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Abstract
Physical systemswith non-trivial topological order find direct applications inmetrology (Klitzing et al
1980Phys.Rev. Lett. 45 494–7) and promise future applications in quantum computing (Freedman
2001 Found. Comput.Math. 1 183–204; Kitaev 2003Ann. Phys. 303 2–30). The quantumHall effect
derives from transverse conductance, quantized to unprecedented precision in accordancewith the
system’s topology (Laughlin 1981 Phys. Rev.B 23 5632–33). Atmagneticfields beyond the reach of
current condensedmatter experiment, around104 T, this conductance remains precisely quantized
with values based on the topological order (Thouless et al 1982Phys. Rev. Lett. 49 405–8). Hitherto,
quantized conductance has only beenmeasured in extended 2D systems.Here, we experimentally
studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms
where such largemagneticfields can be engineered (Jaksch andZoller 2003New J. Phys. 5 56;Miyake
et al 2013Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013Phys. Rev. Lett. 111 185301; Celi et al
2014Phys. Rev. Lett. 112 043001; Stuhl et al 2015 Science 349 1514;Mancini et al 2015 Science 349
1510; An et al 2017 Sci. Adv. 3).Wemicroscopically imaged the transverse spatialmotion underlying
the quantizedHall effect. Ourmeasurements identify the topological Chern numbers with typical
uncertainty of 5%, and show that although band topology is only properly defined in infinite systems,
its signatures are striking even in nearly vanishingly thin systems.

1. Introduction

The importance of topology in physical systems is famously evidenced by the quantumHall effect’s role as an
ultra-precise realization of the vonKlitzing constant =R h eK

2 of resistance [1]. Although topological order is
only strictly defined for infinite systems, the bulk properties ofmacroscopic topological systems closely resemble
those of the corresponding infinite system. For 2D systems in amagnetic fieldB0, the topology is characterized
by an integer invariant called theChern number. Even at laboratoryfields of tens of Tesla, crystallinematerials
have a smallmagnetic fluxΦ=AB0 per individual lattice plaquette (with areaA) compared to the flux quantum
Φ0=h/e. Superlattice [2–5] and ultracold atom [6–9] systems now realize 2D lattices in a regimewhere the
magnetic flux per plaquetteΦ is a significant fraction ofΦ0.

Experimental signatures of Chern numbers generally leverage one of two physical effects: in condensed
matter systems the edge-bulk correspondence allows theChern number to be inferred from the quantizedHall
conductivity s = C RH K, and in cold-atom experiments direct probes of the underlying band structure at every
value of crystalmomentumgive access to theChern number through either static [10, 11] or dynamic [12–15]
signatures. Both of these connections derive from the pioneeringwork of Thouless, Kohmoto, Nightingale, and
denNijs [16], in the now famous TKNNpaper. Going beyond thesewell known techniques, the TKNNpaper
showed that for rational fluxΦ/Φ0=P/Q (for relatively prime integers P andQ) the integer solutions s andC to
theDiophantine equation
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= - ( )Qs PC1 1

uniquely3 determine theChern numberC of the lowest band. Following theoretical work [11, 17–20], we
leveraged this TKNNequation to determine theChern number of our system.

2. Experimental setup

We studied ultracold neutral atoms in a square lattice with a largemagnetic flux per plaquette. As pictured in
figure 1(a), our system consisted of a 2D lattice that was extremely narrow along one direction, just 3 or 5 sites
wide—out of reach of traditional condensedmatter experiments, with hardwall boundary conditions: a ribbon.
Our systemwas qualitatively well described by theHarper–HofstadterHamiltonian in the Landau gauge [24, 25]

å= - ñá + + ñá + +fˆ ( ∣ ∣ ∣ ∣) ( )H t j m j m t j m j me , 1, , , 1 h.c ., 2
m j

x
m

s
,

i

where j andm label lattice sites along ex and es, with tunneling strengths tx and ts respectively. As shown in
figure 1(a), tunneling along ex was accompanied by a phase shift fe mi . Hopping around a single plaquette of this
lattice imprints a phasef, analogous to theAharanov–Bohmphase, emulating amagnetic fluxΦ/Φ0=f/2π.
We implemented this 2D lattice by combining a 1Doptical lattice defining sites along an extended direction ex,
with atomic spin states forming lattice sites along a narrow, synthetic [26–28, 29] direction es. The exact
Hamiltonian of the underlying atomic systemdiffers from theHarper–HofstadterHamiltonian above in that ts

