
of scattered light into our imaging system. The modified solution to Beer–Lambert law

σ0g(x, y, t) = −α log(1− f(x, y, t)) + s(x, y)f(x, y, t), (4.42)

for a column, time dependent absorbed fraction, and where g(x, y, t) represents the column
density convolved with the time-dependent atomic diffusion and spatially limited imaging
resolution. The limitations imply that we have access to

fm(x) =
1

τ

∫ τ

0

∫
f(x, y, t)dy ≈ ∆y

∑
y

〈fr(x, y)〉, (4.43)
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in terms of the undiffracted absorbed fraction. We model the convolved column density

g(x, y, t) ≈ n(x)√
2πσ2

y(x, t)
e−y

2/2σ2
y(x,t) (4.44)

as a horizontally diffusing, vertical gaussian function. The underlying assumption is that
the atoms are only able to move along a weakly confined x direction. The Gaussian form
approximates the vertical absorption profile with unit integral (preserving the absorbed
fraction), and variance

σ2
y(x, t) =

σ0

π
+

1

3
σ2
vyt

2 (4.45)

equal to the optical scattering length
√
σ0/π at t = 0, representing the mean squared radius

of a scatterer. The isotropic momentum diffusion gives a mean squared velocity

σ2
vy(x, t) =

1

3
(2π)−1Γs(x)v2

rect (4.46)

in terms of the recoil velocity vrec = ~kr/m and the spatially inhomogeneous resonant scat-
tering rate

Γs(x) =
Γ

2

s(x)

1 + s(x)
, (4.47)

ignoring the Doppler shifts away from resonance. Put together, the y-variance of the ab-
sorption profile

σ2
y(x, t) =

σ0

π
+

Γ

6

~2

m2σ0

s(x)

1 + s(x)
t2 (4.48)

grows quadratically in time, approximating isotropic scattering where the change in velocity
per scattering event is v2

rec/3. This correction is important for higher absorbed fractions,
where we find it systematically amplifies the atomic density by up to ≈ 30%.
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4.4 Conclusion

This Chapter reviewed an important set of tools that enable quantitative and precise
microscopy of cold atomic ensembles. We presented simple models for imaging systems and
the light-matter interaction that nevertheless capture the essential aspects of imaging cold
atoms. We reviewed the calibration, and measurement methods providing guidelines for im-
proved image processing and data analysis. We covered the propagation of uncertainty, and
analyzed the optimized signal-to-noise ratio in absorption imaging, which are essential in the
absolute determination of atomic column densities. Lastly, the image processing algorithms
remove systematic contributions from the environment and the detection process. Some of
the methods in this Chapter, including the probe reconstruction, dark frame reconstruc-
tion, and the model for diffusive linear absorption are published in [60] as a supplementary
material.
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Chapter 5: Thermodynamic models for one-dimensional Bose gases

This chapter reviews three models describing the thermodynamics of homogeneous one-
dimensional Bose gases (1DBG), highlighting the different regimes in which they are valid.

This Chapter is organized as follows. First, I introduce the general one-dimensional Bose
gas in Section 5.1. Then I review the ideal (non-interacting) Bose gas in the grand canonical
ensemble in Section 5.2. There, using a virial expansion I give the equations of state valid
at low fugacity. Later, contact interactions of arbitrary strength enter in the Lieb–Liniger
model, where exact solutions for the interacting ground state capture the zero temperature
thermodynamics in Section 5.3. Finally, nonzero temperature effects enter with the Yang–
Yang thermodynamics, building upon the Lieb–Liniger model in the presence of thermal
excitations in Section 5.4. Remarkably, the Yang–Yang thermodynamics remains exact for
arbitrarily strong contact repulsive interactions, and arbitrary temperatures. I finish this
Chapter by commenting on the experimental distinctions between different one-dimensional
regimes in Section 5.5.

5.1 One-dimensional, contact-repulsive bosons

The general, second quantized Hamiltonian that describes pairwise interacting bosons in
one-dimension (1D) [64] is

H =

∫
dzdz′

[
Ψ̂†(z)

(
p̂2

2m
+ U(z)

)
Ψ̂(z) + Ψ̂†(z)Ψ̂†(z′)V (z − z′)Ψ̂(z)Ψ̂(z′)

]
(5.1)

where p̂ = i~∂z is the momentum operator in the real space representation, m is the mass,
Ψ̂†(z), Ψ̂(z) are bosonic field creation and annihilation operators obeying the commutation

relation
[
Ψ̂(z), Ψ̂†(z′)

]
= δ(z − z′), U(z) is an external potential, and V (z − z′) is the pair-

wise interaction potential which depends only on the interparticle separation and whose
functional form determines the character of the interaction. In what follows, I consider re-
pulsive contact interactions between pairs of bosons, such that V (z − z′) = V0δ(z − z′), and
V0 > 0.

For vanishing interactions (i.e. V (z − z′) = 0), and in the absence of an external po-
tential (i.e. U(z) = 0), the system is an ideal, homogeneous 1D Bose gas. In Section 5.2, I
review the thermodynamics of such an ideal Bose gas using the grand canonical ensemble,
giving exact thermodynamics at any temperature. As interactions become non-vanishing,
a many-body treatment in Section 5.3 gives the exact ground state solutions of 5.1. These
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zero-temperature solutions comprise the Lieb–Liniger model [65], valid for any interaction
strength. Finally, in Section 5.4, I review the exact Yang–Yang thermodynamics [66] solu-
tions for nonzero temperatures and arbitrary interaction strength. All the models describing
homogeneous systems may be extended for inhomogeneous systems (U 6= const.) through the
local density approximation (LDA) [67]. In the LDA, subsystems of approximately constant
density behave like homogeneous systems and models apply locally.

5.2 Ideal Bose gas model

One-dimensional Bose gases follow an ideal behavior dominated by Bose statistics in the
limit of vanishing interactions. The ideal Bose thermodynamics starts with the partition
function in the grand canonical ensemble

Z =
∏
k

∑
nk

e(µ−εk)nk/kBT =
∏
k

1

1− e(µ−εk)/kBT
(5.2)

where kB is Boltzmann’s constant, T is the temperature, and εk ∝ k2 is the non-interacting
(free) particle energy, with p = ~k the single particle momentum. Other quantities derive
from it through the grand canonical potential Ω = −kBT lnZ. For instance, starting with
the one-dimensional pressure

P = −Ω

L
=
kBT

L
ln

(∏
k

1

1− e(µ−εk)/kBT

)

= −kBT
L

∑
k

ln (1− e(µ−εk)/kBT )

in a (1D) volume of length L, we can extend it into the continuum, where N,L→∞, but the
density remains constant, and sums turns into integrals weighted by the density of states.
Then, the 1DBG pressure density becomes

P = −kBT
∫ ∞
−∞

ln (1− e(µ−ε(k))/kBT )ρ(k)dk

= −kBT
2π

∫ ∞
−∞

ln (1− ze−βε(k))dk, (5.3)

now in terms of the fugacity z = eβµ, and where β = 1/kBT . Doing a power series expan-
sion on the integrand in terms of small fugacity parameter z � 1 (valid for instance when
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µ/kBT � 0) gives the virial pressure equation of state

P = −kBT
2π

∫ ∞
−∞

∞∑
n=1

[
(−1)n+1 (−zeβε(k))n

n

]
dk

=
kBT

2π

∞∑
n=1

zn

n

∫ ∞
−∞

e−nβε(k)dk

=
kBT

2π

∞∑
n=1

(−z)n

n3/2

√
2mπ

~2β

=
kBT

λdB
Li 3

2
(z), (5.4)

assuming a free particle dispersion in the continuum (i.e. ε(k) = ~2k2/2m), and where the
thermal de–Broglie wavelength λdB = (2π~2/mkBT )1/2 represents the width of the momen-
tum distribution. Here, Lin(z) is the n-th order polylogarithm, convergent only for |z|< 1,
well justified for the virial expansion. The direct relationship between intensive and exten-
sive thermodynamic quantities comprises an equation of state. Here, the virial equation of
state relates pressure with temperature and chemical potential in the limit of small fugacity
z � 1. Similarly, we can derive the virial entropy

S = −
(
∂Ω

∂T

)
L,µ

= −L
(
∂P
∂T

)
µ

= L
∂

∂T

[
kBT

λdB
Li 3

2
(z)

]
=

L

λdB

(
3

2
kBLi 3

2
(z)− µ

T
Li 1

2
(z)

)
(5.5)

equation of state. Here, the linear entropy grows with subsystem size L/λdB, and decreases
with temperature. To better visualize these virial equations of state, Figure 5.1 shows the
virial pressure and entropy landscape in a µ, T region where the virial expansion is valid.
Both the linear pressure and entropy increase with increasing temperature and chemical
potential.

While the ideal Bose gas virial equations of state make quantitative predictions for 1D
systems, they are highly constrained by the approximations that sustain them. Even outside
the virial limit, the ideal Bose gas equations of state only correctly describe noninteracting
bosons. At sufficiently high temperatures, Bose statistics stop weighing in and the classical
ideal gas law recovers the correct equations of state. Clearly, the ideal Bose gas model and
its approximations are insufficient for a full thermodynamic description of the system in
Equation 5.1.
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Figure 5.1: Virial equations of state of 1D Bose gas. (a) Peak normalized pressure
P(µ, T )/P0, and (b) entropy S(µ, T ) in units of kB in the virial expansion z � 1 for an
ideal one-dimensional Bose gas of length L = 10µm. The contours represent isochoric and
adiabatic lines.

5.3 Lieb–Liniger model

Lieb and Liniger diagonalized the Hamiltonian in Equation 5.1 by using the now well
known Bethe ansatz [68] which for N bosons is

|ΨN(k1, k2, ..., kN)〉 =
1√
N !

∫
ΦN(zi|kj) Ψ̂†z1Ψ̂

†
z2
...Ψ̂†zN |0〉dNz (5.6)

where kj label momenta, φN(zi|kj) = φ(z1, z2, ..., zN |k1, k2, ..., kN) comprise the momentum

wavefunctions, Ψ̂z introduces a shorthand notation for Ψ̂(z) and |0〉 denotes the vacuum
state in the number (Fock) representation. The ansatz in Equation 5.6 is justified as H
commutes with N̂ , the total number operator, reducing the problem to finding momentum
eigenstates with the implication that the total number of atoms is conserved. To find such
solutions, the first quantized Lieb–Liniger Hamiltonian

Ĥ = − ~2

2m

N∑
i=1

∂2

∂z2
+ g

∑
i 6=j

δ(zi − zj) (5.7)
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can be diagonalized by solving the time-independent Schrödinger equation ĤφN = ENφN .

We first consider a one-dimensional ring of length L with periodic boundary conditions
where N bosons are placed along z. Then, we ensure that the average number of bosons
in any given segment is ≈ 1 by dividing the ring into N equal length segments. In the
absence of potential energy, plane wave solutions satisfy the local Schrödinger equation. In
order to include the effect of δ-interactions, we impose inter-segment boundary conditions
implying continuities φzi = φzi+1

and first derivative discontinuities in φ′zi − φ′zi+1
∝ gφzi .

This results in N phase shifted local plane waves. The Bethe-ansatz solution builds on the
fact that every time a boson meets the boundary, it scatters off a delta barrier (neighboring
boson) and acquires a phase shift proportional to the relative momenta. The many-body
wavefunction

φN(k1, k2, ..., kN) =
N∏
j=1

eikjzj
∏
j>n

(
1− ic

kj − kn
sgn(kj − kn)

)
(5.8)

captures the build up of all the phase shifts by virtue of the interaction wavenumber c ∝ g.
The sgn function ensures a symmetrized (bosonic) wavefunction. Equation 5.8 comprises
the exact, N -body solution together with the set of quantum numbers for ki, and recovers
the free particle solution in the non-interacting limit where g → 0. The eigenenergies EN
are obtained by solving the closed system of coupled nonlinear equations arising from the
periodic boundary conditions

eikjL
N∏
j 6=n

kj − kn − ic
kj − kn + ic

= 1 (5.9)

also known as the Bethe system. We take the logarithm on both sides to get the set of
quantization conditions

i(kjL− 2πηj) + ln
N∏
j 6=n

kj − kn − ic
kj − kn + ic

= 0

i(kjL− 2πηj) +
N∑
j=1

ln (eiθ(kj−kn)) = 0

kjL+
N∑
j=1

θ(kj − kn) = 2πηj

where ηj are a set of 2π-phase winding integers and the angles θ(k) = 2 arctan (k/c) encode
the phase shifts. Following the derivation in [65], we focus on the ground state, where the
momenta are evenly distributed about zero (i.e. minimizing their sum). By letting ηj = j,
with the set of j running evenly around j = 0 (e.g. j = −N/2...N/2 for even N), the system
reads

kjL+
∑
j

θ(kj − kn) = 2πj (5.10)
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Subtracting any pair of consecutive equations yields

(kj+1 − kj)L+
∑
j

[θ(kj+1 − kn)− θ(kj − kn)] = 2π

∆kjL+
∑
j

[θ(kj − kn −∆kj)− θ(kj − kn)] = 2π

∆kjL+
∑
j

[∆kjθ
′(kj − kn) +O(∆k2

j )n] = 2π,

where the backward difference approximation inside the sum incorporates everything in
terms of the derivative θ′(k). In the continuum, the quasi-momentum distribution function
ρ(k) = lim∆k→dk 1/∆kL enters so that Lρ(k)dk corresponds to the number of states in an
interval dk. Then, sums are replaced by integrals as prescribed by

∑
k fk → L

∫ q
−q f(k)ρ(k)dk

and

1/ρ(k) + 1/ρ(k)

∫ q

−q
θ′(k − k′)ρ(k′)dk′ = 2π

1 +

∫ q

−q
θ′(k − k′)ρ(k′)dk′ = 2πρ(k)

1 +

∫ q

−q

2c

c2 + (k − k′)2
ρ(k′)dk′ = 2πρ(k), (5.11)

giving an integral equation for the ground state distribution ρ(k), bounded by a cutoff quasi-
momentum q. Under these definitions, the particle density is

n =
N

L
=

∫ q

−q
ρ(k)dk. (5.12)

From here on, I refer to θ′(k − k′) as the Lieb–Liniger kernel. We rescale the problem
following [65], letting k̃ = k/q, and c̃ = c/q, so that Equation 5.11 becomes

1 +

∫ 1

−1

2c̃

c̃2 + (k̃ − k̃′)2
ρ(k̃′)dk̃′ = 2πρ(k̃). (5.13)

Since the density n is kept constant in the thermodynamic limit (N →∞, L→∞ keep-
ing N/L = n), the dimensionless interaction constant γ = c/n fully characterizes the exact
ground state solution. The density is bounded by

c̃ = γ

∫ 1

−1

ρ(k̃)dk̃. (5.14)

The solution to the coupled integral Equations 5.13–5.14 is exact and can be found numer-
ically with iterative recursion. Figure 5.2 displays a set of numerically evaluated ρ(k) and
θ′(k), showing their qualitative features in different interaction regimes at constant density.
The quasi-momentum distribution ρ(k) broadens as the interactions become more relevant
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Figure 5.2: Lieb Liniger kernels and distributions. (a) Computed quasi-momentum distri-
butions, and (b) Lieb–Liniger kernels for different values of γ. Dashed-vertical lines indicate
the cutoff quasi-momenta q for which the density meets its constant value.

until finally ρ(k)→ (2π)−1 as γ →∞. On the other hand, the Lieb–Liniger kernel (a normal-
ized Lorentzian with a width poportional to the interaction wavenumber c) tends to become
narrower as interactions become less relevant (γ → 0). From the solution of the Lieb–Liniger
system, other quantites become accessible. An example is the exact ground state energy per
particle

E0

N
=

~2n2

2m
e(γ), (5.15)

where the dimensionless function

e(γ) =
γ3

c̃3

∫ 1

−1

k̃2ρ(k̃)dk̃ (5.16)

incorporates all interaction regimes. Then, from Equation 5.15 the chemical potential be-

76



comes

µ =
∂E0

∂N
=

~2

2mL2

∂

∂N

(
N3e(γ)

)
=

~2

2mL2

(
3N2e(γ) +N3 de

dγ

dγ

dN

)
=

~2n2

2m

(
3e(γ)− c

n

de

dγ

)
=

~2n2

2m

(
3e(γ)− γ de

dγ

)
=

~2

2m
µ̃(γ), (5.17)

representing the cost of adding one particle into the ground state. Figure 5.3 shows the
numerically estimated e(γ), µ̃(γ), in agreement with the results in [65]. An interesting thing
happens if we take the Fermi-energy of the spinless, one-dimensional free Fermi gas

εF =
~2k2

F

2m
=

~2π2n2

2m
, (5.18)

for which the associated Fermi momentum wavenumber is kF = πn, and compare it against
the energy per particle in Equation 5.15, but take the limit of infinitely relevant interactions

lim
γ→∞

E0

N
=

~2n2

2m

π2

3
=
εF
3
. (5.19)

Remarkably, the chemical potential in this limit

lim
γ→∞

µ =
~2

2m

(
3n2π

2

3

)
=

~2k2
F

2m
= εF , (5.20)

matches the Fermi-energy, and therefore in the limit of infinitely strong interactions, the
gas behaves much like an ideal Fermi gas [69]. This phenomenon is called fermionization,
emerging as hard-core bosons avoid each other to minimize their energy, in close resemblance
to spinless Fermions following the Pauli exclusion principle. Even though some thermody-
namic properties map in the fermionized limit, others such as the momentum distribution and
odd-order correlation functions do not. This is due to the inherently symmetrized bosonic
wavefunctions.

