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Spin-orbit-coupled Bose-Einstein condensates (SOBECs) exhibit two new phases of matter, now known
as the stripe and plane-wave phases. When two interacting spin components of a SOBEC spatially overlap,
density modulations with periodicity given by the spin-orbit coupling strength appear. In equilibrium, these
components fully overlap in the miscible stripe phase and overlap only in a domain wall in the immiscible
plane-wave phase. Here we probe the density modulation present in any overlapping region with optical
Bragg scattering and observe the sudden drop of Bragg scattering as the overlapping region shrinks. Using
an atomic analog of the Talbot effect, we demonstrate the existence of long-range coherence between the
different spin components in the stripe phase and surprisingly even in the phase-separated plane-wave
phase.
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Systems with coexisting order parameters, such as
ferromagnetic superconductors [1], supersolids [2], or
topological Kondo insulators [3], exhibit rich phases with
novel phenomena. Spin-orbit-coupled Bose-Einstein con-
densates (SOBECs) have a complex phase diagram includ-
ing both “stripe” and “plane-wave” phases. The stripe
phase is expected to have coexisting order parameters [4–6]
with supersolidlike properties [7] marked by long-range
phase coherence and periodic density modulations (con-
firmed by optical Bragg scattering [8]) simultaneously
present. In contrast, the plane-wave phase behaves like a
ferromagnetic spinor Bose-Einstein condensate (BEC),
where its true many-body ground state is predicted to be
massively entangled with application to precision magne-
tometry [9,10]. In both the stripe and plane-wave phases,
we readout a matter wave Talbot interferometer with optical
Bragg scattering to detect coexisting periodic density
modulations (long-range diagonal order) and system-wide
phase coherence (long-range off-diagonal order).
Unexpectedly, both phases exhibit both types of order.
Figure 1(a) schematically depicts the stripe and plane-

wave phases of SOBECs, showing two salient features
[5,6,11]: (1) system-wide periodic density modulations are
associated with fully coexisting spin components in the
stripe phase, and (2) highly localized density modulations

are present at a domain-wall delineating phase-separated
spin components in the plane-wave phase. Initial experi-
ments with Raman coupled 87Rb Bose-Einstein conden-
sates (BECs) identified these phases in terms of the degree
of spatial overlap of the two spin components [5], but not
the microscopic density modulations. Direct observation of
these modulations in 87Rb BECs is challenging both
because the ≈400 nm modulation period is below the
resolution of even the best quantum gas microscope [12]
and the modulation contrast is small. Here we probe these
modulations in long-lived equilibrium systems in both the
stripe and plane-wave phases.
Our Letter is organized as follows: (i) we introduce the

physics of SOBECs, (ii) we describe our experimental
setup, (iii) we cross-check our Bragg measurements with
established techniques, (iv) we demonstrate the coexistence
of diagonal and off-diagonal order in the same system, and
(v) we discuss the implications of these measurements on
the issues of supersolidity in stripe-phase SOBECs.
SOBECS with Raman coupling.—We realized SOBECs

described by the single-particle Hamiltonian

Ĥ0 ¼
ℏ2

2m
½ðqx − kRσ̂zÞ2 þ k2⊥� þ

δ

2
σ̂z þ

Ω
2
σ̂x ð1Þ

for particles of mass m. Here, δ and Ω describe Zeeman
shifts from longitudinal and transverse fields, respectively,
and the spin-orbit coupling (SOC) strength kR defines the
relevant energy scale ER ¼ ℏ2k2R=2m. ℏqx is the quasi-
momentum along ex, ℏk⊥ is the linear momentum in the
ey − ez plane, and σ̂x;y;z are Pauli operators. The insets to
Fig. 1(a) show the characteristic double-well dispersion
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associated with SOC, with minima separated by approx-
imately 2kR, and energy gap equal toΩ. In our experiments,
we use two-photon Raman transitions to introduce the SOC
term: the Raman laser wavelength determines the SOC
strength kR ¼ 2π=λR; the Raman laser intensities determine
Ω; and the laser frequency differences imbue detuning δ to
the SOC system [5,6].
We describe the two spin-components of our system by

the spinor wave function ðψ↑;ψ↓ÞT , where the mean-field
interaction energy density is

ε ¼
�
c0
2
þ c2

4

�
½jψ↑j2 þ jψ↓j2�2 −

c2
4
½jψ↑j4

− jψ↓j4� þ
c2
2
jψ↑ψ↓j2:

Here c0 and c2 describe the inter- and intraspin interaction
parameters, respectively, and n̄ is the mean density. For
dilute Bose gases (with chemical potential μ ≪ ER), the
impact of interactions can be parametrized in terms of a

scaled recoil energy E0
R ¼ ER þ μ=4; in this case, the spin

mixed, stable ground-state stripe phase, exists in a very
narrow range of parameters [5]: with δ between 0 and
c2n̄=2; and jΩj < Ωc, with the critical coupling strength
Ωc ¼ 4E0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2c2=c0

p
. As depicted in Fig. 1(a) (left), the

stripe-phase density

nðxÞ
n̄

¼ 1þ Ω
4E0

R
cos ½kðΩÞxþ ϕ�

is modulated with wave vector

kðΩÞ
2kR

¼
�
1 −

�
Ω
4E0

R

�
2
�
1=2

: ð2Þ

The phase ϕ describing the stripe’s location [6,13] results
from the preexisting phase difference between the two spin
components along with the relative phase between the
Raman laser beams. On the contrary, for the plane-wave
phase (jΩj > Ωc) shown in Fig. 1(a) (right), density
modulations are expected only within the domain wall
separating the now polarized spin components.
Experimental setup.—We produced N ¼ 2.2ð3Þ × 105

condensed 87Rb atoms in a harmonic trap with frequencies
ðfx; fy; fzÞ ¼ ½ð105; 67; 40Þ� Hz and chemical potential
μ ¼ ½h × 1.46ð20Þ� kHz. Two Raman lasers, counterpro-
pagating along ex, coupled the j↓i≡ jf ¼ 1; mF ¼ −1i
and j↑i≡ jf ¼ 1; mF ¼ 0i hyperfine levels of 87Rb 5S1=2
electronic ground states. We used the tune-out wave-
length [14] λR ¼ 790.034ð7Þ nm for our Raman lasers
which defined the single-photon recoil energy ER ¼
h × 3.678 kHz and the scaled recoil energy E0

R=ER ¼
1.10ð2Þ governing the stripe-phase physics.
We used optical Bragg scattering [15–17] to detect

periodic density modulations. The Bragg probe laser, with
wavelength λB ¼ 780.24 nm, was ≈6.3 GHz red detuned
from the f ¼ 1 → f0 ¼ 0, 1, 2 transition within the D2 line
[18]. This put the Bragg probe beam in the far-detuned limit
with respect to the ≈6 MHz transition linewidth, the
≈10 MHz Zeeman shifts, and the ≈300 MHz excited state
hyperfine structure. In this limit, the atomic susceptibility is
almost entirely real and state independent. Figure 1(a)
shows our experimental setup, with atoms located at the
focus of a Keplerian imaging system aligned along ex.
The Raman lasers propagated along ex and the Bragg
probe had an incident angle θB with respect to the optical
axes. A shiftable mirror in the back focal plane tuned θB
from 80 to 280 mrad, allowing the detection of Bragg
scattering from structures with period from about
391 to 405 nm; we used θB ≈ 0.15 rad in these experiments
[19]. In 87Rb, the interaction constants [24] are ðc0; c2Þ ¼
ð779;−3.61Þ × 10−14 Hz cm3, so the stable ground-
state stripe phase was present for Ω≲ 0.21ER and
−3.3 Hz < δ=h < 0 Hz.

FIG. 1. Experimental concept and setup. (a) Schematic de-
scription of small-δ phase diagram with equal spin populations
showing the stripe and plane-wave phases. The spatial distribu-
tion of the two spin-orbit-coupled spin states is marked in red and
blue for j↑i and j↓i, respectively, while the total density is in
black. The insets depict the dispersion of these states. (b) Laser
configuration for realizing SOC system with two-photon Raman
transition and detecting scattered Bragg signal from the stripe
phase. We choose a bias magnetic field B0 ≈ 20 G. The inset
shows an example of diffracted Bragg signal as imaged by an
EMCCD camera.
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The Bragg diffracted signal, as shown in the inset of
Fig. 1(b), was detected with an electron-multiplying
charge-coupled device (EMCCD) camera. As described
in Ref. [19], we first calibrated our Bragg signal using an
optical lattice and found that the signal-to-noise ratio of one
occurred for a fractional density modulation of η ¼ 0.06,
providing practical detection threshold.
We prepared our SOBECs from an initial BEC with