Figure 1.QuantumHall effect inHofstadter ribbons. (a) 5-site wide ribbonwith real tunneling coefficients along es and complex
tunneling coefficients along ex , creating a non-zero phasef around each plaquette. (b)After applying a force along ex for a timeΔt,
atomic populations shift transversely along es, signaling theHall effect. (c), (d)TOF absorption images giving hybridmomentum/
position density distributions n(kx,m). Prior to applying the force (c), them=0momentumpeak is at kx=0,marked by the red
cross. Then, in (d), the force directly changed qx, evidenced by the displacementΔqx of crystalmomentum, and via theHall effect
shifted population along es.

3
Subject to the constraint ∣ ∣ ∣ ∣C Q 2 [16, 21]. The integer shas no bearing on our argument, but has been interpreted as the charge

transportedwhen the periodic potential is adiabatically displaced [22, 23].

2
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is non-uniformdue toClebsch–Gordan coefficients and there is a smallm2 dependent potential termdue to the
quadratic Zeeman shift (see appendixD).

This system exhibits aHall effect, where a longitudinal force FP—analogous to the electric force eE in
electronic systems—drives a transverse ‘Hall’ current density s=^ j EH for non-zeroΦ/Φ0. A longitudinal
force Fxwould drive a change in the dimensionless crystalmomentum  Dq Gx and a transverse displacement
Δm, giving a dimensionlessHall conductivity s sD D = = ˜NG m q Rx H K H, whereG is the reciprocal lattice
constant andN is the number of carriers per plaquette (see appendix C). Starting with Bose-condensed atoms in
the lattice’s ground state (with transverse density shown infigure 1(a))we applied a force along ex and obtained
Δm from site resolved density distributions [11] along es (figure 1(b)). Leveraging the TKNNequation
(equation (1)), we further show that the force required tomove the atoms a single lattice site signals the infinite
system’s Chern number.

Our quantumHall ribbonswere createdwith optically trapped Rb87 Bose–Einstein condensates (BECs) in
either the F=1 or 2 ground state hyperfinemanifold, creating 3 or 5 site-wide ribbons from the 2F+1 states
available in eithermanifold.Wefirst loaded BECs into a 1Doptical lattice along ex formed by a retro-reflected
λL=1064 nm laser beam. This created a lattice with period a=λL/2 and depth 4.4(1)EL, giving tunneling
strength = ( )t E0.154 4x L. Here, =E k m2L

2
L
2

Rb is the single photon recoil energy;  p l=k 2L L is the
single photon recoilmomentum; andmRb is the atomicmass.We induced tunneling along es with either a
spatially uniform rfmagnetic field or two-photonRaman transitions. The tunneling strengthwas = ( )t t1.97 8s x

for Raman coupling in the F=2manifold, = ( )t t0.97 8s x for Raman coupling in the F=1manifold, and
= ( )t t7.4 5s x for rf coupling in bothmanifolds. The rf-induced tunneling imparted atmost only a spatially

uniform tunneling phase, givingf/2π=0. In contrast the Raman coupling, formed by a pair of counter
propagating laser beamswithwavelengthλR=790 nm, imparted a phase factor -( )k xexp 2i R . Here,
 p l=k 2R R is the Raman recoilmomentum, giving f p »2 4 3.We then applied a force by shifting the
center of the confining potential along ex, effectively applying a linear potential. Using time-of-flight techniques
[27], wemeasured hybridmomentum/position density distributions n(kx,m), a function ofmomentum along
ex and position along es, as seen infigures 1(c), (d).

3.Hall conductivitymeasurement

Wemeasured theHall conductivity beginningwith a BEC at qx(t=0)=0 in the lowest bandwith transverse
modal position =m̄ 00

4. Figure 2(a) shows the band structure of a system similar to ours, but extended along
the es direction, with 41 sites. The energy is plotted as a function of crystalmomentum along ex, with color
indicating the expectation value of position along es, calculated by diagonalizing the fullHamiltonianwith zero
quadratic shift and uniformClebsch–Gordan coefficients (see appendixD). Figure 2(b) shows the band
structure of our experimental system, calculated from the full Hamiltonian for our experimental parameters (see
appendixD). Note that the lowest, 3rd, and 5th bands of our system are akin to the three bulk bands of the
extended system, while the 2nd and 4th bands of our system resemble the edgemodes of the extended system.

