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Abstract

Physical systems with non-trivial topological order find direct applications in metrology (Klitzing et al
1980 Phys. Rev. Lett. 45 494—7) and promise future applications in quantum computing (Freedman
2001 Found. Comput. Math. 1 183-204; Kitaev 2003 Ann. Phys. 303 2—30). The quantum Hall effect
derives from transverse conductance, quantized to unprecedented precision in accordance with the
system’s topology (Laughlin 1981 Phys. Rev. B 23 5632—-33). At magnetic fields beyond the reach of
current condensed matter experiment, around 10 T, this conductance remains precisely quantized
with values based on the topological order (Thouless et al 1982 Phys. Rev. Lett. 49 405-8). Hitherto,
quantized conductance has only been measured in extended 2D systems. Here, we experimentally
studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms
where such large magnetic fields can be engineered (Jaksch and Zoller 2003 New J. Phys. 5 56; Miyake
et al 2013 Phys. Rev. Lett. 111 185302; Aidelsburger et al 2013 Phys. Rev. Lett. 111 185301; Celi et al
2014 Phys. Rev. Lett. 112 043001; Stuhl et al 2015 Science 349 1514; Mancini et al 2015 Science 349
1510; An et al 2017 Sci. Adv. 3). We microscopically imaged the transverse spatial motion underlying
the quantized Hall effect. Our measurements identify the topological Chern numbers with typical
uncertainty of 5%, and show that although band topology is only properly defined in infinite systems,
its signatures are striking even in nearly vanishingly thin systems.

1. Introduction

The importance of topology in physical systems is famously evidenced by the quantum Hall effect’s role as an
ultra-precise realization of the von Klitzing constant Ry = h/e? of resistance [1]. Although topological order is
only strictly defined for infinite systems, the bulk properties of macroscopic topological systems closely resemble
those of the corresponding infinite system. For 2D systems in a magnetic field By, the topology is characterized
by an integer invariant called the Chern number. Even at laboratory fields of tens of Tesla, crystalline materials
have a small magnetic flux ® = AB, per individual lattice plaquette (with area A) compared to the flux quantum
®, = h/e. Superlattice [2-5] and ultracold atom [6—9] systems now realize 2D lattices in a regime where the
magnetic flux per plaquette ® is a significant fraction of ®,,.

Experimental signatures of Chern numbers generally leverage one of two physical effects: in condensed
matter systems the edge-bulk correspondence allows the Chern number to be inferred from the quantized Hall
conductivity oy = C/Rg, and in cold-atom experiments direct probes of the underlying band structure at every
value of crystal momentum give access to the Chern number through either static [10, 1 1] or dynamic [12-15]
signatures. Both of these connections derive from the pioneering work of Thouless, Kohmoto, Nightingale, and
den Nijs [16], in the now famous TKNN paper. Going beyond these well known techniques, the TKNN paper
showed that for rational flux ®/®, = P/Q (for relatively prime integers P and Q) the integer solutions sand Cto
the Diophantine equation
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Figure 1. Quantum Hall effect in Hofstadter ribbons. (a) 5-site wide ribbon with real tunneling coefficients along e, and complex
tunneling coefficients along e, creating a non-zero phase ¢ around each plaquette. (b) After applying a force along e, for a time At,
atomic populations shift transversely along e;, signaling the Hall effect. (), (d) TOF absorption images giving hybrid momentum/
position density distributions n(k,, m). Prior to applying the force (c), the m = 0 momentum peakis at k, = 0, marked by the red
cross. Then, in (d), the force directly changed g, evidenced by the displacement Ag, of crystal momentum, and via the Hall effect
shifted population along e.

1=Qs— PC (1)

uniquely’ determine the Chern number C of the lowest band. Following theoretical work [11, 17-20], we
leveraged this TKNN equation to determine the Chern number of our system.