The Lieb–Liniger model provides exact, ground state (zero-temperature) solutions for
homogeneous 1D Bose gases in terms of a dimensionless interaction parameter γ. In the limit
of infinitely strong interactions, the tendency of hard-core interacting bosons to avoid each
other shapes the chemical potential to match a spinless Fermi gas. While the Lieb–Liniger
thermodynamics provides such useful insight, it remains useful only in the zero-temperature
limit. The most important consequence of the Lieb–Liniger interaction parameter is that the
relevance of interactions γ scales inversely with the linear density n, so interactions become
increasingly relevant as the number of bosons per unit length decreases.
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Figure 5.3: Lieb Liniger energy and chemical potential. (a) Dimensionless energy, and (b)
chemical potential density as a function of γ. The horizontal lines indicate the infinitely
strong interaction limits where γ →∞ and the gas fermionizes.

5.4 Yang–Yang model

A few years after Lieb and Liniger developed their model, C. P. Yang and C. N. Yang stud-
ied the excitation spectrum, extending the thermodynamics beyond zero-temperature [66].
The Yang–Yang model describes the still exact solutions for an interacting, homogeneous
gas at nonzero temperature, representing a remarkable case where the many-body problem
is solvable at any temperature and interaction strength.

To see how the Lieb–Liniger model changes, we follow [66] closely, extending the definition
in Equation 5.11 to include particle and hole densities

2π(ρ(k) + h(k)) = 1 +

∫ ∞
−∞

2c

c2 + (k − k′)2
ρ(k′) dk′ (5.21)
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as independent contributions to an excitation away from the ground state. In the presence
of excitations, we look at the increase in entropy density of the distribution in the interval
between k and k + dk

ln

[
(p+ %)!

p!%!

]
= L [(ρ(k) + h(k)) ln(ρ(k) + h(k))− ρ(k) ln ρ(k)− h(k) lnh(k)] dk,

as the logarithm of the number of possible orderings of p = Lρ(k)dk particles and % =
Lh(k)dk holes, where we have used Stirling’s formula ln(ζ!) ≈ ζ(ln ζ − 1). From this, we
arrive to the linear entropy

S = L

∫
[(ρ(k) + h(k)) ln(ρ(k) + h(k))− ρ(k) ln ρ(k)− h(k) lnh(k)] dk (5.22)

of the thermal ensemble. The free energy density F = e − TS is minimized for constant
density n, which together with F are functionals of ρ(k) and h(k). We determine ρ(k) and
h(k) that minimize F−µn, to ultimately solve for the µ that gives the right n, i.e. recovering
the equation of state. We do this through the free energy variation

δ

∫ [(
~2k2

2m
− µ

)
ρ(k)dk − kBT

L
dS
]

=∫ [(
~2k2

2m
− µ− kBT ln

ρ(k) + h(k)

ρ(k)

)
δρ(k)− kBT ln

ρ(k) + h(k)

h(k)
δh(k)

]
dk,

which, using the individual particle and hole density variations

δρ(k) = −δh(k) +
1

2π

∫
2c

c2 + (k − k′)2
δρ(k′)dk′, (5.23)

becomes∫
δρ(k)

[
~2k2

2m
− µ− kBT ln

h(k)

ρ(k)
− kBT

2π

∫
2c

c2 + (k − q)2
ln

(
1 +

ρ(k)

h(k)

)
dq

]
dk = 0,

(5.24)
and from this we derive the integral relation

kBT ln

(
h(k)

ρ(k)

)
=

~2k2

2m
− µ− kBT

2π

∫
2c

c2 + (k − q)2
ln

(
1 +

ρ(k)

h(k)

)
dq. (5.25)

We set the left hand side of this equation to define ε(k)

ε(k) =
~2k2

2m
− µ− kBT

2π

∫
2c

c2 + (k − q)2
ln
(
1 + e−ε(q)

)
dq, (5.26)

corresponding to the energy of the excitation, or the energy dispersion for the thermal
ensemble. This is the central addition of the Yang–Yang model to the Lieb–Liniger model,
extending the Lieb–Liniger equations to include thermal effects, with the modified Lieb–
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Liniger integral system

2πρ(k)
(
1 + eε(k)/kBT

)
= 1 +

∫ ∞
−∞

2c

c2 + (k − q)2
ρ(q) dq, (5.27)

in downstream relationship from µ, T to n, and the rest of the equations of state derived
before. As an example, the Yang–Yang linear pressure equation of state is

P =
kBT

2π

∫ ∞
−∞

ln
(
1 + e−ε(k)/kBT

)
dk, (5.28)

whith a virial expansion in the low fugacity limit carried in reference [70], and the Yang–Yang
entropy equation of state

S =
kBT

2π

∫ ∞
−∞

[
(ρ(k) + h(k)) ln

(
1 + e−ε(k)/kBT

)
+ ρ(k)

ε(k)

kBT

]
dk, (5.29)

from the pressure (e.g. in [64]) includes both the particle and hole densities. Finally, all
the relations in the Yang–Yang thermodynamics reduce to the Lieb–Liniger thermodynam-
ics for T = 0, and to the ideal Bose gas thermodynamics when c = 0. The Yang–Yang
thermodynamics has no fundamental bounds in its validity across the parameter space of
temperature and interaction strength. Appendix C describes practical considerations for
numerically integrating the equations of state.

5.5 The one-dimensional regimes

We initially prepare degenerate Bose gases that live and interact in three dimensions
using the sequence from Chapter 1 in RbChip. From Section 2.2, the frequency associated
with the thermal energy of a degenerate 3D gas in equilibrium is kBT/h = 420 Hz, with a
trap depth on the scale of U0 ∼ 10kBT . The motional dynamics follow the characteristic
harmonic trapping frequency ω/2π ∼ 100 Hz. Additionally, the mean-field energy scale gives
a frequency of 4π~2an0/mh ∼ 100 Hz, directly related to the global chemical potential µ0.
The energy scale hierarchy in a 3D Bose gas follows U0 > kBT > µ0 & ~ω.

Different length scales define an equivalent hierarchy. For instance, the thermal de–
Broglie wavelength λdB = (2π~2/mkBT )1/2 ∼ 1µm gives the magnitude for the inverse mo-
mentum distribution width. The harmonic oscillator potential gives a characteristic os-
cillator length lω =

√
h/mω = 2.7µm. Mean-field interactions provide a healing length

ξ = ~/
√

2mµ0 ∼ 0.75µm from the global chemical potential in a superfluid, and the mean

interatomic spacing from the average (volumetric) density is n
−1/3
0 ∼ 10µm. In addition, the

s-wave scattering length sets the lowest bound, which for 87Rb is a ∼ 5 nm. In our case, the
length scale hierarchy in a 3D Bose gas follows n

−1/3
0 > lω > λdB > ξ > a.

We acknowledge three different 1D regimes for harmonically trapped Bose gases. We
refer to the first one as the elongated gas regime, exclusively defined by the aspect ratio
condition ω⊥ > ω‖, where ω⊥/2π represents the geometric mean of the transverse trapping
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frequencies, and ω‖/2π is the longitudinal trapping frequency. Trapped gases in this regime
look thin and elongated, and their properties at sufficiently low temperatures (kBT < µ) are
modeled accurately by the Gross–Pitaevskii equation (GPE) [71, 72]. Elongated gases have
reduced, but not completely frozen dynamics in two out of three dimensions. Atoms in one
of the trapping quadratures are free to interact with atoms in other quadratures whenever
~ω⊥ < µ. Similarly, atoms may scatter into other trapping quadratures when enough kinetic
energy is available and kBT > ~ω⊥. Elongated gases are effectively still 3D, but remain in-
teresting for their ability to host metastable topological defects such as solitons [73], solitonic
vortices [74], and spin domain walls [75].

We refer to the second regime as the quasi-1D regime. Here, the conditions ~ω⊥ > µ > ~ω‖
further constrain the classification. In this case, even though transverse dynamics freeze com-
pletely, the unconstrained thermal energy may be in excess of the chemical potential kBT > µ
causing thermal fluctuations to overwhelm other quantum fluctuations present in the degen-
erate regime. The quasi-1D regime displays the phenomenon of quasi-condensation [76],
where at sufficiently low temperatures the coherence length becomes smaller than the size
of the system, but larger than the mean atomic separation, implying the absence of a global
phase coherence present in our 3D BECs. Experimentally, this results in supressed density
fluctuations and enhanced phase fluctuations, which exchange roles after free expansion in
time-of-flight (TOF) as shown in Figure 5.4. While the three images represent ω⊥/ω‖ > 1,
a cloud in the elongated regime need not even look elongated. A quasi-1D cloud shows
enhanced phase fluctuations in-situ translate to density fluctuations as “self-interfering” sec-
tions of the cloud overlap. Finally, a gas in the full 1D regime is characterized by a transverse
harmonic energy scale overwhelming the thermal energy and chemical potential energy scales.

Last, we refer to the third regime as the full 1D regime. In the full 1D regime, the energy
required to excite transverse dynamics overwhelms the thermal energy, chemical potential,
and longitudinal motion energy. A harmonically trapped Bose gas enters the full 1D regime
when ~ω⊥ > kBT > µ� ~ω‖. Such a deeply 1D Bose gas may reach quantum degeneracy
only at ultra low temperatures, beyond the quasi-condensate phase [76]. Exotic 1D physics
for a harmonically trapped Bose gas may occur near the threshold where the interparticle
spacing becomes comparable to the scattering length, and the scattering problem cannot be
regularized as originally done in [77], but these lie outside of the scope of this dissertation.
Table 5.1 summarizes the different regimes and their characteristic energy and lengthscale
hierarchies. Given the three models at the beginning of this Chapter, we draw a “phase”

Elongated Quasi-1D Full 1D

~ω⊥ > ~ω‖ ~ω⊥ > µ > ~ω‖ ~ω⊥ > kBT > µ > ~ω‖
l⊥ < l‖ l⊥ < ξ < l‖ l⊥ < ξ < λdB < l‖

Topological defects Quasi-condensation Fermionization

Table 5.1: Summary of energy and lengthscale hierarchies defining 1D regimes. The bottom
row shows examples of physics milestones accessed in each regime.
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space in Figure 5.5 for a full 1D homogeneous Bose gas. The relevant parameters are tem-
perature T in units of a 1D degeneracy temperature Td = ~2n2/2mkB, and the relevance of
interactions parametrized by the Lieb–Liniger parameter γ.

The ideal Bose gas lies at the left in this T − γ parameter space, where γ ≈ 0. The
virial expansions further restrict the ideal Bose gas “phase” to the top left corner, where
T � Td. While Bose statistics weigh in at temperatures T ∼ Td, a homogeneous 1DBG
may never condense, we refer to the green region as the classical 1D regime. After allowing
weak interactions γ < 1, sufficiently low temperatures give a mean-field describable 1DBG,
highlighted in blue in Figure 5.5. Finally, crossing the γ = 1 line into more relevant inter-
actions tends to the fermionized Bose gas on the right side of Figure 5.5. At a high enough
temperature, even in the presence of strong interactions, thermal fluctuations dominate over
quantum fluctuations, leading to the “classical” hard core Bose gas. In the next Chapter 6
we find our 1DBGs scatter near the degeneracy T/Td = 1, and strongly interacting regime
γ = 1 boundary.
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(a)

(b)

(c)

Figure 5.4: One dimensional regimes. Absorption images for (a) a cloud in the elongated
gas regime, (b) in the quasi-1D regime after a short time-of-flight (t = 3 ms), and (c) in the
full 1D regime.
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Figure 5.5: Temperature and interaction parameter space. Different colors highlight the
continously connected classical (green), weakly interacting degenerate (blue), and strongly
interacting degenerate (red) full 1D gas regimes. The scattered data is represents instances
of experimentally sampled states from Chapter 6.
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5.6 Conclusion

We reviewed three models describing the thermodynamics of homogeneous, one-dimensional
Bose gases with contact repulsive interactions. The absence of interactions gives the ideal
Bose gas thermodynamics, for which a virial expansion arises in the limit of low fugacity. In
contrast, the Lieb–Liniger thermodynamics give exact solutions for arbitrary interactions at
zero temperature. The Lieb–Liniger model implies that low densities increase the relevance
of interactions γ ∝ n−1, thereby adding an important ingredient for strong correlations. The
Yang–Yang thermodynamics extends the exact Lieb–Liniger thermodynamics for nonzero
temperatures, making it the most versatile model for 1D Bose gases across a wide parameter
space. Last, we introduced the experimental criteria to distinguish different trapped 1D Bose
gas regimes.
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Chapter 6: Equations of state of individual 1D Bose gases

This chapter studies the thermodynamics of isolated one-dimensional Bose gases (1DBGs)
in the full 1D regime by using optical dipole traps. The long-term motivation for isolating
1DBGs in spin-independent traps is to depart the mean-field interaction regime using the
inverse density dependence of the interaction parameter γ from Chapter 5, where the 1DBG
tends to fermionize. There, a vastly unexplored range of experiments exists where spinor
gases are no longer easily described by multi-component mean-field theories. Furthermore,
the addition of Raman beams to engineer spin-dependent dispersions [78] opens the possi-
bility of quantum simulating exotic magnetic phases in strongly correlated 1D systems [79].
For this, we envision the capability of cooling the trapped 1DBG to mitigate the heating
from spontaneous emission associated with the Raman dressing.

Our first challenge experimentally is to confine an individual Bose gas into one-dimension,
for which we design and implement a high aspect-ratio crossed optical dipole trap. The result-
ing shallow potential along 1D allows the most energetic particles to leave in a “spontaneous”
form of evaporative cooling. Then, using the quantitative bright-field microscopy tools from
Chapter 4, we measure the in-situ linear density distributions using resonant absorption
imaging. The local density approximation (LDA) links the known trapping potential to the
chemical potential, and then to the observed local density. Finally, we retrieve the global
chemical potentials and temperatures by fitting the density equations of state with the exact
Yang–Yang thermodynamics from Chapter 5. We find that while our individual 1D Bose
gases undergo evaporative cooling, they escape the degenerate regime.

This Chapter is organized as follows. In Section 6.1, I describe the design, and character-
ization of the combined blue and red-detuned crossed dipole trap giving an extreme aspect
ratio to enter the full 1D regime. In Section 6.2, I describe measurements of the density
equations of state using in-situ resonant absorption imaging, and the subsequent analysis
using the Yang–Yang thermodynamics. Reference [60] reports most of the results from this
Chapter.

6.1 Trap design and characterization

We design and characterize the dipole traps used to enter the full 1D regime, as de-
fined in Chapter 5, Section 5.5. Most experiments creating 1DBGs in this regime opt for
two-dimensional optical lattices [15, 80, 81], giving an inhomogeneous ensemble of 1DBGs.
An alternative approach is tight magnetic confinement from atom chips [82,83], giving indi-
vidual, single spin component 1DBGs. The inhomogeneous ensembles in 2D-optical lattice
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experiments prevents direct access to local observables, and individual 1DBGs are never
truly isolated from each other, even in deep lattices with suppressed tunneling. Atom chip
experiments rule out experiments with multiple spin components, and are limited to bosons
with nonzero magnetic moment. Our realization bridges the two approaches, entering the
full 1D regime with individual and isolated ensembles in spin-independent potentials.

6.1.1 Transverse dipole trap

After introducing red-detuned Gaussian beam dipole traps in Chapter 2, we now intro-
duce blue-detuned Laguerre–Gaussian (LG)beam dipole traps. LG beams comprise solutions
to the scalar Helmholtz equation in cylindrical coordinates, with circlularly symmetric Gaus-
sian beams representing the lowest eigenmode. We start with the full spectrum of electric
field modes

El
m(r, φ, z) = E0

Alm
w(z)

(√
2r

w(z)

)l

Llm
(

2r

w2(z)

)
e−r

2/w2(z)eikr
2/2R(z)eilφ e−iζ(z), (6.1)

with amplitude E0, and where Llm is the generalized (or associated) Laguerre polynomial of
order l and index m. The integers m = 0, 1, ... and l = −m, ...m count the number of m+ 1
radial nodes and 2πl phase windings (i.e. topological vortex charge) around φ respectively
[84]. Similarly, the normalization factor

Alm = m!

