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Realization of a deeply subwavelength adiabatic optical lattice
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We propose and describe our realization of a deeply subwavelength optical lattice for ultracold neutral
atoms using N resonantly Raman-coupled internal degrees of freedom. Although counterpropagating lasers with
wavelength λ provided two-photon Raman coupling, the resultant lattice period was λ/2N , an N-fold reduction
as compared to the conventional λ/2 lattice period. We experimentally demonstrated this lattice built from the
three F = 1 Zeeman states of a 87Rb Bose-Einstein condensate, and generated a lattice with a λ/6 = 132 nm
period from λ = 790 nm lasers. Lastly, we show that adding an additional rf-coupling field converts this lattice
into a superlattice with N wells uniformly spaced within the original λ/2 unit cell.
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I. INTRODUCTION

Optical lattices form a vital substrate for quantum gases,
enabling the quantum simulation of iconic condensed matter
systems [1], the realization of new atomic topological ma-
terials [2], and new-generation atomic clocks [3]. Generally
the spatial period of an optical lattice is derived from the
difference of the wave vectors of the underlying laser beams
(with wavelength λ), forging an apparent lower limit of λ/2
to the lattice period. Many techniques can add subwavelength
structure to a lattice, ranging from Raman methods [4], radio-
frequency-dressed state-dependent optical lattices [5,6], and
time-modulated “Floquet” lattices [7], to deeply subwave-
length structures using dark states [8–10]. Going beyond these
techniques, only explicit use of multiphoton transitions has to
date reduced the underlying lattice period in quantum-gas ex-
periments [11–13]. In addition to increasing the overall energy
scales, potentially easing the preparation of low-temperature
states, each of these short-period optical lattices offers new
experimental opportunities: changing the balance between
on-site and nearest-neighbor interactions [8–10]; sculpting
potential at a subwavelength scale [11–13]; and engineering
artificial gauge fields [7]. Here, we propose and demonstrate a
flexible subwavelength lattice with period λ/2N built from N
resonantly coupled atomic states; furthermore, an additional
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coupling field converts the lattice to a tunable superlattice with
N wells arrayed within a conventional λ/2 unit cell.

Any 1D lattice can be described by a Hamiltonian Ĥ (x̂) =
Ĥ (x̂ + δx) that is invariant under spatial displacements δx
[14]. The smallest such displacement d defines the lattice’s
unit cell, and correspondingly Ĥ (x̂) couples momentum states
differing by integer multiples of the resulting reciprocal lattice
constant k0 = 2π/d . An optical lattice with spatial period
λ/2 formed by a pair of counterpropagating lasers with
wavelength λ and single-photon momentum h̄kR = 2π h̄/λ is
intuitively derived from the h̄k0 = 2h̄kR momentum obtained
by exchanging photons between lattice lasers. This 2-photon
concept has been directly extended to higher-order 4- or even
6-photon transitions producing lattices with reduced periods
[11–13], but required a concomitant increase in laser intensi-
ties, giving greatly reduced lifetimes as compared to 2-photon
lattices generated from lasers with smaller λ. In this work,
we exploit a gauge symmetry present for N internal atomic
states coupled by conventional two-photon Raman transitions
to generate a highly tunable lattice with period λ/2N .

II. PROPOSAL

Our lattice derives from N cyclically coupled inter-
nal atomic states [15] labeled by |m〉, using an angular-
momentum-inspired convention with m ranging from −g to
+g, with g = (N − 1)/2, and with a periodic convention
|N + m〉 = |m〉. The two-photon Raman transitions [shown
in Fig. 1(a) for the N = 3 case] from lasers counterprop-
agating along ex couple consecutive states with matrix el-
ement [h̄�m exp(2ikRx̂)/2] |m + 1〉 〈m|. The resultant light-
matter interaction term

V̂ (x̂)

h̄
=

∑
m

�m

2
e2ikRx̂ |m+1〉 〈m| + H.c., (1)

