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Quantum degenerate gases have proven to be an ideal platform for the simu-

lation of complex quantum systems. Due to their high level of control it is possible

to readily design and implement systems with effective Hamiltonians in the labora-

tory. This thesis presents new tools for the characterization and control of engineered

quantum systems and describes their application in the realization of a topological

system with Rashba-type spin-orbit coupling.

The underlying properties of these engineered systems depend on their un-

derlying energies. I describe a Fourier transform spectroscopy technique for char-

acterizing the single particle spectrum of a quantum system. We tested Fourier

spectroscopy by measuring the dispersion relation of a spin-1 spin-orbit coupled

Bose-Einstein condensate (BEC) and found good agreement with our predictions.

Decoherence due to uncontrolled fluctuations of the environment presents fun-

damental obstacles in quantum science. I describe an implementation of continuous



dynamical decoupling (CDD) in a spin-1 BEC. We applied a strong radio-frequency

(RF) magnetic field to the ground state hyperfine manifold of Rubidium-87 atoms,

generating a dynamically protected dressed system that was first-order insensitive

to changes in magnetic field. The CDD states constitute effective clock states and

we observed a reduction in sensitivity to magnetic field of up to four orders of magni-

tude. We additionally show that the CDD states can be coupled in a fully connected

geometry and thus enable the implementation of new models not possible using the

bare atomic states.

Finally, I describe a new realization of Rashba-type SOC using Raman coupled

CDD states. Our system had non-trivial topology but no underlying crystalline

structure that yields integer valued Chern numbers in conventional materials. We

validated our procedure using Fourier transform spectroscopy to measure the full

dispersion relation containing only a single Dirac point. We measured the quantum

geometry underlying the dispersion relation and obtained the topological index using

matter-wave interferometry. In contrast to crystalline materials, where topological

indices take on integer values, our continuum system reveals an unconventional half-

integer Chern number.
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Preface

A few weeks after I had started writing this thesis Ian came to me and asked

if I had learned all the physics I wish I had known while I was doing my PhD. I felt

a bit puzzled. I had been operating the lab, analyzing data and writing papers for

a while, of course I already knew the physics relevant to my research! It finally hit

me when I was writing the introductory chapters how many subtleties I had missed

and how much I still didn’t know. As experimental physicists being in the lab can

give us some physical intuition and a sense of understanding but sometimes that is

not enough. This was a very striking and unexpected side effect of the thesis and I

invite experimentalists reading this to challenge their lab intuition.

In the end, I actually found it very enjoyable to look back at the history of

our field and to put my research into a bigger context. I never thought the words

thesis and enjoyable could go well together! My advice for a graduate student

starting to write a thesis is to try to enjoy the ride, it will definitely be stressful and

overwhelming but it is also a great learning opportunity.

A PhD thesis is not just a service for oneself but also a service to other students

and new members of the lab. I had this in mind during the process of writing and

I hope that future students find this document helpful.
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Chapter 1: Introduction

Bose statistics were first developed in 1924 to describe the quantum behavior

of photons [1] and generalized by Einstein to include massive particles [2]. Today,

we routinely produce atomic Bose-Einstein condensates (BECs) in the laboratory

and even use them as a platform for the analog simulation of complex quantum

systems. The field has certainly come a long way!

A connection between Bose-Einstein condensation and the onset of superfluid-

ity in liquid 4He was first made in 1938 [3]. However, due to the strong interactions,

the occupancy of the lowest energy state is dramatically reduced, leading to the

search of this phase for weakly interacting Bose gases. Bose-Einstein condensation

in dilute atomic gases was observed for the first time in 1995 in vapors of 87Rb [4],

23Na [5] and 7Li [6]. The dilute nature of this gases required cooling down to tem-

peratures never achieved before and it wasn’t until the experimental development

of laser cooling and trapping together with evaporative cooling that bosonic atoms

were cooled the critical condensation temperature1. The experimental realization of

this new phase of matter opened new possibilities for studying macroscopic quan-

tum phenomena such as the propagation of collective modes [8, 9] and interference

1For a more in depth story of the BEC field I highly recommend reading [7].

1



of coherent matter waves [10] and jump-started an ever-growing field of research.

For this achievement, Eric Cornell, Carl Wieman, and Wolfgang Ketterle received

the 2001 Nobel Prize in physics.

It has been more than 20 years (and many more in the learning of atomic

physics) and the field of quantum degenerate gases has expanded to include degen-

erate Fermi gases [11] and spinor gases [12]. As the field continues to grow, new

control and detection techniques are being constantly developed, enabling the use

of BECs and ultracold atomic systems in general not just as an object of study

by themselves but as tools for a wide range of scientific endeavors, from precision

measurements [13] to the analog simulation of complex systems.

Quantum degenerate gases are an ideal platform for quantum simulation [14].

A straightforward example comes from the use of optical lattices, where the periodic

potential imparted by standing waves of light serves as an analogue to the crystal

structure in a solid. Perhaps the first iconic realization of a quantum simulation was

the study of the Bose-Hubbard model in three-dimensional optical lattices [15], the

bosonic analogue of a model which is believed to be relevant to high-Tc supercon-

ductors.

The development of light-induced gauge-fields [16] has been another important

milestone in the field of quantum simulation. Such fields can be used to mimic

the effect of magnetic [17, 18] and electric [19] fields with potential applications to

the realization of quantum Hall materials with large magnetic fluxes [17, 20] and

fractional quantum Hall states [21]. Furthermore, light-induced gauge fields can

be used to engineer spin-orbit coupling (SOC) interactions [22] as those present in
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two-dimensional materials, a necessary ingredient for the spin quantum Hall effect

and certain kinds of topological insulators [23].

The precise level of control and tunability of ultracold atomic systems allow

us to readily implement important physical models in the laboratory. Furthermore,

we can go beyond conventional materials existing in nature, and create new ex-

otic atomic ‘materials’, with interaction-dominated or topologically non-trivial band

structures that can help deepen our understanding of the physical consequences of

these effects on materials.

This thesis focuses on the development of new tools for the characterization

and control of engineered quantum systems and their application for creating and

characterizing a topological system with Rashba-type [24] SOC.

The creation of new engineered materials requires the ability to characterize

their single-particle energies. We developed a Fourier transform spectroscopy tech-

nique which allows us to probe the single particle spectrum, and verify our quan-

tum engineering, by only looking at the quantum coherent evolution. We have used

Fourier transform spectroscopy to characterize the spectra from variety of engineered

quantum systems with SOC [25,26] and fractional period adiabatic superlattices [27].

Atomic systems are susceptible to coupling to the environment, leading to

undesired effects such as the loss of coherence. In particular laboratories such as

ours greatly suffer from noise in ambient magnetic fields and go through great ef-

forts to diminish their effects. We implemented continuous dynamical decoupling

(CDD) on a set of internal atomic states which renders them first order insensitive

to magnetic field changes, effectively turning them into clock states. These CDD
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states are a robust basis for performing experiments, however, the most important

feature is the fact that they can be coupled in a fully connected geometry unlike

the hyperfine atomic states. The CDD states gave us access to new matrix elements

which were essential for the engineering of Rashba SOC [26] as well as other novel

lattice systems [27] not presented in this thesis.

Rashba-type SOC is a relativistic effect present in two-dimensional materials

subject to an intrinsic out-of-plane electric field. The dispersion relation of Rashba

systems is characterized by a Dirac point at zero momentum and an infinitely de-

generate ring-shaped ground state. The presence of the Dirac point gives rise to

non-trivial topology while the ring-shaped single particle ground state opens new

possibilities of studying strongly correlated phases in the presence of interactions

for systems of both fermions and bosons [28–30]. Using ultracold atomic systems to

engineer Rashba-type SOC has been a longstanding goal [22].

In the last part of this thesis we describe a new experimental realization of

Rashba SOC using Raman coupled CDD states. Our system is certainly condensed

matter inspired. However, part of the beauty of engineered quantum systems is

we can depart from conventional materials, for example, by considering a system

with Rashba SOC but without an underlying crystalline structure. We studied the

quantum state geometry of such a system with non-trivial topology in a Brillouin

zone that extends to infinity. We find that our system is characterized by half-

integer valued invariants, defying our conventional understanding of the topology of

Bloch bands.
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1.1 Thesis overview

This thesis describes both the standard experimental control and measurement

techniques used to create BECs of 87Rb as well as new techniques developed in our

laboratory for the engineering of Rashba SOC.

Chapter 2 describes the basic theory of Bose-Einstein condensation in dilute

gases. I focus on the properties of gases confined to harmonic potentials and their

density and momentum distributions as they are most relevant to the experiments

presented here.

Chapter 3 describes the properties of Alkali atoms and their interactions with

magnetic and electric fields which are used as standard tools for the creation, ma-

nipulation and detection of ultracold atomic systems.

Chapter 4 summarizes the experimental apparatus and mentions the most

important upgrades that were not reported previously.

Chapter 5 describes a Fourier transform spectroscopy technique that exploits

the relation between quantum coherent evolution and the underlying spectrum of a

system and that was used to characterize experiments described later in the thesis.

Chapter 6 describes an implementation of continuous dynamical decoupling

using a strong radio-frequency magnetic field that helped to both make our system

more robust against environmental magnetic field noise. The implementation of

CDD allows us to couple the internal states of the atoms in new ways that were not

possible before, opening the path for new kinds of quantum simulations described

in Chapters 8.

5



Chapter 7 presents concepts of topology in physics and its application to the

band theory of solids. These concepts will be important for a better understanding

of the topological properties of our Rashba spin-orbit coupled system.

Chapter 8 describes a new experimental realization of Rashba SOC using a

combination of laser beams that couple a set of CDD states. This system has a

topological dispersion relation but no underlying crystalline structure which allows

for topological invariants to take non-integer values.

Appendix A summarizes the best and worst aspects of the experimental ap-

paratus as a guide for future generations working in BEC labs.

Appendix B describes my work related to the design and construction of a

dual species apparatus for the production of BECs of 87Rb and 39K.

Appendix C shows the derivation of the full time-dependent Hamiltonian de-

scribing the Raman dressing of the RF dressed states (Chapter 6) used to generate

Rashba-type SOC (Chapter 8).
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Chapter 2: Overview of Bose-Einstein condensation

Bose-Einstein condensate (BEC) is a quantum state of matter in which parti-

cles with integer valued spin all tend to occupy or ‘condense’ into the ground state.

In dilute gases, condensation occurs when the temperature of the system goes bellow

a critical temperature where quantum statistics become relevant.

BECs enable the study, both theoretically and experimentally, of macroscopic

quantum phenomena. There have been a number of fascinating experiments study-

ing the properties of these systems, from measuring interference fringes of a macro-

scopic wave function to studying collective effects such as the propagation of sound [7].

In our experiments, however, BECs are not the primary object of study, instead,

they are used as a platform enabling the simulation of analog physical systems.

In this Chapter I give an overview of Bose-Einstein condensation in dilute

atomic gases and I describe the properties most relevant to our experiments. I start

by describing the case of an ideal gas and then consider the effects of interactions

and trapping potentials as are present in our case. A reader interested in learning

about Bose-Einstein condensation in dilute gases in more depth should read [31]

and [32].
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2.1 Bose-Einstein condensation of an ideal gas

At low temperatures and in thermodynamic equilibrium, the mean occupation

number of non-interacting identical bosons in the state with energy E is given by

the Bose-Einstein distribution

n(Ej) = 1
e(Ej−µ)/kBT − 1 (2.1)

where T is the temperature, µ is the chemical potential (the energy cost of adding

or removing a particle) and kB is the Boltzmann constant. In the limit of large tem-

peratures the Bose distribution approximates the Maxwell-Boltzmann distribution

n(Ej) ≈ e−(Ej−µ)/kT (2.2)

which applies to classical, distinguishable particles. The chemical potential is de-

termined by the condition that the total number of particles N is equal to the sum

over all states in the distribution N = ∑
j n(Ej) and is a function of N and T . Ad-

ditionally, in order for n(Ej) to be positive definite we must have µ ≤ E0 where E0

is the energy of the ground state. From the Bose distribution, we can see that the

occupation number of the ground state is unbounded when µ→ 0 as in Figure 2.1.

The number of particles occupying the excited states is bounded and when that

number is reached, the remaining particles can occupy the ground state and thus

Bose-Einstein condensation occurs.
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Figure 1: The Bose-Einstein distribution. Occupation number as a function of
energy for different values of fugacity ζ = exp(µ/kBT ). Condensation occurs when
µ = 0 (ζ = 1) and the occupation number in the ground state diverges.

2.1.1 Critical temperature

Bose-Einstein condensation can be understood in terms of the de Broglie waves

associated with particles. The thermal de Broglie wavelength is

λth =
(

2πh̄2

mkBT

)1/2

(2.3)

and it characterizes the spatial extension of the wave packet an individual particle

at temperature T . Condensation occurs when λth becomes comparable with the

inter-particle separation n−1/3, where n = N/V and V is the volume. The quantity

nλ3
th is known as the phase space density which describes the number of particles

contained in a box with volume λ3
th.

An analytical expression for the critical temperature at which atoms condense

can be derived using the Bose-Einstein distribution. For closely spaced energy lev-
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els (compared to kBT ) the sum representing the total number of particles can be

replaced by the integral

N =
∫ ∞

0
n(E)g(E)dE (2.4)

where g(E) is the density of states and g(E)dE corresponds to the number of avail-

able states with energy between E and E+dE. For a free particle in three dimensions

the density of states is

g(E) = V m3/2
√

2π2h̄2E
1/2, (2.5)

and in general the density of states can be expressed as a power of energy g(E) =

CαE
α−1.

The integral in Equation 2.4 is not analytically solvable, however, we can make

the simplifying assumption µ = 0. The critical temperature Tc is determined by the

condition that all particles are in the excited states

N = Nex(Tc, µ = 0)

=
∫ ∞

0

g(E)dE
eE/kBTc − 1

= Cα(kBTc)α
∫ ∞

0

xα−1

ex − 1

= cα(kBTc)αΓ(α)ζ(α) (2.6)

where x = E/kBTc, Γ(α) =
∫∞

0 xα−1e−xdx is the Gamma function and ζ(α) =

∑∞
n=1 n

−α is the Riemann zeta function. From Equation 2.6 we find that the critical
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temperature for Bose-Einstein condensation is

kBTc =
(

N

CαΓ(α)ζ(α)

)1/α

. (2.7)

If we compute the phase space density for free particles in 3D with density

of states given by Equation 2.5 in combination with the expression for the critical

temperature (Equation 2.6) we find that when T = Tc

nλ3
th = ζ

(3
2

)
≈ 2.612, (2.8)

the inter-particle spacing and the thermal wavelength are comparable. In order to

experimentally produce BECs, we deploy a combination of laser and evaporative

cooling techniques such that we can increase the density while minimizing the tem-

perature, maximizing the phase space density. The densities for BECs of Alkali

atoms typically range between 1013 and 1015 atoms/cm−3.

2.1.2 Condensate fraction

The total number of particles is given by N = N0 + Nex, where N0 is the

number of particles in the condensate. The number of particles in the excited state

will be given by the integral in Equation 2.4. For g(E) = CαE
α−1and α > 0 the

integral converges, we can then evaluate the integral in Equation 2.6 for T < Tc and
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get

Nex = cα(kBT )αΓ(α)ζ(α)

= N
(
T

Tc

)α
, (2.9)

since for T = Tc the total number N = Nex. The number of particles in the ground

state is

N0 = N −Nex

= N

[
1−

(
T

Tc

)α]
(2.10)

2.1.3 Bose gas in a harmonic trapping potential

Our experiments are performed in optical dipole traps that can be described

as harmonic potentials

V (r) = m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.11)

The density of states for this case is

g(E) = E2

2h̄2ωxωyωz
, (2.12)
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which corresponds to α = 3 and C3 = (2h̄3ωxωyωz)−1. Using Equation 2.6, we find

that the transition temperature is

kBTc = h̄ω̄N1/3

ζ(3)1/3 ≈ 0.94h̄ω̄N1/3 (2.13)

where ω̄ = (ωxωyωz)1/3 is the geometric mean of the oscillation frequencies. Similarly

we find that the condensed fraction is

N0 = N

[
1−

(
T

Tc

)3]
(2.14)

Condensates in harmonic traps have some striking features that will be further

explored in more detail in the following sections. The confining potential makes

the BECs both finite-sized and inhomogeneous which means that the BEC can be

observed both in momentum space and in coordinate space. Another consequence

of the inhomogeneity of these systems is the role of two-body interactions, which

gets enhanced and leads to noticeable effects in measurable quantities [33, 34] such

as interaction driven expansion when they are released from the confining potential.

2.2 Bose-Einstein condensation with atomic interactions

Even though atomic BECs are made from very dilute gases, the system is

far from being an ideal gas and a complete treatment requires taking into account

interactions.

The collisional properties of particles at low energies, such as cold atoms in

13



a condensate, are dominated by s-wave scattering which can be described in terms

of a single parameter the scattering length a that determines both the scattering

cross-section σ = 4πa2 and the phase shift of the scattered wave function.

The magnitude of the scattering length is determined by the interatomic in-

teraction potentials. For Alkali atoms at large distances, the two-body interactions

are dominated by an attractive Van der Walls interaction U(r) = −C6/r
6 that arises

from dipole-dipole interactions. At smaller distances, the attractive potential is re-

placed by a strong repulsive electron-exchange interaction U(r)→∞. This minimal

model captures the most important properties of the inter-atomic potential and can

be solved analytically [35].

If the range of the interaction is much shorter than the mean inter-atomic dis-

tance the interaction can be approximated by an effective pseudo-potential Ueff(r−

r′) such that

a = m

4πh̄2

∫
Ueff(r− r′)dr (2.15)

which determines

Ueff(r− r′) = 4πh̄2a

m
δ(r− r′) = gδ(r− r′). (2.16)

This approximation allows us to model the scattering between atoms as a hard-

sphere scattering process instead of considering the more complicated inter-atomic

potentials. The sign of the scattering length determines the attractive or repulsive

nature of the interactions and it plays an important role in the experimental produc-
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tion of BECs as it determines the rate at which atoms thermalize during evaporative

cooling.

2.2.1 Gross-Pitaevskii equation

The full Hamiltonian describing N identical bosons with contact interactions

is

Ĥ =
N∑
i=1

[
p2
i

2m + V (ri)
]

+ g
∑
i<j

δ(ri − rj), (2.17)

where V (r) is an external potential and pi = −ih̄∇i is the individual momentum of

each atom. We consider a normalized eigenstate of the Hamiltonian Ψ(r1, r2, ..., rN)

that satisfies the Schrödinger equation. We can simplify this state by taking a mean

field approach; we assume that the system has undergone condensation so that the

majority of the particles share the same single particle ground state φ(r), then the

wavefunction can be approximated by a symmetrized product

Ψ(r1, r2, ..., rN) =
N∏
i=1

φ(ri), (2.18)

where φ is normalized to unity. The energy of the state from Equation 2.18 is given

by the expectation value

E =
∫

Ψ∗ĤΨ dr

= N
∫
φ∗(r)

[
− h̄2

2m∇
2 + V (r) + (N − 1)

2 g|φ(r)|2
]
φ(r)dr, (2.19)
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where N(N − 1)/2 ≈ N2/2 counts the number of terms in the interaction energy.

We introduce the wave function of the condensate ψ(r) = N1/2φ(r), and inserting it

in Equation 2.19 makes the N factors cancel out. The optimal form of ψ should min-

imize the energy, introducing a Lagrange multiplier µ, subject to the normalization

condition N =
∫
|ψ(r)|2 dr

δ

δψ∗(r)

(
E − µ

∫
|ψ|2 dr

)
=
[
− h̄2

2m∇
2 + V (r) + g|ψ(r)|2 − µ

]
ψ(r) = 0, (2.20)

and we find that the condensate wave function obeys a non-linear Schrödinger equa-

tion known as the Gross-Pitaevskii (GP) equation

[
− h̄2

2m∇
2 + V (r) + g|ψ(r)|2

]
ψ(r) = µψ(r), (2.21)

where µ plays the role of the chemical potential. The dynamics of the condensate

will similarly be described by the time-dependent GP equation

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m + V (r) + g|ψ(r, t)|2
]
ψ(r, t) (2.22)

The GP equation describes the relevant phenomena associated with the prop-

agation of collective excitations and the expansion of the condensate when released

from a trap. The crucial assumption when deriving these equations is the mean

field approximation. This should be valid for dilute BECs where the condensate

fraction is close to unity. The excitations of the system can be described by a set of

equations similar to those of classical hydrodynamics derived from the GP equation
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or alternatively using Bogoliubov theory for weakly interacting bosons [31].

2.2.2 Multiple component BECs

So far the discussion has been limited to single component BECs but most

of our experiments are performed using a combination of multiple atomic inter-

nal states. In general, for a multiple component condensate the scattering lengths

characterizing the interactions depend on the internal states of the incoming and

outcoming scattering channels. Two spin-f 1 particles colliding particles will be char-

acterized by 2f scattering lengths aF . For bosons the total spin F takes even values

and in particular for 87Rb atoms in the f = 1 hyperfine ground state there are two

scattering lengths a0 and a2 corresponding to the two-particle total angular momen-

tum states of F = 0 and F = 2 respectively. The values of scattering lengths are

a0 = 101.8a0 and a2 = 100.4a0 [12] where a0 = 5.29 × 10−11 is the Bohr radius.

From the scattering lengths we can calculate two interaction coefficients

c0 = 4πh̄2

m

a0 + 2a2

3 = 100.84a0
4πh̄2

m

c2 = 4πh̄2

m

a0 − a2

3 ≈ −4.7× 10−3c0. (2.23)

Here c0 represents a spin-independent interaction strength that depends only on the

total density while c2 is a spin-dependent energy that is relevant only where there

is non-zero density of both atoms in mF = ±1 and is much smaller than the spin-

1Here I use the symbol f to denote the angular momentum of the individual particles and F
to denote the total angular momentum of the two particles.
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independent energy. Similar to the case of single component BECs, the dynamics of

multiple component BECs is governed by a spinor GP equation (see [12, 31]). The

spin-dependent interaction strength gives rise to processes like coherent spin-mixing

oscillations and domain formation and coarsening which was previously studied in

the our lab [36].

The time scale at which interactions become relevant is set by the interaction

energies n|ci|. The most noticeable effect of interactions in our system is the density

profile of the condensate and its anisotropic expansion after it is released from a

trap which I will describe in the following sections. For the typical densities and

timescales of our experiments as well as the relatively high magnetic fields that we

operate at, we do not observe noticeable effects from interactions in the dynamics of

the system and in the remaining chapters I will describe the dynamics of the BEC

using single particle physics (i.e. the regular time-dependent Schrödinger equation).

2.2.3 Thomas-Fermi approximation

For systems with large N , the interaction term in the GP equation is very large

compared to the kinetic energy2. As the kinetic energy becomes less important we

enter the Thomas-Fermi (TF) regime where the energy of the system is given only by

the external potential and the mean field energy and the GP equation is considerably

simplified [
V (r) + g|ψ(r)|ψ(r)|2

]
ψ(r) = µψ(r). (2.24)

2It can be shown that the ratio of kinetic energy to interactions scales as N−4/5
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In the TF regime the density distribution of the condensate n(r) = |ψ(r)|2

reflects the shape of the external potential

n(r) = g−1[µ− V (r)], (2.25)

when µ − V (r) > 0 and is otherwise zero. For a harmonic confining potential

(Equation 2.11) as is typical in our experiments we find that the length scale that

characterizes the size of the condensate is the Thomas-Fermi radius

Rj =
√√√√ 2µ
mω2

j

, j = x, y, z. (2.26)

The density of the condensate is described by an inverted parabola

n(r) = µ

g

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
. (2.27)

as is shown in Figure 2a. By integrating over Equation 2.27 we find that

N = 8π
15
µ

g
RxRyRz, (2.28)

which allows to determine the number of atoms in the condensate based on the

density profile. In practice, in-situ BECs are very dense which can lead to some

technical difficulties when trying to image directly their density profiles (see Sec-

tion 3.4) so instead our images are taken after the atoms are released from the trap

and allowed to expand for some time.
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Figure 2: In the Thomas-Fermi regime where interactions are large compared to
kinetic energy the density profile is determined by the external potential. a.Density
profile along ex of a BEC in a harmonic potential. b. Interaction driven expan-
sion of a BEC in time-of-flight for a trap with trapping frequencies (ωx, ωy, ωz) =
2π(42, 34, 133) Hz obtained by numerically integrating Equation 2.30.

2.3 Density profiles

Direct imaging of the atoms probes most ultracold atom experiments. (e.g.

with absorption imaging, Section 3.4). If the atoms are imaged in-situ we access

their spatial density profiles. If the atoms are released from the trap and allowed to

expand in time of flight (TOF) we image their momentum distribution.

For the case of a BEC confined in a harmonic potential at zero temperature

(no thermal fraction) and in the Thomas-Fermi regime discussed in Section 2.2.3,
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the in-situ density distribution is described by

n(r) = n0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)

= 15N
8πRxRyRz

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
. (2.29)

Even though the BEC is in the motional ground state, it will expand during

TOF as a consequence of interactions. The expansion can be determined using the

time dependent GP equation. A detailed account of the procedure can be found

in [34], the procedure relies on using the ansatz that the TF radii expand as

Ri(t) = λi(t)Ri(t = 0), (2.30)

where the condensate is in the trap at t = 0 which implies that λi(0) = 1 and it is

then suddenly turned off at t > 0. If we insert the condensate wave function with

TF radii given by Equation 2.30 into the time-dependent GP equation we find a

series of differential equations

d2λi
dt2

= ω2
i

λiλxλyλz
(2.31)

whose solutions determine the density profile of the BEC in TOF. Alternatively, if

the density profile of the BEC is known from an image, these relations can be used

to back-propagate the original TF radii of the confined condensate. This is helpful

for example to calculate the atom number in the condensate using Equation 2.28.
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Figure 2b shows the scaling factors λi as a function of TOF that were obtained

by numerically integrating Equation 2.30 for a harmonic potential with frequencies

close to those characterizing the optical dipole trap used in most of our experiments.

For a thermal gas in a harmonic potential at temperatures higher than the

level spacing kBT > h̄ωx,y,z the density is given by [7]

nth(r) = 1
λ3

th
g3/2(z(r)) (2.32)

where z(r) = exp(µ− V (r)/kBT , V (r) is given by Equation 2.11, µ is the chemical

potential and gj(z) = ∑
i z

i/ij is the Bose function. The Bose function introduces

effects of quantum statistics and compared to the Maxwell-Boltzmann distribution

of distinguishable particles, the peak density of a Bose gas increases by g3/2(z)/z, a

phenomenon known as Bose-enhancement.

The distribution after TOF is calculable considering that the trapped atoms fly

ballistically from their position in the trap. An atom starting initially at the point

r0 moves to the point r after a time t if its momentum is given by p = m(r− r0)/t,

then

ntof = 1
λth

3∏
i=1

g3/2

(
exp

[
µ− m

2

3∑
i=1

x2
i

(
ω2
i

1 + ω2
i t

2

)])

≈ 1
λth

g3/2

(
exp

[
(µ− mr2

2t2 )/kBT
])

(2.33)

where the approximation in the second line is valid for t� ω−1
i . The temperature of

the atoms can be estimated by looking at the wings of the density distribution after
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TOF. Even with the case of Bose enhancement, the density of the wings still decays

exponentially as exp(−x2
i /2σ2

i ). The temperature of the cloud can be determined

using

kBT = m

2

(
ω2
i

1 + ω2
i t

2σ
2
i

)

≈ m

2

(
σi
t

)2
(2.34)

For partially condensed clouds the density profiles will be given by a combina-

tion of the thermal density profiles and the Thomas-Fermi density profile. Figure 3

shows the density distributions of atoms extracted from images taken after a 21 ms

TOF and therefore the position is mapped to momentum. The images summarize

some of the main concepts discussed in this Chapter. Above Tc the density profile of

the atoms corresponds to the thermal distribution (Equation 2.33). When T < Tc

a small peak in the center of the thermal distribution appears indicating conden-

sation. As the temperature decreases, the fraction of atoms in the condensed state

(and therefore the height of the peak) increases. Equation 2.29 gives density distri-

bution of the condensed atoms, where the TF radius increases due to interactions

and the scaling factors can be found using Equation 2.30.
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Figure 3: Momentum distribution of atoms near Tc after a 21 ms TOF. As the
atoms cool below Tc a sharp peak in the momentum distribution appears indicating
condensation.
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Chapter 3: Manipulation and detection of ultra-cold atoms

All of the experiments described in this thesis were performed using ultracold

clouds of 87Rb. In this Chapter I describe the techniques and interactions that

make our experiments possible. This Chapter is not an extensive survey of atomic

physics but rather covers the topics that are most relevant to my experiments. The

references I included are helpful if the reader is interested in learning the details of

the derivations or wants to expand on a given topic.

In Section 3.1 I start by describing the electronic structure of 87Rb. In Sec-

tions 3.2 and 3.3 I describe atomic interactions with external fields that are necessary

for the creation, manipulation and detection of ultracold atoms. First I review the

interactions of atoms with magnetic fields and its application to magnetic trapping.

Then I describe the foundations of atom-light interactions that make possible both

laser cooling and trapping of atoms and give rise to Raman induced transitions.

In Section 3.4 I discuss the resonant absorption imaging technique that we use to

detect atoms after all our experiments are performed. Finally, in Section 3.5 I dis-

cuss coherent processes that use the magnetic and electric dipole interaction and

are relevant to the experiments presented in Chapters 5, 6, and 8.
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3.1 Electronic structure of 87Rb

Figure 1: Level structure of the two lowest electronic energy levels of 87Rb (not
to scale). a. Ground and first excited state electronic configuration of 87Rb given
by the {n,L} quantum numbers. b. The interaction between the orbital angular
momentum and the spin of the electron leads to the fine structure splitting of orbitals
with L > 0. The splitting of the 52P line gives rise to the D1 and D2 lines. c. The
interaction between the total angular momentum and the nuclear spin causes the
fine structure levels to split further into states characterized by the quantum number
F .

Rubidium is an Alkali metal. Alkali metals correspond to the first group

(leftmost column) of the periodic table and are characterized by having a single

valence electron, which makes the description of their internal structure simpler

than that of other elements. The state of an electron in an atom is described by

its angular momentum L̂ and its spin Ŝ. Due to Pauli’s exclusion principle there
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can not be two electrons with the same quantum numbers and in multi-electron

atoms they tend to fill ‘shells’ of different angular momentum values, historically

labeled by the letters S, P, D, F, ...1 (corresponding to L = 0, 1, 2, 3, ...). In

particular, Rb has 4 filled shells and one electron in the 5S shell, where the number

5 corresponds to the principal quantum number n. Figure 1 shows the energy levels

of the ground state 5S and its closest 5P orbital.