We applied a force l= ( )F E0.106 5x L L for varying timesΔt, directly changing the longitudinal crystal
momentum from0 to afinal qx and giving a transverseHall displacement from0 to afinal m̄. Figure 2(c) shows a
collection of hybrid density distributions, where each columndepicts n(kx,m) for a specificfinal qx, labeled by
the overall horizontal axis. For each column, the change in crystalmomentum ismarked by the horizontal
displacement of the diffraction orders relative to their location in the central qx=0 column. The transverse
displacement is visible in the overall shift in density alongm as a function of qx, i.e. between columns.

Figure 3(left) quantifies thisHall effect by plotting themodal position m̄ as a function of qx forΦ/Φ0=0,
−4/3, and 4/3. The data is represented by gray dots, with uncertainty bars reflecting the propagated standard
uncertainty from averaging six identical runs. For zero fluxΦ/Φ0=0 (figure 3(a)), m̄ was independent of qx; in
contrast, for non-zerofluxΦ/Φ0≈±4/3 (figures 3(b), (c)), m̄ depends linearly on qxwith non-zero slope.
These linear dependencies evoke our earlier discussion of theHall conductance s̃H, inwhichwe anticipated
slopes equal to theChern number. Linear fits to the data give s =˜ ( )0.01 1H , 0.87(3), and−0.85(3) for zero,
negative and positive flux respectively, showing the expected qualitative behavior. The expected slopes, given by
theChern number,σH=0,±1 are indicated by black dashed lines in figure 3(left).

The red curves infigure 3(top) show the expected behavior for our 5-site wide system for adiabatic changes
in qx as calculated from exact diagonalization of the full Hamiltonian (see appendixD), alwayswithin the lowest
band (figure 2(a)), i.e. Bloch oscillations. This theory predicts a nearly linear slope for small qx sharply returning
to =m̄ 0 at the edges of the Brillouin zone. A linear fit to this theory produces s »˜ 0H , 0.6, and−0.6 for zero,
negative and positive flux respectively, far from theChern number. This discrepancy is resolved by recalling that

4
Wedefine themodal position m̄ as the center of aGaussian fit to the population distribution along es.
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Bloch oscillations require adiabaticmotion. As the ribbonwidth grows, the band gaps at the edge of the Brillouin
zone close (seefigure 2(a)), making the Bloch oscillationmodel inapplicable. The departure of the data from the
adiabatic theory at the edges of the Brillouin zone indicates a partial break down of adiabaticity was present in
our data. To confirm this, we performed time-dependent Schroedinger equation (TDSE) calculations for our
experimental parameters, including themagnitude of the force applied. This is displayed by the blue curves in
figure 3.Note that the TDSE curves (blue) lie between the lowest band theory (red) and the large system limit
(black dashed lines) at the edges of the Brillouin zone, confirming a partial breakdown of adiabaticity (see
appendix C for further detail).

Onemight suspect that limiting the domain of the linearfit such that band edge effects are excludedwould
still provide a goodmeasure of theChern number. However, as shown infigure 3(bottom), the slope of the best
fit line for non-trivial topologies, and thus themeasured conductivity, depends highly on the selected domain for
both the theoretical (red) , the experimental (black) and numerical (blue) data, and the appropriate choice of
range is ambiguous.We conclude that for an extremely narrow system such as ours, a conductivity
measurement is insufficient for determining theChern number [20].

Figure 2.Band structure in an extended system and our 5-site wide ribbon. (a)Band structure of an extended system,with 41 sites
along es, computed for a E4.4 L deep 1D lattice (λL=1064 nm), 0.5EL Raman coupling strength (λR=790 nm), and quadratic
Zeeman shift ò=0EL, and excluding anisotropy due toClebsch–Gordan coefficients (see appendixD). The color indicates the
expectation value of position along the synthetic direction á ñm . (b)Band structure computed using fullHamiltonian for our
experimental parameters of 4.4EL lattice depth, 0.5EL Raman coupling strength, and quadratic Zeeman shift  = E0.02 L, giving
Φ/Φ0≈4/3, tx=0.154(4)EL, = ( )t t1.97 8s x (see appendixD). The black dot indicates the initial loading parameters. (c)TOF
absorption images n(kx,m) for varying longitudinal crystalmomenta qx.