(
2

πm!(|l|+m)!

)1/2

depends on the mode indices. Here, we adopt the standard Gaussian waist

w(z) = w0

√
1 + (z/zR)2,

with Rayleigh length zR = πw2
0/λ, wavefront radius R(z) = z[1 + (z/zR)2], wavenumber

k = 2π/λ, and Guoy phase ζ(z) = arctan z/zR. The normalized m = 1, l = 0 field

E1
0(r, φ, z) =

√
P

π

2r

w2
0(1 + z2/z2

R)
×

exp

[
− r2

w2
0(1 + z2/z2

R)

]
×

exp

[
− ikr2

2R(z)
− iφ+ iζ(z)

]
,

(6.2)

now in terms of the total power P , and minimum waist w0, has a linearly increasing amplitude
with r modulated by a Gaussian envelope, therefore giving a quadratically increasing radial
intensity

I1
0 (r, z) =

2P

πw2(z)

2r2

w2(z)
e−2r2/w2(z), (6.3)
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which has a fantastic harmonic expansion around r = 0. Since blue-detuned dipole beams
repel atoms from the high intensity regions, the hollow core of LG beams trap atoms around
r = 0, while simultaneously giving reduced scattering rates. This last fact has been sug-
gested to enhance precision spectroscopy inside a blue-detuned hollow-core Bessel beam [85].
Similarly, [86] uses a LG01 hollow-core trap to guide the longitudinal expansion of magnet-
ically trapped ultracold 87Rb. To our knowledge, no other experiments use blue-detuned
LG01 dipole traps to enter the full 1D regime with ultracold 87Rb.

The far-detuned three-dimensional LG01 dipole potential in the limit of an ideal linearly
polarized mode becomes

U(r, z) =
6PΓc2

∆ω3
0

r2

w4(z)
e−2r2/w2(z). (6.4)

Figure 6.1 shows numerically evaluated transverse and longitudinal potential landscapes.
While the transverse potential provides isotropic radial confinement, the longitudinal land-
scape forms an antitrap. Physically, the antitrap comes from the longitudinal gradient
of the transverse zero-point energy in the harmonic approximation. While the potential
U(r = 0, z) = 0 vanishes exactly in a line, atoms still feel the repulsion away from r = 0.
For a focusing LG01 mode, the transverse zero-point energy falls off away from the focus as
a Lorentzian with a width parameter proportional to the Rayleigh length of the LG01 mode.
While the transverse minimum of the LG01 beam traps, the longitudinal maximum anti-
traps. The numerically calculated longitudinal antitrap shows this effect in the bottom right
panel of Figure 6.1. The transverse harmonic trapping frequency varies by ∼ 20% at z = zR.

We use a custom, 2 in. diameter, 2π-spiral phase plate (SPP) from RPC Photonics to
wind a +1 charge around a λ = 532 nm Gaussian beam. We choose this method to produce
LG beams over holographic techniques based on digital micro-mirror devices (DMDs) or
spatial light modulators (SLMs) for a superior mode conversion efficiency, and high quality
anti-reflection coatings. For example, we estimate that the minimum waist of an SPP mode
exhibits a > 40dB extinction ratio in the peak to vortex intensity level, only limited by the
dynamic range of our detector.

We start with a Gaussian beam with an 1/e2 beam diameter of 2.3(2) mm coming out of
a 25 W Millennia-eV laser. A large fraction of the power coming out of the laser pumps
a Ti:Sapph cavity to produce λ = 790 nm Raman beams as described in [19]. We pick off
∼ 3.0 W of power before the Ti:Sapp input and send them through a half-waveplate (HWP)
followed by a polarizing beam splitter (PBS) to limit the maximum power entering our LG
beam setup. A second HWP after the PBS matches the optimum input polarization for a
custom IntraAction ASM-802B47 fused-silica, high-power acousto-optic modulator (AOM)
operating at 80 MHz. We block the zero-th order and pick the first order out of the AOM,
allowing us to tune the intensity through the input radiofrequency power of the AOM. We
then inject the first order into a single mode, polarization mantaining photonic crystal fiber
(PCF) LMA-PM-15 with copper heat sinks at the tips to enable high-power injection. We
align the linear polarization of the beam to the fast axis of the fiber with a HWP, and
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Figure 6.1: Potential landscapes from a blue-detuned LG01 dipole trap. The beam propagates
along ez. (a) Two-dimensional transverse and (b) longitudinal potential landscapes for 87Rb.
The different contours indicate thermal isopotentials measured in mK. (c) Cross-sectional
transverse, and (d) longitudinal potential landscapes for 87Rb. Dashed vertical lines in (b),
(d) indicate the Rayleigh length zR, and the radial harmonic expansion with an estimated
peak trapping frequency ω⊥/2π = 51 kHz at z = 0 in (c). The parameters used in this
calculation are w0 = 3.40µm, P = 1.0 W, λ = 532 nm.

match the 1/e2 mode field diameter of 12.2(1)µm at 532nm by focusing the beam with a EO

84-339, 0.42 numerical aperture (NA) aspheric lens. The combined AOM diffraction and
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fiber injection efficiency give a maximum P0 = 1.0 W at the fiber output.

After collimating the PCF output with a matching EO 84-339 lens giving a 1/e2 beam
diameter close to 2.3 mm, we send the Gaussian beam through a Glan-Laser polarizer and
HWP to clean and match the desired linear polarization. We sample ∼ 2% of the beam and
send it to a fast photo-diode to monitor the intensity. Finally, we convert the beam into a
LG mode with the SPP, after which it focuses down near the atoms with the help of a high-
NA EO 49-104 aspheric lens. The two aspheric lenses form an effective M = 0.8 telescope,
conjugating the PCF mode diameter into a w0 ≈ 5µm focused LG beam at the location of
the atoms. In principle, this beam could be magnified by an additional factor of 2 (limited
by the 45◦ angled 1 in. mirror apertures) before focusing down to an NA-limited minimum
waist w0 ≈ 3µm. While we test this on the bench by profiling such a beam in Figure 6.2, we
avoid doing this in the final setup to prevent strong aberration effects in the tightly focused
LG beam, such as radially imbalanced traps and local intensity minima capable of trapping
small, spurious clouds of cold atoms. Using the largest available aperture leads to a tighter
focus, as well as undesirable aberrations. We find that a w0 ≈ 6µm gives an estimated peak
transverse trapping frequency well in excess of 10kHz with 1 W of power.

We characterize our transverse dipole trap by profiling the LG intensity on the testbench
around its minimum waist. Figure 6.2 shows a sampled three-dimensional LG beam profile
in the case where we maximally use the available optical aperture before the aspheric lens
(giving the minimum possible w0). We fit the individual profiles using Equation 6.3 and
reveal a vertical angle and slightly imbalanced radial intensity, both undesirable features for
dipole traps. Nevertheless, the fit reveals the location and size of w0, which together with
the power give an estimated peak trapping frequency in the transverse direction.
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Figure 6.2: Three-dimensional beam profile of a tightly focused LG dipole beam. (a)
LG01 profile, and (b) set of two-dimensional fits, givinga minimum waist w0 = 3.43(3)µm,
Rayleigh length zR = 69.5(8)µm, and an estimated peak transverse trapping frequency of
ω⊥/2π = 51 kHz with 1 W of power.

We align the minimum waist of the blue-detuned dipole trap with the in-situ BEC in
two stages. In the first stage, we remove the SPP and coarsely adjust the blue-detuned
Gaussian beam focus to hit the center of a large magnetically trapped cloud produced at
the end of RF evaporation (see Chapter 2). We then pulse the beam to “pierce” a hole
in the middle of a magnetically trapped cloud. We then maximize the density depletion
caused by the repulsive Gaussian beam, and adjust its position in the xy plane. In the
second stage, we put the SPP back on to pierce a hole in the repulsive barrier, and optimize
the number of atoms that we can adiabatically transfer into the LG01 hollow core. Then,
we optimize the longitudinal alignment of the minimum waist by performing a differential
measurement using the magnetically trapped atoms as a probe. Again, we pulse the LG01

intensity to maximum level for t = 1 s to deplete the density of a large magnetically trapped
cloud, but we image perpendicular to the LG01 beam propagation axis. We form contrast
images by subtracting the average optical depth of depleted clouds from the average optical
depth without depletion. The contrast in Figure 6.3 outlines the focused LG01 beam profile.
Finally, we are able to align the minimum waist of the LG beam to within 10µm of distance
to the BEC along ez, and 2µm along e⊥.
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(a)

(b)

(c)

Figure 6.3: Contrast alignment method. We compare the images of two magnetically trapped
clouds (a) in the presence, and (b) absence of a bright pulse of the LG01 beam. (c) Average
optical depth contrast using 20 repetitions in the presence, and absence of the repulsive LG01

beam. A clear profile traverses the image from left to right, showing the minimum waist.
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6.1.2 Longitudinal dipole trap

We add longitudinal confinement to cancel and overcome the antitrap in Figure 6.1 using
a red-detuned Gaussian beam. The design is straightforward, using a λ = 1064 nm Gaussian
beam similar to those forming the cross dipole trap from Chapter 2. In order to isolate
elongated 1DBGs with lengths in excess of 100µm, we overcome the LG01 Rayleigh length
with the Gaussian waist of the red-detuned longitudinal trap. Because we have limited
λ = 1064 nm power, we constrain the Gaussian beam aspect ratio to be elliptical rather than
circular.

Figure 6.4: Three-dimensional beam profile of a focused, elliptical Gaussian beam. The
beam propagates perpendicular both to gravity and the LG01 propagation axis.(a) Longitu-
dinal beam profiles, and (b) set of fits giving a minimum horizontal waist w0x = 203(2)µm,
Rayleigh length zR ∼ 10(0) cm), and estimated peak longitudinal trapping frequency of
ω‖/2π = 35 Hz using 750 mW of power.

We prepare the red-detuned Gaussian beam with a similar launch as the blue-detuned
Gaussian beam, with an AOM tuning the final intensity level. After launching a peak power
of 750 mW into a single-mode, polarization maintaining fiber, we collimate the fiber output
and clean the outcoupled linear polarization with a high-power Glan-Laser polarizer. After
aligning the linear polarization with a HWP, we use a rotatable anamorphic prism pair with
anamorphic magnification of 2.0 to give the transversely round Gaussian an elliptical profile
with aspect ratio wx ≈ 2wy. Finally, we combine this elliptical beam with one of the two
original Gaussian beams forming the evaporating cross-dipole trap along ex using a PBS.
The beams then focus down to a minimum waist near the atoms. We profile the beam in
the testbench to validate our design, as shown in Figure 6.4.
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Figure 6.5: Calculated combined longitudinal potential. The combined longitudinal potential
shows a barrier near the transition from Gaussian (exponentially decaying, attractive trap)
to Lorentzian (algebraically decaying, repulsive antitrap). A harmonic expansion around the
center (dashed) is only valid for displacements smaller than the final size of the 1DBGs, so
we consider the full combined model.

The focused red-detuned Gaussian beam crosses the LG01 beam at ∼ 90 ◦ to provide
longitudinal confinement with low harmonic curvature ω‖ ≈ 2π × 35 Hz. Additionally, we
use the AOM to slightly control the depth for longitudinal evaporation. The longitudinal
intersection of the two dipole traps forms a combined potential between the antitrap and
longitudinal trap with an effective harmonic frequency of ω‖/2π = 12.13(20) Hz. While the
combined longitudinal potential has a harmonic component, it is mostly anharmonic. Ne-
glecting arbitrary energy offsets, the combined potential

U(z) =
~ω(0)
⊥

1 + (z − z2
a)/z

2
R

+ Ute
−2z2/w2

x (6.5)

has two contributions from the antitrap, and the longitudinal Gaussian beam, assuming
ez is perpendicular to the direction of gravity. The peak transverse trapping energy ~ω(0)

⊥
represents the maximum of the antitrap, falling off as a Lorentzian centered about za with
a width proportional to the Rayleigh length zR of the LG01 beam. The contribution from
the red-detuned longitudinal trap gives a depth Ut, growing like a Gaussian beam of waist
wG. Figure 6.5 shows the combined longitudinal potential with U0 = 0 where the individual
contributions show the decaying antitrap dominate at long distances.
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6.2 Density equations of state

We load the 1D Bose gases by slowly transitioning from an initial 3D crossed dipole trap
to our final combined blue and red-detuned trap. Figure 6.7 shows the intensity ramps that
put the atoms into the full-1D regime. There are four loading stages, labeled by (i), (ii),
(iii), and (iv). During stage (i), we raise the LG01 trap intensity above the threshold where
it levitates atoms against gravity, while simultaneously keeping the original crossed dipole
constant. Then, in stage (ii), we gently lower the intensity of the crossed dipole trap until
it mostly provides longitudinal confinement, but is otherwise unable to levitate the atoms
against gravity. During the third stage (iii), we ramp the longitudinal dipole trap intensity
adiabatically to the point where it overcomes the longitudinal confinement of the remaining
crossed dipole beams. Finally, in (iv) we simultaneously ramp the LG01 trap to its final
intensity and extiniguish the crossed dipole beams. Eeach stage takes t = 250 ms. We opti-
mize the adiabaticity of the loading procedure by minimizing residual motion of the cloud
after finishing the transfer. In Figure 6.6, we illustrate four steps in the systematic optimiza-
tion, where we compare the amounts of residual motion, net displacement, and breathing
dynamics of the cloud after loading it into the final 1D trap. Damped dipole oscillations and
complicated breathing dynamics indicate anharmonic dephasing. As a result, the quality of
the small amplitude dipole oscillations improves with smaller net displacements.

We image the 1D Bose gases with a sequence of repump and resonant probe 20µs pulses,
transferring atoms first from |F = 1,mF = 0〉 to |F = 2〉 in the hyperfine ground state man-
ifold, and then absorbing light in the resonant 5S1/2|F = 2〉 to 5P3/2|F = 3〉 transition. The
average intensity is 2.5 Isat (see Chapter 4). We first acquire an image of the absorbed light
Ia, followed by an image of the probe Ip, and an image of the background light in the absence
of any illumination Id. We combine these images and process them using the methods in
Chapter 4, Section 4.3.3 to obtain linear density profiles like the one in Figure 6.8. Further-
more, we build ensembles with N ∼ 100 repetitions to improve the signal-to-noise ratio of
the density distributions.

95



(a) (b)

(c) (d)

Figure 6.6: Optimization of the loading procedure. We track the center of mass (x0) and
width (σx) of the 1D clouds during the loading stages (i)-(iv). (a) Loading with three
t = 150 ms linear ramps and a last t = 50 ms ramp giving large amplitude dipole oscillations.
(b) Loading after fixing the alignment of the longitudinal trap relative to the center of the
LG01. (c) Loading after increasing the durations of all the ramps to t = 150 ms. (d) Loading
after we simultaneously increase the stage durations to t = 250 ms, and use the sigmoid
ramps shown in Figure 6.7 (b).
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Figure 6.7: Loading procedure for 1D Bose gases. (a) Schematic directly reproduced from
[60]. (b) Center of mass and width dynamics of the 1D cloud during, and slightly after the
optimized transfer, where negligible residual dipole and breathing dynamics are present.
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Figure 6.8: 1D density profiles from in-situ images. Absorption image of an individual 1DBG
after image processing described in Chapter 3. By integrating the optical depth, we obtain
the linear density profile of an individual 1DBG (gray circles). We increase the signal-to-
noise ratio by averaging of N = 110 individual such profiles into a single density profile (pink
circles).
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6.2.1 Global Yang–Yang fits

We acquire two datasets with 1D Bose gases similar to the example in Figure 6.8. In one
dataset, we load the same 1D traps starting with different 3D clouds, including BECs and
nondegenerate (thermal) clouds, and image the density distributions right at the end of the
loading procedure. In a second dataset, we load a 1D trap from the most degenerate 3D BEC
we can produce using dipole evaporation, and then hold it in time and image it at different
times following the loading procedure. We then use the Yang–Yang (YY) thermodynamics
from Chapter 5 and the local density approximation (LDA) to fit the observed density
distributions, and extract the global temperature T , and global chemical potential µ0. The
LDA

µ(z) = µ0 − U‖(z) (6.6)

links the known longitudinal potential to local variations in the chemical potential. The YY
equations of state then predict the local densities as if it were a homogeneous 1D Bose gas.
The two datasets comprise 24 different realizations labeled by an index j, as depicted in
Figure 6.9. We perform local (on a per-realization-basis) YY fits, and a global (across all
realizations) YY fit to extract the thermodynamic states of our 1DBGs. The two give the
same qualitative results, summarized in Figure 6.10.

