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Second Chern number of a
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Yang monopole
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Topological order is often quantified in terms of Chern numbers, each of which classifies
a topological singularity. Here, inspired by concepts from high-energy physics, we use
quantum simulation based on the spin degrees of freedom of atomic Bose-Einstein
condensates to characterize a singularity present in five-dimensional non-Abelian gauge
theories—a Yang monopole. We quantify the monopole in terms of Chern numbers
measured on enclosing manifolds: Whereas the well-known first Chern number vanishes,
the second Chern number does not. By displacing the manifold, we induce and observe
a topological transition, where the topology of the manifold changes to a trivial state.

T
he Yang-Mills theory is a non-Abelian gauge
field theory that includes a higher gauge
symmetry than quantum electrodynamics
and now forms a cornerstone of the stan-
dardmodel of particle physics (1, 2). In the

Yang-Mills theory, soliton solutions that include
monopoles and instantons play a key role, the-
oretically describing phenomena in high-energy
physics (3). The monopole solutions are sources
of non-Abelian gauge fields and give rise to a
nontrivial topology.
The physical importance of magnetic mono-

poles was captured in the seminal work by
P. A. M. Dirac (4). Dirac considered a phase,
now known as the Aharonov-Bohm phase, ac-
quired by an electron with charge qe moving
around a magnetic monopole and showed that
themonopole chargemust be qm = nh/qe, where
n is an integer and h is Planck’s constant. Fol-
lowing from this quantization condition, Gauss’s
law for the magnetic field B must take a quan-
tized valuenh=qe ¼ ∫S2B � dS, which essentially
counts the number ofmagnetic charges inside the
manifold S2 [here S2 is a closed two-dimensional
(2D) surface and dS = n dS (n is a unit vector nor-
mal to the surface)]. The integral is topologically
robust against deformation of the enclosing man-
ifold as long as the number of monopoles enclosed
is unchanged. The field from Dirac monopoles
has been observed in a range of physical sys-
tems, and the associated topological charge—
the first Chern number, often referred to as “the
Chern number”—has been measured (5–7). The
first Chern number and Abelian monopole field
were measured in the parameter space of a spin-
1/2 artificial atom (6, 7), and the Dirac monopole

analog was synthesized inside a spinor conden-
sate where the associated spin texture was observed
(5). In quantummechanical systems, gauge fields
such as the electromagnetic vector potentialA
take central stage (in classical electromagnetism
B ¼ ∇�A) and are required to understand na-
ture at themost fundamental level (8). The Yang-
Mills theory is a non-Abelian extension of Dirac’s
magneticmonopole (9) and requires higher-order
Chern numbers (higher-order than the first) for
its topological characterization.
Here we report on the quantum simulation of

a Yang monopole in a 5D parameter space built
from an atomic quantum gases’ internal states
and themeasurement of its topological charges
by characterizing the associated non-Abelian
gauge fields (often called curvatures). To extract
the second and higher Chern numbers that re-
sult from non-Abelian gauge fields, we devel-
oped a method to evaluate the local non-Abelian

Berry curvatures through nonadiabatic responses
of the system.

Monopole fields and Chern numbers

An N dimensional vector gauge field AðqÞ ¼
ðA1;A2;…;AN Þ, where q ¼ ðq1; q2;…; qN Þ is the
position, is said to be non-Abelian when the
vector components Am(q) fail to commute, i.e.,
[Am, An] ≠ 0 (m; n∈f1;…;Ng), where m and n label
the different vector components. The resulting
curvature is given by

FmnðqÞ ¼ @An

@qm
� @Am

@qn
� i½Am;An� ð1Þ

where i is an imaginary unit; in three spatial
dimensions, the components of the magnetic
field Bm ¼ Dmnl Fnl=2, where l is an integer, can
be determined from the elements of the Fnl
matrices (Dmnl is the rank-3 Levi-Civita symbol,
and we used Einstein’s implied summation con-
vention for repeated indices). In analogy to the
Gauss’s law with electric charges (monopoles), the
first Chern number is equivalently the integral