equal superposition of spin j↑i and j↓i at a desired
detuning δ and linearly increased Ω from 0 to Ωh in
50 ms. We then allowed the system to equilibrate for a hold
time th. At the transition from stripe to plane-wave phase at
Ωc ≈ 0.21ER, the expected density modulation contrast is
just η ¼ 0.045, just below our detection threshold. Inspired
by Ref. [25], we rapidly ramped Ω to ≈7ER in 200 μs just
prior to our Bragg measurement, increasing η to ≈0.85 (see
Ref. [19]). This rapid ramp was slow compared to the≈4ER
energy spacing between the two branches of the SOC
dispersion, but fast compared to the much slower many-
body dynamics. In this system, the shortest many-body
timescale is the ≳2.5 ms quarter period of our harmonic
trap, followed by the ≈50 ms timescale for any significant
evolution of spin structure [5,19]. As a result, this process
simply magnified the amplitude of the SOC driven stripes
wherever they were present in the system. We then turned
the Raman lasers off and pulsed the Bragg laser with
duration tB ranging from 20 to 100 μs.
Validation of method.—We began by demonstrating our

ability to maintain balanced spin mixtures very near δ ¼ 0
in the process of cross-checking our Bragg measurements
against earlier time-of-flight experiments [5]. We charac-
terized the transition from the stripe to plane-wave
phase as a function of Raman coupling Ωh and detun-
ing δ. Figure 2(a) shows the number of photoelectrons NB
in our detection region as a function of δ at different values
of Ωh for a fixed hold time th ¼ 1 s. We observe Bragg
scattering in a narrow detuning window that decreases in
width and amplitude as Ωh increases.

Figure 2(b) quantifies the amplitude in terms of the peak
height Apeak obtained from Gaussian fits to NBðδÞ. We
might expect the Bragg scattering amplitude to be constant
in the stripe phase Ωh < Ωc where the spin components
mix and then to vanish in the plane-wave phase when the
gas becomes locally polarized. However, even when differ-
ent plane-wave regions phase separate, density modulations
are present in the domain wall separating the different
phases, allowing some Bragg scattering. The spin healing
length ξs=ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0=½−c2ðΩ2

h=Ω2
c − 1Þ�p

in terms of the
conventional healing length ξ ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
2mμ

p
. ξs sets the

domain wall size [5] and diverges at Ωc. Figure 2(b) shows
ApeakðΩhÞ rapidly falling with increasing coupling strength,
consistent with the expected trend. The solid curve is a fit to
our scattering model (derived from the above reasoning and
developed in Ref. [19]) with the overall Bragg signal as the
only free parameter. This model shows only qualitative
agreement with data, a point we will return to shortly.
Figure 2(c) plots the Gaussian width wδ. Even for

Ωh < Ωc, a small detuning δ ≠ 0 that breaks the degen-
eracy of the two spin states can cause the initially spatially
mixed states to relax into a polarized gas in the lower
energy spin state: a plane-wave phase with no Bragg
scattering. When Ωh ¼ 0, there are no spin-changing
processes, and the spatially mixed state is stable indefi-
nitely, independent of δ. The width is thus large for
small Ωh (slower spin relaxation) and decreases as Ωh
increases (faster spin relaxation). The width has no marked
feature at Ωc and is well fit by a power law [5], here
aðΩh=ERÞ−4 þ w∞. This indicates that the process by
which the spin population polarizes in the presence of
detuning is dependent on the Raman coupling strength, but
not the initial zero-detuning phase.
In all cases, the detuning window is far wider than the

3.3 Hz range of detuning where the stripe phase is
thermodynamically stable. This is as expected: the time-
scale for the spin populations to reach the expected
equilibrium population can be in excess of several seconds