The relativistic treatment of the electron’s motion gives rise to an interaction

between the electron’s intrinsic magnetic moment (the spin) Ŝ and the orbital angu-

lar momentum L̂. This spin-orbit coupling interaction Ĥfs = AfsL ·S causes the fine

structure splitting of the electronic orbitals into levels with different total electronic

angular momentum Ĵ = L̂ · Ŝ. Figure 1b shows the 52S1/2, 52P1/2 and 52P3/2 elec-

tronic configurations that arise from this splitting, using the spectroscopic notation

n2S+1LJ that indicates the values of the relevant quantum numbers. For S (L = 0)

orbitals, J = 1/2 is the only possible value and the levels do not split. For the P

orbital (L = 1) and a single electron with S = 1/2, J can be 1/2 or 3/2 and the P

orbital splits into two levels. The 52S1/2 → 52P1/2 is known as the D1 line and has

wavelength λ = 794.979 nm and 5S1/2 → 5P3/2 transition is known as the D2 line

and has λ = 790.241 nm [37].

The atomic level structure gets further modified by the magnetic interaction

of the electron with the nuclear spin I. This is another kind of spin-orbit interaction

that gives rise to the hyperfine splitting of the atomic levels which can be described

1These terms were used to describe the lines in the emission spectra when they were first
discovered. S stands for sharp, P for principal D for diffuse and F for further noted
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by the Hamiltonian Ĥhfs = AhfsI · J. A complete derivation of Ĥhfs can be found

in [38]. The hyperfine levels correspond to different values of the total angular

momentum F̂ = Ĵ + Î. For 87Rb I = 3/2 [37] which results in the level structure

shown in Figure 1c, where the ground state is split into two levels with total angular

momentum F = 1 and F = 2.

3.2 Interaction between atoms and magnetic fields

Atoms have an intrinsic magnetic moment that is given by the sum of nuclear

and electronic moments

µ̂ = −µB
h̄

(gSŜ + gLL̂ + gI Î) (3.1)

where µB is the Bohr magneton and gS, gL and gI are the ‘g-factors’ corresponding

to the spin, orbital and nuclear angular momentum. In the presence of an external

magnetic field B, the internal levels of an atom get modified due to the Zeeman [39]

interaction

ĤZeeman = −µ̂ ·B. (3.2)

If the energy shift due to the Zeeman interaction is small compared to the hyperfine

splitting then F is a good quantum number and we can write

ĤZeeman = µBgF
h̄

F̂ ·B (3.3)
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where gF is the hyperfine Landé g-factor and is given by

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1) + gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1) ,

(3.4)

and

gJ ≈= 1 + J(J + 1) + S(S + 1)− L(L+ 1)
2J(J + 1) . (3.5)

is the Landé g-factor associated to the total electronic angular momentum J . The

total energy shifts can be calculated by diagonalizing the full atomic Hamiltonian

including the fine and hyperfine structure terms. Figure 2 shows the energies of

the |mF 〉 levels in the F = 1 and F = 2 manifolds of the 52S1/2 electronic ground

state of 87Rb as a function of magnetic field. If the magnetic field is small then the

Zeeman term can be treated as a perturbation to the atomic Hamiltonian and the

energy split is linear with the magnitude of the field EmF = gFµBmFB, what is

known as the ‘linear Zeeman regime’ where F and |mF 〉 are good quantum num-

bers. In contrast, in the ‘Pachen-Back regime’ at large magnetic fields2 the Zeeman

term dominates over the fine and hyperfine terms and therefore the good quantum

numbers of the system are J and mJ . Our experiments typically operate in an in-

termediate regime (B ∼ 10 − 30 G, the gray box in Figure 2) where the externally

imposed magnetic field starts to be comparable to the magnetic field produced by

the valence electron at the nucleus and the energy of |mF = 0〉 gets a small shift in

energy that is quadratic in B. For atoms in F = 1 we define this quadratic Zeeman

2A couple orders of magnitude larger than the fields we operate at.
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shift as ε = E0 − (E+1 − E−1)/2, where EmF is the Zeeman shift for state |mF 〉.
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Figure 2: Zeeman splitting of the 52S1/2 manifold of 87Rb. At small magneric
fields F and |mF 〉 are good quantum numbers describing the system and at large
magnetic fields (Pachen-Back regime) the states are described by the J and mJ .
Our experiments operate in the regime marked by the small gray box (B < 35 G).

For the particular case of states with J = 1/2 (like the ground state of Alkalis),

the Zeeman energies can be found analytically using the Breit-Rabi formula [40]

EmF = − 1
2(2I + 1) + µBgImFB

∆Ehf
+ 1

2

√
1 + 4mF

2I + 1x+ x2, (3.6)

where ∆Ehf = Ahf(J + 1/2) and x = (gJ − gI)µBBz/∆Ehf .
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3.2.1 Magnetic trapping

The sign of the Zeeman energy for different |mF 〉 states can be used to create

state-dependent traps for atoms. We implement magnetic traps using quadrupole

magnetic fields

B = B′(xex + yey − 2zez) + B0, (3.7)

where B0 is a constant magnetic field, for simplicity I will assume that B0 = B0ez.

The Zeeman Hamiltonian gives a trapping potential

U(r) = gFµBmFB

= gFµBmFB
′

√
x2 + y2 + 4

(
z − B0

2B′
)2

≈ gFµBmFB
′
(
ρ+ 2

∣∣∣∣z − B0

2B′
∣∣∣∣) (3.8)

where ρ2 = x2 + y2 and the approximation on the second line is valid for small

displacements from the trap center.

The sign of the magnetic moment determines which states can be trapped.

For 87Rb the |F = 1,mF = −1〉, |F = 2,mF = 2, 1〉 are magnetically trappable. The

state |F = 2,mF = 0〉 is also weakly magnetically trappable due to the quadratic

Zeeman shift.

In addition to generating trapping potentials, we use quadrupole fields before

imaging the atoms to generate state-dependent forces that separate the different

|mF 〉 states in a similar way as the Stern-Gerlach (SG) experiment [41].
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3.3 Interaction between atoms and electric fields

In the presence of an electric field E, an atom can become polarized and its

energy levels get modified by the Stark effect [42]. If the electric field is spatially

uniform with respect to the atom’s size we consider the electric field as a classical

object and its effect on the atom can be described by the Hamiltonian [43]

Ĥdip = −d̂ · E, (3.9)

where d̂ = −e∑j rj is the atomic dipole operator, e is the electron charge and r̂j

are the position operators of the atom’s electrons relative to the center of mass of

the atom. This approximation, known as the dipole approximation, is valid for

electromagnetic radiation when the wavelength is much larger than the size of an

atom λ� ratom [44].

Consider first the simplified case of a two-level system interacting with a co-

herent electromagnetic field E = E(+)e−iωt + E(−)eiωt, where E(±) = ε̂E(±) are the

positive/negative frequency components of the field, ε̂ the polarization, and ω is

the angular frequency. The shift in energy of the ground sate using second order

perturbation theory is

∆Eg = −2ωeg| 〈g| ε̂ · d |e〉 |2|E(+)|2

h̄(ω2
eg − ω2)

= −1
2α(ω)E2 (3.10)
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where ωeg = (Ee−Eg)/h̄ is the angular frequency associated to the energy splitting

of the two states and α(ω) is a dynamic polarizability. Things are a bit more com-

plicated with real atoms though, and we need to take into account all the atomic

levels. Furthermore, there are degeneracies associated to the different angular mo-

mentum states as well as different light polarizations so we have to be more careful

with the orientation of the atom and the field. To take these effects into account

one can introduce a generalization of the polarizability [44,45] which takes the form

αµν(ω) =
∑
j

2ωjg 〈g| dµ |ej〉 〈ej| dν |gj〉
h̄(ω2

jg − ω2)

=
∑

F ′, mF ′

2ωF ′F 〈F,mF | dµ |F ′,mF ′〉 〈F ′,mF ′ | dν |F,mF 〉
h̄(ω2

F ′F − ω2) . (3.11)

Here |ej〉 represent the excited states and ωjg = (Ej − Eg)/h̄ and the expression in

the second line corresponds to the polarizability of the hyperfine levels of an atom

in the ground state |F,mF 〉 coupled to excited states |F ′,mF ′〉. We can write an

effective Hamiltonian for the Stark shift as

ĤStark = −αµν(ω)E(+)
µ E(−)

ν . (3.12)

The polarizability is a rank-2 tensor operator and can be represented by 3

irreducible tensor operators (see [44] for a complete derivation). In the limit of

small magnetic fields so that F and |mF 〉 are good quantum numbers describing the

state of the atom |n, F,mF 〉 the dipole Hamiltonian in this representation takes a

33



convenient form

ĤStark =α(0)(E(−) · E(+)) + iα(1)(E(−) × E(+)) · F̂

+ α(2)E
(−)
i E

(+)
j

(1
2(FiFj + FjFi)−

1
3F̂2δi,j

) ]
, (3.13)

where α(0), α(1) and α(2) are the scalar, vector and tensor polarizabilities respectively

and F̂ is the total angular momentum operator. For all our experiments α(2) is very

small so I limit the discussion to the effect of the first two terms. The scalar term

is responsible for the dipole force that allow us to trap atoms using off-resonant

light and the vector component is necessary for engineering spin-orbit coupling and

other spin-dependent potentials through two-photon processes. Finally, I want to

emphasize that it is because of the fine and hyperfine structure that the treatment

using a tensor polarizability is necessary and the vector and tensor polarizabilities

arise.

3.3.1 Scalar polarizability

The scalar polarizability takes the form

α(0) =
∑
j

2ωjg| 〈g|d · ε̂ |ej〉 |2
h̄(ω2

jg − ω2) , (3.14)

where the matrix element can be expressed in terms of the Clebsch-Gordan coeffi-

cients and the reduced matrix element using the Wigner-Eckart theorem [46]. For

the ground state of an Alkali atom (J = 1/2) and if the detuning is large compared
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to the hyperfine splitting the expression above gets simplified to

α(0) ≈
∑
J ′

2ωJJ ′|〈J = 1/2‖d‖J ′〉|2
3h̄(ω2

JJ ′ − ω2) . (3.15)

Due to the second order-perturbation theory treatment, the scalar polarizability can

be interpreted as arising from a two-photon process where the atom absorbs an off-

resonant (virtual) photon and then returns to its initial state by emitting another

(virtual) photon.

The dipole matrix elements needed to compute the polarizability are related

to the transition scattering rate via Fermi’s golden rule [44,46]

ΓJJ ′ = ω2
JJ ′

3πε0h̄c3
2J + 1
2J ′ + 1 |〈J‖d‖J

′〉|2, (3.16)

and combining this with the expression for the intensity of the electric field I(r) =

2ε0c|E(r)|2 it can be shown that the energy of the ground state manifold is shifted

by

U(ω, r) = −πc
2I(r)
2

ΓD1(1− qgFmF )
ω3

D1

( 1
ω + ωD1

− 1
ω − ωD1

)

+ 2ΓD2(1 + qgFmF )
ω3

D2

( 1
ω + ωD2

− 1
ω − ωD2

), (3.17)

where q = 0,±1 for linearly and circularly polarized σ± light and only the the

most significant contribution from the closest transitions (the D1 and D2 lines) are

included. Here U(r) is related to the real part of the polarizability which is a complex
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valued number. So far I have only considered a real valued polarizability by assuming

the excited states have an infinitely long lifetime. However, in reality the atom can

spontaneously emit photons and decay. This exponential decay can be accounted

for by adding an imaginary contribution to the energies ωD → ωD + iΓDω3/ω3
D of

the D1 and D2 transitions [47]. The scattering rate is related to the imaginary part

of the polarizability and is given by

Γ(ω, r) = πc2I(r)
2h̄

[
ΓD1ω

3

ω6
D1

( 1
ω + ωD1

− 1
ω − ωD1

)2
+ 2ΓD2ω

3

ω6
D2

( 1
ω + ωD2

− 1
ω − ωD2

)2]
(3.18)

The energy shift U(ω, r) is a conservative term and is related to dipole trap-

ping, while the scattering term Γ(ω, r) is dissipative and is important for laser cool-

ing. In the context of engineering potentials for ultracold atoms with off-resonant

light, the scattering is translated into heating because every time an atom emits a

photon with angular frequency ωL it gets a recoil momentum h̄kL. If the frequency

ω satisfies the relation ω + ωD � ω − ωD, as is often the case, we can neglect the

terms proportional to 1/(ω+ωD), an approximation typically known as the rotating

wave approximation (RWA). If the RWA is valid then the frequency dependence of

both the energy shifts and the scattering rates are given by the detuning from the

D1 and D2 transitions.

3.3.1.1 Optical trapping

One important application of the scalar light-shift is to create optical traps for

clouds of ultracold atoms. An optical field with non-uniform spatial intensity gen-
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erates traps (and anti-traps) for the atoms which experience a force proportional to

the intensity gradient Fdip = −∇U(r). The attractive or repulsive nature of the trap

depends on the sign of U(r) which is determined by the sign of the detuning (blue-

detuned traps are repulsive and red-detuned traps are attractive). The production

of BECs in our lab relies on the use of focused Gaussian laser beams of wavelength

λ = 1064 nm. The intensity profile of a focused Gaussian beam propagating along

ez is given by

I(x, y, z) = 2P
πω2(z)e

−x
2+y2

ω2(z) (3.19)

where P is the total power of the beam and the 1/e2 radius is given by w(z) =

w0

√
1 + z2/z2

R where the minimum radius w0 is known as the waist and zR = πω2
0/λ

is the Rayleleigh range3. If the extent of an atomic cloud is small compared to

the size of the beam we can perform a Taylor expansion around r = 0 to obtain a

harmonic trapping potential

U(r) = −U0

(
1− 2x

2 + y2

ω2
0
− z2

z2
R

)
. (3.20)

The oscillation frequencies of the trap along the radial direction are ωr = (4U0/mω
2
0)1/2

and along the axial direction ωz = (2U0/mzR)1/2. The beam waist is usually much

smaller than the Rayleigh range (ω0 ∼ 50 − 150µm for my experiments) and the

trap is much stronger along the axial direction. To get around this we use a ‘crossed’

3If the waist of a Gaussian beam is comparable to the wavelength λ, a term with longitudinal
polarization appears. The waist of the Gaussian beams used in the lab typically exceed λ by at
least one order of magnitude
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dipole trap which is formed by a combination of two cross-polarized4 and frequency

shifted focused Gaussian beams propagating along perpendicular directions, ensur-

ing that we get good confinement of atoms along all spatial directions.

3.3.2 Vector polarizability and effective magnetic fields

The general expressions for the vector polarizability are quite complicated and

depend both on reduced matrix elements and Wigner 6 − j symbols (see [44] for

example for the complete expressions). For the particular case of Alkali atoms and

for large detuning compared to the hyperfine splitting, the vector polarizability takes

a simplified form [16]

α(1) = 2∆fsα
(0)

3(Ẽ − h̄ω)
(3.21)

where ∆fs = 3Afs/2 and Ẽ = (2ED1 + ED2).

If we recall the Zeeman Hamiltonian introduced in Section 3.2, the term pro-

portional to the vector polarizability in Equation 3.13 looks very similar to Equa-

tion 3.2 for an effective magnetic field

Beff = − ih̄

µBgJ
α(1)(E∗ × E). (3.22)

For the intensities that we typically operate at, the vector light shift is small and

can be treated as a perturbation so the Hamiltonian resulting from this effective

4The beams are cross-polarized to avoid interference between them
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magnetic field can be written as

Ĥeff = µBgF
h̄

Beff · F̂ (3.23)

3.3.2.1 Raman coupling

The vector light shift enables the realization of various spin dependent-potentials

in the laboratory. The results of Chapters 5 and 8 use a combinations of cross-

polarized laser beams such that the total electric field E∗ × E 6= 0 could induce

two-photon Raman transitions. A Raman transition is also a two-photon process

but instead, we consider two ground states and an intermediate state that is off-

resonantly coupled as is shown in Figure 3a. Due to the large detuning, the pop-

ulation transferred into the intermediate state is negligible and the state can be

adiabatically eliminated [48]. In our experiments, we typically couple the |mF 〉

levels of the F = 1 manifold after applying a bias magnetic field such that ε is

non-negligible.

Consider two laser beams counter-propagating along ex and with polarizations

along ey and ez as in Figure 3b. The electric field from the Raman beams is

E(x, t) = Ea cos(kax− ωat)ey + Eb cos(kbx+ ωbt)ez, (3.24)

and consequently

E∗ × E = 2iEaEb cos(2kLx− ωa,bt)ex, (3.25)
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Figure 3: a. A Raman transition is a two photon process that couples two ground
states through and intermediate far detuned state. b. We induce Raman transitions
using a pair of cross-polarized laser beams and we set the difference in their angular
frequencies close to the Zeeman splitting between two consecutive |mF 〉 states.

where ωa.b = ωa − ωb. The Raman Hamiltonian is given by

ĤR = Ω cos(2kLx− ωa,bt)F̂x (3.26)

where Ω = α(1)gFEaEb/gJ ∝
√
IaIb is the Raman coupling strength. The geometry

and wavelength of the Raman fields determine the natural units of the system:

the single photon recoil momentum kL = 2π/λR and its associated recoil energy

EL = h̄2k2
L/2m, as well as the direction of the recoil momentum kL = kLex. For

most experiments we tune to what is known as the ‘magic wavelength’ or tune-out

wavelength [49] λR = 790.034 nm, at which the ground-state scalar polarizability

vanishes and the scattering rate is reduced (Figure 4a,c). We occasionally had

to tune away from the magic wavelength, for example when we were starving for

laser power and wanted to increase our Raman coupling strength. An important

metric for us is Raman coupling strength and Figure 4b shows its dependence on
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wavelength; tuning closer to resonance allows us to decrease the laser intensity for

the same intensities but comes with increased scattering rates and reduced lifetime

as can be seen in Figure 4d which shows the decay in number of Raman dressed

atoms as a function of time for different wavelengths.
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Figure 4: a. Scalar polarizability as a function of wavelength near the D1 and D2
lines of 87Rb. We typically tune our Raman laser beams near the magic wavelength
λ = 790.034 nm. b. Raman coupling strength as a function of wavelength measured
for a pair of Raman beams with waist w0 ∼ 150µm and powers of 50, 10 mW. c.
Scattering rate as a function of wavelength, while it is not minimized at 790 nm
its value is kept relatively low. d. Decay in number of Raman dressed atoms as a
function of hold time for the same beam parameters as in b.. At λ = 786 nm the
1/e lifetime is τ = 1.64 s and for λ = 792 nm it is reduced to τ = 0.72 s.

In a frame rotating with angular frequency ωa,b corresponding to applying the

unitary transformation Û(t) = exp(−iωa,btF̂z) and neglecting the fast terms rotating
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at frequency 2ωa,b (applying a RWA) the transformed Hamiltonian is

Û †ĤRÛ − ih̄Û †∂tÛ = ωa,bF̂z + Ω
2 cos(2kLx)F̂x −

Ω
2 sin(2kLx)F̂y, (3.27)

which describes a helically precessing magnetic field with period λR/2.

3.3.2.2 Spin-orbit coupling

The Raman Hamiltonian from Equation 3.27 can be further arranged to make

it look like a spin-orbit coupled (SOC)5 Hamiltonian that is familiar to condensed

matter physicists. If we apply a spin-dependent momentum boost which is described

by the unitary operator Û(kL) = exp(i2kLxF̂z) the full Hamiltonian including the

Raman coupling and the free particle energies is transformed into

ĤSOC = h̄2

2m
(
q̂x − 2kLF̂z

)2
+ Ω

2 F̂x + δF̂z + h̄ε

(
1− F̂ 2

z

h̄2

)
, (3.28)

where δ = E−1 − ωa,b. We can go from a 3 level system to an effective spin-1/2

system if we set ωa,b = E−1−E0 and consider a sizable quadratic Zeeman shift ε so

the |mF = 1〉 state can be adiabatically eliminated [50] giving an effective two-level

system. After performing a global rotation σ̂z → σ̂y, σ̂y → σ̂x, and σ̂x → σ̂z of the

Pauli matrices describing the pseudo-spin of the two-level system, the Hamiltonian

becomes

ĤSOC = h̄2

2m(qx − kLσ̂y)2 + h̄

2Ωσ̂z + h̄

2 δσ̂y (3.29)

5Not to be confused with the spin-orbit coupling giving rise to the fine and hyperfine structure
mentioned earlier, perhaps a better name could be spin-momentum coupling
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which corresponds to a spin-orbit coupled Hamiltonian with an equal superposition

of Rashba-type [24] (∝ σ̂xky − σ̂ykx) and Dresselhaus-type [51] (∝ −σxky − σykx)

SOC and effective magnetic field ∝ Ω in the ey − ez plane [22, 50]. In Chapter 8 I

discuss the Rashba term in more detail and introduce a way of engineering a system

with only Rashba-type SOC using multiple internal levels and Raman transitions.

3.4 Detection: Resonant absorption imaging

Ultracold atom experiments rely on optical imaging as the main method to

probe and characterize the system. We use resonant absorption imaging by shining

a probe laser at the atomic cloud and then imaging it into a camera. From the

absorption of the light, we can infer properties from the atoms such as the number,

temperature, integrated column density, and momentum distribution if we allow the

clouds to expand.

Consider a laser beam with intensity I(x, y, z) and angular frequency ω prop-

agating along ez through a cloud of atoms with density n(x, y, z) as in Figure 5a.

We define a (frequency-dependent) scattering cross-section σ(ω) which characterized

the probability of an atom absorbing a probe photon and is given by the Lorentzian

function

σ(ω) = 3Aeg
π2c2

ω2
0

1
2π

Γ
δ2 + Γ2/4 (3.30)

plotted in Figure 5b, where Γ is the scattering rate, ω0 is the transition frequency, δ =

ω−ω0 is the detuning, and Aeg is the Einstein coefficient associated to spontaneous

emission. As the beam travels through the cloud is absorbed and its intensity
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Figure 5: a. A laser beam traveling along ez through a medium with density
n(x, y, z. The intensity decays exponentially with the integrated column density and
the scattering cross section σω. b. The scattering cross section has a Lorentzian
line shape with a full width half maximum equal to Γ.

reduced at a rate given by

dI

dz
(x, y, z) = −n(x, y, z)σ(ω)I(x, y, z). (3.31)

In the limit of small intensities, we can integrate this expression over the

thickness of the cloud and find that the intensity decays exponentially with the

density and the scattering cross section

I(x, y, z) = I(x, y, 0)e−
∫ z

0 n(x,y,z′)σ(ω)dz′ , (3.32)

where OD =
∫ z

0 n(x, y, z′)σ(ω)dz′ is the optical depth (OD) of the medium. If we

measure the OD of the cloud it is then straightforward to obtain the integrated

column density n(x, y), a result known as the Beer-Lambert law.
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In the experiment we measure the optical depth of a cloud by imaging the

probe into a CCD camera under two different conditions: first in the presence of

atoms to measure the attenuated intensity If = I(x, y, z) and then without any

atoms to get a measure of the initial intensity Ii = I(x, y, 0). The optical depth can

then be computed as

OD = ln
(
If
Ii

)
. (3.33)

Figure 6 shows the different images used to compute the OD. In practice we take

a third image of the background intensity Ibg and subtract it from the other two

images.

atoms

probe

background

probe

Figure 6: Resonant absorption imaging. An atomic sample is illuminated with a
resonant probe whose intensity is later recorded on a CCD camera. Two additional
images of the unabsorbed probe intensity and the background intensity are captured
in order to reconstruct the optical density of the atoms.
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3.4.1 High intensity absorption imaging

The use of the OD to infer the atomic density works well if we assume that

the intensity of the probing laser is low such that the atoms mostly stay in the

ground state. However, at high intensities a significant fraction of the atoms can

become excited and effects such as stimulated emission of light have to be taken

into account. As a result of this the scattering cross-section gets an additional

dependence on intensity (see [52] for a complete derivation)

σ(ω, I) = σ(ω) 1
1 + I/Isat

, (3.34)

where Isat = πhcΓ/3λ3
0 is the saturation intensity, and when I = Isat the population

in the ground and excited state are equal. Integrating Equation 3.31 using the

modified expression for σ(ω, I) gives

n(x, y)σ(ω) = −α? ln(If/Ii) + Ii − If
Isat

, (3.35)

where I have also added an additional dimensionless parameter α? which can account

for imperfections in the imaging process (see [53]).

It is hard to reliably measure atomic clouds at low intensity when the OD is

of the order of 3 or 4 (such as our BECs) and a significant fraction of the imaging

light is absorbed. Due to the limited dynamic range of CCD cameras, the measured

OD saturates resulting, for example, in imaging ‘flat-top’ BECs rather than the
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Figure 7: a. A BEC imaged at low intensity shows a ‘flat-top’ density profile. b.
In order to recover the Thomas-Fermi profile it is necessary to image high density
BECs with intensities larger than Isat.

usual Thomas-Fermi distribution as shown in Figure 7. To get around this issue we

typically image using intensities I > Isat. In order to correctly compute the column

density including saturation effects we need a conversion of Isat from mW/cm2 to

counts per pixel on the CCD camera. We follow the procedure described in [53] to

find the values of α? and Isat in counts per pixel. To learn about other effects such

as the recoil momentum from the imaging light that could affect absorption images

see [54].

3.5 Coherent manipulation

We rely on driven quantum coherent processes within the electronic grounds

state using magnetic and electric dipole interactions techniques both for state prepa-

ration and characterization of our system. In all of the cases I consider a system
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described by the Hamiltonian

Ĥ = Ĥ0 + ĤI(t) (3.36)

where Ĥ0 describes unperturbed atomic levels and ĤI(t) is a time dependent inter-

action. For simplicity I consider only a two-level system

Ĥ0 = h̄

ωg 0

0 ωe

 (3.37)

where with |g〉 and |e〉 are the unperturbed ground and excited states where h̄ωi are

the energies of the unperturbed states.

3.5.1 Rabi oscillations

Consider an interaction term that oscillates with frequency ω close to the

transition energy ωge = ωg − ωe

ĤI = h̄

 0 Ω cos(ωt)

Ω∗ cos(ωt) 0

 . (3.38)

The coupling strength Ω here could be related to an electric dipole transition Ω ∝

〈g|d · E |e〉6 or magnetic dipole Ω ∝ 〈g|µ · B |e〉 transition matrix element. The

6For our system intensities Γ� Ω and we do not observe Rabi oscillations from (single photon)
electric dipole transitions.
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state of the system at any given time is given by

|Ψ〉 = cg(t)e−iωgt |g〉+ ce(t)e−iωet |e〉 , (3.39)

and substituting this expression into the time dependent Schrödinger equation we

find that

ċg(t) =Ω
2
(
ei(ω−ωge)t + e−i(ω+ωge)t

)
ce

ċe(t) =Ω∗
2
(
ei(ω−ωge)t + e−i(ω+ωge)t

)
cg. (3.40)

We can apply a RWA if the term ω+ωge is large compared to ω−ωge. If we assume

that at t = 0 the system is prepared in |g〉, the population in |e〉 describes what is

known as a Rabi oscillation [55]

|ce(t)|2 = Ω2

Ω2 + δ2 sin2
(√

Ω2 + δ2

2 t

)
(3.41)

where δ = ω−ωge is a detuning and Ω̃ =
√

Ω2 + δ2 is known as the generalized Rabi

frequency. The Hamiltonian after applying the RWA is

Ĥ0 = h̄

−δ/2 Ω/2

Ω∗/2 δ/2

 , (3.42)

and its eigenenergies correspond to E± = ±Ω̃/2. Notice that the difference between

the eigenenergies E+−E−is exactly equal to the frequency at which the populations
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Figure 8: The Rabi cycle. Population transfered from |F = 1,mF = −1〉 into
|F = 1,mF = 0〉 using an RF magnetic field with Ω = 7.1 kHz. The markers in-
dicate experimental data points and the lines correspond to fits to the model in
Equation 3.41a. Population transfered for a 60µs pulse as a function of detuning δ.
b. Population transfered as a function of time close to resonance.

in |g, e〉 oscillate, this will come up again in Chapter 5. Figure 8 shows an example

of this process where we coupled an initial state |g〉 = |F = 1,mF = −1〉 to |e〉 =

|F = 1,mF = 0〉 using a radio-frequency (RF) magnetic field with Ω = 7.1 kHz.

Figure 8a shows the population in |e〉 as a function of δ for a π pulse of duration

τ such that Ωτ = π. The location of the peak in this curve is as a way to find

the transition frequency (we use this method in Chapter 6). Figure 8b shows the

population transfered into |mF = 0〉 from |mF = −1〉 as a function of time for δ ≈ 0;

we typically look at the frequency of these Rabi oscillations to calibrate the coupling

strength of an effective two-level system.
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3.5.2 Adiabatic rapid passage

The Hamiltonian in Equation 3.42 can in principle be used to transfer all the

population from the initial state |g〉 into |e〉 if we set the detuning of our oscillating

field to δ = 0 and apply a π pulse. Unfortunately we are susceptible to noise in both

δ and Ω and pulsing is not the most reliable technique for state preparation. To

transfer atoms within different |F,mF 〉 states within the 52S1/2 hyperfine manifold

we use instead an adiabatic rapid7 passage (ARP) protocol which is based on the

Landau-Zener model [56].

ARP relies on preparing dressed states; eigenstates of the atomic Hamiltonian

(Equation 3.42) which I label using the symbols |±〉 and dynamically changing the

detuning δ = δ(t). We start at a large and negative detuning δ � −Ω where the

ground eigenstate |−〉 ≈ |g〉 and therefore by slowly turning Ω on we adiabatically

prepare |−〉. We consider the rate of change in detuning ∂tδ > 0, and as δ increases

the state decomposition of |±〉 changes. When δ = 0 the dressed states correspond

to equal superpositions of the bare states

|±〉 = 1
2 (|g〉 ± |e〉) , (3.43)

and when δ � Ω we have |−〉 ≈ |e〉. If the change in detuning is slow enough that

the system can adiabatically follow the ground eigenstate |−〉 then at the end of

this process the state can be successfully transfered from |g〉 into |e〉 by sweeping

7The term rapid is with respect to the spontaneous emission rate of the excited state being
coupled.
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the detuning. It can be shown that the fraction that does not adiabatically follow

the ground state is given by the Landau-Zenner tunnel probability [44]

Plost = exp
(
− πΩ2

2|∂tδ|

)
. (3.44)

In the limit of large coupling strength compared to the detuning sweep rate, or

slow detuning sweep rate compared to the smallest energy gap (Ω � |∂tδ|) all the

population adiabatically follows the ground state.

