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We describe several experiments performed on a two species apparatus capable

of producing Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases

(DFGs) of 40K.

We first describe computational results for observed optical depths with ab-

sorption imaging, in a regime where imaging times are long enough that recoil-

induced detuning introduces significant corrections. We report that the obseved

optical depth depends negligibly on the cloud shape. We also find that the signal-

to-noise(SNR) ratio for low atom numbers can be significantly improved by entering

this regime and applying the appropriate corrections. We take advantage of this

SNR improvement in our subsequent experiment colliding two clouds of 40K for dif-

ferent values of background magnetic field in the vicinity of a Feshbach resonance.

We directly imaged the fraction of scattered atoms, which was low and difficult to de-

tect. We used this method to measure the resonance location to be B0 = 202.06(15)



Gauss with width ∆ = 10.(5) Gauss, in good agreement with accepted values.

Next, we describe experiments creating an elongated effectively 2D lattice for a

BEC of 87Rb with non-trivial topological structure using the technique of synthetic

dimensions. We set up the lattice by applying a 1D optical lattice to the atoms

along one direction, and treating the internal spin states of the atoms as lattice sites

in the other direction. This synthetic direction is therefore very short, creating a

strip geometry. We then induce tunneling along the synthetic direction via Raman

coupling, adding a phase term to the tunneling coefficient. This creates an effective

magnetic flux through each lattice plaquette, in the Hofstadter regime, where the

flux is of order the flux quantum h/e. We detect the resulting eigenstate structure,

and observe chiral currents when atom are loaded into the central synthetic site. We

further launch analogues of edge magnetoplasmons and image the resulting skipping

orbits along each edge of the strip.

We then applied a force along the real dimension of the 2D lattice and directly

imaged the resulting motion in the transverse, synthetic, direction. We performed

these measurements with 3 and 5-site width lattices along the synthetic direction.

We used these measurements to identify the value of the Chern number, the topo-

logical invariant in 2D, by leveraging the Diophantine equation derived by Thouless,

Kohomoto, Nightingale, and den Nijs. We measure Chern numbers with typical un-

certainty of 5%, and show that although band topology is only properly defined in

infinite systems, its signatures are striking even in extremely narrow systems.
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Chapter 1: Introduction

Although quantum mechanics has been well established since the early 20th

century, there are still many quantum phenomena that are not well understood and

are not easy to calculate. These include high temperature superconductivity [1, 2],

fractional quantum Hall physics [3, 4], and ground states of frustrated amorphous

materials [5]. One of the reasons these problems are proving elusive is that calcu-

lation of properties of many-body quantum mechanical systems is computationally

intensive enough to be completely prohibitive in a large class of problems.

Quantum simulation provides an attractive alternative to direct computation.

In it, a test quantum system, here ultracold atoms, is used to simulate a more

complicated, less experimentally accessible quantum system, such as a non-trivial

material from condensed matter physics. In order to get to the point where unsolved

problems can be solved with quantum simulation, tools must be built up to create

and verify Hamiltonians in the test system that are relevant to the more complex

target system. In this thesis, we present a technique for creating topologically

non-trivial Hamiltonians for ultracold atoms and experimentally measuring their

topological properties.

1.1 Condensed matter context

Topology has been a field of mathematics since the 17th century. Its im-

portance in physics, particularly in the study of crystalline materials in condensed

matter, was first discovered by Thouless, Kohmoto, Nightingale and den Nijs [6].

1



They used topology to explain the shockingly precise quantization of resistivity in

the quantum Hall effect. Since then, topology has been central to condensed matter,

from topological insulators [7] to fractional quantum hall physics [3]. There have

been many excellent pedagogical texts written on this matter. Here, we include only

a brief overview of the physics that is relevant for motivating Chapters 6 and 7 of

this thesis.

1.1.1 Topology

Topology is the study of how things can be continuously transformed into other

things without tearing or gluing parts together. Things that can be continuously

transformed into each other under those rules are called homeomorphic to each

other. Classes of objects that are all homeomorphic to each other belong to the

same topological class. These classes are characterized by a topological invariant,

an integer. Surfaces in 3D can be characterized by their genus g, essentially the

number of holes in the shape. Since holes cannot be opened up or closed by a

continuous transformation, the number of holes is a topological invariant that can

be used for classification.

Figure 1.1.1 shows some examples of objects with different genus g. A loaf of

bread has no holes, and is therefore topologically equivalent to a sphere, with g = 0.

A bagel has one hole, and is topologically equivalent to a torus, or a coffe mug, or

any other number of things with a single through hole, with g = 1. A pretzel has

3 through holes, and is therefore topologically distinct from both the loaf and the

bagel, with g = 3.

More formally, the Gauss-Bonnet theorem proves the discrete topology of 2D

surfaces. It uses the Guassian curvature, K, defined at every point on the surface.

The Gaussian curvature is defined as follows [8]: at any point on the surface, there

is a normal vector, perpendicular to that point’s tangent plane. The set of planes

2



Figure 1: Topology of baked goods. They are classified according to genus g, the
number of holes. Baking credit: genus 0—Ana Valdes-Curiel, genus 1&3—Whole
Foods Market Riverdale.

containing the normal vector are called normal planes. Each normal plane intersects

the surface at a curve, with an assoicated curvature given by the coefficient of the

quadratic term in a Taylor expansion of said curve. There is then a normal plane

giving the maximal curvature kmax and a normal plane giving the minimal curvature

kmin (if all the curvatures are the same k, as on a sphere, then kmax = kmin = k).

The Gaussian curvature is just the product of the two, K = kminkmax. The Gauss-

Bonnet theorem [8] then states that the integral of the Gaussian curvature K over

a closed surface S is an integer multiple of 2π:

χ =
1

2π

∫
S

KdA, (1.1)

where the integer χ is called the Euler characteristic, and is related to the genus via

χ = 2−2g. Essentially, the total curvature of a closed surface is quantized to integer

values, and any closed surface can be classified by that integer. Surfaces with equal

χ can be continuously transformed into each other.
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1.1.2 Band topology in materials

The same general principles can be applied to the bands within the band

structure of a crystalline material [9]. Crystalline materials are characterized by a

spatially periodic Hamiltonian. The primitive unit cell, or the minimal repeating

unit of the lattice, can be parametrized by primitive unit vectors ~ai, where i indexes

from 1 to the number of dimensions d. In momentum space, the repeating structure

is parametrized by reciprocal lattice vectors ~Ki. The eignestates of are labeled by

a momentum k and an energy E, with energies grouped into bands. According

to Bloch’s theorem [10], the eigenstate wavefunction for some band in a periodic

potential in d dimensions can be written as

|Ψ(~k)〉 = ei
~k·~r |u(~k)〉 , (1.2)

where ~k is the crystal momentum, ~r is the spatial coordinate, and |u(~k)〉 is periodic

with the reciprocal lattice periodicity. Reciprocal lattice space is continuously well

defined for an infinite system. In a finite system, the reciprocal space becomes

discrete. In the limit where the system is large compared to the primitive unit cell,

one can still approximate a sum over k states with an integral for many applications.

However, the rigorous theorems of continuous mathematics no longer apply.

There is a phase ambiguity in the definition of the Bloch wavefunction, such

that the physics remains invariant under the transformation [9]

|u(~k)〉 → eiφ(~k) |u(~k)〉 , (1.3)

which is reminiscent of gauge invariance in electrostatics. The corresponding gauge-
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dependent potential is called the Berry connection ~A, and is given by

~A = −i 〈u(~k)| ∇~k |u(~k)〉 . (1.4)

Under the transformation eq. 1.3, the Berry connection ~A goes to ~A+∇~kφ(~k). The

gauge invariant field, in 2 dimensions, is given by F = ∂Ay

∂kx
− ∂Ax

∂ky
, where F is known

as the Berry curvature.

From this, the geometric phase, or Berry phase γc [11], can be defined as the

phase acquired over a closed curve c in parameter space that is independent of the

rate at which the curve is traversed:

γc =

∫
c

~A · d~k =

∫
S

~F · dS, (1.5)

where S is a surface bounded by the curve c, and in the second equality we have

invoked Stoke’s theorem.

The Berry curvature integrated over the entire Brillouin zone, or primitive cell

in reciprocal lattice space, is quantized in units of 2π and in 2D given by:

C =
1

2π

∫
BZ

Fd~k, (1.6)

where C is an integer [12, 13]. This bears a strong similarity to the Gauss-Bonnet

theorem, eqn. 1.1, with the Gaussian curvature replaced by the Berry curvature,

and the closed surface in real space replaced by the Brillouin zone in momentum

space. Similarly, the integer C is a topological invariant and can be used to classify

the topological properties of the bands. For periodic structures in 2D, this invariant

is called the Chern number.

In finite systems, the transition to momentum space is necessarily discretized.

The integral in eqn. 1.5 is no longer continuous, and the identification of the Chern
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number can only be made in the continuous limit. In short, the Chern number

corresponds to the Chern number of the system in the imaginary scenario where its

bulk was extended indefinitely. In finite systems, the edges of the system become

important. The edge of the system is an interface between a topologically non-trivial

region (the system in question) and a topologically trivial region (the surrounding

air or other material). These edges support conducting edge modes. The number of

these conducting edge modes is equal to the total Chern number of the filled bands

in the bulk. This is known as the bulk-edge correspondence [6, 14], and has been

widely used to experimentally detect the effective Chern number.

1.1.3 Magnetic field in 2D and the Aharonov-Bohm phase

Without the constraint of a lattice, the behavior of electrons in a magnetic field

is well known. They experience a force F = −e~v× ~B, where e is the electron charge,

~v is their velocity, and ~B is the magnetic field. If the electrons are confined to a 2D

slab, as in the classical Hall effect, and the magnetic field is perpendicular to the slab

(see Figure 1.1.3), they perform orbits with frequency ωB = eB/m. These orbits are

called cyclotron orbits, and ωB is known as the cyclotron frequency. The chirality

of the orbits, i.e. whether they are clockwise or counterclockwise, is prescribed by

the direction of the magnetic field. If the system is finite, as is the case in all reality,

the electrons at the edge of the system will not be able to complete cyclotron orbits.

However, the chirality of the orbits must till be preserved, and electrons reflected off

the edge will continue semi-orbits in a defined direction along each edge, as shown

in Figure 1.1.3. These are known as skipping orbits.

In the same geometry, the presence of an underlying crystal lattice constrains

the motion of the electrons. In order to understand the effect of a magnetic field in

this case, particularly in the quantum limit, it is useful to think of the field in terms

of the Aharonov-Bohm effect. The setup for the Ahoranov-Bohm effect is shown in
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Figure 2: Hall effect setup. A slab of metal very thin along one axis acts as a
2D constraint for the electrons to travel in. A magnetic field normal to the plane
pierces the metal. Electrons travel in cyclotron orbits in the bulk and perform
skipping orbits along the edges.

Figure 3: Aharanov-Bohm experiment. An electron is sent therough two possible
paths around an infinite solenoid with a magnetic field B and corresponding flux
Φ going through the solenoid, and no field outside. An interference pattern is
observed on the other side, corresponding to a phase difference between the two
paths proportional to the enclosed flux.
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Figure 1.1.3. There is an infinite solenoid with a current running through it, resulting

in a uniform magnetic field ~B = Bzez inside the solenoid. Outside the solenoid, the

field is zero. However, the vector potential ~A, which defines a magnetic field through

~B = ~∇× ~A can be non-zero, as long as its curl remains zero. In the experiment [15],

two electrons were sent around the solenoid, never experiencing a magnetic field.

Classically, the electrons should pass unaffected. In reality, though the electron’s

trajectory was unchanged, the quantum mechanical phase was effected. Two elec-

trons that started out in phase acquired a phase differenceφAB = 2πΦ/Φ0, where

Φ = A × Bz is the flux through the solenoid given by the field Bz times the area

inside the solenoid A, and Φ0 = h/e is the flux quantum.

For electrons on a 2D lattice, this provides a way to treat interpret a magnetic

field quantum mechanically. The smallest unit of the lattice, called a plaquette,

will have some magnetic flux through it Φ = A × Bz. As far the as the electron is

concerned, which is only constrained to move around the plaquette, it is as if there

is an infinite solenoid with magnetic flux Φ through it is piercing the center of the

plaquette. Therefore, an electron hopping in a closed loop around the plaquette will

acquire a phase φAB = 2πΦ/Φ0. We will use this treatment in the next section.

1.1.4 Hofstadter regime

The Hofstadter regime [16] for 2D electrons in a magnetic field occurs when the

magnetic flux per individual lattice plaquette is a non-negligible fraction of a flux

quantum. This regime is hard to reach experimentally, since the typical plaquette

size in crystalline material is of order a square Angstrom, and the magnetic field

necessary to thread a magnetic flux of Φ0 through such a narrow area is of order

≈ 104 Tesla, not accessible with current technology. Several platforms have however

reached the Hofstadter regime by engineering systems with large effective plaquette

size in engineered materials [17,18].
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For a square lattice with sites along ex labeled by index j and sites along ey

labeled by k, in the tight binding limit, the Harper-Hofstadter Hamiltonian can be

written in the Landau gauge as

H = −
∑
j,k

txe
iφABk |j + 1, k〉 〈j, k|+ ty|j, k + 1〉〈j, k|+ h.c., (1.7)

where tx and ty are the tunneling amplitudes along ex and ey, and h.c. is the

Hermitian conjugate. Here, we have labeled the states by site indexes along both

directions |j, k〉 and included only nearest neighbor tunneling. The choice of Landau

gauge is here represented by the phase factor eiφABk being only on the tunneling term

along ex.

This Hamiltonian can be solved to find its eigenenergies for a range of phases

φAB, and therefore different fluxes per lattice plaquette Φ/Φ0. Note that the Hamil-

tonian is invariant to changes of phase in integer units of 2π, and therefore the

physics is invariant under changes of magnetic flux per plaquette of Φ0.

The spectrum of the Hamiltonian for a range of flux values is shown in Figure

1.1.4. This is known as the Hofstadter butterfly, and is remarkable for its fractal

structure. In the limit of flux Φ/Φ0 → 0, the fractal bands come together to

form equally spaced composite bands, Landau levels underlying the quantum Hall

effect [19–21]. The topology of each energy level for each flux value, as defined by

the Chern number, can be found through eqn. 1.6. In the quantum Hall effect limit,

the Chern number of each Landau level is C = 1.

1.1.5 Diophantine equation

In their seminal paper explaining the topological nature of the quantum Hall

effect [6], Thouless, Kohmoto, Nightingale and den Nijs also defined an alternative

way to compute the Chern number, without resorting to eqn. 1.6. This equation
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Figure 4: Hofstadter butterfly calculated in 2D momentum space for isotropic tun-
neling tx = ty.
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states that for rational flux Φ/Φ0 = P/Q (for relatively prime integers P and Q)

the integer solutions s and C to the Diophantine equation

1 = Qs− PC, (1.8)

under the constraint |C| ≤ |Q|/2 [6, 22], uniquely determine the Chern number of

the lowest band. We refer to this equation as the TKNN Diophantine equation, and

will make use of it in Chapter 7.

1.2 Ultracold atoms for quantum simulation

The phenomenon of Bose–Einstein condensation (BEC) was first predicted

in 1924 [23]. But it wasn’t until 1995 that techniques for cooling atoms down

to ultracold temperatures allowed for an experimental realization of this phase of

matter. The first BEC was created and observed by two labs, one at JILA [24] and

one at MIT [25]. The realization of a BEC won Eric Cornell, Carl Wieman and

Wolfgang Kettrle the Nobel prize in 2001. Since then, similar cooling techniques

have been applied to Fermionic atomic species. Though no phase transition occurs

for these atoms, at ultracold temperatures they start to differ significantly from an

ideal gas. Atoms in this regime are known as a degenerate Fermi gas (DFG), and

they were first experimentally realized in 1999 in the group of Deborah Jin [26,27].

Since their realization, BECs and DFGs have become widely studied, both

for their fundamental properties and as a platform for quantum simulation. A key

tool that makes ultracold atoms amenable to simulating condensed matter systems is

optical lattices. These lattices serve as analogues of crystal structure in a solid, with

atoms serving as analogues of electrons. Optical lattices are created by laser light

and can be used to create almost any geometry, from square [28] to triangular [29,30],

to hexagonal [31] to Kagome [32]. This allows for simulation of almost any crystal
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structure, and even the creation of periodic structures not yet found in nature.

Moreover, these optical lattices can be tuned in situ, giving the experimenter

dynamical control of Hamiltonian parameters far beyond what is possible in con-

densed matter settings. This allowed for the realization of the previously pre-

dicted [33] quantum phase transition from the superfluid to the Mott insulating

phase in a BEC [34,35].

Additionally, there are tools available to control and tune interactions between

atoms. Most notable of these are Feshbach resonances [36–40]. These have been

respnosible for significant advances, from creating BEC of attractively interacting

atoms [41], to forming molecular BECs [42–44], to allowing for realization of BEC-

BCS crossover physics [44–46]. The control of inter-atomic scattering length allowed

by Feshbach resonance makes them an important tool and subject of study. In

Chapter 5, we describe our experiment directly imaging the scattering in the vicinity

of such a resonance.

One drawback of ultracold atomic systems is that they are made with neutral

atoms, limiting their interactions with magnetic fields to those arising from their

magnetic dipole moment. It might seem that the interesting physics of 2D systems in

magnetic fields, as described in the previous section, would not lend itself to quantum

simulation in these settings. However, many techniques have emerged for creating

artificial magnetic fields, or terms in the atomic Hamiltonian that are identical

to the charged particle–magnetic field interaction. One proposal was rotating the

atoms such that the Coreolis force takes the role of the Lorentz force [47]. Another

is engineering laser coupling in a precise geometry to induce effective magnetic

fields [48], which was successfully realized [49] and extended to creating a spin-orbit

coupled Bose gas [50].

On a lattice, the cold atomic approach of imprinting Ahoranov-Bohm phases,

rather than using large external fields, has opened the way for simulation of large
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magnetic fluxes [51–53]. Several experiments have used this approach to reach the

Hofstadter regime [54–59], and further applications are promised [60]. Furthermore,

the approach of synthetic dimensions [61] has enabled reaching the Hofstadter regime

without laser modulation. The experimental realization and detection with this

technique as described in [62] is detailed in Chapter 6 of this thesis. It has also

been successfully used by other groups [58, 63]. In Chapter 7 of this thesis, we

further detail our experiment detecting the underlying topology of these synthetic

dimensional lattices.

1.3 Strucute of the thesis

In the second chapter, I review some background atomic physics necessary to

understanding the experiments that follow. In the third chapter, I review basics of

Bose-Einstein condensates and degenerate Fermi gases and present an overview of

the experimental apparatus, with extra detail on a few recent upgrades. In the fourth

chapter, I describe numerical simulations of absorption imaging in the presence of

strong recoil-induced detuning. In the fifth chapter, I describe our experiment with

colliding 40K atom clouds in the vicinity of a Feshbach resonance and imaging the

resulting s-wave scattering halos. In the sixth chapter, I describe our experiment

creating an effectively 2D synthetic dimensions lattice in the Hofstadter regime for

87Rb, and imaging skipping orbits on its edges. In the final chapter, I describe

our experiment measuring the underlying topological invariant of the same lattice.

In the appendices, I include published papers to which I contributed but did not

include in the body of the thesis.

13



Chapter 2: Atom–Light Interactions

In this chapter, we review the physics of interactions between atoms and light

in so far as they are relevant to our experiments. We describe the level structure

of alkali atoms in section 2.1, including the fine and hyperfine interactions and the

effects of external magnetic fields. We review the interaction of atoms with near-

resonant light (section 2.2), pertinent to cooling and absorption imaging as well as

Raman and rf coupling. We then detail interactions of atoms with far-detuned light

(section 2.3), pertinent to optical trapping and lattices.

In the following sections, we use these basic interactions to explain the tools

used in our experiments. We describe absorption imaging (section 2.4), our detection

scheme. We explain the basic physics of atoms in a 1D optical lattice potential

(section 2.5), and the physics of Raman and rf coupling of hyperfine atomic levels

(section 2.6).

2.1 Level structure of alkali atoms

Alkali atoms (those in the first column of the periodic table) are the most com-

monly used for laser cooling. Their level structure can be understood as primarily

the energy state of the single electron in the outer shell, interacting with the rest of

the atom—the nucleus and all the other electrons—as a whole. The quantum num-

bers that describe the energy levels of the atom are the principal quantum number

N , that electron’s spin S, the orbital angular momentum L, and finally the nuclear

spin I. The work described in this thesis was done with alkali species 87Rb and 40K.
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2.1.1 Fine and hyperfine sturcutre

The fine structure of alkali atom comes from two corrections to the bare Hamil-

tonian. The bare Hamiltonian H0 encompasses the kinetic enegy and the Coulomb

interaction between the outermost electron and the rest of the atom. The first of

these corrections is due to special relativity—it’s the correction to the classical ki-

netic term. The energy shift due to this term, to leading order in the small parameter

of velocity over the speed of light v/c, is given by [64]

∆Erel = − E2
N

2mc2

(
4N

L− 1/2
− 3

)
, (2.1)

where EN is the unperturbed energy and m is the mass of the electron.

The second correction comes from the spin–orbit interaction. In the frame of

the outermost electron, the nucleus is orbiting it, creating a magnetic field. The

magnetic dipole moment of the electron—given by ~µS = −gSµB
~̂S/h̄, where gS is

the spin g-factor, µB is the Bohr magneton, and ~S is the spin angular momen-

tum operator—interacts with this magnetic field. The Hamiltonian describing this

interaction is given by [64,65]

HSO =
Ze2

4πε0

gs
4me2c2

~̂L · ~̂S
r3

, (2.2)

where Z is a factor expressing the effective charge seen by the electron, e is the

electron charge, ε0 is the vacuum permittivity and r is the radial coordinate. This

Hamiltonian does not commute with either ~̂S or ~̂L, and therefore the projection

quantum numbers mS and mL are no longer good quantum numbers. However,

the total angular momentum ~̂J = ~̂L + ~̂S does commute with the Hamiltonian, and

therefore mJ is still a good quantum number. We can rewrite the coupling term

in the spin–orbit Hamiltonian as ~̂L · ~̂S = ~̂J2 − ~̂L2 − ~̂S2. The leading order shift in
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perturbation theory due to this interaction is given by

∆ESO =
E2
N

mc2

(
N [J(J + 1)− L(L+ 1)− S(S + 1)]

L(L+ 1/2)(L+ 1)

)
. (2.3)

Note that the relativistic and spin–orbit correction terms are of the same order.

We therefore combine them into a total energy shift, called the fine structure shift.

Using the fact that S = 1/2 and J = L± 1/2, this term can be written as

∆Efs =
E2
N

mc2

(
3− 4N

J + 1/2

)
, (2.4)

which splits the atomic energies according to the quantum number J .

The ground state of 87Rb, in term notation N2S+1LJ is 52s1/2, where s is orbital

notation indicating L = 0. Since L = 0, the ground state only has one possible

value of J = 1/2, and there is no ground state fine structure splitting. The first

excited state 52pJ has orbital angular momentum L = 1 (as indicated by p in orbital

notation). Therefore, J can take on two different values: 1/2 and 3/2, producing

a hyperfine splitting between the 52p1/2 and 52p3/2. The spectral feature associated

with the ground 52s1/2 and lower excited 52p1/2 energy difference is conventionally

called the D1 line, and the feature corresponding to the splitting between 52s1/2 and

52p3/2 is the D2 line. For other alkalies, including 40K, the ground state values of L

and S are identical and only the N value is different. Therefore, even though their

energies vary, D1 and D2 lines feature in all alkalies.

There is a yet smaller correction to the bare Hamiltonian, causing what’s

known as the hyperfine splitting. This arises from the interaction of the nuclear

spin magnetic dipole moment with the magnetic field created by the electron. The

Hamiltonian for this interaction is

Hhfs = −~̂µI · ~B, (2.5)
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(a) (b)
87Rb 40K

Figure 1: Atomic structure of the ground and first excites states, with fine and
hyperfine splittings. (a)87Rb. Values from [66]. (b). 40K. Values from [67].
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where ~̂µI = gIµB ~̂I is the nuclear spin magnetic dipole moment, ~̂I is the nuclear spin

operator and ~B is the magnetic field seen by the nucleus. The nuclear spin g-factor

gI encompasses the entire complex structure of the nucleons, but is generally smaller

than the electron spin g-factor gS by a factor of me/mp, where me is the electron

mass and mp is the proton mass, making this term very small. This magnetic field,

to leading order, is given by [66,68]

~B = 2
µ0

4π
µB

(
~̂L

r̂3
− 1

r̂3

[
~̂S − 3

~̂S · ~̂r
r̂2

~̂r

]
+

2

3
δ(~r)r̂2 ~̂S

)
, (2.6)

where the first term arises from the field due to the orbital angular momentum of the

electron, the second term is the field created by the electron spin magnetic dipole

moment, and the final term is the contact interaction, which is only non-zero for

L = 0 states. The hyperfine Hamiltonian eqn. 2.5 contains both ~̂I · ~̂L and ~̂I · ~̂S

terms. Therefore, ~̂L, ~̂S and ~̂I as well as ~̂J no longer commute with the Hamiltonian

and projection quantum numbers mL, mS, mJ and mI are no longer good quantum

numbers. However, the total spin including nuclear spin ~̂F = ~̂L + ~̂S + ~̂I commutes

with the Hamiltonian, and total spin F and its projection mF are now good quantum

numbers.

The energy shift, to lowest order in perturbation theory, due to the hyperfine

interaction is given by [66,68]

∆Ehfs =
1

2
AhfsK +Bhfs

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (2.7)

where K = F (F + 1)− I(I + 1)− J(J + 1), Ahfs is the magnetic dipole constant of

the electron, whose values for 87Rb and 40K can be found in [66,67].

For 87Rb, I = 3/2 and for 40K, I = 4. The interaction with the nuclear spin

splits the ground state of 87Rb into two manifolds, F = 1 and F = 2. Similarly

for 40K, it splits the ground state into F = 9/2 and F = 7/2 manifolds. The
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structure of the ground and first excited states of 87Rb and 40K, including both the

fine and hyperfine splittings, is diagrammed in Figure 1. Note that the D1 and

D2 transitions are in the optical regime, making them amenable to laser cooling.

The fine structure splitting of the excited states is in the far infrared, whereas the

hyperfine splitting of the ground states is in the microwave regime.

2.1.2 Interaction with static magnetic fields

In a static background magnetic field ~B, the atomic angular momentum inter-

acts with the field via the Hamiltonian

HB =
µB

h̄
(gS ~̂S + gL ~̂L+ gI ~̂I) · ~B, (2.8)

where µB is the Bohr magneton, gS, gL and gI are the spin, orbital and nuclear

Landé g-factors correcting their respective magnetic dipole moments. Without loss

of generality, we can define the magnetic field to be in the ez direction, ~B = Bzez,

to obtain

HB =
µB

h̄
(gSŜz + gLL̂z + gI Îz)Bz. (2.9)

At very low magnetic field strengths, where the energy shift due to HB is small

compared to the hyperfine splitting, the total angular momentum F remains a good

quantum number, and the Hamiltonian in eqn. 2.10 can be re-written as

HB =
µB

h̄
(gF F̂z)Bz, (2.10)

where the effective Lande g-factor is dependent on the angular momentum quantum
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numbers:

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
.

(2.11)

In this regime, the levels split linearly according to the F̂z projection quantum

number, mF . For the ground state of 87Rb, it splits into three hyperfine states in

the F = 1 manifold (mF = 0,±1) and five hyperfine states in the F = 2 manifold

(mF = 0,±1,±2). This regime is at fields B ≤≈ 1 Gauss for 87Rb, as seen in Figure

2.

At fields producing energy shifts small compared to the fine structure split-

ting, but large compared to the hyperfine splitting, F is no longer a good quantum

number, and the relevant Hamiltonian becomes

HB =
µB

h̄
(gJ Ĵz + gI Îz)Bz. (2.12)

Here, since gI � gJ , the energy dependence on Bz is dominated by a linear depen-

dence on the Ĵz projection quantum number, mJ , as seen in the higher field limit

in Figure 2.

In the intermediate regime, there is in general no analytic solution for the

eigenenergies and one must resort to numerics. However, for the specific case of

J = 1/2 applicable to alkali ground states, there is an analytic solution given by the

Breit-Rabi formula [69]:

E|J=1/2mJImI〉 = − ∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2

(
1 +

4mx

2I + 1
+ x2

)1/2

, (2.13)

where ∆Ehfs is the zero field hyperfine splitting, m = mI ±mJ , and

x =
(gJ − gI)µBB

∆Ehfs

. (2.14)
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Figure 2: Energy structure of hyperfine states of the ground state of (a) 87Rb and
(b)40K as a function of external magnetic field strength in Gauss. Note that the
zero field splitting ∆Ehfs by which the vertical axis is scaled is different for the two
atomic species.

From this we can get a better picture of the shifts at low fields, where µBB � Ehfs.

Expanding eqn. 2.13 to second order in small parameter 4mx/(2I + 1) + x2, and

neglecting the field-independent terms, we obtain

∆E|J=1/2mJImI〉 ≈
∆Ehfs

2

(
1

2

[
4mx

2I + 1
+ x2

]
− 1

8

[
16m2x2

(2I + 1)2
+

4mx3

2I + 1
+ x4

])
.

(2.15)

We recognize the term linear in mx, ∆Ehfsmx/(2I + 1) = (gJ − gI)µBBm/(2I + 1).

In addition, there is a term quadratic in mx:

∆Ehfs
m2x2

(2I + 1)2
=

(gJ − gI)2µ2
BB

2m2

∆Ehfs(2I + 1)2
= ε(B)m2, (2.16)

where in the last term we have defined ε(B), the magnitude of this ‘quadratic’

Zeeman energy shift. For the magnetic field strengths used in experiments described

in this thesis, the linear term plus quadratic correction are sufficient for describing

the energy levels.
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The form of the approximate Hamiltonian in this regime for any value of F is

given by

H0 = HKE + h̄ωzF̂z + h̄εF̂ 2
z , (2.17)

where h̄ωz = µBgFBz/h̄, and the kinetic energy Hamiltonian HKE = h̄2~k2/2mÎ, and

Î is the identity matrix.

2.2 Near-resonant atom–light interaction

In this section, we will assume the atom can be treated as a two-level system:

one with a ground state of some energy h̄ωg and excited state with energy h̄ωe,

with an energy difference h̄ω0. The interaction with a light source results from the

electric dipole moment of the atom ~d = −ε0~r interacting with the electric field of

the beam ~E(t, ~r), giving [70]

HL(t) = −~d · ~E(t, ~r). (2.18)

When very weak or no light is being shined on the atom, it still experiences

the interaction with vacuum light modes. Through this mechanism, an atom in

the excited state may still decay to its ground state (emitting a photon). This is

called spontaneous emission, and the time scale on which the decay will happen

is determined by the dipole matrix element of the transition, and is known as the

natural transition linewidth of the atomic transition Γ [70].

2.2.1 Rabi oscillations

When strong laser light is present, and on timescales short compared to 1/Γ,

spontaneous emission can be ignored [71]. Let us consider the Hamiltonian

H = H0 +HL(t), (2.19)
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where H0 is the bare atomic Hamiltonian and HL is the interaction with the laser

beam eqn. 2.18. We can write the wavefunction Ψ as a linear combination of the

two eigenstates (for a two-level atom) of the bare Hamiltonian H0 as

Ψ = cg(t)φg(r)e
−iωgt + ce(t)φe(r)e

−iωet, (2.20)

where cg(t) and ce(t) are the time-dependent coefficients multiplying the eigenstate

wavefuntions φg and φe of the ground and excited state respectively, and r is the

spatial coordinate. Absorbing any diagonal elements of HL into H0, multiplying

both sides of the Schroëdinger equation from the left by ψj and integrating over r,

we can write down the Schroëdinger equation as two coupled equations:

ih̄
dcg(t)

dt
= ce(t)H

ge
L (t)e−iω0t (2.21)

and

ih̄
dce(t)

dt
= cg(t)H

eg
L (t)eiω0t, (2.22)

where ω0 = ωe − ωg is the transition frequency, Hge
L (t) is the off-diagonal element

of the laser coupling Hamiltonian that couples the excited to the ground state and

Hge
L (t) = Heg∗

L (t). For simplicity, let’s consider light propagating along ez, linearly

polarized light along ex, ~E = (E0, 0, 0)cos(ωt). The coupling Hamiltonian can then

be written as [70]

Hge
L (t) = −µgeE0cos(ωt), (2.23)

where the electric dipole matrix element µge =
∫
φ∗gxφe. This can be written as

Hge
L (t) = h̄Ωcos(kz − ωLt) (2.24)
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with

Ω =
E0|µge|
h̄

(2.25)

the Rabi frequency, characterizing the coupling strength between the laser field and

the atom. Here, e is the charge of the electron.