FIG. 2. Bragg-scattering as a function of Ωh and δ. (a) NBðδÞ from a tB ¼ 100 μs pulse for various coupling strengths Ωh; each data
point is an average of more than four realizations. The solid curves depict Gaussian fits to the data from which the peak amplitude Apeak

and width wδ in (b) and (c) are derived. The increased background level as compared to Fig. 1 is from an increased overall atom number.
In (b) and (c), the vertical dotted line marks the critical coupling strength at Ωc ¼ 0.21ER, showing that the Bragg amplitude lacks a
sharp feature at Ωc, while the width drops rapidly leading up to Ωc.
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for small detunings (see Refs. [5,19] for a discussion of the
equilibration timescale). In what follows, we focus on near-
zero detunings that lie within this metastable region and
where the physics is governed by Ωh alone.
Spatial coherence.—Finally, we present our main obser-

vation demonstrating the spatial coherence of the SOBECs.
Here we altered our measurement procedure to include a
free evolution time trev following the turn-off of the Raman
lasers but prior to the Bragg pulse. During this time, the
different spin and momentum components that comprised
the Raman dressed states underwent free evolution creating
a matter-wave Talbot interferometer [17,26,27]. A coherent
matter wave with wave vector kR exhibits a coherence
revival after a time period of Trev ¼ h=8ER ¼ 34.0 μs,
during which time momentum components traveling with
velocity �2ℏkR=m separated by a distance λR. Figure 3(a)
schematically depicts this behavior: the left panel shows
modulations in total density (black) and in each spin
component (red and blue) at t ¼ 0; the center panel shows
that after Trev=2 the modulation pattern in each spin
component moved �1=4 of the overall modulation period,
yielding a flat density profile. The right panel shows the
long-time behavior in which the spin components moved a
distance comparable to the overall system size.
The periodic revivals in Fig. 3(b) occurred very near the

34 μs free-particle Talbot time, only about one-third of our
earlier 100 μs Bragg pulse time. This indicates that all of
our previous measurements inadvertently integrated over
about three periods of collapse and revival. To resolve the
Talbot signal, we largely mitigated this effect by reducing
the pulse time to tB ¼ 20 μs and averaging over at least
four experimental realizations to account for the reduced
signal present in each measurement.
Figure 3(c) shows NB as a function of trev for a range of

Ωh, each constituting a single horizontal cut through
Fig. 3(b). In Fig. 3(c), we observe damped oscillatory
behavior that provides a lower bound to the coherence
length of the system (other physical effects [17] may also
cause the decay of NBðtrevÞ). Our observations are com-
plicated by the 20 μs Bragg pulse which is not short
compared to the revival time. We modeled the integrated
Bragg signal as a sinusiod with Gaussian decay [28]
convolved with our Bragg pulse to obtain

NBðtÞ ¼ Arev

Z
tþtB

t

dt0

tB
cos2

�
πt0

Trev

�
e−ðt0=tdÞ2 þ c; ð3Þ

as displayed by the solid curves in Fig. 3(c). Here tB ¼
20 μs is the Bragg pulse duration and the fitting parameters
are revival amplitude Arev, revival period Trev, decay time
td, and constant c.
Figures 3(d) and 3(e) show the revival amplitude Arev and

period Trev as a function of coupling strength Ωh. The
amplitude Arev gradually decreases above Ωh > 0.21ER,
which we attribute to the onset of phase separation and

subsequent increasing separation between the two plane-
wave components. The solid curve depicts the fit to the
scattering model described in Ref. [19] with the overall
scattering strength as the only free parameter, showing near
perfect agreement with experiment. Allowing Ωc to vary in
the scattering model produces a valueΩc ¼ 0.20ð1Þ, also in
agreement with our expectations. Figure 3(e) shows revival
periods close to Trev ¼ 33 μs, just below the naive single-
particle prediction. Our model in Eq. (2) predicts an
increase in Trev for larger Ωh as the stripe wave vector
kðΩÞ falls. This increasing trend is plotted by the blue
dashed curve; both this model and the null hypothesis are

FIG. 3. Periodic revival of Bragg signal at δ ¼ 0 Hz. (a) Sche-
matic representation of evolution of stripes during free evolution.
The black, red, and blue curves depict total density, spin-up
density, and spin-down density, respectively. (b) Observed Bragg
counts NB from a tB ¼ 20 μs pulse as functions of ðΩh; tÞ.
(c) NBðtÞ for various coupling strength Ωh, showing revivals
characteristic of an atomic Talbot effect. The solid curves are joint
fits of the model described in the text with shared parameters:
decay time td ¼ 250 μs and background level c ¼ 3487 counts.
The vertical blue line depicts the separation equal to the
calculated Thomas-Fermi radius. (d), (e) depict the amplitude
Arev and period Trev obtained from fits to the data in (b). The
vertical dotted lines show the predicted transition strength at Ωc.
The dashed blue curve indicates prediction for TrevðΩÞ shifted
down by 1.1 μs.
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consistent with the data. In addition, the energy scale E0
R in