4
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4. Chern numbermeasurement via TKNNDiophantine equation

To better identify Chern numbers, we relate the TKNNequation (equation (1)) to the physical processes present
in our system. Although theHofstadterHamiltonian in equation (2) is only invariant underm-translations that
are integermultiples ofQ, a so-called ‘magnetic-displacement’ byΔm=1 along es accompanied by a
displacement in crystalmomentum along ex byD =q k P Q2x R leaves equation (2) unchanged—this is the
magnetic translation operator. Together, these symmetry operations give aQ-fold reduction of the Brillouin
zone along es, and add aQ-fold degeneracy, as illustrated infigure 4(a) forΦ/Φ0=0, 1/3, and 2/5. Recalling
that the Brillouin zone is k2 L periodic along ex, it follows that a displacement by k Q2 L to the nearest
symmetry related state involves an integerCmagnetic displacements, shown infigure 4(b) forΦ/Φ0=1/3 and
2/5, given by solutions to - =k s k C k Q2 2 2L R L , where s counts the number of times the Brillouin zonewas
‘wrapped around’ during theC vertical displacements. Because this is exactly the TKNNequation (1), we
identifyC as theChern number. BothC and s directly relate to physical processes. First, each time the Brillouin
zone is wrapped around implying a net change ofmomentumby k2 L a pair of photonsmust be exchanged
between the optical lattice laser beams. Second, each change ofm by 1must be accompanied by a k2 R recoil
kick imparted by theRaman lasers as they change the spin state. This physicalmotivation of the TKNNequation
remains broadly applicable even for our narrow lattice, providing an alternate signature of theChern number.

Figure 5 shows the full evolution of fractional population in eachm site as a function of crystalmomentum qx
in the lowest band. The black circles locate the peak of the fractional population in each spin state.We identify
the locations of those peaks as the crystalmomenta at which the atomswere displaced by a single lattice site
along es starting at qx=0, similar to the suggestions in [19, 20].We associate theChern number with the slope
of a linearfit through the three peak locations. The dependence of Chern number extracted in this way on the
strength of applied force ismuchweaker than theHall conductivity approach (see appendix C). For the 3-site
wide ribbon, wemeasured aChern number of 0.99(4),−0.98(5) for negative and positive flux respectively5, in
agreementwith the exact theory as calculated from the full Hamiltonian (see appendixD), which predicts±0.97
(1), with uncertainties reflectingfit uncertainty of peak locations. For the 5-site wide ribbon, wemeasured 1.11
(2),−0.97(4), close to the theoretical prediction of±1.07(1).

Figure 3.Hall displacement. Top:modal position m̄ is plotted as a function of qx for the 5-site ribbonwithflux (a)Φ/Φ0=0, (b)
Φ/Φ0≈−4/3, (c)Φ/Φ0≈4/3. Gray circles depict themeasurements; black dashed lines are the prediction of our simple s̃H, red
curves are the expectation from the lowest band theory of our thin ribbon, and blue curves are the result of TDSE calculations for our
experimental parameters including force. Bottom: extracted conductivity from the slope of a line of best fit to the data (gray circles),
lowest band theory (red lines), andTDSE calculations (blue lines) as a function ofmaximum ∣ ∣qx included in the fit range, for each flux
value. As discussed in appendix B, theΦ/Φ0=0 datawas compensated to account for non-adiabaticity in the loading procedure.

5
OurChern number extraction scheme fails for the rf case as the fractional populations areflat and there is no peak.We therefore assign a

Chern number of 0 to flat distributions.
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The deviation fromunity results fromΦ/Φ0−4/3≈0.01, a non-zero quadratic Zeeman shift, and ts>tx
allowing hybridization of states in the vicinity of the edge (see figure 2 in [20]). The dependence of aChern
number inferredwith this technique on both the size of the system along es and the tunneling ts is studied in
figure 6. Figure 6(a) shows the dependence of theChern number on thewidth of the ribbon, fromour