To solve this Schroëdinger equation, we make the traditional transformation

to the rotating frame:

c′g(t) = cg(t) (2.26)

c′e(t) = ce(t)e
−iδt, (2.27)

where δ = ω0 − ωL is the detuning of laser light from resonance. In this frame, we

can write the atom–light Hamiltonian in the

c′g
c′e

 basis as:

H = h̄

−δ/2 Ω/2

Ω/2 δ/2

 . (2.28)

In the limit of no coupling, Ω = 0, in the rotating frame the eigenenegies are

E± = ±h̄δ/2. For non-zero coupling, finding the eigenvalues of H gives

E± = ±h̄
√
δ2 + Ω2/2. (2.29)

The eigenenergies are shifted in the presence of the light.

Assuming the atom starts in the ground state cg(t = 0) = 1, we can solve the

time-dependent Shroedinger equation (TDSE) with the above Hamiltonian

ih̄
d

dt

c′g
c′e

 = H

c′g
c′e

 (2.30)
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we obtain the oscillating excited state amplitude

c′e(t) = −i Ω√
Ω2 + δ2

sin

(√
Ω2 + δ2t

2

)
, (2.31)

known as Rabi oscillations. The frequency of these oscillations is the generalized

Rabi frequency Ω′ =
√

Ω2 + δ2. The amplitude of the oscillation is at its maximum

when the laser is on-resonance, δ = 0. As the detuning increases, the contrast

in excited and ground populations decreases, while the frequency of the oscillation

increases.

2.2.2 Scattering

In the regime where spontaneous emission cannot be ignored, Rabi oscillations

of each individual atom are intermittently interrupted by decay to the ground state.

Averaging over an atomic ensemble, on the time scale of a single Rabi oscillation, the

overall excited state population reaches a steady state, and the rate of spontaneous

emission becomes constant. Since during spontaneous emission the ejected photon

can go into any vacuum mode, this process can be thought of as the scattering of

photons by the atoms. This scattering rate is given by [71]

γsc =
Γ

2

I/Isat

1 + 4(δ/Γ)2 + I/Isat

, (2.32)

where Isat is the saturation intensity. This is the intensity at which the timescale of

spontaneous emission matches the Rabi oscillation rate, reducing the capacity for

absorption of extra light.
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2.2.3 Adiabatic rapid passage

Suppose there is a two-level atom in its ground state that an experimenter

wants to transfer into the excited state. To transfer it with perfect fidelity using Rabi

oscillations, one would need a perfectly on-resonant beam and very precise timing to

shut off the coupling field at the maximum of the excited state population. This is

challenging and not very stable to small perturbations in the level splitting between

the ground and excited state (caused by small field fluctuations for the case of two

Zeeman sublevels). A more robust technique is known as adiabatic rapid passage.

Suppose the two energy levels of the atom are sensitive to some external pa-

rameter. Commonly (as in the case of hyperfine sublevels), they are sensitive to an

external magnetic field B, and in the small field limit are linear in B. Therefore,

the detuning that goes into the Hamiltonian in eqn. 2.28 becomes h̄δ = AB − h̄ωL,

where A is the coupling constant in the hyperfine (or other) Hamiltonian. In the

limit of zero coupling strength, diagonalizing the Hamiltonian amounts to calculat-

ing the eigenenergies in the rotating frame as a function of the control parameter

B. These are represented in black in Figure 3. Note that the two levels cross each

other when their energy difference matches h̄ωL, on resonance.

Once the coupling field is turned on (in the case of the hyperfine interaction,

and rf-field), the two levels split near the resonance and an avoided crossing appears,

as seen in blue in Figure 3. Crucially, away from resonance towards the left, the

bottom coupled state overlaps closely with the uncoupled (black state). Far from

resonance, the ground state is largely unaffected by the presence of light. On the

other hand, far from the resonance on the right, the lower coupled state overlaps

almost perfectly with the excited uncoupled state. Adiabatic rapid passage (ARP)

takes advantage of this change.

The ARP protocol is as follows. Start at a bias field (or other control parame-
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Figure 3: Adiabatic rapid passage (ARP). Black lines represent energies of the
ground and excited state, in the rotating frame, with zero coupling. Blue lines
represent these bands with some coupling h̄Ω turned on. The dashed lines represent
the starting point of an ARP (Bstart), the resonant field value (Bres) and the end
point of an ARP (Bstop).

ter) where turning on the coupling field does not significantly perturb the eigenstate

(Bstart in the figure). Turn on the coupling field adiabatically (slow with respect to

the time scale associated with the level splitting energy at the selected detuning

τ = h/(Ee − Eg)), such that the atom remains entirely in the ground state |g〉.

Then, sweep the control parameter across the resonance, again adiabatically with

respect to the coupled level splitting (blue in the figure). The sweep rate can be

optimized to be faster away from resonance, where Ee − Eg is large and slower

closer to the avoided crossing. Then, at a final value of the control parameter where

the lowest coupled state overlaps almost perfectly with the bare excited state |e〉,

adiabatically turn off the coupling field, leaving the atoms in the excited state.

The ‘rapid’ part of adiabatic rapid passage refers to the procedure having to

be fast with respect to the spontaneous emission timescale, since in the coupled

basis there is some population in the excited state and spontaneous decay would

disrupt the process. This procedure is relatively insensitive to field fluctuations (as
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long as Bres is roughly in the middle of the relatively long sweep, the procedure will

succeed). It can also be applied to multi-level situations, for example in the case

of the hyperfine states of a single manifold F , where the atoms traverse multiple

avoided crossings in the same sweep and can be efficiently transferred from one

stretch state mF = F to the other mF = −F , or vice versa.

2.3 Far–off-resonant atom–light interaction

We can infer the behavior of atoms in a far-detuned laser field by taking the

solutions from eqns. 2.29 and 2.31 in the limit δ � Ω. First, looking at the excited

state population in eqn. 2.31, the amplitude of the excited state population oscil-

lation approaches zero. Therefore, as expected, no absorption of the light actually

takes place and the atom remains in the ground state. However, the light still af-

fects the atom by shifting the eigenenergies via eqn. 2.29. Recalling that the bare

eigenenergies in the rotating frame are given by E± = ±h̄δ/2, the energy shift from

bare is given by

∆E± = ±h̄
√
δ2 + Ω2/2−±h̄δ/2. (2.33)

Expanding the energy shift in the small parameter Ω/δ, we obtain the shifted en-

ergies E± = ±h̄
√
δ2 + Ω2/2 ≈ ±(δ/2 + Ω2/4δ). The shift from bare energy levels is

thus

∆E± ≈ ±h̄(δ/2 + Ω2/4δ)−±h̄δ/2 = ±h̄Ω2/4δ. (2.34)

This laser-intensity–dependent energy shift is called the AC Stark shift, and is the

basis of most laser created potentials for cold atoms.

For the ground state, and a red detuned laser beam (where the laser frequency

is lower than the resonant frequency), this creates energy minima in locations of

maximal laser intensity. For the lattice described in this chapter, as well as for the

trapping of our atoms in the final stages of cooling, we use high power (up to 10 W)
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lasers with wavelength λL = 1064 nm.

2.4 Absorption imaging

Absorption imaging takes advantage of the on-resonant interaction described

in the previous section. An on or near-resonant laser beam (δ/Γ � 1) is shined

at the atoms, and the absorbed light acts to create a shadow in the shape of the

atoms in the laser beam. This beam with the shadow is then imaged on a camera,

in our case a CCD, as depicted in Figure 4a (top). This is called the atom image,

and the intensity distribution over the camera is denoted by If (x, y), where the

subscript f stands for final - the intensity after the light has encountered the atoms.

To quantify the ‘shadowed out’ intensity, after the atoms have left the trap, the

same laser intensity is shined directly at the camera, as in Figure 4a (bottom). This

is called the probe image, and the intensity distribution over the camera is denoted

by I0(x, y), where the subscript 0 indicated initial—the intensity before the light

had encountered the atoms.

To recover the atom number distribution encountered by the light, consider an

atomic cloud with 3D density ρ(x, y, z). Since we can only obtain 2D information

from the camera, we can only hope to recover a 2D atomic column density n(x, y) =∫
ρ(x, y, z)dz. Focusing in on a single pixel of the camera, we can consider a single

value of I0 and If to recover a local n. As the laser light propagates through

the atomic cloud, the intensity of the light will diminish due to absorption. This

absorption as a function of propagation direction z can be expressed using the

scattering rate equation eqn. 2.32 as the number of photons scattered by the atoms

(proportional to the atomic density times the scattering rate) times the photon

energy h̄ωL:

d

dz

I(z)

Isat

= −h̄ωLρ(z)γsc(z) = −ρ(z)σ0
I(z)/Isat

1 + 4δ2/Γ2 + I(z)/Isat

, (2.35)
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Figure 4: Absorption imaging. (a) Near-resonant probe light illuminates the atoms,
and the transmitted light (containing a shadow of the atoms) is imaged on the
camera. A second image taken with no atoms provides a reference. (b) The probe
beam is partially absorbed as it traverses the cloud, and the intensity seen by atoms
further along the imaging direction ez is lowered. (c) An atomic cloud illuminated
by a probe light field absorbs photons from the probe and re-emits them in all
directions. This process results in a net acceleration of the cloud in the direction of
the probe light as well as diffusive spreading in the transverse directions.

where the resonant scattering cross section is σ0 = 3λ2
0/2π, and λ0 is the wavelength

associated with atomic resonance.

Integrating both sides of eqn. 2.35, we obtain

σ0n =
(
1 + 4δ2/Γ2

)
ln(I0/If ) + (I0 − If ) /Isat. (2.36)

The quantity OD = ln(I0/If ) is called the optical depth of the cloud. When the

probe intensity I0 is much smaller than the saturation intensity, the second term in

eqn. 2.36 becomes negligible. Assuming further that the probe light is on resonance,

δ = 0, the atomic column density becomes simply σ0n = OD. Figure 4b shows a

Gaussian atomic density distribution (top) and the resulting probe intensity as a

function of position in the cloud (bottom). The intensity drops from its initial to

final value gradually as it traverses the cloud.
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However, there is an important effect that the above equations do not account

for. Namely, as the atoms absorb light from the probe beam, they also get a momen-

tum kick equal to the momentum of a photon during each collision h̄kr = h/λL in the

direction of propagation. It is true that the absorbed photon will then be re-emitted

by the atom, inducing a loss of momentum, but since this happens through the pro-

cess of spontaneous emission into a random vacuum mode, the average momentum

kick acquired this way over many re-emissions will average to zero. On average,

each photon absorbed will induce a change in velocity of the atom of vr = h̄kr/m,

where m is the atomic mass, as depicted in Fig. 4c. As the velocity of the atom

changes, due to the Doppler effect, the apparent laser frequency will change as well.

Therefore, even if the laser light is exactly on-resonant for a stationary atom, it

will become off-resonant for longer imaging times, and eqn. 2.35 will acquire a time

dependence. For most experiments, this effect is small and can be neglected. How-

ever, if the imaging time becomes of order a recoil time tr, a time after which the

recoil-induced detuning δ becomes of order Γ, this effect becomes significant. We

explore this effect in Chapter 4.

2.4.1 Time-of-flight and in situ imaging

There are two commonly used protocols for measuring cold atomic clouds, in

situ and time-of-flight measurements. Generally, the atomic cloud is trapped (in

our case by an optical dipole trap) during the experiment. In situ is Latin for in its

original place. As suggested by the name, in situ measurements are taken while the

cloud is still in its original trap, or immediately after the trap is turned off before

any dynamics have had time to occur. These measurements measure the real spatial

distribution of the atoms at the end of the given experiment. There is a difficulty

associated with making in situ measurements of BECs, however. Namely, BECs in

their original trap tend to be relatively dense, with optical depths often in excess of
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OD ≈ 20, requiring unrealistic probe light intensities to resolve. One way to bypass

this difficulty is to selectively image only a small fraction of the condensed atoms,

as was done with microwave imaging for our magnetic field stabilization feedfor-

ward protocol. Another option is to instead perform a time-of-flight measurement,

which reduce the density of the cloud but don’t give access to the original density

distribution.

In time-of-flight measurements, the trapping potential is abruptly snapped off

after the experiment, and the atoms are allowed to free fall and expand for some

time t. For our experiments, t was on the order of tens of milliseconds. In the

regime where time t is long enough that the atoms travel much further than the

initial extent of the cloud in the directions transverse to the imaging axis, the final

position of the atoms is determined almost exclusively by their in situ momentum,

not their in situ position. Therefore, time-of-flight imaging in this regime measures

the atomic distribution as a function of momentum, not position.

2.5 One-dimensional optical lattices

2.5.1 Lattice Hamiltonian

Our 1-D optical lattice is created by retro-reflecting the λL = 1064 nm laser,

creating a standing wave of light. Via the AC Stark shift, this creates a periodic

potential for the atoms of the form

V = −V0sin2(kLx), (2.37)

where kL = 2π/λL is the wavenumber associated with the lattice recoil momentum.

The time-independent Hamiltonian, for some eigenenergy En, will be given by

− h̄2

2m

d2

dx2
Ψn(x)− V0sin2(kLx)Ψn(x) = EnΨn(x). (2.38)
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Since the potential is spatially periodic, we can invoke Bloch’s theorem [10]:

Ψn,q = eiqxun,q(x), (2.39)

where q is the crystal momentum restricted to ±h̄kL, and un,q(x) is the spatially-

varying part of the wavefunction obeying the spatial periodicity of the lattice. Plug-

ging this in to the Hamiltonian, we obtain

− h̄2

2m

(
−q2 + 2iq

d

dx
+

d2

dx2

)
un,q(x)− V0sin2(kLx)un,q(x) = Enun,q(x). (2.40)

Expanding un,q(x) in Fourier components commensurate with the lattice period of

2kL as un,q(x) =
∑∞

j=−∞ aje
i2kLjx, we obtain

∑
j

(
h̄2

2m
(q + 2kL)2aj − V0sin2(kLx)aj

)
ei2kLjx = En

∑
j

aje
i2kLjx. (2.41)

Re-writing sin2(kLx) = (e−2ikLx+e2ikLx−2)/4, multiplying both sides by ei2kLj
′x and

invoking
∑
cje

ik(j−j′) = δjj′ , where δjj′ is the Kroniker delta and cj are appropriately

normalized coefficients, we get for any value of the index j

h̄2

2m
(q + 2kLj)

2aj −
V0

4
(aj+1 + aj−1) = Enaj. (2.42)
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This can be expressed in matrix form

HL =



. . .

h̄2

2m
(q + 4kL)2 −V0

4
0 0 0

−V0
4

h̄2

2m
(q + 2kL)2 −V0

4
0 0

0 −V0
4

h̄2

2m
q2 −V0

4
0

0 0 −V0
4

h̄2

2m
(q − 2kL)2 −V0

4

0 0 −V0
4

h̄2

2m
(q − 4kL)2

. . .



,

(2.43)

in the basis of momentum orders |k〉 = eikx given by:



...

|q + 4kL〉

|q + 2kL〉

|q〉

|q − 2kL〉

|q − 4kL〉
...



. (2.44)

This matrix can be diagonalized for every value of the crystal momentum q,

with the resulting band structure shown in Figure 5. It is convenient to define the

lattice recoil energy EL = h̄2k2
L/2m. Then, we can re-write the Hamiltonian with

34



−3 −2 −1 0 1 2 3

q/kL

0

2

4

6

8

E
n

er
gy

E
/E

L

Figure 5: Lattice band structure in the extended zone scheme. The dashed lines
represent the limit of zero lattice depth, with the regular parabolic dispersion rela-
tion of a free particle repeating with the reciprocal lattice period. The solid lines
are the dispersion relation at V0 = 4.0EL, showing the opening of gaps at crossings
of the zero lattice depth bands. The black lines demarcate the first Brillouin zone.

V0 in units of EL and momenta q in units of kL as

HL/EL =



. . .

(q + 4)2 −V0
4

0 0 0

−V0
4

(q + 2)2 −V0
4

0 0

0 −V0
4

q2 −V0
4

0

0 0 −V0
4

(q − 2)2 −V0
4

0 0 −V0
4

(q − 4)2

. . .



. (2.45)

In any numerical simulation, the number of momentum orders that can be

included is finite. We determine the value of the parameter n = max(|j|) as the
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lowest n at which the eigenvalues stop changing to machine precision from n− 1.

2.5.2 Tight-binding approximation

In the limit of large lattice depths, V0 >≈ 5EL, the lattice Hamiltonian is well

approximated by the tight-binding model with only nearest neighbor hopping. In

the tight-binding model, the basis is assumed to be a set of orthogonal functions,

called Wannier functions, localized to each lattice site |j〉. The approximation lies in

assuming only nearest neighbor tunnelings between the sites, forming the nearest-

neighbor tight-binding Hamiltonian

Htb = −t |j〉 〈j + 1|+ H.c., (2.46)

where t is the tunneling amplitude between nearest neighbor sites and H.c. stands

for Hermitian conjugate. We have neglected the diagonal energy term, as it will be

equal for every Wannier function |j〉 and thus represents a constant energy offset.

All the information about the lattice depth is therefore reflected in the tunneling

amplitude t.

This Hamiltonian can also be expressed in the momentum basis by Fourier

transforming the basis functions:

|j〉 =
1√
N

∑
kj

e−ikjj |kj〉 , (2.47)

giving the Hamiltonian

Htb = − 1

N

∑
k1

∑
k2

te−ijk1eik2(j+1) |k1〉 〈k2|+ H.c = −
∑
k

2tcos(k) |k〉 〈k| . (2.48)

From this we can directly read off the band structure of the tight binding Hamilto-

nian. First, we notice that we only obtain one band—to approximate higher bands
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with the tight-binding approximation we would need to construct a different set of

Wannier functions and a different tunneling strength. Second, we see that the low-

est band is simply a cosine–therefore we have solved for the band structure without

even defining what the basis Wannier functions are! Third, the amplitude of the

cosine function is given by the tunneling strength t. This gives us a good clue as to

how to determine the appropriate tunneling given a lattice depth V0—simply find a

t that matches the amplitude of the lowest band, which becomes cosinusoidal in the

deep lattice limit.

The precise form of the Wannier functions depends on both the depth of the

lattice and the band being reproduced. It is not necessary for us to find their full

expression, as the band structure can be calculated without them. The definition,

however, is

|j〉 =

∫
BZ

eiφ(q)−iqja |q〉 dq, (2.49)

where the integral is over the Brillouin zone, from −kL to kL, a is the lattice spacing

λL/2, and |q〉 is the Bloch wavefunction at crystal momentum q, and φ(q) is the phase

associated with each Bloch wavefunction. The Bloch wavefunctions individually

have arbitrary phase. The phase plays an important role in combining the Bloch

wavefunctions into a Wannier function, finding the proper phase relationship to

make the wavefunction maximally localized at each site [72].

2.5.3 Pulsing vs adiabatic loading of the lattice

The lattice depth parameter V0/4, for a range of values, can be well calibrated

experimentally by pulsing on the lattice. Here, the word pulsing indicates that the

lattice is turned on fully non-adiabatically, if not instantaneously, such that the

original bare momentum state is projected onto the lattice eigenvector basis, as

shown in Figure 8a. If the atoms start out stationary in the trap, the bare state in
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the momentum basis is simply

|Ψ0〉 =



...

0

0

1

0

0

...



, (2.50)

as depicted in Figure 8b.

Since the lattice eigenvector basis is distinct from the bare one, instantaneously

turning on the lattice will necessarily excite the atoms into a superposition of lattice

eigenstates, each evolving with a different phase according to the eigenenergy while

the lattice is on, as shown in Figure 8c. Then, when the lattice is snapped back

off, the wavefunction is projected back into the bare basis, and the varying phase

accumulation results in a beating of the different momentum orders, see Figure 8d.

This can be calculated simply by using the time evolution operator

|Ψ(t)〉 = e−iHLt/h̄ |Ψ0〉 . (2.51)

By pulsing on the lattice for variable amounts of time t, we can obtain fractional

populations in the different momentum states. Time-of-flight imaging captures the

momentum distribution of the cloud, and the different entries of Ψ(t) in the momen-

tum basis will thus appear as different clouds on the absorption image, as shown in

Figure 7a. The fractional population in these clouds corresponds to a measurement

of |aj|2. Typically for our values of the lattice depth V0 < 10EL, it is sufficient to

simply count three central momentum orders, k = q, q ± 2kL. Then, we can fit eqn.
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Figure 6: Lattice pulsing. (a) Lattice depth as a function of time during a pulsing
experiment. The lattice is turned on instantaneously at t = 0 and held on for
a variable amount of time until being turned off instantaneously at a final time
t = tf . (b) Atomic population before t = 0. The dispersion relation is that of a
free particle, and all of the atoms start out at q = 0 in the lowest energy level.
Here, the area of the dots is proportional to the fractional population in the energy
state. (c) Atomic population after the lattice is turned on for a lattice depth of
V0 = 8.0EL. The energy spectrum now shows the lattice band structure, and some
atomic population is projected onto the excited bands. (d) Atomic population after
the lattice is snapped off at tf = 150 µs. The wavefunction is projected back onto
the bare states, with some fraction (blue circle) in the lowest band at k = 0 and
some fraction in the excited band, with equal population being projected onto the
k = 2kL (green) and k = −2kL (red).
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Figure 7: Lattice pulsing for calibration. (a) An example time-of-flight image from
a pulsing experiment. The three different clouds are different momentum orders.
(b) Fractional populations in the different momentum orders as a function of puls-
ing time at a low lattice power. Data is indicated by dots and best-fit theory is
represented by lines. The lattice depth from fit is V0 = 5.57± 0.07EL. (c)Fractional
populations in the different momentum orders as a function of pulsing time at a
higher lattice power. Data is indicated by dots and best fit theory is represented by
lines. The lattice depth from fit is V0 = 12.69± 0.07EL.

2.51 to the data with fitting parameter V0, thus deducing the lattice depth. Some

examples of these pulsing experiments are presented in Figure 7b,c.

In contrast to pulsing, adiabatic loading turns the lattice on slowly, such that

the atomic wavefunction starting in the bare ground state can continuously adjust

to remain in the ground state of the current Hamiltonian, without projecting onto

any of the higher bands. This process is illustrated in Figure 8. The adiabatic

timescale depends on the spacing between the ground and next excited band (or if

starting in a different eigenstate, the nearest eigenstate). If the energy difference

between the ground and first excited state is ∆E, the timescale on which the lattice
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is turned on must fulfill t� h/∆E.

2.6 Raman and rf coupling

In this section, we will introduce Raman and rf coupling between the hyperfine

sublevels of the ground state of 87Rb. While we will focus on the F = 1 and F = 2

manifolds of this ground state due to their relevance to the experiments described

in Chapters 6 and 7, the discussion can be easily extended to any value of F .

2.6.1 Rf coupling Hamiltonian

For the F = 1 manifold, there are three available spin states mF = 0,±1.

There are many ways of introducing coupling terms between the different hyperfine

states. Here, we will explain two methods: rf coupling and Raman coupling. Rf

coupling is a radio-frequency oscillating magnetic field, in our case produced by a

pair of circular coils in series side by side above the atoms (see [73]). Assuming the

rf oscillating field is polarized along the ex, with the bias field along ez, the coupling

Hamiltonian is given by Hrf = µBgF ~̂F · ~B = µBgF F̂xBxcos(ωt), where 2πω is the rf

frequency. The schematic of this setup is shown in Figure 9.

The eigenstates of the bare Hamiltonian H0 are the constituent mF states.

The eigenstates of the coupled Hamiltonian H0 +Hrf(t) can be expressed as a linear

superposition of the bare eigenstates Ψ(~x, t) =
∑

mF
cmF

(t)φmF
(~x)e−iωmF

t. The

Hamiltonian in this basis can then be written as [71]

Hrf = HKE + h̄


0 Ωcos(ωt)e−i(ωz−ε)t 0

Ωcos(ωt)e−i(ωz−ε)t 0 Ωcos(ωt)e−i(ωz+ε)t

0 Ωcos(ωt)ei(ωz+ε)t 0

 ,

(2.52)

where ωz = (ω1 − ω−1)/2, ε is the quadratic Zeeman shift, and Ω is the Rabi fre-
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Figure 8: Adiabatic lattice loading. (a) Lattice depth as a function of time during
adiabatic turn-on. The lattice is ramped on starting at t = 0, slowly increasing
to a final lattice depth and turned off instantaneously at a final time t = tf . (b)
Atomic population before t = 0. All atoms are at k = 0 in the lowest bare band.
(c) Atomic population after the lattice is turned on adiabatically to a lattice depth
of V0 = 8.0EL. All atoms remain in the lowest band, but the band is no longer
bare. (d) Atomic population after the lattice is snapped off. The wavefunction is
projected back onto the bare states, with some fraction (blue circle) in the lowest
band at k = 0 and some fraction in the excited band, with equal population being
projected onto the k = 2kL (green) and k = −2kL (red). Since the lowest lattice
band is a superposition of bare bands, some atoms are excited to the higher bare
momentum states.
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Figure 9: Raman and rf coupling schematic. (a) Beam geometry of the Raman
beams and rf relative to the external field. The Raman beams have a frequency
difference ∆ω, and are linearly polarized in perpendicular directions. (b) Level
structure of both Raman and Rf coupling for hyperfine states of the F = 1 manifold.
The hyperfine splitting separates the levels by an energy h̄ωz. The quadratic Zeeman
shift ε lowers the energy of the mF = 0 state, and the detuning δ of either the Raman
or the rf fields shifts the energies of the mF = ±1 states. Raman transitions are
two-photon, exciting up to a virtual state and coming back down to an adjacent
hyperfine state, with an accompanying momentum transfer. Rf couples adjacent
hyperfine states directly. Figure taken from ref. [74]

quency, proportional to Bx. We can then transfer into the rotating frame c′mF
=

e−imF δt+i(1−m2
F )εtcmF

, where δ = ωz − ω. Then we apply the rotating wave approx-

imation, that the fast oscillating terms average to zero over time scales of interest

e2iωt ≈ 0, and obtain

Hrf = HKE + h̄


δ Ω/2 0

Ω/2 −ε Ω/2

0 Ω/2 −δ

 , (2.53)

or for any value of F

Hrf = HKE + h̄δFz + h̄εF 2
z + ΩFx/2, (2.54)

which reduces to the above form for F = 1 with an overall energy shift of h̄εI.
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The band structure of this Hamiltonian can be seen in Figure 10, where we have

diaganolized eqn. 2.53 for a range of momenta kx (we have isolated kx for comparison

with Raman coupling, as will be seen in the next section). The parabolas are simply

the free particle dispersion relations along one dimension, with three bands arising

from the three available spin states. It is convenient to define the magnetization of an

eigenstatem =
∑

mF
mFpmF

, where pmF
is the fractional population in themF state.

We have indicated the magnetization of the eigenstate by coloring the eigenenergies,

with m = −1 in red, m = 0 in green, and m = +1 in blue. In Figure 10a, both the

detuning and the coupling strength are zero. Therefore, there are simply three free

particle dispersion curves, each exactly correlated with a particular spin state, the

mF = ±1 are degenerate and the mF = 0 state is slightly offset by the quadratic

shift h̄ε. In Figure 10c, the coupling strength is again zero, but the detuning has

been turned on, lifting the degeneracy between the mF = ±1 states. Figure 10b,d

shows the same conditions as a,c, respectively, but with the coupling strength turned

on. In Figure 10b, where the detuning is zero and the quadratic shift is negligible

compared to the coupling strength, all states average to a magnetization of zero—

the mF = ±1 states are symmetrically populated. In Figure 10d, this symmetry is

broken by the presence of a detuning.

2.6.2 Raman coupling Hamiltonian

The counter-propagating Raman beams, as seen in Figure 9, couple the same

states as the rf. The do so via the vector light shift created by the pair of beams.

The electric field due to the right going beam (red in Figure 9a) is ~E = E0exp(ikRx−

iωt)ey, where E0 is the amplitude of the electric field and h̄kR = h/λR = h̄ω/c. The

electric field from the left going beam (gray in Figure 9b) is ~E = E0exp(−ikRx −

i(ω+∆ω)t)ez. This combines to give an effective field from the vector light shift [75]

Beff ∝ ~E× ~E∗ ∝ −E2
0cos(2kRx+ ∆ωt)ex. Going through the same procedure as for
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Figure 10: Band structure of the rf Hamiltonian, eqn. 2.53, in momentum space.
For all plots, the quadratic Zeeman shift h̄ε = 0.04ER, and the color represents
magnetization, labeled by the colorbar. (a) h̄Ω = 0, h̄δ = 0. No coupling or
detuning is present, so the only separation between the bands is due to the quadratic
shift h̄ε. (b) h̄Ω = 5.0ER, h̄δ = 0. (c) h̄Ω = 0, h̄δ = 1.0ER. Even though the
coupling strength is zero, the bands are separated by the detuning. (d) h̄Ω = 5.0ER,
h̄δ = 1.0ER.
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the rf coupling case, including the transfer into the rotating frame and the rotating

wave approximation, we obtain the same Hamiltonian in the basis of bare spin states

|−1〉 , |0〉 , |1〉 but with an extra phase factor:

HRaman = HKE + h̄


δ Ω/2e−i2kRx 0

Ω/2ei2kRx −ε Ω/2e−i2kRx

0 Ω/2ei2kRx −δ

 , (2.55)

where δ = ωz −∆ω.

This phase difference between the rf and Raman Hamiltonian has an intuitive

physical explanation. In order to undergo a Raman transition, an atom first absorbs

a photon from one beam, getting a momentum kick equal to the recoil momentum

h̄kR. Then, to decay back down to an adjacent spin state, the atom undergoes

stimulated emission into the field of the other (counter-propagating) beam, acquiring

another recoil momentum kick in the same direction for a total of 2h̄kRex. Therefore,

the Raman coupling Hamiltonian for F = 1, after transforming into the rotating

frame and performing the rotating wave approximation, can be written in the same

way as the rf Hamiltonian in eqn. 2.53 with the addition of a momentum kick—in

real space, an acquired phase—of ei2kRx.

We can again make a basis transformation to get rid of this phase. Let us

define |−1〉′ = exp(−2ikRx) |−1〉 = |kx − 2kR,−1〉 , |0〉′ = |0〉 = |kx, 0〉 , |1〉′ =

exp(2ikRx) |1〉 = |kx + 2kR, 1〉, where for third definition we went into the momen-

tum basis and labeled the states by a combination of their momentum and spin

state. Then, including the kinetic energy term along ex explicitly, we obtain the

Hamiltonian in the new basis as:

HRaman = H
(y,z)
KE +


h̄2(kx−2kR)2

2m
+ h̄δ h̄Ω/2 0

h̄Ω/2 h̄2k2x
2m
− h̄ε h̄Ω/2

0 h̄Ω/2 h̄2(kx+2kR)2

2m
− h̄δ

 . (2.56)
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It is convenient to define the Raman recoil energy as ER =
h̄2k2R
2m

. The band

structure of this Hamiltonian is shown in Figure 11, for several representative pa-

rameter values, with the magnetization labeled by the color. Figure 11a shows the

band structure in the limit of zero coupling and zero detuning, but where we have

already gone into the basis |kx − 2kR,−1〉 , |kx, 0〉 , |kx + 2kR, 1〉; therefore, the free

particle parabola corresponding to the mF = 1 spin states is shifted to center on

kx = −2kR and the mF = −1 parabola is shifted to center on kx = 2kR. As the

coupling is turned on to h̄Ω = 1ER in Figure 11b, the points where the parabolas

cross become ‘avoided crossings’, separating into three bands where magnetization

(and the underlying spin distribution) depends on the momentum kx. As the cou-

pling strength is turned up even further to h̄Ω = 5ER in Figure 11c, the lowest band

goes from having three minima, one corresponding to each original spin state, to

only one minimum. This transition happens at h̄Ω = 4ER [73]. In Figure 11d, we

show the band structure again in the limit of zero coupling, but this time with a

detuning of h̄δ = 1.0ER. Note that the detuning tips the parabolas with respect to

each other. Figure 11e shows the detuned system with coupling strength turned up

to h̄Ω = 1ER, still in the three minima regime but with avoided crossings creating

three momentum and spin coupled bands. In Figure 11f, the detuned system is

turned up to a coupling strength of h̄Ω = 5ER, creating a single minimum, this time

offset from kx = 0.