2. Experimental setup

We studied ultracold neutral atoms in a square lattice with a large magnetic flux per plaquette. As pictured in
figure 1(a), our system consisted of a 2D lattice that was extremely narrow along one direction, just 3 or 5 sites
wide—out of reach of traditional condensed matter experiments, with hard wall boundary conditions: a ribbon.
Our system was qualitatively well described by the Harper—Hofstadter Hamiltonian in the Landau gauge [24, 25]

H ==Y "(tce"j, m) (j+ 1, m| + tJj, m) (j, m + 1]) + h.c., Q)

m,j

where jand m label lattice sites along e, and e, with tunneling strengths , and £, respectively. As shown in
figure 1(a), tunneling along e, was accompanied by a phase shift e*”. Hopping around a single plaquette of this
lattice imprints a phase ¢, analogous to the Aharanov—Bohm phase, emulating a magnetic flux ®/®, = ¢/2m.
We implemented this 2D lattice by combining a 1D optical lattice defining sites along an extended direction ey,
with atomic spin states forming lattice sites along a narrow, synthetic [26-28, 29] direction e,. The exact
Hamiltonian of the underlying atomic system differs from the Harper—Hofstadter Hamiltonian above in that t;

3 Subject to the constraint |C| < |Q|/2 [16,21]. The integer s has no bearing on our argument, but has been interpreted as the charge
transported when the periodic potential is adiabatically displaced [22, 23].
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is non-uniform due to Clebsch-Gordan coefficients and there is a small m” dependent potential term due to the
quadratic Zeeman shift (see appendix D).

This system exhibits a Hall effect, where a longitudinal force F—analogous to the electric force eEj in
electronic systems—drives a transverse ‘Hall’ current density j, = oy Ej for non-zero ®/®,. Alongitudinal
force F, would drive a change in the dimensionless crystal momentum /7 Aq, /%G and a transverse displacement
Am, giving a dimensionless Hall conductivity NGAm/Aq, = ouRx = &y, where Gis the reciprocal lattice
constantand N is the number of carriers per plaquette (see appendix C). Starting with Bose-condensed atoms in
the lattice’s ground state (with transverse density shown in figure 1(a)) we applied a force along e, and obtained
Am from site resolved density distributions [11] along e (figure 1(b)). Leveraging the TKNN equation
(equation (1)), we further show that the force required to move the atoms a single lattice site signals the infinite
system’s Chern number.

Our quantum Hall ribbons were created with optically trapped 8Rb Bose—Einstein condensates (BECs) in
either the F = 1 or 2 ground state hyperfine manifold, creating 3 or 5 site-wide ribbons from the 2F + 1 states
available in either manifold. We first loaded BECs into a 1D optical lattice along e, formed by a retro-reflected
A = 1064 nm laser beam. This created a lattice with period a = A; /2 and depth 4.4(1) E;, giving tunneling
strength t, = 0.154(4)E,. Here, B = /i%k{* /2mp, is the single photon recoil energy; /k; = 27/ /Ay is the
single photon recoil momentum; and #1g, is the atomic mass. We induced tunneling along e, with either a
spatially uniform rf magnetic field or two-photon Raman transitions. The tunneling strength was t; = 1.97(8)t,
for Raman couplingin the F = 2 manifold, ¢, = 0.97(8)1, for Raman coupling in the F = 1 manifold, and
t; = 7.4(5)t, for rf coupling in both manifolds. The rf-induced tunneling imparted at most only a spatially
uniform tunneling phase, giving ¢/27m = 0. In contrast the Raman coupling, formed by a pair of counter
propagating laser beams with wavelength A\x = 790 nm, imparted a phase factor exp(—2ikg x). Here,
fikg = 2w/ / A is the Raman recoil momentum, giving ¢/27 ~ 4/3. We then applied a force by shifting the
center of the confining potential along e,, effectively applying a linear potential. Using time-of-flight techniques
[27], we measured hybrid momentum/position density distributions n(k,, #1), a function of momentum along
e, and position along ey, as seen in figures 1(c), (d).

3. Hall conductivity measurement

We measured the Hall conductivity beginning with a BEC at ¢, (t = 0) = 0in the lowest band with transverse
modal position 17y = 0*. Figure 2(a) shows the band structure of a system similar to ours, but extended along
the e, direction, with 41 sites. The energy is plotted as a function of crystal momentum along e,, with color
indicating the expectation value of position along e;, calculated by diagonalizing the full Hamiltonian with zero
quadratic shift and uniform Clebsch—Gordan coefficients (see appendix D). Figure 2(b) shows the band
structure of our experimental system, calculated from the full Hamiltonian for our experimental parameters (see
appendix D). Note that the lowest, 3rd, and 5th bands of our system are akin to the three bulk bands of the
extended system, while the 2nd and 4th bands of our system resemble the edge modes of the extended system.