We mostly use ARP with RF magnetic fields to transfer between different

|mF 〉 states within the F = 1 manifold. We set the frequency of the field ωRF so

that it matches the Zeeman splitting between the |mF = −1〉 and |mF = 0〉 states

for a target bias field B0ez. We start with atoms in |mF = −1〉 and at a bias

field Bi ≈ B0 − 380 mG (δ ≈ −30 kHz). We ramp an Ω = 20 kHz RF field with

angular frequency ωRF in 50 ms. We then sweep the detuning by linearly changing

the bias field in 50 ms. Finally, the RF field is abruptly turned off, projecting the

RF eigenstates back into the |mF 〉 basis. In Figure 3.5.2 we set ωRF = 23 MHz and

when the Zeeman splitting between |mF = −1〉 and |mF = 0〉 is equal to ωRF we

observe an equal superposition of both states and if the detuning is swept beyond

resonance we can reliably prepare the |mF = 0〉 state.

In general it is necessary to consider the eigenstates of the three-level RF
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Hamiltonian for a full description of this process

ĤRF =



−δ ΩRF/2 0

ΩRF/2 −ε ΩRF/2

0 ΩRF/2 δ


, (3.45)

but for large quadratic Zeeman shifts as is usually the case in our experiments we

can only look at an effective two-level system.
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Figure 9: a. Eigenenergies and eigenstate decomposition of an RF dressed Hamil-
tonian for a two-level system (Equation 3.42) with Ω = 10as a function of detuning.
The eigenstates are linear combinations of |mF = −1〉 and |mF = 0〉 (red and blue
respectively). b. Population in the |mF 〉 sates for different values of detuning

3.5.3 Magnetic field stabilization with microwave assisted partial trans-

fer absorption imaging

Most experiments are performed in the F = 1 ground hyperfine manifold with

some bias field B0ez that shifts the energies of the different |mF 〉 states. Due to

the linear dependence of the energies of the |mF = ±1〉 and the constant changes
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in the ambient magnetic field we use microwave assisted partial transfer absorption

imaging (PTAI) to monitor and stabilize the magnetic field.

The method relies on transferring a small fraction of atoms into the 52S1/2

F = 2 manifold using an oscillating magnetic field with frequency close to the

6.8 GHz ground hyperfine splitting. The atoms in F = 2 can be imaged without

the use of repump light and therefore minimally disturbing the remaining atoms in

F = 1. We apply two microwave pulses for a total time τ with frequency ω0 − δ±

where δ± = ±1/(2τ). We typically set ω0 equal to the Zeeman splitting between

the |F = 1,mf = −1〉 and |F = 2,mf = −2〉 states at a target magnetic field and

we set the coupling strength Ω0 � 1/τ such that only about 5% of the atoms are

transferred by each pulse. We image the transferred atoms following each pulse using

absorption imaging and from the measured densities we calculate the imbalance or

error

nimb = n(δ+)− n(δ−)
n(δ+) + n(δ−) (3.46)

signal that is both insensitive to fluctuations in the number of atoms and linearly

sensitive to changes in magnetic field8. We use this error signal both to monitor the

magnetic field before performing experiments and to cancel long term drifts in the

field. In most cases, we chose the states |F = 1,mF = −1〉 and |F = 2,mf = −2〉 as

their relative energies are the most sensitive to changes in magnetic field. Figure 10a

shows the number of atoms transferred by each microwave pulse for different values

of bias magnetic field and Figure 10b shows the imbalance. The microwave frequency

8A single pulse on resonance is quadratically sensitive to detuning (see Equation 3.41)
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Figure 10: Magnetic field stabilization using microwave assisted PTAI. a. Popula-
tion transfered into |F = 2,mF = −1〉 from |F = 1,mF = −1〉 as a function of bias
magnetic field (global detuning δ). Each microwave pulse was τ = 250µs and de-
tuned by δ± = ±1/(2τ) transfer a small fraction of atoms from |F = 1,mF = −1〉
into |F = 2,mF = −1〉. b. Error signal calculated using the transfered atoms by
each pulse. We lock the magnetic field to the ∼ 5 kHz (∼ 7 mG) wide linear portion
of the signal.

ω0 is on resonance with the |F = 1,mF = −1〉 → |F = 2,mF = −2〉 transition when

both pulses transfer the same number of atoms.

In [57] we studied partial transfer absorption imaging as a minimally destruc-

tive technique for imaging ultracold atoms. See Chapter 6 for an alternative solution

for dealing with magnetic field noise.

3.5.4 Ramsey interferometer

A Ramsey interferometer [58] is a setup relevant to Chapters 6 and 8. The

interaction Hamiltonian is the same as in the previous section but rather than being

on continuously it is pulsed on for a time τ = π/2Ω (a π/2 pulse), the system

is then let to evolve only under Ĥ0 for a variable time tdark and finally a second
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π/2 pulse is applied. Figure 11a illustrates this protocol: the π/2 pulses can be

visualized as π/2 rotations on the Bloch sphere along ex that transform the initial

state |g〉 → (|g〉 + |e〉)/
√

2. For the duration of the dark time, the system rotates

along the equator of the Bloch sphere (about the ez axis in general) by an angle

δtdark and finally the second pulse rotates the state along the ex axis again. The

probability of measuring the excited state is related to the phase accumulated during

the dark time is given by

|ce(2τ + tdark)|2 =
∣∣∣∣∣Ωτ2

∣∣∣∣∣
[

sin(δτ/2)
δτ/2

]2

cos2
(
δtdark

2

)
. (3.47)

In a Ramsey interferometer the oscillation frequency is only determined by the de-

tuning unlike the generalized Rabi frequency where the detuning adds in quadrature

with Ω. The coupling strength dependence in the generalized Rabi frequency sup-

presses the effect of the detuning Ω becomes large compared to δ, something that

will be relevant in Chapter 6. Additionally in Chapter 8 I rely on a variation of the

Ramsey interferometer to perform quantum state tomography. Figure 11b shows an

example of a Ramsey fringe as a function of detuning δ that we measured using two

states coupled with Ω = 1 kHz.

3.5.5 Floquet theory

The RWA has been used multiple times throughout this Chapter so that

the Hamiltonian describing a driven system can effectively be viewed as time-

independent. This approximation is valid most of the time for our experiments,
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Figure 11: a. A Ramsey interferometer: Two π/2 pulses are separated by a time
tdark. The phase accumulated in the interferometer is equal to the detuning multi-
plied by the dark time. b. A Ramsey interference fringe. Data (blue dots) and fit
(black line) obtained from coupling two levels using an RF field with Ω = 1 kHz. We
applied a pair of τ = 25µs pulses separated by a 50µs wait and varied the detuning
by changing the bias magnetic field.

however, if we want to give a complete description of a time periodic system Flo-

quet theory can be helpful. I will give a brief overview of Floquet theory using a

matrix approach that is particularly useful for numerical computations.

An arbitrary time periodic Hamiltonian Ĥ(t) = Ĥ(t + T ) can be written in

terms of its Fourier components

Ĥ(t) =
∞∑

j=−∞
exp[ijωt]Ĥj, (3.48)

with ω = 2π/T and because Ĥ and Ĥj = Ĥ†−j due to the Hermitian nature of

Ĥ. The eigenstates of the Hamiltonian can be written in a terms of quasi periodic
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functions9

|ψε(t)〉 = exp(−iεt/h̄)
∞∑

k=−∞
exp[−ikωt] |ψε,k〉 (3.49)

where the term ε is known as the quasi-energy. Inserting this expression into the

time-dependent Schrödinger equation gives

∑
k

(ε+ h̄ωk) exp[−kωt] |ψε,k〉 =
∑
j,j′

exp[i(j − j′)ωt]Ĥj′ |ψε,j〉 . (3.50)

In order for the equality to be true we must have j′ − j = −k because the complex

exponentials form an orthonorormal basis and we can write

ε |ψε,k〉 =
∑
j

(
Ĥj−l − h̄ωkδj,k × 1̂

)
|ψε,j〉 , (3.51)

where 1̂ is the identity matrix. The expression can be recast into a matrix form

ε



· · ·

|ψε,−1〉

|ψε,0〉

|ψε,1〉

· · ·



=



Ĥ0 + 2h̄ω Ĥ1 Ĥ2 · · · · · ·

Ĥ−1 Ĥ0 + h̄ω Ĥ1 Ĥ2 · · ·

Ĥ−2 Ĥ−1 Ĥ0 Ĥ1 · · ·

· · · Ĥ−2 Ĥ−1 Ĥ0 − h̄ω Ĥ1

· · · · · · Ĥ−2 Ĥ−1 Ĥ0 − 2h̄ω





· · ·

|ψε,−1〉

|ψε,0〉

|ψε,1〉

· · ·



.

(3.52)

The quasienergies ε can be computed by truncating and then diagonalizing

the matrix, and they are grouped into repeating manifolds separated in energy by

9Very much like Bloch wave functions
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h̄ω. The quasienergies within a manifold can be interpreted as the eigenenergies of

an effective time-independent Hamiltonian ĤFl that describes the evolution of the

system sampled stroboscopically at an integer number of driving periods, with the

time evolution operator Û(t0, t0 + T ) = e−iT ĤFl .

Floquet theory plays an important role in the engineering of different disper-

sion relations for atoms in Chapters 5 and 8. I will give an example based on the

experiments described in [59] (not included in this Thesis), where we considered

a pair of Raman beams driving transitions between the |F = 1,mF 〉 states of the

ground hyperfine manifold with two different frequencies ω−1,0 and ω0,+1 set to the

mF = −1 → mF = 0 and mF = 0 → mF = 1 transitions. By performing indepen-

dent RWAs with respect to each of these transitions we found that the system could

be described by a magnetic Hamiltonian

Ĥ = h̄k2

2m + Ω(x) · F̂ + Ω2F̂
(2)
zz (3.53)

with helical effective magnetic field Ω1(x)/Ω1 = cos(2kRx)ex − sin(2kRx)ey, an ef-

fective quadratic Zeeman shift Ω2 = (ω−1,0 − ω0,1)/2, and F̂ (2)
zz h̄ = F̂ 2

z /h̄
2 − 2/3

an element of the quadrupole tensor. The competing contributions between kinetic

and magnetic ordering energies gave rise to different magnetic phases. Figure 12a.

shows the ground branch of the dispersion relation for small Ω1 < 4EL (top) and

large Ω1 > 4EL (bottom). As the value of Ω2 was decreased, the magnetization

in the system changed along with the location of the global minima in the disper-

sion. The experimental parameters Ω1 and Ω2 spanned a two-dimensional phase
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diagram shown in Figure 3.53b that we experimentally mapped. The eigenener-

gies of Equation 12 are plotted in Figure 12c. However, in order to get a good

agreement between the experiment and the phase diagram we had use the full Flo-

quet Hamiltonian which results in having modified parameters in Equation 3.53

Ω(eff)
2 = Ω2 +O(Ω2

1/ε) (red dotted line in Figure 12b). Figure 12d shows three man-

ifolds of Floquet quasienergies for this system, illustrating their periodic nature.
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Figure 12: Magnetic phases of a spin-1 SOC system. a. Ground state energies of
a spin-1 SOC system for Ω1 = 1.5 EL (top) and Ω2 = 1.5 EL(bottom). By changing
Ω2 we moved the location of the central minima. b. Phase diagram of a spin-1
SOC system. They green line corresponds to a line of phase transitions where the
system goes from magnetized to unmagnetized. c. Dispersion relation of effective
Hamiltonian computed for Ω1 = 2 EL, Ω2 = 0. d. Floquet qasienergy dispersion
relation for the same parameters. The magnitude of Ω1 effectively modifies Ω2 in
the RWA Hamiltonian.
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Chapter 4: Making BECs in the Rubidium Lithium apparatus

All the experiments presented in this thesis were performed in the Rubidium-

Lithium (RbLi) apparatus at the University of Maryland. The apparatus was de-

signed to produce mixtures of quantum degenerate gases of bosons and fermions.

The original plan was abandoned because the cross-species scattering length was

found to be repulsive and small (as ≈ 20 aB) [60] and the nearest Feshbach reso-

nance was measured to occur at the unexpectedly large magnetic field of 1066 G [61].

All our experiments were performed using only 87Rb instead.

The RbLi apparatus is scheduled to be shut down and the construction of a

new dual-species apparatus for 87Rb and 39K is underway. The RbLi apparatus has

been thoroughly described in [62,63] so I only give a brief overview of the apparatus.

I additionally discuss in detail the new elements that have been added to the setup

and implemented changes not previously reported. In Appendix A I discuss the best

and the worst aspects of the apparatus and in Appendix B I discuss some aspects of

the construction of the new apparatus for those interested to look deeper into the

technical aspects of experimental apparatus.

This Chapter is divided into three sections. In Section 4.1 I give a brief

overview of the RbLi apparatus and describe its basic capabilities. In Section 4.2 I
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describe the experimental sequence used to produce BECs. Finally in Section 4.3 I

describe changes to the RbLi apparatus that were not previously reported.

4.1 Overview of the RbLi apparatus

The RbLi apparatus is divided into two optical tables. One table contains

laser systems that are fiber-coupled into the main experiment optical table, shown

in Figure 1, containing a vacuum system where atoms are cooled to degeneracy. The

vacuum system can be divided into three regions: an oven region where Rb and Li

atoms are heated up, a Zeeman slower that acts as a differential pumping stage and

an ultra-high vacuum (UHV) region with a glass cell where all the experiments are

performed.

4.1.1 Laser systems

We use three lasers to perform laser cooling and imaging of atoms: a cooling

laser that addresses the F = 2 → F ′ = 3 transition, a repump laser that takes

atoms that have decayed into the F = 1 state back to F = 2 via the F ′ = 1

state and a master laser that provides a frequency reference for both lasers. The

frequency of the master laser is locked using saturation absorption spectroscopy to

the F = 3 → F ′ = 3 and F = 3 → F ′ = 4 crossover of the D2 line of 85Rb. A

fraction of repump and cooling light is used in beam for performing laser-cooling in

the Zeeman slower and most of the remaining light is combined in six beams used to

create a magneto-optical trap (MOT). We have two additional beams with cooling
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Glass cell Zeeman slower

Rb oven

Lab coordinates

Figure 1: The vacuum system of the RbLi apparatus is divided into an oven, a
Zeeman slower and an UHV region containing a glass-cell where all experiments are
performed.

light used for imaging the atoms along two different directions. The frequencies of

each laser with respect to the master laser frequency with respect to the transitions

in 87Rb can be visualized in Figure 2.

We have two additional lasers that are used to generate potentials for the

atoms. The first one is a 30 W 1064 nm IPG Photonics laser located at the main

experiment table and that we use to make a cross dipole trap for the atoms. The

two dipole beams come from the zeroth and first order of an acusto-optic modulator

(AOM) and the beams propagate along the ex + ey and ex − ey direction (the lab

coordinate system is shown in Figure 1. The other laser system is a Ti:Sapphire

laser used to generate Raman transitions and will be described in more detail in

64



Section 4.3.2.

We can detect atoms using two different imaging systems. The first one is

used primarily for diagnostics and it images the yz plane of the atoms from the +ex

side of the glass cell. The second system looks at the xy plane from bellow the glass

cell and is the main system used for data acquisition. Figure 3 shows a simplified

diagram with a top and a side view of the apparatus including all the lasers that

are used for cooling, trapping, Raman coupling and imaging.

4.1.2 Magnetic field control

The precise control of magnetic fields is essential during the multiple stages in

our experimental sequence. The RbLi apparatus has multiple coils as is illustrated in

Figure 4. Three pairs of coils in the vicinity of the glass cell generate bias magnetic

fields B = (Bx, By, Bz) along ex, ey and ez. Once BECs are produced we typically

use bias fields along ez to change the Zeeman energy of the different |mF 〉 states.

One pair of anti-Helmholtz coils generates a strong quadrupole magnetic field along

ez that is used in the MOT, for magnetic trapping, and to separate the different

|mF 〉 states before imaging via the Stern-Gerlach effect. An additional set of coils

arranged in a ‘cloverleaf’ pattern generates small gradients along ez, ex + ey and

ez − ey which allow us to cancel stray magnetic gradients in Bz near the atoms.

The experiment also has the capability of producing oscillatory magnetic fields.

A set of coils on a printed circuit board (PCB) and placed right above the glass cell

produce linearly polarized radio-frequency (RF) magnetic fields either in the ey or ez
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Figure 2: a.Cooling and repump frequencies relative to the master laser lock. b.
Cooling and repump frequencies relative to the 87Rb D2 line transitions.
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Figure 3: Diagram of the RbLi apparatus as seen from a. the top and b. the side.

direction that are used for RF induced evaporation and to drive transitions between

|mF 〉 states. There is an additional setup for producing high-power RF fields which

will be described in more detail in Section 4.3.3.

4.2 Experimental sequence to make BECs

The production of BECs starts in an oven where Rb atoms are heated to 120 C

to produce an atomic beam. The Rb atoms come from the same 5 g ampule that was

installed when the apparatus was first built almost 10 years ago. The atoms then
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glass cell

a. Bias control a. Gradient control

quadrupole coils

gradient 
cancellation
coils

Figure 4: Magnetic coil geometry in the RbLi apparatus a. We use three pairs of
Helmholtz coils to produce bias fields along ex, ey and ez. b. We have a pair of
coils that produce strong quadrupole magnetic fields for the MOT and magnetic
trapping. Additionally we have a pair of ‘cloverleaf’ coils to control the gradients in
Bz.

travel down a Zeeman slower [64] where they are laser cooled and then captured in a

MOT. For the MOT we apply a 5.5 A current to the quadrupole coils corresponding

to a 15.62 G/cm gradient. The cooling light is blue detuned by 18 MHz ∼ −3Γ from

the F = 2 → F ′ = 3 cycling transition and the repump light is 16 MHz below the

F = 1 → F ′ = 2 transition. We typically load the MOT for a total time of 1 − 5 s

before we turn off the Zeeman slower currents. In preparation for the molasses stage

we do a 30 ms decompression stage where we ramp down the gradient to 10 G/cm

and reduce the repump power.

The atoms are cooled further down in an optical molasses stage due to the po-

larization gradient from interfering counter-propagating lasers [65]. For this stage we

completely switch off the quadrupole coils and adjust the bias fields in all three di-
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rections so that they are canceled at the atoms. During this stage, the repump power

is kept low and the frequency of the cooling light is decreased to 140 MHz below

the MOT frequency for 10 ms. We then completely turn off the MOT repump light

allowing atoms to decay into the F = 1 manifold and use a small amount of repump

light from the Zeeman slower to optically pump atoms into the |F = 1,mF = −1〉

magnetically trappable state for a total of 1.5 ms.

Once the atoms are successfully pumped into |F = 1,mF = −1〉 we capture

them in a magnetic trap with a gradient of 62 G/cm and compress them by increasing

the current in the coils until we reach a gradient of 160 G/cm in 300 ms to enhance

the elastic collisional rates and promote faster thermalization during evaporation.

We perform RF-induced evaporation in the magnetic trap by turning on an RF field

polarized along ey with a frequency of 24 MHz, which transfers the hotter atoms at

the edges of the trap into the mF = 0 state which is not magnetically trappable. We

then perform an exponential ramp from the initial frequency to a final frequency of

4.5 MHz in 1 s, and as the frequency is swept the most energetic atoms are selectively

transfered into untrappable states.

For the final stage of evaporative cooling, we transfer the atoms from the

magnetic trap into an optical dipole trap. We start by turning on only the ‘tight’

arm of the trap at full power (about 11 W) and slowly decompressing the quadrupole

trap to 45 G/cm in 1.5 s. We then turn on the second ‘cross’ beam in 1 s, splitting

the power so that 70−30% is distributed between the tight and cross beams. As the

cross dipole beam is being turned on, we ramp the quadrupole field further down to

14 G/cm, slightly above the value necessary for the trap to suspend atoms against
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gravity while simultaneously shifting the bias field along ez to align the center of

the quadrupole trap to the dipole trap.

We evaporate atoms in the dipole trap in two stages. First we exponentially

ramp down the power to about 20% of its initial power in 1.5 s (0.5 s 1/e time).

Before the final evaporation stage we completely turn off the quadrupole trap in

1 s. Finally, we perform a second exponential ramp where the power is dropped to

about 30% of the intermediate power in 2 s (1 s 1/e time). The slow ramps ensure

that there is enough time for the atoms to thermalize as they evaporate. During the

second evaporation stage the atoms reach the critical temperature for Bose-Einstein

condensation and we are able to produce BECs with about 4 × 104 atoms in the

|F = 1,mF = −1〉 state. To transfer atoms into different |F,mF 〉 states within the

ground 52S1/2 manifold we use the ARP protocol described in Section 3.5.2.

Our experiments are very sensitive to changes in the environmental magnetic

field. In the past we used flux gate sensors (Stefan-Mayer model FL1-100 f) in the

apparatus to feedback and stabilize the magnetic field (see [63]). This sensors are a

useful tool, however due to space constraints we were not able to measure the fields

close to the atoms and additionally the range of magnetic fields that they operate at

is small (only 1 G, we typically operate at B > 10 G). We built a 6.8 GHz microwave

system (see Section 4.3.4) so that we could use the atoms themselves as sensors of

magnetic field. Once BEC is achieved and before performing any experiment, we

typically use a protocol involving two microwave assisted partial transfer absorption

images described in Section 3.5.3 to monitor and stabilize the magnetic field at the

atoms.
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To keep the bias magnetic fields as stable as possible we additionally syn-

chronize the timing of our experiments to the 60 Hz line; this step is performed in

different stages of the experiment but its biggest impact is right before performing

any magnetically sensitive experiment.

4.3 Upgrades to the RbLi Machine

4.3.1 Master laser system

Previously we used a New Focus Vortex II TLB-6900 extended cavity diode

laser as our master laser locked using a homemade saturation spectroscopy setup

using a Rb glass cell and an FPGA based PID circuit (see [62, 63]). The frequency

of this laser was not very stable and the laser would constantly get out of lock.

We replaced the old master laser with a Vescent photonics DBR Laser Module

System which uses a distributed Bragg reflector laser diode with no external cavity

and is therefore very mechanically stable. The frequency of the laser is stabilized

and controlled using the D2-210 spectroscopy module and D2-125 laser servo. The

master laser system is considerably simplified as can be seen in Figure 5 and the lab

no longer suffers from an unstable master laser.

4.3.2 Raman laser system

The RbLi apparatus has a laser system with wavelength close to 790 nm that

is used to generate Raman induced transitions and spin-dependent potentials (see

Section 3.3.2). The original Raman laser system consisted of a Toptica DL Pro
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Figure 5: Master laser system. We replaced the old Vortex II laser with a Vescent
photonics DBR Laser Module System that is considerably more stable.

laser seeding a tapered amplifier chip mounted on a homemade copper holder. This

laser system was replaced by an M squared Ti:Sapphire laser (SolsTiS-400-SRX-F)

that is pumped by a 532 nm IPG GLR30 laser. We typically operate the pump laser

at 14.5 W. A fraction of this light is redirected into the path of a 1D optical lattice

and the remaining power is used to pump the Ti:Sahpire laser. Figure 6 shows

the original (at setup) dependence of the Ti:Sapph output power as a function of

pump power. We switched to using a Ti:Sapph laser because of its wide range of

tunable wavelengths in the near infrared (725− 875 nm) and its high power output.

In addition to this, the TA system had considerable amplified spontaneous emission

(ASE) close to 780 nm which caused increased scattering of photons and reduced

lifetimes due to our inability to completely filter it.

The output of the laser is split into 3 different Raman beams. The frequency

and power of each beam is independently controlled using IntraAction ATM-801A2

AOMs centered at 80 MHz. We drive the AOMs using homemade drivers made from
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Figure 6: Ti:Sapphire laser output as a function of pump power. This data was
taken when the laser was being setup for the first time. The alignment of the laser
cavity was optimized to produce maximum power at 15 W pump power. The output
power is proportional to the pump power Pout ≈ 0.364Ppump.

the Minicircuits components listed in Table 4.1 and Novatech Model 409B direct

digital synthesizer (DDS) to generate an RF signal at the desired frequency. Figure 8

shows the arrangement of the components: we control the amplitude of the RF signal

using a mixer connected to a DC signal and the switch can turn off the signal in less

than 1µs using a TTL signal. We fiber-couple the light using single-mode optical

fibers (non-polarization maintaining) with angle-cut FC/APC type connectors at the

input (laser side) and flat-cut FC/PC at the output (experiment side). We made

this choice so to implement a phase lock that would cancel phase noise added by

the fibers. The idea behind this method is that a small fraction of the fiber-coupled

light is reflected at the flat-cut edge of the optical fiber and coupled back where it

can be heterodyne probed with the input light (see Figure 7). Our implementation

of the fiber phase lock is based on Section 3.6.3 of [66]. Because the fibers are not

polarization maintaining we control the output polarization of the light using paddles
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(Thorlabs FPC030 and Thorlabs FPC560) that produce a controllable amount of

stress in the fibers and change their birefringence. This method makes injecting light

into the fiber very straightforward and painless because, unlike with polarization-

maintaining fibers, the polarization of the incoming light can be arbitrary and does

not need to be aligned to any fiber axis. None of the experiments presented in

this thesis used the phase lock but the experiments described in Chapter 8 were

performed using the new Raman laser system. Figure 7 shows a diagram of the

Raman optics as well as the 532 nm optical lattice optics which are shared on the

same breadboard.

Table 4.1: List of AOM driver components

Part number Description
ZHL-1-2W 2 W amplifier
ZAD-3+ Mixer

ZYSWA-2-50DR Digital switch

4.3.3 High power RF system

The experiments described in Chapters 6 and 8 required the use of high power

RF magnetic fields to achieve coupling strengths at the atoms Ω ∼ 100 − 200 kHz.

After multiple attempts to build a resonant coil either on a PCB (similar to the

coil used for RF induced evaporation, see [62, 63]) or winding some wires with the

right dimensions we found that the product that worked best for our needs was

a wireless power charging receiver coil (Würth Elektronik Digikey part number

732-5646-ND) shown in the bottom panel of Figure 4.3.3a. The coil has a self-
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Figure 7: Optical layout of Raman and optical lattice lasers. The Ti:Sapphire
laser provides tunable infrared light that we use for three different Raman beams.
The beams labeled as ‘Raman C’ and ‘Raman D’ can be phase stabilized. A small
fraction of the green pump laser is used to produce a blue-detuned 1D optical lattice.

resonant frequency at 22 MHz and a Q-Factor of 45. It has an inner diameter of

1.62 cm and an outer diameter of 2.8 cm, just the right size for us to place it snugly

next to the glass cell (on the −ex side) with minimal perturbations to the laser

beams in its vicinity (it only slightly clips one MOT beam).

The loop is mounted on the PCB shown in Figure 9. The board has two

connections: the top one in Figure 9 has a small loop used as a pickup antenna that

we attach to a power detector Minicircuits ZX47-40-S+ to monitor the power

and the bottom lines have pads that can be used to make an impedance matching
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Figure 8: Setup used to drive the AOMs controlling the power and frequency of
Raman beams. A similar setup is used to drive a coil used to generate high-power
RF fields at the atoms.

network.

We used a vector network analyzer (VNA) to perform the impedance match-

ing. The VNA sends a small amplitude RF signal into the circuit and measures the

amplitude and phase of the reflected power as a function of frequency from which

the impedance can be inferred. Figure 10a shows the reflected power as a function

of frequency for a test circuit and Figure 10b shows the complex valued impedance

as a function of frequency displayed on a Smith chart. The Smith chart is a helpful

way to visualize the impedance of a circuit: the black circles correspond to con-

stant resistance, with the rightmost point corresponding to an open circuit (infinite

resistance) and the largest circle corresponding to a short circuit (zero resistance).

The arcs correspond to constant reactance; the horizontal axis corresponds to zero

reactance (Im(Z) = 0), the top arcs correspond to Im(Z) > 0, and the lower arcs

to Im(Z) < 0. The circuit is impedance matched when Z = 50 Ohm (the center of

the Smith chart), the standard value of RF transmission lines. We tested different

components on the pads until we found a peak in reduced reflected power at the

desired frequency. It is also important to note that it was essential that the circuit

was installed in its final location in the experiment when measuring the impedance
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Figure 9: We use a commercial resonator with an impedance matching network to
produce high power RF fields. a. Diagram of the impedance matching network. b.
A picture of the resonator mounted on a PCB. We place this device as close to the
atoms as possible next to the glass cell.

as the other parts in the vicinity of the antenna can shift the resonant frequency.

The driving electronics are very similar to the AOM drivers described in Sec-

tion 4.3.2. The only difference is we use a 30 W amplifier (Minicircuits LZY-22+)

instead of the smaller amplifiers needed to drive the AOMs.

4.3.4 6.8 GHz microwave system

We built a 6.8 GHz microwave system to couple atoms between the F = 1

and F = 2 ground hyperfine manifolds of 87Rb. We mostly use this system to

stabilize the bias magnetic field along ez at the atoms using microwave assisted
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a. Reflections b. Smith chart

Figure 10: Impedance matching of high power RF antenna. a. Reflected power as
a function of frequency. b. Impedance as a function of frequency, visualized on a
Smith chart.

PTAI (Section 3.5.3). Table 4.2 presents a list of components used in the setup is

presented and Figure 11 shows a diagram of the connections.

Table 4.2: 6.8 GHz microwave system components

Part number Description
SRS SG384 Signal generator
Narda 4014C-30 Directional coupler
Marki IRW0618 Mixer
Minicircuits VBFZ-6260-S+ Bandpass filter 6− 8 GHz
Herley D1956 Voltage controlled attenuator
MSI MSH-5727901 46 dB gain amplifier
Narda 4014C-30 Circulator
Minicircuits ZX47-40-S+ Power detector
Maury microwave 1819C Stub tuner
ZYSWA-2-50DR Digital switch

The SRS generator serves as a source of a fixed frequency and amplitude

signal. We control the frequency by mixing a programmable ∼ 100 MHz signal

from a Novatech into a double balanced mixer; the RF signal can be turned on
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or off using a TTL switch. The amplitude is controlled by commanding a 0 − 6 V

signal from the control computer into an attenuator. The signal is amplified by

+43 dB using an amplifier mounted on a water cooled plate. The microwave signal

is broadcast to the atoms using a horn antenna. In order to get a coupling microwave

coupling strenght of the order of 10 kHz or larger it was important to place the horn

as close to the atoms as possible and impedance matching the transmission line to

maximize the radiated power. We additionally use a circulator that prevents any

reflected power to go back into the amplifier and couplers at different locations to

monitor the performance of the system. The last coupler and the circulator of the

system are connected to a power detector that outputs a DC signal proportional

to the microwave power. The impedance is tuned with a stub tuner by changing

the length of the stubs until the reflected power measured at the exit port of the

circulator is minimized at the desired frequency of operation.