We find our 1DBGs enter the strongly interacting regime at the lower achieved tempera-
tures, with a record Lieb–Liniger parameter from Chapter 5 of γ ≈ 3. Unfortunately, when
we collapse our data into the T/Td, γ parameter space in Figure 5.5 from Chapter 4, we
note that we fall short of entering the strongly-interacting, degenerate regime at the same
time. While Table 6.1 summarizes the calibrated and fit parameters for the longitudinal
potential (and chemical potential), the free parameters of global chemical potential µ0, and
temperature T reveal an interesting outcome. We vary the 3D cloud temperature T3D in the
first dataset, and find that the global chemical potential µ0, and atom number N follow a
similar trend, while the 1D temperature opposes the 3D trend. We then hold our 1DBGs in
time, and observe the global chemical potential and number show decaying trends, while the
1D temperature keeps decreasing. The 1D temperature tends to a value consistent with the
longitudinal trap depth, from which we conclude the 1DBGs undergo evaporative cooling.
We find that the global chemical potential decreases with increasing 3D temperature, an
expected result from inefficient loading at higher temperatures since the spatial 3D density
is lower. Nevertheless, we see an interesting trend in 1D temperature, where colder 3D gases
result in warmer 1D clouds. This result is counterintuitive, and suggests a breakdown of
adiabaticity in the loading at first glance. On further analysis, after normalizing the 1D
temperature by the peak one-dimensional degeneracy temperature

T
(0)
d =

~2n2
0

2mkB
(6.7)

at the center of the 1DBG, we reveal the peak degeneracy parameter T/T
(0)
d . Figure 6.11

shows the transformed fit parameters after this, allowing us to regain an intuitive interpreta-
tion in the first experiment where degenerate 3D gases result in degenerate 1DBGs. On the
other hand, the 1DBG degeneracy parameter increases over time, into the classical regime.
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Figure 6.9: Global YY fit. In-situ density distributions (a) across all realizations labeled by
j, the (b) evaluated global YY fit, and (c) global fit residuals. Local fits (on a per realization
basis) leave the qualitative results unchanged.

We conclude that the evaporative cooling along the longitudinal axis of the tube trap is
unable to increase or even maintain degeneracy.

While we lack more experimental evidence to support the following argument, we believe
that the observed inefficient evaporative cooling results from the slower relative decrease in
1D temperature with respect to the 1D degeneracy parameter proportional to the peak den-
sity. This is in stark contrast with 3D evaporative cooling, where although the condensation
temperature Tc changes with the peak density, it does so slowly compared to the global tem-
perature, allowing the 3D Bose gas to condense. We can use the commonly used definition
of degeneracy temperature Td as the temperature for which the interparticle spacing equals
the thermal de–Broglie wavelength. In D-dimensions, the degeneracy threshold λdB = lD
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Figure 6.10: Temperature, global chemical potential, and number. Experimentally extracted
global chemical potential as a function of 3D gas temperature (a), and time (b), 1DBG
temperature as a function of the 3D gas temperature (c), and time (d), and atom number
as a function of the 3D gas temperature (e), and time (f).

gives the scaling relationships

n−1/D =

(
2π~2

mkBTd

)1/2

(6.8)

Td =
2π~2n2/D

mkB
(6.9)
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Parameter Calibrated value Value from fit Calibration method

ω⊥/2π 17 (4) kHz 17 (2) kHz Transverse expansion
in TOF

za 0 (10)µm −7.670 (8)µm Alignment precision
zR 185 (29)µm 185 (5)µm Intensity profile of

LG beam
Ut/kB −1.17 (25)µK −1.37 (6)µK Intensity profile of

Gaussian beam
wG 203 (2)µm Intensity profile of

Gaussian beam
ωz/2π 12.13 (20) Hz Small amplitude

dipole oscillations
δz 8.19 (30)µm

Table 6.1: Global YY fit parameters. We used calibrated values and their uncertainties as
initial guesses and bounds for the global YY fit.

between the D-dimensional particle density and the degeneracy temperature. The small,
sublineal drop in Td relative to a drop in n (i.e. from forced evaporative cooling) in 3D
is far more forgiving than the large, superlinear drop in Td relative to a drop in n in 1D.
The degeneracy parameter gives an additional interpretation of the spontaneous evaporative
cooling, where a slower decrease in the global 1DBG temperature relative to the decrease of
Td drives the system away from quantum degeneracy.
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Figure 6.11: Degeneracy global fit parameters. Normalized global fit parameters (with
Equation 6.7) showing the reduced global chemical potential as a function of (a) the 3D gas
temperature, and (b) time, and the peak degeneracy parameter as a function of (a) the 3D
gas temperature, and (b) time.

103



6.3 Conclusions

We obtained density equations of state from in-situ images of individual 1DBGs. We
extracted their temperature and global chemical potential from global Yang–Yang thermo-
dynamics fits in the local density approximation. By loading a degenerate 3D gas into 1D,
and holding it in time, we observed a simultaneously decreasing temperature and number,
suggesting evaporative cooling along the longitudinal direction. While future experiments
need cooling to mitigate the spontaneous emission heating from Raman coupled dispersion
relations in spin-orbit coupling (SOC), we observed that the 1DBG escapes degeneracy. We
conclude that while our 1DBG loses atoms along the longitudinal direction, its temperature
goes down slower than the dropping degenerate temperature, and therefore alternative cool-
ing schemes need to be introduced for future experiments with SOC 1DBGs. Our 1DBG
implementation remains appealing for experiments with 1D spinor gases beyond the mean-
field regime.
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Chapter 7: Holography of cold and ultracold gases

This chapter implements off-axis holographic microscopy to digitally enhance imaging
of cold and ultracold 87Rb. We first study it on a test bench and establish the minimum
requirements for both the off-axis reference beam, and the reconstruction algorithm. We
then holographically image cold atoms in a MOT, reproducing the simultaneous absorptive
and dispersive imaging demonstrated early in laser cooled metastable Xenon [87] using the
unscattered probe as the local oscillator (i.e. spatial homodyne detection), and in laser
cooled 87Rb [88] using an external local oscillator (i.e. spatial heterodyne detection). Refer-
ence [89] is an excellent compilation on holographic imaging methods for cold atoms. In this
dissertation we first extract the full optical transfer function encoded in the density-density
correlations acting as the impulse of the linear, time-invariant microscope as we lack an ap-
propriate in-situ point source. Then, we compensate higher order aberrations to enhance our
absorption images through a Wiener deconvolution algorithm. This is to our knowledge, the
first instance of such a digital aberration compensation for high-order aberrations in images
of cold atoms.

This Chapter is organized as follows. In Section 7.1, we introduce holography in the
specific context where an off-axis reference beam acts as a local oscillator allowing the imaging
of the determination of both the amplitude, and phase of the optical fields after digital
reconstruction. We first experiment with test samples to establish the methods for a cold
atom implementation. In Section 7.2, we use digital holographic microscopy to image MOTs.
There, we demonstrate the simultaenous absorption and phase contrast imaging of cold
atomic samples. In Section 7.3, we apply knowledge of the reconstructed optical fields to
detect and compensate the effect of optical aberrations in our in-situ absorption images.

7.1 Holography

Holography finds its etymological root in “holos” or whole, and “graphos” meaning
record. For a complex optical field, a “whole record” of information is the jointly measured
amplitude and phase. Any measurement where the amplitude and phase enter as simultane-
ous observables may be considered a form of holography. Nevertheless, in optical microscopy
we almost exclusively detect the intensity of a field. When the polarization of an optical field
is homogeneous (scalar), and its spectrum monomodal (monochromatic), we may implement
holography interferometrically to encode the phase as an amplitude modulation. Holography
recovers the amplitude and phase of electromagnetics fields through an interferogram [90], ex-
tending beyond the visible region of the spectrum, from network communications microwave
band [91], to X-ray imaging of biological samples [92]. We demonstrate the power of this
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imaging technique in the absorption images of ultracold 87Rb, where we detect and correct
the effects of optical aberrations.

7.1.1 Field reconstruction

We form holograms by recording the interference pattern of a reference field R (local
oscillator) with the object field E at the same temporal frequency (Figure 7.1). The local
oscillator is off-axis when it reaches the image plane of the imaging system, giving an intensity

IH = |E +R|2= IE + IR + 2
√
IEIR<[ei(φE−φR)]

encoding the individual field intensities and relative phase profile. All phases and amplitudes
are functions of the transverse spatial coordinates and may be represented as vectors in the
pixel basis (e.g. E = Ei and i is the pixel index, e.g. see Section 4.3.1 in Chapter 3). Then,
a field reconstruction algorithm gives the field

E∗ =
1

IR
F−1H̃FR∗IH (7.1)

as a linearly transformed intensity. Here, ∗ denotes complex conjugation, F is the two-
dimensional Fourier transform operator, F−1 its inverse, and H̃ is a mask in conjugate (k)
space acting as a lowpass filter.

We experimentally investigate recording and reconstructing fields from holograms. We
use a 1µm pinhole, 780 nm illumination, and a two-lens microscope with NA = 0.12. The
reference is a phase coherent, collimated beam incident at 31 ◦ from the optical axis. The
single collimated reference beam at the image plane approximates a plane reference wave.
We begin by computing the power spectral density of a hologram

PSDH = |F(IH)|2. (7.2)

The magnitude of the power spectral density of such a hologram shows two “sidebands” in
the spatial frequency domain (k-space), known as twin images, and a “DC” spectrum around
|k| = 0 as illustrated in Figure 7.1. While the center and orientation of the sidebands, or
“twin images”, depends on the angle of incidence and relative orientation of R with respect
to E, their spectrum depends on the reference beam wavefront projection on the detector.
The ultimate k-space cutoff is given by the numerical aperture of the microscope, so the
optimal location and angle of incidence of R center the twin images spectra in the band
kpix > k > kNA. The reason is that for a sensor with pixel size ∆p and diffraction limited
spatial resolution ∆⊥, the optimal placement in this band implies no loss of information
either in the image space aperture where kpix = π/∆p, or the object space aperture where
kNA = π/∆⊥. To increase the k-spectral dynamic range without sacrificing the spatial
resolution of the object field, we would like to use large area sensors with small pixel size.
Finally, since the reconstruction algorithm places no constraints in the model for R, the
exact shape of the wavefront for R is irrelevant as long as there exists a good model for it.
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(a)

(b)

Figure 7.1: Hologram of pinhole and flat wavefront. (a) Schematic of the off-axis holographic
microscope. (b) The magnitude of the power spectral density of the hologram shows a central
spectrum cutting off sharply at kNA (dashed white contour), and two twin images containing
slightly magnified copies of the spectrum away from k = 0.

We do a second experiment in the test bench using a single uncollimated reference beam
at the image plane to approximate a spherical reference beam. We find that when R is
far from flat (i.e. curved wavefront), for example in the USAF-1951 test target hologram in
Figure 7.2, an effective virtual lens further Fourier transforms the power spectra of the twin
images. This gives rise to an image in k-space that corresponds to the real-space image.
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(a)

(b)

Figure 7.2: Hologram of USAF test target and curved wavefront. (a) Schematic of the
off-axis holographic microscope. (b) The magnitude of the power spectral density of the
hologram showing the DC spectrum cutting off sharply at kNA (dashed white contour), and
two twin images containing slightly magnified copies of the spectrum away from k = 0. The
residual curvature of the curved reference wavefront acts as an additional “lens”, undoing
the Fourier transform and revealing the real space structure of the object in k-space.

Because of this we might in principle flatten a reference beam’s wavefront by changing its
curvature in such a way as to make the twin image power spectrum congruent with the DC
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power spectrum.

After applying the linear reconstruction from Equation 7.1 onto the hologram in Figure
7.1 we determine the amplitude and phase of the optical field. These optical fields may
be numerically manipulated with the transformations first introduced in Chapter 4, Section
4.1.1. For example, in Figure 7.3 we reconstruct the field of the point source hologram in
Figure 7.1. The model reference wave uses a radius of curvature in addition to the angle
of incidence, which we measure with respect to the optical axis to use as a first guess for
our model. We optimize our models by varying the parameters (i.e. angles, and radii of
curvature) in an attempt to flatten the relative wavefront of the hologram.

We then return to the first hologram (pinhole and plane-like reference wave), and apply
the reconstruction operator in Equation 7.1. We focus on a circular region of interest where
the interference pattern has good signal-to-noise ratio (SNR). Figure 7.3 shows the amplitude
and phase of the reconstructed pinhole field. Using the region of interest does not affect the
reconstruction (it is equivalent to an additional mask on IH), and in this example helps to
unwrap the phase in Figure 7.3. Reconstructed fields may then be manipulated around the
image plane using Equations 4.5, and 4.8, allowing us to remove the presence of spherical
aberrations present in the pinhole images.

Having developed the minimum set of holographic microscopy tools we upgrade our cold
atom imaging to extract phase information. The addition of a single reference beam that
can coherently interfere with the scattered optical fields of interest is the only requirement
in existing experimental setups. In the following Section, we upgrade the MOT imaging
to perform digital holography and implement our own simultaneous absorption and phase
contrast imaging of cold atoms. Then, in the final Section, we implement high-order digital
aberration compensation to enhance the quality of our absorption imaging.
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(a)

(b)

Figure 7.3: Reconstructed pinhole field. (a) Amplitude and phase of the reconstructed optical
field scattered by a 1µm pinhole. The reconstructed amplitude gives the intensity, and the
unwrapped phase are consistent with the point spread function of a spherically aberrated
microscope. (b) Amplitude and phase of the reconstructed optical field scattered by the
same pinhole with a fourth order phase correction representing ∼ 4λ spherical aberration
compensation.
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7.2 Simultaneous absorption and phase contrast microscopy

We make holograms of the scattered probe fields in the presence and absence of atomic
ensembles and distill information about the atomic clouds from a differential signal just as
in resonant absorption imaging. Here, information is encoded in the scattered field ratio

η(x, y) = Ea(x, y)/Ep(x, y), (7.3)

between the two reconstructed atoms field Ea and probe field Ep, and which all depend on
the transverse spatial coordinates (x, y). The holographically reconstructed scattered field
ratio maps the complex electric susceptibility of the imaging transition (e.g. from Section
4.1.3 in Chapter 4) after a near-resonant interaction with the atomic ensemble. There,
the scattered optical field incorporates the absorption and phase-shift in its magnitude and
phase respectively. In the paraxial approximation the transmitted field in the presence of
atoms Ea(x, y) = e(α(δ,s0)+iβ(δ,s0))ncol(x,y)Ep(x, y) is proportional to the transmitted field in the
presence of atoms after traversing an object with a transverse column density distribution
ncol(x, y) where strong diffraction and other nonlinear effects can be neglected. Then, the
scattered field ratio

η(δ, s0, x, y) = exp [z(δ, s0)ncol(x, y)], (7.4)

can be linearized in the limit of a dilute, and thin object, where light does not get deflected
when traversing the atomic medium

η(δ, s0, x, y) ≈ 1 + z(δ, s0)ncol(x, y), (7.5)

effectively separating the effects of resonant absorption and dispersion in the real and imag-
inary parts respectively, and where α(δ, s0), and β(δ, s0) depend on the detuning from reso-
nance δ, and saturation parameter s0, and ncol(x, y) encodes the density distribution of the
scatterers.

We demonstrate the spatial heterodyne imaging first implemented in [88], by simultane-
ously measuring the absorption, and phase shift from a holographically imaged MOT. The
MOT has a peak optical depth of ∼ 2, and fills a large portion of the sensor aperture. We
scan the probe frequency across resonance, and in Figure 7.4 show the two-level response
from the holographically reconstructed field ratios. After computing the field ratios, the
integrated squared magnitude ∝ Ia/Ip gives the imaginary part of the susceptibility, while
the integrated angle ∝ φa− φp gives the real part proportional to absorbed fraction, and in-
tegrated phase shift respectively. This imaging method is advantageous in comparison with
either resonant absorption or phase contrast imaging, since each reconstructed field ratio
gives both the real and imaginary parts of the susceptibility. The hardware implementation
of the dispersive digital holographic microscope is far simpler than a conventional Zernike
phase contrast microscope, since it does not require a custom, microfabricated phase mask
(see for example Reference [93]).