Weapplied a force E, = 0.106(5) E / A, for varying times At, directly changing the longitudinal crystal
momentum from 0 to a final g, and giving a transverse Hall displacement from 0 to a final 7. Figure 2(c) shows a
collection of hybrid density distributions, where each column depicts n(k,, ) for a specific final g,, labeled by
the overall horizontal axis. For each column, the change in crystal momentum is marked by the horizontal
displacement of the diffraction orders relative to their location in the central g, = 0 column. The transverse
displacement is visible in the overall shift in density along m as a function of q,, i.e. between columns.

Figure 3(left) quantifies this Hall effect by plotting the modal position 771 as a function of g, for ®/®, = 0,
—4/3,and 4/3. The data is represented by gray dots, with uncertainty bars reflecting the propagated standard
uncertainty from averaging six identical runs. For zero flux ®/®, = 0 (figure 3(a)), 12 was independent of g,; in
contrast, for non-zero flux ®/®, ~ +4/3 (figures 3(b), (c)), 11 depends linearly on g, with non-zero slope.
These linear dependencies evoke our earlier discussion of the Hall conductance &y, in which we anticipated
slopes equal to the Chern number. Linear fits to the data give 5y = 0.01(1), 0.87(3), and —0.85(3) for zero,
negative and positive flux respectively, showing the expected qualitative behavior. The expected slopes, given by
the Chern number, oy = 0, +1 are indicated by black dashed lines in figure 3(left).

The red curves in figure 3(top) show the expected behavior for our 5-site wide system for adiabatic changes
in g, as calculated from exact diagonalization of the full Hamiltonian (see appendix D), always within the lowest
band (figure 2(a)), i.e. Bloch oscillations. This theory predicts a nearly linear slope for small g, sharply returning
to i = 0 at the edges of the Brillouin zone. A linear fit to this theory produces &y =~ 0, 0.6, and —0.6 for zero,
negative and positive flux respectively, far from the Chern number. This discrepancy is resolved by recalling that

We define the modal position 7 as the center of a Gaussian fit to the population distribution along e;.
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Figure 2. Band structure in an extended system and our 5-site wide ribbon. (a) Band structure of an extended system, with 41 sites
along e,, computed for a 4.4E; deep 1D lattice (A, = 1064 nm), 0.5E; Raman coupling strength (A\x = 790 nm), and quadratic
Zeeman shift e = 0E;, and excluding anisotropy due to Clebsch—Gordan coefficients (see appendix D). The color indicates the
expectation value of position along the synthetic direction (). (b) Band structure computed using full Hamiltonian for our
experimental parameters of 4.4E; lattice depth, 0.5E; Raman coupling strength, and quadratic Zeeman shift € = 0.02Ej, giving
/Dy ~ 4/3,t, = 0.154(4)EL, t, = 1.97(8)t, (see appendix D). The black dot indicates the initial loading parameters. (c) TOF
absorption images n(k,, m) for varying longitudinal crystal momenta g;.

Bloch oscillations require adiabatic motion. As the ribbon width grows, the band gaps at the edge of the Brillouin
zone close (see figure 2(a)), making the Bloch oscillation model inapplicable. The departure of the data from the
adiabatic theory at the edges of the Brillouin zone indicates a partial break down of adiabaticity was present in
our data. To confirm this, we performed time-dependent Schroedinger equation (TDSE) calculations for our
experimental parameters, including the magnitude of the force applied. This is displayed by the blue curves in
figure 3. Note that the TDSE curves (blue) lie between the lowest band theory (red) and the large system limit
(black dashed lines) at the edges of the Brillouin zone, confirming a partial breakdown of adiabaticity (see
appendix C for further detail).