C1 ¼ 1

2p
∫S2B � dS ¼ 1

4p
∫S2Fmn dqm∧dqn ð2Þ

of the magnetic field B or the Abelian field
strength Fnl over a closed 2Dmanifold S2, where
∧ is the wedge product. The general nth Chern
number of a non-Abelian gauge field is the
n-wedge product of the non-Abelian curvature

anCn ¼ ∫S2n tr½F ∧ F ∧ F ∧ … ∧ F � d2nS ð3Þ

where an (a1 = 4p, a2 = 32p2,…) is a normaliza-
tion factor and S2n is a closed 2n-dimensional
manifold (10).
Chern numbers provide a topological classi-

fication of monopoles in gauge field theories.
The monopoles are generally associated with
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Fig. 1. Non-Abelian monopole and the appearance of nontrivial topology. (A) The 5D parameter
space.The system has a topological defect at the origin, a Yang monopole, providing a source of non-Abelian
gauge field. The topological invariant associated with the monopole is the second Chern number,
defined on an enclosing 4D manifold. (B) Quantum states can be mapped onto generalized Bloch
spheres. An additional Bloch sphere, which defines the wave function within each DS, is required to fully
define our systems eigenstates. The 5D generalized magnetization vector G remains parallel with q at
adiabaticity, and the leading order correction to the adiabatic changes to q, is a small deflection in G.
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a divergence in the field strength and can con-
tribute a unit of flux through any enclosing
manifold. This generalized flux is quantized and
is given by the Chern numbers. In particular, for
Yang monopoles, the first Chern number is zero,
but the second Chern number is either +1 or −1
(Fig. 1).
Many quantum systems can be described by a

HamiltonianĤ(q) that depends on position q in
parameter space. At each position, the system is
characterized by energies Ek(q) and eigenstates
jkðqÞi, where k∈f1;…;Kg is an index that iden-
tifies the eigenstate in ourK -dimensionalHilbert
space. A gauge potential called the non-Abelian
Berry connection Abg

m ðqÞ ¼ ihbðqÞj@=@qmjgðqÞi ,
where b; g∈f1;…;Kg , is encoded in the wave
functions; thus, for any position q, each vector
component Am is represented by amatrix. Chern
numbers and curvatures can be then defined by
Eqs. 1 to 3 for each well-separated energy level.
Because of these gauge fields, an initial quantum

state can acquire a geometric phase as the loca-
tion in parameter space is adiabatically changed.
For nondegenerate quantum systems, the result-
ing geometric phase is called the Berry phase
(11). A quantum state evolving within a degen-
erate subspace can acquire a Wilczek-Zee geo-
metric phase, a matrix-valued generalization of
the Berry phase obtained as the path-ordered
line integral of a non-Abelian gauge potential
(12–14).

Experimental Hamiltonian
We realized a non-Abelian gauge field by cyclical-
ly coupling four levelswithin the hyperfine ground
states of rubidium-87 using radio-frequency and
microwave fields (Fig. 2, A and B), essentially
forming a square plaquette. The four couplings
were parameterized by two Rabi frequencies
WA andWB and two phases fA and fB arranged so
that the sum of the phases around the plaquette
was p. This configuration of control fields, along
with a detuning d ¼ jgFjmDB=ħ, where gF is the
Landé g factor, m is the Bohrmagneton, DB is the
shift in the magnetic field from resonant cou-
pling condition, and ħ = h/2p, gave us an experi-
mentally controllable 5D parameter space labeled
by the Cartesian coordinates q = (−WB cos fB,
−WA cos fA, −WA sin fA, d, −WB sin fB). In much
the sameway that a two-level atom in amagnetic
field can be understood in terms of three Pauli
matrices, our four-level system is governed by the
Hamiltonian