Holographic reconstruction together with digital propagation (e.g. through Equation 4.5)
gives access to the “volumetric” optical field around the image plane, and it is tempting to
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propagate the reconstructed fields back to the object plane. Then, it would seem that by
propagating these fields back to different points along the thickness of a cloud of atoms and
measuring its transverse profile at each point, we may infer its three-dimensional density
distribution with a “voxel” (three dimensional generalization of a pixel) limited resolution
given by the transverse spatial resolution times the depth of field. As it turns out, this
3D imaging is unfeasible with just a single probe because the plane-to-plane scattered fields
integrate the dielectric response along the propagation axis in a space-ordered fashion giving
the longitudinal field

E(z) = A

[
exp

(
−i
∫ z

z0

(K⊥ + V (z′))dz′
)]

, (7.6)

with the space-ordered product denoted by A[·]. Here, the scalar diffraction is split into a

longitudinal, potential-like, refraction V (z′) term, and a transverse, kinetic-like, dispersion
K⊥ term, both of which are proportional to the atomic density. This implies that the miss-
ing information about the space ordering along z is required for a full 3D reconstruction.
This intuition is consistent with the widely applied medical tomographic imaging techniques,
where 3D imaging of extended objects employ multiple 2D projections of 3D objects in com-
bination with algorithmic inversion of the signals. Then, in order to perform an equivalent
3D holographic imaging of cold and ultracold atomic clouds we would need multiple probes
incident along different directions in addition to digital reconstruction algorithms to provide
enough information for a 3D deconvolution.
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(a)

(b)

Figure 7.4: Simultaneous absorption and phase contrast microscopy. (a) Schematic of the
upgraded MOT microscope using a plane reference wave. (b) Scan of the probe frequency de-
tuning revealing the atomic susceptibility from the integrated holographically reconstructed
field ratios. The fits (solid lines) have the natural linewidth as the single free parameter,
giving Γ/2π = 5.97(6) MHz.

7.3 Aberration compensation

All the optical fields propagating from the object plane, through the microscope, and to
the image plane become aberrated. This is due to slight imperfections in the optical transfer
function of the microscope. Our microscopes act as linear, time-invariant systems whose
response to an impulse, for example, in the real space representation (e.g. imaging a point
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scatterer) reveals the transfer function in that domain. There, the signal S

S = O ? T +N (7.7)

is the convolution of a linear, time-invariant transfer function T , and the object O function
representing the object plane scattering function. The measurement noise N represents the
degradation of information by the act of measurement. While the noise is fundamentally im-
possible to avoid, a deconvolution operation may remove the effects of an imperfect transfer
function.

The image formed by the optical fields scattered by a point object is the point spread
function (PSF), and the optical theory of aberrations provides quantitative PSF models that
capture the effects of different aberrations. For instance, the Zernike theory of aberrations
relates the different symmetry-breaking terms around the optical axis of a microscope with
circular apertures [94]. Recently, free-form optics provides a new paradigm which could be
used to find a more general class of transformations [95]. Unfortunately, most cold and ul-
tracold gas experiments lack the technical capabilities to characterize in-situ PSFs because
extended clouds of atoms lack sharp spatial features to act as impulse sources. Here, because
we effectively lack the appropriate g(1)(~r) ∝ δ(~r) impulse source, we develop a method to
characterize the aberrations of our microscope using higher-order impulse correlation func-
tions beyond the g(1)(~r) ∝ 〈n(~r)〉 average impulse. Specifically, we exploit the dominant
atomic shot noise present in thin, elongated superfluids to act as a second order impulse
correlation g(2)(~r1, ~r2) ∝ δ(~r1 − ~r2). We then combine digital holography with a calibration
of our optical aberrations to digitally invert the optical transfer function and correct our
absorption images.

We implement off-axis, digital holographic imaging for our ultracold elongated clouds,
where the trapping frequencies after dipole evaporation are ω⊥/2π = 190 Hz in the transverse
direction and ω‖/2π = 10 Hz in the longitudinal direction. We deploy a pair of consecutive
two-lens imaging systems amounting to a total magnification of M = 31.7(4) . The last image
plane concides with a charge-coupled device (CCD) sensor with pixel size ∆p = 13µm). The
diffraction-limited, transverse spatial resolution of the primary objective lens is ∆⊥ = 1.23µm
at the object, spanning an equivalent 3 pixels in the image plane. Both the field of view
(FOV) and the depth of field (DOF) are estimated to be ∆f = 40(2)µm, and ζ = 5.0(5)µm,
respectively. We take images of our elongated superfluids from a single plane, with effective
thickness δz < ζ. Since our initial condensates have an in-situ thickness of r ∼ 16µm, we
achieve thin slices by pulsing a resonant microwave pulse for τ = 15µs from |F = 1〉 to
|F = 2〉 while applying a strong quadrupole field gradient of δzBz ∼ 100 G/cm. Then, we
shine a resonant probe and reference beam resonant with the |F = 2〉 → |F ′ = 3〉 transition
in the D2 line for 20µs to produce the desired non-holographic and holographic intensity
records. Our combined gradient strength and microwave coupling strength give a bound for
the thickness of the thinly sliced clouds of δz ≈ 1µm, well below the DOF.

Off-axis holographic microscopy extends the regular absorption imaging acquisition series
from a minimum of three to up to five images, where the image with atoms A is a hologram of
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the scattered probe intensity, and the image without atoms U is a hologram of the unscattered
probe intensity. Then, we may still individually record the unscattered probe intensity P ,
the reference beam intensity R, and the dark field intensity D. As usual, we subtract D
from all images to remove the noise baseline from background illumination prior to further
processing.

7.3.1 Impulse density-density correlations

We gain access to the optical transfer function through calibrated scattered field corre-
lation functions. To calibrate the aberrations present in our imaging system, we probe an
effectively uncorrelated atomic ensemble. Once prepared, our thinly-sliced elongated BECs
are incapable of developing long-range correlations (e.g. through interactions), because they
are in the weakly interacting mean-field regime where interaction timescales are in excess of
10 ms. We attribute all long-range correlations present after short imaging exposures to our
imaging system.

The effective absence of long-range correlations happens for example in a dilute, non-
degenerate Bose gas, where the dominant correlation length is the unresolvable thermal
de–Broglie wavelength λdB � ∆x. Another example is in a deeply degenerate, dilute Bose-
gas where the long-range correlations develop from the superfluid healing length lµ � ∆x.
In both instances, atom shot noise dominates the two-point density correlations

〈n(~r; z)n(~r ′; z′)〉 = n(~r, z) δ(~r − ~r ′)δ(z − z′), (7.8)

where from here on I adopt the notation ~r = (x, y) to denote transverse spatial coordinates,

and ~k = (kx, ky) to denote transverse k-space coordinates. The Fourier transform of this
density-density correlation function is

〈n(~k; z)n(~k ′; z′)〉 =
n(~k, z)

2π
δ(~k − ~k ′)δ(z − z′), (7.9)

where the density distribution in front of ensures vanishing correlations in the absence of
atoms. The symbol 〈...〉 indicates an expectation value, which we approximate by taking an
ensemble average over a finite set of experimental realizations.

The complex susceptibility is proportional to the density n and maps any density-density
correlations in the gas, which we assume to be of the form in Equation 7.3.1. Rather than
looking at η(~k), the scattered field ratio, we study the scattered fraction

ξ(~r) = 1− η(~r)

= δEp(~r)/Ep(~r)

≈ z(δ, s0)n(~r),

representing the relative fluctuations in the constant incident field. We are ultimately in-
terested in the effect of an imaging transfer function T acting on the scattered fraction,
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Figure 7.5: Aberrated absorption images. We simulate the qualitative effects from different
aberrations in the optical depth. Similar features appear even for different types of aber-
rations, making it hard to differentiate defocusing from spherical aberrations, or vertical
coma from oblique trefoil. For this simulation we consider a thin, elongated cloud (150µm)
giving a peak optical depth ∼ 0.5 in resonant absorption imaging. We add atomic shot
noise by modulating the local density with randomly drawn Poisson distributed noise, and
use a Gaussian w0 = 250µm probe with peak intensity Ip/Isat = 5. To simulate a realistic
detector, we simulate photon shot noise limited measurements.

therefore transforming the scattered fraction

ξ′(~r) = T (~r)ξ(~r). (7.10)

Turning to the k-space representation, the scattered fraction obeys the paraxial approxima-
tion and has the exact diffraction integral solution [96]

ξ′(~k) = T (~k)

[
ik0

2

∫ ∆z

0

e
i|~k|2z
2k0 χ(~k, z) dz

]
(7.11)

as the field propagates by ∆z through a medium with susceptibility χ(~k, z) ∝ n(~k, z). Since
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ξ(~k) is complex-valued, four different possible correlation functions

C±(~k,~k′) = 〈ξ(~k) ξ(±~k′)〉, (7.12)

and
K±(~k,~k′) = 〈ξ(~k) ξ∗(±~k′)〉, (7.13)

exist in the k-space representation, containing various projections of the same information.
We note that the condition f(~k) = f(−~k) valid for a real-valued signal f(~k) (such as the
intensity), no longer needs to hold for these complex-valued field correlations.

We now turn to evaluating these correlations. For this, we take a set of N realizations
of ξ′, labeled by index m

{ξ′(m)(ki)} = {Tij ξ(m)(kj)}, (7.14)

such that ξ(m)(~k) = ξ(m)(ki) represents a single realization of ξ over all of k⊥-space, and Tij
is a matrix common to all realizations scrambling information and correlations around the
angular spectrum. Using the k⊥-space representation from above,

C ′±(~k,~k′) = T (~k)T (±~k′)
(
ik0

2

)2

× (7.15)∫ ∆z

0

∫ ∆z

0

dzdz′e
i|~k|2z
2k0 e

i|~k′|2z′
2k0 〈χ(m)(~k, z)χ(m)(±~k′, z′)〉,

eqnarraywhere the ensemble average only enters the different realizations of the scatterer
distribution. Similarly,

K′±(~k,~k′) = T (~k)T ∗(±~k′)
(
k0

2

)2

× (7.16)∫ ∆z

0

∫ ∆z

0

dzdz′e
i|~k|2z
2k0 e

− i|
~k′|2z′
2k0 〈χ(m)(~k, z)χ∗,(m)(±~k′, z′)〉,

in their full, explicit forms. We use Equation 7.3.1 to reduce the correlators

C ′±(~k,~k′) = T (~k)T (±~k′)〈χ(m)
⊥ (~k)χ

(m)
⊥ (±~k′)〉 × (7.17)(

ik0

2

)2 ∫ ∆z

0

e
iz
2k0

(|~k|2+|~k′|2)n(z)2 dz,

and

K′±(~k,~k′) = T (~k)T ∗(±~k′)〈χ(m)
⊥ (~k)χ

∗,(m)
⊥ (±~k′)〉 × (7.18)(

k0

2

)2 ∫ ∆z

0

e
iz
2k0

(|~k|2−|~k′|2)n(z)2 dz,

first carrying out an integral in the longitudinal components, where in both cases the k⊥-
space density-density correlations move outside of the remaining z-integral, and then further
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integrating in the transverse component with 〈χ(~k)χ⊥(~k′)〉 = χ0δ(~k + ~k′),

c′±(~k) =

∫
C ′±(~k,~k′)d~k′ (7.19)

= T (~k)T (∓~k)

(
ik0χ0

2

)2 ∫ ∆z

0

e
iz|~k|2
k0 n(z)2 dz, (7.20)

and 〈χ(~k)χ∗(~k′)〉 = χ0δ(~k − ~k′),

κ′±(~k) =

∫
K′±(~k,~k′)d~k′ (7.21)

= T (~k)T ∗(±~k)

(
k0|χ0|

2

)2 ∫ ∆z

0

e
iz|~k|2
2k0 n(z)2 dz. (7.22)

As an example for a specific transfer function model we turn to a polar Zernike representation
in the unit circle

T (kr, kθ) = A(kr, kθ) exp

(
i
∞∑
n=0

n∑
m=0

αmn Z
m
n (kr, kθ)

)
, (7.23)

in terms of the normalized n-th Zernike polynomials Zm
n (kr, kθ) of order m, and the aper-

ture function A. As a toy example, we include only the lowest (second) order polynomial
contributing to defocus

Tdf (kr, kθ) = eiα
0
2

√
3(2k2r−1) (7.24)

and find that while the correlators

κdf± (kr, kθ) =
k2

0|χ0|2
4

∫ ∆z

0

e
iz|~k|2
2k0 n(z)2 dz (7.25)

have no additional structure from the imaging transfer function, the correlators

cdf± (kr, kθ) = e2iα0
2

√
3(2k2r−1)k

2
0χ

2
0

4

∫ ∆z

0

e
iz|~k|2
2k0 n(z)2 dz (7.26)

gets periodically modulated with a quadratically growing frequency depending directly on
the defocus coefficient α0

2. This is the result observed in [96], using intensity correlations.

We study the effects of aberrated pupil functions from Equation 7.23 in numerically sim-
ulated absorption images and correlation functions. While the density-density correlations
from intensity encode the correct imaging transfer function [97], digital inversion would lead
to amplification of noise around certain spatial frequencies where the information is missing
in the amplitude of the field, but present in the phase. Figure 7.6 shows the numerically
simulated density-density correlation function from intensity images, where there is only
real-valued information. and the correlation function c−(~k) from scattered field signals with
phase information. Similarly, Figure 7.7 shows the numerically simulated density-density
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Figure 7.6: Simulated intensity correlations. (a) Real and (b) imaginary parts of the
intensity-intensity correlation function encoding the density-density correlation function. We
use closely balanced defocus and vertical astigmatism, as well as residual spherical aberra-
tions. In the absence of aberrations, we expect a delta-like function centered around k = 0.
The intensity correlations lack an imaginary component.

correlation function from holographically reconstructed field images, where both real and
imaginary parts contain long-range structure.

We proceed by measuring the atomic correlations deriving from intensity, and holograph-
ically reconstructed fields scattered by the same atomic ensemble. Figure 7.8 shows the real-
valued density-density correlations from intensity, while Figure 7.9 shows the complex-valued
field correlations. There are qualitative differences in these correlation functions. First, the
intensity-based correlation functions have better signal-to-noise ratio because the informa-
tion is maximally projected onto the pixel basis. This is in contrast with the holographic
measurements, where the intensity is split into two parts encoding phase and amplitude in-
formation. Therefore, the intensity-based correlation functions have an enhancement of up
to
√

2 in signal-to-noise ratio for a fixed number of measurements. Second, the field-based
correlation function c− from Figure 7.7 shows a phase shift feature between the real and
imaginary parts. This phase shift can be interpreted from the oscillation of information
between phase and amplitude.
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Figure 7.7: Simulated field correlations. (a) Real and (b) imaginary parts of the density-
density correlation functions from holographically reconstructed fields. The c− correlator
shows structure in both its real and imaginary parts.
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Figure 7.8: Measured intensity correlations. (a) Real and (b) imaginary parts of the density-
density correlation functions from intensity images.
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Figure 7.9: Measured field correlations. (a) Real and (b) imaginary parts of the density-
density correlation function c− from the holographically reconstructed fields. The additional,
hard cutoff disk in the field-field correlation functions represents the holographic reconstruc-
tion filter H̃ from Equation 7.1

.
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7.3.2 Inversion of the imaging system

We restore some of the spatial resolution of our images using the transfer function from
the scattered field correlations. When we have all the information from the complex field
correlation functions, we apply Wiener deconvolution to approximately invert the imaging
transfer function [98]. A Wiener filter in k-space has a transfer function

W(~k) =
T ∗(~k)

|T ∗(~k)|2+N (~k)
, (7.27)

where |T | is the modulus of the linear transfer function, T ∗ its complex conjugate, and N
is the noise power spectrum. The Wiener filter attenuates the amplification of high spatial
frequencies during the inversion with a cutoff set by the noise power spectrum. Additionally,
it prevents divergences outside the aperture where the Zernike pupil is defined. Figure 7.10
illustrates the computed optical depth from reconstructed intensities, and the corresponding
image after applying a Wiener deconvolution.

Figure 7.10: Raw and corrected optical depth. Here we use the extracted Zernike coefficients
to model the pupil function acting as T . Then, by applying the Wiener filter from Equation
7.27 we partially restore the quality of our absorption images.
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7.4 Conclusions

We imported the tools from digital holography into experiments with cold and ultracold
atoms. We demonstrated a straightforward implementation of phase-contrast microscopy
in cold atoms using the holographically reconstructed phase difference from the scattered
field ratio. This microscopy technique has the advantage of simultaneously accessing the
amplitude and phase of the optical fields. We then showed the characterization and digital
inversion of the optical transfer function using an extended, uncorrelated atomic source.
Holographic imaging is promising for cold atom microscopy holding an unprecedented simple
implementation, and utility of the methods developed in this Chapter. Once a transfer
function is known, holographic imaging and reconstruction giving fields may be combined
early in the image processing sequence to remove the effects of aberrations.
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Appendix A: Transistor banks

We drive the quadrupole field currents with unipolar Agilent 6672A power supplies ca-
pable of driving up to 100 A. When passing through the coils, the current dissipates into
heat depending on the resistive load, as well as transduces into magnetic fields depending on
the inductive load. The magnetic fields are restricted to vary at a rate of a couple of kHz,
set by the inductive time constant of the circuit. In order to precisely drive the transport
sequence, we put all coil pairs under active current feedback using closed loop Hall effect
current probes CLSM-50LA. The ability to switch on/off big currents robustly and precisely
is critical, as is watching power dissipation requirements.