2643-1564/2020/2(1)/013149(7) 013149-1 Published by the American Physical Society

https://orcid.org/0000-0002-4495-7926
https://orcid.org/0000-0002-0677-6446
https://orcid.org/0000-0003-1421-8652
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.013149&domain=pdf&date_stamp=2020-02-12
https://doi.org/10.1103/PhysRevResearch.2.013149
http://ultracold.jqi.umd.edu
https://creativecommons.org/licenses/by/4.0/


R. P. ANDERSON et al. PHYSICAL REVIEW RESEARCH 2, 013149 (2020)

FIG. 1. Experimental and conceptional schematic for N = 3.
(a) Experimental geometry and level diagram. A BEC is illuminated
by a pair of laser beams that complete two-photon Raman transi-
tions between N internal states. (b) Computed adiabatic potentials
illustrating the spatial subdivision of this lattice. The dashed curves
were computed for h̄� = (1.0, 1.0, 1.0) × ER and δ = 0; the solid
curves were computed for h̄� = (1.0, 1.25, 0.75) × ER and δ = 0.
The ternary diagram to the right shows the color scheme used
throughout this paper to indicate the fractional composition of states.
(c) Internal state–momentum coupling diagrams showing nodes de-
scribing states (labeled by internal state and momentum) connected
by links denoting the laser-induced momentum kicks on each link
(left) transferred to a single link (right) after the state-dependent
gauge transformation.

and state-dependent energy shifts �̂/h̄ = ∑
m δm |m〉 〈m| are

manifestly invariant under discrete spatial translations by
multiples of λ/2. This lattice’s true nature is evidenced by
the adiabatic potentials resulting from diagonalizing V̂ (x̂) +
�̂, as plotted in Fig. 1(b) for N = 3. These potentials re-
peat three times within the purported λ/2 unit cell, sug-
gesting an N-fold reduced unit cell, and therefore an N-
fold enlarged Brillouin zone (BZ). This reduction is made
explicit by a state-dependent gauge transformation �̂(x̂) =
exp(i

∑
m 2mkRx̂ |m〉 〈m|) that leaves �̂ unchanged, but takes

V̂ (x̂) into

V̂ ′(x̂)

h̄
=

(
�g

2
e2iNkRx̂ |−g〉 〈g| +

g−1∑
m=−g

�m

2
|m+1〉 〈m|

)
+ H.c.,

revealing a unit cell [16] with size d = λ/2N and recipro-
cal lattice vector k0 = 2kRN [17]. Figure 1(c) compares the
transitions driven by V̂ (x̂) (left) with those possible from
V̂ ′(x̂) (left), in both cases starting in |k = 0, m = 0〉 for
N = 3. This shows that V̂ (x̂) couples states of all momenta
separated by 2kR, albeit in different internal states, while V̂ ′(x̂)
either changes the momentum in units of 6kR or leaves it
unchanged. Similarly to 1D spin-orbit coupling experiments
[18], this gauge transformation also introduces a spatially uni-
form vector-gauge potential Â=−∑

m 2h̄kRm |m〉 〈m| leading
to the kinetic energy (h̄k̂′ − Â)2/2M; we denote the momen-
tum in the gauge-transformed frame as h̄k′. During the prepa-
ration of this paper, we learned of a proposal [19] that focuses
on a similar lattice for ring-shaped traps using Laguerre-Gauss
Raman laser modes, but which notes the connection to linear
geometries.

The dashed curves in Fig. 1(b) depict an additional feature
of this system: in the special case of zero detuning �̂ = 0
and isotropic coupling �i = � j , the subwavelength lattice
fragments into three interwoven d = λ/2 sinusoidal lattices,
each comprised of equally weighted superpositions of the |m〉
states.