We can write the general F version of the Raman coupled Hamiltonian in the

basis |kx +mF2kR,mF 〉, where −F ≤ mF ≤ F , as:

HRaman = H
(y,z)
KE + h̄2(kxI + 2kRFz)

2/2m+ h̄δFz + h̄εF 2
z + ΩFx/2. (2.57)
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Figure 11: Band structure of the Raman Hamiltonian, eqn. 2.56, in momentum
space. For all plots, the quadratic Zeeman shift h̄ε = 0.04ER, and the color repre-
sents magnetization, labeled by the colorbar. (a) h̄Ω = 0, h̄δ = 0. (b) h̄Ω = 1.0ER,
h̄δ = 0. (c) h̄Ω = 5.0ER, h̄δ = 0.0. (d) h̄Ω = 0.0, h̄δ = 1.0ER. (e) h̄Ω = 1.0ER,
h̄δ = 1.0ER. (f) h̄Ω = 5.0ER, h̄δ = 1.0ER
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2.6.3 Calibration of Raman and rf dressed states

To calibrate the rf and Raman coupling strengths, we take a similar approach

to the 1-D lattice calibration: start in a pure spin state, for example mF = 0,

and turn the coupling on non-adiabatically to induce Rabi oscillations between the

coupled states. Then, during time-of-flight, apply a Stern-Gerlach gradient pulse

to separate the spin components and observe the fractional populations in different

spin states as a function of Rabi oscillation time.

Figure 12a,b shows example images obtained in time-of-flight when pulsing on

an rf coupling field for atoms in the F = 1 and F = 2 manifold, respectively. The

Stern–Gerlach gradient pulse separates the spin components along the horizontal

axis in the images. The fractional population in each state can then be obtained

by summing up the optical depth in each cloud and dividing by the total optical

depth. Similarly, Figure 13a shows an example time-of-flight image obtained when

pulsing on a Raman coupling field on an F = 1 cloud initially in the mF = 0 spin

state. Here, the spin states are separated along the horizontal axis by the same

Stern–Gerlach pulse. In addition, the recoil momentum obtained when undergoing

a Raman transition separates the different spin states along the vertical axis—

parallel to the Raman beams along ex. The direction of the Stern–Gerlach gradient

was chosen purposefully to be perpendicular to the Raman direction ex for easy

separation of the two effects.

These population oscillations can then be fit for coupling strength h̄Ω and

detuning h̄δ. Note that the quadratic Zeeman shift h̄ε is set by the strength of

the bias field B0 and therefore often well known—it is not a fitting parameter.

The theoretical predictions are obtained by applying the time evolution operator

U = exp(−iHRaman/rft/h̄) to an initial state Ψ in the appropriate basis. Figure 12c

shows an example time series of rf pulsing in the F = 1 manifold, starting in the
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Figure 12: Pulsing on rf coupling. (a) Example time-of-flight image during an
rf pulsing experiment in the F = 1 manifold. Spin states are separated via a
Stern–Gerlach pulse along the horizontal direction. (b) Example time-of-flight image
during an rf pusling experiment in the F = 2 manifold. Here, 5 spin components are
present. (c) Pulsing experiment in the F = 1 manifold. Dots represent fractional
populations in different spin states measured from time-of-flight images, and lines
represent best-fit theory curves. Fitted parameters are h̄Ω = (0.863 ± 0.004)ER,
h̄δ = (−0.198 ± 0.007)ER. (d)Pulsing experiment in the F = 2 manifold. Dots
represent fractional populations in different spin states measured from time-of-flight
images, and lines represent best-fit theory curves. Fitted parameters are h̄Ω =
(1.000± 0.002)ER, h̄δ = (−0.061± 0.001)ER. h̄ε = 0.038ER for all panels.
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mF = 0 state. The lines of best fit are overlayed on experimental data, extracting

fit parameters h̄Ω = (0.863 ± 0.004)ER and h̄δ = (−0.198 ± 0.007)ER. Figure 12d

shows an example time series of rf pulsing in the F = 2 manifold, starting in the

mF = −2 state. Here, the extracted fit parameters were h̄Ω = (1.000 ± 0.002)ER

and h̄δ = (−0.061± 0.001)ER.

Figure 13b shows an example time series of Raman pulsing in the F = 1

manifold, starting in the mF = 0 state, with fitted parameters h̄Ω = (1.47±0.01)ER

and h̄δ = (0.004 ± 0.024)ER. Note that although the coupling strength is almost

double the rf coupling strength in Figure 12c, the contrast (peak to peak oscillation

of the fractional population in, say, the mF = 0 state) is much lower in the Raman

data than in the rf. This is a direct consequence of the recoil momentum transfer,

and can be understood by looking at the band structure. For rf, the coupled bands

at initial momentum kx = 0 are separated by the coupling strength, see Figure ??b.

For Raman, even at zero coupling strength, due to the shifting of the parabolas by

2kR, and kx = 0 the higher bands are h̄2(2kR)2/2m = 4ER separated from the lower

bands. Therefore, the energy difference is larger and the fraction in the excited band

will be lower, leading to lower contrast.
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Figure 13: Pulsing on Raman coupling. (a) Example time-of-flight image during a
Raman pulsing experiment in the F = 1 manifold. A Stern–Gerlach pulse during
time-of-flight separates different spin components along the horizontal direction,
and different momentum orders fly apart along the vertical direction. (b) Fractional
population in different spin states during a Raman pulsing experiment as a function
of time. Dots represent data and lines represent a best fit from theory. The fitted
parameters are h̄Ω = (1.47 ± 0.01)ER, h̄δ = (0.004 ± 0.024)ER. The quadratic
Zeeman shift was h̄ε = 0.038ER.
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Chapter 3: Ultracold Gases and the RbK apparatus

In this chapter we intoduce the basics of ultracold quantum gases. When

cooled to extremely low temperatures, bosonic atoms form Bose Einstein conden-

sates, described in sec. 3.1. Fermionic atoms do not undergo a phase transition,

but gradually become degenerate, forming what’s known as a degenrate Fermi Gas,

described in sec. 3.2. We then give a basic overview of the rubidium-potassium

(RbK) apparatus at NIST, on which the work described in this thesis was done, in

sec. 3.3. We detail some of the changes that have been made to the apparatus since

it was last documented.

3.1 Bose-Einstein condensation

In this section, we give some basic background on Bose-Einstein condensation,

relevant to 87Rb atoms cooled in our apparatus.

3.1.1 Phase transition of a non-interacting Bose gas

Bose gases are characterized by the Bose-Einstein distribution giving the num-

ber of atoms n(Ej) occupying each energy eigenstate Ej as

n(Ej) =
1

e(Ej−µ)/kBT − 1
, (3.1)

where kB is the Boltzmann constant, T is the temperature in Kelvin, and µ is

the chemical potential. Assuming the total atom number N is fixed, the chemical
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potential µ(T,N) ensures that the total occupation
∑

j n(Ej) = N .

The Bose distribution leads to Bose-Einstein condensation, the collapse of a

macroscopic fraction of the atoms into the ground state. This comes as a direct con-

sequence of the Bose distribution’s characteristic −1 in the denominator. Consider

the occupation number n(Ej). It must remain positive, as a negative occupation

number is unphysical. This implies the quantity e(Ej−µ)/kBT must remain greater

than 1, or (Ej − µ)/kBT > 0 for all Ej. Therefore, µ ≤ E0, where E0 is the ground

state energy.

Then, for a given temperature T , there is a maximum occupation number for

each excited state given by n(Ej) = 1

eEj/kBT−1
. The only energy state whose occupa-

tion number is unbounded is the ground state, as n(E0) tends toward infinity as µ

tends towards 0. Therefore, as the temperature decreases, the maximum occupation

of each excited state decreases until they can no longer support all N of the atoms.

The remaining atoms then have no choice but to collapse into the lowest energy

level and Bose condense.

We will show this quantitatively for the case of a 3-D harmonically trapped gas

of non-interacting atoms, relavant to the experiments described in this thesis [76].

It is convenient to define the fugacity ζ = eµ/kBT , and re-write the Bose-Einstein

distribution for some eigenstate Ej as

n(Ej) =
ζ

eEj/kBT − ζ . (3.2)

The harmonic oscillator potential can be written as

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (3.3)

where ωx, ωy and ωz are the angular trapping frequencies along ex, ey, and ez. The
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eigenenergies with this potential are

E(jx, jy, jz) = (
1

2
+ jx)h̄ωx + (

1

2
+ jy)h̄ωy + (

1

2
+ jz)h̄ωz. (3.4)

In order to find µ, we must find
∑

jx,jy ,jz
n(E(jx, jy, jz)) and set it equal to

N . This task is greatly simplified by going to the continuum limit and finding the

density of states. To do this, we neglect the zero-point energy (setting E0 = 0, the

effects of the zero-point energy are discussed in [77] section 2.5) and assume there

is on average one state per volume element h̄3ωxωyωz. Then, the total number of

states with energy less than or equal to some value ε is given by the volume of

a prism made between points (jx, jy, jz) = (0, 0, 0), (ε, 0, 0), (0, ε, 0) and (0, 0, ε) in

units of the volume element:

G(ε) =
ε3

6h̄3ωxωyωz
. (3.5)

The density of states is given by

g(ε) =
d

dε
G(ε) =

ε2

3h̄3ωxωyωz
. (3.6)

Note that the occupation of the ground state is not included in this continuum

picture. We can therefore use it only to calculate the total number of atoms in all

of the excites states:

Nex =

∫ ∞
0

dεg(ε)n(ε) =

∫ ∞
0

dε
ε2

3h̄ωxωyωz

ζ

eε/kBT − ζ =
(kBT )3

h̄3ωxωyωz
Li3(ζ), (3.7)

where Li3(ζ) is the polylogarithm function1. We define the mean trapping frequency

ω̄ = (ωxωyωz)
1/3 and the harmonic oscillator energy as h̄ω̄, with the thermal energy

1This calculation was done with Wolfram Alpha, not Russian algebra skills
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in harmonic oscillator units τ = kBT/h̄ω̄, giving

Nex = τ 3Li3(ζ). (3.8)

Finding the occupation number of the ground state from the Bose-Einstein

distribution

N0 =
ζ

1− ζ , (3.9)

we can then find the chemical potential, or equivalently the fugacity ζ, to satisfy

N = N0 +Nex. (3.10)

This is a transcendental equation that can only be solved numerically. We present

an example of the solution in Figure 1. Here, we have calculated the fractional popu-

lation in different harmonic oscillator energy levels for three different temperatures,

using trapping frequencies ωx = ωy = ωz = 2π× 50 Hz, and atom number N = 106.

For energies above the ground state (dots in the figure), we binned 50 energy levels

together, such that each dot represents the total fractional population in 50 adjacent

levels. This was obtained by integrating eqn. 3.7 from ε − 25h̄ω̄ to ε + 25h̄ω̄. The

stars represent the fractional population in just the ground state, calculated from

eqn. 3.9. Note that at temperature T = 255 nK (red), the ground state population

is consistent with a continuous extrapolation from the excited state populations and

is almost zero. At lower temperatures, T = 180 nK (blue) the ground state popu-

lation is in excess of any reasonable extrapolation from the excited state fractions,

and at T = 80 nK (green) almost all the atoms are in the ground state.

The onset of Bose-Einstein condensation occurs at a critical temperature Tc.

This temperature is defined as the temperature at which the occupation number of

excited states is equal to the atom number, i.e. when the atoms have occupied all
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Figure 1: Occupation of energy states of a 3-D harmonic oscillator. The trapping
frequencies are ωx = ωy = ωz = 2π × 50 Hz, and the atom number is N = 106.
Dots represent the total fractional population in 50 ajacent energy levels, including
degeneracies. The stars represent the fractional population in just the ground state.

available excited states and any remaining atoms were forced to pile into the ground

state. Since the maximal occupation of the excited states will occur at µ = 0, the

occupation of the excited state is bounded from above by Nex(µ = 0), and the

critical temperature is defined by

N = Nex(µ = 0, T = Tc) =
(kBTc)

3

h̄3ωxωyωz
Li3(ζ = 1). (3.11)

Using Li3(1) ≈ 1.202, we obtain for a given atom number and trapping frequencies

Tc =
1.202N

k3
B

h̄3ωxωyωz. (3.12)

For the parameters in Figure 1, Tc = 225 nK.

For temperatures below the critical temperature, the condensation fraction

fc—the fraction of atoms in the ground state—is directly related to the ratio of the
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Figure 2: Time-of-flight images of atoms. (a) Above the critical temperature - the
atoms are thermally distirbuted. (b) Below the critical temperature - about half of
the atoms are condensed in the central peak. (c) Far below the critical temperature
- almost all atoms are condensed in the central peak.

temperature to the critical temperature:

fc = 1− N

Nex

= 1− (kBT )3

h̄3ωxωyωz
Li3(ζ = 1) = 1−

(
T

Tc

)3

, (3.13)

where in the last step we have plugged in the definition of the critical temperature

eqn. 3.12.

Figure 2 shows the progression towards condensation as the temperature of a

cloud of 87Rb is decreased below Tc. The images are obtained via a time-of-flight

measurement (see section 2.4.1), where the atoms are allowed to expand freely,

mapping the initial momentum to final position, imaged via absorption imaging

(see section 2.4). The x and y axes represent momentum along x and y, while

the z axis represents the number of atoms per spatial bin. The z axis momentum

is integrated over. Figure 2a shows a cloud above the condensation temperature

- the momentum distribution is nearly gaussian, given by the Maxwell-Boltzmann

distribution. In fig. 2b, the temperature has been decreased below Tc, and about

half the atoms have collapsed into the ground state, producing a large peak in atom

number around zero momentum. In fig. 2c, the temperature has been decreased
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even further and almost all the atoms populate the central peak - the distribution

is no longer gaussian but a sharp peak around zero momentum.

3.1.2 Interacting Bose gas

In the previous section, we assumed there weres no interaction between the

atoms other than those enforced by statistics. In this section, we will relax this

assumption somewhat and describe the condensed atomic state through its charac-

teristic Gross-Pitaevskii equation.

Since condensation occurs at very low temperatures, and thus very low kinetic

energies, we can assume that any scattering processes between the atoms are s-wave

and can be described simply by a scattering length a (equivalent to assuming that

the characteristic size of the atomic wavefunction, given by the thermal deBroigle

wavelength, is large compared to the scale of the interatomic potential). For 87Rb,

relevant to experiments described in this thesis, the scattering length between two

atoms in the F = 2 hyperfine state is a = 95.44(7)a0 [78], where a0 = 5.29× 10−11

m is the Bohr radius. The short-range interaction between two particles can be

approximated as a contact interaction with an effective strength U0 as (see [77]

section 5.2.1):

U(r1, r2) = U0δ(r1 − r2) =
4πh̄2a

m
δ(r1 − r2), (3.14)

where m is the atomic mass and δ is the Dirac delta function. The full Hamiltonian

of the many-body system is then

H =
∑
i

p2
i

2m
+ V (ri) + U0

∑
i<j

δ(ri − rj), (3.15)

where i labels the particles, pi is the momentum, ri is the position, and V is the

external potential.

We make the mean field approximation by assuming that no interactions be-
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tween two atoms take them out of the ground state, and hence all atoms can be

assumed to be in the same single particle wavefunction, making the overall wave-

function

Ψ(r1, r2, ...rN) =
N∏
i

φ(ri), (3.16)

where φ is the single particle wavefunction. It is convenient to define the wave-

function of the condensed state, ψ(r) =
√
Nφ(r), making the normalization N =∫

dr|ψ(r)|2.

The energy of this wavefunction under the Hamiltonian above is given by

E =

∫
dr

[
h̄2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

1

2
U0|ψ(r)|4

]
. (3.17)

Given N particles, there are N(N − 1)/2 unique pairs of particles that can have a

pairwise interactions, approximately equal to N2/2 for large N . The N2 is absorbed

into the definition of ψ, but the factor of 1/2 remains on the final interaction term.

The task of finding the condensate eigenstate reduces to minimizing this energy

under the normalization constraint N =
∫
dr|ψ(r)|2. This can be done by using the

method of Lagrange multipliers to minimize E − µN . Then, we can minimize this

quantity by finding the point where the derivative with respect to ψ and ψ∗ is zero.

Taking the derivative with respect to ψ∗ we obtain

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r), (3.18)

which is the Gross-Pitaevskii equation. This is a non-linear equation that generally

needs to be solved numerically.

There is another approximation that can be made in cases where the atomic

density is high enough that the interaction energy is significantly larger than the

kinetic energy. Then, the kinetic term in the Hamiltonian can be neglected. This is
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called the Thomas-Fermi approximation. In this approximation, the wavefunction

is given simply by

|ψ(r)|2 =
µ− V (r)

U0

. (3.19)

Here, the probability density simply takes the shape of the inverted potential in

which the atoms are held. In the case of a harmonically trapped BEC, it is shaped

like an inverted parabola. The Thomas-Fermi radius, i.e. the extent of the particle

wavefunction, is the point where the probability density goes to zero: µ−V (r0) = 0.

For a harmonic trap, along any direction, this is given by r2
0 = 2µ/mω2.

Figure 3a shows an absorption image of a small fraction of atoms in a BEC

in situ (see section 2.4.1), meaning as it is in the trap - without expanding in time-

of-flight. The x and y axes represent position, while color represents the atom

number. Figure 3b shows the atom number integrated over the y-axis in blue. The

red dashed lines represent the best fit line to a Thomas-Fermi distribution, here

an inverted parabola. The black dashed lines represent the best fit of a Gaussian

to the atomic distribution. The Thomas-Fermi distribution matches the atomic

distribution more closely in the center where the density is high, but the Gaussian

distribution does a better job at the tails of the distribution. This is due to the

presence of some fraction of uncondensed atoms, which are well approximated by a

Maxwell-Boltzmann distribution.

3.2 Degenerate Fermi Gas

In this section, we give some basic background on degenerate Fermi gases,

relevant to 40K atoms cooled in our apparatus.
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Figure 3: In situ measurement of Bose condensed atoms. (a) Absorption image
taken of ≈ 1% of the cloud. The x and y axes represent x and y position, while
color represents the atom number. (b) The blue line represents atom number as a
function of position along the x axis, integrated over the y axis. The black dashed
line represents the best fit of a Gaussian function to the atomic distribution. The
dashed red line represents the best fit of a Thomas-Fermi profile (integrated over
the other two dimensions) to the atomic distribution.
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3.2.1 Fermi statistics and the onset of degeneracy

The occupation of different energy levels Ej by Fermions is given by the Fermi-

Dirac distribution:

n(Ej) =
1

e(Ej−µ)/kBT + 1
. (3.20)

The difference from the Bose-Einstein distribution is simply the sign of the 1 in

the denominator. This has important implications, however. First, since ex varies

between 0 and ∞, the occupation n(Ej) varies between 1 and 0 - a consequence of

the Pauli exclusion principle. Second, as the temperature T tends towards 0, there

become two distinct cases: Ej − µ > 0 and Ej − µ < 0. If Ej − µ > 0, e(Ej−µ)/kBT

tends towards ∞, and n(Ej) tends towards 0. If Ej − µ < 0, e(Ej−µ)/kBT tends

towards 0, and n(Ej) tends towards 1. Therefore, at T = 0, the energy states below

the chemical potential µ are maximally occupied (with probability 1) and the energy

states above the chemical potential are unoccupied.

We can use this to determine the chemical potential at T = 0 by constraining

the total atom number:

N =
∑
j

n(Ej) =
∑
Ej<µ

1. (3.21)

Again, we take the common example of the 3-D harmonic trap. Then the task

reduces to simply finding the number of energy levels at or below a certain energy

µ. This is given by eqn. 3.5. From this, we find the chemical potential at zero

energy, which is known as the Fermi energy EF , as

EF = (6N)1/3h̄ω̄, (3.22)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the three trapping frequencies.
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From the Fermi energy, we can define the associated Fermi temperature TF as

TF =
(6N)1/3h̄ω̄

kB
, (3.23)

and the Fermi momentum h̄kF as

h̄kF =
√

2mEF , (3.24)

where m is the mass of the Fermion.

For higher temperatures, we can solve for the chemical potential, or the fugac-

ity ζ, by integrating the Fermi-Dirac distribution weighted by the density of states

(eqn. 3.6) to obtain

N =

∫ ∞
0

ε2

2h̄3ω̄3

ζ

eε/kBT + ζ
= −(kBT )3

h̄3ω̄3
Li3(−ζ), (3.25)

where Li3 is again the polylogarithm function. Again, this is a transcendental equa-

tion that can be solved numerically. However, in contrast to the BEC case, we do

not have to consider the ground state occupation separately, as it is bounded by 1

like every other state.

We show an example of the occupation distribution for different temperatures

in Figure 4. Here, we have used the same parameter values as for the BEC case:

N = 106 and ωx = ωy = ωz = 2π × 50 Hz. The Fermi temperature for these

parameters is TF = 436 nK. For illustrative purposes, we plot n(ε), unweighted by

the density of states g(ε). At zero temperature (red line in the figure), only states

below the Fermi energy are occupied. At higher temperatures, the distribution is

smoothed out (green and orange lines) until at the Fermi temperature there is almost

no significance to the Fermi energy.

In contrast with Bose-Einstein condensation, the transition to a Degenerate
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Figure 4: Occupation number as a function of energy for a Fermi gas of N = 106

atoms in a 3-D harmonic oscillator with frequencies ωx = ωy = ωz = 2π × 50 Hz.
The Fermi temperature for these parameters is TF = 436 nK.

Fermi Gas (DFG) is not a phase transition, and there is no absolute measure of

the onset of degeneracy. Instead, a Fermi gas can be considered degenerate when

the occupation function n(ε) differs significantly from that of a thermal gas. This

occurs when the temperature is of order 0.2TF .

3.2.2 Interactions and Feshbach resonances

Although the magnitude of the contact interaction U0 for DFGs is not in-

trinsically different from that of BECs, there are two key differences. First, the

Pauli exclusion principle forbids s-wave interactions between atoms of the same

spin. Higher partial wave interactions are ’frozen out’ at low temperatures, when

the impact parameter of the collision becomes larger than the effective cross section

of interactions (see [79], sec. 2.1.2). Therefore, in order to observe interactions, and

indeed to cool the gas to degeneracy, another species needs to be present so that

intraspecies s-wave interactions can occur. This can be a different atomic species

or a different spin state of the same atom.
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Second, the densities of standard DFGs (≈ 1012 atoms/cm3) are much lower

than that of BECs (≈ 1014 atoms/cm3). Since the likelyhood of two-body collisions

is proportional to the atomic density ρ2, this leads to a much smaller effect of

interactions in DFGs.

A widely used technique for enhancing interaction effects in DFGs (and to a

more limited extent, BECs) is Feshbach resonances [80–84]. A Feshbach resonance

occurs between two species (either atomic species or spin species of the same atom)

when the open channel, i.e. the two particles independently in their external poten-

tial, energetically approaches a closed channel, i.e. a bound molecular state of the

two species, shown schematically in Figure 5a.

Generally, the atoms in an open channel are energetically sensitive to a back-

ground magnetic field ~B via the hyperfine interaction HB = −~µ · ~B, where µ is

the magnetic dipole moment. Tuning the magnetic field should therefore tune the

energy of the open channel with respect to the closed channel. The molecular bound

state may also have an overall magnetic moment, but it is generally not identical to

that of the two atoms in the open channel, and therefore varies differently with the

background field. Figure 5b shows an example where the bound state has zero mag-

netic moment. Here, the energy of both the closed and open channel as a function

of background magnetic field ~B is plotted in the vicinity of a Feshbach resonance.

The resonance occurs at a field magnitude B0 where the energies of the two channels

coincide.

Assuming there is at least infinitesmal coupling between the closed and open

channels, as the energies of the two channels approach each other the perturbative

correction term to the energy grows and the interaction between the atoms is af-

fected. This is most easily seen in the s-wave case through changes in the scattering

length a. In the case where there are no inelastic two-body channels, such as for

the 40K resonance discussed in this thesis, the interatomic scattering length as a
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Figure 5: Schematic of a Feshbach resonance. (a) Pictoral representation of energy
as a function of interatomic distance for an open channel (red) and closed channel
(blue). (b) Energy as a function of background magnetic field B for the closed (blue)
and open (red) channels. The energies coincide at the Feshbach resonance point B0.

function of background field is given by [40]

a(B) = abg

(
1− ∆

B −B0

)
, (3.26)

where abg is the background scattering length, ∆ is the width of the resonance, and

B0 is the field value at which the resonance occurs. The scattering length diverges

at the resonance.

The tunability of interactions provided by Feshbach resonances has allowed

for creation of molecular Bose-Einstein condensates from Fermi gases [42, 43, 45]

as well as observation of the phase transition from the Bardeen-Cooper-Schrieffer

(BCS) superconduting regime to the BEC regime at sufficiently low temperatures

[44,46,85,86].

3.3 RbK apparatus

The rubidium-potassium (RbK) appartus at NIST Gaithersburg has been pre-

viously detailed in [73, 87, 88]. In this thesis, we will give a brief overview of the
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apparatus and how it is used to produce BECs of 87Rb and DFGs of 40K, and

only give detailed documentation for those parts of the apparatus that differ from

previous works.

A photograph of the main experiment is shown in Figure 6. This is mounted

on an optical table, with the science chamber elevated above the surface of the

table. The atoms start at the ovens (off to the right, not in the photograph) and

travel down the Zeeman slower until they are trapped in the science chamber. The

optical dipole trap laser, as well as the 1-D optical lattice laser, are located on the

optical table and coupled into optical fibers, which are output on the main floor of

breadboard before being sent towards the atoms. All other lasers are located on

other optical table and brought over to the experiment table via optical fibers.

3.3.1 Laser beams

Figure 7 details the beam paths of the light going through the atoms. Figure

7a shows a side view of the apparatus. The up and down going MOT cooling beams

are shown in red, reaching the atoms when the flipper mirrors Mtop and Mbottom are

flipped in. The down going probe beam, used for imaging along the x− y axis both

in situ and in time-of-flight, is shown in solid blue. The probe beam is split via a

polarizing beam splitter cube to allow for both in situ and time-of-flight imaging of

the same cloud, shown in the inset in fig. 7b and described in greater detail in sec.

3.3.4. The dashed blue line represents the upward going probe beam introduced for

alignment purposes, described in greater detail in sec. 3.3.4. The kinematic base

mirror (green in the figure) is removable, and only inserted when the alignment

beam is in use.

Figure 7b show’s a bird’s eye view of the apparatus, with optics on the main

floor breadboard. The slower cooling (solid dark blue) and slower repump (dashed

dark blue) are coming in from the left to slow the atoms as they are moving through
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Figure 6: Photograph of RbK apparatus at NIST Gaithersburg. The main science
chamber is at the center, hidden behind optics and coils. The Zeeman slower con-
nects the atomic ovens (not shown) to the chamber. There are several levels of
breadboards on which optics are mounted, labelled here as basement (surface of
optical table), main floor, balcony and attic.
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the Zeeman slower. The remaining four MOT cooling beams, coming from four

opposing directions, are shown in red. They reach the atoms when their flipper

mirrrors, M1 − 4, are flipped in. All six flipper mirrors are computer controlled

by the same digital channel, so they can be flipped in and out together. Only the

beams going in through mirrorsM1 andM2 are accompanied by MOT repump light,

dashed red lines. The repump light for 87Rb (both MOT and slower) comes from a

Toptica DL-100 laser. The cooling light (MOT, slower) as well as imaging beams,

come from a Toptica TA-100 tapered amplifier system. Both lasers are frequency

referenced to a master laser, a toptica DL-pro, which is frequency stabilized to a

87Rb atomic transition via saturated absorption spectroscopy (see section 3.3.4).

The optical dipole trap beams (solid green) come from the same 1064 nm laser

(IPG YDL-30-LP), and are split via an acousto-optic modulator into two orders,

which enter from opposite directions and intersect each other at approximately a

90 degree angle, providing confinement along all three axes. There is a 1-D optical

lattice beam (dashed green), also 1064 nm (IPG YAR-10K-1064-LP-SF, seeded by

a pick off from an NP Photonics seed laser), sent in past the M2 mirror and retrore-

flected on the opposite end of the chamber to form a standing wave pattern. This

was also used for experiments in Chapters 6 and 7. There is also another imaging

beam, imaging the atoms along the x-z plane, going to a Flea3 camera.

There are three Raman beams (solid magenta): Raman A, entering past the

flipped-out M2 mirror, Raman B, at 90 degrees to Raman A entering past the M1

mirror, and Raman C, counter-propagating with Raman A and entering past the

M4 mirror. The Raman beams are derived from a tunable Coherent MBR-110

Ti:Sapphire laser seeded by a Coherent Verdi V-10 laser. For experiments described

in Chapters 6 and 7, we used the Raman A and C beams.

When 40K atoms are in use, the slower cooling, slower repump, MOT cooling,

MOT repump and imaging beams are all a combination of frequencies for both 87Rb
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Figure 8: Schematic of magnetic coils on the RbK apparatus. The black wire
frame represents the main experiment chamber, with the Zeeman slower off to the
right. The Zeeman slower and reverse coils are wound around the Zeeman slower
in varying spatial frequency (magenta). The quad (orange), gradient cancellation
dBz/dz (bright green) and bias Z (brown) are all pairs of identical coils on the top
and bottom of the apparatus. Bias X-Y coils (red) are a pair of identical coils around
the axes of the M1 and M3 mirrors, and the bias X+Y (dark green) are a pair of
identical coils around the axes of the M2 and M4 mirrors. The rf coils (blue) are
a pair of circular coils on top of the experimental chamber, spaced enough to allow
the top MOT beam through. The gradient cancellation coils dBxy/dz (cyan) are
four square coils on top and bottom of the experiment along the X+Y axis.

and 40K, fiber coupled before they were sent to the main experiment table. Both

the 40K cooling and repump lasers are Toptica TA-pro systems, with the repump

laser frequency stabilized to the 40K atomic transition. In addition, a green plug

beam (solid dark green in 7b) is used (see section 3.3.5), derived from a Coherent

Verdi V-5 laser. For 40K experiments detailed in Chapter 5, we used a near resonant

retroreflected optical lattice beam, shown in dashed dark magenta entering past the

M4 flipper mirror, coming out past the M2 mirror before getting retro-reflected.

3.3.2 Magnetic coils

Figure 8 is a schematic depiction of all the coils used to produce magnetic fields

on the RbK apparatus. The quad coils (orange in the figure) are a large pair of coils

used to produce a quadrupole field for the MOT. The top and bottom coils are

72



connected through four IGBT switches, forming an h-bridge (see Figure 4.9 in [88]).

This allows switching between two configurations: anti-Helmholtz and Helmholtz.

In anti-Helmholtz configuration, the top and bottom coils conduct current in op-

posite directions, producing a quadrupole field gradient at the center. This is the

configuration used for the MOT, rf evaporation, and producing a Stern-Gerlach gra-

dient for spin resolved imaging. In Helmholtz configuration, the two coils conduct

current in the same direction, producing a strong bias field along the ez direction.

This was used to get close to the Feschbach resonance in the experiment detailed in

Chapter 5.

There are three pairs of bias coils, used to cancel constant background fields or

provide field offsets along the three axes. All three are in Helmholtz configuration.

The bias Z coils (brown) are on top and bottom of the experiment and provide a

constant Bz field at the center. The bias X+Y coils (dark green) are vertical on

two opposite sides of the apparatus along the ex+ey directions, and the bias X-Y

(red) are on the other two opposing sides along the ex-ey directions. There are also

two sets of gradient cancellation coils available, although they are not subject to

feedback loops or computer control. The first is another pair of coils on top and

bottom of the apparatus (bright green), connected in anti-Helmholtz configuration

to produce a small gradient dBz/dz. The second is four square coils mounted above

and below each bias X+Y coil (cyan). Both vertically stacked pairs of coils are

wound in Helmholtz configuration, and the two pairs are in series, providing a small

gradient dBxy/dz at the atoms.

3.3.3 Procedure for making a BEC

We begin with the atoms heated in the ovens, sent through a thin nozzle

allowing only those atoms with a velocity towards the science chamber to enter.

They are cooled via a Zeeman slower and captured in a Magneto-Optical trap (MOT)
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in the science chamber. During this step, the Zeeman slower is on, with both the

coils and the slower cooling and repump lights on. These beams (dark blue in Figure

7b) are −148.5 MHz red detuned from the |F = 2〉 to |F ′ = 3〉 transition for cooling

and −8.2 MHz red detuned from the |F = 1〉 to |F ′ = 1〉 transition for cooling (for

this, the cooling TA is locked to a 133 MHz beat note offset from the master laser).

At the same time, the flipper mirrors M1 − 4,Mbottom,Mtop are flipped in and the

MOT cooling and repump beams (red in Figure 7) are on. The quad coils are on in

anti-Helmholtz configuration with 25 A of current running through them, producing

a field gradient of dBz

dz
≈ 13 Gauss/cm. This step can be set to take anywhere from

≈ 0.7 s to ≈ 5 s depending on how many atoms are needed.

Next is the optical molasses step, during which sub-Doppler cooling of the

atoms occurs. For this step, the Zeeman coils and slower lights are turned off.

The quad coil current is also switched off, leaving just the MOT cooling light and

only leakage MOT repump light. The MOT cooling light is set to 20.6 MHz below

the the |F = 2〉 to |F ′ = 3〉 transition (120 MHz beat-note command). It is then

linearly ramped in 19 ms down to a red detuning of 90.2 MHz (50 MHz beat-note

command). Since the repump light is all but off in this step, the atoms are also

depumped into the F = 1 manifold. Then, the atoms are optically pumped into

the |F = 1,mF = −1〉 state to make them trappable by the quadrupole field. This

is done by turning on the slower repump beam (dashed dark blue in fig. 7b) 1 ms.