4.4 Computer control and data acquisition

There have been two main changes in our computer control and data acqui-

sition system. We have transitioned from using a LabVIEW based control system

to a Python based control system, The labscript suite [67]. With the previ-

ous control software the lab devices were programmed using a graphic interface.

Labscript instead uses a hybrid approach in which the experimental sequences are

text based scripts. The use of scripted programming has given us more flexibility

and modularity for programming experiments and additionally, it is now very easy
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Figure 11: Schematic of 6.8 GHz microwave system.

to do multi-dimensional parameter scans. Each experimental shot is saved in a Hi-

erarchical Data Format version 5 file (HDF5) that includes images from cameras,

oscilloscope traces, and analog inputs as well as copy of the script used in the exper-

iment and the values of all of the parameters used. This has been a great upgrade

as we no longer rely on the person running an experimental sequence pushing the

‘save’ button and thoroughly documenting the experiment in question1.

The other upgrade worth mentioning is replacing our old Flea3 (FL3-FW-03S1M-C

from FLIR, formerly Point Grey) CCD camera with a Mako G-030 camera from

Allied Vision. With this new camera the time between two consecutive shots can

be as short as 96µs (we used to wait ∼ 30 ms with the Flea3 camera), greatly reduc-

ing the effect of mechanical vibrations in the experiment that produce fringes in the

1As I have been digging into old data, I greatly wish we had this feature sooner.
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absorption images. Table 4.3 summarizes relevant specifications of both cameras.

In our experimental sequence the probe and atoms images are separated by 150µs,

which is not enough time for the atoms in the first absorption image to be cleared

out. We therefore had to change the order in the absorption imaging protocol: first

we take a picture of the probe which is 6.8 GHz detuned and minimally disturbs the

atoms, we then apply repump light during the 150µs interval in between the images

to transfer atoms into F = 2 and then take the absorption image of the atoms. Fig-

ure12 shows the OD computed using both cameras with no atoms present. When

there is a long interval in between the two images the probe captured on the camera

changes, leading to the fringes shown in Figure12a. In contrast for probe images

captured within a short interval the main noise contribution is shot noise as can be

seen in Figure 12b. The addition of this camera was essential to get a better signal

to noise ratio in the experiments reported in Chapter 8.

Table 4.3: Relevant specifications of Flea3 and Mako cameras.

Flea3 Mako
Sensor type CCD CMOS

Quantum efficiency at 780 nm ∼ 40% ∼ 30%
Dark noise 19.94 e/s 12.9 e/s

Frame rate at max resolution 120 fps 309 fps
Pixel size 5.6× 5.6µm 7.4× 7.4µm
Resolution 648× 488 644× 484

Dynamic range 65 dB 56.7 dB
Analog to digital converter 12 Bit 12 Bit
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Figure 12: OD computed using two consecutive probe images without atoms. a.
With the Flea3 camera images are spaced by ∼ 30 ms. Changes in the probe reult
in finges in the OD. b. With the Mako camera images are spaced by ∼ 150µs.
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Chapter 5: Fourier Transform Spectroscopy

The high level of control in ultracold atomic systems makes them an ideal

platform for analog simulation of materials and other complex systems. The prop-

erties of these engineered ‘atomic’ materials depend on the underlying single particle

energies and it is important to characterize them. We worked on Fourier transform

spectroscopy for this purpose.

Many spectroscopy techniques in atomic physics rely on using a source of

coherent electromagnetic radiation with a well known frequency that probes the

internal structure of a system (atom). For example, in absorption spectroscopy [68]

coherent light is sent through an atomic medium and if the frequency of the light

is resonant with an atomic transition it is absorbed and a reduced transmission

is measured. Other variants of spectroscopy (e.g. Rabi spectroscopy [55], spin-

injection spectroscopy [69]) work under a similar principle: atoms absorb and emit

photons with frequencies equal to the transition energies between internal states.

Fourier transform spectroscopy instead employs the connection between the

energy spectrum of a system and its dynamics. This connection has been exploited

to study the spectrum of both condensed matter [70] and cold atom systems [71,72]

alike. As opposed to other techniques, Fourier spectroscopy relies only on follow-
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ing the unitary evolution of an initial state suddenly subjected to a Hamiltonian

of interest and measuring probabilities in a basis that does not diagonalize that

Hamiltonian.

The frequency resolution of Fourier transform spectroscopy is limited only by

the coherent evolution timescale of the system under study and can otherwise be

applied to any system. Other applications of this technique implemented in our

laboratory that are not included in this Chapter include measuring the dispersion

relation of a Rashba spin-orbit coupled gas (see Chapter 8) and the band structure

of a fractional period adiabatic superlattice [27].

This Chapter is organized as follows: First, I give a general description of the

Fourier transform spectroscopy technique in Section 5.1. In Section 5.2 I describe

a set of experiments where we engineered a tunable spin-orbit coupled system and

applied Fourier transform spectroscopy. This work was published in [25].

5.1 Operating principle of Fourier spectroscopy

We focus on a system where we can measure the occupation probabilities

of a set of orthonormal states {|ψi〉} that fully span the accessible Hilbert space

of the system. We then consider the time evolution of an arbitrary initial state

|Ψ0〉 = ∑
i
ai |ψi〉 as governed by a Hamiltonian Ĥ ′({Ωi}) and observe the occupation

probabilities of the {|ψi〉} states of the measurement basis as a function of time.

When Ĥ ′ is applied, the evolution of the initial state is |Ψ(t)〉 = ∑
i,j
aici,je

−iE′jt/h̄ |ψ′j〉,

where E ′j and |ψ′j〉 are the eigenenergies and eigenstates of Ĥ ′, and ci,j(t) = 〈ψi|ψ′j〉.
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Figure 1: a. Eigenenergies of a three-level system described by Ĥ ′(Ω1,Ω2,Ω3). b.
The system is prepared in |ψ2〉 and subjected to Ĥ ′ at time ti. The three panels
show the occupation probabilities of the states |ψ1〉 (blue), |ψ2〉 (black), and |ψ3〉
(red) in the measurement basis, for evolution times up to tf . c. Power spectral
density of the occupation probabilities from panel b. The three peaks in the Fourier
spectra correspond to the energy differences present in panel a.

The probability

Pk(t) =|〈ψk|Ψ(t)〉|2 = |
∑
i,j

aici,jc
∗
j,ke
−iE′jt/h̄|2 (5.1)

of finding the system in a state |ψk〉 of the measurement basis can be expressed

as a sum of oscillatory components, with amplitude given by the magnitude of the

overlap integrals between the initial state and the eigenvalues of Ĥ ′

Pk(t) = 1 +
∑
i,j 6=l

2|a2
i ci,jcj,kci,lcl,k| cos(2πfj,lt), (5.2)

where fj,l = (E ′j − E ′l)/h is the frequency associated with the energy difference

of two eigenstates of the Hamiltonian. Fourier spectroscopy relies on measuring

the populations on each state of the measurement basis as a function of time and

extracting the different frequency components fj,l directly by computing the discrete
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Fourier transform. The bandwidth and frequency resolution of the measurement

are determined by the total sampling time and the number of samples. For N

samples separated by a time interval ∆t, the highest resolved frequency will be

fbw = 1/2∆t, with resolution ∆f = 1/∆tN . This resolution can be decreased if

the Fourier transform is calculated using certain types of windowing functions that

enhance signal to noise ratio. Any higher frequency f > fbw will be aliased and

measured in the Fourier spectrum as falias = |f −m/∆t|, where m is an integer. If

interactions are present in the system, the dynamics get modified in a time scale

given by the magnitude of the interactions, giving an additional constraint to the

smallest frequency components of a single particle Hamiltonian that can be resolved

with our technique.

Figure 1 illustrates the principle of Fourier spectroscopy for a three level sys-

tem, initially prepared in the state |Ψ0〉 = |ψ2〉, subject to the Hamiltonian

Ĥ ′ =



E1 0 0

0 E2 0

0 0 E3


+ h̄



0 Ω1 Ω2

Ω∗1 0 Ω3

Ω∗2 Ω∗3 0


, (5.3)

where we measure the occupation probability as a function of time for each of the

{|ψ1〉 , |ψ2〉 , |ψ3〉} states. The three eigenenergies E ′i = hfi that result from diago-

nalizing Ĥ ′are displayed in Figure 1a. The three energy differences hfjj′ between

the levels determine the oscillation frequencies of the occupation probabilities, as

can be seen in Figure 1b. Finally, Figure 1c shows a plot of the power spectral
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densities (PSD) with three peaks corresponding to the three relative energies of Ĥ ′.

5.2 Measuring the SOC dispersion with Fourier transform spectroscopy

We applied the Fourier transform spectroscopy technique to measure the dis-

persion relation of spin-1 BECs with an equal superposition of Rashba and Dressel-

haus SOC, and tunable SOC strength.

5.2.1 System

All of our experiments started with BECs containing about 4 × 104 atoms

in the |f = 1,mF = −1〉 hyperfine state. The experiments described in Sec-

tion 5.2.3 were performed in an optical dipole trap with frequencies (ωx, ωy, ωz)/2π =

(42(3), 34(2), 133(3)) Hz. We later modified the trapping frequencies in the xy

plane to try to make them more symmetric for the experiments described in Sec-

tion 5.2.4. We broke the degeneracy of the three mF magnetic sub-levels by apply-

ing a 1.9893(3) mT bias field along ez that produced a ωZ/2π = 14.000(2) MHz

Zeeman splitting, and a quadratic Zeeman shift ε that shifted the energy of

|f = 1,mF = 0〉 by −h×(28.45 kHz). We transfered atoms into the |f = 1,mF = 0〉

state using ARP (see Section 3.5.2) and then we monitored and stabilized the

magnetic field using partial transfer absorption imaging (Section 3.5.3) by apply-

ing a pair of 250µs microwave pulses, each of them detuned by ±2 kHz from the

|f = 1,mF = 0〉 ↔ |f = 2,mf = 1〉 transition.

We induced spin-orbit coupling using a pair of intersecting, cross polarized
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Raman frequencies

Figure 2: a. Setup. A bias magnetic field B0ez, with B0 = 1.9893 mT splits the
hyperfine energy levels of the f = 1 manifold of 87Rb by ωZ/2π = 14 MHz. A pair of
cross polarized Raman beams propagating along ex+ey and ex−ey couple the atoms’
momentum and spin states. b. The Raman frequencies are set to ωA = ωL + δ and
ωB = ωL+ωZ . We add frequency sidebands to ωB, separated by±δω. The amplitude
modulation from the interference between the multiple frequency components results
in tunable SOC. c. SOC dispersion for Raman coupling strength Ω0 = 12EL and
Ω = 0, on four photon resonance.

Raman laser beams propagating along ex + ey and ex − ey, as shown in Figure 2a

and b. The beams had angular frequency ωA = ωL + δ and ωB = ωL +ωZ , where 2δ

is the, experimentally controllable, detuning from four photon resonance between

mF = −1 and mF = +1.

Our system was well described by the Hamiltonian including atom-light inter-

action along with the kinetic contribution

ĤSOC = h̄
2q2
x

2m + αqxF̂z + 4EL1̂ + h̄ΩRF̂x + (4EL − ε)(F̂ 2
z − 1̂) + h̄δF̂z, (5.4)

where q is the quasimomentum, F̂x,y,z are the spin-1 angular momentum matrices,

α = h̄2kL/m is the SOC strength, and ΩR is the Raman coupling strength, propor-
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tional to the Raman laser intensity. The Raman field coupled |mF = 0, q = qx〉 to

|mF = ±1, q = qx ∓ 2kL〉, generating a spin change of ∆mF = ±1 and imparting a

∓2kL momentum. The eigenstates of ĤSOC were linear combinations of these states

and |mF = 0, q = qx〉, and the set {|mF , q〉} constituted the measurement basis for

Fourier transform spectroscopy.

Figure 2c shows a typical band structure of our spin-1 SOC system as a func-

tion of quasimomentum for a large and negative quadratic Zeeman shift −ε > 4EL.

In this parameter regime, the ground state band had a nearly harmonic dispersion

with an effective mass m∗ = h̄2[d2E(kx)/d2x]−1, only slightly different from that of

a free atom.

5.2.2 Tunable SOC

We engineered a highly tunable dispersion relation in which we could indepen-

dently control the size of the gap at qx = 0 as well as the SOC strength α by adding

frequency sidebands to one of the Raman beams. The state of the system could

change from |mF = −1, q = qx + 2kL〉 to |mF = 1, q = qx − 2kL〉 by absorbing a red

detuned photon first followed by a blue detuned photon and vice versa, in a similar

way to the Mølmer-Sørensen entangling gate in trapped ion systems [73]. When we

set the angular frequencies of the sidebands to ω = ωA + ωZ ± δω, the Hamilto-

nian (Equation 5.4) acquired a time-dependent coupling ΩR(t) = Ω0 + Ω cos(δωt).

This periodically driven system was well described by Floquet theory [74] (see Sec-

tion 3.5.5). Figure 3 shows the spectrum of Floquet quasi-energies for a system
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described by Equation 5.4 where ΩR oscillated with angular frequency δω.

Figure 3: a. Floquet quasi-energies of a three level Hamiltonian with SOC and
time periodic coupling strength. The quasi-energies are grouped into manifolds
consisting of three levels that get repeated with a periodicity equal to h̄δω. b.
Energy differences of the Floquet quasi-energies. Each color represents the energy
difference, separated by a fixed number of neighboring levels. When the number
of neighboring levels is a multiple of 3, the energy differences are straight lines, a
result of the periodic structure of the Floquet manifolds.

We found an effective time-independent Hamiltonian using a unitary trans-

formation Û(t) and applying a RWA. The time evolution of the transformed wave

function |ψ′〉 = Û † |ψ〉 was given by the time dependent Schrödinger equation for

the Hamiltonian Ĥ ′ = Û †ĤÛ − ih̄Û †∂tÛ . We used

Û(t) = exp[−i Ω
δω

sin(δωt)F̂x] (5.5)

so that ih̄Û †∂tÛ = h̄ΩR(t)F̂x. The transformed Hamiltonian Ĥ ′(t) had terms

proportional to sin(Ω/δω sin(δωt)), sin2(Ω/δω sin(δωt)), cos(Ω/δω sin(δωt)) and

90



cos2(Ω/δω sin(δωt)) which we simplified using the Jacobi-Anger expansion

cos(z sin θ) = J0(z) + 2
∞∑
n=1

J2n(z) cos(2nθ) ≈ J0(z)

sin(z sin θ) = 2
∞∑
n=0

J2n+1(z) sin((2n+ 1)θ) ≈ 0,

where Jn is the the nth order Bessel function of the first kind and we neglected the

‘fast’ terms proportional to cos(2nθ) and sin((2n + 1)θ), essentially performing a

RWA.

This approximation is valid for h̄δω > |ε|+ 12EL and |qx| ≤ 2kL so that quasi-

energy manifolds are well separated as in Figure 3a. The resulting Hamiltonian

retained the form of Equation 5.4 with renormalized coefficients and an additional

coupling term

ĤFl =ĤSOC(q,Ω0, α̃, δ̃, ε̃) + Ω̃F̂xz, (5.6)

where α̃ = J0(Ω/δω)α, Ω̃ = 1/4(ε + 4EL)[J0(2Ω/δω) − 1], δ̃ = J0(Ω/δω)δ, and

ε̃ = 1/4(4EL − ε)− 1/4(4EL + 3ε)J0(2Ω/δω). F̂xz is the λ̂4 Gell-Mann matrix that

directly couples |mF = −1, q = qx + 2kL〉 and |mF = +1, q = qx − 2kL〉 states. The

experimentally tunable parameters δω, Ω and Ω0 can be used to tune the SOC

dispersion.
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5.2.3 Application of Fourier spectroscopy

We used Fourier transform spectroscopy to measure the spectrum of the SOC

Hamiltonian (Equation 5.6) for three coupling regimes: (i) Ω0 6= 0 and Ω = 0,

(ii) Ω0 = 0 and Ω 6= 0 and (iii) Ω0 6= 0 and Ω 6= 0. We turned on the Raman

laser non-adiabatically, in approximately 1µs. We let the system evolve subject to

ĤSOC for up to 900µs, and then turned off the laser while releasing the atoms from

the optical dipole trap. We resolved the spin and momentum distribution using a

Stern-Gerlach gradient and a 21 ms TOF which allowed us to measure the fraction

of atoms in each state of the measurement basis {|mF , q〉}. We chose the density

of sampling points and the maximum evolution time so that the bandwidth of the

Fourier transform was comparable to, or larger than, the highest frequency in the

evolution of the system while maximizing resolution. Experimental decoherence

resulting in loss of contrast of the oscillations due to magnetic field noise and small

magnetic field gradients present in our apparatus, was an additional constraint that

became significant around 1 ms.

Working with a BEC with k = 0 gave us access to only a single point in the

dispersion relation. In order to map the full spin and momentum dependent disper-

sion relation of ĤSOC, we measured the time dependent occupation probabilities at

a fixed Raman coupling strength and different values of Raman detuning δ for the

same initial state. The detuning corresponded to the Doppler shift experienced by

atoms moving relative to a light source with quasimomentum qx/kL = h̄δ/4EL. We

controlled the frequency and the detuning of the Raman beams using two AOMs,
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one of which was driven by up to three phase coherent frequencies (the carrier fre-

quency plus two sidebands). For each of the three coupling cases that we measured,

we applied the Raman beams at detuning values within the interval ±12EL which

corresponds to quasimomentum values ±3kL.

This approach of changing detuning rather than using atoms with non-zero

quasimomentum had the advantage that the state preparation was very reliable

(making BECs at rest is easy1!) and we got very good signal to noise ratios due to

the relatively high densities of the BECs. The downside was that if one is interested

in looking at a large range of different momenta it can take a long time to repeat

each experiment for different detuning values. In subsequent implementations of

Fourier transform spectroscopy (Chapter 8 and [27]) we sacrificed some signal to

noise ratio for speed and used the momentum distribution of non-condensed atoms

to parallelize our measurements.

We mapped the band structure of SOC atoms for three different coupling

regimes. Figure 4a shows representative traces of the measured occupation proba-

bilities for short evolution times along with fits to the unitary evolution given by

ĤSOC with δ, Ω0, and Ω as free parameters. The fit parameters agree well with

independent microwave and Raman power calibrations. In the lower two panels,

where the Raman coupling strength was periodically modulated, the occupation

probabilities oscillated with more than three frequencies since the full description of

the system was given by a Floquet quasi-energy spectrum. Figure 4b,c shows the

occupation probabilities for the parameter regime (iii) for longer evolution times

1Well, nothing in the lab is really ‘easy’...
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Figure 4: a. Occupation probability for the three states in the mea-
surement basis |mF = −1, q = qx + 2kL〉 (blue), |mF = 0, q = qx〉 (black), and
|mF = +1, q = qx − 2kL〉(red), following unitary evolution under ĤSOC for times
up to 100 µs at different spin-orbit coupling regimes: (i) Ω0 = 9.9EL, Ω = 04,
δ = 5.8EL, (ii) Ω0 = 0, Ω = 8.6EL, δ = −0.7EL, δω = ε + 12EL, and (iii)
Ω0 = 1.5EL, Ω = 8.4EL, δ = −4.7EL, δω = ε + 17EL. b. Occupation probability
for long pulsing up to 800 µs for parameters as in (iii). c. Power spectral density of
the occupation probability. We subtract the mean value of each probability before
taking the Fourier transform to remove peaks at f = 0. The peaks in the PSD then
correspond to the relative eigenenergies of ĤSOC .

along with the PSD of the occupation probability of each spin state.

We used a non-uniform fast Fourier transform algorithm (NUFFT) on a square
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Figure 5: Power spectral density of the time dependent occupation probability for
each state in the measurement basis for three coupling regimes: (Left) Ω0 = 9.9EL,
Ω = 0, (Center) Ω0 = 0, Ω = 8.6EL, δω = ε + 12EL, and (Right) Ω0 = 4.9EL,
Ω = 8.4EL, δω = ε+17EL. Each panel is normalized to peak amplitude to highlight
small amplitude features in the PSD of the periodically driven SOC, and the highest
value on the frequency axis corresponds to the FFT bandwidth.

window to obtain the power spectral density of the occupation probabilities since

our data points were not always evenly spaced because of imperfect imaging shots.

The heights of the peaks in the PSD are related to the magnitude of the overlap

integrals between the initial state and the Raman dressed states. Figure 4c shows

the raw PSD of the time evolution of the system under ĤSOC for a given Raman

coupling strength and detuning. We put together all the PSDs for the three coupling

regimes in the spectra shown in Figure 5. Each column corresponds to a different
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coupling regime and the colors represent the different spin states of the measurement

basis. The spectra show that some overlap integrals vanish near δ = 0, which is

manifested as missing peaks in the PSD. The periodic structure of the Floquet

quasi-energy spectrum gave rise to peaks at constant frequencies of δω and 2δω

independently of the Raman detuning, and a structure that is symmetric about the

frequencies 2πf1 = δω/2 and 2πf2 = δω. A reader is interested in seeing another

nice experiment where the Floquet quasienergy spectrum becomes can be visualized

is advised to see [75].

5.2.4 Effective mass

Fourier transform spectroscopy only gives access to the relative energies of

a Hamiltonian. If we want to recover the absolute energies we need to have an

additional energy reference. The particular Hamiltonian ĤSOC had a ground state

with a nearly quadratic dispersion. We measured its effective mass to obtain the

ground state energy which we used as a reference to recover the absolute energies.

We measured the effective mass of the Raman dressed atoms by adiabatically

preparing the BEC in the lowest eigenstate and inducing dipole oscillations [31]. The

effective mass of the dressed atoms was related to the bare mass m and the bare and

dressed trapping frequencies ω and ω∗ along the Raman recoil direction by the ratio

m∗/m = (ω/ω∗)2. We measured this ratio following [19]. To induce the oscillations

we started in |mF = 0, kx = 0〉 state and adiabatically turned on the Raman laser

in 10 ms while simultaneously ramping the detuning to δ ≈ 0.5EL which shifted the
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minima in the ground state energy away from zero quasi-momentum. We suddenly

brought the field back to resonance causing an abrupt change in the dispersion

relation that excited the dipole mode of the BEC. To obtain the bare state ω we

only used the Raman beams to induce the oscillations and then subsequently turned

off the beams while the BEC oscillated in the dipole trap and to obtain ω∗ the

Raman beams were kept on the whole time. For this set of measurements, we

adjusted our optical dipole trap to give new trapping frequencies (ωx, ωy, ωz)/2π =

(35.6(4), 32.2(3), 133(3)) Hz, nominally symmetric in the plane defined by ex and

ey.

The Raman beams were co-propagating with the optical dipole trap beams;

therefore, the primary axes of the dipole trap frequencies were at a 45◦ angle with

respect to the direction of kL. The kinetic and potential terms in the Hamiltonian

including the contribution of the Raman and optical dipole trap were

Ĥ⊥ = h̄
2q2
x

2m∗ +
h̄2q2

y

2m + m

2 [ω2
x′x
′2 + ω′2y y

′2]

= h̄2

2m?
k2
x + 1

2mk2
y + m

4 [(ω2
x′ + ω2

y′)(x2 + y2) + 2xy(ω2
x′ − ω2

y′)], (5.7)

where x′ = (x+ y)/
√

2 and y′ = (x− y)/
√

2 are position coordinates rotated by 45◦

. For an axially symmetric trap with ωx′ = ωy′ , the frequency of oscillation along

the Raman recoil direction is

ω2
x = m

2m∗ (ω
2
x′ + ω2

y′). (5.8)
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Our trap had a small 3.4 Hz asymmetry and there was some coupling of the

motion along the axis perpendicular to kL which becomes more significant at larger

values of the effective mass. The sampling times for the measurements were small

compared to the trap asymmetry and we can locally approximate the motion of

the atoms by a simple harmonic function with a frequency along ex given by Equa-

tion 5.8.

Figure 6 shows the dipole oscillations along the ex and ey directions for the

three different coupling regimes we explored, as well as the bare state motion. The

resulting mass ratios for the three coupling regimes are m/m∗ = (i) 1.04(8), (ii)

0.71(7), and (iii) 0.62(4).

Figure 6: Oscillation of the BEC in the dipole trap along the recoil directions ex
and ey for (top) bare atoms, and the three parameter regimes that we explored (i),
(ii), and (iii). We believe that the observed low amplitude oscillations along ey are
due to the initial detuning ramp not being fully adiabatic.
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5.2.5 Measured dispersions

Figure 7 explains in detail the interpretation of the multiple peaks in the PSD

and the steps that were taken to recover the dispersion relation using the effec-

tive mass and the Fourier spectra. The red line in Figure 7a represents a level

within a Floquet manifold that has the largest overlap integral with the initial

|mF = 0, q = 0〉 state. The peaks in the PSD correspond to energy differences be-

tween the marked level and the levels in neighboring Floquet manifolds pointed

by the colored arrows. We show the theoretically computed energy differences on

top of the measured PSD in panel b. The lowest frequency dominant peaks of the

PSD correspond to energy differences with the adjacent lower Floquet manifold. To

properly recover the SOC dispersion we shifted the PSD by a negative quadratic

term −h̄2q2
x/2m∗ as we show on panel c. We finally invert the frequency axis and

shift it by δω.

We obtained the characteristic dispersion of a SOC system after adding a

quadratic term to the PSD, proportional to the measured effective mass and rescal-

ing the detuning into recoil momentum units. We combined the PSD of the time

evolution of the three |mF 〉 states to look at the spin dependence of the spectra. Fig-

ure 8 shows the measured dispersion relations as well as the Floquet quasi-energies

calculated for the Hamiltonian parameters obtained from our calibrations. The spec-

tral lines that can be resolved with our technique depend on the overlap integrals

of the initial state with the target Hamiltonian eigenstates. Additional energies can

be measured by repeating the experiment with different initial states. The spectral
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Figure 7: a Floquet quasi-energy spectrum of a SOC Hamiltonian with periodic
coupling strength. The red line represents the eigenstate that has the largest over-
lap with the initial |mF = 0〉 state. The arrows indicate the energies of the states
that have non-zero overlap with the initial state and can be measured with Fourier
transform spectroscopy. b PSD of the occupation probability and numerically cal-
culated energy differences between the levels indicated by the arrows on panel a. c
PSD shifted by a quadratic term −h̄2q2

x/2m∗. The red box indicates the region of
interest where we can recover the SOC spectrum. d We invert the frequency axis
and shift it by δω.

lines we were able to resolve are in good agreement with the calculated energies of

the Hamiltonian.
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Figure 8: Spin-dependent SOC dispersion for three different coupling regimes. We
combine the PSD of the occupation probability of the states |mF = ±1, qx = ∓2kL〉,
and shift each frequency by an amount proportional to the squared quasimomentum
and the effective mass. The dashed lines are the calculated Floquet energies for the
Hamiltonian using our calibration parameters.

Conclusion

This chapter introduced the basic principles of the Fourier transform spec-

troscopy technique and used it to measure the spin and momentum dependent

dispersion relation of a spin-1 spin-orbit coupled BEC. We additionally studied

a periodically driven SOC system and found a rich Floquet quasi-energy spectrum.

Our method can be applied generically to any system with long enough coherent

evolution to resolve the energy scales of interest and could prove particularly useful

to study systems where it is harder to predict or compute the exact energies, such

as cold atom realizations of disordered or highly correlated systems [76]. In our lab,

this technique has been used to study the spectrum of a Rashba spin-orbit coupled

system [26] and of a fractional period adiabatic superlattice [27].

Our main initial interest was to create tunable spin-orbit coupling and Fourier

spectroscopy was conceived as a tool to characterize it. We realized that the use of
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Raman transitions from multiple frequency beams was equivalent to another exper-

iment that achieved tunable SOC using amplitude modulated Raman coupling [77].
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Chapter 6: Synthetic clock transitions through continuous dynami-

cal decoupling

Most of the experimental techniques described in this thesis so far have used

the hyperfine |mF 〉 states as effective spins dressed with an RF or Raman field.

However, due to the linear dependence of their energies with respect to magnetic

field, and our lack of control of environmental changes we always had to take special

care to stabilize the magnetic field in the laboratory (see Section 3.5.3). An alterna-

tive to doing active magnetic field stabilization is to use clock transitions which are

first-order insensitive to changes in magnetic field but unfortunately they are not

present in all systems or for arbitrary system parameters. However, under almost

all circumstances, clock transitions can be synthesized using dynamical decoupling

protocols. These protocols involve driving the system with an external oscillatory

field, resulting in a dynamically protected ‘dressed’ system.

The idea of implementing continuous dynamical decoupling (CDD) came from

a theoretical proposal to engineer Rashba type SOC (see Chapter 8) using Raman

beams and a strong RF field [78], the second being a necessary ingredient for CDD.

We initially worked in implementing CDD protocols to create ‘synthetic clock states’

as an intermediate step towards our final goal of engineering Rashba SOC. Just like
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with Fourier spectroscopy, CDD became a workhorse of the laboratory both for

the stability it provides against environmental fluctuations and because it has given

us access to non-zero matrix coupling elements that we otherwise would not have

when working with the bare |mF 〉 states. We have continued to use CDD not only

for engineering Rashba SOC (Chapter 8) but also to engineer subwavelength optical

lattices [27] and Hofstadter [79] cylinders (work in preparation). On the theory side,

we developed a proposal that uses them as a platform for emulating PT symmetric

Hamiltonians [80].

This Chapter discusses the implementation of CDD in the ground F = 1

hyperfine manifold of ultracold 87Rb. First I give a general overview of dynamical

decoupling and continuous dynamical decoupling. Then I describe the technical

details and characterization of our CDD protocol which produces a protected three-

level system of dressed-states whose Hamiltonian is fully controllable. Finally, I

discuss an implementation of concatenated CDD that renders the system first-order

insensitive to both magnetic field noise and noise in the control field. This work was

published in [81] and was done in parallel with [82].

6.1 Basic principles of CDD

Dynamical decoupling (DD) protocols consist in applying an external control

Hamiltonian, generally implemented by a series of pulses, which has the effect of

canceling out the dynamics that arise from ta quantum system coupling to the en-

vironment. DD was first introduced in the context of nuclear magnetic resonance
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(NMR) with the discovery of spin-echoes [83], where a single ‘refocusing’ pulse was

applied to eliminate dephasing of spins resulting from variations in magnetic field.