Figure 4.Chern number from the TKNNequation. (a) Lowest band energy (left) and expected position along es, á ñm (right)within
the Brillouin zone in an extended 2D system,where qx and qs are crystalmomenta along ex and es, respectively. Top.Φ/Φ0=0.
Middle.Φ/Φ0=1/3: Brillouin zone shrinks by a factor of 3 and becomes three-fold degenerate, distance between adjacent energy
minima spaced by k Q2 L is labeled. Eachminimumcorresponds to a different expected position along es. Bottom.Φ/Φ0=2/5. (b)
Fractional population in each spin state in the lowest band at qs=0. Top.Φ/Φ0=1/3. Bottom.Φ/Φ0=2/5. Amomentum shift
along ex of k Q2 L is accompanied by an integer number of spinflipsC. A line connectingmagnetic states separated by k Q2 L , with
slopeC=1 (top) and−2 (bottom), is indicated.

Figure 5.Chern numbermeasurement. Lowest band fractional populationmeasured as a function of crystalmomentum in the ex and
position in the es. Darker color indicates higher fractional population. In the Raman-coupled cases, the points represent the fitted
populationmaxima and the Chern number is extracted from the best fit line to those points. (a) 3-site (left) and 5-site (right) systems
with positiveflux. (b) 3-site (left) and 5-site (right) systemwith zeroflux. (c) 3-site (left) and 5-site (right) systemswith negative flux.
The parameters for 3-site datawere identical to those for 5-site data, see figure 3(a), except = ( )t t0.98 8s x .

6
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experimental parameters of 3 and 5 sites to an extended systemof 70 sites. As seen in the figure, as the system size
grows themeasuredChern number converges to the expected value of 1. Thesewere calculated from the full
Hamiltonian (appendixD), assuming uniform tunneling along es, with tunneling =t E0.5x L, synthetic
direction coupling  W = E0.5 L and no quadratic shift. Figure 6(b) shows the dependence of themeasured
Chern number on the coupling strength along the synthetic direction ÿΩ for lattice widths relevant to our
experiment—3 and 5 sites.We used the sameHamiltonian and parameter values listed above. In the limit of
vanishing tunneling, both the 3 and 5-site wide Chern number converge to the exact integer value of 1. This
supports the hypothesis that deviation fromunity at non-zero coupling strengths is a consequence of the
hybridization of states in the vicinity of the edge, which is facilitated by stronger couplings.

5. Conclusion

Our directmicroscopic observations of topologically driven transverse transport demonstrate the power of
combiningmomentum and site-resolved positionmeasurements.With the addition of interactions, these
systems have been shown to display chiral currents [30], andwithmany-body interactions are predicted to give
rise to complex phase diagrams supporting vortex lattices and charge density waves [31–33]. Realizations of
controlled cyclic coupling giving periodic boundary conditions [26] along es could elucidate the appearance of
edgemodes as the coupling between two of the three states is smoothly tuned to zero. In addition, due to the
non-trivial topology aswell as the lowheating afforded by synthetic dimensional systems, a quantumFermi gas
dressed similarly to our systemwould be a good candidate for realizing fractional Chern insulators [34].

Acknowledgments
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AppendixA. Experimental detail

Wecreated nearly pure Rb87 BECs in a crossed optical dipole trap [27]with frequencies
w w w p =( ) ( ( ) ( ) ( )), , 2 27.1 2 , 58.4 8 , 94.2 5 Hzx y z .We deliberately used small, low density BECswith≈103

atoms to limit unwanted scattering processes in regimes of dynamical instability [35]. At various times in the
sequence, we used coherent rf andmicrowave techniques to prepare the hyperfine ñ∣F m, F state of interest. The
1Doptical lattice was always ramped on linearly in 300ms. For non-zerof, we turned on theRaman beams
adiabatically in 30ms after ramping on the lattice. Forf=0we used adiabatic rapid passage starting in
mF=−F and swept the biasmagnetic field in≈50ms to resonance.We applied forces by spatially displacing the
optical dipole beamproviding longitudinal confinement (by frequency shifting an acousto-opticmodulator),

Figure 6.Dependence of Chern number inferred via the TKNNDiophantine equationmethod on system size and tunneling. (a)
Chern number dependence on number of sites along es. (b)Chern number dependence on coupling strength along the synthetic
direction for 3 and 5 site systems.
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effectively adding a linear contribution to the existent harmonic potential for displacements small compared to
the beamwaist.