Eq. (2) was derived from a variational study of the stripe
phase [13]; a similar energy scale—potentially different
from E0

R—will be required within the domain wall and a
proper variational study would be required to identify its
exact value.
Last, the decay time td ¼ 250 μs was independent ofΩh,

indicating that the transition from the stripe phase to the
plane-wave phase was not associated with any decrease in
spatial coherence. During this 250 μs, the interfering
momentum are states separated by 5.8 μm, comparable
to the RTF ¼ 5.5 μm Thomas-Fermi radius [shown by the
vertical line in Fig. 3(c)]. We conclude that the system
was fully coherent even in the phase-separated plane-
wave phase.
Implications for supersolidity.—As has now been

observed with dipolar atoms [29], a traditional supersolid
is a phase of matter with two broken symmetries [30]: the
broken gauge symmetry of a BEC (giving a superfluid
phonon mode) and the broken translation symmetry of a
lattice (giving a separate lattice-phonon mode). On one
hand, we confirmed that diagonal order is present [8] and
demonstrated that this coexists with off-diagonal order: a
supersolid? On the other hand, a BEC in a shallow optical
lattice has off-diagonal order, with density modulations
(diagonal order) simply imprinted by the lattice potential
[31]: not a supersolid.
With the Raman lasers off, our system is a two-

component spinor BEC with two broken symmetries
giving an overall phase (giving a superfluid phonon mode)
and a relative phase between the spin components (giving
a spin-wave mode); translational symmetry is unbroken:
not a supersolid. Adding Raman coupling continuously
connects this spinor phase to the stripe phase. For
infinitesimal coupling, the modulation period [from
Eq. (2)] is externally imposed by the Raman lasers, with
a small shift that grows quadratically with Raman cou-
pling. The spatial phase is set both by the relative phase
between the Raman lasers and the preexisting relative
phase between spin components. Similar to the lattice
case, no new symmetries are broken and no new collective
modes are created: not a supersolid? Although no new
symmetries are broken, the spin-wave mode acquires an
inertial contribution from the periodic density modulations
inducing a gap at the edge of the associated Brillouin
zone, as would be expected of a supersolid’s lattice-
phonon mode [7]. We conclude that this system shares
some properties with conventional supersolids, but is best
given its own name: the superstripe phase, as suggested in
Ref. [7]. This is similar to the supersmectics proposed in
Ref. [32] in which the mode structure of an optical cavity
provides the substrate on which smectic correlations
develop. The lattice-phonon mode remains undetected,
and its observation would be a true smoking gun for
observation of superstripes.

This work was partially supported by the Army Research
Office’s atomtronics Multidisciplinary University Research
Initiative (MURI), the Air Force Office of Scientific
Research’s Quantum Matter MURI, the National
Institute of Standards and Technology, and the National
Science Foundation through the Physics Frontier Center at
the Joint Quantum Institute (Award No. 1430094). We are
grateful for the very thoughtful and detailed eleventh hour
reading of our manuscript by Qiyu Liang and Alina Pineiro.
We appreciate the temperature calibrations performed by
Peter Zhou.

[1] B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett.
1, 449 (1958).

[2] Y. Pomeau and S. Rica, Phys. Rev. Lett. 72, 2426
(1994).

[3] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Phys. Rev.
Lett. 104, 106408 (2010).

[4] T. D. Stanescu and V. Galitski, Phys. Rev. B 75, 125307
(2007).

[5] Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[6] T.-L. Ho and S. Zhang, Phys. Rev. Lett. 107, 150403
(2011).

[7] Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari, Phys.
Rev. Lett. 110, 235302 (2013).

[8] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas,
F. c. Top, A. O. Jamison, and W. Ketterle, Nature (London)
543, 91 (2017).

[9] J. Higbie and D. M. Stamper-Kurn, Phys. Rev. A 69, 053605
(2004).

[10] T. D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A
78, 023616 (2008).

[11] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Phys. Rev. Lett.
105, 160403 (2010).

[12] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
Nature (London) 462, 74 (2009).

[13] Y. Li, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 108,
225301 (2012).

[14] B. Arora, M. S. Safronova, and C.W. Clark, Phys. Rev. A
84, 043401 (2011).