III. IMPLEMENTATION

Our experiments began with nearly pure 87Rb BECs
in a crossed optical dipole trap [20], with frequencies
( fx, fy, fz ) ≈ (45, 55, 160) Hz. A magnetic field B0 =
3.4031(1) mT along ez Zeeman-split the |mF = −1, 0,+1〉
states comprising the ground state F = 1 manifold by
ωZ/2π ≈ 23.9 MHz. We first coupled these states with
strength �rf/2π = 134.5(1) kHz, using a strong radio
frequency (rf) magnetic field oscillating along ex with
angular frequency ωZ . This made a trio of dressed states
[21–23] which we denote by |m = −1〉, |0〉, and |+1〉
with energies h̄ω±1,0. Unlike the bare mF states, every
pair of these states can be Raman coupled using lasers
detuned far from resonance as compared to the excited-state
hyperfine splitting [21]. The resulting three energy splittings
(δω−1, δω0, δω+1)/2π = (182.4(1), 99.2(1), 281.6(1)) kHz
with δωm = |ωm+1 − ωm| were at least first-order insensitive
to magnetic field fluctuations, rendering our experiment
insensitive to the 0.1 μT scale magnetic field noise in our
laboratory. These states are further immune to the 2-body
spin relaxation collisions that often plague mixtures between
different hyperfine manifolds.

We coupled the dressed states using a pair of cross-
polarized Raman laser beams counterpropagating along ex

tuned to the “magic-zero” wavelength λ = 790 nm where the
scalar light shift vanishes [24]. This laser served to define
the single-photon recoil energy ER = h̄2k2

R/2M for atoms with
mass M. The Raman beam traveling along +ex had frequency
[25] ω+ = ω0 + ωZ , while the beam traveling along −ex

carried frequencies ω−
m = ω0 ± (δωm + δm). In what follows

we maintain the detunings δ j ≈ 0 to within our experimental
control, and state their measured values in the figure captions.
The ± is selected as indicated in Fig. 1(a), such that |−g〉 to
|+g〉 transition has the opposite frequency shift to impart the
same phase factor as the remaining transitions. Changing the

013149-2



REALIZATION OF A DEEPLY SUBWAVELENGTH … PHYSICAL REVIEW RESEARCH 2, 013149 (2020)

sign on any δωm leaves the transition in Raman resonance,
but inverts the sign of the associated phase factor in Eq. (1),
increasing the unit cell size as noted above. The coupling
strength of each Raman transition h̄�m � ER from state |m〉
to |m + 1〉 was far smaller than the δωm spacing between
the three |m〉 states. This simultaneously ensured the validity
of the rotating-wave approximation and rendered negligible
second-order energy shifts due to off-resonant coupling to
other transitions.

In the following experiments, we prepared the BEC in any
of the three |m〉 states [22] before applying any additional
coupling fields. We measured the final state by first abruptly
turning off the Raman lasers and the dipole trap, thereby pro-
jecting onto the |m〉 states and free momentum states. We then
adiabatically transformed the |m〉 states back to the standard
|mF 〉 spin states in about 1ms by simultaneously ramping
B0 away from rf resonance and ramping �rf to zero [22].
During the following 21 ms time-of-flight the Stern-Gerlach
force from a magnetic field gradient first separated these spin
states, and we obtained the resulting spin-resolved momentum
distribution using absorption imaging.

IV. ENLARGED BZ

We experimentally resolved the enlarged BZ by measuring
the internal-state composition in the lowest band as a function
of the crystal momentum h̄q and show that it repeats every
6h̄kR rather than every 2h̄kR as would be expected for a λ/2
lattice period. This shows that the BZ must be at least 6h̄kR

in extent, but does not exclude the possibility of a BZ even
larger than predicted. Given the agreement of our experiment
with our microscopic model, we take this as support of our
model which contains a 3-fold enlarged BZ.

We used the narrow momentum distribution of a BEC to
probe individual Bloch states, and rather than accelerating
the BEC to access nonzero crystal momentum states, we
instead ramped on a moving lattice in 200 μs, adiabatically
loading BECs at rest in the laboratory frame into nonzero
crystal momentum states of the moving lattice. We brought
the lattice into motion [26,27] by detuning one of the two
Raman lasers by δν, giving a crystal momentum of q/kR =
h δν/(4ER) in the lattice’s rest frame. After a brief 50 μs
hold in the moving lattice, we measured the state-resolved
momentum distribution. As shown in Fig. 2 (top), the lowest
band contains three local minima near q = −2kR, 0, or 2kR,
predominantly derived from the |+1〉, |0〉, or |−1〉 state,
respectively. The first excited band approaches the lowest
band at band gaps (avoided crossings) between these minima,
rendering our lattice turn-on nonadiabatic in their vicinity.
Accordingly, we accessed the entirety of the enlarged BZ in
a piecewise manner: for each of the three initial states, we
applied the above method to focus on a single 2h̄kR interval.