Appendix B. Rf correction

In experiments where the tunneling along es was induced by a uniform rfmagnetic field (Φ/Φ0=0), our
loading procedure had remnant non-adiabaticity that led to temporal oscillations in the fractional populations
in differentm states at the 40% level. To separate the effects due to this non-adiabaticity from transverse
transport, we performed the experiment with identical preparations without applying the longitudinal force.We
then used the observed oscillations as a function of timewithout an applied force as a baseline, and report the
difference in fractional populations between that baseline and the cases where the forcewas applied.

AppendixC.Hall conductivity

The current density can be expressed as =^ ^j n v e2D , where n2D is the 2D charge carrier density, v⊥ is the
transverse velocity and e is the electron charge. Using s s= E F eH H , and choosing some increment of timeΔt,
we have = D D^ ^v x t , and = D D F q t , where qP is the crystalmomentum along the direction of the force.

Re-expressing n2D in number of carriersN per plaquette, definingDx̂ as transverse displacement in units of
lattice periods, we obtain sD D =^ NG x q RH K.We setN=1 as we are looking atmotion of single atoms.

The dependence of themeasuredHall conductivity for our experimental parameters as a fucntion of the
magnitude of applied force is shown infigureC1. Themodal position for every point in the Brillouin zonewas
calculated by numerically solving the TDSE. These are shown in the left panel of thefigure, for forces 0.165,
0.141, 0.123, 0.11 , 0.099, 0.09 , 0.082, 0.076, 0.071 and 0.066 lEL L. The right panel shows themeasuredHall
conductivity from a linear fit to the full range of crystalmomenta as a function of applied force (blue line). For
comparison, we also show theChern number as inferred via the TKNNDiophantine equationmethod as a
function of applied force (green line).

AppendixD. FullHamiltonian

The spin dependentHamiltonian, in the presence of Raman coupling and a 1Doptical lattice can bewritten as

å= + +
=- =-¥

¥

H H H H ,
m F n

F

,

,

0 R L

FigureC1.Dependence ofHall conductivitymeasurement on force in the 5-site strip. Left: modal position m̄ as a function of crystal
momentum for differentmagnitudes of applied force, obtained via numerical solutions of the time-dependent Schroedinger equation.
The smallest force (cyan) resulted in adiabatic evolution, while the strongest force (red) resulted in almost full non-adiabaticity. Right:
measured Chern number as a function of applied force, as inferred from theHall conductivity (blue) and the TKNNDiophantine
equationmethod (green).
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where the diagonal term

 d= - F F - + +

´ + ñá +

( ( ) )
∣ ∣

H q m n k m h m m

q n k m q n k m

2 2 2

2 , 2 ,
x

x x

0
2

0
2

L
2

Rb
2

L L

includes the kinetic energy aswell as the two-photonRaman detuning from resonance δ and the quadratic
Zeeman shift ò. Here,m represents atomic spin, n represents lattice order in themomentumbasis, q is the
longitudinal crystalmomentum, andmRb is the atomicmass. The second term represents the Raman coupling
with coupling strengthΩ, with anisotropic tunneling arising from the spin-dependent prefactor (Clebsch–
Gordan coefficient):

= W + - + + ñá + + +( ) ( ) ∣ ∣H F F m m q n k m q n k m1 1 2 2 2 , 2 , 1 h.c.x xR L L

Here, h.c. stands forHermitian conjugate. The third term represents lattice coupling to higher order lattice
states, with lattice depthU:

= + ñá + + +∣ ( ) ∣H U q n k m q n k m4 2 , 1 2 , h.c.x xL L L

In our experiment,  W = ( )E0.5 2 L for Raman coupling and  W = ( )E0.57 1 L for rf coupling, = ( )U E4.4 4 L for
all preparations. In our calculations, we found that restricting−7<n<7was sufficient at our energies.

We choose the appropriate tunneling coefficients tx and ts for the approximate tight-bindingHamiltonian
equation (2) as those that optimally reproduce the lowest two bands, relevant for our experiment. A summary of
our experimental parameters is presented in tableD1. The band structure of our 3-site wide ribbon is presented
infigureD1, with three bands plotted as a function of crystalmomentum qx colored in accordancewith the
expected position along es, á ñm .
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