Then, the XZ imaging beam (blue in fig. 7b) is briefly turned on to get rid of any

remaining F = 2 atoms.

Next, we compress the atoms and perform forced rf evaporation. To compress,

the quad coils are first turned on to 130 A. After holding for 20 ms, we sweep the

current linearly to 250 A in 200 ms. The forced rf evaporation is then performed by

turning on the rf coupling field and sweeping the frequency from 20 MHz to 4 MHz

in 4 s to couple the highest energy atoms from |F = 1,mF = −1〉 to |F = 1,mF = 0〉
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and allow them to escape the trap. The slow ramp is designed to allow the system

to rethermalize through collisions as the hottest atoms are ejected. During rf evap-

oration, the crossed optical dipole trap (ODT) is on at an initial command power of

2.0 V and initial split (command to AOM controlling the power split between the

two crossing beams, shown in fig. 7b) of 0.01 V. This allows any atoms that are

cold enough to see the optical trap to be captured by it.

Then, the atoms are decompressed and loaded into the ODT. The quad current

is ramped down to 60 A exponentially with a time constant of τ = 1.5 s in 3 s. This

is the quad current at which the atoms are only barely suspended against gravity by

the quadrupole trap. At the same time, the bias Z current is ramped down from 10

A to 8 A, lowering the center of the quadrupole trap to the ODT. Then, the atoms

are further evaporated in the ODT. This is done over the course of 5 s, ramping

down the depth of the ODT and allowing the hottest atoms to escape. During this

step, the ODT power is ramped exponentially from the initial command of 2.0 V

to a final command of 0.4 V, while the split command is ramped up linearly from

0.01 V to 0.65 V, effectively turning on the crossing −1st order beam. It is during

this evaporation step that the atoms are cooled below the critical temperature and

Bose condense.

Finally, the quad current is ramped exponentially to 0 A in 5 s, leaving the

atoms optically trapped. Then any desired experiment can be performed on the

BEC. For daily checks of the BEC, no experiments are performed and the atoms

are released from the trap and allowed to expand in time-of-flight for 16.2 ms before

being absorption imaged in the XY plane by the PIXIS imaging camera, pictured

in fig. 7b.
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Figure 9: New master board layout.

3.3.4 Changes to apparatus for Rubidium

In this section, we describe a few of the changes that were made to the appa-

ratus since the writing of Lauren Aycock’s thesis [88]. This is not an exhaustive list,

but rather the most notable changes to the main setup affecting BEC production

or adding capabilities to the apparatus.

3.3.4.1 Master laser setup

In 2014, the master laser board was replaced by a new version, with a new laser

that was not dying. The laser was a Toptica DL-Pro, and it output approximately

80 mW, allowing for an extra beam arm that was used to imprint a phase shift on

half the cloud to produce a soliton in the soliton project (see Appendix A) [89].

The layout of the new master laser board is shown in Figure 9. The board

contains saturated absorption spectroscopy to lock the laser frequency relative to

the atomic resonance, an output port to send to the cooling and repump lasers for
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beat note locking and monitoring purposes, and an ouput port (partially dismantled

in the figure) for any use if necessary. There are two mirrors directly in at the laser

output, for easy re-alignment of the whole board if a diode is changed or other

internal laser adjustments are made.

After hitting the two mirrors, the beam is used for saturated absorption spec-

troscopy, as described in section 8.3 of [90]. It is first split into two branches by a

polarizing beam splitter cube (PBS). The power split between the branches can be

adjusted by a half wavpelate (HWP) preceding the PBS. One branch is used as the

probe beam in saturated absorption (red in the figure). This branch goes through

the Rb vapor cell and is then sent to a photodetector. The photodetector reading

is sent to a scope for monitoring and to a lock-in amplifier, used to derive the er-

ror signal for frequency locking. The rest of the beam (white) then hits another

PBS cube (again preceded by a HWP to control the power split), splitting off the

pump beam (green) for saturated absorption spectroscopy. This beam is sent to an

acousto-optic modulator (AOM). This AOM’s frequency is modulated by the lock-in

amplifier, with modulation frequency of 100.0 kHz, amplitude of 0.356 V and phase

shift (between the signal and photodetector response) of −115.44 degrees. The 0th

order out of the AOM is blocked by a razor blade. The 1st order is retro-reflected

in a cat’s eye configuration [91]. Note that after retro-reflection, the second pass

through the AOM also produces a 0th and 1st order beam. This 0th order beam

is not blocked, but continues along the 1st order (pump beam) path at a slightly

different angle - care must be taken to avoid aligning this order to counter-propagate

with the probe. The double-passed beam (1st order in both directions, frequency

shifted up twice) is then used as the pump and sent through the Rb vapor cell in

the opposite direction of the probe beam.

The rest of the laser beam (white) then goes through an optical isolator, to

avoid any subsequent reflections off of fiber tips or anything else from disturbing the
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saturated absorption frequency lock. Then, the beam hits another HWP followed

by a PBS, splitting off the former soliton beam (yellow). In the figure, the soliton

beam launch has been partially dismantled, but can be revived at any moment if

needed. The beam was double-passed through an AOM in a cat’s eye configuration

before being sent into a fiber launch. The rest of the laser power (white) is sent into

a fiber that is connected to a fiber splitter box, providing light for beat note locking

of the 87Rb repump and cooling lasers as well as for monitoring the master laser on

a wavemeter and Faby-Perot cavity.

3.3.4.2 Alignment imaging path

In 2016, there was a plan to carry out a project to create a 1D magnetic

lattice whose topological character flips in the middle of the lattice, predicted to

support localized states at the boundary. For this, two Raman beams needed to

be overlapping, with one having a sharp phase change centered on the atoms. This

required precise control of the beam phase as well as precise alignment of the beam

center to the atoms. For optimal resolution, the Raman beams were to be sent

upwards through the XY imaging system. To aid in alignment, it was decided that

an additional imaging path that could detect these Raman beams directly be built.

This alignment imaging path was implemented by Dr. Hsin-I Lu and is outlined in

this section. All figures in this section were made by Hsin-I Lu.

The bottom part of the setup, with optics on the basement level of the ex-

periment optical table, is diagrammed in Figure 10. One of the Raman beams,

here called RamanC, first hit a spatial light modulator to imprint a phase jump.

RamanC is then combined with a second beam, here called RamanD, on a PBS.

Both overlapped beams are sent backwards through the XY imaging system and up

towards the atoms. The dichroic filter allowed the Raman beams (λ ≈ 790 nm) to

be reflected while the imaging light (λ ≈ 780.24 nm) passed through to the imaging
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Figure 10: Schematic of the bottom half of the alignment imaging system, as well
as the Raman beam set-up.

cameras. The beam for alignment imaging is sent up to the atoms backwards along

the XY imaging beam path. It entered the path via a mirror on a kinematic mount,

which could be removed to allow imaging through the usual camera focused in situ

in XY (see Figure 7).

To set up an alignment imaging system going upwards through the chamber,

it was necessary to insert a new imaging lens above the chamber, as close to the

atoms as possible to maximize the numerical aperture. A schematic of this lens is

shown in Figure 11, it is a 25 mm diameter f = 50 mm aspheric lens, a Thorlabs

AL2550. This lens was placed above the printed circuit board (PCB) that contains

the top bias Z coil and rf coils. It was held in a custom made mount.

The top part of the imaging system is diagrammed in Figure 12. Here, the

alignment probe beam is light blue. From the atoms, the alignment probe beam hits
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Figure 11: Schematic of the new imaging lens placed on the bucket window on top
of the experimental chamber.

the new imaging lens (labelled L1). Then, if the top MOT mirror is flipped out, it

hits another additional flipper mirror (here M2) before reaching a second lens and

hitting an additional Flea3 camera, on the ’balcony’ level of the experiment. Since

the imaging lens on top of the chamber cannot be taken in and out, it was necessary

to correct the down-going probe beam and down-going MOT beam, ensuring they

retain their size at the atoms. For the down-going probe beam, this was done by

installing a telescope to expand the beam by a factor of 4 (L6 and L5 in the figure)

and then add a lens (L4 in the figure) that forms a telescope with the imaing lens

to reduce the beam back down by a factor of 4. The MOT beam was corrected by

switching the focusing lens directly after the MOT fiber to an f = 100 mm lens (L7),

effectively expanding the beam by a factor of ≈ 2/3, and then adding an f = 75

mm lens (L2) to form a telescope with the imaging lens, reducing the beam size by

a factor of 2/3. The adjusted beams were aligned and the experiment functioned

properly. The alignment imaging system was also aligned with great effort.
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Figure 12: Schematic of the top half of the alignment imaging system, including
correction optics for the MOT beam and probe beams to undo the effects of the
new imaging lens.
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3.3.4.3 FPGA quad servo

In 2014, the servo board that was used to stabilize the current in the quad coils

had failed, and rather than replacing it with an identical one a new FPGA-based

servo board design by Ryan Price was implemented. This design is described in

detail in Appendix B of [92]. Here, we include a brief description of the design and

implementation details for the quad servo at RbK.

The basic operation of the board is as follows. There are four SMA con-

nections for input signals. These signals go to a 16 bit, 8 channel analog to digi-

tal converter ADAS3022BCPZ, then through a digital isolator Si8662BC-B-IS1, to

the FPGA board. The outputs of the FPGA are sent through a similar digital

isolator, Si8660BC-B-IS1 and into a 16 bit, 4 channel digital to analog converter

AD5686R. Then, each of the four outputs is sent through a programmable gain

amplifier AD8250ARMZ. The gain setting signal is derived from the FPGA board ,

by way of a serial shift register CD74HC4094. There are four SMA connections for

outputs of each of the four amplifiers.

All of these devices are powered from a +/-18 supply voltage by way of three

voltage regulators, LM2940C KTT 3 for 5V regulation, LM2990 KTT 3 for -15V

regulation, and LM2940CSX KTT 3 for +15V regulation. The FPGA communica-

tion is set up through USB. There is a USB input port that connects to a USB chip

FT232HL. The USB chip requires an EEPROM, in this case 93LC56BT is used.

Clock timing for both the FPGA and the USB chip is provided by CTX292-LVCT.

There is also a buffer SN2564BCT25244 available for amplifying digital FPGA out-

puts. The digital side of the board is also powered from a separate 5V supply by

way of a 3.3V regulator LM1085 KTT 3.

For quad coil current stabilization, the board receives a computer command,

in volts, through one of it’s input ports, and a Hall probe reading, in amps, through
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the other one. The Hall probe current sent to the servo is dropped across a stack of

two 51 Ohm resistors (located inside the servo box) for a total measured resistance

of 25 Ohms. The difference between the two inputs, in volts, is interpreted as the

error signal by the FPGA board. The control output of the board is then sent to

the gate input of a MOSFET bank. The power supply powering the quad coils is

connected to this MOSFET bank and then to the coils in series. Controlling the

gate voltage of the MOSFETs controls the resistance the power supply sees and thus

the current it outputs (in voltage limited mode).

The optimal PID parameters, set via software and programed in the FPGA

board, have been found at a gain factor of −5 and integrator bandwidth of 400 Hz.

The resulting turn-on curve is shown in pink in Figure 13 a. For this curve, the

computer command was hopped to 100 A and the resulting current as detected by

the Hall probe was observed. The turn-on curve using the preceding servo board is

shown in gray.

The board is also equipped with a digital TTL input (on the back of the

board). When this digital input is high, the output control voltage is imediately

railed to its lower bound. To be compatible with the MOSFETs used, the upper and

lower bounds of the control output are set to 5 and 3 V respectively. The turn-off

curve when this TTL switch is activated is shown in Figure 13 b. The timescale is

likely limited by eddie currents in the chamber.

We calibrated the resulting current (as measured by the Hall probe) for differ-

ent command voltages. This is shown in Figure 14. Both the schematic for the servo

board and the Box control program to talk to the FPGA are in the shared google

drive under ’RbK/Lab Notebook/Electonics/FPGA Quad Servo (From Ryan)’. When

connected, the box control program detects ’RbK Quad Servo’ in its device list. In

the past, several cycles of plugging and unplugging as well as turning on and off

have been necessary for the connection to be successfully made.
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Figure 13: Turn on and off curves of the quad coils. (a) Turn-on, when computer
command is jumped from 0 to 100 A . The FPGA-based servo response is in pink.
The previous hardwired servo is in gray. The other curves are extraneous. (b).
Turn-off with the FPGA-based servo when the TTL switch is engaged.
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Figure 14: Output current as a function of computer command voltage for the
FPGA-based servo implementation.
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Figure 15: Schematic of beam shaping optics in the path of the 0th order ODT
beam, after the split AOM. The new lens, on a removable mount, is cylindrical,
shaping the beam along the horizontal axis only.

3.3.4.4 ODT beam shaping

In 2015, two projects were being carried out on the apparatus at the same time:

the soliton project (see Appendix A) [89] and the synthetic dimensions project de-

tailed in Chapter 7. The soliton project used an elongated BEC, requiring the dipole

trap to be highly elongated along one direction, here ex + ey. For this, only the 0th

order of the ODT was used and it was made very tight both along the horizontal and

vertical directions: with 42 and 55 µm waists, respectively. The synthetic dimen-

sions projects suffered from momentum changing collisions, and therefore needed

the cloud to be as dilute as possible. For this, the 0th order ODT beam still needed

to be tight in the vertical direction to suspend against gravity, but needed to be as

wide as possible (while still retaining a detectable atom number) in the horizontal.

Therefore, an extra cylindrical lens on a removable, rotatable mount was added in

the beam path to switch between the two configurations.

The location of this new lens is detailed in Figure 15. Without this lens,

the beam was sent through a telescope (the f = −10 and f = 15 cm lenses before

reaching an f = 25 cm focusing lens, placed 25 cm away the center of the chamber to

focus the beam at the atoms. The beam waist as a function of propagation distance
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along this beam path is shown in blue in Figure 16 a. This graph was made by Dr.

Ian Spielman from a python calculation of Gaussian beam optics. According to the

calculation, the beam is focused down to a 45 µm waist at the atoms located at a

displacement of 1400 mm.

The additional lens used was an f = 40 cm cylindrical lens, rotated in its

rotating mount to focus the beam slightly in the horizontal direction. The effect

of this lens on the horizontal beam waist along its path was calculated and plotted

(again by Ian using his code) in Figure 16 b. This plot was made for a f = 75 cm

lens instead of f = 40 cm, but the qualitative effect is the same. As seen in the

figure, the waist of the beam is not significantly impacted by the addition of the

lens, but the focus is shifted away from the atoms, resulting in a larger waist at

the atoms. The horizontal beam waist at the atoms with the f = 40 cm lens as

measured by a beam profiler camera was 115 µm. This was the configuration used

in the experiments described in Chapter 7.

3.3.5 Procedure for making a DFG

To make a degenerate Fermi gas of 40K, we followed a similar cooling procedure

as for making a BEC, with some key differences. First, as mentioned in sec. 3.2.2,

due to the Pauli exclusion principle, spin polarized 40K atoms cannot undergo s-wave

collisions, and therefore below a certain temperature have no method to thermalize

on their own and cannot be evaporatively cooled. To overcome this problem, we

cooled a mixture of 87Rb and 40K, effectively using 87Rb as a collisional bath to allow

the Fermions to thermalize. Second, 40K is slightly below half the mass of 87Rb.

This leads to a larger magnitude of transverse velocity for 40K atoms in the Zeeman

slower, leading to a larger fraction of atoms missing the capture region of the MOT.

To mitigate this issue, we utilized transverse cooling of 40K right before the Zeeman

slower. This consisted of two pairs of counter-propagating beams along the ez+ey
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Figure 16: Beam waist as a function of propagation distance as calculated by Ian
Spielman’s code. Graphs also made by Ian Spielman. The atoms are at displacement
= 140 cm. (a) Without additional lens. Blue line represents horizontal beam waist.
(b) With an additional f = 75 cm lens 12 cm in before the next optic.
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and ez-ey directions, performing Doppler cooling in the directions perpendicular to

propagation (not shown in fig. 7b). The lower mass of 40K, as well as the larger

number of available spin states, also leads to a larger number of Majorana losses near

the center of the MOT: spin flips that take the atoms out of the trappable states

because they are moving too fast to adiabatically follow the changing magnetic field

direction [93–95]. To mitigate this issue, for cooling 40K the center of the quadrupole

trap was plugged by a tightly focused green (repulsive) laser beam (dark green in

fig. 7b).

First, 40K atoms starting at the oven were cooled via a Zeeman slower and

transverse cooling and captured in a MOT for 7 s. Then, both 40K and 87Rb atoms

were slowed and MOT loaded for 1.5 s. The subsequent optical molasses step was

only 2 ms long, with the 87Rb MOT cooling light ramped linearly from 20.6 MHz

below the the |F = 2,mF = 2〉 to |F = 3,mF = 3〉 transition (120 MHz beat-note

command) to 40.6 MHz below the resonance (100 MHz beat-note command). In this

time, the 40K cooling light was turned down in intensity but the detuning remained

unaltered.

Next, 87Rb was optically pumped into the |F = 2,mF = 2〉 state using the

slower cooling beam, while 40K was optically pumped into the |F = 9/2,mF = 9/2〉

state using a dedicated optical pumping beam in 250µs. These are magnetically

trappable states, and we subsequently turned on the quad coil current to 130 A

to capture the atoms in the magnetic trap, along with the green plug beam at the

center to prevent Majorana losses. Both species were compressed by a linear ramp

of the quad current up to 160 A in 0.5 s. Then, forced rf evaporation was performed

for 10 s, sweeping the rf frequency linearly from 18 MHz down to 2 MHz.

Then, the atoms were decompressed and loaded into the ODT, similarly to

the BEC procedure. The ODT was turned on to an initial power of 2 V and an

initial split command of 0.01 V. The quad current was ramped down to 25.5 A
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exponentially with a time constant of τ = 1.5 s in 3 s. The evaporation in the ODT

was split into two steps. During the first 3 s step, the split was ramped linearly to its

final command power of 0.65 V, putting more power into the (less tightly focused)

crossing beam. The green plug beam was ramped off during this step. During the

second, 4 s step, the overall power of the ODT was exponentially ramped down to

1.2 V, while the quad coil current was ramped exponentially to 0 A.

We then used adiabatic rapid passage (ARP, see sec. 2.2.3) to transfer the

87Rb atoms from |F = 2,mF = 2〉 to |F = 1,mF = +1〉 using a microwave coupling

field and a 50 ms ramp in bias Z coil current. Then, we pulsed on the XZ imaging

beam to eject any remaining F = 1 atoms. Then we performed one last evaporation

step in the ODT, ramping the final power down to 0.7 V. The 87Rb atoms were

no longer suspended against gravity and fell out of the trap. We then were free to

perform experiments with the degenerate 40K cloud.

3.3.6 Current status of Potassium apparatus

At the time of writing, the 40K part of the apparatus as described is no longer

functional. The number of 40K atoms collected in the MOT started decaying signif-

icantly in January 2014, and by March was almost completely gone and could not

be resurrected. The specific failure point of the setup was not clear. However, other

groups have found that atomic sources are much more stable, and a higher fraction

of the (expensive) 40K sources can be utilized when the atoms were initially cooled

with a 2-D MOT rather than with a Zeeman slower [96–98]. Therefore, rather than

continuing to attempt to revive the existing set-up, the decision was made to build

a 2-D MOT for both 40K and 87Rb.

The design of our 2D MOT is closely based on the design in Thomas Uehlinger’s

diplome thesis [97]. The design was developed by Dalia Ornelas, and initially im-

plemented by Marcell Gall before it was taken over by the rest of the RbK team.
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The schemtaic of the planned vacuum system (with attached optics) is pictured in

Figure 17. On the left side of the schematic, there are optics directing the pushing

beam into a miniconflat viewport. The viewport is part of a cross, with the 40K and

87Rb ovens attached to the two ends of the cross, with gate valves allowing one to

close off one or both sources from the rest of the vacuum system. From there, the

cross attaches to the main 2D MOT cell via a mini-conflat flange.

The cell is a custom machined stainless steel frame with rectangular anti-

reflection (AR) coated windows on four sides and mini-conflat conectors on two

ends, pictured in more detail in Figure 18. Two aluminum mounting crosses attach

two either end of the cell. Four aluminum bars are connected between the crosses,

and the main 2D MOT optics are mounted on those four bars. The opposite end of

the cell (right in fig. 17) sandwiches a differential pumping tube in the mini-conflat

connection and connects to another cross. The top of the cross connects to a small

ion pump. The bottom connects to a rotatable feed-through mechanism with a ’flag’,

a square of metal, attached inside. The rotator rotates the flag in and out of the

atomic beam path, providing a means of losing off the main chamber from the atomic

beam and push beam light. The fourth end of the cross connects to another gate

valve, separating the 2D MOT vacuum system from the main experiment chamber.

The other end of this gave valve connects to a flange that is meant to connect

directly to the main experiment chamber.

A picture of the stainless cell is shown in Figure 18. Attaching the glass

windows to the stainless steel frame in a vacuum tight way proved to be quite

difficult, and this picture was taken during one of the attempts to do so using

epoxy. The clamps around the cell served to keep the windows in place as the epoxy

was curing. In the final design, the seal was made with indium, with gaskets custom

machined to press the windows onto the cell. We roughly followed the indium

sealing method presented in [99], with gaskets above and below the windows. We
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Figure 17: Schematic of the 2D MOT setup. The mini-conflat on the right is to be
attached to the existing experiment chamber, directing the atomic beam into the
3D MOT.
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Figure 18: Picture of 2D MOT cell during an attempt to epoxy AR coated windows
onto the stainless steel frame. The clamps serve to hold the windows in place while
epoxy cures.

also employed pre-squashing, where a metal piece in the shape of the window was

first pressed onto the indium wire to flatten it and minimize the amount of pressure

that needed to be appied to the glass window.

The main 2D MOT optics direct the cooling and repump beams into the cell

from two directions, and retro-reflect them on the other end, producing cooling

along those two directions (hence the name 2D MOT). The optical set-up along one

of those directions is presented schematically in Figure 19. The cell is elongated

along the atomic beam direction, to maximize the time the atoms are cooled while

travelling to the 3D MOT. Because of this, instead of a highly eliptical cooling beam,

four MOT beams are launched in a row, almost overlapping, from each of the two

directions. This is accomplished by splitting one beam into four with four sequential

beam-splitting cubes (BSs).

The 2D MOT cooling and repump light is first periscoped over from a fiber

and lens assembly (designed to shape the beam to be roughly 1 inch in diameter).
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It then goes through a half-wave plate (HWP) before entering the first 70/30 beam

splitter. 30% of the light is sent through a quarter-wave plate (QWP) tuned to

provide circularly polarized light into the cell. On the other side of the cell, the

beam hits another QWP before being retro-reflected back into the cell. Since the

beam hits the QWP on the other side of the cell twice, the circular polarization is

preserved. The remaining 70% of the light goes into the next 70/30 BS, sending

21% of the total beam power into the second arm going into the cell, to be retro-

reflected in the same way. The remaining 49% hits a 50/50 BS, sending 25.5% of the

total beam power into the third retro-reflected arm. The final cube is a polarizing

beam-splitter (PBS), and the HWP before the cubes is tuned to ensure all of the

light is sent into the cell on this last, fourth, arm.

The push beam enters from the oven direction and serves to provide some

velocity to the atoms along the long direction of the cell to ensure they continue

to travel to the 3D MOT, while still providing some cooling along the longitudinal

direction. In order to provide this cooling, the push beam is also retro-reflected,

with the help of a custom machined differential pumping tube (on the right in fig.

19). The differential pumping tube is machined to have a 45◦ angled polished end,

reflecting all of the light except for the central part towards a retro-reflecting mirror

outside the cell. Along the other 2D-MOT cooling direction (up and down in fig.

19), this whole set of optics is replicated, with the exception of the push beam

retro-reflection.

The current 2D-MOT setup is pictured in Figure 20. The vacuum system has

been assembled and successfully pumped down, with a octagonal test chamber in

place of the main experimental chamber. This test chamber is intended to be used

to send probe light through and detect fluorescence to characterize the atomic beam

coming out of the 2D MOT. The optics have been assembled and the quarter-wave

plates lightly epoxied onto the BS cubes and mirrors, although as can be seen in the

94



70/30 BS70/30 BS50/50 BSPBS  HWP

QWPs

MOT
cooling + repump

push 
beam di�erential

pumping tube

QWPs

mirrors

peris
co

pe

mirr
or

to 3D
MOT

Figure 19: Schematic of 2D MOT optics along one direction. the main cooling and
repump beam is split into four parallel arms by four beam splitter cubes. The push
beam enters from the oven direction and is retro-reflected via a custom machined and
polished differential pumping tube. These optics are mounted on crosses attached
to the 2D MOT cell.

picture some have regrettably fallen off. Quadropole coils have been wound around

each of the four windows, onto 3D printed coil winding forms. Bias Z coils have also

been wound to cancel out stray gradients along the atomic beam direction.

The two Toptica TA-pro systems that were used to provide all 40K light in

the past are still operational, and need to be re-purposed to provide both 2D MOT

and 3D MOT cooling and repump light. A new Toptica TA-pro was also purchased,

with the intent to implement gray molasses cooling on the 40K D1 line as described

in [100].
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Figure 20: Picture of current 2D MOT apparatus. The vacuum system is in place,
optics are (mostly) mounted and coils to generate the quadrupole trap and cancel
gradients along the atomic beam direction have been wound.
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Chapter 4: Absorption Imaging with Recoil Induced Detuning

In this Chapter, we describe the simulations we performed in order to interpret

absorption images in a non-standard regime: at long imaging times, where the recoil

induced detuning needed to be taken into account. This simulation was necessary to

interpret data collected for our s-wave scattering experiment, described in Chapter

5. In this Chapter, we first describe the recoil-induced detuning effect and derive

the equations to be solved. Then, we solve these equations perturbatively, and

show that this treatment is insufficient in the regime of interest. We then perform

two versions of numerical simulations: one where the atoms are assumed to remain

stationary relative to each other during imaging, and one where they are free to

move. We show that although the atoms do move significantly during the imaging

time, this does not have a strong effect on the final observed intensity. Finally, we

use our simulated results to calibrate the saturation intensity in our camera units,

and find the parameters for optimal signal-to-noise (SNR) ratio imaging. This work

was previously reported in [101].

4.1 Recoil-induced detuning

After absorbing a number of photons N all traveling in the same direction, an

atom will obtain an average recoil velocity of Nvr. Via the Doppler effect, this will

result in a detuning δ = Nkrvr. This detuning will increase as more photons are

absorbed, and therefore depend on time. Since detuning affects the absorption cross

section, the absorbed intensity will also become time dependent. We can generalize
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Eq. 2.35 to include a time dependence on the detuning term and therefore also the

intensity:

d

dz

I(z, t)

Isat

= −ρ(z)σ0
I(z, t)/Isat

1 + 4δ(z, t)2/Γ2 + I(z, t)/Isat

. (4.1)

The number of photons absorbed per atom will depend on the intensity lost, up

until the current time, at that location. The detuning will therefore be proportional

to the total number of photons lost up until time t at that location, given by the

absorbed intensity divided by the single photon energy h̄ωL, divided by the number

of atoms that participated in the absorption ρ(z) times the detuning krvr:

δ(t, z) =
krvr

h̄ωLρ(z)

∫ t

0

dI(z, τ)

dz
dτ. (4.2)

These equations are interdependent, and cannot be in general solved analytically.

Figure 1a shows the velocity and detuning as a function of position in space for

three different imaging times, calculated numerically. All calculations in this chapter

were done for a cloud of 40K atoms, as that is relevant to our experiment described

in the next chapter. The resonant wavelength is λL = 770.11 nm, the natural

linewidth of the transition is Γ = 6.035 MHz, the resulting saturation intensity and

recoil velocity are Isat = 17.5 W/m2 and vr = 0.01297 m/s.

4.2 Perturbative treatment

We can treat these equations perturbatively in time, assuming the light is

initially on resonance δ(z, 0) = 0. To first order, we can set the detuning in Eq. 4.1

to δ = 0, assume I(z) is time independent, and plug that into Eq. 4.2 to obtain

δ(t, z) =
krvr

h̄ωLρ(z)

∫ t

0

−ρ(z)σ0
I(z)

1 + I(z)/Isat

dτ (4.3)

=
krvrσ0

h̄ωL

I(z)

1 + I/Isat

t. (4.4)
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This can then be recursively plugged into Eq. 4.1 to obtain

d

dz

I(z, t)

Isat

= −ρ(z)σ0
I(z, t)/Isat

1 + 4
(
krvrσ0
h̄ωLΓ

I(z)
1+I/Isat

)2

t2 + I(z, t)/Isat

. (4.5)

Integrating both sides of the above equation, we obtain a perturbative equation to

second order in time [102]:

σ0n = ln(I0/If )+
I0 − If
Isat

+
(krvrt)

2

3

(
Isat

If + Isat

− Isat

I0 + Isat

+ ln

(
If + Isat

I0 + Isat

))
. (4.6)

In Fig. 1b, we examine for what imaging times the above perturbative equation, as

well as the model that completely ignores recoil induced detuning, is valid. We do

this by performing numerical simulations to extract a value for the final intensity If

and using Eq. 2.36 and Eq. 4.6 to extract values σ0n that would be deduced from

experiment. We find that within the recoil time, both analytic expressions start to

differ from the true atomic column density by over 5%, and the perturbative model

of Eq. 4.6 quickly diverges thereafter.

In the following sections, we describe two versions of numerical simulations

that we have performed in order to appropriately extract atomic column densities

from experimental data.

4.3 Stationary atom model

In order to numerically simulate the imaging process, we assumed a Gaussian

distribution of atoms along the propagation direction, ρ(z) = n/
√

2πwe−z
2/2w2

.

The dependence of the result on the choice of cloud width w is discussed in the next

section. We divided the cloud into small spatial bins of atoms along the imaging

direction z. For the initial version of the simulation, the atoms were assumed to stay

within their original bins for the entire duration of the imaging pulse, i.e. the cloud
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Figure 1: (a) Dependence of velocity and detuning on position simulated for 40K at
three different imaging times and a probe intensity I0 = 0.8Isat. (b) Column densities
deduced from optical depths obtained from recoil detuning corrected simulation of
imaging 40K atoms at probe intensity I0 = 0.8Isat. The blue line is the true column
density σ0n = 1.6. The green line is the high probe intensity corrected column
density given by Eq. (2.36). The red line is the column density as expanded to
second order in time, Eq. (4.6).
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shape remained constant. We then used eqns. 4.1-4.2 to numerically propagate the

probe intensity and detuning as a function of both time and space. The algorithm

used is detailed by Alg. 1.

Algorithm 1 Stationary atom model

I[n = 0, t] = I0 {n is the bin index, t is the time index, I is in units of Isat}
δ[n, t = 0] = 0 {light initially resonant, δ in units of Γ/2}
Hf = 0 {Radiant fluence seen by camera after passing through cloud}
for t = 0 to tf do {loop over time steps}
for n = 1 to N do {loop over bins, N is total bin number}
A = σ0ρ[n]dz {dz is the size of spatial step}
B = vrdt/(h̄cρ[n]) {dt is the size of the time step}
I[n, t] = I[n− 1, t]− AI[n− 1, t]/(1 + δ[n, t− 1]2 + I[n− 1, t]) {Eq. (4.1)}
δ[n, t] = δ[n, t− 1] +B (I[n− 1, t]− I[n, t]) {Eq. (4.2)}

end for
Hf = Hf + I[N, t]dt {collecting total fluence seen by the camera}

end for
ODsim1 = − ln (Hf/I0tf )

We call the optical depth obtained in this way ODsim1, to distinguish if from

the simulated optical depth via the method described in the next section.

The validity of this model can be checked by considering limits where the

equations are analytically solvable. For short imaging times, the recoil-induced

detuning should not contribute to the optical depth, and therefore Eq. 2.36 should

become exact. This is seen in Fig. 2a, where the imaging pulse is only 3 µs long

and the simulated optical depth (blue dots) agrees with that given by Eq. 2.36 for

all intensity regimes.

Even at longer imaging times, the problem can be analytically solved for limits

of both high and low intensity compared to the saturation intensity. At intensities

I � Isat, even far detuned atoms will scatter light at their maximum, and we can

assume δ2/Γ2 � I/Isat, reducing back to Eq. 2.36. At extremely low intensities,

atoms will scatter very little light and the detuning δ2/Γ2 � 1, again reducing back

to Eq. 2.36. As seen in Fig. 2 b,c the simulation agrees with the analytic Eq. 2.36

in the limit of both high and low intensities. But, as the imaging time increases,

101



10−2 101 104

I0/Isat

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

O
p

ti
ca

l
D

ep
th

t = 3 µs

10−2 101 104

I0/Isat

t = 25 µs

10−2 101 104

I0/Isat

t = 50 µs

Figure 2: Optical depth as a function of probe intensity as predicted by the simu-
lation (blue symbols) and by Eq. (2.36) (green curves), for three different imaging
times. As expected, the predictions agree in both the high and low intensity limits,
and differ for probe intensities comparable to the saturation intensity and longer
imaging times.

the disagreement due to recoil induced detuning grows.