One might suspect that limiting the domain of the linear fit such that band edge effects are excluded would
still provide a good measure of the Chern number. However, as shown in figure 3(bottom), the slope of the best
fitline for non-trivial topologies, and thus the measured conductivity, depends highly on the selected domain for
both the theoretical (red) , the experimental (black) and numerical (blue) data, and the appropriate choice of
range is ambiguous. We conclude that for an extremely narrow system such as ours, a conductivity
measurement is insufficient for determining the Chern number [20].
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Figure 3. Hall displacement. Top: modal position 17 is plotted as a function of g, for the 5-site ribbon with flux (a) ®/®, = 0, (b)
/Dy ~ —4/3,(c) D/Py = 4/3. Gray circles depict the measurements; black dashed lines are the prediction of our simple 7y, red
curves are the expectation from the lowest band theory of our thin ribbon, and blue curves are the result of TDSE calculations for our
experimental parameters including force. Bottom: extracted conductivity from the slope of aline of best fit to the data (gray circles),
lowest band theory (red lines), and TDSE calculations (blue lines) as a function of maximum |g, | included in the fit range, for each flux
value. As discussed in appendix B, the /®, = 0 data was compensated to account for non-adiabaticity in the loading procedure.

4. Chern number measurement via TKNN Diophantine equation

To better identify Chern numbers, we relate the TKNN equation (equation (1)) to the physical processes present
in our system. Although the Hofstadter Hamiltonian in equation (2) is only invariant under m-translations that
are integer multiples of Q, a so-called ‘magnetic-displacement’ by Am = 1 along e, accompanied by a
displacement in crystal momentum along e, by Aq, /2kg = P/Q leaves equation (2) unchanged—this is the
magnetic translation operator. Together, these symmetry operations give a Q-fold reduction of the Brillouin
zone along e;, and add a Q-fold degeneracy, as illustrated in figure 4(a) for &/®, = 0,1/3,and 2/5. Recalling
that the Brillouin zone is 2/k; periodic along e,, it follows that a displacement by 2k; /Q to the nearest
symmetry related state involves an integer C magnetic displacements, shown in figure 4(b) for ®/®, = 1/3 and
2/5, given by solutions to 2k; s — 2kg C = 2k; /Q, where s counts the number of times the Brillouin zone was
‘wrapped around’ during the C vertical displacements. Because this is exactly the TKNN equation (1), we
identify Cas the Chern number. Both Cand s directly relate to physical processes. First, each time the Brillouin
zone is wrapped around implying a net change of momentum by 2/k; a pair of photons must be exchanged
between the optical lattice laser beams. Second, each change of m by 1 must be accompanied by a 2 /g recoil
kick imparted by the Raman lasers as they change the spin state. This physical motivation of the TKNN equation
remains broadly applicable even for our narrow lattice, providing an alternate signature of the Chern number.

Figure 5 shows the full evolution of fractional population in each 1 site as a function of crystal momentum g,
in the lowest band. The black circles locate the peak of the fractional population in each spin state. We identify
the locations of those peaks as the crystal momenta at which the atoms were displaced by a single lattice site
along e, starting at q,, = 0, similar to the suggestions in [19, 20]. We associate the Chern number with the slope
of alinear fit through the three peak locations. The dependence of Chern number extracted in this way on the
strength of applied force is much weaker than the Hall conductivity approach (see appendix C). For the 3-site
wide ribbon, we measured a Chern number 0£0.99(4), —0.98(5) for negative and positive flux respectively‘;, in
agreement with the exact theory as calculated from the full Hamiltonian (see appendix D), which predicts +0.97
(1), with uncertainties reflecting fit uncertainty of peak locations. For the 5-site wide ribbon, we measured 1.11
(2), —0.97(4), close to the theoretical prediction of +1.07(1).

5 . . . . . .
Our Chern number extraction scheme fails for the rf case as the fractional populations are flat and there is no peak. We therefore assign a
Chern number of 0 to flat distributions.
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Figure 4. Chern number from the TKNN equation. (a) Lowest band energy (left) and expected position along e, (m) (right) within
the Brillouin zone in an extended 2D system, where g, and g, are crystal momenta along e, and e, respectively. Top. ®/®, = 0.
Middle. ®/®, = 1/3: Brillouin zone shrinks by a factor of 3 and becomes three-fold degenerate, distance between adjacent energy
minima spaced by 2k /Q islabeled. Each minimum corresponds to a different expected position along e,. Bottom. ®/®, = 2/5. (b)
Fractional population in each spin state in the lowest band at g, = 0. Top. ®/®, = 1/3. Bottom. ®/®, = 2/5. A momentum shift
along e, of 2k; /Q isaccompanied by an integer number of spin flips C. A line connecting magnetic states separated by 2k /Q, with
slope C = 1 (top) and —2 (bottom), is indicated.
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Figure 5. Chern number measurement. Lowest band fractional population measured as a function of crystal momentum in the e, and
position in the e;. Darker color indicates higher fractional population. In the Raman-coupled cases, the points represent the fitted
population maxima and the Chern number is extracted from the best fit line to those points. (a) 3-site (left) and 5-site (right) systems
with positive flux. (b) 3-site (left) and 5-site (right) system with zero flux. (c) 3-site (left) and 5-site (right) systems with negative flux.
The parameters for 3-site data were identical to those for 5-site data, see figure 3(a), except t; = 0.98(8)1,.