[15] M. Weidemüller, A. Hemmerich, A. Görlitz, T. Esslinger,
and T.W. Hänsch, Phys. Rev. Lett. 75, 4583 (1995).

[16] G. Birkl, M. Gatzke, I. H. Deutsch, S. L. Rolston, and W. D.
Phillips, Phys. Rev. Lett. 75, 2823 (1995).

[17] H. Miyake, G. A. Siviloglou, G. Puentes, D. E. Pritchard, W.
Ketterle, and D. M. Weld, Phys. Rev. Lett. 107, 175302
(2011).

[18] C. A. Müller, C. Miniatura, D. Wilkowski, R. Kaiser, and D.
Delande, Phys. Rev. A 72, 053405 (2005).

[19] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.124.053605 for addi-
tional details, which includes Refs. [20–23].

[20] D. McKay and B. DeMarco, New J. Phys. 12, 055013
(2010).

[21] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

PHYSICAL REVIEW LETTERS 124, 053605 (2020)

053605-5

https://doi.org/10.1103/PhysRevLett.1.449
https://doi.org/10.1103/PhysRevLett.1.449
https://doi.org/10.1103/PhysRevLett.72.2426
https://doi.org/10.1103/PhysRevLett.72.2426
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevB.75.125307
https://doi.org/10.1103/PhysRevB.75.125307
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRevLett.107.150403
https://doi.org/10.1103/PhysRevLett.107.150403
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1103/PhysRevLett.110.235302
https://doi.org/10.1038/nature21431
https://doi.org/10.1038/nature21431
https://doi.org/10.1103/PhysRevA.69.053605
https://doi.org/10.1103/PhysRevA.69.053605
https://doi.org/10.1103/PhysRevA.78.023616
https://doi.org/10.1103/PhysRevA.78.023616
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1038/nature08482
https://doi.org/10.1103/PhysRevLett.108.225301
https://doi.org/10.1103/PhysRevLett.108.225301
https://doi.org/10.1103/PhysRevA.84.043401
https://doi.org/10.1103/PhysRevA.84.043401
https://doi.org/10.1103/PhysRevLett.75.4583
https://doi.org/10.1103/PhysRevLett.75.2823
https://doi.org/10.1103/PhysRevLett.107.175302
https://doi.org/10.1103/PhysRevLett.107.175302
https://doi.org/10.1103/PhysRevA.72.053405
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.053605
https://doi.org/10.1088/1367-2630/12/5/055013
https://doi.org/10.1088/1367-2630/12/5/055013
https://doi.org/10.1103/RevModPhys.84.1419


[22] B. Gadway, D. Pertot, R. Reimann, M. G. Cohen, and D.
Schneble, Opt. Express 17, 19173 (2009).

[23] W. Bao, D. Jaksch, and P. A. Markowich, J. Comput. Phys.
187, 318 (2003).

[24] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel,
and I. Bloch, New J. Phys. 8, 152 (2006).

[25] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E.
Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G.
Hulet, Nature (London) 519, 211 (2015).

[26] H. F. Talbot Esq. F. R. S., Philos. Mag. J. Sci. 9, 401 (1836).
[27] B. Santra, C. Baals, R. Labouvie, A. B. Bhattacherjee, A.

Pelster, and H. Ott, Nat. Commun. 8, 15601 (2017).

[28] We also considered exponential decay, but the overall χ2

was increased by a factor of 4.
[29] G. Natale, R. M.W. van Bijnen, A. Patscheider, D. Petter,

M. J. Mark, L. Chomaz, and F. Ferlaino, Phys. Rev. Lett.
123, 050402 (2019).

[30] M. Boninsegni and N. V. Prokof’ev, Rev. Mod. Phys. 84,
759 (2012).

[31] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I.
Bloch, Nature (London) 415, 39 (2002).

[32] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Phys.
Rev. A 82, 043612 (2010).

PHYSICAL REVIEW LETTERS 124, 053605 (2020)

053605-6

https://doi.org/10.1364/OE.17.019173
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1016/S0021-9991(03)00102-5
https://doi.org/10.1088/1367-2630/8/8/152
https://doi.org/10.1038/nature14223
https://doi.org/10.1080/14786443608649032
https://doi.org/10.1038/ncomms15601
https://doi.org/10.1103/PhysRevLett.123.050402
https://doi.org/10.1103/PhysRevLett.123.050402
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevA.82.043612
https://doi.org/10.1103/PhysRevA.82.043612