We drive a total of eleven pairs of quadrupole coils with four different power supplies.
Only three pairs of coils may be powered simultaneously at any given time. It is common
practice to build power circuits with banks of transistors controling the current via gate
voltages. Having several MOSFETs connected in parallel (in a bank) makes it possible to
drive larger current loads with distributed power dissipation. RbChip has a total of eight
transistor banks comprised of two power MOSFETs (IXFN520N075T2) each. We mount the
banks into aluminum plates with water cooling lines (Lytron CP10 series) and we apply
Dow-Corning 340 silicon compound at the aluminum MOSFET interface to optimize ther-
mal contact and meet the desired power dissipation.

For increased safety, we include 5KP58ALFTR-ND diodes between the source and the drain
to prevent current backflow, even though the MOSFETs have an internal protection diode.
We use thick (1/4 in) copper bars to improve electrical contact in the power circuit. Below
is a circuit diagram for a single bank in RbChip.

Even with this design, we often experience excess heating potentially leading MOSFETs
to burn sequentially in a chain reaction (whenever an element malfunctions, the neighbors
take on their load and risk failure). This prevents the transport sequence to work so we are
faced with the need to upgrade the transistor banks to further optimize power dissipation.
We double the density of transistors to have an extra factor of 2 in power dissipation rate. In
addition, we upgrade the cooling plates to Aavid Thermaloy 416501U00000G, having twice
as many water cooling line passes and better contact between the copper tubes and the
aluminum.

Based on previous experience, MOSFETs from the same manufactured batch work best
together (they seem more likely to have matching internal resistances and in consequence
are able to drive closely matching loads). To assemble the banks, we drill a series of holes
forming a grid to guide the MOSFETs into their final positions. Below is a picture of the
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Figure A.1: A voltage power supply, typically set to Vaa = 13 V, drives the two MOSFET
transistors bank. The coil pair is represented by the series resistor and inductor, flowing
current into the MOSFET drain terminal and back to the power supply through the source.
The measured current feeds the error signal along with the current setpoint, which produce
the precise gate voltage entering the MOSFET through a R2 = 220 Ω resistor matching the
gate input resistance.

bank plates as they were being populated A.2. Each plate holds exactly thirty two MOS-
FETs.

We fabricate the contact slabs from ∼ 1/4 in thick silver-plated copper bars with rounded
edges (McMaster 88865K621). We cut them to a length of ∼ 3 in and drill enough holes
to place the round contacts, which consist of tapered ∼ 3/8 in copper fittings. We then
solder these into the slabs using a blowtorch and thick unleaded solder wire. We mount the
MOSFETs through the fittings with wide button-head screws, and nuts below. It is crucial
that every hole is well aligned to provide gentle, yet robust tightening. Finally, we taped a
few K-type thermocouples to 4 equidistant locations to monitor the global temperature of
the transistor banks and prevent heat blowouts. We connect the thermistor outputs to a
monitor, and using an Arduino with a temperature monitor shield, output a logic output to
a temperature interlock such that if any one bank exceeds T = 35 ◦C, the power supplies are
disabled.
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Figure A.2: Transistor bank assembly. Photograph showing the layout in 2 plates with 32
transistors each. An individual bank consists of 4 parallel elements. Contact slabs are not
shown.
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Appendix B: New apparatus CAD documentation

B.1 A new apparatus for degenerate bosonic gases

I provide technical documentation for a newly designed quantum gas apparatus; which we
call the new, or future apparatus. I try to summarize the new features, the motivation behind
them, their implementation, and even some early characterization before the apparatus is
even able to yield any scientific output.

B.1.1 New features

The new apparatus, in contrast to the current apparatus in RbChip has a series of novel
features. Most of them have their origin on existing failure modes in the current apparatus.
Even though these issues are not severe (i.e. they do not impede the normal operation of
the experiment or the flow of science), the new apparatus provides an excellent opportunity
for improvement and design optimization.

The ab-initio motivation for a new apparatus is the impending breaking of ultra-high vac-
uum (UHV) scheduled in the future of the current Rb–Chip machine. This will likely happen
when/if the atom chip is updated/upgraded, a process that will probably take months. The
peripheral components (e.g. power supplies and lasers) may still be used in that case, so a
plan is to have an independent UHV manifold along with a new coil assembly, breadboards
and optics that can be rolled in on their own optical table as the Rb–Chip apparatus is rolled
out for downtime. The new apparatus should be able to produce BECs sooner than an up-
grade to our current apparatus is complete. This requires a stable, robust and optimized
design, for which some improvements are incorporated.

The ad-hoc motivation for the new apparatus is the renovation of the RbLi mixtures lab
located at the JQI. The Rb–chip apparatus is by far the most stable of the three experiments
in the group, while the RbLi apparatus is usually on the other end. Since the RbLi apparatus
will be rebuilt as a (bosonic) RbK experiment, duplicating the construction of a better, more
stable new apparatus is a good idea. Table B.1 briefly describes all the existing issues in the
Rb–Chip machine and their proposed upgrades.

B.1.2 Coil tower

The transport coil pairs in the RbChip apparatus are mounted individually with inter-
leaved aluminum frames forming a transport tower. Chilled water runs through a double
straight line on each side of the transport towers. This possibly creates transient thermal
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Component Related issue Proposed update

Rb source Temperature stability New source design

Push coil Reduced optical access In plane shim pair

Coil tower Temperature and field
drifts

Monolithic mount

Line of sight Blocked by the chip and
source

New vacuum sys-
tem

Magnetic field Long term drifts New coils layout

Transport Long sequence and heat-
ing

Optimized coil de-
sign

Optical access NA ≤ 0.4 NA ≤ 0.6

Table B.1: Existing issues and novel features in the old vs new apparatus.

gradients when the coils are active. Thermal gradients may give rise to thermal expansion
and small background magnetization, which has the potential to affect the atoms. The
new apparatus uses monolithic (single piece) transport coil holders. Additionally, we add
optimized power dissipation elements in the cooling lines and coil mounting.

B.1.3 Line of sight

The RbChip apparatus (see Figure 1.1) is vertically oriented so that the chip hangs down
from the top flange, aligned with the transport axis. The atomic source and TEC (described
above, and in Chapter 1) are located on the opposite end, and no direct line of sight along
the transport axis exists. Furthermore, BECs have a direct line of sight to the atomic source,
which may reduce their lifetime. In the new apparatus, single ended glass cells on the MOT
and science regions provide a direct line of sight for imaging the atoms before, during and
after transport. Additionally, the atomic source is placed away from the line of transport.

B.1.4 Magnetic field control

Three bias coil pairs exist along each of the three main orthogonal directions ex, ey, ez in
the lab frame (see Figure 1.1). Two sets are mounted around the science cell region and the
MOT cell region. An additional shim (offset) bias coil pair as well as the final quadrupole coil
pair are oriented along ez at the science cell region. Finally, an array of gradient cancellation
coils in cloverleaf configuration are placed along ex, providing fixed gradient control in all
three directions. In this configuration a lot of optical access is compromised by the coils
and their supporting structures. For the new apparatus, we incorporate coplanar bias,
transport and gradient cancellation coils, into a single pair of parallel planes along ez, freeing
a significant portion of the available optical access.
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B.1.5 Transport

The coils in the current apparatus dissipates up to ∼ 1 kW of total power at any given
point during the sequence. As temperatures rise, the risk of melting insulating layers limits
the experimental cycle time. Furthermore, the water cooling manifold dissipation rate is
limited to prevent water condensation and electrical shock. The new apparatus improves
heat dissipation and sequence timing by placing the coil pairs closer together such that they
yield the same quadrupole field strength at a reduced current.

B.1.6 Optical access

The largest permitted numerical aperture (NA) along any direction in the current ap-
paratus is NA = 0.4 . Imaging with a wavelength of λ = 780 nm yields a diffraction-limited
resolution of ∆⊥ = 1.18µm. Repulsive (attractive) potentials may only present spatial fea-
tures of order ∆532nm = 0.81µm (∆1064nm = 1.62µm). Together with the newly found optical
access, the new apparatus will upgrade into a high NA compound objective lens to max-
imize light collection along the vertical direction. An example of the projected resonant
imaging, repulsive and attractive potential resolutions are ∆⊥ = 0.68µm, ∆532nm = 0.46µm
and ∆1064nm = 0.93µm respectively.

B.2 CAD documentation

B.2.1 Coils

We produce homogeneous and linear gradient magnetic fields with homemade pairs of
coils (electromagnets). To determine the number of control parameters needed to attain full
control of the magnetic landscape to first order, we write the gradient of the magnetic field
vector ~B in matrix representation

∇ ~B = Bij =

Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

 , (B.1)

with a total of nine components denoted Bij. The field, denoted Bi, has three additional
independent components which, along with the gradient components, add up to twelve com-
ponents. This implies a total of twelve parameters. A reduction takes place by invoking
Maxwell’s equations. Off-diagonal elements of Bij relate to each other through Ámpere’s
law µ0Ji = εijkBjk, where Ji is the current field and εijk is the Levi–Civita symbol. Finally,
the field must have zero divergence implying δijBij = 0, where δij is a Kronecker delta and we
follow Einstein’s summation convention. These four equations eliminate four of the twelve
independent parameters, hence full control over the field and its gradients lies within eight
controllable degrees of freedom.

All pairs of coils are confined to parallel planes perpendicular to ez, as shown in Figure
B.1. Coplanar coil pairs can be connected in series along ex−y or ex+y and then run together
with their matching opposing pair along ez to generate different bias fields Bi. Each of the
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Figure B.1: Coplanar layout of bias coils surrounding science cell. The axes of the bias coil
pairs are oriented along ez while the mini CFF of the glass cell is aligned to ex.

coils in Figure B.1 is based on an optimized design by Chris Billington. The design computes
values of Bi at the center of the glass cell (i.e. where the atoms will be) and generates electric
and geometric constraints. Figure B.2 and Table B.2 present the optimized form and design
constraints for a single bias coil respectively.

Parameter Description Value

z0 Placement distance along ez ±1.805 in

L Side length 2.969 in

W Coil width (constant) 0.780 in

Rin Inner loops radius of curvature 0.200 in

ROA Optical access radius 0.800 in

H Coil thickness (constant) 0.250 in

R Coil resistance 122 mΩ

Table B.2: Optimal bias coil form characteristics.

When the bias coils carry the same amount of current I0 around the science cell region,
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Figure B.2: Bias coil form. ROA denotes the optical access radius taken from the bottom
left corner to the edge of the form, Rin is the inner turn radius of curvature, L is the side
length and W is the width taken to be constant around the loop.

this design ought to reach field strength per unit current

B/I0 = [3.1981(ex + ey) + 1.5531ez] G/A,

with a maximum current specification limited by the final power dissipation rate, implying
not all coils operate simultaneously.

Only the science cell region needs full control of the eight parameters (a MOT may only
use bias field control) in practice. The topology of the gradient cancellation coil layout [99]
remains the same as in the Rb–Chip apparatus, but the optimized design changes the coil
forms as well as their relative placement. The new layout is shown in Fig. B.3 The single
form sketch is in Figure B.4 and the optimized form characteristics are in Table B.3.

When all the gradient cancellation coils carry the same amount of current I0 around the
science cell region, the design may at most reach field gradient components per unit current

Bxy/I0 = Byx/I0 = 0.9230 G/A cm,

Bxz/I0 = Bzx/I0 = 0.9372 G/A cm,

Byz/I0 = Bzy/I0 = 0.9372 G/A cm,

Bzz/I0 = −2Byy/I0 = −2Bxx/I0 = 0.3665 G/A cm.
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Figure B.3: Coplanar layout of gradient cancellation coils around the science cell. The axes
of the gradient cancellation coil pairs are oriented along ez while the mini CFF of the glass
cell is aligned to ex.

.

Parameter Description Value

z0 Position along ez ±2.075 in

L Side length 2.969 in

W Coil width (constant) 0.780 in

Rin Inner loops radius of curvature (L−ROA)/2−W
ROA Optical access radius 0.800 in

H Coil thickness (constant) 0.250 in

R Coil resistance 95 mΩ

Table B.3: Optimal gradient coil form characteristics.

The gradient coils provide independent field gradient components for full control

Bxx/I0 = −Byy/I0 = 0.4924 G/A cm.
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Figure B.4: Gradient coil form. ROA denotes the optical access radius, measured from left
side to the edge of the form, Rin is the inner turn radius of curvature, L is the side length
and W is the width taken to be constant around the loop.

Figure B.5: “Left” side of the transport coil layout (coil pairs not shown) connecting the
two glass cell regions. Highlighted in blue are the inner layer coils.
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Connecting the science cell region with the MOT region are the transport coils, shown
in Figure B.5. The transport coil layout is divided into an inner and outer layer, together
containing a total of 11 coils (each coil pair is formed by a left and a right coil, where “left”
and “right” are defined to be along ∓ez respectively). These pairs produce quadrupole fields
whose centers lie along the transport axis, coincident with ex. The inner layer, closer to the
transport axis along ez, is formed by 4 small coils and two large coils located at the start
and finish of the transport segment. The outer layer, farther away from the transport axis
along ez, consists of slightly thicker small coils whose centers are interleaved with those from
the coils in the inner layer. In this layout, three different coil forms exist. Chris Billington
ran extensive numerical simulations of the transport sequence and provided the final design
for each of the three different transport coils in this layout. Figure B.6 shows the sketch of
a transport coil form, common to all three types of transport coils. Table B.4 summarizes
the final form characteristics of each of the coils.

Figure B.6: Small inner layer transport coil form sketch.

The MOT cell region has the exact same bias field coil layout as the science cell region,
so all the previously listed properties apply. For the MOT, no gradient cancellation coils are
installed. Instead, there is an additional bias coil pair along ez which we call MOT z-bias.
This pair replaces the push coil present in the original Rb–Chip apparatus, meant to help
launch the atoms into transport. Figure B.7 shows the final coil layout around the MOT
cell region. Table B.5 summarizes the optimal characteristics for the MOT z-bias coil form.
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Parameter Description Inner
Small

Outer
Small

Inner
Large

z0 Position along
ez

±0.840 in ±1.160 in ±0.840 in

Rin Inner radius 0.780 in 0.780 in 0.780 in

Rout Outer radius 1.575 in 1.575 in 2.375 in

H Coil thickness 0.300 in 0.500 in 0.300 in

R Coil resistance 122 mΩ 61 mΩ 47 mΩ

Table B.4: Optimal characteristics for the three transport coil forms.

Figure B.7: Coil layout around MOT cell region. The same layout is used to provide bias
fields and gradients while an additional pair along ez (highligthed in blue) replaces the push
coil to help initiate transport.

When a current I0 runs through the MOT z-bias coil pair, it provides a field component
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along ez with magnitude
Bz/I0 = 4.4203 G/A.

Parameter Description Value

z0 Position along ez ±2.075 in

Rin Inner radius 1.595

Rout Outer radius 2.375 in

H Coil thickness 0.270 in

R Coil resistance 205 mΩ

Table B.5: Optimal form characteristics for the MOT z-bias coils.

The full coil layout for the new apparatus is in Fig. B.8. A total of 48 coils are included
in this design. Even though the number of transport coils can be reduced through an
appropriate optimization of the forms, we replicate the number of transport coils used in
the current Rb–Chip apparatus to simplify the transition of all the control electronics and
power supply connections when swapping the setup.

Figure B.8: Final coil layout as viewed from the ”left” side. The science cell region would
be at the left.

B.2.2 Bias, gradient cancellation, and MOT z-bias coil holders

We designed mounts for the bias, gradient cancellation, and MOT z-bias coils described
in the preceding section. Two kinds of holders exist, one for the MOT cell region holding
bias and MOT z-bias coils, and one for the science cell region, holding bias and gradient
cancellation coils.
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We start by sketching a single monolithic coil holder in the sketch labeled Base slab.
The shape is rectangular, 7.50 in wide and 7.00 in high. We then extrude the Base slab by
0.75 in to create the Slab feature. On one face of the Slab, we sketch the four slots for a
single set of coplanar bias coils, leaving a � = 1.50 in circular gap in the center of the shape
for optical access. This is depicted in Figure B.9.

Figure B.9: Bias coil sketch on the Slab face.

We follow by making a 0.27 in deep cut on the designated gaps outlined by the sketched
forms. Only for the MOT bias coil holder, we then sketch the form of the MOT z-bias coil
nominally at the center of the Slab. We make a 0.54 in deep cut based on this contour to host
the MOT z-bias coil, creating the MOT bias feature, exclusive for this kind of bias coil holder.

Only for the science cell region, in contrast with the MOT z-bias sketch and cut, we sketch
the four gradient cancellation coil forms. We then make a 0.54 in deep cut based on the con-
tours, creating the Grad cancellation cut feature, exclusive for this kind of bias coil holder.