The simulation allows us to extract both the intensity and the detuning as a

function of both time and position. We can use this information to infer the velocity

and therefore the displacement of the atoms during the imaging pulse, and check

if our assumption that the atoms stay in their original bins during the image pulse

is valid. Figure 3a shows the position, deduced by integrating the recoil-induced

velocity, as a function of time of the first (closest to light source), middle, and last

(furthest from light source) spatial bin for a probe intensity slightly above saturation,

I = 1.2Isat. As seen in the figure, not only do the atoms move beyond their bins,

but also at long imaging times the first atoms (which have absorbed the most light)

overtake the last ones. Therefore, the atomic cloud does not maintain shape during

the imaging pulse, and our initial assumption is invalid.

102



0 20 40 60 80

time [µs]

0

50

100

150

200

250

z
p

os
it

io
n

[µ
m

]

front
middle
back

(a)

0 2 4 6 8 10

I0/Isat

0

2

4

6

8

10

12

v
[m

/s
]

t = 10µs

t = 50µs

t = 100µs

(b)

Figure 3: (a) Position of atoms as a function of imaging time for atoms in the
first (solid green), middle (dashed red), and last (dotted blue) bins of the simulated
density distribution for an initial cloud 50 µm in extent. The probe intensity used in
this calculation was 1.2 Isat, and the column density was σ0n = 1.6. (b) The velocity
of a single composite atom as a function of probe intensity for various imaging times.
Simulation data (dots) and numerical solutions of Eq. (4.7) (lines) are in agreement.
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4.4 Traveling atom model

To model the recoil-induced detuning effect during the imaging pulse taking

into account the potentially significant spatial displacement of the atoms, we per-

formed a second version of our simulation. In this version, we clumped Nca ≈ 1011

atoms per unit transverse area into a single composite atom, and then tracked the

detuning, velocity and position of each composite atom as a function of imaging

time. Tacking individual atoms would be computationally inaccessible for reason-

able cloud sizes. The algorithm used is given by Alg. 2.

Algorithm 2 Travelling atom model

z[n] = z0, δ[n] = 0 {initialize position and detuning for each composite atom,
labeled by index n}
O[i] = n {make a list of composite atom indexes, ordered by position}
I[n = 0, t] = I0 { t is the time index, I is in units of Isat}
Hf = 0 {Radiant fluence seen by camera after passing through cloud}
for t = 0 to tf do {loop over time steps}
for i = 1 to N do {loop over superatoms}
n = O[i] {apply probe intensity to composite atoms in order of appearance}
A = σ0Nsadz {dz is length over which atoms were grouped into single com-
posite atom}
B = vrdt/(h̄cNsa) {dt is the time step}
I[n, t] = I[n− 1, t]− AI[n− 1, t]/(1 + δ[n]2 + I[n− 1, t]) {Eq. (4.1)}
δ[n] += B (I[n− 1, t]− I[n, t]) {Eq. (4.2), detuning in units of Γ/2}
z[n] += dtΓδ/2k {k is the wavenumber, Γδ/2k is the velocity at δ detuning}

end for
O[i]=sort(n, key =z[n]) {sort composite atom indexes by current position}
HfHf + I[N, t]dt {collecting total fluence seen by the camera}

end for
ODsim2 = − ln (Hf/I0tf )

To check the validity of this version of the simulation, we check the velocity

of a composite atom as a function of time in an analytically solvable limit. In this

case, we take the limit of a single composite atom, such that the intensity seen by

the composite atom becomes time independent. This simplifies Eqs. 4.1 and 4.2 to

only carry time dependence in the detuning term, and we can then plug Eq. 4.1
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into Eq. 4.2 and differentiate both sides with respect to time to obtain

dδ(t)

dt
=

Γkrvr

2

I/Isat

1 + 4δ2/Γ2 + I/Isat

. (4.7)

Equation (4.7) can be solved numerically, and is in agreement with our simulation,

as seen in Fig. 3(b).

We then used this version of the simulation to look at the motion of composite

atoms as a function of imaging time in phase space (i.e., velocity and position). Some

examples of this motion can be seen in Fig. 4. As seen in the figure, the atomic

cloud is significantly distorted during the imaging pulse and the atoms perform some

crazy acrobatics.

It remains to check how the atoms’ acrobatics affect the resulting optical depth,

ie the attenuation of the probe beam. To do this, we compare the optical depths

generated by our stationary atom model, ODsim1 , and by our traveling atom model,

ODsim2. The results of this comparison are seen in Fig. 5(a). As seen from the figure,

the optical depths predicted by the two versions of the simulation are negligibly

small -
∣∣ODsim1 −ODsim2

∣∣ /ODsim1 ≤ 0.005. We also checked the effect of having

different initial distributions of atoms in space by varying the initial function ρ(z)

and keeping the total atom number constant. We found the effect of this to be

negligible as well. Therefore, to infer atomic column densities from observed optical

depths, it is sufficient to use the stationary atom model.

4.5 Calibration of saturation intensity

Saturation intensity is an intrinsic property of the atom, so the idea of cali-

brating it may be confusing. However, there are several experimental parameters

that may influence exactly what value of Isat is appropriate to use in eqn. 4.1 and

4.2, such as losses in the imaging system and polarization of the probe beam. In
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Figure 4: Phase space evolution of an atomic cloud exposed to probe light with
intensity Ĩ0 = 1.2. We defined ∆v = v−〈v(t)〉 and ∆z = z−〈z(t)〉, subtracting out
the center of mass position and velocity of the cloud. The column density σ0n is 1.6,
and the initial cloud is a Gaussian with a width of 10 µm in (a) and 1 µm in (b).
The center of mass velocities 〈v〉 are (0, 3.41, 5.26, 6.52, 7.50, 8.32) m/s sequentially,
and are the same for both initial cloud widths. Color represents original position of
the composite atom along ez.
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Figure 5: (a) Top. Optical depth as a function of probe intensity for an imaging
time t = 100 µs. OD(1) and OD(2) are optical depths predicted from a given column
density by Eq. (2.36) and (4.6) respectively. The two versions of simulated optical
depth, ODsim1 (green curve) and ODsim2 (green dots) are plotted and overlapping
each other. Bottom. The fractional difference between two versions of the simulated
OD,

∣∣ODsim1 −ODsim2
∣∣ /ODsim1. (b) The optical depth as a function of probe

intensity for three imaging times: t = 40 µs (blue), t = 75 µs (green), t = 100
µs (red). The dots represent experimental data and the lines represent the best fit
of simulated data. The optimal fit parameters pictured are a σ0n of 1.627(5) and
saturation intensity of 29(7) counts/µs.
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addition, we have no direct experimental access to the total radiant fluence (time in-

tegral of intensity) seen by the camera. Instead, the light hitting the charge-coupled

device (CCD) camera triggers some number of photoelectrons to be registered. The

proportionality between the number of photons hitting the camera and the number

of photoelectrons it triggers is called the quantum efficiency qe of the camera. The

number of these photelectrons, after some electronic gain and noise introduced dur-

ing the readout process, is then read out as a number of ‘counts’ registered on each

pixel. The camera-dependent factors influencing how the number of counts depends

on the number of incoming photons can be convolved with the experimental factors

such as probe polarization and optical loss into a single calibration of the effective

saturation intensity in units of ‘counts’ output by the camera per unit time.

To calibrate this effective Isat in camera counts per unit time, we absorption

imaged our cloud of 40K atoms for a range of probe intensities for three different

values of imaging time: 40 µs, 100 µs, and 200 µs. We select a small region in

the center of the cloud, where we can assume the atomic column density σ0n, and

the initial probe intensity I0 to be roughly constant. We then average the values

of I0 and If over this region and plot the final intensity If as a function of I0. We

then used the optical depth predicted by our simulation ODsim and used that to

simultaneously fit the three curves with Isat and σ0n as fit parameters, as shown

in Fig. 5(b). As can be seen from the figure, this procedure not only allows us to

read off Isat in units of camera counts per µs, but also shows that our simulation

accurately reproduces the differences in OD dependence on imaging time.

4.6 SNR optimization

We consider Poisson distributed photon shot noise, converting into shot noise

on photoelectrons triggered inside the CCD. The standard deviation will then be

proportional to qe

√
Np, where qe is the quantum efficiency of the camera and Np is
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the photon number. This uncertainty can be then propagated via the lookup table

into uncertainty on the measured atomic column density δσ0n. The signal-to-noise

ratio (SNR) can then be expressed as σ0n/δσ0n.

We study the SNR as a function of imaging time and initial probe intensity

for a few different atomic column densities. Some representative data is shown in

Fig. 6. As seen in Fig. 6(a), for a wide range of atomic column densities, extending

the imaging time beyond 40 µs no longer yields significant improvements in SNR.

There is, however, a factor of 1.5 improvement between using an imaging time of 10

µs, where the simple model given by Eq. 2.36 is appropriate, and 40 µs. Therefore,

there are significant gains that can be made by going to longer imaging times and

making use of the simulated lookup table.

This simulation allowed us to interpret experimental data. For a given imaging

time, we created a look-up table of predicted optical depth as a function of probe

intensity and atomic column density. We then found the observed optical depth on

this table, with the given probe intensity, and inferred the atomic density. The un-

certainty in the measured intensities can be propagated through this procedure, and

we established optimal imaging parameters to maximize the SNR of this detection

scheme. Figure 6(b) illustrates that the optimal initial probe intensity is different

for different atom numbers. For low atom numbers, σ0n ≈ 0.1, a probe intensity of

I0 ≈ 0.6Isat is best.
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Figure 6: SNR for three different column densities after correcting for recoil induced
detuning. (a) SNR as a function of imaging time for a probe intensity of I0 = 5.0Isat

and (b) SNR as a function of probe intensity for an imaging time of 50 µs.
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Chapter 5: Imaging of Scattering Near a Feshbach Resonance

In this chapter, we describe our experiment directly imaging s-wave scattering

halos of 40K atoms in the vicinity of a Fesbach resonance between the |F = 9/2,mF = −9/2〉

and |F = 9/2,mF = −7/2〉 internal states. We used this data to extract the location

of the magnetic fields resonance of 20.206(15) mT and a width of 1.0(5) mT, similar

to the accepted values of 20.210(7) mT and 0.78(6) mT [44]. The data presented in

this chapter was previously reported in [101].

We first introduced Feshbach resonances in section 3.2.2. Although Feshbach

resonances are extremely useful for studying and manipulating Fermi gases, their

resonant magnetic field values are difficult to predict analytically and are commonly

computed via numerical models based on experimental input parameters [103–105]

or determined experimentally [41, 106]. There have been a variety of experimental

techniques used to characterize Feshbach resonances, including measuring atom loss

due to three-body inelastic scattering, measurement of re-thermalization timescales,

and anisotropic expansion of the cloud upon release from a confining potential, all

of which infer the elastic scattering cross section from collective behavior of the

cloud [80,107,108].

Here, we present an alternative technique, where we directly image the en-

hancement in elastic scattering due to the resonance. We collided pairs of ultra-cold

Fermi gases and directly imaged the resulting s-wave scattered atoms as a function

of magnetic field strength. This allowed us to observe the enhancement in scatter-

ing without relying on proxy effects. We measured the fraction of atoms scattered
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during the collision, and from this fraction deduced the resonant magnetic field and

the width of the resonance.

In our dilute DFGs, even with the resonant enhancement of the scattering cross

section, only a small fraction of the atoms scattered as the clouds passed through

each other. This made direct detection of scattered atoms difficult due to detection

uncertainty that disproportionately affected regions of low atomic density. To opti-

mize the signal-to-noise ratio (SNR) for low atom numbers, we absorption imaged

with fairly long, high-intensity pulses — a non-standard regime, where the atoms ac-

quired a velocity during imaging and the resulting Doppler-shift was non-negligible.

Simulation of the absorption imaging process was necessary for an accurate inter-

pretation of these images, as described in Chapter 4. Using the simulation-corrected

images, we extracted the fraction of atoms scattered in our collision experiment.

5.1 Experimental procedure

We prepared our degenerate 40K clouds as described in section 3.3.5. After

this preparation, we used adiabatic rapid passage (ARP) to transfer the degenerate

cloud of 40K atoms in the |F = 9/2,mF = 9/2〉 state into the |F = 9/2,mF = −9/2〉

state by using a 3.3 MHz rf field and sweeping the bias magnetic field from -0.518

mT to -0.601 mT in 150 ms.

Following the state transfer, we had two versions of the protocol – one for

approaching the Feshbach resonance from higher fields and one for approaching it

from lower fields. For approaching the resonance from lower fields, we proceeded

by ramping the bias magnetic field to 19.05 mT, turning on a 42.42 MHz RF field,

and then sinusoidally modulating the bias field at 125 Hz for 0.5 s, with a 0.14 mT

amplitude, decohering the 40K state into an equal mixture of |F = 9/2,mF = −9/2〉

and |F = 9/2,mF = −7/2〉. For approaching the resonance from higher fields, the

same was done at a bias field of 21.71 mT and an RF frequency of 112.3 MHz. The
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depolarization allowed the 40K atoms to interact and re-thermalize, allowing us to

further evaporate in the dipole trap [109]. Since 87Rb is heavier than 40K, we were

able to evaporate the 40K atoms past the point where 87Rb atoms were no longer

suspended against gravity and had been completely removed. These hyperfine states

of 40K were then used to study their Feshbach resonance.

After evaporation, we ramped the bias field in a two-step fashion to the desired

value B near the Feshbach resonance. We approached the field using our quad coils

in Helmholtz configuration (0.19 mT/A, see sec. 3.3.2) to bring the magnetic field

to a setpoint 0.59 mT away from B, B−0.59 mT when approaching from below and

B + 0.59 mT from above. We held the atoms at this field for 100 ms to allow the

eddy currents induced by the large quad coils to settle, and then flipped the current

of our lower inductance biasZ coils from −18 to 18 A (0.017 mT/A, see sec. 3.3.2)

to quickly change the field the remaining 0.59 mT. This allowed us to study the

resonance from both sides without the added losses associated with going through

the resonance [40].

Once at the intended bias field, we split the cloud into two spatially overlapping

components with opposing momenta and observed scattering as they moved through

each other and separated. These counter-propagating components were created

using an 8EL deep near resonant (λL=766.704 nm) 1-d retro-reflected optical lattice

(see sec. 3.3.1), where EL = h̄2k2
L/2mK is the lattice recoil energy and h̄kL = 2πh̄/λ

is the recoil momentum. We rapidly pulsed this lattice on and off with a double-

pulse protocol [110, 111]. The pulse sequence was optimized to transfer most of

the atoms into the ±2h̄kL momentum states. Since the initial Fermi gas had a

wide momentum spread (in contrast to a BEC, which has a very narrow momentum

spread), and the lattice pulsing is a momentum dependent process [110], not all

the atoms were transferred into the target momentum states. We experimentally

optimized our pulse times to minimize the atoms remaining in the zero momentum
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state. The optimized pulse times were 23 µs for the first pulse, 13 µs off interval,

and 12 µs for the second pulse [111].

We then released the atoms from the trap and allowed 1 ms for the two opposite

momentum states within the cloud to pass through each other, scattering on the

way. For the data taken coming from below the Feshbach resonance, we then simply

ramped down the field and imaged the atoms. For the data taken coming from

above the Feshbach resonance, we ramped the field back up, retreating through the

resonance if it had been crossed and thereby dissociating any molecules that were

created, and then quickly ramped the field back down and imaged the atoms. We

used a 40 µs imaging pulse with I0/Isat ≈ 0.6 at the center of the probe laser. The

total time-of-flight was tTOF = 6.8 ms.

The magnetic fields produced by the combination of our quad and biasZ coils in

the regime of interest were independently calibrated by rf-spectroscopy. We prepared

40K atoms in the |F = 9/2,mF = −9/2〉 state and illuminated them with and rf-field

with some frequency νrf . We then ramped our high-inductance coils to variable set

points, followed by an adiabatic 250µs ramp of 2.84 mT in the lower inductance

coils. We then used Stern-Gerlach and observed the fractional population in the

|F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 states as a function of the high-

inductance coil current. We fit the fractional population curve to a Gaussian, and

considered the center of the fit to be on-resonant, with an uncertainty given by the

Gaussian width. We used the Breit-Rabi formula (see sec. 2.1.2) to determine the

resonant field value at νrf . We did this for 5 different rf frequencies, and acquired

a field calibration with an uncertainty of 0.3 mT, which was included in the listed

uncertainty on the center field of the Feshbach resonance.
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Figure 1: An example of our absorption image after 6.8 ms TOF. The 1-D lattice
imparts momentum along ex. The two large clouds on the left and right are the
atoms in the ±2kL momentum orders that passed through each other unscattered.
The smaller cloud in the center is the atoms that remained in the lowest band of the
lattice after pulsing, and thus obtained no momentum. The thin spread of atoms
around these clouds is the atoms that underwent scattering. This image was taken
coming from below the Feshbach resonance at 20.07 mT. (a) Raw optical depth,
(b) atomic column density obtained by comparing to simulated ODs, σ0n

sim

5.2 Data analysis

We first processed each image by comparing the obsereved ODs to simulations

taking into account the recoil induced detuning as described in Chapter 4. An

example of images before and after processing are shown in Fig. 1. To improve

the signal and mitigate our shot to shot number fluctuations, we took 15 nominally

identical images for each data point.

We counted the fraction of atoms that experienced a single scattering event for

each of the fifteen images at a given bias magnetic field. Single scattering events are

easily identified, as two atoms that scatter elastically keep the same amplitude of

momentum, but depart along an arbitrary direction. Therefore, an atom traveling
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Figure 2: (a) Our experimental setup. After time-of-flight, the two clouds trav-
eling along ±êx directions have separated and the atoms that underwent a single
scattering event were evenly distributed in a scattering halo around the unscattered
clouds. The 1-D lattice defined the axis of cylindrical symmetry. (b) Inverse Abel
transformed image. The atoms within the Fermi momentum kF of each unscattered
cloud center are in the unscattered region and counted towards the total unscattered
number. The atoms outside the radius kL − kF but inside kL + kF while also being
outside the unscattered region are counted towards the number of single scattered
atoms.

at 2h̄kL to the right that collides elastically with an atom traveling at −2h̄kL to

the left will depart with equal and opposite momenta 2h̄kL at an arbitrary angle,

and in a time-of-flight image such atoms will lie in a spherical shell, producing the

scattering halo pictured in Fig. 2(a).

Absorption images captured the integrated column density along ez, a pro-

jected 2D atomic distribution. To extract the radial dependence of the 3D distri-

bution from the 2D image, we performed a standard inverse Abel transform. The

inverse Abel transform assumes cylindrical symmetry, which was present in our case,

with the axis of symmetry along ex, defined by the lattice. We neglect the initial

asymmetry of the trap, as during time-of-flight the atoms travel far beyond the

initial extent of the cloud (rx, ry, rz) ≈ (45,48,15) µm, while the cloud width after

TOF is ≈ 82 µmin each direction. We thus obtained the atomic distribution ρ(r, θ)

as a function of r, the radial distance from the scattering center, and θ, the angle
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between r and symmetry axis ex, integrated over φ, the azimuthal angle around the

x axis.

We then extracted the number of scattered atoms Nscat as a fraction of the

total atom number Ntot for each image, as shown in Fig. 2(b). The unscattered

atom number was the number of atoms in the two unscattered clouds. The number

of atoms that underwent a single scattering event was the number of atoms outside

the Fermi radius of the unscattered clouds, but inside the arc created by rotating

the Fermi momentum kF around the original center of the cloud (red arcs in Fig.

2(b)). For both the scattered and unscattered numbers, we accounted for atoms

that fell outside the field of view of our camera by multiplying the counted atom

number by a factor of the total area as defined by the radii divided by the visible

area on the camera. The atoms in the center region were not counted as they were

originally in the zero momentum state and could not contribute to the scattering

halo under study.

We fit the fraction of scattered atoms versus the total atom number for each

of the 15 images taken at the same bias magnetic field to a line constrained to be

zero at zero. The slope of this fit was taken to be the value of Nscat/N
2
tot at that bias

magnetic field, and the variance of the fit gave the uncertainty on that data point.

This uncertainty reflected our shot to shot number fluctuations, which produced

variable atomic densities and thus influence the scattered fraction.

We then deduced the resonant field value B0 and width of the resonance ∆,

the parameters in Eq. (3.26). Since we were in the low energy regime (the atomic

momentum was much smaller than the momentum set by the van der Waals length

kL +kF � 1/lvdW, and we were well below the p-wave threshold temperature [109]),

the scattering cross-section was given by σ = 4πa2.

The scattering cross-section σ gives the probability Pscat = σN/A that a single

particle will scatter when incident on a cloud of atoms with a surface density of
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N/A, where A is the cross-sectional area of the cloud and N is the number of atoms

in the cloud. In our case, each half of the initial cloud, with atoms number Ntot/2,

is incident on the other half. Thus, the number of expected scattering events is

Nscat = (Ntot/2)σ(Ntot/2) = σN2
tot/4A. Assuming A is constant for all our data, we

can define a fit parameter b0 = 4πa2
bg/4A, where abg is the background scattering

length. We can thus adapt Eq. (3.26) to obtain the fit function

Nscat

N2
tot

= b0

(
1− ∆

B −B0

)2

+ C. (5.1)

We found that our imaging noise skewed towards the positive, giving rise to a small

background offset. We accounted for this in our fit by including a constant offset

parameter C.

5.3 Results

Our final data is presented in Fig. 3. The red curve depicts a best fit of the

model given in Eq. (5.1). The fit parameters we extracted were ∆ = 1(5) mT,

B0 = 20.206(15) mT, b0 = 5(3) × 10−3 and C = 8(1) × 10−4. To obtain the fit, we

used data taken by approaching the resonance from above for points above where

we expected the resonance to be and data taken approaching the resonance from

below for points below. We also excluded from the fit data points very near the

resonance, as there the assumption σρ � 1, where ρ is the atom number per unit

area, is no longer valid and the problem must be treated hydrodynamically.

The accepted values for the 40K s-wave Feshbach resonance for the |9/2,−9/2〉

and |9/2,−7/2〉 states are B0 = 20.210(7) mT and ∆ = 0.78(6) mT [44], which is in

good agreement with our findings. Some potential sources of systematic uncertainty

that we did not account for include scattering with atoms that did not receive a

momentum kick from the lattice pulsing or the impact of multiple scattering events.
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Figure 3: Normalized scattered population plotted versus bias field B. Green dots
represent data taken coming from below the resonance, and blue dots represent the
data taken coming from above the resonance. The red curve depicts the best fit,
where data coming from above the resonance was used above the resonance and data
coming from below the resonance was used below the resonance to create the fit; the
unused data points are indicated by hollow dots. The regime where the scattering
length is likely large enough for the atoms to behave hydrodynamically is shaded in
gray, and data points in that area were also excluded from the fit. Resonant field
value B0 as found in this work and our systematic uncertainty in the bias magnetic
field δB0 are indicated.
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Chapter 6: Synthetic Magnetic Fields in Synthetic Dimensions

In condensed matter, 2-D systems in high fields have proved to be of great tech-

nological use and scientific interest. The integer quantum Hall effect (IQHE) [20],

with its quantized Hall resistance, has given rise to an ultra-precise standard for

resistivity. It was also one of the first examples of topology playing an important

role in physics—the precise quantization of the Hall conductance is guaranteed by

the non-trivial topology of the system [6]. This leads to the precisely quantized

‘plateaus’ in the transverse resistivity that occur as different multiples of the mag-

netic flux quantum Φ0 = h/e, where e is the electron charge, are threaded through

the material.

In the IQHE system, the underlying lattice structure of the host semiconduc-

tor is effectively washed out—the magnetic flux per individual lattice plaquette is

negligible. However, new physics arises when the magnetic flux per plaquette is

increased to some non-negligible fraction of the flux quantum, giving rise to the

Hofstadter butterfly [16]. These regimes are hard to reach experimentally, since the

typical plaquette size in crystalline material is of order a square Angstrom, and the

magnetic field necessary to thread a magnetic flux of Φ0 through such a narrow area

is of order ≈ 104 Tesla, not access able with current technology.

Several platforms have however reached the Hofstadter regime by engineering

systems with large effective plaquette size, in engineered materials [17, 18], and in

atomic [51, 54–58] and optical [112] settings. Here, we use the approach of syn-

thetic dimensions [61] in atomic BEC of 87Rb to reach the Hofstadter regime. We
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demonstrate the non-trivial topology of the system created, and use it to image

skipping orbits at the edge of the 2-D system—a hallmark of 2-D electron systems

in a semi-classical treatment.

We first describe the experimental setup of the effective 2D lattice with a large

effective magnetic flux through it created with synthetic dimensions in sec. 6.1. We

write down the Hamiltonian of the system, calculate the band structure and discuss

its basic features in sec. 6.2.1. We then describe the results of our experiments.

First, we describe the measured eigenstates of the system in sec. 6.3. Second,

we detail the measurement of chiral edge motion when atoms are loaded into the

central site of the lattice along the synthetic direction. Finally, we describe our

observation of skipping orbits along the edges of the system, when atoms are loaded

into the edge sites along the synthetic direction. This measurement represents the

first direct observation of the phenomenon of skipping orbits. The work described

in this chapter was published in [62].

6.1 Synthetic dimensions setup

Any internal degree of freedom can be thought of as a synthetic dimension—

the different internal states can be treated as sites along this synthetic direction.

As long as one can define a metric along this direction, i.e. some of the internal

states are ‘nearest neighbors’ while others are not, it is sensible to consider it is a

dimension. In our case, an effective 2-D lattice is formed by sites formed by a 1-D

optical lattice along a ‘real’ direction, here ex, and the atom’s spin states forming

sites along a ‘synthetic’direction, es.

The experimental setup for this system is schematically represented in Fig.

1a. The BEC is subject to a 1-D optical lattice, formed by a retro-reflected beam

of λL = 1064 nm along ex. A bias magnetic field B0 along ez energetically separates

the different spin states. The spin states can be thought of a sites along a synthetic
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dimension even without any coupling field. However, only once a coupling field

is present do they acquire a sense of distance. We couple them via rf or Raman

coupling, which only couples adjacent spin states. The Raman beams illuminating

the atoms are shining in opposite directions along the same ex axis as the 1-D optical

lattice. The rf field has components both along the ex and ey.

Figure 1b sketches out the effective 2-D lattice created. Here, we have labeled

the lattice sites along the ‘real’ direction ex by site index j. In the tight binding

approximation, we can describe a lattice hopping between adjacent sites with tun-

neling amplitude tx. Similarly, the sites along the ‘synthetic’ dimension are labeled

by site index m (identical to spin projection quantum number mF ), and the rf or

Raman coupling here plays the role of a tunneling amplitude ts. In the case of rf

coupling, there is no momentum kick associated with spin exchange, and both tx

and ts are real.

In the case of Raman coupling, however, there is a momentum kick of 2kR

associated with every spin transfer, and therefore a phase factor of exp(2ikRx) with

every spin ‘tunneling’ event. Since position x is set by the 1-D lattice, xj = jλL/2 =

jπ/kL, and the space dependent phase factor is exp(2πikR/kLj). An absolute phase

change in the wavefunction is not meaningful. However, a phase acquired when

going around a plaquette and coming back to the same place is meaningful, as one

could imagine one atom staying at the same site and the other going around a

plaquette and coming back to detect the phase difference. In this setup, the phases

acquired while going around a single plaquette are, starting at some lattice site

|j,m〉, are: 0 (for tunneling right to |j + 1,m〉), 2πikR/kL(j + 1) (for tunneling up

to |j + 1,m+ 1〉, 0 (for tunneling left to |j,m+ 1〉) and −2πikR/kLj (for tunneling

back down to |j,m〉). The total phase acquired is thus φAB = 2πkR/kL, independent

of the starting lattice site. Since the absolute phase does not matter and only the

value of φAB, we can perform a phase transformation that shifts the tunneling phase
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Figure 1: Setup of effective 2-D lattice. (a) Beam geometry. The BEC is subject to
a bias magnetic field B0 in the ez direction. The 1-D lattice beam and Raman beams
are both along the ex direction, and the rf field can be applied with projections onto
both ex and ey. (b) Schematic of the effective 2-D lattice. Sites along ex are formed
by the 1-D optical lattice and labeled by site number j. Sites along the synthetic
direction es are formed by the spin states: 3 sites for atoms in the F = 1 manifold
and 5 sites for atoms in F = 2. These sites are labeled by m. Raman transitions
induce a phase shift, which can be gauge transformed into a tunneling phase along
the ex direction. This leads to a net phase when hopping around a single lattice
plaquette of φAB.
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onto the spatial direction, defining tx = |tx|exp(iφABm) and ts = |ts|, as labeled in

Figure 1b.

To see how this phase implies an effective magnetic field, we draw an analogy to

the Aharonov-Bohm effect [15, 113] from quantum mechanics. This effect considers

an infinite solenoid with an electric current running through it. The magnetic field

B in this setup exists only inside the solenoid, while the magnetic vector potential

persists outside the solenoid. However, if two electrons are sent on a trajectory

around the solenoid, even though they never pass through any magnetic field, they

nevertheless acquire a relative phase that can be detected by interfering them with

each other. This relative phase is given by φAB = 2πΦ/Φ0, where Φ = B ∗ A is the

magnetic flux through the solenoid (A is the area inside the solenoid, pierced by the

magnetic field) and Φ0 = h/e is the flux quantum, with e the electron charge. Since

in our system, the atoms acquire a phase when they perform a closed loop around

a single lattice plaquette. Therefore, they behave as though there was an infinite

solenoid piercing each plaquette with a magnetic field going through it, and the flux

per plaquette in units of the flux quantum is Φ/Φ0 = φAB/2π = kR/kL. For the case

of rf coupling, the phase acquired at every transition is 0 and the flux Φ/Φ0 = 0.

In this way, we are able to engineer large fluxes per individual plaquette simply

by adjusting the ratio kR/kL, allowing us to sidestep the need for experimentally

inaccessible field strengths and reach the Hofstadter regime.

6.2 Hamiltonian of the effective 2-D system

6.2.1 Hamiltonian

The full Hamiltonian of this system, without making the tight binding approx-

imation, can be written down by combining the lattice Hamiltonian (eqn. 2.43) and
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the rf (eqn. 2.53) or Raman Hamiltonian (eqn. 2.56):

H =
h̄~k2

2m
− V0sin2(kLx) + h̄δFz + h̄εF 2

z +
Ω

2
Fx (6.1)

for rf coupling and

H =
h̄k2

y + h̄k2
z

2m
+ h̄2kxI + kRFz)

2

2m
− V0sin2(kLx) + h̄δFz + h̄εF 2

z +
Ω

2
Fx (6.2)

for Raman coupling. Here, k is the wavenumber, V0 is the lattice depth, h̄kL is the

lattice recoil momentum, h̄kR is the Raman recoil momentum, Fz and Fx are the

angular momentum matrices, δ is the rf or Raman detuning, Ω is the rf or Raman

Rabi frequency, ε is the quadratic Zeeman shift, and I is the identity matrix. To find

eigenstates of these Hamiltonions, we write them in a new basis that encompasses

both the momentum and the spin degrees of freedom. For the lattice Hamiltonian,

we used the momentum basis 

...

|q + 4kL〉

|q + 2kL〉

|q〉

|q − 2kL〉

|q − 4kL〉
...



. (6.3)

For the Raman Hamiltonian in the F = 1 manifold, we used the spin and momentum

basis 
|kx − 2kR,−1〉

|kx, 0〉

|kx + 2kR, 1〉

 . (6.4)

In a lattice, the momentum kx becomes crystal momentum q. For every state
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in the lattice basis, we now expand to three states, one for each spin state, with the

appropriate momentum shifts, giving



...

|q + 2kL − 2kR,−1〉

|q + 2kL, 0〉

|q + 2kL + 2kR, 1〉

|q − 2kR,−1〉

|q, 0〉

|q + 2kR, 1〉

|q − 2kL − 2kR,−1〉

|q − 2kL, 0〉

|q − 2kL + 2kR, 1〉
...



. (6.5)

In this basis, we combine the lattice and Raman Hamiltonians (omitting the

kinetic energy in the other two directions) in an infinite block matrix form as

H =



. . .

HR(2kL) V0

4
0

V0

4
HR(0) V0

4

0 V0

4
HR(−2kL)

. . .