We operated in a regime of unequal coupling (see cap-
tion), where the adiabatic potential cannot be decomposed
into independent sinusoids. Figure 2 (bottom) shows the
measured occupation probability in each of the |m〉 states,
immediately exposing the enlarged BZ. The solid curves are
the result of a numerical simulation via unitary dynamics of
our loading procedure which are in near-perfect agreement
with our measurements. The differing population ratios in the

FIG. 2. Enlarged BZ. The top axis shows the frequency shift
δν used to effect a moving lattice that populated the desired h̄q
state. Top: Computed band structure. Each solid curve is shaded
in accordance with the population in the |−1〉, |0〉, |+1〉 using the
ternary diagram in Fig. 1(b). The dashed curves depict the bare
free particle dispersion absent Raman coupling. Bottom: Internal
state composition of the lowest band. Different regions of the
BZ were explored by starting in the three |m〉 states. The solid
curves plot the outcome of a full simulation of our experimental
protocol. We determine the Raman coupling strengths to be h̄� =
(0.54(1), 0.29(1), 0.61(1)) × ER and detunings h̄|δm| � 0.07(1)ER.

vicinity of the band gaps result from the asymmetric Raman
coupling.

V. SUPERLATTICE

We conclude by describing how to gain individual control
over the energy minima of the N sublattice sites discussed
above, essentially combining N reduced unit cells into a
superlattice structure: a λ/2 period lattice with N basis states
(sites). We demonstrate this principle by creating a tunable
triple-well lattice.

We break the symmetry between the three sublattice sites
using a spatially homogeneous coupling with strength �rf

m and
phase φrf

m to the matrix element in Eq. (1), giving combined
matrix elements such as [�m exp(2ikRx̂) + �rf

m exp(iφrf
m )]/2.

Figure 3(a) shows a connected graph with nodes depicting
the collection of momentum and internal states that a system
initially in |k′ = 0, m = 0〉 can couple to, with red and black
links denoting Raman and rf transition matrix elements, re-
spectively. In the gauge-transformed frame all rf transitions
change momentum [are diagonal in Fig. 3(a)], while only
some Raman transitions change momentum. Figures 3(a)–
3(i), with only Raman coupling, are simply an expanded view
of Fig. 1(c), where the coupled states differ in momentum by
6h̄kR, yielding a λ/6 period, but in (ii) the rf term couples
to the previously disconnected groups of states differing in
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FIG. 3. (i) Subwavelength lattice and (ii) superlattice.
(a) Momentum-coupling graphs as in Fig. 1(c), with red links from
Raman coupling and black links from rf coupling. Panels (b)–(e)
share the same parameters with h̄� = (0.87, 0.98, 0.82) × ER and
h̄δ = (0.08, 0.08, 0.15) × ER, with columns (i) and (ii) depicting
h̄�rf = 0 and h̄�rf = (0, 0.7, 0) × ER, respectively. (b) Computed
adiabatic potentials with rf phase φ0 = π/4. (c) Computed band
structure for the experimental parameters [shaded per Fig. 1(b)].
(d) Measured probability in |−1〉 as a function of time and crystal
momentum, for a system initially in |−1〉. Dark and light color
tones indicate high and low probability, respectively. (e) PSDs
obtained from time traces such as in (c). Each PSD is derived from
the time evolution of all three internal states, averaged over five
time series. For the Raman-only data (i) we started in the |m = −1〉
state only, while for the Raman and rf data in (ii) we increased the
signal-to-noise ratio by combining data starting in all three internal
states. The horizontal structures present in both data sets around
2.5ER result from laboratory technical noise.