Ĥ ¼ � ħ
2
q � Ĝ ¼ � ħ

2
ðq1Ĝ1 þ q2Ĝ2þ

q3Ĝ3 þ q4Ĝ4 þ q5Ĝ5Þ ð4Þ

where qi and Ĝ i (i = 1, 2, …, 5) are the ith com-
ponents of q and Ĝ and Ĝ i is represented as the
four-by-four Dirac matrices with the hyperfine
ground states shown in Fig. 2A taken as the ba-
sis. Furthermore, because each of theDiracmatri-

ces commuteswith the time-reversal operator, the
system has time-reversal symmetry (15); Kramers
theorem then implies that the system has two
pairs of degenerate energy states, here with en-
ergies ET ¼ Tħjqj=2. Thus, each energy, labeled by
+ or −, has two independent eigenstates j↑TðqÞi
and j↓TðqÞi; each of these pairs define a degen-
erate subspace (DS). As shown in Fig. 2B, these
DSs are characterized by a generalized magneti-
zation vector hGi ¼ ðhĜ1i; hĜ2i; hĜ3i; hĜ4i; hĜ5iÞ
on a unit 4-sphere in our 5D space. Different
configurations within each DS share the same
magnetization vector, which can be pictured in
terms of an additional 3D Bloch sphere (green
sphere in Figs. 1 and 2B). An eigenstate is fully
depicted by assigning the two such “Bloch” vec-
tors. The Yang monopole (16, 17) resides at the
Hamiltonian’s degeneracy point atq=0, a singular
point where the non-Abelian Berry’s connection
diverges. The non-Abelian Berry’s curvatures from
our experimental Hamiltonian (Eq. 4) quantum
simulates the fields of a Yang monopole.

Quantum control and measurement

We begin by demonstrating the control andmea-
surement capabilities of our system. We first
prepared the system in its ground state at the po-
sitionq0 ¼ q0ð�1;�1; 0;0; 0Þ= ffiffiffi

2
p

in parameter
space, where the generalized magnetization is
hGi ¼ ð�1;�1; 0;0; 0Þ= ffiffiffi

2
p

. Then, by ramping fA,
we slowly moved the control vector around the
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Fig. 2. Schematics of the
experiment. (A) Schematic
of our implemented coupling
using four hyperfine ground
states of rubidium-87. The four
states were cyclically coupled
with radio-frequency (rf) and
microwave fields. The right
panel shows the resulting
plaquette and the associated
coupling parameters. (B) At
any point in the 5D parameter
space, the energy spectrum
forms a pair of twofold
degenerate manifolds with
the energy gap equal to ħjqj,
where q is the control field.
Each degenerate subspace
can be represented by a
Bloch sphere.
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circleqðtÞ ¼ q0½�1;�cosð2pt=T Þ; � sinð2pt=TÞ;
0; 0�= ffiffiffi

2
p

shown in Fig. 3A, where T is the full
ramp time, and q0 ¼ jq0j ¼ 2p� 2kHz.
After preparing the eigenstate

�
j↑�ðq0Þi þ

ij↓�ðq0Þi
�
=

ffiffiffi
2

p ¼
� ffiffiffi

2
p j1i�ð1þ iÞj2iþ i

ffiffiffi
2

p j3iþ
ð1� iÞj4i

�
=ð2 ffiffiffi

2
p Þ in the ground DS by rotating

the control field (15) from the north pole qN =
q0(0, 0, 0, 1, 0), we measured the state for differ-
ent evolution times in this nearly adiabatic ramp
(Fig. 3B), and identified the orientation within the
DS by performing quantum state tomography,
giving the expectation values of the Pauli operators
ŝi ði ¼ x; y; zÞ in the ground DS at qN. As seen in