These ideas were later generalized in [84] to protect a system from decoherence

induced by interactions with a quantum environment. Continuous dynamical de-

coupling (CDD) relies on the application of time-periodic continuous control fields,

rather than a series of pulses.

A number of dynamical decoupling protocols, pulsed or continuous, have been

shown to isolate quantum systems from low-frequency environmental noise [85–93].

Thus far, CDD has inoculated multi-level systems in nitrogen vacancy centers in

diamond, nuclear magnetic resonance experiments, and trapped atomic ions [94–

101], from spatiotemporal magnetic field fluctuations.

6.2 CDD of a spin-1 system
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Figure 1: a. Setup for implementing CDD using a strong RF magnetic field. b. Left:
dependence of the 52S1/2, F = 1 ground state of 87Rb on magnetic field, where the
quadratic dependence of the |mF = 0〉 state’s Zeeman shift has been exaggerated
so it is visible on the same scale. Center: energies of the |xyz〉 eigenstates, for
Ω/2π = 200 kHz (black curves) and Ω = 0 (grey curves). Right: TOF absorption
image of |z〉 at ∆ = 0, showing the constituent |mF 〉 states.
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We implemented CDD using a strong RF magnetic field with strength Ω which

linked the three |mF 〉 states comprising the F = 1 electronic ground state manifold

of 87Rb. The RF field was linearly polarized along ex, and had angular frequency ω

close to the Larmor frequency ω0 = gFµBB0 from a magnetic field B0ez; gF is the

Lande g-factor and µB is the Bohr magneton. Using the rotating wave approximation

for the frame rotating at ω (which is valid for ω >> Ω), the system was described

by

Ĥ = h̄∆F̂z + h̄ε(F̂ 2
z − 1̂) + h̄ΩF̂x, (6.1)

with detuning ∆ = ω − ω0, quadratic Zeeman shift ε, spin-1 angular momentum

operators F̂x,y,z, and the identity operator 1̂.

6.3 The |xyz〉 states

The eigenstates of Equation 6.1 correspond to the CDD basis, and we denote

them the |x〉, |y〉 and |z〉 states.
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6.3.1 State decomposition

The CDD states are linear combinations of the |mF 〉 basis states, and for

∆ = 0 the (non-normalized) eigenvectors are:

|x〉 = |−1〉 − |1〉 ,

|y〉 = |−1〉 − ε+ Ω̃√
2Ω
|0〉+ |1〉 , (6.2)

|z〉 = |−1〉 − ε− Ω̃√
2Ω
|0〉+ |1〉 .

Figure 2 shows the normalized full state decomposition as a function of ∆. The |xyz〉

states adiabatically map to the |mF 〉 states for |∆| � Ω: for positive (negative)

detuning |z〉 maps to |1〉 (|−1〉); |y〉 maps in the exact opposite way to |z〉; and |x〉

always maps to |0〉.
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Figure 2: Decomposition of the |xyz〉 states on the |mF 〉 basis for Ω/2π =
145(1) kHz. We adiabatically prepared the system in any of the |xyz〉 states and then
suddenly turned off the RF dressing field. The |mF = −1, 0, 1〉 states correspond to
blue, orange, gray respectively.
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We labeled our dressed states |xyz〉 since for Ω→ 0+ and ∆ = 0, they contin-

uously approach the |XY Z〉 states familiar from quantum chemistry [21]:

|X〉 = |1〉 − |−1〉√
2

,

|Y 〉 = i
|1〉+ |−1〉√

2
, (6.3)

|Z〉 = |0〉 .

which transform under the application of the spin-1 operators as εjklF̂j |k〉 = ih̄ |l〉,

so that a resonant probe field can induce transitions between at least one pair of

states, irrespectively of its polarization.

Finally, when Ω→∞ they are independent of the driving field amplitude and

continuously approach the eigenstates of the F̂x operator

|x〉 = |1〉 − |−1〉 ,

|y〉 = |1〉+
√

2 |0〉+ |−1〉 , (6.4)

|z〉 = |1〉 −
√

2 |0〉+ |−1〉 .

6.3.2 Energies

The clock-like nature of these states is determined by their eigenvalues which

are even functions with respect to ∆ as can be seen by the leading order expansion
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of the eigenenergies Ei = h̄ωi for ∆→ 0

ωx =− ε

Ω2 ∆2 +O(∆4),

ωy =1
2(−ε+ Ω̃)− (ε+ Ω̃)

−ε2 − 4Ω2 + εΩ̃
∆2 +O(∆4), (6.5)

ωz =1
2(−ε− Ω̃) + (ε− Ω̃)

ε2 + 4Ω2 + εΩ̃
∆2,

where we have defined Ω̃ =
√

4Ω2 + ε2. The energy differences h̄ωxy, h̄ωzy and h̄ωzx

are only quadratically sensitive to ∆ for ∆ � Ω 1 so that detuning fluctuations

δ∆ are suppressed to first order, making these a trio of synthetic clock states. The

curvatures of ωx and ωz have the same sign and in principle there is a critical

value of Ω where the quadratic term in transition energy can be made arbitrarily

small, making it quartic in ∆. However, this cancellation does not take place when

we consider the dependence of ε on ∆ using the Breit-Rabi expression. It is still

possible to find an optimal Ω for which ωzx depends quartically on ∆, but it does

not occur at ∆ = 0 as is predicted by Equation 6.5 for constant ε.

6.3.3 Transition matrix elements

Unlike the |mF 〉 basis, an oscillatory magnetic field with the right polarization

can drive transitions between all pairs of the |xyz〉 states with non-zero transition

matrix elements. The transition matrix elements between the |xyz〉 have a depen-

dence on both Ω and ∆. For the ∆ = 0 case they can be read from the representation

of the spin-1 matrices in the |xyz〉 basis

1The energies are quadratic in ∆ for ∆� Ω, and linear for ∆� Ω with a slope of 7 MHz/mT.
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F̂x →



2Ω
Ω̃ 0 − ε

Ω̃

0 0 0

− ε
Ω̃ 0 −2Ω

Ω̃



F̂y →



0 − i(Ω̃−ε)

Ω
√

(ε−Ω̃)2
Ω2 +4

0

i(Ω̃−ε)

Ω
√

(ε−Ω̃)2
Ω2 +4

0 − i(Ω̃+ε)

Ω
√

(Ω̃+ε)2
Ω2 +4

0 i(Ω̃+ε)

Ω
√

(Ω̃+ε)2
Ω2 +4

0



F̂z →



0 −
√

ε
Ω̃ +1
√

2 0

−
√

ε
Ω̃ +1
√

2 0 − 2√
(Ω̃+ε)2

Ω2 +4

0 − 2√
(Ω̃+ε)2

Ω2 +4
0


, (6.6)

where the states have been ordered by decreasing energy (|y〉, |x〉, |z〉). We see

that a term in a Hamiltonian that is proportional to F̂x can only drive transitions

between |z〉 and |y〉 and that a coupling term proportional to F̂y and F̂z can drive

both drive transitions between |z〉 and |x〉 or |x〉 and |y〉 with different strengths.

The matrices in Equation 6.6 show that when Ω and ε are comparable in magnitude

there exists at least one non-zero transition matrix element for each pair of dressed

states and they can all be coupled cyclically.
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6.4 |xyz〉 state preparation

We implemented CDD to BECs with N ≈ 5× 104 atoms in the F = 1 ground

hyperfine manifold of 87Rb. For all of the experiments described in this Chapter the

dipole trap had trapping frequencies of (fx, fy, fz) = (42(3), 34(2), 133(3)) Hz. We

applied a B0 ≈ 3.27 mT bias field that lifted the ground state degeneracy, giving

an ω0/2π = 22.9 MHz Larmor frequency, with a quadratic shift ε/2π = 76.4 kHz.

We determined that the ambient magnetic field fluctuations were dominated by

contributions from line noise giving an RMS uncertainty δ∆/2π = gFµBδB/h =

0.67(3) kHz.

The state preparation consisted of two stages of ARP. On the first stage we

followed the usual protocol described in Section 3.5.2 to prepare the BEC in any of

the |mF = 0,−1, 1〉 states. On the second stage, we adiabatically transformed the

|mF 〉 states into the |xyz〉 states. We started with the bias field far from resonance

(∆(t = 0)/2π ≈ −450 kHz) and with all coupling fields off. Then we ramped on

Ω in a two-step process. We first ramped from Ω = 0 to an intermediate value

Ωmid, approximately half its final value in 1 ms. We then ramped ∆ to zero in 3 ms

by increasing the magnetic field B0. After allowing B0 to stabilize for 30 ms, we

ramped the RF dressing field to its final value Ω in 1 ms, yielding the dynamically

decoupled |xyz〉 states. It was important that we waited for the field to stabilize at

an intermediate Ωmid as we found several times that the capacitors on the impedance

matching network of the antenna used to generate the RF field would burn if we

kept the power on for too long.
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After performing any experiment with the |xyz〉 states we measured their pop-

ulations by adiabatically deloading them back into the |mF 〉 basis. We first ramped

B0 so that ∆ approached its initial detuned value in 2 ms, and then ramped off the

dressing RF field in 1 ms. A typical experimental sequence for ∆ and Ω can be

visualized in Figure 3. As usual, we obtained the spin-resolved momentum distri-

bution using absorption imaging after TOF, with a Stern-Gerlach field to spatially

separate the spin components. The right panel of Figure 1b shows a TOF image

of the |mF 〉 state decomposition of the |z〉 state. For this image as well as for the

measurement of the dressed state decomposition shown in Figure 2 we suddenly

(not-adiabatically) turned the RF coupling off, thereby projecting the |xyz〉 states

back into the |mF 〉 basis.

Figure 3: Detuning and RF coupling strengths ramps (not to scale) performed to
adiabatically prepare the |xyz〉 states starting in the |mF 〉 states and vice versa.
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6.5 Initial characterization of Ω

Producing RF fields with large coupling strength was not a trivial task and

when testing different antenna designs it was important to have an easy and quick

way of characterizing them. We mostly relied on two different techniques to get an

initial estimate of Ω: first, we prepared atoms in |mF = −1〉 and pulse on the RF to

drive transitions between the three |mF 〉 states. We fit the populations in the three

states as a function of pulsing time to the time evolution given the time dependent

Schödinger equation for the RF Hamiltonian (Equation 6.1) using a least squares

minimizer with Ω and ∆ as free parameters.
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Figure 4: We prepared the system in the |mF = −1〉 state and pulsed Ω for variable
times. We used a least squares minimizer to fit the populations in the |mF 〉 states
as a function of pulsing time to get an initial estimate of Ω. The top panel shows
the time evolution of Ω/2π ≈ 76 kHz and the bottom panel shows the evolution for
Ω/2π ≈ 238 kHz

Alternatively, we followed the loading procedure described in Section6.4 but
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suddenly turned Ω off for different values of ∆ to get the decomposition of the |xyz〉

states in terms of the |mF 〉 states. We then fit the populations to the eigenstates of

the Equation 6.1 with Ω and ∆ as free parameters. Figure 2 is an example of such

type of calibration.

For an antenna with a quality factor such as ours (q ∼ 20) we could not

‘suddenly’ turn Ω on or off as it takes some time for power to build up and to die

out when the RF fields are turned on or off2. If we did not include this into the

model used to calibrate Ω we could get some results that were slightly off. We only

used these measurements as initial estimates and once we found an antenna design

that could produce a large enough Ω we used the spectroscopy techniques described

in the next section to fully characterize the system.

6.6 Spectroscopy

We confirmed our control and measurement techniques spectroscopically by

measuring the energy differences between the |xyz〉 states with an additional probing

field with angular frequency ω + ωp, coupling strength Ωp and polarized along ey.

In the frame rotating with angular frequency ω and after using a RWA the system

was described by the Hamiltonian

Ĥ = ∆F̂z + h̄ε(F̂ 2
z /h̄

2 − Î) + ΩF̂x

+ Ωp

(
sin(ωpt)F̂x + cos(ωpt)F̂y

)
. (6.7)

2It is possible to get the desired response by using a different function for the turn on/off that
overshoots (not just a step).
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In this rotating frame the probe field initially polarized along ey had components

along ex and ey, resulting in at least one non-zero transition matrix element for all

transitions between pairs of dressed states. If the probing field was polarized along

ez we would not be able to drive the zy transition as can be seen from the matrix

elements in Equation 6.6.

To probe the dependence of the |xyz〉 state energies on detuning, we performed

Rabi spectroscopy (Section 3.5.1) by pulsing Ωp on for a constant time and scanned

ωp for different values of ∆. Figure 1b shows the spectroscopically resolved values

of ωxy/2π, ωyz/2π, and ωzx/2π for Ω/2π = 194.5(1) kHz and the side panel shows

a sample spectra measured with coupling strength Ωp/2π ≈ 1 kHz and ∆/2π ≈

9 kHz. The dashed curves were computed by diagonalizing Equation 6.1, and they

clearly depart from our measurements for the zx transition. This departure results

from neglecting the weak dependence of the quadratic shift ε on bias field B0. In

near-perfect agreement with experiment, the solid curves from the full Breit-Rabi

expression account for this dependency.

6.7 Robustness

We focused on the robustness of the zx transition which can be made virtually

independent of magnetic field variations due to the similar curvature of ωz(∆) and

ωx(∆) (see the middle panel of Figure 1b). We quantified the sensitivity of this tran-

sition to field variations with three methods corresponding to the different markers

in Figure 6b: (1) Triangles denote data using Rabi spectroscopy as in Figure 6a.
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Figure 5: Spectroscopic data showing transitions between the |xyz〉 states for
Ω/2π = 194.5(1) kHz. The vertical scale of the center panel (zx transition) has
only 10% the range of the other panels. The dashed lines correspond to the Hamil-
tonian of Equation 6.1 while the solid lines include the dependence of the quadratic
shift on ∆. Right: representative spectra.

(2) Squares denote data in which a detuned π-pulse of the probe field transferred

approximately half of the atoms from |z〉 to |x〉. This ‘side-of-peak’ technique over-

comes the limitation of Rabi spectroscopy being first-order insensitive to changes

in ωzx. (3) Circles describe data using a double dressing technique that will be de-

scribed in Section 6.9. In each case we measured the energy shift from resonance as

a function of detuning (magnetic field) and then used a fourth-order polynomial fit

to extract the RMS residuals δωzx due to the known detuning noise 3. The results

are not consistent with the simple theory from Equation 6.7 (dashed) and instead

require the Breit-Rabi expression (solid) to obtain full agreement 4.

Even at our smallest coupling Ω/2π = 69(1) kHz the typical magnetic field

noise was attenuated by two orders of magnitude, rendering it essentially un-

detectable. Ideally, the radius of curvature of ωzx(∆) changes sign at about

3Our procedure also quantifies the small fluctuations that survive for spectra that are flat
beyond second order, as in Equation 6.1.

4The fluctuations can be even smaller for a given Ω if we allow for ∆ 6= 0.
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Figure 6: a. Transition frequency ωzx/2π for three values of Ω/2π. The dashed
curves correspond to Equation 6.7, while the solid curves use the Breit-Rabi ex-
pression. b. The change in energy from our experimental detuning fluctuations as
measured in the |mF 〉 basis is δ∆/2π = 0.67 kHz (red dashed line). Triangles corre-
spond to |xyz〉 spectroscopy data, squares to side-of-peak π-pulse data, and circles
to double-dressed data. The black dashed (solid) curve was calculated using Equa-
tion 6.7 (the Breit-Rabi expression). The shading of the data points corresponds to
the Rabi frequencies in Figure 8.

Ω/2π = 220 kHz, leaving only a ∆4 contribution, however, in practice the small

dependence of ε on B prevents this perfect cancellation. Still it is possible to see

the changing curvature of ωzx(∆) near ∆ = 0 for different values of Ω in Figure 6a.

6.7.1 Optimal response to noise

The sensitivity of the zx transition to detuning fluctuations can be optimized

further by working at ∆ 6= 0 as shown in Figure 7.
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For small values of Ω, the optimum value of ∆ corresponds to one of the

concave features of the zx transition energy that arises due to the asymmetry in-

troduced by the quadratic shift. As Ω gets larger, these features merge into a single

one and the optimum value is ∆ ≈ 0. The deviation from ∆ = 0 is due to an overall

tilt of the transition energy coming from the dependence of the quadratic shift on

∆. At the optimum point Ω/ε ≈ 3 the sensitivity of the synthetic clock transition

is 1.9× 10−7 kHz, c.f, the 87Rb clock transition which scales as 57.5 kHz/mT2 and

gives 5.8× 10−7 kHz.
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Figure 7: Left: Optimum response (solid) of the zx transition to detuning fluctua-
tions allowing for finite ∆ compared to ∆ = 0 (dashed) for the full Breit-Rabi model
(note the logarithmic vertical scale). Right: The values of ∆ that correspond to the
minimum derivative of ωzx.

6.8 Driving dressed state transitions

We explored the strength of the probe-driven transitions between these states

by observing coherent Rabi oscillations (Figure 8a) where our BEC was prepared

in |z〉 and the probe field had strength Ωp/2π ≈ 1 kHz. The top panel shows
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Figure 8: a. Rabi oscillations. Phase coherence is maintained throughout the
oscillations in the dressed basis, while it is quickly lost in the |mF 〉 basis. The
marker size reflects the typical uncertainties on the dressed basis oscillations. b.
Relative transition matrix elements measured by driving Rabi oscillations between
all the |xyz〉 states at constant probe power for different values of Ω. The zx (blue)
and zy (orange) transitions decrease monotonically with increasing Ω for ∆ = 0,
while they increase for xy.

Rabi oscillations between |mF = 0〉 and |mF = −1〉 states for reference, and the

remaining panels show oscillations between |z〉 and |x〉. The observed Rabi frequency

between dressed states decreased with increasing Ω indicating a dependence of the

zx transition matrix elements on Ω. We repeated this experiment driving all possible

pairs of dressed state transitions at fixed Ωp for, and Figure 8b shows the dependence

of these matrix elements on Ω for ∆ = 0.

The coherence of the Rabi oscillations for longer times was limited by gradients
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in Ω that lead to phase separation of the dressed states, and therefore loss of contrast

in the oscillations. This effect was faster for smaller frequency Rabi oscillations. For

example for Ωp/2π = 5 kHz we observed coherent Rabi oscillations with almost full

contrast for more than 10 ms while for the Ωp/2π = 870 Hz oscillation shown in

Figure 9 the contrast was significantly reduced after 5 ms. The loss of contrast was

even worse when we tried performing a Ramsey sequence where the time evolution

was most sensitive to the environment. One solution to this problem would be to

change the experimental setup to a double loop antenna to generate a more spatially

uniform magnetic field.
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Figure 9: Loss of contrast in coherent oscillations. A Rabi oscillation (top) between
the |z〉 and |x〉 states with Ωp/2π = 870 Hz decays by 1/e in 4.6 ms and a Ramsey
oscillation (middle) with about 1 kHz frequency decays in about 3 ms. The gradi-
ents in Ω lead to phase separation of dressed states and loss of contrast for longer
pulse/wait times.
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In comparison, we found that for both Rabi and Ramsey oscillations between

the |mF 〉 states the phase started deteriorating after a few hundreds of µs, this is not

surprising due to bias magnetic field temporal noise. We canceled gradient magnetic

fields so that no phase separation of the bare states was observed for > 10 sec. As

a result, the system can in principle undergo coherent evolution without loss of

contrast for a long time but because of field fluctuations between shots what we

observed instead was full contrast noise.

6.9 Concatenated CDD

The driving field Ω coupled together the |mF 〉 states, giving us the |xyz〉

synthetic clock states that were first-order insensitive to magnetic field fluctuations.

However, the spectrum of these states is still first-order sensitive to fluctuations of

the driving field δΩ. Reference [89] showed that an additional field coupling together

with these |xyz〉 states can produce doubly-dressed states that are insensitive to both

δΩ and δ∆: a process called concatenated CDD (CCDD). In our experiment, the

probe field provided the concatenating coupling field. Because Ωp � Ω, we focused

on a near-resonant two-level system formed by a single pair of dressed states, here

|z〉 and |x〉, which we considered as pseudospins | ↑〉 and | ↓〉. These states were

described by the effective two-level Hamiltonian

Ĥp = h̄∆′
2 σ̂3 + h̄Ω′ cos(ωpt)σ̂1, (6.8)
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with energy gap ∆′ ≈ ωz,x (shifted by off-resonant coupling to the zy and xy tran-

sitions) and coupling strength Ω′ ∝ Ωp, as set by the matrix elements displayed

in Figure 8b. Here σ̂1,2,3 are the three Pauli operators.

We performed a second transformation into a frame rotating with angular

frequency ωp and use a RWA to compute the eigenenergies of Equation 6.8. For

large values of Ω′ the energies take the values E↑,↓ ≈ ±Ω′/2 + (∆′)2/2Ω′. Even

though E↑,↓ are still first order sensitive to Ω because ∆′ ≈ ωz,x ∝ Ω, its effect is

suppressed by a factor of 1/Ω′. Thus, the concatenated CDD field protects from

the fluctuations δ∆′ of the first dressing field in a similar way that CDD provided

protection from detuning noise δ∆. Table 6.1 summarizes the dependence of the

|xyz〉 and |↑↓〉 energies on ∆, Ω and Ω′.

Table 6.1: Energies of the CDD and CCDD states as a function of ∆, Ω and Ω′. The
dependence on parameters not relevant to the expansion is given by the functions
f1, f2, g1 and g2.

CDD concatenated CDD
∆ dependence f1(ε,Ω)∆2 f2(Ω, ε)∆2

Ω′

Ω, Ω′ dependence Ω + g1(∆, ε) 1
Ω

[
Ω2 + εΩ + g2(∆, ε) 1

Ω

]
1
Ω′

We produced doubly-dressed states by doing (one more!) ARP sequence. We

initialized the system in the | ↓〉 state with RF coupling strength Ωi. We set the probe

frequency to be ∼ 20 kHz off resonant with respect to the | ↓〉 → | ↑〉 transition and

ramped it on in 10 ms. We then ramped Ωi → Ωf in 30 ms, changing the detuning

of the probe with respect to the | ↑↓〉. The experimental sequence can be visualized

in Figure 10. We chose the value of Ωf such that it would bring ωp to resonance
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at ∆ = 0, creating double dressed states that were equal superposition of | ↓〉 and

| ↑〉. We quantified the sensitivity of this transition to large changes in the detuning

∆ in terms of the fractional population imbalance 〈σ̂3〉 = P↓(∆)− P↑(∆), shown in

Figure 11a for Ωf/2π = 138.2(1) kHz 5. This signal is first-order sensitive to ω↓,↑,

and provided our third measurement of sensitivity to detuning in Figure 6b denoted

by circles.

Figure 10: Experimental protocol for implementing concatenated CDD. We started
an initial RF coupling strength Ωi and ramped on the probe field Ωp in a few ms with
ωp = ωz,x(Ωf ) so that it was initially slightly off resonant with the zx transition.
We then ramped the RF field to Ωf , brining ωp to resonance.

We compared the fidelity of preparing a superposition of the | ↓〉 and | ↑〉

states to adiabatically preparing a similar superposition of the the |mF = 0〉 and

|mF = −1〉 states using a single ARP (no dressed states involved), both with a probe

field strength of ≈ 1 kHz. Figure 11b shows the RMS deviation of the population

imbalance measured over a few hundred repetitions of the experiment. The RMS

deviation for the dressed basis is 0.024(1) and is an order of magnitude smaller than

5We chose the maximum value of ∆ such that the population of |y〉, was negligible after de-
loading.
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for the |mF 〉 basis 0.29(1), where it practically impossible to prepare a balanced

superposition for the parameters used here 6.

Figure 11c shows the response of the | ↓〉 → | ↑〉 transition to small changes

in the RF coupling strength δΩ for different values of Ωp. We prepared an equal

superposition of | ↓〉 and | ↑〉 following the same procedure as before for Ωf/2π =

138.2(1) kHz. We then measured how the population imbalance changes for small

variations of Ω — an effective detuning in the ‘twice-rotated frame’ — for different

probe amplitudes Ωp. We defined a sensitivity parameter d〈σ̂3〉/dΩ, obtained from

the linear regime of the population imbalance measurements (see inset in Figure 11c).

The robustness of the doubly-dressed states against δΩ fluctuations increased with

Ωp, thus verifying the concatenating effect of CDD in the |xyz〉 basis.

However promising the application of multiple concatenating fields might seem,

this procedure has a fundamental limitation. Each time a new coupling field is

applied the energies of the dressed states are reduced to something on the order

of magnitude of the coupling strength from the applied concatenating field. For

example, in the experiments we described here we started with |mF 〉 states with

transition frequencies on the order of MHz. The transition frequencies of the |xyz〉

states were reduced to hundreds of kHz (or in general the magnitude of Ω). After

applying the second concatenating RF field the transition frequencies of the |↓↑〉

were reduced to the order of Ωp ∼ 10 kHz which needed to be smaller than Ω for the

second RWA to be valid. Therefore we see that after applying multiple concatenating

6In Figure 11b, the noise in the |mF 〉 basis does not follow a Gaussian distribution. This feature
is typical of line noise in these experiments.
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fields we are at the risk of having some very robust states that are also very closely

spaced in energy which might not be desirable for some applications.

6.10 Conclusions

We realized a three-level system that is dynamically decoupled from low-

frequency noise in magnetic fields, measured now-allowed transitions between all

three states, and demonstrated control techniques for creating arbitrary Hamiltoni-

ans. These techniques add no heating or loss mechanisms, yet within the protected

subspace retain the full complement of cold-atom coherent control tools such as op-

tical lattices and Raman laser coupling, and permit new first-order transitions that

are absent in the unprotected subspace. These transitions enable experiments re-

quiring a fully connected geometry as for engineering exotic states, e.g., in cold-atom

topological insulators, and two-dimensional Rashba spin-orbit coupling in ultracold

atomic systems [78,102].

The synthetic clock states form a decoherence-free subspace that can be used

in quantum information tasks where conventional clock states might be absent,

or incompatible with other technical requirements [103]. Moreover, their energy

differences are proportional to the amplitude of the dressing field, and hence tunable,

so they can be brought to resonance with a separate quantum system. The effective

quantization axis can be arbitrarily rotated so that the two systems can be strongly

coupled, pointing to applications in hybrid quantum systems [104,105]. Introducing

a second coupling field shields the system from fluctuations of the first, a process
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that can be concatenated as needed. More broadly, synthetic clock states should

prove generally useful in any situation where fluctuations of the coupling field can

be made smaller than those of the environment.
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Figure 11: (a) The fractional population imbalance of the ↓↑ transition for Ω/2π =
138.2(1) kHz over detuning ∆. The dashed curve is calculated using Equation 6.7
and the solid one using the full Breit-Rabi expression. (b) The fidelity of preparing
a balanced superposition of |↓〉 and |↑〉 (dark blue) states compared to |mF = 0〉
and |mF = −1〉 states (light blue). (c) The robustness of ↓, ↑ transition against
fluctuations δΩ for different probe field coupling strengths. The points represent
the slope of the fitted curves to the fractional population imbalance (inset).

127



Chapter 7: Topological order in quantum systems

Topological order can be found in a wide range of physical systems, from

crystalline solids [23], photonic meta-materials [106] and even atmospheric waves

[107] to optomechanic [108], acoustic [109] and atomic systems [110]. Topological

systems are a robust foundation for creating quantized channels for transporting

electrical current, light, and atmospheric disturbances. These topological effects

can be quantified in terms of integer-valued invariants such as the Chern number,

applicable to the quantum Hall effect [111, 112], or the Z2 invariant suitable for

topological insulators [113].

The topology of Bloch bands defines integers that serve to both classify crys-

talline materials and precisely specify properties, such as conductivity, that are

independent of small changes to lattice parameters [23]. Topologically non-trivial

materials first found application in metrology with the definition of the von Klitzing

constant as a standard of resistance, which is now applied in the realization of the

kilogram [114]. Today, topological systems have found applications in the engineer-

ing of low loss optical waveguides [106] and present a promising path to quantum

computation [115].

We got interested in topology when working on a system with engineered

128



Rashba [24] type spin-orbit coupling. Our system had non-trivial topology but it

broke from the usual mold of topological materials as it didn’t have an underlying

crystalline structure that conventionally yields to integer Chern numbers.

Before describing our experiments to both engineer and characterize the un-

conventional topology of a Rashba spin-orbit coupled gas, in this Chapter I take a

step back to describe some basic concepts of topology and its applications to the

band theory of solids. The ideas of topology and how exactly one can connect donuts

with band structures might feel a bit obscure and complicated for non-experts in the

field. The concepts introduced in this Chapter will be necessary for understanding

the results presented in Chapter 8.

7.1 Topology in mathematics

Topology is a branch of mathematics that studies continuity [116]. The most

familiar example might be that of objects being continuously deformed into one

another. For example, a donut can be continuously deformed into a coffee mug but

if we want to deform it into a pretzel we need to poke more holes in it. This gives

us some intuition that the donut and the mug must share the same topology, which

is different from that of the pretzel. Topology also studies more abstract objects

but I will limit the discussion to closed two-dimensional surfaces (manifolds) in

three dimensions, which will be enough to provide some intuition when we define

topological invariants for band structures in the following sections.

The topology of 2D surfaces can be classified by the Euler characteristic, and it
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is related to the local Gaussian curvature of a surface by the Gauss-Bonet theorem.

The Gaussian curvature can be interpreted in the following way: at any point x0 on

a surface we can find a normal vector n̂ that is orthogonal to the tangent plane of

the surface (red arrow in Figure 1). We can then define a family of planes containing

n̂ and the intersection between any of these planes and the surface defines a curve.

If we perform a Taylor expansion of the curve around x0 the quadratic term defines

what is known as the normal curvature κ. The orange and blue lines in Figure 1 are

two examples of such curves and their curvatures correspond to the minimum and

maximum value of the surface; they are what is known as the principal curvatures

κmin and κmax. The Gaussian curvature at any point of a surface is defined in terms

of the principal curvatures as K = κminκmax [116].

Figure 1: The intersection of planes containing the normal vector n̂ at x0 (red
star) and the gray surface define a family of curves. The minimum and maximum
curvatures, corresponding to the orange and blue lines respectively, correspond to
the principal curvatures of the surface at x0.

The Gauss-Bonnet theorem states that the integral of the local Gaussian cur-
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vature over a closed surface is equal to the integer valued Euler characteristic

χ = 1
2π

∫
S
KdA, (7.1)

which is related to the genus g (number of holes or handles in the surface) by

χ = 2(1 − g). The Gauss-Bonnet theorem is a very powerful result as it relates

the local properties of a surface,the Gaussian curvature, with a global topological

invariant, the Euler characteristic.