momentum by just 2h̄kR, yielding a λ/2 period. The most sig-
nificant effect of even one such rf coupling is to shift the ener-
gies within the unit cell as shown in Fig. 3(b). As in Fig. 1(b),
the dashed curves show the three uncoupled sinusoids present

for uniform detuning and Raman coupling, which we now
enumerate with �, ranging from 1 to N . At lowest order rf
shifts these curves by an energy h̄�rf

m cos(2π�/N + φrf
m )/N ,

and at higher order it introduces new transition matrix ele-
ments between the adiabatic potentials. Figure 3(c) shows the
resulting band structure in the initial BZ. In the subwavelength
lattice case (i), the single lowest band appears as a group
of three bands, which are connected across the edge of the
BZ; in the superlattice case (ii), this single connected curve
becomes gapped at the edge of the BZ, splitting into three
distinct bands. Just as the familiar bipartite (double-well)
Su-Schrieffer-Heeger model [28] has a pair of low-energy
bands, this N-partite lattice has N low-energy bands.

We experimentally demonstrated this concept by adding
one rf-coupling field to our Raman lattice and directly verified
the formation of the superlattice potential using Fourier trans-
form spectroscopy [29], which we detail in Appendix A. The
essential concept of this technique is that as a quantum system
undergoes unitary evolution, the observed probabilities have a
spectrum composed of all the frequency differences between
the energy eigenstates, with amplitude proportional to the
transition matrix elements. The frequency differences are
obtained from the power spectral density (PSD; magnitude-
squared of the Fourier transform) of experimental time traces.
Here we apply this technique starting with noncondensed en-
sembles [30] spanning the whole BZ, and in any internal state;
we simultaneously applied the Raman coupling and a single
rf coupling �rf

0 , coupling |m = 0〉 with |m = +1〉. We then
measured the resulting time-evolving state-resolved momen-
tum distributions for 2 ms. Figure 3(d) shows representative
momentum distributions spanning the BZ as a function of time
for atoms starting and ending in internal state |m = −1〉.

Figure 3(e) shows the PSDs computed for each initial mo-
mentum state separately, both without (left) and with (right)
rf coupling, with a ≈0.5 kHz frequency resolution from the
2 ms evolution time. The Raman-only data (i) are dominated
by a single difference frequency associated with the Raman
lattice’s splitting; here the nearly degenerate spectra associ-
ated with the enlarged BZ lie atop each other and cannot
be distinguished. The addition of rf coupling (ii) lifted this
degeneracy and produced three subbands, each associated
with a single site of the 3-partite lattice, which are manifested
by the appearance of three resolvable energy differences in the
Fourier transform spectrum.

VI. CONNECTION TO SINUSOIDAL LATTICES

The three gray dashed adiabatic potentials shown in
Fig. 1(b) rightly suggest that in the simple case of uniform
coupling �m = �̄ and zero detuning δ = 0, the lattice de-
composes into three independent sinusoidal lattices each with
depth 2h̄�̄ obtained by diagonalizing V̂ ′(x̂). We confirmed
this picture by following the unitary evolution of a BEC sud-
denly exposed to all three Raman fields simultaneously and
observed diffraction into discrete momentum orders spaced
by 6h̄kR within each final internal state offset by ±2h̄kR in the
|m = +1〉 and |m = −1〉 states, respectively, as shown in the
top panel of Fig. 4. For any initial internal state, the dynamics
of these orders individually were indistinguishable from the
2h̄kRn orders diffracting off a conventional 1D optical lattice.
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FIG. 4. Stroboscopic evolution starting in |m = 0〉. During each
pulse the Raman lasers were applied for 50 μs and then removed
for 16.8 μs, giving a total pulse duration close to h/(4ER ). Top: Ab-
sorption images showing the initial k = 0 state and diffracted orders
for 2 and 13 pulses, respectively. The symbols plot the population
|m = 0〉, |+1〉, and |−1〉, colored blue, orange, and gray, respec-
tively. Bottom: The solid curves depict our full lattice model using
calibrated couplings h̄� = (0.58(1), 0.57(1), 0.58(1)) × ER and de-
tunings h̄δ = (0, −0.03(1), 0) × ER. The detuning of the initial state
δ0 was the only fit parameter. The dashed curve plots the prediction
of the simple lattice model with a depth h̄(�0 + �−1) = 1.15(2)ER

and the same −0.03ER energy shift of the initial state.