As a next step for both kinds of holder we add counterbore holes on the other face as
indicated in Figure B.10. These holes are for attachment, pressing the assembled pieces
in place with the rest of the apparatus. Finally, we add a single set of threaded holes for
60 mm cage mount rods for a quick and precise optical alignment along ez, as well as a set
of anti-eddy current slit cuts. These features are all depicted in Figure B.10.

The final assembly, containing all the relevant coils placed at the relative separation along
the transport axis between the MOT and science cell regions is shown in Figure B.11. We
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Figure B.10: Opposite face of the MOT bias coil holder showing the counterbore mounting
holes as well as the 60 mm cage mount holes and anti-eddy current slits.

Figure B.11: Single plane of the assembled bias and gradient cancellation coils, separated
by the total transport distance. Highlighted in blue are the gradient cancellation coils (left)
and the MOT z-bias coil (right).

design a complementary set with the same features, related to the pair in Figure B.11 by a
mirror reflection about the XY plane.
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B.2.3 Monolithic transport coil holders

We designed a right-handed monolithic transport coil holder and a left-handed monolithic
transport coil holder, but the general features are common to both and related by a mirror
reflection about the XY plane. We begin by sketching the contour of a single monolithic coil
holder in the Main slab (B.12) sketch.

Figure B.12: Main slab sketch

The overall shape is rectangular, with 24.75 in of width and 7.25 in of height. We outline
a series of 45 ◦ triangular inlets in various locations as well as a waist close to the middle
along the longer side. This waist provides a gap for returning coil wire while the inlets allow
standard cage-hardware to attach into the slab at specific angles. The waist runs for 6.32 in
and the gap is 0.75 in wide. We extrude the whole Main slab sketch into the Slab feature
by 1.00 in.

We sketch a pattern of circles labeled Outer Coil Layer Contour (B.13) on the top
surface of the Slab that define the outer coil layer (outer here means away from the plane
of the atoms).

The Outer Coil Layer Contour sketch contains two types of coil outlines. The bigger
ones have an inner diameter of �i = 1.60 in and an outer diameter of �o = 2.38 in while the
smaller ones have an inner diameter of �i = 0.80 in and an outer diameter of �o = 1.60 in.
The largest circles correspond to the larger quadrupole coils located about the glass cell areas
while the smaller ones correspond to dedicated transport coils. The six coils are patterned
along the transport axis with a total transport distance of dT = 17.46 in. The sketch turns
into the Outer Coil Layout feature, which makes a 0.34 in cut into the Slab.

Following this, we draw the Inner Coil Layer Contour sketch (B.14) in the same surface
to define the inner coil layer (inner here means closer to the atoms plane).
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Figure B.13: Outer Coil Layer Contour sketch

Figure B.14: Inner Coil Layer Contour sketch

Here, the five coil contours have an outer diameter of �o = 0.80 in and an inner diameter
of �i = 1.60 in. The sketch turns into a cut feature labeled Inner Coil Layer which cuts
0.88 in into the slab. The depth of both cuts incorporate the width of the ribbon wire from
which the coils are made as well as the insulating layers that separate the coils from each
other.

We make another sketch labeled Anti eddy current slit (B.15)to outline a grid of anti-
eddy current cuts. In the Anti eddy current slit sketch we outline two large optical access
circles of diameter � = 1.5 in which are concentric with the main quadrupole coils. We make
a cut feature labeled Optical access antieddy that cuts through the piece (1.00 in).

On one side of the slab, we sketch the Cooling line sketch (B.16). This sketch consists
of two features outlining the access and intended contact profile of the water cooling lines
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Figure B.15: Anti eddy current slit sketch

that provide a heat sink for the monolithic coil holders. The parts are offset from the line
of transport by 2.00 in each and have a semi-circular profile of diameter �3/8 in whose center
is placed 0.16 in inside the slab from the opposing surface to the inner coil layers. We turn
this into a cut through the full length of the piece which we label Cooling line.

Figure B.16: Cooling line sketch

In order to run the coil wire out of the coils into the power supplies, we sketch the
Wire groove sketch (B.17) on the same surface as the coil layers. We provide eleven 0.31 in
channels that turn into 0.10 in deep cuts in the Wire grooves feature. The depth takes into
account two units of ribbon wire thickness including insulation.

We then sketch a grid of � 1/4 – 20 tapped holes in Mounting tap holes (see B.18) in the
surface behind the inner coil layer for mounting a pressing piece to assist a better thermal
contact between the cooling line and the aluminum in the Cooling line cut. We set the
positions of these holes in such a way as to avoid coils, wires and cooling lines (so not all of
the holes laid out in B.18 are drilled). We use the cut feature to set a depth of 0.225 in and
turn this into the 1/4 20 tap feature.

We sketch pilot lines that define the distance from the transport line to 30 mm away in
the direction of the monolithic coil holders in the surface defined by the triangular inlets
first sketched in B.12. We then use the hole wizard tool to sketch two � 4 – 40 separated by
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Figure B.17: Wire groove sketch

Figure B.18: Mounting tap holes

60 mm (B.19). These holes are tapped and 0.20 in deep.

Figure B.19: Corner cage 4-40-pilot sketch

We replicate the 60 mm cage attachment � 4 – 40 hole constructions all around the mono-
lithic coil holder by using mirror and patterning tools.
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The MOT is designed to have three pairs of counterpropagating beams. One pair should
propagate along ez, while the other two should propagate along the ex+y and ex−y axes
(Figure B.20). In order to deflect the beams such that they meet at 90 ◦ in the MOT cell, we
add thin cuts ( in deep) to register a rectangular mirror normal to the transport axis ex. A
single 45 ◦angled � 8 – 32 tapped hole intersects this cut to allow fixing the mirror in place
(with a nylon tip setscrew inserted from the top), visible in Figure B.20. The dimensions
and positioning of the rectangular mirror slots are in Figure B.21

Figure B.20: MOT beam layout. Three pairs of beams that form the MOT region inside the
glass cell. A pair is along ez while the other two are along ex+y and ex−y. Thin slots host
a rectangular mirror that deflect the beams so that two pairs in the XY plane intersect at
90 ◦ in the MOT region.

The next features in the design of the monolithic transport coil holder are a series of
holes and cuts that allow the piece to firmly mount and precisely register its position into
a stainless steel holder (documented in the next section below). We use stainless steel
for its mechanical properties (solid, and robust mounting), as well as for a lower electrical
conductivity relative to aluminum that mitigates the parasitic induced eddy currents from
the coil pairs. Where possible, we sketch rectangular shapes that we turn into cuts. These
cuts jointly define all three different planes to match a relative positioning of the same
accuracy as the machining tolerance. This is done to make sure that when all the coils are
assembled into the monolithic transport coil holder, the mounting of the left and right pieces
already fixes the different coil pairs at nominally the right separations. The first of these
features is a side grabber, depicted in Figure B.22. We draw a rectangular shape near the
science cell end, and turn it into the Grab groove feature by making a 0.375 in deep cut.
This side grabber registers the monolithic coil holders in place. For attachment, we add a
� 1/4 – 20 through hole from the back plane.
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Figure B.21: Single rectangular mirror slot. Thinly cut into the monolithic coil holder slab,
it registers a rectangular mirror into place.

Figure B.22: Sketch for the side groove on the monolthic transport coil holder. A single
rectangular shape that leads to a cut for registering the parts together.

Another feature for the stainless steel holder are a set of frontal holes, all � 1/4 – 20,
through holes. These are attachment holes as well, fixing the left and right parts relative
to the XY plane and to each other. Finally, there is a series of bottom holes to register the
monolithic transport coil holders in place relative to the YZ plane. The frontal holes are
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shown in Figure B.23, while the bottom holes are shown in Figure B.24.

Figure B.23: Frontal holes for mechanical registration.

Figure B.24: Bottom holes for mechanical registration.

A printed circuit board (PCB) based radiofrequency (RF) antenna is incorporated into
the design of the new apparatus. We add a series of attachment holes for this PCB antenna
in our monolithic transport coil holder. These threaded � 8 – 32 holes and an additional
set of convenience holes are highlighted in Figure B.25. Finally, anti splay holes are added

Figure B.25: Attachment holes for radiofrequency PCB antenna.

in the Anti splay hole sketch sketch. These holes have will host long anti splay screws
to prevent relative shearing of the left and right monolithic transport coil holders, adding
to the overall robust mechanical registration. The sketch for the hole locations is shown in
Figure B.26.
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Figure B.26: Antisplay holes sketch.

B.2.4 Stainless steel holder

We design a single piece to support the weight of all the coils and vacuum components.
We denominate this piece the stainless steel holder, since we opt to use a harder, heavier
material such as stainless steel. We begin the design of the stainless steel holder by drawing
a 10 in by 8 in rectangular shape. We then extrude the shape by 0.47 in to a Base slab

feature. On a face of the Base slab, we add four counterbore � 5 – 16 through holes to
enable attachment to further supporting structures. We then add two sets of 6 � 1/4 – 20
holes in a circular pattern, to acommodate 2.75 in CF flange vacuum components. The four
support holes and CFF attachment holes are shown in B.27.

Figure B.27: Stainless steel holder with support and 2.75 in CFF pattern sketch.

We then add clearance cuts to the Base slab, by first sketching two circular holes 1.60 in
in diameter and an extended semicircular opening on one of the sides. These cuts clear two
1.33 in to 2.75 in CFF conical expanders and a single mini-CFF (1.33 in) nipple. These cuts
are illustrated in Figure B.28.
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Figure B.28: UHV clearance cuts through stainless steel holder.

Working on the same face, we extrude the Rail step feature. This feature consists of
separate “islands” that together provide side attachment and registration to the attaching
monolithic transport coil holders. The extrusion is 0.53 in high, such that the whole piece
can be started from a 1” slab. The Rail step is shown in Figure B.29.

Figure B.29: Rail step islands with relevant dimensions, highlighted in pink shading. The rail
step islands are extruded to help attach and register the monolithic transport coil holders.

A set of 4 side � 1/4 – 20 threaded holes are added on each side of the left and right
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planes of the Rail step islands. An additional set of three counterbore � 1/4 – 20 through
holes appear from the opposite face of the Base slab to grab the monolithic transport coil
holders from below, registering them to the Base slab face. Finally, we add a lattice of
interleaved � 1/4 – 20 threaded through holes for convenience. All of the aforementioned
features are depicted in Figure B.30.

Figure B.30: Isometric view of the stainless steel holder. Side and bottom grabbing holes
are seen as well as the convenience � 1/4 – 20 screw hole lattice.

B.2.5 Vacuum system

The first major component of the vacuum system is the MOT cell, shown in Figure B.31.
The MOT cell is square in its cross section, with a 1.00 in2 area profile, over an inner length
of 3.94 in. The glass to metal seal is at the end of a 0.50 in glass tube extending just over
2.35 in and finished off in a mini-CFF end. The MOT cell was custom made by Precision
Glassblowing and does not have any anti-reflection (AR) coated surfaces.

In a similar level of importance is the Science cell, shown in Figure B.32. The
Science cell is rectangular in its cross section, with a 10 mm by 13 mm face (Figure B.33,
extending over an inner length of 60 mm. The glass to metal seal is at the end of a 33.10 mm
long tube of diameter 11 mm. The end is adapted to a mini-CF Flange connection.

The two glass cells are connected through three mini-CFF tees (3.00 in in length each).
The three tees connect to the atomic source vacuum subassembly (documented below), a
dedicated MOT and source 25 L/s ion pump (Gamma Vacuum 25S) and a dedicated science
25 L/s ion pump (Gamma Vacuum 25S) respectively.

A first mini-CFF (1.33 in) nipple runs down for 3.00 in to the source subassembly. Then,
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Figure B.31: Side view of the MOT cell. The glass to metal seal connects to a mini-CF
flange (1.33 in).

Figure B.32: Top view of the Science cell. The glass to metal seal connects to a mini-CF
flange (1.33 in). All the annotated dimensions in this Figure are in mm.

the ion pump subassemblies are almost symmetric. They both first expand the UHV cross
section (to improve the pressure conductance) from 1.33 in to 2.75 in through straight conical
expanders (MDC-402030), then run down two straight 2.75 in nipples (MDC-402002), and bend
into the 2.75 in ion pump inlets through two 90 ◦ rounded elbows (MDC-403042). Due to the
dimensions of the ion pumps, the two elbows bend away from the transport axis along ez

in opposite directions. The ion pumps are dual 2.75 in port. For the MOT and source ion
pump we add an all-metal-valve (VAT-54132-GE02) that then can be pumped out first with
a roughing pump followed by a turbomolecular pump before the ion pumps are fired. All
the aforementioned UHV components are assembled in CAD and the resulting main vacuum
assembly is shown in Figure B.35.

There are two versions of the UHV subassembly for the atomic source continuing from
the straight mini-CFF nipple described in the preceding section. The first one is for a single
species 87Rb experiment, consisting of a single mini-CF flange bellows terminating on a
mini-CFF blank. The alternative version is a dual species assembly with either 87Rb or
bosonic (39,41K) with the relative freedom to have a mixture or use a single atom. This
subassembly starts with a mini-CFF tee (Lesker-0133), 3.00 in long, from which two mini-
CFF all-metal-valves (VAT) connect along ez. The valves go through a pair of 90 ◦ mini-CFF
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Figure B.33: Front view of the Science cell. The UHV region has a rectangular cross
section of the illustrated dimensions. All the annotated dimensions in this Figure are in
mm.

elbows that drop down to a pair of straight mini-CFF nipples and finally connect to the
hosting flexible mini-CFF bellows, where the ampoules are to be placed. This dual species
version is depicted in Figure B.34.

B.2.6 MOT optics

The design of the monolithic transport coil holders (documented in a preceding section)
incorporates various � 8 – 32 threaded holes for 30 mm and 60 mm cage rods. The cage
system provides robust optical alignment and fixed mechanical mounting for the optical
elements through which our cooling, optical pumping, and imaging beams may propagate.

Chris Billington was in charge of designing the layout presented in Figures B.39 and B.40.
The MOT optics uses fiber injected beams which first go through Thorlabs collimating
packages to make ∼ 1.00 in diameter beams (for an optimal capture volume). Half and
quarter waveplates follow in order to generate the appropriate polarizations along the three
MOT axes. Achromat lenses may be added in positions with relative motional freedom to
make the cooling beams slightly diverging as they go through the MOT glass cell. This
relative tunability might optimize the MOT number and temperatures which profoundly
affect the rest of the experiment. In contrast with the Rb–Chip apparatus, we explicitly
add imaging paths that point along the direction of magnetic transport. This represents a

151



Figure B.34: View of the dual (87Rb and K) species source subassembly. Two mini-CFF
all-metal-valves control the flow of atomic vapor to the MOT cell region lying above (not
shown).

significant opportunity for improvement in the magnetic transport optimization.

B.2.7 Full transport, MOT optics and UHV assembly

Placing all of the preceding coil, holders, UHV subassemblies and MOT optics compo-
nents together, we form the assembly shown in Figure B.38. This comprises the majority of
the new apparatus.

The new apparatus is designed to be independent of free space laser alignment as well as
power supply friendly; truly a plug-and-play machine. When fully assembled, this modular
design may fit within a cubic meter of volume, making it a highly compact quantum gas
apparatus. Time will tell if it lived up to its awesome design specifications.

B.2.8 Optical table

The main portion of the new apparatus assembly (B.38) sits in an optical table of its own.
We add legs and a 19 in rack mount subassembly to the 72 in by 30 in (TMC) optical table.
We design and fabricate hollow aluminum cylinders for the legs, one of which is depicted
in Figure B.39. The legs have a set of 1.00 in spaced holes for mounting 19 in rack mount
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Figure B.35: Trimetric view of the main vacuum assembly. The two cells are connected by
three mini-CFF tees, two of which then go through conical expanders, nipples and elbows
connect to two ion pumps.

frames. Four legs are connected to each other to form a rectangular frame support through
80/20 components. The full assembled frame is shown in Figure B.40.

B.2.9 Breadboards

Surrounding the main portion of the UHV and coil holders assembly are optical bread-
boards. Optical components may be mounted in three different height levels. First the level
defined by the optical table itself, which we refer to as level 1. Then, the level defined by
the height of the magnetic transport trajectory (and coils), which we call level 2. Finally,
any optics hovering above may be mounted in a third level, or level 3. For levels 2 and 3
we design and fabricate thick (2.00 in) aluminum breadboards populated with � 1/4 – 20
tapped holes in a square lattice pattern.
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Figure B.36: Right side view of the MOT optics. 30 mm cage mount components include
fiber collimating packages, corner 1.00 in elliptical mirror mounts, square threaded mounts
and polarizing beam splitter (PBS) mounts. In this view the two pairs of 45 ◦ incident
beam lines may be inferred. UV LEDs are visible as well, parallel to two of the angled
beam launches. In addition to the attachment provided by the bias coil holders, tall 1.00 in
pedestals support the MOT optics subassembly atop a breadboard.