In the following sections I will introduce topological invariants in the context

of condensed matter physics, which even though might seem a bit more abstract,

their interpretation can be closely related to the concepts just defined in this section.

7.2 Topological order in condensed matter

Just like topology classifies properties of geometric objects, one important task

of condensed matter physics has been to classify phases of matter. Many of these

phases, for example, magnetic or conducting phases, can be described in terms of

order parameters related to spontaneously broken symmetries [117]. However, in

the past few decades, an increasing number of systems have been found where it is

only possible to understand their phases and properties in terms of the underlying

topology of their quantum states. This new paradigm of physics has been so im-

portant that in 2016 the Nobel prize in physics was awarded to David J. Thoules,

F. Duncan M. Haldane and J. Michael Kosterlitz for the theoretical discoveries of

topological phase transitions and topological phases of matter
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The effects of topology in condensed matter systems were first observed when

von Klitzing and colleagues [118] measured the quantized Hall resistance in two-

dimensional electron gases subjected to a strong perpendicular magnetic field. The

effect can be understood semi-classically by thinking of the electrons’ quantized

cyclotron orbits1 that give rise to Landau levels. If the Landau levels are filled then

there is an energy gap separating two consecutive levels and the material acts as an

insulator but if an electric field is applied the orbits drift and the electrons will be

‘skipping orbits’ in the edge as can be seen in Figure 2, giving rise to what is known

as edge states.

Figure 2: The quantum Hall effect. An electron gas is confined in a two-dimensional
material and a strong magnetic field is applied perpendicular to the plane. The
electrons on the bulk travel in cyclotron orbits while the electrons on the edge
travel ‘skipping orbits’.

In a seminal paper Thoules, Kohomoto, Nightingale, and den Nijs [111] ex-

plained that the quantization of the Hall conductivity is determined by the under-

lying topology of the band structure. Just like the Euler characteristic defined in

1This is an intuitive but not very complete explanation of the quantum Hall effect, see [119] if
you want to learn more about this subject.
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Equation 7.1 classifies 2D solids that can be continuously deformed without open-

ing or closing holes, there is a topological invariant that classifies band structures

that can be deformed into one another without opening or closing an energy gap.

This invariant, initially known as the ‘TKNN invariant’, was later recognized by

the mathematical physicist Bary Simon as the ‘first Chern class invariant from U(1)

fiber bundles’2 [121] and the TKNN invariant became what is known today as the

Chern number or Chern invariant. Another very valuable contribution from Simon’s

work was that he made the connection between the Chern number and the Berry’s

geometrical phase [122] which will be defined in the following sections and will allow

us to make a physical interpretation of this otherwise abstract seeming topological

invariant.

7.3 Berry phase and Berry curvature

A Berry or geometric phase is used to describe the phase acquired by a state3

as it moves through a closed trajectory in parameter space. It plays a key role in

topological band theory and can help provide a physical interpretation of the Chern

number.

Consider a Hamiltonian Ĥ that depends on a set of parameters r = (r1, r2, ...).

If the parameters are slowly changed in time, the corresponding change in the sys-

tem can be described by a path in parameter space r(t). The state |ψ(t)〉 evolves

2See [120] if you want to dive into hardcore topology.
3Geometric phases are not unique to quantum systems and are also present, for example, in

optics [123].
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according to the time dependent Schödinger equation and at any given time t there

is a basis that satisfies

Ĥ(r) |n(r)〉 = En(r) |n(r)〉 (7.2)

for r = r(t). Suppose the system is initially in state |n(r(t = 0))〉, if the parameters

are changed slowly such that the adiabatic theorem is valid, then at time t the state

of the system can be written as

|ψ(t)〉 = exp
{
− i

h̄

∫ t

0
dt′En(r(t′))

}
exp(iγn(t)) |n(r(t))〉 , (7.3)

where the first exponential term corresponds to a dynamical phase factor, and

the second term is a geometric phase. By imposing that |ψ(t)〉 satisfies the time-

dependent Schrödinger equation one finds that

γn(t) = i〈n(r)|∇rn(r)〉 · ṙ(t), (7.4)

where the term

An(r) = i〈n(r)|∇rn(r)〉 (7.5)

is usually referred to as the Berry connection4 or the Berry vector potential for

reasons that will become apparent. Because eigenvectors can only be defined up to

a global phase, A is a gauge dependent quantity. If we make a gauge transformation

such that |n(k)〉 → eiξ(k) |n(k)〉 then the Berry connection is also transformed as

4This is related to the connection defined in differential geometry that is used to describe things
like parallel transport.
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An(k)→ An(k)−∇kξ(k). However if we integrate the Berry connection on a closed

loop

γn(C) =
∮
C
An(r) · dl, (7.6)

we obtain the Berry phase which, unlike the Berry connection, is gauge independent

(modulo 2π).

An alternative way to compute Berry’s phase uses Stokes’s theorem from vector

calculus

∮
C
An · dl =

∫
S
∇×An · dS

=
∫
S

Ωn · dS, (7.7)

where the vector field Ωn = ∇×An is known as the Berry curvature or Berry field.

By rewriting the Berry phase in this way, its resemblance with the definition of the

Euler characteristic from Equation 7.1 becomes apparent.

Using some vector calculus identities the Berry curvature can be rewritten as

Ωn =i[∇r 〈n|]× [∇r |n〉]

=
∑
j 6=n

i[〈n| ∇r |j〉]× [〈j| ∇r |n〉]

=i
∑
j 6=n

〈n| ∇rĤ |j〉 × 〈j| ∇rĤ |n〉
(Ej − En)2 , (7.8)

where 〈n| ∇r |j〉 was replaced with 〈n| ∇rĤ |j〉 /(Ej − En) by differentiating Equa-
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tion 7.2. This expression shows that Ωn is a gauge independent quantity as it does

not depend on the derivatives of a particular gauge choice for |n〉 but rather on ∇rĤ

which is gauge independent. Also we can see that Ωn becomes singular when there

are degeneracies present in the Hamiltonian, and these degeneracies act as ‘sources’

for the Berry curvature. Finally, even though the system may remain in state |n〉

during the adiabatic evolution, this expression for the Berry curvature makes it ex-

plicit that other eigenstates of the Hamiltonian have an influence in the Berry phase

acquired.

7.3.1 Aharonov-Bohm phase as an example of a Berry’s phase

A familiar example of geometric phases is the Aharonov-Bohm phase [124]

gained by an electron moving along closed trajectories around a solenoid. This

phase was initially conceived as a way of showing that in quantum mechanics mag-

netic vector potentials, typically conceived only as mathematical objects, can have

a physical effect on the wave function. They considered a coherent electron beam

split into two paths around a solenoid that produces a magnetic field B and later

recombined as shown in Figure 3. Outside the solenoid the magnetic field B = 0,

but there can be a non-zero magnetic vector potential such that B = ∇×A. Even

though the electron’s trajectories are not modified by the presence of the solenoid,

when looking at the interference pattern one finds that the two paths acquired dif-

ferent phases, and their difference is remarkably equal to magnetic flux piercing the

area enclosed by the path of the electrons ∆ϕ = 2πΦB/Φ0, where Φ0 = h/e is the
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flux quantum. This Aharonov-Bohm phase can be interpreted as an example of a

Berry phase in real space.

Figure 3: The Aharonov-Bohm experiment. A coherent electron beam is split into
two paths surrounding a solenoid which produces a non-zero magnetic field B inside
the gray region and B = 0 outside. The two beams are later recombined and an
interference pastern reveals a phase difference ∆ϕ = 2πΦB/Φ0 equal to the magnetic
flux enclosed by the electron’s path.

For a charged particle in the presence of a vector potential, the momentum

dependence of the free-particle Hamiltonian is modified p→ p−qA so that the wave

function will depend on the magnetic vector potential as well. Using Equations 7.6

and 7.7 it can be shown that the Berry phase associated with a closed path around

the solenoid is exactly equal to the Aharonov-Bohm phase:

γn(C) = e

h̄

∮
C
A(r) · dr

= e

h̄

∫
S
∇×A · dS

=eΦB

h̄
, (7.9)

In this particular example, the Berry connection is exactly equal to the mag-

netic vector potential and the Berry curvature is the magnetic field. This gives us

a very physical intuition for interpreting the Berry phase in terms of the ‘magnetic
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flux’ from abstract sources of ‘magnetic fields’ in parameter space.

7.3.2 Chern number

The Chern number is conventionally used to describe the topology of ma-

terials which have an underlying crystalline structure. According to Bloch’s the-

orem, the wave functions of a space periodic Hamiltonian can be written as

|ψ(k)〉 = eik·r |u(k)〉5, where r is the position and k the crystal momentum. The

wave functions |u(k)〉 are periodic and therefore invariant under the displacement

operator D̂(n d) |u(k)〉 = |u(k)〉 when d is the unit cell size and n an integer. If we

define the Bloch Hamiltonian

Ĥ(k) = eik·rĤe−ik·r, (7.10)

their eigenvectors are given by |u(k)〉 and the eigenvalues define the band structure.

Translational symmetry implies that Ĥ(k + a) = Ĥ(k) where a is a reciprocal

lattice vector. The crystal momentum or quasimomentum (in analogy to the Floquet

quasienergy) is only defined within the periodic Brillouin zone and therefore can be

mapped into a torus in d dimensions if we glue the edges together.

The Chern number of the nth band is defined as

Cn = 1
2π

∫
BZ

Ωn · dk, (7.11)

5Very much like Floquet theory in momentum space
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where the relevant parameter space is crystal momentum and the surface of integra-

tion corresponds to the BZ (a torus). The definition of the Chern number is closely

related to the Berry phase from Equation 7.7. For our previous example of a quan-

tum Hall system, the integer proportionality factor in the quantized conductance is

exactly equal to the Chern number.

Just like two-dimensional surfaces are classified by the integral of their Gaus-

sian curvature, the topology of Bloch bands and quantum systems, in general, is

determined by the integral of the Berry curvature. Similarly, the integral connects

local properties of a quantum system, the Berry connection, with a global topological

invariant, the Chern number. One subtle difference is that the Euler characteris-

tic is only determined by the surface (and its intrinsic Gaussian curvature) while

the Chern number is defined both by a surface (the BZ) and an additional local

curvature (the Berry curvature). By considering different lattice Hamiltonians one

can obtain a different Berry curvature, but the geometry of the BZ and thereby

the surface of integration is typically defined by a torus6. This difference will be

important later on when we describe the experiments performed to study a system

with Rashba spin-orbit coupling where the unit cell size is taken to infinity (i.e. we

remove the lattice).

6In the next chapter we consider a case where this breaks down.
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7.4 The bulk-edge correspondence principle

Earlier I mentioned that topological systems provide very robust channels for

transporting things like electrical current and light. Transport phenomena typically

arise when there is a spatial interface between two topologically distinct phases. The

electrons skipping orbits at the interface of a (topological) quantum Hall material

and (trivial) vacuum are one example of this. Notice that for this particular example

the modes propagate along a given direction, they are chiral. In general, one can

expect to have modes moving along two directions, and the difference between the

number of these modes NL−NR is fixed and determined by the topology of the bulk

states. The bulk-edge correspondence principle relates the difference in the number

of these modes with the bulk topology of the materials at the interface:

∆C = NR −NL (7.12)

where ∆C is the difference of Chern number on the interface.

7.5 Example: two-level model

Many of the concepts introduced in the previous section can be readily applied

and understood using a two-level model

Ĥ(k) = h(k) · σ̂ (7.13)
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where σ̂ = (σx, σy, σz) are the Pauli matrices and h(k) = (hx(k), hy(k), hz(k)) are

functions of k. This model has been used to describe a number of physical systems

like graphene [112] and spin-orbit coupled systems [24,51]. Let us now consider the

simple case h(k) = k, for which ∇kĤ = σ and using Equation 7.8 it can be shown

that

Ω = − h
2h3 (7.14)

which can be recognized as the field of a Dirac monopole [125] with charge −1/2.

The degeneracy in the energies that gives rise to the monopole is known as a Dirac

point as the energies in that vicinity resemble the dispersion of a massless Dirac

particle. In 2D materials where k is only defined within 2D plane hz corresponds

to the mass of a Dirac particle but its effect on the Berry curvature is equivalent

to that of moving the Dirac monopole along a fictitious kz dimension in a direction

determined by the sign of hz.

It follows from Equation 7.14 that the Berry phase gained by moving along a

closed path C is equal to the flux from the monopole in the surface enclosed by C as

is shown in Figure 4. This connects nicely with our intuition from the Aharonov-

Bohm effect. For a closed surface enclosing the Dirac point, the Chern number is

an integer equal to 1.

For a Hamiltonian with arbitrary h(k) we can define a normalized vector

ĥ = h/|h| and the Chern number takes the form

C = 1
4π

∫
(∂kxĥ× ∂ky ĥ) · ĥ d2k (7.15)
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Figure 4: For a two-level system, the Berry curvature from a Dirac point can be
viewed as a Dirac monopole in momentum (parameter) space. The Chern number
can be interpreted as the flux from the monopole on the solid angle subtended by
the vector ĥ(k) or alternatively as the number of times ĥ(k) wraps around a unit
sphere.

which can be interpreted as the number of times that the vector ĥ(k) wraps around

a unit sphere [126], a quantity that is known as the winding number. Depending

on the sign of hz the vector ĥ(k) will wrap around the north or south hemisphere,

so to have integer valued Chern numbers, Dirac points must come in pairs. Luckily

for lattice Hamiltonians this is guaranteed by the fermion doubling theorem [127].

In Chapter 8 I describe an engineered system that has a single Dirac point.

7.6 Monopoles and Dirac strings

We just gained some intuition about interpreting the Chern number as the

flux from Dirac monopoles. But if we stick to our knowledge of electromagnetism

we might remember that magnetic monopoles are forbidden since

∇ ·B = ∇ · (∇×A) = 0. (7.16)
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So how is it possible to keep a vector potential and have ∇·B 6= 0? The solution to

this problem was envisioned by Dirac [125] and is now called a Dirac string. If we

consider a semi-infinitely long and infinitesimally thin solenoid, the magnetic field

in the finite end will resemble that of a monopole as can be seen in Figure 5. This

tiny solenoid corresponds to the Dirac string. A more mathematical interpretation

Figure 5: For a two-level system, the Berry curvature from a Dirac point can be
viewed as a Dirac monopole in momentum (parameter) space. The Chern number
can be interpreted as the flux from the monopole on the solid angle subtended by
the vector ĥ(k) or alternatively as the number of times ĥ(k) wraps around a unit
sphere.

of these strings comes from the fact that in order to have ∇ · B 6= 0 the vector

potential of a monopole must have ‘lines’ where it becomes singular. For example,

we can write for a particular gauge

A(r) = g
−yex + xey
r(r + z) (7.17)

which is singular at the Dirac string located at the negative z axis where z = −r .

The orientation of the Dirac string is gauge dependent, something that should not

surprise or bother us at this point. However, the physical effects of the Dirac string
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should be gauge independent, or in other words, the Aharonov-Bohm phase gained

by a charged particle moving in a path that encloses the string should be an integer

multiple of 2π. This is argument gives rise to the Dirac charge quantization [125],

and in the context of topology, it guarantees that when we calculate the Berry phase

by integrating the Berry connection (vector potential) along a path that encloses a

Dirac string, its effect will be indistinguishable.

7.7 Conclusions

Topology plays a very important role both in mathematics and in physics. As

a closing remark, Figure 6 summarizes the main concepts that were introduced and

is a reminder that topological invariants are global properties defined in terms of

integrals of local properties. Furthermore, we can use our intuition from electro-

magnetic theory to interpret topological invariants in quantum mechanics.

Figure 6: The Euler characteristic and the Chern number are topological invariants
defined by integrals of local curvatures. The Aharonov-Bohm phase gives us physical
intuition to interpret the Chern number as the flux from a ‘Berry field’.
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Chapter 8: Unconventional topology in a quantum gas with Rashba

SOC

Topological order is present in a wide range of physical systems and is quan-

tified by integer valued topological invariants such as the Chern number. In this

Chapter, I describe a system with Rashba-type spin-orbit coupling whose topolog-

ical invariants can take half-integer values. If the concept of half-integer invariants

does not sound odd, think of a donut with half a hole.

Ultracold atomic systems are an emerging platform for engineering topological

lattices, from the Harper-Hofstadter model [20,128], the Haldane model [129], to the

Rice-Mele model [130,131] as well as assembling spin-orbit coupled lattices without

analogues in existing materials [132, 133]. However, experimental realizations of

topological materials have mostly focused on engineering different topological bands

(with different Berry curvatures) in lattice systems, where the BZ is always a torus.

Here I show that by eliminating the lattice potential and changing the BZ from T2

to R2, i.e. from a torus to a Cartesian plane, it is possible to create topological

branches of the dispersion relation with half-integer Chern number. This work has

been submitted for publication and is under review. A preprint of the manuscript

is available in [26].
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These experiments combine the techniques from Chapters 5 and 6, additionally

I use key concepts of topology described in Chapter 7. This Chapter is organized

in the following way: First I give a general overview of Rashba SOC and describe

theoretical proposals for engineering this type of coupling in ultracold atom systems.

Then I describe our experimental implementation of Rashba SOC in the lab using

a trio of Raman coupled CDD states and validate our quantum engineering using

Fourier transform spectroscopy. Finally, I describe a quantum state tomography

procedure to measure the eigenstates of our system, from which we can directly

obtain the Chern number.

To avoid confusion between dressed state xyz labels and Cartesian coordinates

indicating the Raman geometry, in this Chapter I use the numbers 1, 2, 3 to label

experimental coordinates and the letters x, y, z to label clock state parameters.

8.1 Rashba spin-orbit coupling

Rashba SOC [24] appears in condensed matter systems where electrons are

confined in a 2D plane and experience an intrinsic out-of-plane electric field. If

the electron’s momentum is given by h̄k = h̄(kxex + kyey) and the electric field

is E = Eez, in the electron’s moving frame there will be a momentum dependent

magnetic field BSOC = −h̄k/m × E/c2 = h̄E/mc2(−ky, kx, 0). The interaction

between the electron’s spin with this field through the magnetic Zeeman interaction
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−µ ·BSOC gives rise to the SOC Hamiltonian

ĤSOC = 2α
m

(kyσ̂x − kxσ̂y) (8.1)

where α = gµBE/c
2, g is the electron gyromagnetic ratio, µB is the Bohr magneton

and σ̂i are the Pauli matrices.

Figure 1 shows the Rashba dispersion relation which is characterized by having

a Dirac point located at k = 0 (see Section 7.5) and a degenerate ground state

that is described by the ring k2
x + k2

y = α2. If we combine Equation 8.1 with the

free particle Hamiltonian, the system is described by Ĥ = (h̄k − Â)2/2m where

Â = α(σ̂yex − σ̂xey) can be interpreted as a (matrix-valued) non-Abelian gauge

potential [134] whose elements do not commute. This non-Abelian gauge potential

is closely related to the Berry connection discussed in Section 7.3 and in combination

with the Dirac point hints at us that a system with Rashba SOC has non-trivial

topology.
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Figure 1: The Rashba dispersion relation has a Dirac point located at k = 0 and a
degenerate ground state that is described by the ring k2

x + k2
y = α2.
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8.2 Rashba SOC for neutral atoms

Proposals for engineering Rashba type SOC in neutral atoms consist of using

lasers to link internal states of an atom with its linear momentum. In order to

achieve non-trivial gauge potentials it is necessary to couple N ≥ 3 levels (see [16]).

I will describe the proposal by [135] which considers a ‘ring coupling’ which is shown

in Figure 2 for the case of N = 3. The states |j〉 represent internal atomic states

and they are linked to each other with complex valued matrix elements Ωj
2 e

ikj ·x,

where kj is a momentum transfer associated with the |j〉 → |j + 1〉 transition and

Ωi = eiφi |Ω| represents the coupling strength. We require that ∑ki = 0 so that no

momentum is transfered when a closed loop |1〉 → |2〉 · · · → |N〉 → |1〉 is completed.

For this case, the ki momenta vectors can be written as kj = Kj+1 −Kj and we

make Kj = kL sin(2πj/N)ex + kL cos(2πj/N)ey, corresponding to the vertices of an

N sided regular polygon. We can further make a gauge transformation such that we

can replace the phases φi associated to each coupling with φ̄ = ∑
i φi/N .

The Hamiltonian describing this coupling along with the kinetic term is

Hj,j′ = h̄2k2

2m δj,j′ +
Ω
2 (ei(φ̄+kj ·x)δj,j′+1 + h.c.), (8.2)

and after applying the unitary transformation Uj,j′ = exp[iKi · x]δj,j′1 it gets trans-

formed to

Hj,j′ = h̄2

2m |q + Kj|2δj,j′ +
Ω
2 (eiφ̄δj,j′+1 + h.c.), (8.3)

1This transformation is equivalent to applying a state dependent momentum boost k→ k+Kj
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Figure 2: The Rashba ring coupling. To generate Rashba SOC in a system of
cold atoms it is necessary to cyclically couple N ≥ 3 internal states such that the
transition |j〉 → |j+〉 1 has a momentum transfer kj and ∑j kj = 0 such that there
is no momentum transfer for a closed loop |1〉 → |2〉 . . . |N〉 → |1〉. The ring coupling
combined with the free particle Hamiltonian give rise to a 2-level subspace that can
be described to first order by the Rashba Hamiltonian

where I replaced the momentum k by the quasimomentum q. The off diagonal terms

of Equation 8.3 is related to a 1D periodic tight-binding Hamiltonian with hopping

elements Ω/2 where the internal states |j〉 represent lattice sites and completing one

loop corresponds to gaining a ‘flux’ of Nφ̄. To visualize how the Rashba Hamiltonian

emerges from this coupling scheme, it is helpful to write the Hamiltonian in a basis

that is conjugate to the index j2

|l〉 = 1√
N

N∑
j=1

ei2πjl/N |j〉 (8.4)

where the index l is analogous to the crystal momentum index for a Bloch Hamilto-

nian. In this new basis, terms in the diagonals are displaced to the off-diagonal and

likewise, terms in the off diagonals are displaced to the diagonal. The Hamiltonian

2Just like position and momentum are conjugate variables related by Fourier transforms, the
|j〉 and |l〉 basis are related by a discrete Fourier transform.
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transformed to the Fourier basis starts looking very much Rashba-like

Hl,l′ =
[
h̄2

2m(q2 + k2
L) + El

]
δl,l′ +

h̄2kL

m
[(iqx + qy)δl−1,l′ + h.c] , (8.5)

where EL = 2h̄Ω cos(2πl/3 + φ̄) correspond to the eigenenergies when q = 0. The

phase φ̄ can be tuned such that a pair of states with consecutive l index become

degenerate, indicating the presence of a Dirac point at q = 0. Figure 3 shows the

energies El for N = 3 and φ̄ = 0.

0 1 2 3

l

−2Ω

0

2Ω

E
l

Figure 3: Eigenenergies of Equation 8.5 for q = 0 for N = 3 and φ̄ = 0. For
this particular choice of phase, the energies of the l = 1 and l = 2 states become
degenerate

We consider the degenerate states as pseudospins which are described to zeroth

order by the Rashba plus free particle Hamiltonian

Ĥ(0) = h̄2q2

2m + h̄2kL

m
(σ̂xqy − σ̂yqx), (8.6)

with spin-orbit coupling strength given by α = h̄2kL/2. The zeroth-order Hamilto-
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nian has continuous rotational symmetry while the proposed ring coupling only has

discrete rotational symmetry. The symmetry of the Hamiltonian is recovered when

higher-order corrections are added to the Hamiltonian. The complete expressions

for the higher-order terms for N = 3 and N = 4 can be found in [135], and they are

reminiscent of quadratic and cubic Dresselhaus SOC [136]. The largest leading order

term for the N = 3 case is inversely proportional to Ω so that this ring-coupling

scheme results in a more ‘Rashba-like’ Hamiltonian as one goes to higher coupling

strengths. Figure 4 shows level curves of the ground state eigenenergies of Equa-

tion 8.5 for N = 3 and φ̄ = 0 for increasing Ω. At low Ω the dispersion has discrete

rotational symmetry and is characterized by three local minima3. As Ω is increased

the local minima start merging into each other and in the large Ω limit we recover

the characteristic Rashba ring-like dispersion.
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Figure 4: Ground state dispersion relation of Equation 8.5 for N = 3 and φ̄ = 0
for Ω = 1.75 EL (left), Ω = 3.5 EL (middle) and Ω = 175 EL (right). Higher order
corrections to Ĥ(0) decay as 1/Ω2 and in the large Ω limit we recover the Rashba
ring dispersion.

3or... an alien face?
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8.3 Experimental implementation of Rashba SOC

We implemented the ring-coupling scheme and engineered Rashba SOC by

resonantly coupling the |xyz〉 states from Chapter 6 using two-photon Raman tran-

sitions [78] as depicted in Figure 5. The engineered system consisted of an effective

spin-1/2 Rashba subspace, along with a topologically trivial high-energy branch.

Our engineered Rashba system had a single Dirac cone near q = 0, where the

two lower dispersion branches become degenerate and the Berry curvature becomes

singular. Each of these branches extend to infinite momentum, making the sup-

porting manifold a plane rather than a torus. We characterized this system using

both spectroscopy and quantum state tomography. This allowed us to measure the

dispersion branches and directly observe the single Dirac point linking the lowest

two branches as well as to reconstruct the Berry connection to derive the associated

Chern numbers.

All of our experiments started with about with N ≈ 1 × 106 87Rb atoms in

a crossed optical dipole trap [137], with frequencies (f1, f2, f3) ≈ (70, 85, 254) Hz,

just above the transition temperature for Bose-Einstein condensation. We initially

prepared the atoms in the |F = 1,mF = −1〉 state of the 5S1/2 electronic ground

state and transfered atoms to the mF = 0 and mF = +1 states as needed using

ARP. A bias field B0e3 gave a ω0/2π = 23.9 MHz Larmor frequency along with a

quadratic shift of ε/2π = 83.24 kHz. The RF field used to generate the |xyz〉 states

and implementing CDD had strength ΩRF = 1.41(2)ε. We adiabatically prepared

the |xyz〉 states starting from the mF states following the procedure described in
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Figure 5: a Our engineered dispersion consisted of a two-level Rashba subspace (red
and blue) with a single Dirac point linking the lowest two branches and a topo-
logically trivial higher branch (gray). b We generated |xyz〉 states by combining a
bias magnetic field along e3 with an RF magnetic field oscillating along e1. These
states were coupled by three cross-polarized Raman laser beams propagating along
e1, e2 − e1 and −e1 − e2. c Each pair of Raman lasers was in two-photon reso-
nance with a single transition between the |xyz〉 states which we coupled strengths
(Ωzx,Ωxy,Ωyz)/2π = (12.6(5), 8.7(8), 10(1)) kHz.

Section 6.4.

8.3.1 Raman coupling the |xyz〉 states

We Raman-coupled atoms prepared in any of the |xyz〉 states using the three

cross-polarized Raman laser beams shown in Figure 5b, tuned to the ‘magic zero’

wavelength λL = 790 nm where the scalar light shift vanishes (see Section 3.3.2.1).

We arranged the Raman lasers into the tripod configuration shown in Figure 5c,

bringing each pair into two-photon resonance with a single transition with strengths

(Ωzx,Ωxy,Ωyz)/2π = (12.6(5), 8.7(8), 10(1)) kHz. The geometry of our experimental

implementation differed from [78] where all Raman lasers are perpendicular. We had

to go away from the ideal configuration because we needed all of the Raman recoil
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vectors to lie on the imaging plane (spanned by e1 and e2) to image all the Raman

induced k dependent dynamics. As a result, the dispersion relation no longer has

discrete rotational symmetry, however, the Dirac point is still present in our system.

The only way to break the degeneracy of this system is to change the phase φ̄ and

for our laser configuration, we always have φ̄ = 0.

The energies of the |xyz〉 states were ωx = 0 and ωz,y = −(ε±
√

4Ω2
RF + ε2)/2.

We set the frequencies of the Raman lasers to ωx = ωL + ω0 + ωxy, ωy =

ωL + ω0 and ωz = ωL − ωzx, where ωL = 2πc/λL and (ωzx, ωxy, ωzy)/2π =

(166.47, 83.24, 249.71) kHz are the transition frequencies between pairs of dressed

states and are integer multiples of ε for our coupling strength Ω =
√

2ε.

The Raman coupled states can be described by the combined kinetic and light-

matter Hamiltonian

ĤR(k) =
∑

j∈{xyz}

(
h̄2k2

2m + h̄ωi

)
|j〉 〈j|+

∑
j′ 6=j

h̄Ωj,j′e
i(kj,j′ ·x−iωj,j′ t) |j〉 〈j′| , (8.7)

where kj,j′ is the recoil momentum from an |j〉 → |j′〉 transition and Ωij is the Raman

coupling strength between a pair of RF dressed states. The Hamiltonian above only

includes the matrix elements associated to resonant couplings. After applying the

unitary transformation Ûj,j′ = exp(−ikj · x− ωjt)δj,j′ |j〉 〈j′| the Hamiltonian takes

the familiar form of the ring coupling scheme

ĤR =
∑

j∈{xyz}

(
h̄2(q − kj)2

2m + h̄δj

)
|j〉 〈j|+

∑
j 6=j′

h̄Ωjj′ |j〉 〈j′| , (8.8)
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where kj are the Raman wave vectors and δj is the detuning from Raman resonance.

This coupling scheme simultaneously overcomes three limitations of earlier ex-

periments [138, 139] that performed the ring coupling using states in both 5S1/2

hyperfine manifolds of 40K : (1) working in the same hyperfine manifold elimi-

nates spin-relaxation collisions [140]; (2) unlike mF states, the |xyz〉 states can

be tripod-coupled with lasers far detuned relative to the excited state hyperfine

splitting greatly reducing spontaneous emission [21]; and (3) CDD renders the |xyz〉

states nearly immune to magnetic field noise.