We enhanced the diffraction from our comparatively shallow
lattice by pulsing it repeatedly [31]: alternating between pe-
riods of evolution with and without the lattice present allows
a state initially in |k = 0〉 to acquire far more population in
|k = ±2kR〉 than from a single uninterrupted pulse of any
duration. Figure 4 shows the resulting evolution for a system
initially in |m = 0〉; the solid curves depict the prediction
of our full lattice model using independently calibrated cou-
plings (see caption). For weak Raman coupling such as ours,
the matrix elements directly coupling the initial state dominate
the dynamics. The dashed curves depict the prediction of a
simple 1D lattice with depth h̄(�m=0 + �m=−1) = 1.15(2)ER.

VII. TIGHT-BINDING MODEL

The general band structure of this lattice must be obtained
through numerical diagonalization. For zero detuning and
nearly equal couplings �m = �̄ + δ�m, with |δ�m| � �̄,
some lattice properties reduce to those of the conventional
λ/2 lattice [32] of depth sER = 2h̄�̄ described in the previous
section. For example, the gap between the lowest two bands is
sER/2 for s � 4 and (2

√
s − 1)ER for s � 4.

More specifically, the tight-binding model suitable for the
ground band of this lattice consists of N sites within each
original unit cell derived from the N minima of the adiabatic
potentials in Fig. 1(b) (gray dashed curves). Each minima is
associated with a Wannier orbital W (x) well approximated by
a Gaussian with width w = λ/(2πs1/4) centered at x = j ×
λ/(2N ). (We note that the Gaussian approximation becomes
poor outside the lattice site it resides in, i.e., a range of
about ±λ/4, beyond which numerical methods are required.)

Following Ref. [33], this adds long-range tunneling terms

J ′
j,δ j = δ�̃δ j

2N1/2
exp

[
− 1√

s

]
exp

[
−

√
s

4

(
πδ j

N

)2
]

× exp

[
− iπ (δ j + 2 j)

N

]

describing the tunneling amplitude from site j to site j + δ j.
The terms in this expression are interpreted as follows. The
first term δ�̃δ j , the discrete Fourier transform of the differ-
ences δ�m sets, the scale of the added tunneling of range δ j.
The second term is a Lamb-Dicke suppression term which
becomes negligible for large s, where the Wannier function
becomes small compared to the optical wavelength. The third
term captures the spatial overlap of Wannier orbitals separated
by δ j. The final term is a Peierls phase from the exp(2ikRx̂)
coupling matrix elements.

For a lattice of depth s = 5 with N = 3 and δ�̃1 =
1ER, this gives significant nearest-neighbor tunneling |J ′

1| ≈
0.05ER, minimal next-nearest-neighbor tunneling |J ′

2| ≈
0.008ER, along with the range δ j = 3 hopping J = 0.07ER

from the λ/2 adiabatic potentials.
Lastly, assuming a 1D system with contact interactions

with strength g, the model acquires non-negligible long-range
Hubbard terms

Uδ j = g
∫

dx|w(x)|2|w(x + δ jλ/2N )|2

= U × exp

[
−

√
s

2

(
πδ j

N

)2
]
,

where U ≡ U0 is the standard on-site Hubbard U . For a lattice
of depth s = 5 and with N = 3, this gives significant nearest-
neighbor interactions U1/U ≈ 0.3, but small next-nearest-
neighbor interactions U2/U ≈ 0.01, an ideal starting point for
experiments searching for supersolid or density-wave phases
[34].

All together this shows that for a typical U ≈ 1.5ER, our
lattice as realized was already in the single-band regime, and
similarly to the lattice proposed in Ref. [35], the resulting
Hubbard system produces a highly tunable 1D lattice both in
terms of the single-particle tunneling terms and the interaction
terms.

VIII. OUTLOOK

The ≈1 ms lifetime for coherent evolution in our experi-
ment resulted from interaction effects common when excited
Bloch bands are populated [36]; in contrast the spontaneous-
emission-limited lifetime is computed and measured to be
hundreds of milliseconds (see Appendix B).