We start with the level 2 breadboard with a rectangular C-shape depicted in Figure
B.41. The dimensions are 51 in by 26 in and the C-slot is 20 in by 3 in towards one end.
After extruding by 2.00 in, we make a rectangular 22 in by 8 in cut around the C-slot that
goes 1.585 in deep. This cut creates the Vacuum support niche feature to slide and register
the stainless steel holder. Additionally, we incorporate a 1.00 in spaced lattice of � 1/4 –
20 tapped holes on the top and side breadboard faces and a single set of four � 5/16 – 18
counterbore holes that facing from the bottom grab the stainless steel holder, as shown in
Figure B.42.

We follow with the level 3 breadboard for which we draw a rectangular O-shape depicted
in Figure B.43. The dimensions are 51 in by 26 in and the O-slot is 16 in by 4 in, slightly off-
centered in one direction. After extruding by 2.00 in, we incorporate a 1.00 in spaced lattice
of � 1/4 – 20 tapped holes on the top and side breadboard faces as shown in Figure B.44.
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Figure B.37: Top view of the MOT optics. 30 mm cage mount components include fiber
collimating packages, corner 1.00 in elliptical mirror mounts, square threaded mounts and
polarizing beam splitter (PBS) mounts. The orange line indicates the transport axis. In this
view,

The primary function of the level 1 breadboard is to hold the full weight of the machine
and the MOT optics whose own breadboard is directly mounted to it. The main function
of the level 2 breadboard is to support the full weight of the new apparatus UHV and coils
subassembly through the stainless steel holder. The main function of the level 3 breadboard
is to provide optical access along ey. Level 2 and level 3 breadboards are held in place by
80/20 beams that in turn are mounted onto the level 1 surface. The three level structure is
assembled and depicted in Figure B.45.

B.2.10 Coil winding forms

We wind coils to the right shapes with coil winding forms. We reuse the circular coil
winding forms designed for the Rb–chip transport coils and design new ones for the bias and
gradient cancellation coils, sketched in Figures B.46 and B.47 respectively.

All coil winding forms incorporate a two step extruded island whose height is equal to the
(fixed) width of the coil wire. At the bottom of the island, separate thin plate masks provide
a movable, flat frame to help remove the coils out of the form. Several holes (typically
four) around the center island help push the flat frames with the help of � 1/4 – 20 screws.
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Figure B.38: View of the 87Rb version of the new apparatus, including the coils, holders,
UHV and MOT optics components. The right side coil holders and coils are hidden for an
enhanced level of detail of the UHV system. An additional cage mounted beam launch for
a transport imaging probe is shown on the science cell end of the transport axis.

Finally, a square plate pushes down on the coil to flatten it from the top of the winding
form. Central holes on the islands mount these square plates tightly in place, while the tiny
u-shaped slots mark the starting point for the winding process.
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Figure B.39: Optical table leg with annotated dimensions (in inches). Two sides are faced
down and populated with 1.00 in holes for rack attachment. The legs are 1 ft tall and 0.50 in
thick.
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Figure B.40: Optical table base formed by 80/20 components and legs.

Figure B.41: Level 2 breadboard sketch. The general C-shape includes an C-slot through
which vertical optical access and mounting of the stainless steel holder is possible.
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Figure B.42: Level 2 breadboard with � 1/4 – 20 hole lattice. Rounded corners on the C-slot
are included for easy machining. The Vacuum support niche is present at the C-slot.

Figure B.43: Level 3 breadboard sketch. The general O-shape includes an O-slot through
which vertical optical access is possible.
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Figure B.44: Level 3 breadboard with � 1/4 – 20 hole lattice. Rounded corners at the O-slot
are included for easy machining.
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Figure B.45: Three-level optical breadboard assembly in a section view (only half of the
assembly is shown for clarity).

Figure B.46: Sketch of a single bias coil winding form.
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Figure B.47: Sketch of a single gradient cancellation coil winding form.
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Appendix C: Yang–Yang thermodynamic methods

C.1 Dimensional reduction

The first-order, coupled integral equations

ε(k) =
~2k2

2m
− µ− kBT

2π

∫ ∞
−∞

2c

c2 + (k − q)2
ln(1 + e−ε(q)/kBT ) dq , (C.1)

2πf(k)(1 + eε(k)/kBT ) = 1 +

∫ ∞
−∞

2c

c2 + (k − q)2
f(q) dq , (C.2)

n =

∫ ∞
−∞

f(q) dq , (C.3)

comprise the Yang–Yang (YY) thermodynamics from Chapter 5. Here m is the bosonic mass,
kB is the Boltzmann constant, T is the temperature, µ the chemical potential, and c = mg/~2

is the interaction wavenumber. The one-dimensional coupling constant g = 2~ω⊥a/(1− Ca/l⊥),
is written in terms of the three-dimensional s-wave scattering length a, and scattering reg-
ularization constant C. For the specific case of a three-dimensional harmonic potential, C
is of order unity [100], and l⊥ =

√
~/mω⊥ is the transverse oscillator length. Both k and q

label longitudinal momenta.

In order to work with the natural energy, momentum and length scales of the problem,
we transform all the momentum and energy quantities

k̃ =
k√

2mkBT/~2
, (C.4)

Ẽ =
E

kBT
, (C.5)

so that the first two YY equations read

ε̃(k̃) = k̃2 − µ̃−
∫ ∞
−∞

1

π

c̃

c̃2 + (k̃ − q̃)2
ln(1 + e−ε̃(q̃)) dq̃, (C.6)

2πf(k̃)(1 + eε̃(k̃)) = 1 +

∫ ∞
−∞

1

π

c̃

c̃2 + (k̃ − q̃)2
f(q̃) dq̃. (C.7)

Here and what follows, I drop the tilde notation but keep the dimensionally reduced quan-
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tities.

C.2 Numerical integration

Here I describe the numerical methods to solve the YY equations. Together with the
local density approximation (LDA), a numerical integrator takes as parameters the chemical
potential µ, and temperature T as primary input, and the transverse harmonic frequency
f⊥, three-dimensional scattering length a, and mass m as secondary input. It then computes
c and g with l⊥, a and m, and recursively solves for ε(k) first, and then for f(k). Finally, it
computes the density n, entropy S, and pressure P equations of state.

We denote the Lieb–Liniger kernel (a normalized Lorentzian) as L(c, q). Our numerical
solver performs a k-space convolution using the fftconvolve method from the scipy.signal
library to evaluate the integrals in a Nk = 1024 points grid that covers the range k =
[−10 kth, 10 kth]. Here, kth =

√
2mkBT/~2 is the thermal wavenumber, and we explicitly span

over an order of magnitude above the thermal scale to avoid introducing artifical momentum
cutoffs. Using convolution operations speeds up the numerical integration significantly. We
nevertheless verify that for the parameters relevant to the experiment, using different grid
sizes leaves the predicted equations of state the same, as demonstrated in figure C.1.

Figure C.1: YY dispersion and momentum distribution. Numerically integrated dispersion
ε̃(k̃) and momentum distribution for a f⊥ = 16 kHz trap holding a homogeneous 1D 87Rb gas
at T = 50 nK. On the left, the convergent dispersion with εtol = 0.01 for different grid sizes
differs from the ideal Bose gas dispersion ε0(k) at low momenta |k/kth|≤ 4. A horizontal
golden line indicates the value of the reduced chemical potential µ̃ = 1.92 used in this
calculation. To the left, the momentum distribution evaluated for four different grid sizes.
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We begin with the ideal Bose gas dispersion ε0(k) = k2−µ to integrate the YY equations,
and iterate over the recursive relation

εj+1(k) = ε0(k)− L(c0, q) ~ ln(1 + e−εj(q)), (C.8)

where ~ denotes the Fourier convolution operator. Once the convergence condition

1

Nk

√∑
i=0

(εi,j+1 − εi,j)2 < εtol (C.9)

is satisfied, where Nk is the number of atoms in a certain momentum state k, we turn to
finding a solution f(k) for the second equation with an initial guess f0(k) = [2π (1+eε(k))]−1.
There, we iterate over the recursive relation

fj+1(k) = f0(k) + L(c0, q) ~ fj(q), (C.10)

using a similar convergence criterion. There is no appreciable difference in the integrated
quantities after Nk ≈ 100, so we use Nk = 1024 everywhere. In the range of experimentally
accessible parameters, |k/kth|≤ 10 accounts for all the states of momentum distribution.
With the convergent quasimomenta distribution f(k), we evaluate (C.3), the linear density.
After watching all the unit conversions we get the linear density in particles per meter.

C.3 Code

Here is the numerical implementation of the YY integrator written in Python.

import numpy as np
from scipy import constants, signal
from numba import vectorize

hbar = constants.codata.value('Planck constant over 2 pi')
kB = constants.codata.value('Boltzmann constant')
pi = np.pi
nm, um, mm = 1e-9, 1e-6, 1e-3
Hz, kHz, MHz = 1, 1e3, 1e6

class harmonic_trap(object):
""" Simple 1D harmonic oscillator methods """

def __init__(self, frequency, mass):
self.omega = 2 * pi * frequency
self.frequency = frequency
self.mass = mass
self.oscillator_length = np.sqrt(hbar / (self.mass * self.omega))

def sho_potential(self, x):
return 0.5 * self.mass * self.omega**2 * x**2

def sho_levels(self, number_of_levels):
levels = []
for i in range(number_of_levels):

levels.append(hbar * self.omega * (i + 0.5))
return np.array(levels)

class homogeneous_1DBG(harmonic_trap):
""" Homogeneous one-dimensional Bose gas constants.
The 3D scattering reduces to an effective 1D
scattering assuming transverse harmonic
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confinement and s-wave contact interactions"""

def __init__(self, trans_freq, mass, scatt_length):
harmonic_trap.__init__(self, trans_freq, mass)
self.trans_freq = self.frequency
self.l_perp = self.oscillator_length
self.a3D = scatt_length
# Transverse scattering effects
C = 1.4603 / np.sqrt(2)
transverse_scatt_correction = (1 - C * self.a3D / self.l_perp)
self.a1D = - transverse_scatt_correction * self.l_perp**2 / self.a3D
self.g1D = - 2 * hbar**2 / (self.mass*self.a1D)
self.c1D = self.mass * self.g1D / (hbar**2)

@vectorize('float64(float64)')
def log_factor(eps_q):

""" Efficient computation of the logarithmic factor
in the YY integrals. Whenever the dispersion drops
below or equals zero, we use a stable approximation"""
if eps_q > 0:

return np.log(1 + np.exp(-eps_q))
else:

return np.log(1 + np.exp(eps_q)) - eps_q

class bethe_integrator(homogeneous_1DBG):
""" Methods to ingegrate YY equations, derived from the
thermodynamic Bethe ansatz (TBA). Take as parameters,
the transverse trapping frequency, the mass, the 3D
s-wave scattering length, as well as the temperature
and chemical potential. An additional parameter Nk
defines the integration grid size. """

def __init__(self, trans_freq, mass, scatt_length,
temperature, chemical_potential, Nk):

# Start with SI units, then rescale
homogeneous_1DBG.__init__(self, trans_freq, mass, scatt_length)
self.mu = 2*pi*chemical_potential*hbar
self.E_thermal = kB*temperature
self.k_thermal = np.sqrt(2*self.mass*self.E_thermal)/hbar
self.k_lim = 5 * self.k_thermal
self.Nk = Nk
self.k_space = np.linspace(-self.k_lim, self.k_lim, self.Nk)

# Rescaled quantities
self.mutilde = self.mu/self.E_thermal
self.ctilde = self.c1D/self.k_thermal
self.kappa = self.k_space/self.k_thermal
self.dkappa = self.kappa[1] - self.kappa[0]

# Zero temperature dispersion
self.eps0 = self.kappa**2 - self.mutilde

# Initial k-distribution
self.epsk = self.eps_solver(eps_tol=1e-10)
self.bose_factor = np.exp(log_factor(-self.epsk))
self.f0=1/(2*pi*self.bose_factor)

def lieb_kernel(self, k0):
return 1/(pi*self.ctilde)/(1+((k0-self.kappa)/self.ctilde)**2)

def epsilon_update(self, eps_q, method='convolution'):
g_tilde = log_factor(eps_q)*self.dkappa
if method == 'integral':

return np.array([np.sum(g_tilde*self.lieb_kernel(k0=ki))
for ki in self.kappa])

elif method == 'convolution':
return signal.fftconvolve(g_tilde, self.lieb_kernel(k0=0), "same")

def f_update(self, f_q, method='convolution'):
if method == 'integral':

return np.array([np.sum(f_q*self.dkappa*self.lieb_kernel(k0=ki))
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for ki in self.kappa])
elif method == 'convolution':

return signal.fftconvolve(f_q*self.dkappa,
]self.lieb_kernel(k0=0), "same")

def eps_solver(self, eps_tol=1e-3):
def iterator(eps_it):

eps_next = self.eps0 - self.epsilon_update(eps_it)
eps_error = np.sqrt(np.mean((eps_it-eps_next)**2))
return eps_error, eps_next

min_iteration, eps_err = 500, 1.0
eps_i = self.eps0
for i in range(min_iteration):

_, eps_f = iterator(eps_i)
eps_i = eps_f

while (eps_err > eps_tol) and (min_iteration < 1000):
min_iteration += 1
eps_err, eps_f = iterator(eps_i)
eps_i = eps_f

return eps_f

def f_solver(self, f_tol=1e-3):
def iterator(f_it):

f_next = self.f0 + self.f_update(f_it)/self.bose_factor
f_error = np.sqrt(np.mean((f_it-f_next)**2))
return f_error, f_next

min_iteration, f_err = 500, 1.0
f_i = self.f0
for i in range(min_iteration):

f_err, f_f = iterator(f_i)
f_i = f_f

while (f_err > f_tol) and (min_iteration < 1000):
min_iteration += 1
f_err, f_f = iterator(f_i)
f_i = f_f

return f_f

def density(self):
dk = self.dkappa*self.k_thermal()
return np.trapz(self.f_solver(f_tol=1e-10), dx=dk)

def entropy_per_particle(self):
eps = self.eps_solver(eps_tol=1e-3)
fp = self.f_solver(f_tol=1e-3)
fh = fp*np.exp(eps)
f = fp + fh
n = self.density()
dk = self.dkappa*self.k_thermal
S0 = np.sum(dk*f*np.log(1+np.exp(-eps)))
S1 = np.sum(dk*fp*eps)
return (S0 + S1)/n

def pressure(self):
T = self.E_thermal/kB
dk = self.dkappa*self.k_thermal
eps = self.eps_solver(eps_tol=1e-3)
P0 = np.sum(dk*np.log(1+np.exp(-eps)))
n = self.density()
return T*P0/(2*pi*n)
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Appendix D: Objective lens

We adapt the compound objective [16] originally by Wolfgang Alt for the current appa-
ratus in RbChip. A remarkable aspect of this design is that it works the minimum set of
surfaces that account for the dominating spherical aberrations of the vacuum window. A
few previous adaptations of the same design appear in the literature [101,102], forming cold
atom microscopes for absorption and fluorescence imaging.

Figure D.1: CAD drawing of lens-stack. The compound objective faces the UHV system
(not shown) on the right. The distances are all in millimeters.

The optimized design is summarized in Figure D.1, following the parameter optimization
in Zemax. Our lens uses off the shelf components, with a Thorlabs LC1582-B, f = −75 mm
plano-concave lens, followed by a Thorlabs LB1901-B, f = 75 mm bi-convex, a Thorlabs

LA1608-B, f = 75 mm plano-convex, and finally a Thorlabs LE1234-B, f = 100 mm menis-
cus facing the UHV glass cell. The compound objective is designed to work at λ = 780 nm
only, and therefore the tolerances do not heavily constrain its performance.

We assemble the objective into a 40 mm long, 1” diameter lens tube. We replicate
the spacers from [101], for which Figure shows the final measurements. We machine the
spacers out of Brass, for its compromise in maleability and reduced inductive response.
Incidentally, brass is a widely used material in optical engineering. The design specifications
give a diffraction limited spot with radius ∆ = 1.55µm, working distance of 31 mm, object
space numerical-aperture of 0.30, field of view of 270 mm, and an effective focal length
f = 39.03 mm. Finally, the tolerance analysis reveals that the plano-concave lens is most
sensitive to lateral displacements. For example, when it shifts its position by ±150µm, the
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Figure D.2: CAD drawings of lens-stack ring spacers. We adapt the original design from
[101], and machine them out of brass. Each figure shows the cross section of the annular
piece. The annotated dimensions are in millimeters. We use a conventional threaded ring at
the end to hold the meniscus in place.
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working distance changes by ±45µm. We characterize the objective lens on the test bench,
using a 1µm pinhole as a point source, giving a measured Airy disk radius of 1.61(4)µm.
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