, (6.6)
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where HR(x) is the Raman Hamiltonian with a momentum shift of x:

HR(n2kL) =


h̄2(q+n2kL−2kR)2

2m
+ h̄δ h̄Ω/2 0

h̄Ω/2 h̄2(q+n2kL)2

2m
− h̄ε h̄Ω/2

0 h̄Ω/2 h̄2(q+n2kL+2kR)2

2m
− h̄δ

 ,

(6.7)

the matrix V0

4
is a 3x3 diagonal matrix lattice coupling strength V0

4
on the diagonal,

and 0 is a 3x3 matrix of zeros. This extends in both directions with HR(2nkL) on

the diagonal blocks and V0

4
as the first off-diagonal blocks and 0 everywhere else.

This Hamiltonian is easily extended to higher F values by replacing the Raman

blocks HR(x) with the corresponding Raman coupling Hamiltonian from eqn. 2.57,

and extending the diagonal matrix V0

4
and the zero matrix 0 to be (2F+1)x(2F+1).

For computational convenience, we convert to lattice recoil units, EL = h̄2k2
L/2m,

kL = 2π/λL. Then the diagonal blocks become

HR(n)/EL =


(q + 2n− 2φAB/2π)2 + h̄δ h̄Ω/2 0

h̄Ω/2 (q + 2n)2 − h̄ε h̄Ω/2

0 h̄Ω/2 (q + 2n+ 2φAB/2π)2 − h̄δ

 ,

(6.8)

where h̄δ, h̄Ω and h̄ε are now written in units of EL, q is written in units of kL and

we have used the fact that φAB/2π = kR/kL. The off-diagonal blocks V0

4
will be the

same 3x3 diagonal matrices, with V0
4

in units of EL.

This Hamiltonian can be written for general values of F in the presence of

Raman coupling and a 1-D optical lattice as

H =

F,∞∑
m=−F,n=−∞

H0 +HR +HL,
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where the diagonal term

H0 = (
h̄2 (q − 2mΦ/Φ0 − 2n)2 k2

L/2m+ h̄δm+ h̄εm2
)

|q + n2kL,m〉 〈q + n2kL,m|

includes the kinetic energy as well as the two-photon Raman detuning from reso-

nance δ and the quadratic Zeeman shift ε. The second term represents the Raman

coupling with coupling strength h̄Ω, with anisotropic tunneling arising from the

spin-dependent prefactor (Clebsch-Gordan coefficient):

HR =

h̄Ω
√
F (F + 1)−m(m+ 1)/2

√
2 |q + n2kL,m〉 〈q + n2kL,m+ 1|

+H.c.

Here, H.c. stands for Hermitian conjugate. The third term represents lattice cou-

pling to higher order lattice states, with lattice depth V0:

HL = V0/4 |q + n2kL,m〉 〈q + (n+ 1)2kL,m|+ H.c.

6.2.2 Band structure

The band structure of this Hamiltonian is presented in Figure 2. Here, we

have restricted ourselves to the lowest lattice band. We can do this because the

energy splitting between the lowest and second lowest lattice band is of order 4EL

(see Figure 5), while the width of the lowest band, given by the amplitude of the

approximate sinusoid, is of order 0.3EL for lattice depths around 5.0EL, relevant to

our experiment. As long as the Raman coupling stays small compared to the lattice
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Figure 2: Band structure of the synthetic dimensions Hamiltonian, eqn. 6.6. For
all panels, the detuning h̄δ = 0 and the quadratic shift h̄ε = 0.02EL. (a) F = 1,
h̄Ω = 0.0. The color represents 〈m〉, magnetization along es. (b) F = 1, h̄Ω = 0.5.
(c) F = 2, h̄Ω = 0.0. (d) F = 2, h̄Ω = 0.5.
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band spacing, the higher lattice bands are energetically separated enough that they

can be ignored.

Therefore, we can think of the Raman coupling analogously to the free space

Raman coupling (see section 2.6.2), except instead of free space parabolas each spin

state gets a lowest lattice band sinusoid. Figure 2a shows this in the limit of no

Raman coupling, Ω = 0, but with the 1D lattice on at V0 = 4.0EL. The quadratic

Zeeman shift is h̄ε = 0.02EL and the detuning δ = 0. The mF = −1 sinusoid is

shifted 2kR, similarly to section 2.6.2, but since the sinusoid is periodic with 2kL, it

folds into the first Brillouin zone of the lattice, such that the nearest minimum to

q = 0 is at q = 2kR − 2kL = (2φAB/2π − 2)kL. The edges of the Brillouin zone are

marked by horizontal lines. The color indicates magnetization 〈m〉 =
∑

mF
mFnmF

,

where nmF
is the fractional population in the mF state. In synthetic dimensions

language, 〈m〉 is the expectation value of position along es.

In Figure 2b, we have restricted ourselves to the first Brillouin zone and turned

the Raman coupling to h̄Ω = 0.5EL. This results in avoided crossings in Figure 2a,

and the lowest band now has a spin dependence on crystal momentum. Figure 2c-d

shows the same progression for the F = 2 manifold. Figure 2c is taken in the limit

of h̄Ω = 0. All of the 5 spin states get ‘folded’ back into the first Brillouin zone due

to the lattice periodicity of the bands. The different overall energies of the sinusoids

are due to the quadratic Zeeman shift h̄ε = 0.02EL. The lattice depth is again

V0 = 5.0EL and detuning h̄δ = 0. In Figure 2d we have restricted ourselves to the

first Brillouin zone and turned on the Raman coupling to h̄Ω = 0.5EL. Note that

the inverted hyperfine structure in Fig. 2c (meaning that the quadratic shift pushed

the mF = 0 state up rather than down in energy compared to the others), combined

with the Raman coupling serves to make the lowest band in the F = 2 manifold

close to flat. This makes the band more similar to a quantum Hall Landau level,

and also shows promise for potential simulation of fractional quantum Hall physics,
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which require bands to be very flat.

6.2.3 Calibration

To calibrate the lattice depth V0 in the synthetic dimensions system, we can

simply calibrate the lattice depth without Raman or rf coupling as described in

Section 2.5.3. However, we are operating at very low Raman coupling strengths,

h̄Ω ≈ 0.5EL. This is necessary because in the synthetic dimensional system the

Raman coupling plays the role of tunneling, which has to be small, ts ≈ 0.1EL, to

approximate the tight binding limit. At these low Raman couplings, simple pulsing

as described in Section 2.6.3 is not useful for calibration, as the contrast of the Rabi

oscillations would be too low to resolve. Therefore, we calibrate the Raman coupling

and detuning with the full synthetic dimensions system. The ‘folding in’ effect of

the lattice (meaning, the folding in of the sinusoids into the first Brillouin zone, or

Umklapp processes) makes the higher Raman bands much closer energetically than

without the lattice, leading to larger contrast and allowing for accurate calibration.

To do this, we must first adiabatically load the lowest 1-D lattice band. To

do that, we must ramp on the lattice potential on a time scale slow compared to

the band spacing, ≈ 4EL. This gives t ≈ h/4EL = 0.12 ms. Figure 3a shows the

full ramping scheme. We ramp the lattice on in ≈ 20 ms. Then, we must pulse

on the Raman coupling on a time scale fast compared to the spin sub-band level

spacing to produce Rabi oscillations, but still adiabatic with respect to the lattice

spacing to avoid exciting to the higher lattice band. We ramp the Raman beams

on in 300 µs. Then, the system is held on for a variable amount of time before all

light is snapped off and the atoms are allowed to expand in time-of-flight. For the

case of F = 2 atoms, the transfer to the F = 2 manifold is done in the 1-D lattice

before the Raman beams are ramped on to minimize the time spend in the F = 2

manifold.
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Figure 3: Calibration of synthetic dimensions lattice. (a) Ramping procedure. The
blue line represents the 1-D lattice depth as a function of time and the red line
represents Raman coupling as a function of time. Both are held on for a variable
amount of time t, producing Rabi oscillations. (b) Example of fractional populations
in different m states as a function of time t in the F = 1 manifold. Dots indicate
data and lines indicate the best fit to theory, with parameters h̄Ω = 0.56± 0.01EL
and h̄δ = 0.029 ± 0.002EL. The quadratic shift was constrained at the calibrated
value h̄ε = 0.02EL. (c) Example time-of-flight image in the F = 1 manifold. A
Stern-Gerlach gradient pulse separates different m states along the horizontal axis,
while the lattice and Raman beams give momentum along the vertical axis. (d)
Example of fractional populations in different m states as a function of time t in the
F = 2 manifold. Dots indicate data and lines indicate the best fit to theory, with
parameters h̄Ω = 0.61±0.002EL and h̄δ = 0.002±0.001EL. The quadratic shift was
constrained at the calibrated value h̄ε = 0.02EL. (e) Example time-of-flight image
in the F = 2 manifold. A Stern-Gerlach gradient pulse separates different m states
along the horizontal axis, while the lattice and Raman beams give momentum along
the vertical axis.

132



Figure 3c,d shows sample time-of-flight images during the calibration proce-

dure for F = 1 and F = 2 respectively. The vertical axis is ex, aligned with the

lattice and Raman beams. Since the atoms have expanded in time-of-flight, this axis

corresponds to the momentum kx. The horizontal axis of the image is the axis along

which a Stern-Gerlach magnetic field gradient, separating the different spin states, is

applied. Therefore, this axis is the position m along the synthetic dimension es. In

the effectively 2-D synthetic dimensions lattice language, this is a ‘hybrid’ imaging

technique, imaging momentum along one lattice direction and position along the

other.

Figure 3c labels some notable momentum orders. The central order is at

kx = 0, where the atoms start before the experiment. Two higher lattice orders,

at kx = ±2kL, are populated for the same spin m = 0. kx = ±2kR is labeled, but

not visibly populated, to indicate where the orders would appear of only Raman

coupling was present with a higher coupling strength. Due to the ’folding in’ effect

of the lattice, the brightest orders of the m = ±1 states appear at kx = ±(2kL−2kR).

The F = 2 states follow the same pattern, not labeled in Figure 3e as there are too

many orders.

For each value of the time t we sum up the total optical depth in all of the

orders of each spin state to obtain fractional populations for each spin state as a

function of time. An example scan in the F = 1 manifold is shown in Figure 3 b. The

colored dots represent the data for different spin states, and the lines represent the

best fit to theory. Here, the significant detuning makes populations in the m = ±1

states unequal. An example scan in the F = 2 manifold is shown in Figure 3e. Here,

the detuning is small and states with opposite spin oscillate in approximate unison.

This technique allows us to calibrate our experimental parameters.
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6.2.4 Tight binding approximation

The synthetic dimensions Hamiltonian can be approximated in the tight bind-

ing limit as:

H = −
∑
j,m

|tx|eiφABm |j + 1,m〉 〈j,m|+ ts(m)|j,m+ 1〉〈j,m|+Am|j,m〉〈j,m|+h.c.,

(6.9)

where j and m label sites along ex and es respectively, as shown in Figure 1b.

ts = |ts| and tx = |tx|exp(iφABm) are the associated tunnelings. Am captures

the spin dependent diagonal elements, detuning h̄δ and quadratic shift h̄ε. Here, we

have implicitly restricted ourselves to the lowest 1-D lattice band, and assumed that

tight binding, i.e. confinement at discrete lattice sites, is a good approximation (see

2.5.2). ts is not a spin dependent quantity for F = 1 atoms, but is for F = 2, where

differences in Clebsch-Gordan coefficients create non-uniform tunneling. In the limit

of zero detuning and neglecting the quadratic shift as well as the ts dependence

on spin, this becomes the traditional Harper-Hofstadter Hamiltonian 1.7 with a

synthetic dimension:

H = −
∑
j,m

txe
iφABm |j + 1,m〉 〈j,m|+ ts|j,m+ 1〉〈j,m|+ h.c. (6.10)

We can transform this Hamiltonian into momentum space along ex by plugging

the Fourier transform formula

|j,m〉 =
1√
N

∑
kj

e−ikjj|kj,m〉, (6.11)
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Figure 4: Band structure of the tight binding versus full Hamiltonian. V0 = 6.0EL,
giving |tx| = 0.1EL, h̄δ = 0, h̄ε = 0.02EL, h̄Ω = 0.5EL. (a) F = 1, fitted value ts =
0.154EL. (b) F = 2, fitted value ts = 0.284. Here, the tight-binding Hamiltonian
included anisotropic tunneling ts due to Clebsch-Gordan coefficients.

with N the number of sites j, into the above Hamiltonian to obtain

H = − 1

N

∑
kj ,m

ts|kj,m+1〉〈kj,m|+h.c.+2|tx|cos(kj−φAB)|kj,m〉〈kj,m|+Am|kj,m〉〈kj,m|

(6.12)

To approximate the full Hamiltonian, eqn. 6.6, by the tight binding Hamilto-

nian, eqn. 6.9, we must find appropriate values for ts and tx. We find |tx| by treating

the 1-D lattice independently, and matching the tight binding band to the lowest

full lattice band. For most of the experiments described in the chapter, the lattice

depth was V0 = 6EL, corresponding to |tx| ≈ 0.01EL. To find the appropriate value

of ts, we fit the lowest 3 bands of the full synthetic dimensions band structure to

the tight binding band structure eqn. 6.12 with ts as fitting free parameter.

Figure 4 shows the overlayed band structure of the full Hamiltonian, eqn.

6.6, and the best fit tight binding band structure, eqn. 6.12. To fit, we minimize

the square difference between the energies in the lowest two bands, relevant to our
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experiment.

6.3 Eigenstates of the synthetic 2-D lattice

After calibrating the synthetic dimensional lattice via pulsing, we can study the

eigenstates of the lowest band of the system by adiabatically loading, i.e. ramping

both the lattice and Raman or rf coupling on on a time scale slow compared to the

magnetic band spacing. Along the synthetic direction, in the F = 1 manifold, there

are no m = ±2 sites. This can be thought of as hard wall boundary conditions at

the m = ±2 sites, confining the atoms in the allowed m = 0,±1 sites. Therefore,

we can consider the position eigenstates along the synthetic direction in relation to

eigenstates of a square-well potential.

Figure 5a shows a time-of-flight image of an adiabatically loaded synthetic

dimensions lattice eigenstate with rf coupling along the synthetic direction. The

vertical axis is single site resolved spin states m. The horizontal axis is momentum

along the ex direction. Note that for each site m the distribution of momenta kx is

symmetric. Figure 5b shows the fractional population in each site m, summed over

all momenta kx. In the case of rf coupling, φAB = 0 and the effective magnetic flux

ΦAB/Φ0 = 0. Therefore, the fractional population along the spin direction looks

simply like a discretized ground state probability distribution of the square well

potential.

Figure 5c-h shows analogous data with Raman coupling along the synthetic

direction. Figure 5d,g are the time-of-flight image and corresponding fractional

populations of atoms adiabatically loaded from the mF = 0 spin state, corresponding

to the central minimum (q = 0) of the lowest band in Figure 2b. There are two key

differences between this case and the rf case in Figure 5a-b. First, the momenta of

the different spin states are no longer symmetric, as explained in sec. 6.2.3. Second,

the fractional populations in Figure 5g are no longer simply the discretized ground
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Figure 5: Eigenstates of the synthetic dimensions lattice. Left column: time-of-
flight images, with position along es on the vertical axis and momentum along
es on the horizontal. Right column: fractional populations in each site m. (a,b)
rf coupling, resulting in φAB = 0. (c,f) Raman coupling, resulting in φAB > 0,
adiabatically loaded from the mF = 1 state. (d,g) Raman coupling, resulting in
φAB > 0, adiabatically loaded from the mF = 0 state. (c,f) Raman coupling,
resulting in φAB > 0, adiabatically loaded from the mF = −1 state.
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state probability distribution of the square well potential: they are a narrowed

version of it, more strongly concentrated in the m = 0 site.

This can be understood by analogy with a 2D electron system in a perpendic-

ular magnetic field, confined in one dimension with hard walls. Along the confined

direction, the wavefunction is localized to the scale of the magnetic length lB =√
h̄/qB, with the center position at kxl2

B in the bulk state, where h̄kx is the electrons

canonical momentum. In our system, the magnetic length lB =
√
a2Φ0/2πΦAB, or

in units of the lattice period a, l∗B =
√

3/2π; this explains the narrowing of the bulk

state in Figure 5g.

In the 2D electron system, at large |kx|, the electron becomes localized near the

edges, lifting the degeneracy of the otherwise macroscopically degenerate Landau

levels. In our case, stable edge states appeared as the additional minima in Figure

2b, at q ≈ ±0.66kL. We loaded these edge states by starting in the mF = ±1

states before adiabatically turning on the synthetic dimensions lattice to obtain the

eignestates displayed in Figure 5c,f and Figure 5e,h respectively. These edge states

predominantly occupy the edge sites in the synthetic direction, and are strongly

confined there due to the narrow magnetic length. These localized edge states are

the analog to the current-carrying edge states in Fermionic integer quantum Hall

effect systems [114].

6.4 Chiral edge currents

The same pulsing procedure that was used for calibration (sec. 6.2.3) can

also be interpreted by analogy with the 2-D electron system. Figure 6a shows

schematically what happens when atoms are loaded from the m = 0 site into the

lattice and tunneling along the synthetic dimension is pulsed on. Atoms begin

analogues of cyclotron orbits, tunneling out into the edgem = ±1 sites and tunneling

back to the bulk m = 0 state. The fractional populations in the three m sites as a
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function of time are shown in Figure 6b.

We performed this experiment for three different magnetic flux values: with rf

coupling giving ΦAB/Φ0 = 0, with Raman coupling giving ΦAB/Φ0 ≈ 4/3 and with

inverted Raman coupling giving ΦAB/Φ0 ≈ −4/3. The inverted Raman coupling

was accomplished by switching the roles of the two Raman beams (see Figure 1a):

the right going beam frequency was changed to 2π(ω+∆ω) and the left going beam

frequencdy was change to 2πω, resulting in the opposite recoil momentum for the

same spin flip, flipping the direction of the effective magnetic field.

We define the current Im=±1 = nm〈vm〉, where nm is the fractional population

in site m and 〈vm〉 is the expectation value of velocity along ex for atoms in sites

m, as depicted in Figure 6a. The velocity is derived from the momentum measured

in time-of-flight images. The chiral current of the system is then defined as I =

I1 − I−1. We calculate this chiral current for data in Figure 6b, with ΦAB/Φ0 ≈

4/3, displayed in red dots in Figure 6c. Atoms in the edge sites m = ±1 exhibit

chiral motion, therefore the resulting chiral current is directly proportional to the

fractional population in those sites and oscillates as a function of time in concert

with the oscillation in Figure 6b. in Figure 6c also includes data for the ΦAB/Φ0 ≈

−4/3 (solid black dots indicate data and solid gray lines are from theory) and

ΦAB/Φ0 = 0 (empty black dots). As seen in the figure, reversing the direction of the

effective magnetic flux reverses the direction of the chiral currrent, and turning off

the magnetic flux results in no net chiral current. The chiral current I is normalized

here by the tunneling velocity 2tx/h̄kL.

As the chiral current I is proportional to the edge state population, we plot

it as a function of the expectation value of the absolute value of m, 〈|m|〉, in Fig-

ure 6d. As expected, the chiral current is linear, with slope S. S is positive for

ΦAB/Φ0 ≈ 4/3, negative for ΦAB/Φ0 ≈ −4/3, and zero for ΦAB/Φ0 = 0. We then

study the dependence of the chiral current on the strength of tunneling along the
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Figure 6: Measuring chiral currents in synthetic dimensions. (a) Schematic of the
formation of chiral currents when the system is loaded into the bulk m = 0 site and
tunneling along es is turned on suddenly. They start to tunnel both towards the
m = 1 sites (pink arrows), moving towards the right along ex, and the m = −1
sites (blue arrows), moving towards the left along ex. They then return to m = 0,
completing cyclotron orbits. (b) Fractional population in each spin state (m = 0,
+1, and −1 in green, pink, and blue respectively) as a function of time for a system
with φAB > 0. Dots represent data and lines represent theory calculated from the full
Hamiltonian, eqn. 6.2.1, with parameters h̄Ω = 0.5EL, V0 = 6EL, h̄δ = 0.001EL,
and h̄ε = 0.05EL. (c) Chiral current I as a function of time for φAB > 0 (red)
φAB = 0 (empty black dots) and φAB < 0 (solid black). (d) Chiral current I as
a function of 〈|m|〉 for the three values of φAB. Solid lines calculated from theory,
with the same parameters as in (b) for φAB 6= 0, and with parameters h̄Ω = 033EL,
V0 = 6EL, h̄δ = −0.01EL, and h̄ε = 0.05EL for φAB = 0. (e) Peak chiral current
Imax as a function of tunneling asymmetry ts/tx, as measured experimentally (red
dots) and calculated from the full Hamiltonina (red line). Inset: slope of best fit lines
of current I as a function of 〈|m|〉 (as in (d)) as a function of tunneling asymmetry
ts/tx: nearly independent. 140



synthetic dimension, in units of the real axis tunneling ts/tx. We refer to this as

the tunneling anisotropy: the asymmetry between the two dimensions. As shown

in the inset to Figure 6e, the slope S of the chiral current as a function of 〈|m|〉

is practically independent of the tunneling anisotropy. The small deviation from a

flat line is explained by the deviation of our system from the tight binding model.

However, the maximal chiral current attained during the pulsing experiment, Imax,

depends strongly on the tunneling anisotropy (see Figure 6e). This is because the

maximum fractional population in the edge states 〈|m|〉 increases with increased ts.

The increase is approximately linear at first, and then saturates at large ts/tx when

the fractional population in the edge states m = ±1 approaches 1.

6.5 Observation of skipping orbits

Semi-classically, electrons in a 2-D material pierced by a magnetic field can

be described in terms of cyclotron orbits in the bulk, as described in the previous

section, and skipping orbits on the edge. Skipping orbits arise from electrons on

the edge beginning cyclotron orbits, but hitting the edge of the system and being

reflected and beginning the next cyclotron orbit. Due to the chirality of the cyclotron

orbits, this results in the skipping orbits traveling in one direction along the top edge

and in the opposite direction along the bottom edge.

We observed an analogue of these skipping orbits in our system. We performed

the same experiment, pulsing on tunneling along the synthetic dimension, but this

time initializing the system on the edge, as shown schematically in Figure 7a. To

populate these states, we initially applied a detuning h̄δ = ±0.087EL, tilting the

potential along the synthetic direction as shown in Figure 7b. This made the initial

state, m = −1 in the figure, a potential minimum. We then pulsed on the tunneling

and observed the resulting dynamics.

Figure 7c shows the expectation value of position along es as a function of time
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Figure 7: Imaging skipping orbits. (a) Schematic of pulsing experiment when atoms
are initialized on the m = −1 edge. The atoms move towards the m = 0 site,
while moving to the right along ex (blue arrows). They then continue their semi-
cyclotron orbits back to m = −1, from where they cannot finish the circle, forming
skipping orbits. (b) Schematic of the tilted box potential applied along the synthetic
direction. (c) Expectation value of position along es, 〈m〉, as a function of pulse time
for atoms initialized in the m = +1 (red) and m = −1 (blue) states. Dots represent
data and lines are from theory calculated from the full Hamiltonian, eqn. 6.2.1,
with parameters h̄Ω = 0.41EL, V0 = 5.2EL, h̄δ = ±0.087EL, and h̄ε = 0.13EL.
(d) Expectation value of the group velocity along ex, 〈vx〉, for the same data as in
(c). (e) Expectation value of displacement along ex, 〈δj〉 in units of lattice spacing,
for the same data as in (c) and (d). The displacement was obtained by integrating
〈vx/a〉, where a is the period of the optical lattice. Atoms initialized in m = −1
performed skipping orbits to the left, while atoms starting in m = −1 traveled to
the right.
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during the pulsing experiment. This expectation value is obtained by calculating

the fractional population nm on each site m and summing 〈m〉 =
∑

mmnm. The red

dots were obtained from an experiment where the atoms were initialized in them = 1

site. The blue dots were obtained by starting in the m = −1 site. The expected

position oscillated with time, as expected for Rabi oscillations. The same data was

then used to extract the expected group velocity along ex, 〈v〉 =
∑

m nm〈vm〉 as a

function of time. This is shown in Figure 7d. The group velocity oscillated with the

expected position 〈m〉, and was positive for experiments starting in m = −1 and

negative for experiments starting in m = 1.

We obtain the expected displacement in units of the lattice spacing a, 〈δj〉

along ex as a function of time by directly integrating the expected group velocity.

The resulting displacement is shown in Figure 7e. As seen in the figure, for ex-

periments initialized in m = 1, the atoms began cyclotron orbits, but reflected off

the edge and performed skipping orbits towards the left. Likewise, atoms initialized

in m = −1 performed skipping orbits along the opposite edge and in the opposite

direction. This experiment presents the first direct observation of skipping orbit

motion.
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Chapter 7: Measuring Chern Number in Synthetic Dimesnions

As discussed in Chapter 1, the 2D topological invariant as applied to band

topology, the Chern number, is well defined for an infinite 2D system. For any finite

system, the Chern number can be thought of as the Chern number of an infinite

system that locally looks like the bulk of the finite system. This begs the question,

how narrow can a system get for this extension of the definition of Chern number

to still be meaningful?

In this chapter, we describe our experiment in measuring Chern number in the

effectively 2D synthetic dimensional lattice, as described in Chapter 6. This lattice

was elongated along the real direction and extremely narrow along the synthetic

direction, only 3 or 5 sites wide. We performed a transport experiment to sample

the band structure of this system as a function of crystal momentum kx along the

real direction, and observed the resulting motion along the transverse, synthetic,

direction, as shown schematically in Figure 1.

Similarly to Chapter 6, our system was qualitatively well described by the

tight binding limit Harper-Hofstadter Hamiltonian (see eqn. 6.10) [16,115]

Ĥ = −
∑
m,j

(
txe

iφm|j,m〉〈j + 1,m|+ ts|j,m〉〈j,m+ 1|
)

+ H.c., (7.1)

where j and m label lattice sites along ex and es, with tunneling strengths tx and

ts respectively. Figure 1a sketches the atoms loaded into the lowest band of the

synthetic dimensions lattice in the F = 2 manifold of 87Rb, creating 5 sites along
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the synthetic direction. As in Chapter 6, there was a 1D optical lattice along the

longitudinal ex direction, with lattice tunneling tx between adjacent sites labelled by

j. Internal spin states of the atoms defined sites along the transverse es direction,

with tunneling ts induced by either rf or Raman coupling. In the case of rf coupling,

no phase was imprinted, φAB = 0. In the case of Raman coupling, an overall phase

φAB 6= 0 was imprinted, and we choose the Landau gauge in which the phase is

written on the longitudinal tunneling coefficient tx = |tx|eiφABm.

The histogram in Figure 1a shows the fractional populations nm in each site

m. An example hybrid TOF image (see sec. 6.2.3) is shown below in Figure 1c,

with the central m = 0 order marked by red cross-hairs. Then, a force is applied

along the long (real) dimension of the system for some time ∆t, and a transverse

response is observed, as seen in Figure 1b. The fractional population has become

maximized in the m = 1 site, and the sample hybrid TOF image in Figure 1d shows

a displacement along the longitudinal momentum axis of ∆qx.

Due to the extremely narrow widths in the synthetic dimension, our measure-

ment cannot be readily interpreted as a quantum Hall conductivity measurement,

and a meaningful Chern number is not readily extracted in that manner, as dis-

cussed in sec. 7.2. However, we leverage the TKNN Diophantine equation [6] to

perform an alternative measurement of the Chern number, discussed in 7.3. We

show how this equation arises naturally in our synthetic dimensional system, and

claim that with this metric we can extend the definition of the Chern meaningfully

to systems as narrow as ours.

7.1 Experimental procedure

The setup for this experiment followed closely that of the original synthetic

dimensions experiment, as described in sec. 6.1. In contrast with the experiment

described in Chapter 6, we performed this experiment in both the F = 1 and F = 2
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Figure 1: Quantum Hall effect in Hofstadter ribbons. (a) 5-site wide ribbon with
real tunneling coefficients along es and complex tunneling coefficients along ex, cre-
ating a non-zero phase φ around each plaquette. (b) After applying a force along
exfor a time ∆t, atomic populations shift transversely along es, signaling the Hall
effect. (c,d) TOF absorption images giving hybrid momentum/position density dis-
tributions n(kx,m). Prior to applying the force (c), the m = 0 momentum peak is
at kx = 0, marked by the red cross. Then, in (d), the force directly changed qx,
evidenced by the displacement ∆qx of crystal momentum, and via the Hall effect
shifted population along es.
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hyperfine manifolds of 87Rb, creating both 3-site and 5-site wide strips. We began

the experiment by adiabatically loading the full synthetic dimensional system for

both F = 1 and F = 2, with both Raman coupling (ΦAB 6= 0) and rf coupling

(ΦAB = 0).

7.1.1 Loading procedures

The loading procedure for the Raman coupled case was as follows. We prepared

a 87Rb BEC (see sec. 3.3.3) in the mF = −1 hyperfine state of the F = 1 manifold,

or in the |1, 0〉 state for Raman data in F = 1 only. We ramped on the 1D optical

lattice along ex adiabatically in 300 ms. For experiments in the F = 2 manifold, we

then applied a microwave pulse for 0.55 ms to transfer |1,−1〉 → |2, 0〉manifold while

already in the lattice. This was done after lattice loading to minimize the amount

of time the atoms spent in the F = 2 manifold and thereby limit the spin-changing

collisions and losses associated with that state as observed in our experiment. Then,

the Raman coupling field was ramped on adiabatically in 30 ms.

Loading the ground state of the F = 2 manifold presented a unique restriction,

as illustrated by Figure 2. For the experiments described in Chapter 6, a bias

magnetic field Bz was chosen such that the quadratic Zeeman shift was h̄ε = 0.05EL,

in lattice recoil energy units. However, in the F = 2 case at this field, with a lattice

depth of 4.4EL, the mF = 0 ground state does not adiabatically connect to the

Raman-coupled ground state. This is because, as shown in the band structure in

Figure 2a, the mF = ±2 energies of the lattice-coupled system at qx = 0 are lower

in energy than the mF = 0 state. Therefore, to avoid this issue, we chose a bias

field such that the quadratic Zeeman shift was h̄ε = 0.02EL. The band structure for

this case is shown in Figure 2b. Here, the mF = 0 sinusoid at crystal momentum

qx = 0 is still the lowest energy, and therefore connects adiabatically to the Raman

coupled ground state.

147



−1.0 −0.5 0.0 0.5 1.0

q [kL]

−0.7

−0.6

−0.5

−0.4

−0.3

E
n

er
gy

[E
L

]

(a)

−1.0 −0.5 0.0 0.5 1.0

q [kL]

−0.60

−0.55

−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

(b)

−2

−1

0

1

2

Figure 2: Band structure of the lattice-coupled system in F = 2. Here, lattice depth
V0 = 4.4EL, Raman coupling h̄Ω = 0, and detuning h̄δ = 0. (a) Quadratic shift
h̄ε = 0.05EL. At qx = 0, mF = 0 is not the ground state. (b) Quadratic shift
h̄ε = 0.02EL. At qx = 0, mF = 0 is the ground state.

For the case where tunneling along the synthetic dimension was provided by

rf coupling (ΦAB = 0), the loading procedure was as follows. We started in the

F = 1,mF = −1 state and turned the 1D optical lattice on adiabatically in 300 ms,

same as in the Raman case. For F = 2, we then transferred to the F = 2,mF = −2

state with a 0.55 ms microwave pulse. Then, we set the bias field to a large detuning

h̄δ > 1ER. Implementing adiabatic rapid passage (see sec. 2.2.3), we then swept

the field to resonance in ≈ 50 ms, thereby loading the rf coupled ground state.

This was necessary in the rf case as opposed to the Raman case, because there is

no momentum shift in the band structure, and therefore turning on the rf coupling

opens up an avoided crossing at every point in the band, making it impossible to be

adiabatic with respect to this turn-on while on resonance.
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7.1.2 Application of force and measurement

After adiabatically loading the ground state at qx = 0 for all the configurations,

we applied a constant force to the atoms, inducing a linear evolution of the crystal

momentum given by

Fx = h̄
dqx
dt
. (7.2)

To apply this force, we displaced the crossing beam of the ODT, such that

instead of being held at the potential minimum, the atoms were on an edge of

the Gaussian beam, with a locally linear optical potential. This displacement was

achieved by frequency shifting the AOM that controlled the split between the two

ODT orders (see fig. 7). Note that the ODT is far detuned and this frequency

shift of < 1 MHz had no effect on the trapping potential depth. This is shown

schematically in Figure 3. Figure 3a shows the atoms (indicated by a black dot)

at the minimum of the Gaussian crossing beam (potential in blue), with no force

applied. Figure 3b shows the beam displaced to the right relative to the atoms,

and the locally linear potential experienced by the atoms results in a positive force.

Similarly, in Figure 3c the beam is displaced to the left resulting in a negative force.

An example of the resulting evolution of the system is shown in Figure 4.