Our techniques are readily extendable to higher spatial
dimensions [37]: in 2D, kagome lattices can be generated
using the same three internal states used here, and in 3D,
pyrochlore-type lattices can be assembled using four internal
states. The latter are of particular interest as they are a can-
didate lattice for realizing non-Abelian topological spin and
charge pumps [38] derived from the second Chern number
[39]. The specific three-site superlattice demonstrated here
is ideally suited for assembling gauge fields without spatial
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gradients [40]. In the broader setting, subwavelength optical
structures may defeat the diffraction limit for lithography,
using either nonclassical light [41] or even coherent atomic
dynamics [42].
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APPENDIX A: FOURIER TRANSFORM SPECTROSCOPY

Fourier transform spectroscopy is a technique used for
measuring single-particle energies that relies on measuring
the quantum-coherent evolution of a system subject to a
quench of a Hamiltonian of interest Ĥ . We consider a set
of orthonormal states {|ψi〉} that fully span the accessible
Hilbert space of the system and whose occupation probabil-
ities are experimentally measurable. The time evolution of an
arbitrary initial sate |0〉 = ∑

i ai |ψi〉 suddenly subjected to
Ĥ is |(t )〉 = ∑

i, j aici, je
−iE ′

j t/h̄ |ψ ′
j〉, where E ′

j and |ψ ′
j〉 are

the eigenenergies and eigenstates of Ĥ , and ci, j (t ) = 〈ψi|ψ ′
j〉.

The probability of finding the system in a state |ψk〉 of the
measurement basis is

Pk (t ) = |〈ψk|(t )〉|2 =
∣∣∣∣∣∣
∑
i, j

aici, jc
∗
j,ke−iE ′

j t/h̄

∣∣∣∣∣∣
2

, (A1)

and can be written as a sum of oscillatory components

Pk (t ) = 1 +
∑
i, j �=l

2|a2
i ci, jc j,kci,l cl,k| cos(2π f j,l t ), (A2)

where f j,l = (E ′
j − E ′

l )/h is the frequency associated with the
energy difference of two eigenstates of the Hamiltonian.

Fourier spectroscopy relies on measuring the Pk (t ) as
a function of time, and extracting the different frequency

components f j,l directly by computing the discrete Fourier
transform. The bandwidth and frequency resolution of the
measurement are determined by the total sampling time and
the number of samples. For N samples separated by a time
interval �t , the highest resolved frequency is fbw = 1/2�t
and the frequency resolution is � f = 1/�tN .

APPENDIX B: SCATTERING RATE

Following the calculation of the scattering rate at the
magic-zero wavelength in Refs. [43,44], we find that the
scattering rate for a single beam with intensity I0 is

γsc = I0 ω2
0 α2

0

18πε2
0 h̄3 c4

(
1

�2
D1

+ 2

�2
D2

)2

, (B1)

where �D1 and �D2 are the detuning of the laser from the D1
and D2 lines (the 5S1/2 to 5P1/2 or to 5P3/2 transitions, respec-
tively). The polarizability constant α0 = 3ε0h̄λ3

D2�D2/8π2,
where λD2 and �D2 are the resonant wavelength and natural
linewidth of the D2 transition. Thus we have

γsc = 0.00897 s−1 I0

(W cm−2)
. (B2)

For the two Raman beams here, we use I0 = I+ + I−, where
I− = cε0〈|E−

z + E−
x + E−

y |〉t , where 〈·〉t denotes the time av-
erage.

For all measurements described in the article, we have
h̄�n � ER, which alone provides an upper bound on I0 and
thus the photon scattering rate. We find I0 < 500 W cm−2

and γsc < 4.5 s−1. Thus photon scattering does not hinder the
utility of the Raman lattice presented here, as the scattering-
limited lifetime is greater than 200 ms.

We confirmed this theoretical description by illuminating
our BEC by the Raman lasers, but tuned far from two-photon
resonance, and observed a ≈300 ms lifetime at intensities ≈2
higher than present in this experiment. We therefore confirm
that the observed lifetime in our lattice is limited from techni-
cal considerations, most likely relative phase noise on any of
the Raman fields, not the in-principle limit from spontaneous
emission.
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