8.3.1.1 Floquet and off-resonant coupling effects

We operated in a regime where the transition energies between the |xyz〉 states

were integer multiples of ωxy: ωzx = 2ωxy and ωzy = 3ωxy, making the system

suitable for a full description using Floquet theory [141]. We observed that the

effective Raman coupling strengths for the driven three level system differed from our

calibrations which were performed looking at Rabi oscillations from individual pairs

of lasers because of the presence of nearby quasi-energy manifolds and off-resonant

coupling terms. This effect could be mitigated for larger values of ωxy as the spacing

between quasi-energy manifolds is increased and the off-resonant coupling terms less

relevant. Figure 6 shows the dispersion relation for both the effective and the full

Floquet Hamultonians. The energies from the effective time independent model

get closer to those of the full Floquet model when the spacing between Floquet

manifolds is increased (left panel). Appendix C has a full derivation of the Raman
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Hamiltonian starting from the |mF 〉 basis in the laboratory frame including the full

time dependence and off-resonant coupling terms.
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Figure 6: Solid lines: Dispersion relation from RWA Hamiltonian (Equation 8.8)
as a function of qx for Ωi,j = 1.5 EL and δi = 0. Dashed lines: Dispersion relation
computed for the full Floquet Hamiltonian. We considered ωzx = 2ωxy and ωzy =
3ωxy in both cases so the separation between Floquet manifolds is ωxy. In the
left panel ωxy = 83.24 kHz as in our experiments and in the right panel ωxy =
416.2 kHz. As the spacing between Floquet manifolds becomes we get a better
agreement between the spectra of the RWA and Floquet Hamiltonians.

8.3.1.2 Lifetime

The limited lifetime due to spontaneous emission has always been a concern for

Raman coupled systems. This was one of the reasons why we pursued the topology

direction rather than trying to measure a fragile many-body phase. The measured

spontaneous emission limited lifetime of our system was 320(17) ms, measured with

the Raman lasers applied to the mf states. However, it was reduced to 40(2) ms

when we Raman coupled the |xyz〉 states, which we attribute to technical noise in

the relative phase between the RF dressing field and the Raman laser fields, which
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has caused considerable consternation in ongoing experiments. All the experiments

reported here were short compared to this timescale so this decreased lifetime was

not an issue but it is a limitation that needs to be addressed in future experiments.

Figure 7 shows measurements of the lifetimes of Raman dressed atoms in both |mf〉

and |xyz〉 states. We obtained the lifetime by fitting decaying exponentials to the

integrated OD from absorption images of thermal atoms where the Raman was

turned on in 1 ms and held on for up to 50µs4.
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Figure 7: Lifetime of Raman dressed states. We Raman dressed atoms in the |mf〉
and |xyz〉 states. The orange markers correspond to atoms initially prepared in
|mf = −1〉 (no high power RF involved) and the blue markers correspond to atoms
|xyz〉 (three averaged traces). The lifetime of doubly dressed states is significantly
reduced as compared to the lifetime of the Raman dressed |mf〉 states, indicating
that of resonant scattering of photons is not our only loss mechanism.

8.3.2 Measuring quasimomentum distributions

Each pair of Raman lasers coupled states |i,k〉 → |j,k + ki,j〉 where |i〉 and |j〉

denote the initial and final |xyz〉 states, k is the initial momentum and ki,j = ki−kj

is the two-photon Raman recoil momentum. Dressed states with quasimomentum

4How long we could hold on the Raman was limited by the RF antenna heating up.
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q are comprised of three bare states |j,k〉 with momentum k = q − kj. Figure 8

illustrates the mapping from bare momentum states into dressed quasimomentum

states. The eigenstates of our Rashba SOC Hamiltonian take the form

|Ψn(q)〉 =
∑
j∈xyz

√
an,j(q)eiφn,j(q) |j,k = q − kj〉 , (8.9)

where the quasimomentum q is a good quantum number and the amplitudes are

parametrized by an,j(q) and φn,j(q). We leveraged the wide momentum distribution

of a non-condensed ensemble (T ≈ 180 nK and T/Tc ≈ 1.1) to sample a wide range

of momentum states simultaneously. By starting separately in each of the |xyz〉

states we sampled the range of quasimomentum states shown in Figure 8b, where

the momentum distributions of an initial state |j,k〉 is shifted from q = 0 by the

corresponding Raman wave vector kj.

Our measurement protocol consisted of abruptly removing the confining po-

tential and the Raman lasers, initiating a 21 ms TOF. During this TOF we adia-

batically transformed each of the |xyz〉 states back to a corresponding |mF 〉 state

following the procedure described in Section 6.4 and spatially separated them using

a Stern-Gerlach gradient. Finally, we used resonant absorption imaging to measure

the resulting spin-momentum distributions.

The FWHM of the cloud after TOF was about 700µm which is much larger

than the size of the in-situ cloud ∼ 50µm and the spatial density distribution

atoms imaged after TOF represented the momentum distribution of the atoms. For

the 7.4µm pixel size of our camera and the 3.283 magnification of our imaging
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Figure 8: Mapping momentum into quasimomentum: a We used non-condensed
atoms with a broad momentum distribution (T ≈ 180 nK and T/Tc ≈ 1.1). b Atoms
in |j,k〉 are mapped to Raman dressed states with quasimomentum q = k+kj. The
black dots in the bottom panel represent the location of k = 0 for each of the |xyz〉
states and the red dot corresponds to q = 0. We performed our experiments starting
separately in each of the |xyz〉 states, which allowed us to sample a larger range of
quasimomentum states.

system, the momentum resolution of our images was 0.018 kL and the momentum

distribution of a single state measured after TOF had a FWHM of ∼ 2.2 kL.

8.3.2.1 Correcting shears from Stern-Gerlach gradient

The magnetic field gradient used to separate the different mf states during

TOF additionally created a trap for atoms in the direction perpendicular to the

Stern-Gerlach separation, causing a compression (expansion) of the mf = −1 (+1)

states (see Section 3.2.1). The faster moving atoms are subject to a stronger poten-
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Figure 9: We measured the standard deviation of the momentum distribution along
the axis perpendicular to the SG for 10 shots on each mf state. From the slope of
the linear fit we obtain a shearing parameter α ≈ ±0.067 for mf = ±1.

tial as they move further from the trap center. The projections of a given momen-

tum state k along and perpendicular to the Stern-Gerlach axis were transformed

as k‖ → k‖ and k⊥ → (1 + α)k⊥, where α = 0 for mf = 0 and sign(α) = ±1 for

mf = ±1.

Since we were interested in mapping the momentum distribution of atoms

it was important for us to quantify and correct the effect of these shears in the

TOF images. We used two different methods: First, we prepared thermal atoms

in all three of the mf states and fit 2D Gaussians rotated by the angle of the SG

displacement (63.8 degrees for our images). Figure 9 shows the standard deviation

extracted from the Gaussian fits along the axis perpendicular to the SG direction as

a function of mf state. We performed a linear fit of σ and found that the mf = ±

states are expanded/contracted by about ±6.7% size of the compared to the mf = 0

cloud (α = ±0.067).

Alternatively we performed the Ramsey interferometer described in Section 8.5
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but coupling only 2 states, either |z〉 ↔ |x〉 or |x〉 ↔ |y〉 (mapped to |−1〉 ↔ |0〉

and |0〉 ↔ |+1〉 after TOF). We looked at the oscillation frequencies of the density

for each pixel of the CCD camera (each sheared momentum state) and fit them to

Equation 8.17 for fixed value of the recoil momentum ki,j and with a free shear

parameter that modifies q. Using this method we extracted a shearing of the order

of 7%, in good agreement with the Gaussian fitting method.

The transformed momentum coordinates were described by a function

g(k) = (k‖, (1 + α)k⊥) (8.10)

and our observed data (y(shear)
i ,k(shear)) was the density in the sheared coordinate

system at the ith pixel of the CCD sensor. We estimated the density in the unsheared

coordinate using the transformation

yj =
∑
i exp[−(g(kj)− k(shear)

i )2/2σ2]y(shear)
i∑

i exp[−(g(kj)− k(shear)
i )2/2σ2]

, (8.11)

where σ is the spacing between two consecutive pixels (∼ 0.018 kL. Prior to any

data analysis we applied this transformation to all of our images, where we used

different values of α that define g(k) for each of the mf states.

8.4 Fourier spectroscopy of the Rashba dispersion

We directly measured the 2D dispersion relation using Fourier transform spec-

troscopy [25]. We considered the evolution of an initial state |i,k〉 suddenly sub-
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Figure 10: a Fourier spectroscopy protocol. We applied the Raman lasers for a
variable time tp: a Rabi-type atomic interferometer analogous to a three-port beam
splitter. b Probabilities as a function of quasimomentum for a fixed Raman pulse
time tp = 420µs c Dynamics of the final populations of the |xyz〉 states with quasi-
momentum (q1, q2) = (−0.55,−0.18) kL (blue star in panels b) after initializing the
system in the |z〉 state.

jected to the Raman coupling lasers. This atomic Rabi-type interferometer is analo-

gous to the three-port beam-splitter depicted in Figure 10a. During a pulse time tp

we followed the dynamics of the populations in the |xyz〉 states which evolved with

oscillatory components proportional to ∑j 6=n an,j(q) cos([En(q)−Ej(q)]tp /h̄), with

frequencies determined by the eigenenergy differences En−Ej. Figure 10b shows the

momentum dependent populations for a fixed pulse time tp and Figure 10c shows

representative final populations as a function of tp for a fixed quasimomentum state.

We Fourier transformed the populations with respect to tp and for a given quasi-

momentum state for a total of 9 states accounting for each of the three initial |xyz〉

states that were later split into 3 states, all of them with the same q. Figure 11
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shows the PSD computed for each of the 9 states for planes of constant q1. The

amplitude of the oscillatory components depends on the overlap integral between

the initial state and the Raman dressed states (see Equation 5.1) so sampling all

these states gave us access to a wider range of measurable frequencies. We produced

the spectral maps in Figure 12b by averaging the PSDs from the 9 different states

using n̄, the mean population in tp, as a weight:

PSD(mean)(q) =
∑
i,j PSDi,j(q)n̄i,j(q)∑

i,j n̄i, j(q) , (8.12)

where the indices i, j represent the different states of the grid shown in Figure 11.

The extrema in the spectral maps are the energy differences En − Ej in the en-

gineered dispersion (Figure 10a) and together they show the presence of a single

Dirac point in the Rashba subspace, evidenced by the gap closing near q = 0 and

the photon-like lower branch. The dashed curves correspond to the energy differ-

ences computed for our system using the dispersions shown in Figure 12a, and are in

clear agreement with our experiment. This measurement directly confirms the ex-

pected set of energies, including the existence of a two-state subspace approximately

described by the Rashba Hamiltonian.

8.5 Quantum state tomography with Ramsey interferometer

The Fourier spectroscopy measurement confirmed our quantum engineering of

the Rashba Hamiltonian. However, the energies shed no light on the topology of the

different branches of the dispersion, which instead requires knowledge of the eigen-
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Figure 11: PSD of all the analyzed states as a function of q2 for fixed q1 = 0.18 kL.
The different overlaps between the initial state, the Raman dressed states and the
measured final state result in peaks with different amplitudes.

states. The Berry curvature present in the definition of the Chern number (Equa-

tion 7.11) can be derived from the Berry’s connection An(q) = i 〈Ψn(q)| ∇q |Ψn(q)〉,

which as discussed in Chapter 7 behaves much like a vector potential in classical

electromagnetism. The Berry curvature Ωn(q) = ∇q ×A(q) is the associated mag-

netic field and the flux through any surface is the line integral of A(q) along its

boundary, after neglecting the contributions of Dirac strings which I will discuss

later. Using the expression for the Raman dressed eigenstates from Equation 8.9 we

obtain

An(q) = −
∑

j∈{x,y,z}
an,j(q)∇qφn,j(q), (8.13)
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Figure 12: a Predicted dispersion relation as a function of q2 for fixed q1 = −0.09 kL
(left) and 0.65 kL (right), computed for the experiment parameters. The energy
differences between the branches enclosing the vertical arrows appear as peaks in
the spectral maps below. b Power spectral density (PSD) for the same parameters
as above which we obtained by Fourier transforming the populations in the |xyz〉
states with respect to tp. The dashed lines correspond to the energy differences
computed using the dispersion curves on the top panel.

which depends on both the phase and amplitude of the wave function. We obtained

an,j(q) and φn,j(q) using a three-arm time-domain Ramsey interferometer (see Sec-

tion 3.5.4), implementing a variant of quantum state tomography [142, 143]. The

use of a multi-path interferometer allowed us to transduce information about phases

into state populations, which we readily obtained from absorption images.

Figure 13 shows our experimental protocol which I will describe in more de-

tail in the following section. We adiabatically mapped an initial |j,k〉 state into a

corresponding eigenstate |n,q = k + kj〉, either in the topologically trivial highest
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Figure 13: Experimental protocol for three-arm Ramsey interferometer (not to
scale). (Top) We started with atoms in state |z, y,qi = k + kj〉 and with detun-
ing δy = ±5 EL and δz = ±5 EL. We ramped the Raman lasers on in 750 µs and
then ramped the detuning to nominally zero. We let the system evolve in the dark
for times between 5 µs and 400 µs, followed by a 25 us Raman pulse. (Bottom)
The implemented experimental protocol was equivalent to a three-arm interferom-
eter that split an initial state into three final states with amplitudes related to the
initial wave function phases.

dispersion branch (n = 3) or in the topological ground branch (n = 1) by dynami-

cally tailoring both the Raman coupling strength and detuning. We suddenly turned

off the Raman coupling, allowing the three bare state components of the Rashba

eigenstates to undergo free evolution for a time tfree, constituting the three arms

of our time-domain interferometer. Finally, we applied a three-port beam splitter

using a brief Raman ‘recombination’ pulse to interfere the three arms.

8.5.1 Wave function evolution in Ramsey interferometer

Rashba dressed state preparation: We started with |xyz〉 states at dif-

ferent RF coupling strength Ω0 = ΩRF/π2 ± 20 kHz, such that the energies of the
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|z〉 and |y〉 states were shifted by about ±18.8 kHz. We used the same Raman fre-

quencies as described earlier and the change in the |z〉 and |y〉 state eigenenergies

corresponded to having non-zero values of δz and δy in Equation 8.8. We chose the

detuning such that the initial state had a large overlap with either the n = 1 or

the n = 3 eigenstates of Equation 8.8. We then ramped on the Raman coupling

in 750µs, adiabatically mapping the |z〉 and |y〉 states into the n = 1 or n = 3

eigenstates. Because our only experimental knob for dynamically changing the de-

tuning was ΩRF we could not control δx so when we initialized the system in |x〉 the

final dressed state always corresponded to the n = 2 branch. After turning on the

Raman, we ramped ΩRF to its final value in 1 ms, effectively ramping δz and δy close

to zero. This detuning ramp had the additional effect of moving the location Dirac

point through the atoms when loaded in the n = 1 branch, creating a trajectory

where the state preparation was not adiabatic. This trajectory depended on the sign

of the detuning ramp so we combined data from different initial states that excluded

the Dirac point trajectories. Near the final location of the Dirac point, the state

preparation was not adiabatic regardless of the initial state or detuning used for the

ground state preparation. Figure 14a shows an example absorption image of atoms

initially prepared in the |y〉 state and with δy such atoms are loaded in the n = 1

branch. The Dirac point was initially located near the lower-left edge of the cloud

and when δi was ramped the location of the Dirac point was dragged across the

whole cloud leaving lines where non-adiabatic transitions occurred as can be seen in

Figure 14b. The location of the Dirac point as a function of δi can also be directly

computed by numerically diagonalizing the SOC Hamiltonian from Equation 8.8.
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At the end of this stage, excluding the points of non-adiabatic transitions, the state

of the system was described by the eigenstates in Equation 8.9.

Figure 14: a We prepared atoms in the |y〉 state such that they are adiabatically
mapped to the ground dispersion branch. b We ramped δi and dragged the Dirac
point through the atoms.

Free evolution: We suddenly turned off the Raman coupling, projecting the

Raman dressed states back into the |xyz〉 basis. Each state represented a different

branch of the interferometer and they acquired phases that are proportional to tfree

|Ψn(q)〉 →
∑
j∈xyz

√
an,j(q)eiφn,j(q)e−iEj(q)tfree/h̄ |j,k = q − kj〉 , (8.14)

where Ej(q) = h̄2q2/2m is the free particle energy. The Rashba wavefunction

phases φn,j(q) that we were interested in measuring were imprinted during the

loading procedure. The dynamical phases Ej(q)tfree/h̄ acquired in the different

interferometer arms do not contribute to our knowledge of the Rashba eigenstates

as they describe the evolution of the system in the absence of Raman dressing.

Recombination pulse: We applied a 25 us Raman pulse that acted as a
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second beam splitter in our interferometer sequence. The wave function after the

pulse was

|Ψ(q)〉 =
∑

j,j′∈xyz

√
an,j(q)ei(φn,j(q)−Ej(q)tfree/h̄)Uj,j′(q) |j,k = q − kj〉 , (8.15)

where Uj,j′(q) = |Uj,j′(q)| exp(iφ(pulse)
j,j′ (q)) is the matrix element of the unitary trans-

formation exp(iĤR(q)tpulse) associated to the Raman pulse. At the end of this

procedure, the population in a final state |l,q〉 was

Pl(q, t) =
∑
i 6=j
|Ul,i||Uj,l|

√
an,ian,j cos(ωi,j(q)t+φn,i(q)−φn,j(q)+φ

(pulse)
l,i,j (q)), (8.16)

which directly reads out the phase differences. Here φ(pulse)(q)
l,i,j is a smoothly varying

phase imprinted by the recombination pulse and is independent of q in the limit of

short, strong pulses and does not affect the topological index of the system. The

angular frequencies

ωi,j(q) = h̄q · ki,j/m+ δi,j (8.17)

result from the known free particle kinetic energy, the recoil momenta and detun-

ing δi,j from the tripod resonance condition. Figure 13b shows the momentum-

dependent populations in each output port at fixed tfree = 160µs and Figure 13c

shows the populations as a function of tfree for a representative quasimomentum

state (q1, q2) = (0.55,−0.92) kL.

We obtained the relative phases ∆φn,i,j,l(q) = φn,i(q) − φn,j(q) + φ
(pulse)
l,i,j (q)

from Equation 8.16 by fitting the measured populations to the sum of three cosines
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Figure 15: a Probabilities as a function of quasimomentum for the three output
ports of the interferometer at tfree = 160µs b Probabilities as a function of free evo-
lution time tfree for an input state with quasimomentum (q1, q2) = (0.55,−0.92) kL
indicated by the blue star on a and in the topological ground branch (n = 1)

with the known free particle frequencies but unknown amplitudes and phases.

8.5.2 Combining phases from different measurements

We combined the phases ∆φn,i,j,l(q) obtained from fits to six different states

(two initial states split into 3 states). Similar to the Fourier spectroscopy measure-

ments, we performed a weighted average of the fitted relative phases

∆φn,i,j(q) =
∑
l ∆φn,i,j,l(q)wi,j,l(q)∑

l wi,j,l(q) , (8.18)

where the weights were determined using fit uncertainties and when loading atoms

in the topological branch we additionally accounted for the trajectory of the Dirac
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point during the loading procedure. Figure 16 shows an example of two different

weight arrays used to combine the phase difference associated to the z → x transition

i, j = z, x for the topological branch n = 1 (∆1,z,x):
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Figure 16: Two sample weight arrays wi,j,l(q) for i, j = z, x and atoms prepared in
the topological disperion branch. We obtained the weights using the uncertainties
from the fits and the trajectory of the Dirac point during the state preparation.
We combined the weights and the phase differences ∆φn,i,j,l obtained from the time
dependent fits using Equation 8.18 to obtain the phase maps displayed in Figure 17a

The ‘spokes’ in the weight arrays correspond to high uncertainty regions. This

uncertainty comes from our inability to resolve the phases of low frequencies ωij(q)

as well as when two different frequencies ωij(q) and ωi′j′(q) are close to each other

which is limited by the largest value of tfree in the experiment. The phase maps

in Figure 17a represent fits to a combined a total of 120, 000 different time traces

(60, 000 for each dispersion branch).

8.5.3 Measuring the topological index

Figure 17a shows typical phase-maps for both the non-topological and topo-

logical branches. In the non-topological phase-maps, the momentum dependence

of the recombination pulse φpl,i,j(q) causes a smooth variation of the phases along
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Figure 17: Topological invariants from quantum state tomography, for the non-
topological branch (n = 3, left) and the topological branch (n = 1, right). a Phase
differences as a function of quasimomentum from the the z → x transition b Phase
differences as a function of polar angle for a loop radius 0.77 kL from the z → x
(top), x→ y (middle) and y → z (bottom) transitions. The phases associated with
the topological branch are characterized by two π valued discontinuities. Each row
of phases was shifted by a constant value so that the three rows of phases share the
same vertical axis. All phases shown here were binned and averaged using the fit
uncertainties as weights. c Inferred Chern number as a function of loop radius. For
loops with q > 0.4 kL we obtained an integrated Berry phase and asymptotic Chern
number of ΦB/2π = 0.01(1) for the non-topological branch and ΦB/2π = 0.5(5) for
the topological branch.
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the Raman recoil axes that does not affect the evaluation topological index of our

system. We recovered the phases φn,j of the full spinor wave function from the

relative phases ∆φn,i,j(q) by choosing a particular gauge such that φn,3 = 0. We

then used the values of an,i obtained from measuring the populations in the |xyz〉

states at tfree = 0 in combination with the phases of the wave function to com-

pute the Berry connection [144]. Figure 17b shows the three phase differences as a

function of polar angle for a loop of radius q ≈ 0.77 kL. In addition to the smooth

variations induced by the recombination which are present in both columns, the

phases of the topological branch have two π valued jumps that lead to non-zero

Berry phases when the Berry connection is integrated along a closed loop in mo-

mentum space. Figure 17c shows the integrated Berry phase as a function of loop

radius. As mentioned earlier the largest value of tfree limits how well we can resolve

the phases of small frequencies and this is reflected in the large variation in the

Berry phase depicted in the shaded region of Figure 17c near q = 0. For loops with

q > 0.4 kL we obtain an integrated Berry phase that suggests an asymptotic Chern

number of ΦB/2π = 0.01(1) for the non-topological branch and ΦB/2π = 0.5(5)

for the topological branch. However, Berry’s phase measurements like ours include

the (potential) contribution of any Dirac strings traversing the integration area. In

our system, these are possible at the Dirac point (red dot near q = 0), and each

contributes ±2π to ΦB (see Section 7.6). Even with this 2π ambiguity we are can

associate a half-integer Chern number with the topological branch, which is possible

only for a topological dispersion branch in the continuum.
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8.6 Conclusion

In conventional lattices — for example graphene, or the topological Haldane

model — it is well established that Dirac points each contribute a Berry’s phase

of ΦB/2π = ±1/2 [145], but crystalline materials conspire for these to appear in

pairs [127], always delivering integer Chern numbers. In contrast, our continuum

system contains a single Dirac point, resulting in a non-integer Chern number. This

leads to intriguing questions about edge states at interfaces with non-integer Chern

numbers with non-integer Chern number differences. Initial studies in the context of

electromagnetic waveguides [146] and atmospheric waves [107] have applied Chern

invariants and the bulk-edge correspondence to continuous media.

While the true Rashba Hamiltonian features a ring of degenerate eigenstates,

our implementation including the quadratic and cubic Dresselhaus-like SOC lifts

this macroscopic degeneracy giving three nearly degenerate minima [135]. Already

these three minima could allow the study of rich ground state physics in many

body systems of bosons, for example the formation of fragmented BECs [28] when

the system does not condense into a single-particle state. Furthermore, the use of

additional spin states or larger Raman couplings can partially restore this degeneracy

allowing the possible realization of fractional Hall like states [147].
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Chapter 9: Conclusions and outlook

This thesis presented new experimental techniques that have proven to be

useful in the control and characterization of ultracold atomic systems and applied

them in a new implementation Rashba-type spin-orbit coupling.

We developed a Fourier transform spectroscopy technique [25] which is based

on measuring the quantum coherent evolution of a single particle system under a

quench of a Hamiltonian of interest. This technique was successfully used to measure

the dispersion relation of a BEC with tunable 1D (equal combination of Rashba and

Dresselhaus) spin-orbit coupling. The use of this technique was extended to thermal

gases with broad momentum distributions to perform a parallelized measurement of

the dispersion relation of a system with Rashba-type SOC [26] as well as the band

structure of a fractional period adiabatic superlattice [27].

We implemented CDD in the ground hyperfine manifold of 87Rb by applying a

strong RF magnetic field [81]. The CDD states are first-order insensitive to magnetic

field fluctuations, making them effective clock states, and additionally, have non-zero

matrix coupling elements that allow cyclical couplings that are not possible in the

bare hyperfine |mF 〉 states. The clock states have made our experiments more robust

against magnetic field noise and were a necessary ingredient for the implementation
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of Rashba spin-orbit coupling as well as the engineering of fractional period adiabatic

superlattice and an ongoing project involving Hofstadter cylinders

Finally, we showed a new implementation of Rashba spin-orbit coupling using

Raman induced transitions of the CDD states [78,135] and characterized the topol-

ogy underlying this system [26]. We presented a protocol for performing quantum

state tomography which involves a three-arm Ramsey like interferometer and used

it to reconstruct the momentum-dependent wave function and calculate topological

invariants. Unlike conventional materials with an underlying crystalline structure

where topological invariants take integer values, we found that our system in the

continuum was characterized by half-integer invariants. Our Rashba implementation

offers the possibility of studying new ground state physics at the nearly degenerate

minima like the formation of fragmented condensates [28] or possible realizations of

fractional Hall like states [147]. One open question for a half-integer Chern number

system like ours is what kind of edge states emerge at the interfaces where the Chern

numbers differ by a non-integer number.

All the current experimental efforts focus on understanding the physics of a

Hofstadter cylinder under different magnetic fluxes and the role that disorder can

play in driving phase transitions. Additionally, a considerable effort is going to the

fabrication of a new apparatus that will allow the creation of ultracold samples of

87Rb and 39K. The use of bosonic 39K atoms will allow the tuning of scattering

lengths using Feshbach resonances [148], enabling new kinds of experiments where

atomic interactions can play an important role. The new apparatus will feature

better optical access that will enable high resolution imaging and the projection of
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arbitrary potentials.
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Appendix A: The good, the bad and the ugly of RbLi

This appendix summarizes the best, the worst and the meh aspects of the

RbLi apparatus. Hopefully the items presented can help guide some decisions of

future students building experimental apparatuses for ultracold atoms.

A.1 The good

It is very easy to come up with a list of bad things that don’t work quite well

in the lab. Coming up with a list of good things that work well is harder as we do

not tend to think too much about the things that we are not currently fixing. The

list bellow summarizes what I believe are the outstanding good players in the lab.

Overkill transistor banks: Large currents in the lab (quadrupole and Zee-

man slower) are controlled with transistor banks formed by a group of MOSFETS

whose drain and source are connected in parallel and sharing the same gate voltage

that is controlled by a PI servo. The Zeeman slower always operates at a fixed

current but the current in the quadrupole coils is dynamically changed throughout

the experimental sequence and a fast response is desirable. In 2013 we replaced the

quadrupole MOSFET bank with a new unit that contains 20 IXFN 520N075T2 tran-

sistors rated for 75 Vand 480 A (left panel of Figure 1). Even though our currents
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are well bellow the 480 A limit, the performance of the transistors really decays as

the drain to source voltage is increased as can be seen in the right panel of Figure 1.

The use of more transistors reduces the power dissipation of each individual tran-

sistor which allows us to operate the power supply at a higher voltage of 15 V that

helps counteract the inductive kickback of the coils. With the new transistor bank

the turn on time of the coils was reduced from 100 ms to 5 ms leading to improved

magnetic trapping and better Stern-Gerlach pulses for imaging, only with an un-

avoidable small number of blown off transistors. This was a one time problem that

happens typically when the turn-on voltage for one or a few transistors is slightly

lower than the rest and therefore few number of transistors end up dissipating all

the power when they are first turned on. Using transistors from the same batch is

advisable so that they operate as similarly as possible.

source

gate drain

Figure 1: Left: New MOSFET bank. Right: Safe operation regime of the IXFN
520N075T2 MOSFET. Even though they are in principle rated for up to 480 A the
maximum safe current is greatly reduced at larger drain to source voltages VDS. A
high VDS is desirable to reduce the inductive kickback during turn on.
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Oven chamber including hand made in vacuum shutters: Before go-

ing into the Zeeman slower, the atoms that are heated in the Rb oven travel to

the main oven chamber that is pictured in Figure 2b containing a cold-cup and an

oven shutter. The cold-cup is a cylindrical shaped copper piece that is attached

to the cold end of a thermo-electric cooler (TEC) via a copper rod. We keep the

cold-cup temperature at −30 C in order to capture excess Rb atoms in the chamber

and prevent damaging the ion pumps. The oven shutter allows us to block after

the MOT loading stage to prevent unwanted heating. We use a homemade (by

Ian) device, made from a re-purposed hard drive disk shutter with a metallic flag

attached to its end. The shutter is electrically connected to en electric feedthrough

with vacuum-compatible Kapton sealed wires. Other apparatus within the JQI [149]

have commercial shutters from Uniblitz and some of them have failed in the past.

Overall we have found this setup to be very reliable. The only problem we experi-

enced once was some accumulation of Rb on the cold cup that started blocking the

atomic beam. To remedy this we reversed the polarity of the TEC and heated the

cold cup barely enough so that the accumulated Rb atoms melted and moved away

from the aperture of the atomic beam.

Ultraviolet LEDs: We have two 3 W ultraviolet LEDs from Mightex placed

at the glass cell side of the vacuum system. One is aimed at the vacuum window

where the slower beam enters and the other is placed aiming at the glass cell. The

LEDs prevent Rubidium from depositing on the vacuum system and can conve-

niently be turned on and off with a TTL signal from the computer. We have found

that routinely turning them on (for example, leaving them on overnight) leads to a
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oven shutter

cold cup

atomic beam

To TEC

Figure 2: The RbLi oven chamber. We use a cold cup to prevent excess Rb atoms
from damaging the ion pumps and a homemade in-vacuum shutter to block the
atomic beam after the MOT stage to prevent heating of the atoms at later stages.

smoother operation of the system.

Mirror mounts with picomotor actuators: We use 8816-6 picomotor

optical mounts from New Focus Optics whose deflection angle can be electronically

adjusted on the order of microradians. The addition of picomotor mounts has made

alignment of laser beams to the atoms significantly easier. We use this mounts on

the last tunable mirror before the atoms for beam paths whose alignment is critical,

for example in optical dipole trap and Raman beams.

Polarizers on MOT beams: This item is a bad thing disguised as a good

thing. The light of our MOT beams is coupled to polarization maintaining optical

fibers. We found that despite our best efforts to align the polarization of the incom-

ing light to the slow/fast axis of the fiber the fluctuations in the output polarization

could cause considerable instabilities in the BEC production. To keep the polariza-

tion clean we placed polarizers at the output of the fibers. We found that despite

the power hit we get from the changes in polarization, this solution leads to a much
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more stable production of BECs.