Figure 4a shows the lowest three bands of the Raman coupled synthetic dimensions

band structure in the F = 2 manifold, for our approximate experimental parameters

of V0 = 4.4EL, h̄Ω = 0.5EL, h̄δ = 0EL and h̄ε = 0.02EL. The starting point of the

BEC at qx = 0 is indicated by the black dot in the lowest band. The color indicates

the modal position m̄ along the synthetic direction. Modal position is a slight

variant on the magnetization used in sec. 6.2.2. The modal position was found

by taking the fractional populations nm in the different m sites at a given crystal

momentum, and fitting them to a Gaussian distribution. The peak of the Gaussian

distribution was taken as the modal position m̄. In this experiment, we use m̄ as the
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(a) F = 0 (b) F = |Fx| (b) F = −|Fx|

Figure 3: Application of a constant force by displacing a Gaussian beam potential.
(a) Atoms are at the minimum of the Gaussian potential, not experiencing a force.
(b) Beam is displaced to the right, atoms experience a local linear potential resulting
in a constant positive force. (c) Beam is displaced to the left, atoms experience a
local linear potential resulting in a constant negative force.

metric of location along es in favor of the more conventional magnetization given by

〈m〉 =
∑

mmnm to avoid the large uncertainties introduced in the magnetization

from number fluctuations in the extremal m = ±F sites.

We displaced the crossing ODT beam to one side to apply a positive force,

inducing motion to the right qx → qx > 0 in the band structure, for various amounts

of time ∆t inducing various changes in crystal momentum ∆qx. We then followed

the same measurement protocol as described in sec. 6.2.3: we abruptly turned off

the lattice, Raman or rf, and trapping ODT beams and allowed the atoms to expand

in time-of-flight for 16 ms, mapping initial momentum kx to position on the TOF

images. During TOF, we applied a 2 ms Stern-Gerlach gradient pulse of ≈ 39 G/cm

(80 A quad coil current), separating the atoms according to site m along an axis

perpendicular to ex. We therefore performed a hybrid measurment of momentum kx

along the longitudinal ex axis and single site resolved position m along the transverse

es direction.
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Figure 4: Band structure in a 5-site wide ribbon. (a) Band structure computed
using full Hamiltonian for a 4.4EL deep 1-D lattice (λL = 1064 nm), 0.5EL Raman
coupling strength (λR = 790 nm), and quadratic Zeeman shift ε = 0.02EL, giving
Φ/Φ0 ≈ 4/3, tx = 0.078(2)EL, ts = 2.3(1)tx. The color indicates modal position m̄.
The black dot indicates the initial loading parameters. (b) TOF absorption images
n(kx,m) for varying longitudinal crystal momenta qx.
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From these hybrid TOF images, we extracted the fractional population in each

site m. In addition, from the change in position along the momentum axis kx we

detected the crystal momentum ∆qx for each image, as shown in Figure 1c,d. We

therefore observed the evolution in the fractional populations and modal position as

a function of qx. Sample TOF images at different values of the crystal momentum are

shown in Figure 4, with different single-site resolved imaging along es represented

in the vertical direction, different m sites shaded in different colors, corresponding

to the colorbar in Figure 4a. Similarly, the ODT crossing beam was displaced to the

opposite side an equal amount, applying the same magnitude of force in the opposite

direction and including motion to the left qx → qx < 0 in the band structure. In this

way, we obtained a complete map of the fractional populations nm in each transverse

site m for each value of the longitudinal crystal momentum qx.

7.1.3 Density reduction

When force was applied to the atoms, their crystal momentum qx evolved, and

they were no longer confined to a minimum of the band structure. This opened up

the possibility for two-body collisions between the atoms that conserved the overall

momentum and energy of the pair while changing the crystal momentum of each

atom [116]. This lead to a smearing of the atoms along the crystal momentum axis,

obscuring the measurement.

To mitigate this problem, it was necessary to reduce the atomic density as

much as possible while retaining enough atoms to observe a signal. In addition to re-

shaping the ODT beam (see sec. 3.3.4.4), we also cut down the overall atom number

after creating the BEC before loading the synthetic dimensional lattice. Starting in

F = 1,mF = 0, we applied a microwave pulse resonant with the |F = 1,mF = 0〉 →

|F = 2,mF = −1〉 transition for 355 µs, until ≈ 80% of the atoms were transferred

to the F = 2 manifold. We then shined on the XZ probe beam to selectively blow
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away the F = 2 atoms, leaving ≈ 1000 atoms in the condensate.

7.1.4 Rf correction

For rf-coupled experiments, our loading procedure into the lowest band at

qx = 0 resulted in some latent non-adiabaticity that we could not get rid of or fully

explain. This non-adiabaticity resulted in oscillations in the fractional populations

nm as a function of time, even though the rf-coupled band structure predicts no

dependence of nm on qx. However, these oscillations were present as a function of

time even when no force was applied to the atoms, indicating that these variations

were dependent on time and on not qx. Therefore, we used data obtained with no

force applied to correct the time-dependent variation in data where the force was

applied.

Our correction procedure is shown in Figure 5. Figure 5a-c show the raw

fractional populations as a function of time for the case where a force was applied

to the right, to the left, and not at all, respectively. Note that the observed oscil-

lations are quite large, but consistent between the three cases. This implies that

whatever mechanism is causing these oscillations is a time dependent one and not

a consequence of any change in longitudinal crystal momentum qx.

To correct the data and extract the change in fractional populations caused by

varying qx, we first calculate the change in fractional population as a function of time

for the data with no force applied. This is given by ∆nF=0
m (t) = nF=0

m (t)− nF=0
m (0).

We then subtract this change from the data with force applied via nF 6=0,corrected
m (t) =

nF 6=0
m (t) − ∆nF=0

m (t). These corrected fractional populations as a function of time

are shown in Figure 5d,e for positive and negative force, respectively. In Figure 5f,

we have combined the corrected positive and negative force data and plotted it as

a function of crystal momentum, effectively mapping out the fractional populations

everywhere in the lowest band.
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Figure 5: Correction of oscillations in rf coupled data. (a,b,c) Raw fractional popu-
lations nm observed as a function of time ∆t with (a) positive force applied, (b) neg-
ative force applied, and (c) no force applied. (d,e) Corrected fractional populations
ncorrected
m with (d) positive force applied, (e) negative force applied. (f) Corrected

data as a function of crystal momentum for both force directions combined.
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7.2 Quantum Hall Effect interpretation

The measurement we performed is similar to a quantum Hall conductivity

measurement: we pierced a 2D material with an effective magnetic field, applied

a force (an electric field in a conventional quantum Hall setup), and observed a

transverse response. To draw a more direct analogy, we can describe the quantum

Hall effect(QHE) from the microscopic perspective.

7.2.1 Microscopic view of QHE

In the quantum Hall effect, a longitudinal force F‖, induced by an electric field

F‖ = eE‖, drives a transverse ‘Hall’ current density

j⊥ = σHE‖, (7.3)

where σH is the Hall conductivity. This transverse current density can be expressed

as

j⊥ = n2Dv⊥e, (7.4)

where n2D is the 2-D charge carrier density, v⊥ is the transverse velocity of the

charge carriers and e is the electron charge. Choosing some increment of time ∆t,

we can express v⊥ and F‖ as

v⊥ =
∆x⊥
∆t

, (7.5)

and

F‖ = h̄
∆q‖
∆t

, (7.6)

where q‖ is the crystal momentum along the direction of the force. Plugging this

into eqn. 7.3, we obtain

n2De
x⊥
∆t

= h̄
∆q‖
∆t

σH

e
(7.7)
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Re-expressing n2D in number of carriers N per plaquette, defining ∆x⊥ as transverse

displacement in units of lattice periods, we plug the above definitions into eqn. 7.3

to obtain

NG
∆x⊥
∆q‖

= σH
h

e2
, (7.8)

where G is the reciprocal lattice vector.

In addition, we know that the quantum Hall conductivity can be expressed in

terms of the Chern numbers Cn of the occupied bands n as

σH =
e2

h

∑
n

Cn. (7.9)

In the conventional case of Landau levels, where each Landau level has a Chern

number Cn = 1, this amounts to the number of filled bands ν, giving σH = νe2/h.

In our case, where the Chern number is not necessarily 1 and only the lowest band

is occupied, this instead reduces to the Chern number of the lowest band which we

will just call C, giving σH = Ce2/h. Plugging this into eqn. 7.8, we can write

NG
∆x⊥
∆q‖

= C (7.10)

Therefore, if we observe (as was done in our measurement) the ratio of trans-

verse displacement ∆x⊥ to the longitudinal crystal momentum ∆q‖, we should be

able to fit that to a line and directly extract the Chern number C.

7.2.2 Chern number from Hall conductivity

We used the prescription given in the previous section to extract a Hall con-

ductivity and therefore a Chern number from our data. The results for a 5-site

wide strip (F = 2) are shown in Figure 6a,b,c (top) for all values of flux studied:

Φ/Φ0 = 0, ≈ −4/3, and ≈ 4/3, respectively. We calculated the modal position
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Figure 6: Hall displacement. Top: modal position m̄ is plotted as a function of qx
for the 5-site ribbon with flux a. Φ/Φ0 = 0, b. Φ/Φ0 ≈ −4/3, c. Φ/Φ0 ≈ 4/3.
Gray circles depict the measurements; black dashed lines are the prediction of our
simple σ̃H and red curves are the expectation from the band structure of our thin
ribbon. Bottom: Extracted conductivity from the slope of a line of best fit to the
data (gray circles) and theory (red lines) as a function of maximum |qx| included in
the fit range, for each flux value. As discussed in sec. 7.1.4, the Φ/Φ0 = 0 data was
compensated to account for non-adiabaticity in the loading procedure.

m̄ (see sec. 7.1.2) of our atoms along es as a function of longitudinal crystal mo-

mentum qx. The data is represented by gray dots, with uncertainty bars reflecting

the propagated standard uncertainty from averaging six identical runs. For zero

flux Φ/Φ0 = 0 (Fig. 6a), m̄ was independent of qx; in contrast, for non-zero flux

Φ/Φ0 ≈ ±4/3 (Fig. 6b,c), m̄ depends linearly on qx with non-zero slope.

Here, the change in m̄ was a transverse displacement ∆x⊥. We fit the modal

position as a function of qx to a line (black dashes in the figure). From the slope of

the line, we used eqn. 7.10 to extract the Chern number. We obtained C = 0.01(1),

0.87(3), and −0.85(3) for zero, negative and positive flux respectively. This shows

the correct qualitative behavior, but differs significantly from expected values of

0,±1.
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7.2.3 Inadequacy for narrow systems

The red curves in Figure 6(top) show the expected behavior for our 5-site wide

system for adiabatic changes in qx as calculated from exact diagonalization of the

full Hamiltonian (see sec. 6.2.1), always within the lowest band (Fig. 4a), i.e., Bloch

oscillations. This theory predicts a nearly linear slope for small qx sharply returning

to m̄ = 0 at the edges of the Brillouin zone. A linear fit to this theory produces

σ̃H ≈ 0, 0.6, and −0.6 for zero, negative and positive flux respectively, far from the

Chern number. In addition, they differ significantly both from the data and from

the linear fit at the edges of the Brillouin zone.

This discrepancy is resolved by recalling that Bloch oscillations require adia-

batic motion, meaning no transition to higher bands can happen. This is possible

in the narrow system under study, but quickly becomes impossible as the size of the

system grows. This is illustrated in Figure 7. Figure 7a shows the band structure

of our 5-site (F = 2) strip, with parameters used in the experiment. Here, there

are non-negligible band gaps at the edges of the Brillouin zone between the lowest

and second bands. With a weak enough force, the atoms could traverse this region

slowly enough to be adiabatic with respect to this band gap. However, for a larger

system, such as the 41-site wide system whose band structure is shown in Figure

7b, these band gaps become negligibly small and adiabaticity is impossible.

The departure of the data in Fig. 6(top) from the adiabatic theory (red lines)

at the edges of the Brillouin zone indicates a partial break down of adiabaticity was

present in our data. However, it is not a complete breakdown as the data also differs

from the linear fit at the edges of the Brillouin zone. The data was somewhere in the

partially adiabatic regime, only possible for our narrow system. This made neither

the adiabtic theory, nor the linear fit assuming perfect non-adiabaticity, applicable

to our system. Therefore, the linear fit is not a good measure of the Chern number
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Figure 7: Band structure of the synthetic dimesnions lattice with flux Φ/Φ0 = −4/3.
(a) 5-site wide system with experimental parameters V0 = 4.4, h̄Ω = 0.5, h̄δ = 0,
and h̄ε = 0.02. There is a band gap between the first and second bands at the edge
of the Brillouin zone. (b) 41-site wide system with parameters V0 = 4.4, h̄Ω = 0.5,
h̄δ = 0, and h̄ε = 0 and no Clebsch-Gordan coefficients included. The band gap
between the first and second bands at the edge of the Brillouin zone is negligibly
small.
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for our system.

One might suspect that limiting the domain of the linear fit such that band

edge effects are excluded would still provide a good measure of the Chern number.

This is not the case, as can be seen in Fig. 6(bottom). Here, we plot the measured

Chern number for a linear fit to our data (grey) and the adiabatic theory (red) for

a limited range of crystal momenta qx. The range of the fit is plotted on the x

axis, ranging from only the center to the entire Brillouin zone. The slope of the

best fit line for non-trivial topologies (Φ/Φ0 6= 0), and thus the measured Chern

number, depends highly on the selected domain for both the theoretical (red) and

experimental (black) data, and the appropriate choice of range is ambiguous. We

conclude that for an extremely narrow system such as ours, a conductivity mea-

surement is insufficient for determining the Chern number at reasonable tunneling

strengths [117].

7.3 Measuring Chern number via Diophantine equation

To better identify the Chern number in our system, following theoretical

work [117–121], we leveraged the TKNN Diophantine equation (see sec. 1.1.5) to

determine the Chern number of our system. This equation states that for rational

flux Φ/Φ0 = P/Q (for relatively prime integers P and Q) the integer solutions s

and C to the Diophantine equation

1 = Qs− PC (7.11)

uniquely1 determine the Chern number C of the lowest band.

1Subject to the constraint |C| ≤ |Q|/2 [6, 22]. The integer s has no bearing on our argument,
but has been interpreted as the charge transported when the periodic potential is adiabatically
displaced [122,123].
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Figure 8: Chern number from the TKNN equation. (a). Lowest band energy within
the Brillouin zone in an extended 2-D system, where qx and qs are crystal momenta
along exand es, respectively. Top. Φ/Φ0 = 0. Middle. Φ/Φ0 = 1/3: Brillouin zone
shrinks by a factor of 3 and becomes 3-fold degenerate, distance between adjacent
energy minima spaced by 2kL/Q is labeled. Bottom. Φ/Φ0 = 2/5. (b). Fractional
population in each spin state in the lowest band at qs = 0. Top. Φ/Φ0 = 1/3.
Bottom. Φ/Φ0 = 2/5. A momentum shift along exof 2kL/Q is accompanied by
an integer number of spin flips C. A line connecting magnetic states separated by
2kL/Q, with slope C = 1 (top) and −2 (bottom), is indicated.

7.3.1 TKNN Diophantine equation in synthetic dimensions

Surprisingly, the TKNN equation (Eqn. 7.11) has a direct interpretation in

the physical processes present in our system. Although the Hofstadter Hamiltonian

in eqn. 7.1 is only invariant under m-translations that are integer multiples of

Q , a so-called “magnetic-displacement” by ∆m = 1 accompanied with a crystal

momentum shift ∆qx/2kR = P/Q leaves Eqn. 7.1 unchanged. Together, these

symmetry operations give a Q-fold reduction of the Brillouin zone along es, and add

a Q-fold degeneracy, as illustrated in Fig. 8a for Φ/Φ0 = 0, 1/3, and 2/5. Recalling

that the Brillouin zone is 2h̄kL periodic along ex, it follows that a displacement
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by 2kL/Q to the nearest symmetry related state involves an integer C magnetic

displacements, shown in Fig. 8b for Φ/Φ0 = 1/3 and 2/5, given by solutions to

2kLs− 2kRC = 2kL/Q, where s counts the number of times the Brillouin zone was

“wrapped around during the C vertical displacements. Because this is exactly the

TKNN equation (7.11), we identify C as the Chern number.

Both C and s directly relate to physical processes. First, each time the Bril-

louin zone is wrapped around implying a net change of momentum by 2h̄kL a

pair of photons must be exchanged between the optical lattice laser beams. Second,

each change of m by 1 must be accompanied by a 2h̄kR recoil kick imparted by

the Raman lasers as they change the spin state. This physical motivation of the

TKNN equation remains broadly applicable even for our narrow lattice, providing

an alternate signature of the Chern number.

7.3.2 Prescription for identifying Chern number

The prescription we used to identify the Chern number from our data and

theoretical calculations through the Diophantine equation argument is detailed in

Figure 9. Figure 9a shows the fractional populations in each m site as a function of

qx for a 3-site wide strip (F = 1 data) with flux Φ/Φ0 ≈ −4/3. Each of the fractional

populations (red, green, and blue representing m = −1, 0, and 1 respectively) was fit

to a parabola to extract the peak. These peak locations were interpreted as the band

structure minima corresponding to each m site. These points were then plotted as in

Figure 9c, with site m as a function of its maximizing crystal momentum qx. These

points were then fit to a line, whose slope was identified as the Chern number C. The

same prescription was used to obtain the theoretical predictions, as shown in Figure

9b,d. The theoretical fractional populations were obtained from the eigenvectors

corresponding to the lowest band of the full Hamiltonian, eqn. 6.2.1.
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Figure 9: Calculating Chern number. (a) Fractional populations in m = −1,0 and
1 sites (red, green, and blue respectively) as a function of qx for data taken in a
3-site wide strip (F = 1 data) with flux Φ/Φ0 ≈ −4/3. Dots represent data, lines
represent parabolic fits. (b) Theoretically calculated fractional populations for the
same system. (c) Site m as a function of maximizing qx from fits to data in (a).
Best fit line to the three points has a slope corresponding to the Chern number C.
(d) Site m as a function of maximizing qx from fits to theory in (b). Best fit line to
the three points has a slope corresponding to the Chern number C.
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7.3.3 Properties of the method

This prescription for identifying the Chern number in narrow system can only

be considered meaningful if it converges to the more traditional exact integer value

in the limit of an infinite system. We study the behavior of the Chern number, as

identified through the prescription defined in the previous section, as a function of

width along the synthetic direction es. We solve this in the tight binding limit in

momentum space along ex, eqn. 6.12. We also set the detuning h̄δ = 0, quadratic

shift h̄ε = 0, allowing us to drop the last diagonal term in eqn. 6.12. Additionally,

we neglect the variability in ts as a function m due to Clebsch-Gordan coefficients

by setting them to 1, assuming uniform coupling as in the Harper-Hofstadter Hamil-

tonian.

The resulting Chern number dependence on synthetic dimension size is pre-

sented in Figure 10a. Here, the flux Φ/Φ0 = −4/3, leading to an expected Chern

number of 1. We used a value of tunneling tx = 0.5EL and synthetic direction cou-

pling h̄Ω = 0.5EL. As seen in the figure, for narrow lattices the measured Chern

number differs from unity, but converges to unity as the system size grows. There

also appears to be a three distinct convergence curves, caused by the slightly differing

band structures depending on the number of sites modulo q.

We also study the dependence of the measured Chern number on the cou-

pling strength along the synthetic direction h̄Ω for lattice widths relevant to our

experiment—3 and 5 sites. We used the same Hamiltonian and parameter values

listed above. The results are shown in Figure 10b. In the limit of vanishing tunnel-

ing, both the 3 and 5-site wide Chern number converge to the exact integer value

of 1. This supports the hypothesis that deviation from unity at non-zero coupling

strengths is a consequence of the hybridization of edge states, which is facilitated

by stronger couplings.
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Figure 10: Chern number dependence on (a) system size and (b) coupling strength.

7.4 Results and conclusion

Figure 11 shows the full evolution of fractional population in each m site as

a function of crystal momentum qx in the lowest band, for all preparations studied

in the experiment: 3- and 5-site wide strips, with fluxes Φ/Φ0 = 0, ≈ ±4/3. The

black circles locate the peak of the fractional population in each spin state. From

these data, we extract the Chern number through the procedure described in the

previous section.

For the 3-site wide ribbon (F = 1 data), we measured a Chern number of

0.99(4),−0.98(5) for negative and positive flux respectively2, in agreement with the

exact theory which predicts ±0.97(1), with uncertainties reflecting fit uncertainty of

peak locations. For the 5-site wide ribbon, we measured 1.11(2),−0.97(4), close to

the theoretical prediction of ±1.07(1). The deviation from unity results from Φ/Φ0−

4/3 ≈ 0.01, a non-zero quadratic Zeeman shift, and ts > tx allowing hybridization

of the edge states [117].

2Our Chern number extraction scheme fails for the rf case as the fractional populations are flat
and there is no peak. We therefore assign a Chern number of 0 to flat distributions.
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Figure 11: Chern number measurement. Lowest band fractional population mea-
sured as a function of crystal momentum in the exand position in the es. Darker
color indicates higher fractional population. In the Raman-coupled cases, the points
represent the fitted population maxima and the Chern number is extracted from the
best fit line to those points. (a). 3-site (left) and 5-site (right) systems with posi-
tive flux. (b) 3-site (left) and 5-site (right) system with zero flux. (c). 3-site (left)
and 5-site (right) systems with negative flux. The parameters for 3-site data were
identical to those for 5-site data, see Fig. 6 a, except ts = 2.880(1)tx.
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Our direct microscopic observations of topologically driven transverse trans-

port demonstrate the power of combining momentum and site-resolved position

measurements. With the addition of interactions, these systems have been shown

to display chiral currents [124], and with many-body interactions are predicted to

give rise to complex phase diagrams supporting vortex lattices and charge density

waves [125–127]. Realizations of controlled cyclic coupling giving periodic bound-

ary conditions [61] along es could elucidate the appearance of edge modes as the

coupling between two of the three states is smoothly tuned to zero. In addition,

due to the non-trivial topology as well as the low heating afforded by synthetic di-

mensional systems, a quantum Fermi gas dressed similarly to our system would be

a good candidate for realizing fractional Chern insulators [128].
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Appendix A: Brownian motion of solitons in a Bose–Einsten Con-

densate
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We observed and controlled the Brownian motion of solitons.
We launched solitonic excitations in highly elongated 87Rb Bose–
Einstein condensates (BECs) and showed that a dilute background
of impurity atoms in a different internal state dramatically affects
the soliton. With no impurities and in one dimension (1D), these
solitons would have an infinite lifetime, a consequence of inte-
grability. In our experiment, the added impurities scatter off the
much larger soliton, contributing to its Brownian motion and
decreasing its lifetime. We describe the soliton’s diffusive behav-
ior using a quasi-1D scattering theory of impurity atoms interact-
ing with a soliton, giving diffusion coefficients consistent with
experiment.

soliton | Brownian motion | Bose–Einstein condensate | diffusion |
fluctuation dissipation

We studied the diffusion and decay of solitons in the
highly controlled quantum environment provided by

atomic Bose–Einstein condensates (BECs), where density max-
ima can be stabilized by attractive interactions [i.e., bright soli-
tons (1, 2)] or, as here, where density depletions can be sta-
bilized by repulsive interactions [i.e., dark solitons such as
kink solitons (3, 4) and solitonic vortices (5)]. By contaminat-
ing these BECs with small concentrations of impurity atoms,
we quantitatively studied how random processes destabilize
solitons.

Our BECs can be modeled by the one-dimensional (1D)
Gross–Pitaevski equation (GPE): an integrable nonlinear wave
equation with soliton solutions as excitations above the ground
state. For a homogeneous 1D BEC of particles with mass
mRb with density ρ0, speed of sound c, and healing length
ξ= ~/

√
2mRbc, the dark soliton solutions

ϕ(z , t) =
√
ρ0

[
i
vs
c

+
ξ

ξs
tanh

(
z − vs t√

2ξs

)]
[1]

are expressed in terms of time t , axial position z , soliton veloc-

ity vs , and soliton width ξs = ξ/
√

1− (vs/c)2. Such dark soli-

tons have a minimum density ρ0(vs/c)2 and a phase jump
−2 cos−1(vs/c), both dependent on the soliton velocity vs .
These behave as classical objects with a negative inertial mass
ms ≈− 4~ρ0/c, essentially the missing mass of the displaced
atoms. The negative mass implies that increasing the soliton veloc-
ity reduces its kinetic energy; thus, dissipation accelerates dark
solitons (6). This can be seen from the soliton equation of motion

−|ms |z̈ (t) = −γż (t)− ∂zV + f (t), [2]

where −γż is the friction force and V is the confining poten-
tial due to the mean-field effects of the condensate. The
random Langevin force f (t) has a white noise correlator
〈f (t)f (t ′)〉= 2γkBTδ(t − t ′), where T is temperature and
kB is Boltzmann’s constant. The connection between the fric-
tion coefficient γ and f (t) derives from the same microscopic

dynamics that yield the fluctuation–dissipation theorem for
positive mass objects—f (t) is responsible for Brownian motion,
whereas γ describes friction, but both have contributions from
impurity atoms.

Conventionally, the diffusion coefficient D is inversely pro-
portional to the friction coefficient: D ∝ 1/γ. For negative mass
objects, we show that the diffusion coefficient is instead pro-
portional to the friction coefficient D ∝ γ; this reflects that
friction is an antidamping force for negative mass objects.
The interplay between friction and confinement drives diffu-
sive behavior with linear-in-time variance in soliton position,
Var(z ) =Dt , the same Brownian motion present for positive
mass objects.

Solitons are infinitely long lived because of the integrability
of the 1D GPE. Integrability breaking is inherent in all physi-
cal systems—for example, from the nonzero transverse extent of
quasi-1D systems. Indeed, the kink soliton in 3D—the direct ana-
logue to the 1D GPE’s dark soliton solution—is only long-lived in
highly elongated geometries (7–9), where integrability breaking
is weak. Cold atom experiments have profoundly advanced our
understanding of soliton instability by controllably lifting integra-
bility by tuning the dimensionality (5, 10). Here, we studied the
further lifting of integrability by coupling solitons to a reservoir
of impurities.

Experimental System
Our system (11) consisted of an elongated 87Rb BEC, confined
in a nominally flat-bottomed time-averaged potential, created
by spatially dithering one beam of our crossed dipole trap. We
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prepared N = 8(2) × 105 atoms∗ in the |F = 1,mF = 0〉 inter-
nal state at T = 10(5) nK. Our system’s ≈ 250µm longitudi-
nal extent was approximately 30 times its transverse Thomas–
Fermi diameter 2R⊥ set by the radial trap frequency ωr =
2π × 115(2) Hz and chemical potential µ≈ h × 1 kHz. We con-
trollably introduced a uniform (12) gas of NI impurity atoms
in thermal equilibrium, with our BECs using an rf pulse reso-
nant with the |F = 1,mF = 0〉 to |F = 1,mF = +1〉 transition
before evaporation to degeneracy (13). This gave impurity frac-
tions NI /N from 0 to 0.062 in our final BECs.

We then launched long-lived solitonic excitations using a
phase-imprinting technique (3, 4. Because our trap geometry had
a finite transverse extent, quantified by the ratio µ/~ωr ≈ 9, pla-
nar kink solitons could be dynamically unstable and decay into
3D excitations (14). Our soliton’s initial velocity vs ≈ 0.3 mm/s,
approximately 1/5 the 1D speed of sound c ≈ 1.4 mm/s (15),
implies that it is in an unstable regime (6), where it will convert
from a planar kink soliton to a nearly planar solitonic vortex. For
highly anisotropic geometries such as ours, the density profile of
these two types of solitons is nearly the same—as given by the 1D
GPE—reflecting that they become formally indistinguishable at
large velocity (14).

We absorption-imaged our solitons after a sufficiently long
time-of-flight (TOF) that their initial width ξs ≈ 0.24µm
expanded beyond our ≈ 2µm imaging resolution. Fig. 1A shows
our elongated BEC with no soliton present, and, in contrast, Fig.
1B displays a BEC with a soliton taken 0.947 s after its inception.
The soliton is the easily identified density depletion sandwiched
between two density enhancements. We quantitatively identified
the soliton position as the minimum of the density depletion
from 1D distributions (Fig. 1 B, Right). Our phase-imprinting
process launched several excitations in addition to the soliton of
interest. After a few hundred milliseconds, the additional exci-
tations dissipated, and the remaining soliton was identified. By
backtracking the soliton trajectory, we were able to identify the
soliton, even at short times.

Fig. 1E shows a series of 1D distributions taken from time
t ≈ 0 s to 4 s after the phase imprint. These images show three
salient features: (i) The soliton underwent approximately sinu-
soidal oscillations; (ii) the soliton was often absent at long times;
and (iii) there was significant scatter in the soliton position. Items
ii and iii suggest that random processes were important to the
soliton’s behavior. The solitons’ position zi—when present—is
represented by the light pink symbols in Fig. 1D, and the darker
pink symbols mark the average position 〈zi〉 for each time t .

Coupling to Impurities
Having established a procedure for creating solitons, we turned
to the impact of coupling to a reservoir of impurities, thus fur-
ther breaking integrability. Fig. 2 displays the soliton position vs.
time for a range of impurity fractions. Adding impurities gave
two dominant effects†: further increasing the scatter in the soli-
ton position z and further decreasing the soliton lifetime. These
effects manifested as a reduced fraction fs of images with a soli-
ton present and an increase in the sample variance Var(z ) =∑

(zi − 〈z 〉)2/ (M − 1) computed by using the number M of
measured positions zi at each time.

Reduced Lifetime. The addition of impurities had a dramatic
impact on the soliton lifetime. Although we lack a quantita-

∗In our system, number fluctuations increased at the lowest trap depth (Materials and
Methods).
†The soliton oscillation frequency was slightly shifted with impurities resulting from

an unintentional change in the underlying optical potential. This change also slightly
reduced the BECs’ longitudinal extent.
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Fig. 1. Soliton oscillations. (A) An absorption image after a 19.3 ms TOF
of an elongated condensate without a soliton and a longitudinal density
distribution obtained by averaging over the remaining transverse direction.
(B) An absorption image and 1D distribution at time t = 0.942 s with a
soliton with ≈30% imaged contrast. (C) A subset of the data where each
1D distribution is a unique realization of the experiment plotted vs. time t.
Notice a soliton was often absent at longer times. (D) The axial position zi

of the soliton (light pink) vs. time t for different realizations of the experi-
ment. We repeated each measurement 8 times. Dashed lines represent the
edges of the elongated condensate. The dark markers represent the aver-
age soliton position 〈zi〉 at each time t. In A and B the longitudinal densities
are given in arbitrary units (a.u.).

tive model of the soliton’s decay mechanism, there are sev-
eral reasons to expect a finite lifetime. When dissipation is
present, solitons accelerate to the speed of sound and dis-
integrate. Furthermore, numerical simulations show that, in
anharmonic traps, solitons lose energy by phonon emission,
accelerate, and ultimately decay (16). All of these decay mech-
anisms can contribute to the soliton lifetime, even absent
impurities.

The added impurities act as scatterers impinging on the soli-
ton, further destabilizing it. This effect is captured in Fig. 3A,
showing the measured survival probability fs vs. time for a range
of impurity fractions. We fit to our data a model of the survival
probability

fs(t) = 1− 1

2
erfc

[− ln(t/τ)√
2σ

]
, [3]

essentially the integrated lognormal distribution of decay times,
suitable for decay due to accumulated random processes (17).
The survival probability fs(t) has a characteristic width param-
eterized by σ and reaches 1/2 at time τ , which we associate
with the soliton lifetime. Fig. 3B shows the extracted lifetime τ
vs. impurity fraction NI /N , showing a monotonic decrease. Our
maximum NI /N gives a factor of four decrease in lifetime τ .

2504 | www.pnas.org/cgi/doi/10.1073/pnas.1615004114 Aycock et al.



PH
YS

IC
S

-100

0

100

-100

0

100

43210

-100

0

100

-100

0

100

-100

0

100

time, t [s]

1.2% impurities

3.1% impurities

4.1% impurities

4.7% impurities

6.3% impurities

so
lit

on
 p

os
iti

on
, z

 [µ
m

]

Fig. 2. Impact of impurities. Here, we plot the position zi of the soliton
(light pink) vs. time t after the phase imprint for different impurity levels.
The dark pink markers represent the average position 〈zi〉 for each time t.
Dashed lines represent the endpoints of the condensate vs. t.