The deviation from unity results from ®/®, — 4/3 = 0.01, anon-zero quadratic Zeeman shift, and ¢, > t,
allowing hybridization of states in the vicinity of the edge (see figure 2 in [20]). The dependence of a Chern
number inferred with this technique on both the size of the system along e, and the tunneling ¢, is studied in
figure 6. Figure 6(a) shows the dependence of the Chern number on the width of the ribbon, from our
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Figure 6. Dependence of Chern number inferred via the TKNN Diophantine equation method on system size and tunneling. (a)
Chern number dependence on number of sites along e;. (b) Chern number dependence on coupling strength along the synthetic
direction for 3 and 5 site systems.

experimental parameters of 3 and 5 sites to an extended system of 70 sites. As seen in the figure, as the system size
grows the measured Chern number converges to the expected value of 1. These were calculated from the full
Hamiltonian (appendix D), assuming uniform tunneling along e, with tunneling t, = 0.5Ep, synthetic
direction coupling /22 = 0.5E and no quadratic shift. Figure 6(b) shows the dependence of the measured
Chern number on the coupling strength along the synthetic direction 72 for lattice widths relevant to our
experiment—3 and 5 sites. We used the same Hamiltonian and parameter values listed above. In the limit of
vanishing tunneling, both the 3 and 5-site wide Chern number converge to the exact integer value of 1. This
supports the hypothesis that deviation from unity at non-zero coupling strengths is a consequence of the
hybridization of states in the vicinity of the edge, which is facilitated by stronger couplings.

5. Conclusion

Our direct microscopic observations of topologically driven transverse transport demonstrate the power of
combining momentum and site-resolved position measurements. With the addition of interactions, these
systems have been shown to display chiral currents [30], and with many-body interactions are predicted to give
rise to complex phase diagrams supporting vortex lattices and charge density waves [31-33]. Realizations of
controlled cyclic coupling giving periodic boundary conditions [26] along e, could elucidate the appearance of
edge modes as the coupling between two of the three states is smoothly tuned to zero. In addition, due to the
non-trivial topology as well as the low heating afforded by synthetic dimensional systems, a quantum Fermi gas
dressed similarly to our system would be a good candidate for realizing fractional Chern insulators [34].

Acknowledgments

This work was partially supported by the Air Force Office of Scientific Researchs Quantum Matter MURI, NIST,
and NSF (through the Physics Frontier Center at the JQI).

Appendix A. Experimental detail

We created nearly pure #Rb BECs in a crossed optical dipole trap [27] with frequencies

(Wys wys wy) /2T = (27.1(2), 58.4(8), 94.2(5)) Hz. We deliberately used small, low density BECs with ~ 10°
atoms to limit unwanted scattering processes in regimes of dynamical instability [35]. At various times in the
sequence, we used coherent rf and microwave techniques to prepare the hyperfine | F, my) state of interest. The
1D optical lattice was always ramped on linearly in 300 ms. For non-zero ¢, we turned on the Raman beams
adiabatically in 30 ms after ramping on the lattice. For ¢ = 0 we used adiabatic rapid passage startingin

mp = —Fand swept the bias magnetic field in ~50 ms to resonance. We applied forces by spatially displacing the
optical dipole beam providing longitudinal confinement (by frequency shifting an acousto-optic modulator),
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The smallest force (cyan) resulted in adiabatic evolution, while the strongest force (red) resulted in almost full non-adiabaticity. Right:
measured Chern number as a function of applied force, as inferred from the Hall conductivity (blue) and the TKNN Diophantine
equation method (green).

effectively adding a linear contribution to the existent harmonic potential for displacements small compared to
the beam waist.