Lab couch: When the experiment is functional enough that data can be

taken long hours in the lab are often required. If it gets late, the lab couch allows

the person running the experiment to take small naps as the data keeps coming

while still being close to the apparatus in case something needs to be fixed. A

slightly rested grad student tends to make less poor decisions than an exhausted

grad student.

Other elements already mentioned in the main text: The new master

laser from Vescent photonics has been very stable and reliable. The new Mako

camera has been very helpful to get rid of unwanted fringes in absorption images.

Labscript makes writing experimental sequences very straightforward.

A.2 The bad

The bad, these are elements of the apparatus that were constant sources of

pain and if considering a new experimental design should be avoided.

Water cooling shared between two labs: The quadrupole and Zeeman

slower coils as well as the transistor banks require water cooling due to Joule heat-

ing. Our lab space is shared with a Rubidium-Ytterbium ultracold mixtures ap-

paratus [150] and amongst the things we share is the water cooling system. The

schematic in Figure 3 illustrates a simplified layout of the water cooling system.

The water was filtered at two different points, first each line has a 440µm partic-

ulate filter from Swagelok and then the water returning to the heat exchanger is
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filtered with a low-impedance cellulose cartridge (McMaster 7191K11). Both filters

only capture impurities in the water for one given flow direction. One of the failure

modes which occurs when one of the booster pumps is turned on before the heat

exchanger, causing water to flow from one experiment to the other and bringing a

collection of nasty things that escapes the filters into the coils. Over the years our

system has suffered of clogged filters, clogged coils and broken booster pumps. For

best operation it is highly recommended that the cartridge filter is changed and that

the Swagelok filters be cleanded at least once a year and that a 10% solution of an

anti-corrosive Optishield Plus in water is used as a coolant. Even when follow-

ing this practices, we managed to find lots of gunk and unidentified objects (sand?

glass? mud? oxide? dead bacteria?) in the water, just at a slower rate. Besides

this issue, just having to interrupt the operation of two experiments whenever any

plumbing works needs to be done on one experiment is quite inconvenient.

Heat exchanger

Booster pump

RbLi
manifold

Booster pump

RbYb
manifold

Correct flow

Back flow :(

Filter Filter

Figure 3: Simplified schematic of the shared water cooling manifold.
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Flipper mirrors: The optical path of the MOT beams near the atoms is

very close to that of Raman, optical dipole trap and probe beams. Since the MOT

beams are only used at the early stages of the experiment it is tempting to use

flipper mirror mounts so that once they are no longer needed they can be moved

away to make space for other beams. This was the approach originally taken in the

lab and we used 8893-K motorized optical flipper mounts from Newport in multiple

locations. As they break over and over again, they have been slowly replaced by

more stable solutions such as periscopes or polarizing beam splitters wherever it is

possible. Flipper mirrors are always bound to break, it is only a matter of time

before it happens. Avoid using them unless you absolutely have no alternative.

Optical fibers right below air vents: The optical fibers connecting the

main experiment optical table and the laser optical table are routed close to a pair

of AC vents in the lab. The changes in air temperature result in polarization fluctu-

ations at the output of optical fibers (see previous section about MOT polarizers),

a constant cause of pain and instability in our BEC production. We have tried to

remedy this issue by partially blocking vents and enclosing the fibers in a large PVC

tube.

Free spaced dipole laser: The laser system providing 1064 nm light for the

optical dipole trap is not fiber coupled and is setup in the same optical table as the

vacuum system; we are not able to change the laser without destroying the alignment

of the dipole trap with the atoms. This issue became relevant while setting up a

1D optical lattice by retro-reflecting one of the dipole trap beams as we noticed

that the laser mode changes on a very fast timescale, leading to large fluctuations
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in the optical lattice. In the original design of the laser the light was meant to be

fiber coupled using high-power photonic crystal fibers but they did not have built

in mode expanders which resulted in the tip of the fibers repeatedly getting burnt

after some time of use. In short, mode expanders are recommended in applications

involving large optical powers.

A.3 The ugly

The ugly elements are not quite bad but they don’t function flawlessly either.

If given the option to replace them with something better I definitely would.

Kepco bipolar power supplies: We use three Kepco BOP 20-20M bipolar

power supplies to provide the current for the bias coils. While it is nice to have

a commercially available power supply that can provide ±20 A they come with a

few drawbacks. First the current they provide has 60 Hz noise in it and in order

to suppress it and stabilize the currents we must use a PI feedback circuit. The

power supplies has multiple banks of NPN and PNP transistors inside mounted on

a big heat sink with fans attached to it making them quite noisy; it is not optimal

to place them close to the main experiment chamber and long connections open

the door to unwanted ground loops. Additionally they have a few failure modes.

All the problems we experienced whenever they stopped working (e.g. the output

current railing) were symptoms of malfunctioning transistors, something that we

experienced on multiple occasions.
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Toptica’s BoosTA: Our cooling light comes from a Toptica DL Pro laser

that is amplified using a Toptica BoosTA tapered amplifier system. The output

power of this TA has been relatively stable over the years, in fact it has been

operating for over 7 years now without the need of replacing the TA chip, unlike a

homemade TA setup (see [62, 63]). The downside is it has a tendency to turn itself

off and on its worst days it would turn off so often that it would be impossible to

operate the experiment. We have not been able to identify the problem despite our

best efforts to look into the TA controller, the TA itself, multiple conversations with

Toptica engineers, etc.

Too many USB devices connected to the same computer: We use

multiple USB-6229 data acquisition (DAQ) devices from National Instruments.

They are located at different points of the lab and then connected to the control

computer through USB to optical fiber adapters that break the ground between the

computer and the rest of the lab equipment (a practice we always try to follow when

connecting things to the computer). We have a total of 6 NI devices in addition

to other equipment like oscilloscopes all connected to the computer through BNC

cables. Often times we struggled with the computer failing to detect one or multiple

devices and it would take a very special (and different every time) combination of

plugging and unplugging, turning off and turning back on things until all devices

were recognized by the computer. We observe that the problem occurs less often

when we don’t have as many USB devices connected to the computer.
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Appendix B: New apparatus

As mentioned in the main text, the construction of a new apparatus for pro-

ducing BECs of 87Rb and 39K is underway. The design of the apparatus is intended

to be a bug fix version of the RbChip [151] lab at NIST. The new apparatus does

not have a Zeeman slower and instead will use magnetic transport coils to move

atoms from a MOT cell to the main science cell.

This Appendix describes some aspects of the design and construction of the

new apparatus where I was involved. Disclaimer: none of this things have been

tested yet so we don’t know yet if it will all work horribly. I have tried to include

an extensive list of the part numbers used so they can be used as a future reference.

B.1 Water cooling

The lack of a Zeeman slower in the apparatus greatly simplifies the water

cooling system compared to that of RbLi. Since we don’t anticipate to have any

coils with high flow impedance we expect that the pressure from a recirculating

chiller will be enough to provide water cooling to the transistor banks and the

magnetic transport coils.

Our choice of chiller was the TF1LN400-LN 1.4 kW recirculating chiller from
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Thermo Fisher Scientific. The water is filtered both at the output and the re-

turn with a high-impedance filter with a cellulose cartridge filter(replacement filter:

Mcmaster 4422K3, filter housing: McMater 7191K11). A breakout manifold di-

vides the chilled water into 5 different lines, each one with a flow meter (Proteus

Industries 0101C110) that can be used to interlock the current of water cooled

applications to the flow of water. Based on previous experiences with plumbing (see

Appendix A) I highly encourage replacing the filters at least once a year and to use

a solution of 10% corrosion inhibitor (e.g. OptiShield Plus) and distilled water as a

coolant.

chilled house water

water out

water in

flow meters

breakout manifold

chiller

filters

a. Service corridor side b. Experiment side

Figure 1: Water cooling
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B.2 Electrical installation

We have two Agilent 6690A (440 A at 15 V max. current) to provide all the

necessary currents. The power supplies are located in the service corridor and are

connected to three copper bars corresponding to ±15 V and ground using welding

cable (McMaster 7818A17) that is laid on cable trays (McMaster 30065T11 and

similar). The copper bars serve as a hub for power distribution inside the lab where

lab devices such as transistor banks can be connected. The positive and negative

terminals of the power supples have two cables attached to them and they are all

arranged in the pattern shown in Figure 2 so that the magnetic field produced by

currents in them is closer to a magnetic quadrupole which decays faster than the

field of a magnetic dipole. We are trying to minimize unwanted magnetic fields at

the experiment and being nice to our neighbors as well. We are not planing to use

commercial bipolar power supplies in this lab (see Appendix A) and instead we will

be using a MOSFET based homemade supply that will draw current from the ±15 V

rails.

Figure 2: Configuration of the welding cables connecting the power supplies to
equipment in the lab.
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power supplies

1

1

2 2
3

3

Figure 3: A roller coaster ride, from the power supplies in the service corridor to
three copper bars that distribute the power.

B.3 Coil winding

All the coils in the apparatus including magnetic transport, bias and gradient

cancellation will be made of ribbon wire (Laminax from Bridgeport Magnetics).

We followed the the coil fabrication process described in [151] which involves first

winding a fixed number of turns around a prefabricated form with a particular

geometry. The coils were then covered with a machinable epoxy (Stycast 1266)

to fill in any air gaps. A lesson we learned while doing this is that only room

temperature epoxy should be mixed. We keep the epoxy in a fridge to extend its

lifetime but if it is cold some tiny drops of water will condense in it as it is being

mixed and it will not properly be cured. To minimize the air bubbles inside the

epoxy we placed the coils on a vacuum bell and we pumped the air out using an

electric vacuum pump (McMaster 4396K21). After the epoxy has cured (overnight

if it is left at room temperature or less if it is left at higher temperature) the coils
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are ready for lathing to remove all excess epoxy and kapton tape up to the surface of

the copper. After some trial and error (and lots of frustration) we found that using

a diamond tip cutter (McMaster 3316A32) and spinning the lathe not faster than

150 rpm gives the best results. Using a cutter that is not sharp enough or cutting

too aggressively close to the soft copper results in deformed traces that that merge

into each other causing unwanted shorts. The coils of the RbChip apparatus were

machined at NIST using a special aluminum form to mount the coils on the lathe

(see. The machinist at UMD considered this was not safe enough so I instead had

to mount the coils using a 6 jaw chuck as shown in Figure 4a. For anyone making

coils in the future: it is sort of an art to get it right and screwing up many coils at

the beginning is part of learning the art. That being said, an important aspect of

learning the ‘art’ right be as careful and consistent as possible from the start.

B.4 Rb source and ‘oven’

The new apparatus will have a cold ‘oven’ to keep the vapor pressure low

connected to a glass cell where light induced atomic desorption (LIAD) [152] will be

used to increase the Rb vapor pressure for MOT loading using non-thermal means.

The Rb source consists of a 1.33” CF flanged bellow (Kurt J. Lesker MH-CF-A03)

with a Rb ampule. The bellow is housed in the ‘oven’ which is designed to keep the

source at temperatures near 1 C. The oven is made of hollow aluminum cylinder

with a slit on one side with tapped holes so that 1/4 − 20 screws can be used to

tighten it and fix the oven to the source. The bottom of the oven attaches to the

191



a. Coil mounted on lathe b. Coils before and after lathing

c. Coil labeling system

Figure 4: a. I used a six jaw chuck and a diamond cutter on the lathe to remove
the excess epoxy and kapton on the coils. b. Coils before (left) and after lathing
(right). c. A good labeling system is important to keep to ensure uniformity of
coils. The ‘Wartortle’ coil shown here has 64 turns. During fabrication we keep
track of all the number of turns and resistance of all coils in a table.

cold end of a TEC that provides the cooling. The hot side of the TEC is attached

to a heat sink made of a hollow brass piece with tapped holes for 1/4” NPT pipes

that will be used to provide water cooling. Figure 5a shows CAD drawings of both

of this parts.

We tested the performance of a prototype without any vacuum systems at-

tached to it. We applied a 2 A current to two TECs (Digikey 102-1664-ND) sand-

wiched in between the heat sink and oven. The heat sink was water cooled using

≈ [18]C water. Figure 5b shows the temperature of both the oven side (top) and

the heat sink side (bottom) of the assembly. We did not use any insulation for this
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test to prevent condensation (see Figure 5c right) which should be done once its

installed on the apparatus.

Our initial plan was to control the temperature using a linear temperature

controller designed at the JQI (the design is available at the JQI GitHub) inter-

faced to the lab computer and Labscript using a serial to ethernet adapter (WIZnet

WIZ107SR). This project is not completed to this date.

a. Rb ‘oven’ and heat sink b. Bench test temperatures

c. Testing prototype oven and heat sink

Figure 5: Rubidium oven assembly
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B.5 Table enclosures

The enclosures of the optical tables are made of Alumalite from Laminators

Inc. mounted on frames made out of aluminum extrusions from 80/20 and slid-

ing tracks (2220 and 2210). Alumalite is a sandwich of a corrugated corrugated

polypropylen material in between two thin sheets of aluminum. We chose this ma-

terial because it is strong and lightweight. Its laser safety properties remain to be

tested but we anticipate it is better than the acrylic panels at the RbLi lab which

are essentially transparent at 1064 nm.

To the new and future members of the lab: I sincerely hope the things I

designed and built don’t cause you much pain!
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Appendix C: Full derivation of the Raman coupled |xyz〉 states

In this Appendix I derive the full time-dependent Hamiltonian describing the

|xyz〉 states coupled by three Raman beams to produce Rashba type SOC (see

Chapter 8. It takes a bit of thinking to understand what the frequencies of the

different Raman coupling terms correspond to in the RF rotating frame where the

|xyz〉 states are defined. Hopefully this Appendix helps to clarify our specific choices

for the laser geometry and polarization.

Our system is based on the proposal described in [78] to engineer a system with

Rashba-like SOC. We consider 87Rb atoms in the ground hyperfine F = 1 manifold

subject to a constant magnetic field B0ez and an RF magnetic field BRF cos(ωRFt)ex

as in Chapter 6. The system is described by the Hamiltonian

ĤRF = ω0F̂z −
ε

h̄
(F̂ 2

z − 1) + 2ΩRF cos(ωRFt)F̂x, (C.1)

where ω0 = gFµBB0 is the Larmor frequency, ε is a quadratic Zeeman1 shift that

breaks the degeneracy of the |mF = −1〉 ↔ |mF = 0〉 and |mF = 1〉 ↔ |mF = 0〉

transitions, ΩRF = gFµBBRF/2 is the RF coupling strength and 1 is the identity

1the quadratic dependence of ε on the applied bias field is not explicitly indicated on the symbol
but is important to take into account to get the detuning just right
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matrix. We transform the Hamiltonian into the RF rotating frame using the unitary

transformation Û(t) = exp(−iωRFtF̂z). The spin-1 operators under this transforma-

tion become

F̂x → cos(ωRFt)F̂x − sin(ωRFt)F̂y

= eiωRFtF̂+ + e−iωRFtF̂−

F̂y → sin(ωRFt)F̂x + cos(ωRFt)F̂y

= 1
i
(eiωRFtF̂+ − e−iωRFtF̂−)

F̂z → F̂z.

(C.2)

The unitary evolution in the rotating frame is described by the transformed Hamil-

tonian Û †(t)(ĤRF− ih̄∂t)Û(t), which after neglecting terms that are oscillating with

angular frequency 2ωRF is

ĤRWA = ∆F̂z −
ε

h̄
(F̂ 2

z − I) + ΩRF F̂x (C.3)

The eigenstate of Equation C.3 are the |xyz〉 states described in Chapter 6. Now

we apply three Raman beams as shown in Figure 1. This configuration differs from

the one proposed in [78] for technical reasons as we wanted all the Raman recoil

vectors to lie within the imaging plane of the experiment which corresponds to the

xy plane.

The electric field at the atoms in the lab (not rotating) frame is

E(x, t) =
3∑
i=1

Eieiei(ki·x−ωit), (C.4)
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Figure 1: Laser layout: We use a strong RF field and three linearly polarized Raman
beams propagating in the xy plane couple the |xyz〉 states and engineer the Rashba
Hamiltonian.

where Ei is the field amplitude, ωi is the angular frequency, ki is the wave vector and

ei is the polarization of each of the beams. In order to have the right coupling matrix

elements to cyclically couple all three states in a ring-like coupling as described

in [135] we need a Hamiltonian of the form

ĤSOC = (Ωx,Ωy,Ωz) · F̂ (C.5)

(see Section 6.3.3). This is possible if we choose two Raman beams to have in plane

polarization and one vertically polarized beam:

e1 = (k1y,−k1x, 0)
||k1||2

,

e2 = (0, 0, 1),

e3 = (k3y,−k3x, 0)
||k3||2

,

(C.6)

197



The Raman coupling strength is proportional to the vector polarizability (see

Section 3.3.2) and the Hamiltonian describing the atom-light coupling is

ĤR = (iuvE× E∗) · F̂ , (C.7)

where uv is the vector polarizability. The expression for the cross product of the

electric field at the atoms is quite messy, lets rewrite it in a more convenient way:

E× E∗ = (E∗1e1e
−i(k1·x−ω1t) + E∗2e2e

−i(k2·x−ω2t) + E∗3e3e
−i(k3·x−ω3t))× c.c

= E∗1E2(e1 × e2)ei[(k2−k1)·x−(ω2−ω1)t] + E∗1E3(e1 × e3)ei[(k3−k1)·x−(ω3−ω1)t]

+ E∗2E1(e2 × e1)ei[(k1−k2)·x−(ω1−ω2)t] + E∗2E3(e2 × e3)ei[(k3−k2)·x−(ω3−ω2)t]

+ E∗3E1(e3 × e1)ei[(k1−k3)·x−(ω1−ω3)t] + E∗3E2(e3 × e2)ei[(k2−k3)·x−(ω2−ω3)t]

= 2i
[
(e1 × e2)Im{E∗1E2 e

i(k21·x−ω21t)}

+ (e1 × e3)Im{E∗1E3 e
i(k32·x−ω32t)}

+ (e2 × e3)Im{E∗2E3 e
i(k32·x−ω32t)}

]
(C.8)

and using the definition of the polarization vectors (Equation C.6)

e1 × e2 = (−k1x,−k1y, 0)
||k1||2

= −k̂1

e1 × e3 = (0, 0,−k1yk3x + k3yk1x)
||k1||2||k3||2

= ez sin θ13

e2 × e3 = (k3x, k3y, 0)
||k3||2

= k̂3,

(C.9)
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we obtain the the desired Hamiltonian describing the atom light interaction

iuvE∗ × E · F̂ = −2uv
[
− k̂1Im{12}+ ez sin θ13Im{13}+ k̂3Im{23}

]
· F̂

= (Ωx,Ωy,Ωz) · F̂,
(C.10)

where

Ωx = k1x

||k1||
Im{Ω12e

i(k21·x−ω21t)}+ k3x

||k3||
Im{Ω23e

i(k32·x−ω32t)}

Ωy = k1y

||k1||
Im{Ω12e

i(k21·x−ω21t)}+ k3y

||k3||
Im{Ω23e

i(k32·x−ω32t)}

Ωz = Im{Ω13e
i(k31·x−ω31t)},

(C.11)

and

Ω12 = 2uvE∗1E2

Ω13 = −2uvE∗1E3 sin θ13

Ω23 = −2uvE∗2E3.

(C.12)

Now we need to transform Eq. C.10 into the rotating frame, this is where

things start getting fun. The ‘slow’ or ‘fast’ nature of a given term depends on the

specific choice of frequencies on each Raman beam which should be such that the

frequency differences ωij are resonant with dressed state transitions in the rotating

frame as shown in Figure 2a.

I showed in Equation C.2 that in the rotating frame the F̂x and F̂y operators

get additional factors of exp(±iωRF) while F̂z remains unchanged. We must there-

fore have the frequencies of beams giving rise to F̂x and F̂y coupling to differ in
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frequency by an additional ωRF and the beams that give the F̂z coupling to be close

in frequency. The two possible ways of doing so are shown in Figure 2b and they

determine weather ω21 and ω31 are positive or negative.

(ii) Red detuned(i) Blue detuned
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a. Resonant Raman coupling b. Possible Raman laser frequency configurations

Figure 2: a The choice of laser frequencies should be such that in the frame ro-
tating with frequency ωRF we get resonant Raman coupling of the |xyz〉 states. b.
Possible laser frequency configurations: i) Blue detuned configuration: There are
2 frequencies smaller by about ωRF and one larger frequency. ii) The red detuned
configuration: there are 2 frequencies that are larger by about ωRF and one smaller
frequency.

Lets look at the firs term of the ΩxF̂x coupling to get an idea of how the RWA
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will work here:

Ω(1)
x F̂x →

1
4i

k1x

||k1||
(
Ω12e

i(k21·x−ω21)t − Ω∗12e
−i(k21·x−ω21t)

) (
eiωRFtF̂+ + e−iωRFtF̂−

)

≈ 1
4i

k1x

||k1||
(
Ω12e

i(k21·x−(ω21∓ωRF)t)F̂± − Ω∗12e
−i(k21·x−(ω21∓ωRF)t)F̂∓

)

= 1
2
k1x

||k1||
|Ω12|

(
sin[k21 · x− (ω21 ∓ ωRF)t+ φ12]F̂x

± cos[k21 · x− (ω21 ∓ ωRF)t+ φ12]F̂y
)
.

(C.13)

Here the upper sign corresponds to the ω21 > 0 case (blue detuned) and the lower

sign to ω21 < 0 (red detuned) and I performed a RWA approximation in the second

line by neglecting the terms oscillating with frequency close to 2ωRF. Similarly, the

second therm of ΩxF̂x is

Ω(2)
x F̂x →

1
4i

k3x

||k3||
(
Ω23e

i(k32·x−ω32)t − Ω∗23e
−i(k32·x−ω32t)

) (
eiωRFtF̂+ + e−iωRFtF̂−

)

≈ 1
2
k3x

||k3||
|Ω23|

(
sin[k32 · x− (ω32 ∓ ωRF)t+ φ23]F̂x

± cos[k32 · x− (ω32 ∓ ωRF)t+ φ23]F̂y
)

(C.14)

where I used the same sign convention as before. It is important to keep in mind

that if ω21 is positive then ω32 must be negative and vice versa. Lets keep cranking
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the algebra!

Ω(1)
y F̂y → −

1
4
k1y

||k1||
(
Ω12e

i(k21·x−ω21t − Ω∗12e
−i(k21·x−ω21t)

) (
eiωRFtF̂+ − e−iωRFtF̂−

)

≈ ∓1
4
k1y

||k1||
(
Ω12e

i(k21·x−(ω21∓ωRF)t)F̂± + Ω∗12e
−i(k21·x−(ω21∓ωRF)t)F̂∓

)

= ∓1
2
k1y

||k1||
|Ω12|

(
cos[k21 · x− (ω21 ∓ ωRF)t+ φ12]F̂x

− sin[k21 · x− (ω21 ∓ ωRF)t+ φ12]F̂y
)
,

(C.15)

Ω(2)
y F̂y → −

1
4
k3y

||k3||
(
Ω23e

i(k32·x−ω32t − Ω∗23e
−i(k32·x−ω32t)

) (
eiωRFtF̂+ − e−iωRFtF̂−

)

≈ ∓1
2
k3y

||k3||
|Ω23|

(
cos[k32 · x− (ω32 ∓ ωRF)t+ φ23]F̂x

− sin[k32 · x− (ω32 ∓ ωRF)t+ φ23]F̂y
)
.

(C.16)

The complete Hamiltonian in the rotating frame after doing the rotating wave ap-
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proximation is then

Ĥ = 1
2
|Ω12|
||k1||

(k1x sin[k21 · x− (ω21 ∓ ωRF)t+ φ12]± k1y cos[k21 · x− (ω21 ± ωRF)t+ φ12]
)
F̂x

+
(
± k1x cos[k21 · x− (ω21 ∓ ωRF)t+ φ12]∓ k1y sin[k21 · x− (ω21 ± ωRF)t+ φ12]

)
F̂y


1
2
|Ω23|
||k3||

(k3x sin[k32 · x− (ω32 ∓ ωRF)t+ φ23]± k3y cos[k32 · x− (ω32 ± ωRF)t+ φ23]
)
F̂x

+
(
± k3x cos[k32 · x− (ω32 ∓ ωRF)t+ φ23]∓ k3y sin[k32 · x− (ω32 ± ωRF)t+ φ23]

)
F̂y


+|Ω13| sin(k31 · x− ω31t+ φ13)F̂z

(C.17)

In order to go from this rather complicated looking Hamiltonian to the effective

time independent Hamiltonian used in Chapter 8 we need to take two steps: first the

off resonant coupling terms need to be neglected. This can be more or less safely

done since they will be detuned by something on the order of tens to hundreds

of kHz. Second we need to go into a second transformed frame using the unitary

transformation

Û =
∑

i∈{xyz}
ei(ki·x−ωit) (C.18)

and eliminate the ‘fast’ terms that are proportional to exp(iωijt). The neglected

terms of the Hamiltonian in Equation C.17 have the effect of slightly shifting the

eigenenergies of the effective Hamiltonian from Equation 8.8. We interpret this shifts

in energy as coming from new effective Raman coupling strengths that slightly differ

from our calibrations performed by measuring the Rabi frequencies of individual
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pairs of Raman beams.
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and M. Lewenstein. Synthetic gauge fields in synthetic dimensions. Phys. Rev.
Lett., 112:043001, Jan 2014.
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and I. B. Spielman. A synthetic electric force acting on neutral atoms. Nature
Physics, 7(7):531–534, July 2011.

[20] Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody
Burton, and Wolfgang Ketterle. Realizing the Harper Hamiltonian with
Laser-Assisted Tunneling in Optical Lattices. Physical Review Letters,
111(18):185302, October 2013.

206



[21] Nigel R. Cooper and Jean Dalibard. Reaching Fractional Quantum Hall States
with Optical Flux Lattices. Physical Review Letters, 110(18):185301, April
2013.

[22] Victor Galitski and Ian B. Spielman. Spin-orbit coupling in quantum gases.
Nature, 494(7435):49–54, February 2013.

[23] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Reviews of
Modern Physics, 82(4):3045–3067, November 2010.

[24] Yu A. Bychkov and E. I. Rashba. Oscillatory effects and the magnetic sus-
ceptibility of carriers in inversion layers. Journal of Physics C: Solid State
Physics, 17(33):6039, 1984.

[25] A. Valdés-Curiel, D. Trypogeorgos, E. E. Marshall, and I. B. Spielman. Fourier
transform spectroscopy of a spin–orbit coupled Bose gas. New Journal of
Physics, 19(3):033025, 2017.

[26] A. Valdés-Curiel, D. Trypogeorgos, Q.-Y. Liang, R. P. Anderson, and I. B.
Spielman. Unconventional topology with a Rashba spin-orbit coupled quan-
tum gas. arXiv:1907.08637 [cond-mat, physics:quant-ph], July 2019. arXiv:
1907.08637.

[27] R. P. Anderson, D. Trypogeorgos, A. Valdés-Curiel, Q.-Y. Liang, J. Tao,
M. Zhao, T. Andrijauskas, G. Juzeliūnas, and I. B. Spielman. Realization
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[77] K. Jiménez-Garćıa, L. J. LeBlanc, R. A. Williams, M. C. Beeler, C. Qu,
M. Gong, C. Zhang, and I. B. Spielman. Tunable spin-orbit coupling via
strong driving in ultracold-atom systems. Phys. Rev. Lett., 114:125301, Mar
2015.

[78] D. L. Campbell and I. B. Spielman. Rashba realization: Raman with RF.
New J. Phys., 18(3):033035, 2016.

[79] Douglas R. Hofstadter. Energy levels and wave functions of Bloch electrons in
rational and irrational magnetic fields. Physical Review B, 14(6):2239–2249,
September 1976.

[80] D. Trypogeorgos, A. Valdés-Curiel, I. B. Spielman, and C. Emary. Perpetual
emulation threshold of PT -symmetric Hamiltonians. Journal of Physics A:
Mathematical and Theoretical, 51(32):325302, June 2018.

[81] D. Trypogeorgos, A. Valdés-Curiel, N. Lundblad, and I. B. Spielman. Syn-
thetic clock transitions via continuous dynamical decoupling. Physical Review
A, 97(1):013407, January 2018.

[82] R. P. Anderson, M. J. Kewming, and L. D. Turner. Continuously observing a
dynamically decoupled spin-1 quantum gas. Physical Review A, 97(1):013408,
January 2018.

[83] E. L. Hahn. Spin Echoes. Physical Review, 80(4):580–594, November 1950.

[84] Lorenza Viola and Seth Lloyd. Dynamical suppression of decoherence in two-
state quantum systems. Phys. Rev. A, 58(4):2733–2744, October 1998.

[85] I. Cohen, N. Aharon, and A. Retzker. Continuous dynamical decoupling uti-
lizing time-dependent detuning. Fortschr. Phys., 65(6-8):1600071, June 2017.

[86] F. F. Fanchini, J. E. M. Hornos, and R. d J. Napolitano. Continuously decou-
pling single-qubit operations from a perturbing thermal bath of scalar bosons.
Physical Review A, 75(2), February 2007. arXiv: quant-ph/0611188.

211



[87] N. Aharon, I. Cohen, F. Jelezko, and A. Retzker. Fully robust qubit in atomic
and molecular three-level systems. New J. Phys., 18(12):123012, 2016.

[88] Michael J. Biercuk, Hermann Uys, Aaron P. VanDevender, Nobuyasu Shiga,
Wayne M. Itano, and John J. Bollinger. Optimized dynamical decoupling in
a model quantum memory. Nature, 458(7241):996–1000, April 2009.

[89] J.-M. Cai, B. Naydenov, R. Pfeiffer, L. P. McGuinness, K. D. Jahnke,
F. Jelezko, M. B. Plenio, and A. Retzker. Robust dynamical decoupling
with concatenated continuous driving. New Journal of Physics, 14(11):113023,
November 2012. arXiv: 1111.0930.

[90] A. Bermudez, P. O. Schmidt, M. B. Plenio, and A. Retzker. Robust trapped-
ion quantum logic gates by continuous dynamical decoupling. Phys. Rev. A,
85(4):040302, April 2012.

[91] I. Baumgart, J.-M. Cai, A. Retzker, M. B. Plenio, and Ch. Wunderlich. Ul-
trasensitive magnetometer using a single atom. Phys. Rev. Lett., 116:240801,
Jun 2016.

[92] G. A. Kazakov and T. Schumm. Magic radio-frequency dressing for trapped
atomic microwave clocks. Phys. Rev. A, 91(2):023404, February 2015.
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