Soliton Diffusion. The second important consequence of adding
impurities was an increased scatter in soliton position z , remi-
niscent of Brownian motion. Indeed, as shown in Fig. 4B, this
scatter, quantified by Var(z ), increased linearly with time. We
obtained the diffusion coefficient D as the slope from linear
fits to these data and calculated D using a quasi-1D scattering
theory. The energy of the infinitely long 1D system is given by
the GPE energy functional

E [ϕ,ψ] =
∫ (

~2|∇ϕ|2
2mRb

+
~2|∇ψ|2

2mRb
+

g

2
|ϕ|2|ϕ|2 +

g ′

2
|ϕ|2|ψ|2

)
dz , [4]

describing the majority gas interacting with itself along with the
impurities with interaction coefficients g and g ′, respectively.
The fields ϕ and ψ denote the condensate and impurity wave
functions. Because the impurities are very dilute, we do not

include interactions between impurity atoms. A soliton (Eq. 1)
acts as a supersymmetric Pöschl–Teller (18, 19) potential for the
impurity atoms with exact solutions in terms of hypergeomet-
ric functions (20). Impurity scattering states with momentum kz
in the rest frame of the soliton are described by the reflection
coefficient

R(kz ) =
1− cos(2πλ)

cosh(2πkz ξ)− cos(2πλ)
, [5]

where λ(λ − 1) = g ′/g . In 87Rb, we have g ≈ g ′, giving λ≈ 1.5.
The scattering problem is fully characterized by R(kz ), and the
problem is reduced to that of a classical heavy object moving
through a gas of lighter particles.

To understand soliton diffusion over many experimental runs,
we studied their distribution function f (t , z , vs). We used a
kinetic equation equivalent to Eq. 2 with a stochastic force due to
elastic collisions with the impurity atoms and a harmonic confin-
ing potential V (z )≈− |ms |ω2x2/2, where ω=ωtrap/

√
2 is the

effective frequency (21, 22). In the limit of small soliton veloc-
ity (vs/c)2� 1, the time-dependent distribution function can be
calculated exactly (Materials and Methods). The kinetic equa-
tion has no stable solutions: Eventually, all solitons accelerate
and disappear. However, the timescale for acceleration is set by
Γ−1 = |ms |/γ, was many seconds in our experiment. In the limit
of Γt� 1 and Γ�ω, the variance in position grew linearly with
time and diffusive behavior emerges (i.e., Var(z )≈Dt). We cal-
culate the diffusion coefficient

D ≈ γ + γ0
|ms |ω2

(
kBT

|ms |
+

v2
i

2

)
, [6]

where vi is the soliton’s initial velocity. The offset γ0 accounts for
any diffusion present without impurities. The friction coefficient
γ is given by

γ =
2~
kBT

∑

m,l

∫ ∞

−∞

dkz
2π

k2
z

∣∣∣∣
∂ε

∂kz

∣∣∣∣R(kz )n(ε) [1 + n(ε)], [7]

an extension of ref. 23. εm,l(kz ) = ~2k2
z /2mRb+~2j 2m,l/2mRbR

2
⊥

is the impurities’ quasi-1D dispersion along with quantized states
in the radial direction, described by Bessel functions. We account
for radial confinement by summing over quantum numbers m
and l . n(ε) is the Bose–Einstein distribution for impurity atoms‡.

Fig. 4B plots D measured experimentally (markers) and com-
puted theoretically (curves; colored for different temperatures)
as a function of NI /N . The theory provides rather accurate esti-
mates of the experimentally observed diffusion coefficient, with a
single fitting parameter given byγ0 = 5.32×10−4 mm2/s.γ0 is set
by the diffusion coefficient at NI /N = 0, where D is suppressed
in agreement with our theory. Diffusion at zero impurity concen-
tration could be due to a number of factors, including scattering
of thermal phonons from the soliton, as well as trap anharmonic-
ity (6, 16). In our quasi-1D system, the soliton is not reflectionless
to phonons in the majority gas as it would be in 1D.

Conclusion and Outlook
Our data show that added uncondensed impurity atoms con-
tribute to soliton diffusion; however, the soliton lifetime falls
monotonically with increasing impurity fraction, even when the
additional impurities all enter the condensate. We speculate
that this might arise from two independent effects: (i) A static
soliton forms a potential minimum for impurity atoms, imply-
ing that, after some time, impurities will congregate in these

‡In our model, the condensed atoms do not contribute to the stochastic force underlying
diffusion because they are all in the ground state. The impurity atoms are condensed
for impurity fraction & 0.2%; thus, the number of thermal impurity atoms is constant,
leading to constant friction coefficient.
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minima (7), broadening and destabilizing the soliton; or (ii)
because the soliton moves in excess of the speed of sound for the
impurity atoms, even condensed atoms can reflect from the mov-
ing soliton. Although this coherent reflection process would not
add to diffusion, it would transfer momentum, thereby increas-
ing the apparent damping coefficient and thereby reducing the
soliton lifetime. This latter model predicts a reduction of life-
time qualitatively similar to, but quantitatively in excess of, that
observed in experiments.

Solitons in spinor systems with impurity scatterers is an excit-
ing playground for studying integrability breaking and diffusion
of quasiclassical, negative-mass objects. Our observed reduction
in soliton lifetime with increasing impurity fraction is in need of a
quantitative theory. For the case of no impurities, there is a fur-
ther open question for both theory and experiment of whether
friction and diffusion can be present, even in the case of pre-
served integrability, for example, due to non-Markovian effects,
as was recently discovered for bright solitons (24). Future exper-
iments could study the impact of different types of impurities on
soliton dynamics by introducing impurities of a different atomic
mass. Lastly, mixtures with tunable interactions could freely tune
the amount of impurity scattering, offering an additional way to
change D .

Materials and Methods
BEC Creation. We created BECs in the optical potential formed by a pair of
crossed horizontal laser beams of wavelength λ = 1064 nm (11). The beam
traveling orthogonal to the elongated direction of the BEC was spatially
dithered by modulating the frequency of an acoustic-optic modulator at a
few hundred kHz. This created an anharmonic, time-averaged potential. To
reach the extremely cold temperatures necessary to realize long-lived soli-
tons, we evaporated to the lowest dipole trap depth in which our technical
stability allowed us to realize uniform BECs.

Temperature Measurement. We measured temperature below the major-
ity atom’s condensation temperature Tc = 350 nK by removing the major-
ity atoms and fitting the TOF expanded impurity atoms to a Maxwell–
Boltzmann (MB) distribution (13). Once the temperature was below Tc for
the impurity atoms, MB fits systematically underestimated the tempera-
ture. Fitting the small number of impurity atoms to a Bose distribution was
technically challenging due to low signal-to-noise ratio and the addition of
another free parameter, the chemical potential. To limit the number of free
parameters, we performed a global fit on the different impurity fractions,
where we constrained the chemical potential µ to be negative. This pro-
vided an estimate of the temperature with large uncertainties. We found
for our usual operating parameters, and, based on information from both
temperature measurements, T = 10(5) nK.

Impurity Characterization. We used a Blackman enveloped rf pulse at a
∼ 9 G magnetic field to transfer the |F = 1, mF = 0〉 atoms primarily to the
|F = 1, mF = + 1〉 internal state (25). We varied the impurity fraction by tun-
ing the rf amplitude. Even though the fraction of impurity atoms before
evaporation determined the fraction after evaporation, they were not equal
due to more effective evaporation of the minority spin state (13). We
characterized the impurity fraction through careful, calibrated absorption
imaging with a Stern–Gerlach technique during TOF to measure the relative
fraction of the impurity atoms after evaporation.
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Fig. 4. Brownian diffusion constant dependence on impurities. (A) An
example for the linear fit of Var(z) vs. t for 1.2% impurities. Data are binned
into 0.36-s bins; the uncertainties are the sample SD. (B) The diffusion coef-
ficient D vs. impurity fraction NI/N. The experimental results (markers) are
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rials and Methods for an explanation of uncertainty in NI/N. The theory
curves (solid and dashed curves) plot the calculated D for our measured
temperature.
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Soliton Creation. We applied a phase shift to half of a condensate by
imaging a back-lit, carefully focused razor edge with light red detuned
by ≈ 6.8 GHz from the D2 transition for 20 µs.

Scattering Theory of Impurities. Minimizing Eq. 4 with respect to ϕ∗, ψ∗

gives the coupled equations of motion

i~∂tϕ(z, t) = − ~2

2mRb
∂

2
zϕ(z, t) + g|ϕ|2ϕ+

g′

2
|ψ|2ϕ, [8]

i~∂tψ(z, t) = − ~2

2mRb
∂

2
zψ(z, t) +

g′

2
|ϕ|2ψ. [9]

In the experiment, we observed that the soliton remained stable for long
times in the presence of impurities. Therefore, we neglect the last term of
Eq. 8, giving the well-known solitonic solution in Eq. 1. We seek a solution
for the impurity wavefunction ψ(z) in the soliton rest frame. In the radial
direction, the single-particle wave functions are the usual Bessel functions
for a particle in a cylindrical well. For ψ(z), we combine Eqs. 1 and 9 with
ψ(z, t) = e−iEzt/~eimRbvsz′/~ψ(z′). This gives a Schrödinger equation with a
Pöschl–Teller potential (18, 20),

∂2ψ(z′)

∂z′2
+

[
γ2

s λ(λ− 1)

cosh2(γsz′)
+ k2

z

]
ψ(z′) = 0. [10]

The dimensionless parameters are z′ = (z − vst)/
√

2ξ, k2
z = 4mRbξ

2/

~2
(

Ez + mRbv2
s /2− g′ρ0/2

)
, λ(λ − 1) = 2mRbξ

2g′ρ0/~2 = g′/g, and γs =
√

1− (vs/c)2. g and g′ are the effective 1D interaction parameters after
integrating over the transverse degrees of freedom in ψ and ϕ. Because the
transverse wave functions are different, in general, g′/g . 1. However, R(kz)
is periodic in g′/g (through λ), and small variations in this parameter do not
strongly affect the result. Solving for ψ(z′) and the scattering matrix then
gives R(kz) Eq. 5. For λ≈ 1.5, this potential also has a single, shallow bound
state. Occupation of the bound state by an impurity atom can only occur
through three body collisions (two impurity atoms and soliton), scenarios
that we did not consider here.

Kinetic Theory of the Soliton. To define a diffusion coefficient, we studied
the distribution function of many solitons, f(t, z(t), vs(t)) (corresponding to
many experimental runs). The distribution function of solitons follows a
Boltzmann equation with a collision integral in Fokker–Planck form

df

dt
=

∂

∂p

(
Af + B

∂f

∂p

)
, [11]

where A and B are the drift and diffusion transport coefficients, and the
left-hand side is a total time derivative. For vs� c, we can write A≈ γvs and
B ≈ γkBT , where vs is the soliton velocity and γ is the friction coefficient
given in Eq. 7. Finally, we write the soliton momentum as p = −|ms|vs (23).
The kinetic equation then takes the form

∂f

∂t
+ vs

∂f

∂z
=

∂

∂vs

(
−Γvsf −

∂zV

|ms|
f + Γv2

th
∂f

∂vs

)
, [12]

where Γ = γ/|ms| and v2
th = kBT/|ms| is the thermal velocity. This equa-

tion can be solved analytically by using the method of characteristics in
the case of a harmonic potential V(z) =− |ms|ω2z2/2. The solution is the
time-dependent distribution function f(t, z, vs), parametrized by functions

gi(t, ω), with Gaussian form

f(t, z, vs) =
1

2π
√

4g1g3 − g2
2

exp

{
− 1

4g1g3 − g2
2

[
g1v2

s + g3z2

+ g2vsz + vivs(g2g4 + 2g1g5) + viz(g2g5 + 2g3g4)

+v2
i (g3g2

4 + g1g2
5 + g2g4g5)

]}
. [13]

where vi is the soliton initial velocity and functions gi(t, ω) are given by

g1(t, ω) =
1 + 4ω2(et − 1)− et [cos(tω̄) + ω̄ sin(tω̄)]

2ω2ω̄2
[14]

g2(t, ω) = − 2et

ω̄2
[1− cos(tω̄)] [15]

g3(t, ω) =
1 + 4ω2(et − 1) + et [ω̄ sin(tω̄)− cos(tω̄)]

2ω̄2
[16]

g4(t, ω) = − 2et/2

ω̄
sin
(

tω̄

2

)
[17]

g5(t, ω) = − et/2

ω̄

[
sin
(

tω̄

2

)
+ ω̄ cos

(
tω̄

2

)]
, [18]

where we work in dimensionless units t→ t/Γ, ω→ωΓ, vs→ vthvs, z →
vthz/Γ, and ω̄=

√
4ω2 − 1. Eq. 12 does not have a stable solution where

∂f/∂t→ 0, due to the fact that the soliton is inherently unstable. The solu-
tion given in Eq. 13 is valid for vs� c. Finally, we calculate the variance in
soliton position, Var(z)(t) =

∫
dvs
∫

dz z2f(t, z, vs) = 2g1 + v2
i g2

4, finding the
exact expression (with restored units)

Var(z)(t) =
4v2

th(eΓt − 1)

4ω2 − Γ2
+

4v2
i eΓt

4ω2 − Γ2
sin2

(
tω̄

2

)

+
v2

thΓ2eΓt

ω2(4ω2 − Γ2)

[
1− eΓt

(
cos(tω̄) +

ω̄

Γ
sin(tω̄)

)]
[19]

where ω̄ =
√

4ω2 − Γ2. In the limits Γt � 1, Γ � ω, we find diffusive
behavior Var(z)≈D(t)t, with the time-dependent diffusion coefficient

D(t) ≈ v2
thΓ

ω2
+

v2
i Γ

ω2
sin2

(
tω̄

2

)
. [20]

Setting sin2(tω̄/2) ≈ 1/2, we find the diffusion coefficient D presented in
Eq. 6. We note that in the limit Γt � 1, ω → 0, we have Var(z) ∝ Γt3—the
variance has no linear in t dependence, and the soliton undergoes ballistic
motion, followed by exponential increase of Var(z) and soliton death§.
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We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest
Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized
pumping set by the global—topological—properties of the bands. In contrast, our geometric charge pump
for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by
local—geometrical—properties of the band structure. Like topological charge pumps, for each pump cycle
we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave
packet’s position in each unit cell, i.e., the polarization.

DOI: 10.1103/PhysRevLett.116.200402

Ultracold atoms in optical lattices provide a unique
setting for experimentally studying concepts that lie at
the heart of theoretical condensed matter physics, but are
out of reach of current condensed matter experiments.
Here, we focus on the connection between topology,
geometry, and adiabatic charge pumping [1–7] for Bose-
Einstein condensates (BECs) in cyclically driven lattice
potentials.
Particles in periodic potentials form Bloch bands with

energy ϵnðqÞ and eigenstates jΨnðqÞi ¼ expðiqx̂ÞjunðqÞi
labeled by the crystalmomentumq alongwith the band index
n. The states juni retain the underlying periodicity of the
lattice, set by the unit cell size a. Motion in lattices is
conventionally understood in terms of these bands: metals
arematerialswith partially filled bands,while insulators have
completely filled bands. In this context, a topological charge
pump is a counterintuitive device, where charge motion—
conduction—accompanies the adiabatic and cyclic drive of
an insulating lattice’s parameters. Thouless showed that this
conduction is quantized, completely governed by the band
topology [8,9]. Although various charge pumps have been
realized in condensed matter devices—such as modulated
quantum dots [10–12], one-dimensional (1D) channels
driven by surface acoustic waves [13], and superconducting
qubits [14]—Thouless pumps remain unrealized in con-
densed matter settings but have been demonstrated in recent
experiments with cold-atom insulators [15,16].
Here, we break from this established paradigm for

insulators and create a quantum charge pump for a BEC
in a 1D lattice [17–19] occupying a single crystal momen-
tum state q. This charge pump gives nonquantized motion
sensitive to the Berry curvature at q integrated over the
whole pump cycle, a local geometric quantity, rather than a
global topological quantity. Berry curvatures play an
important role in condensed matter systems. An iconic

example is the integer quantum Hall effect, where the
electrons acquire an anomalous transverse velocity propor-
tional to the Berry curvature and the quantized Hall
conductance is given by the Berry curvature integrated
over the whole two-dimensional (2D) Brillouin zone (BZ)
[20]; recent cold-atom experiments in 2D have measured
such curvatures integrated over part [21,22] or all [23] of
the BZ. In an analogous way, 1D lattice systems, driven
cyclically in time t, have a generalized Berry curvature
defined on the 2D effective BZ in q, t space. This curvature
is the source of an anomalous velocity [24], utilized to drive
an adiabatic quantum pumping process.
The Rice-Mele model [25–28] of a bipartite lattice with a

unit cell consisting of A and B sites is the paradigmatic
system for understanding quantum pumps. The
Hamiltonian for this tight-binding model is

ĤRM ¼ −
X

j

½ðtþ δtÞb̂†j âj þ ðt − δtÞâ†jþ1b̂j þ H:c:�

þ Δ
X

j

ðâ†j âj − b̂†j b̂jÞ; ð1Þ

where â†j and b̂†j describe the creation of a particle in unit
cell j and sublattice site A or B, respectively. The nominal
tunneling strength t is staggered by δt, and the sublattice
sites are shifted in energy by Δ.
We investigated quantum pumping in a novel 1D (along

ex) bipartite magnetic lattice (building on Refs. [29,30])
that in effect allowed independent control of t, δt, andΔ. As
shown in Figs. 1(a) and 1(b), our magnetic lattice for 87Rb
arose from the interplay of one rf and two Raman fields that
coupled the jf ¼ 1;mF ¼ �1; 0i “spin” states comprising
the f ¼ 1 ground state hyperfine manifold, which were
Zeeman split by ℏωZ. The natural units of momentum and
energy are given by the single photon recoil momentum
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ℏkR¼2πℏ=λR and its corresponding energy ER¼ℏ2k2R=2m,
where m is the atomic mass. In the frame rotating at the rf
frequency δω and under the rotating wave approximation,
the combined rf-Raman coupling lead [31] to the overall
Hamiltonian

Ĥ ¼ ℏ2k̂2x
2m

þ Ωðx̂Þ · F̂þ ĤQ; ð2Þ

where F̂ is the total angular momentum vector operator. We
interpret Ωðx̂Þ ¼ ½Ωrf cosðϕÞ þ Ω̄ cosð2kRx̂Þ;−Ωrf sinðϕÞ−
δΩ sinð2kRx̂Þ;

ffiffiffi
2

p
δ�= ffiffiffi

2
p

as a spatially periodic effective
Zeeman magnetic field, in which Ωrf is the rf coupling
strength; Ω̄ ¼ Ωþ þ Ω− and δΩ ¼ Ωþ −Ω− are derived
from the individual Raman coupling strengths Ω�; δ ¼
δω − ωZ is the detuning from Raman-rf resonance; and ϕ is
the relative phase between the rf and Raman fields.
Additionally, HQ ¼ −ϵðℏ2Î − F̂2

zÞ=ℏ describes the quad-
ratic Zeeman shift, where Î is the identity operator.
This spatially varying effective magnetic field produces a

1D bipartite lattice [2,32] with lattice constant a ¼ λR=2
and with adiabatic (Born-Oppenheimer) potentials depicted
in Fig. 1(c). This magnetic lattice is most easily concep-
tualized for small δΩ: the Ω̄ cosð2kRx̂Þ term provides

periodic potentials for the jmx ¼ �1i states spatially
displaced from each other by a=2 [dashed curves in
Fig. 1(c)]; the resulting mx ¼ �1 sites are then staggered
in energy, giving Δ ≈ Δmax cosðϕÞ, with Δmax ¼ Ωrf=

ffiffiffi
2

p
.

The Ωy term couples these sublattices together: the rf
term −Ωrf sinðϕÞ generates constant height barriers
(largely specifying t), which become staggered by the
−δΩ sinð2kRx̂Þ contribution (largely specifying δt).
Figure 1(d) plots the energies of the resulting lowest two

bands as a function of ϕ (modulating Δ cosinusoidally).
Although our lattice is not in the tight-binding limit, the
band structure qualitatively matches that of the Rice-Mele
model. In the remainder of this Letter, we focus on the
lowest band n ¼ 0 and henceforth omit the band index.
As illustrated by the shading in Fig. 1(c), in each unit cell

the sublattice sites are labeled by their F̂x spin projection
with the jmx ¼ −1i site on the left and jmx ¼ þ1i site on
the right. To confirm this, we adiabatically loaded
jmz ¼ −1i BECs into the lattice’s ground state by simul-
taneously ramping the detuning from 5ER to 0 while
ramping on the coupling fields in 10 ms. Following
preparation, our measurement sequence began with a
π=2 spin rotation along ey, allowing us to measure the
eigenstates of F̂x in our F̂z measurement basis. We
achieved this π=2 rotation (rot) with a 44 μs pulse from
an additional rf field with phase ϕrot ¼ π=2 and strength
ℏΩrf;rot ¼ 2.2ER, applied while the Raman coupling was
greatly reduced (Ω̄ ≪ Ωrf;rot) and the lattice rf coupling was
off (Ωrf ¼ 0). We then abruptly removed the remaining
control fields along with the confining potential and
absorption imaged the resulting spin-resolved momentum
distribution after a 20 ms time-of-flight period in the
presence of a magnetic field gradient along ey.
Figure 2 shows the measured F̂x spin composition [33]

and magnetization for adiabatically loaded BECs as a
function of ϕ with δΩ ¼ 0. Because ΔðϕÞ controls the
relative depth of the jmx ¼ �1i wells, we observe ground
state spin populations that follow this “tilt.” For example,
when ϕ ¼ 0 or π the double well is strongly tilted and we
observe the near perfect spin magnetization, consistent with
atoms residing in the individual sublattices; in contrast,
when ϕ ¼ π=2, the double wells are balanced and we
observe equal populations in each jmxi state as expected for
equal occupancy of both sublattices. Thus, the magnetiza-
tion [Fig. 2(b)] measures the mean atomic position within
each unit cell, i.e., the polarization.
Having constructed a physical realization of the Rice-

Mele model, and demonstrated the requisite control and
measurement tools, we now turn our attention to topological
and geometrical charge pumping. These fundamentally
quantum mechanical effects rely on the canonical commu-
tation relation between position and momentum. Consider
a finite wave packet with a center of mass (c.m.) position
hxi ¼ hΨjx̂jΨi, subject to a lattice Hamiltonian Ĥ that is

FIG. 1. Bipartite magnetic lattice. [(a) and (b)] Dipole trapped
87Rb BECs subject to a bias magnetic field B0ez had a
Zeeman splitting ωZ=2π ¼ 0.817 MHz and a quadratic shift
ℏϵ ¼ 0.03ER. These BECs were illuminated by four Raman
beams and an rf magnetic field. Each of the two Raman couplings
(strengthsΩ�) was derived from two cross-polarized Raman laser
beams with frequency components ω and ωþ δω. (c) Adiabatic
potentials colored according to hmxi computed for ℏðΩ̄;Ωrf ; δÞ ¼
ð6; 2.2; 0ÞER, δΩ=Ω̄ ¼ −0.1, and ϕ ¼ π=4. The dashed curves
plot the�ℏΩx contributions to the potential experienced by states
jmx ¼ �1i. (d) Lowest two energy band energies plotted as a
function of ϕ, otherwise with the same parameters as (c).
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adiabatically modulated with period T, i.e., ĤðtÞ ¼
Ĥðtþ TÞ. After one cycle, any initial crystal momentum
state is transformed, jΨðqÞi → exp½iγðq̂Þ�jΨðqÞi, at most
acquiring a phase, where q̂ is the crystal momentum
operator; this defines the single-period evolution operator
ÛT ¼ exp½iγðq̂Þ�. The time-evolved position operator
Û†

Tx̂ÛT ¼ x̂ − ∂ q̂γðq̂Þ is displaced after a single pumpcycle.
The displacement is particularly simple in two limits:

when just a single crystal momentum state is occupied or
when every crystal momentum state in the BZ,
−π=a ≤ q < π=a, is occupied with equal probability. As
for our BEC, when a single jq0i state is occupied the
displacement is Δxðq0Þ ¼ −∂qγðqÞjq0 . Both the dynamical
(D) phase γDðqÞ ¼ −ϵ̄ðqÞT=ℏ from the time-average energy
ϵ̄ðqÞ and the geometric Berry (B) phase γBðqÞ ¼
i
R
T
0 huj∂tuidt contribute to γðqÞ ¼ γDðqÞ þ γBðqÞ. In agree-

ment with conventional descriptions [18,24,27], this predicts
a mean velocity v̄ðqÞ ¼ ∂qϵ̄ðqÞ=ℏ − T−1

R
T
0 Fðq; tÞdt. The

first term is the usual group velocity and the second term—
the anomalous velocity—derives from the Berry curvature
Fðq; tÞ ¼ iðh∂quj∂tui − h∂tuj∂quiÞ. In our experiment, the
BEC occupied the minimum of ϵðq; tÞ at q ¼ 0 during the
whole pump cycle giving ∂qϵ̄ðqÞ ¼ 0, so only the geometric
phase γBðqÞ contributed to the per-cycle displace-
ment Δxðq ¼ 0Þ ¼ −

R
T
0 Fðq ¼ 0; tÞdt.

In the contrasting case of a filled band, the average group
velocity is also 0 and the displacement is Δx ¼
−a

R
BZ ∂qγBðqÞdq=2π; this is often expressed as Δx ¼

a
R
T
0 ∂tγZakðtÞdt=2π. The Zak phase γZak¼ i

R
BZhuj∂quidq,

a topological property of 1D bands, is the Berry’s phase
associated with traversing the 1D BZ once, in the same way
that γBðqÞ is a Berry’s phase taken over a pump cycle.

Our lattice’s Zak phase is plotted in Fig. 3(a); this Zak
phase is qualitatively indistinguishable from that of the
Rice-Mele model, with singularities at ϕ ¼ �π=2 and
δΩ ¼ 0, signaling topological phase transitions across
these points. For filled band experiments, pumping trajec-
tories encircling these points give quantized charge pump-
ing [15,16]. Figure 3(b) shows the richly structured Berry
curvature Fðq ¼ 0;ϕÞ relevant to our experiment, which is
explored next.
For our charge pump experiments, we linearly ramped

the pump control parameter ϕðtÞ ¼ 2πt=T, effectively
modulating the lattice potential in two qualitatively differ-
ent regimes (separated by a critical jδΩ=Ω̄j ≈ 0.63). In the
first [Fig. 3(c), left panel] the sublattice sites rise and fall
but the local potential minima are essentially fixed in space;
in the second [Fig. 3(c), right panel] each minimum is only
present for part of the pump cycle (the potential appears to
“slide” by �a per cycle). As these schematics imply, the
associated pumping process gives either no displacement or
a quantized per-cycle displacement �a for classical tra-
jectories [34]. In quantum systems, however, geometrical

FIG. 2. Ground state spin projections. (a) Ground state spin
projections at various ϕ along with the predicted populations for
ℏðΩ̄; δΩ;Ωrf ; δÞ ¼ ð4.4; 0; 2.2; 0ÞER. The associated adiabatic
potentials [insets in (b)] have minima with spin projection
following the observed population’s trends. (b) Magnetization
derived from data in (a).

FIG. 3. Band geometry and topology computed for
ℏðΩ̄;Ωrf ; δÞ ¼ ð6; 2.2; 0ÞER. [(a) and (b)] Zak phase and q ¼ 0

Berry curvature showing the dependence on both δΩ=Ω̄ and ϕ. In
(b), the arrows show experimental charge pump trajectories in
Fig. 4(b). (c) Adiabatic potentials (displaced vertically for clarity)
computed for a range of ϕ constituting a complete pump cycle at
δΩ=Ω̄ ¼ −0.4 (left panel) and −0.8 (right panel). Filled circles
mark the local energy minima.
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pumping is controlled by the Berry curvature, giving
nonquantized per-cycle displacements that can, in princi-
ple, take on any value.
We studied adiabatic charge pumping in this lattice in

two ways: in the first we observed the F̂x magnetization,
giving the polarization within the unit cells, and in the
second we directly measured the displacement Δx of our
BEC. In both cases we loaded into the lattice’s ground state
and linearly ramped ϕ ¼ 2πt=T, driving the Hamiltonian
with period T [34]. As shown in Fig. 4(a), the magneti-
zation oscillated with the T ¼ 2 ms period, demonstrating
the periodic modulation of polarization per cycle. In good
agreement with our data, the solid curves in Fig. 4(a) show
the predicted behavior given our known system parameters.
This agreement persists to long times: for example, after 50
pumping cycles (for t ¼ 100 ms to 110 ms) the contrast is
unchanged, confirming the adiabaticity of the process [34].
Lastly, we performed a charge pumping experiment by

directly measuring the cloud’s position in situ for a range
of δΩ=Ω̄. We obtained in situ density distributions
using partial-transfer absorption imaging [35] in which
≈6.8 GHz microwave pulses transferred ≈5% of the atoms
from jf;mzi ¼ j1;−1i to j2; 0iwhere they were absorption
imaged. This technique allowed us to repeatedly measure
the in situ density distribution for each BEC. Each observed
displacement was derived from differential measurements
of the cloud position taken just before and just after the
pumping process, rendering our observations insensitive to
micron-level drift in the trap position between different
realizations.
Figure 4(b) shows data taken for δΩ=Ω̄ ¼ 0.7, 0, and−0.7

along trajectories i, ii, and iii, respectively, with both
increasing and decreasing phases. Our data display two
expected symmetry properties. First, since the displacement
Δxðq ¼ 0Þ ¼ −

R
Fðq;ϕÞdϕ depends on the sign of the

acquired phase, the direction of motion is reversed when the
ramp direction is inverted. Second, as shown in Fig. 3(b),

Fðq ¼ 0;ϕÞ is an odd function of δΩ=Ω̄, so the direction of
motion is also reversed when δΩ=Ω̄ → −δΩ=Ω̄. Thus,Δx is
an odd function of both ϕ and δΩ=Ω̄, and as expected we
observe no motion when δΩ=Ω̄ ¼ 0.
The displacement was markedly nonlinear when the

pumping time became comparable to our trap’s 80 ms
period, showing the influence of the confining potential
[36]. We included the harmonic potential in our real-space
simulations by directly solving the time-dependent
Schrödinger equation for our system [37]. The simulated
results [Fig. 4(b), solid curves] agree with our observations.
To extract the per-cycle displacement due to geometric
pumping, we fit the sinusoidal predictions of our model to
each data trace, with only the overall amplitudes and a
small vertical offset as free parameters, giving the short-
time per-cycle displacement [34]. Figure 4(c) shows these
per-cycle displacements for a range of Raman imbalances.
The in situ cloud typically had a Thomas-Fermi radius of

30 μm, corresponding to a small momentum width of
0.004kR for our BEC. We estimated the thermal fraction
to be ≈5% given by our ≈20 nK temperature (momentum
width of 0.24kR). Moreover, the per-cycle displacement is
nearly independent of q for jqj < 0.25kR [34]. These allow
us to compare the data with the expected displacement from
integrating q ¼ 0 Berry curvature [Fig. 4(c), solid line],
showing an excellent agreement and confirming the geo-
metric origin of our quantum charge pump.
Our magnetic lattice enables new experiments with 1D

topological lattices. Berry curvatures at q ≠ 0 can be
probed by performing the charge pump pairwise at �jqj
(for example, prepared via Bloch oscillations [38]). The
dynamical phases in these cases are opposite and therefore
cancel while Berry curvatures (even in q) contribute
equally to the displacements [34]. Furthermore, protected
edge states, a hallmark of topological systems, are present
at the interface between regions characterized by different

FIG. 4. Geometric charge pumping. (a) Magnetization measured while linearly ramping ϕ with period T ¼ 2 ms, along with the
prediction for ℏΩ̄ ¼ 6.38ð2ÞER, ℏδΩ ¼ 4.50ð2ÞER, and ℏΩrf ¼ 2.20ð3ÞER. (b) Displacement plotted versus ϕ=2π (number of pump
cycles). Trajectories i–iii are taken at δΩ=Ω̄ ¼ 0.7, 0, and −0.7, respectively; in each case ℏΩ̄ ≈ 6ER and ℏΩrf ¼ 2.20ð3ÞER. Solid
curves: simulation of a charge pump in the trap. The small displacement near ϕ ¼ 0 is introduced by our loading procedure.
(c) Measured displacement Δx per pump cycle (symbols), along with the prediction obtained by integrating the Berry curvature over our
pumping trajectory (solid curve). The uncertainty bars represent the 95% confidence interval.
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topological invariants [39–41]. Since in our lattice the
topological index is set by the rf phase, a bulk topological
junction can be generated by replacing the rf field with an
additional copropagating pair of Raman laser beams in
which just one beam has an abrupt π phase shift in its
center. This provides a static model of the soliton excitation
mode in polyacetylene [25,42]. Terminating our lattice with
hard-wall boundaries gives rise to similar end states—
somewhat analogous to Majorana fermions in 1D topo-
logical superconductors [40,43]—with a spin character.
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and T. Vekua. Spontaneous increase of magnetic flux and chiral-current

reversal in bosonic ladders: Swimming against the tide. Phys. Rev. Lett.,

115:190402, Nov 2015.

[126] S. Greschner, M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, U. Schollwöck,
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