Appendix B. Rf correction

In experiments where the tunneling along e, was induced by a uniform rf magnetic field (®/®, = 0), our
loading procedure had remnant non-adiabaticity that led to temporal oscillations in the fractional populations
in different m states at the 40% level. To separate the effects due to this non-adiabaticity from transverse
transport, we performed the experiment with identical preparations without applying the longitudinal force. We
then used the observed oscillations as a function of time without an applied force as a baseline, and report the
difference in fractional populations between that baseline and the cases where the force was applied.

Appendix C. Hall conductivity

The current density can be expressed as j, = mpv| e, where np is the 2D charge carrier density, v, is the
transverse velocity and eis the electron charge. Using o1 E| = F| 0y /e, and choosing some increment of time At,
wehave v, = Ax, /At,and Fj = 7 AqH / At, where g is the crystal momentum along the direction of the force.
Re-expressing n,p in number of carriers N per plaquette, defining Ax as transverse displacement in units of
lattice periods, we obtain NGAx, / AqH = opRk. Weset N=1 as we are looking at motion of single atoms.

The dependence of the measured Hall conductivity for our experimental parameters as a fucntion of the
magnitude of applied force is shown in figure C1. The modal position for every point in the Brillouin zone was
calculated by numerically solving the TDSE. These are shown in the left panel of the figure, for forces 0.165,
0.141,0.123,0.11,0.099, 0.09,0.082,0.076,0.071 and 0.066 E; /A . The right panel shows the measured Hall
conductivity from alinear fit to the full range of crystal momenta as a function of applied force (blue line). For
comparison, we also show the Chern number as inferred via the TKNN Diophantine equation method as a
function of applied force (green line).

Appendix D. Full Hamiltonian

The spin dependent Hamiltonian, in the presence of Raman coupling and a 1D optical lattice can be written as

F,00
H = > Ho + Hr + Hi,

m=—F,n=—00
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Table D1. Summary of experimental parameters.

Parameter Value

v 4.4(1)Ey

t 0.154(4) ;.

t, 3-site Raman: 0.97(8) t,; 5-site Raman: 1.97(8) t,; rf:
7.4(5) t,

€ 0.02E,

[ 0.002) E,,

F, 0.106(5) Er/ )\,

Expected position (m)

Energy [t«]

_ 1 f 1
—0.50 —0.25 0.00 0.25 0.50
Crystal momentum qy [2k;]

Figure D1. Band structure of the 3-site system for our experimental parameters, with color representing the expectation value of
position along e, (m).

where the diagonal term
Hy = (%(q, — 2m®/®y — 2n)*k] [2mpy, + hém + em?)
X g, + n2ky, m)(q, + n2ky, m|

includes the kinetic energy as well as the two-photon Raman detuning from resonance § and the quadratic
Zeeman shift e. Here, m represents atomic spin, # represents lattice order in the momentum basis, g is the
longitudinal crystal momentum, and mgy, is the atomic mass. The second term represents the Raman coupling
with coupling strength 2, with anisotropic tunneling arising from the spin-dependent prefactor (Clebsch—
Gordan coefficient):

Hp = ZQJF(F + 1) — m(m + 1) /242]q, + n2ky, m)(q, + n2ki, m + 1| + h.c.

Here, h.c. stands for Hermitian conjugate. The third term represents lattice coupling to higher order lattice
states, with lattice depth U:

Hy = U/4lq, + n2k,, m)(q, + (n + 1)2k;, m| + h.c.

In our experiment, /22 = 0.5(2) E for Raman couplingand %~ 2 = 0.57(1) E_ for rf coupling, U = 4.4(4) E; for
all preparations. In our calculations, we found that restricting —7 < n < 7 was sufficient at our energies.

We choose the appropriate tunneling coefficients ¢, and ¢, for the approximate tight-binding Hamiltonian
equation (2) as those that optimally reproduce the lowest two bands, relevant for our experiment. A summary of
our experimental parameters is presented in table D1. The band structure of our 3-site wide ribbon is presented
in figure D1, with three bands plotted as a function of crystal momentum g, colored in accordance with the

expected position along e;, (1m).
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