Fig. 3B, after the control field completed one cycle,
the orientation of the state vector within the DS
differed from its initial value. After one cycle, the
Berry’s phase from an Abelian gauge field
would contribute only an overall phase, leav-
ing the state vector otherwise unchanged. In
agreement with our numerical simulation
obtained by solving (15) the time-dependent
Schrödinger equation (TDSE) for the Hamiltonian
in Eq. 4 (curves in Fig. 3B), this shows that the
observed evolution resulted instead from the
Wilczek-Zee phase derived from a non-Abelian
gauge field.
We thenmeasured hĜ4iduring this ramp and

noted a small deflection of the magnetization of
the state vector owing to remnant nonadiabatic
effects (Fig. 3C). In linear response theory, devia-
tions from adiabaticity can be described in terms
of the response of the state vector to a general-

ized force M̂m ¼ �ð@Ĥ=@qmÞ=ħ acting on the
state (Fig. 1B). For a conventional Abelian sys-
tem, the local force at a fixed time (18, 19)

hM̂mi ¼ vnFmn þ constant ð5Þ

resulting from parameters qn changing with ve-
locity vn is analogous to the Lorentz force. This
relation gives the driving force behind the topo-
logical and geometrical charge pumps recently
realized in ultracold atoms (20–22). In both crys-
talline and optical lattices, the same relation
underlies the anomalous quantum Hall effect
(23–25).
Owing to the phase symmetry of the system for

fA, the generalized geometric force from Eq. 5 is
constant for our trajectory, inconsistent with the
sign change present in the observed deflection
(Fig. 3C). To account for this discrepancy, Eq. 5
can be extended to accommodate non-Abelian
gauge fields, giving the generalized geometric
force (15, 26)

hM̂mi ¼ vnhF̂ mni þ constant ð6Þ

acting on the state, where the expectation value
on the right-hand side is taken for a pure state
at adiabaticity and F̂ mn is the Berry curvature of
the associated degenerate subspace (26). In con-
trast to the Abelian case, where the generalized
geometric force is simply the product of the local
Berry curvature and the velocity, the force in
Eq. 6 also depends on the quantum state within
the DS. As we saw, even for adiabatic motion,
Wilczek-Zee phases can lead to considerable evo-
lution within the DS, making Eq. 6 essential for
describing generalized geometric forces.
The sign change in Fig. 3C is now explained

by the dependence of the geometric force on the
state as it evolved within the DS. If the gauge
field is Abelian, independent of the state within
the DS, the force components should be constant
in the spherical coordinate along the path for
constant ramp velocity. The sign change reveals
that the quantum state acquired a Wilczek-Zee
phase from a non-Abelian gauge potential, con-
tributing to the geometric force. Indeed, the solid
curves depict the prediction of our TDSE simu-
lations (15) and confirm that the geometric force
in our experiment cannot be derived from an
Abelian gauge potential.
In general, we can observe the full magnetiza-

tion of the state vector by carefully measuring
the expectation values (15) of all five operators Ĝ i.
To demonstrate this capability, we moved along
the circle qðtÞ ¼ q0½�cosð2pt=TÞ;�cosð2pt=T Þ;
�sinð2pt=T Þ;0; sinð2pt=T Þ�= ffiffiffi

2
p

shown in Fig. 4A,
starting from j↑�ðq0Þi [¼ ð ffiffiffi

2
p j1i � j2i þ j4iÞ=2]

at t = 0, and obtained hGðtÞi. Figure 4B shows
that hGðtÞinearly followed the adiabatic trajec-
tory (red curves), almost oriented parallel to q,
but slightly deflected owing to the nonadiabatic-
ity [TDSE simulation (15) shown by black curves
in Fig. 4B].
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Fig. 3. State evolution under a non-Abelian
gauge field. (A) Schematic of the control field
trajectory. The two phases (fA, fB) were ramped
for T = 2 ms with the laboratory parameters
WA/2p = WB/2p = 1.41 kHz and d = 0. (B) Nearly-
adiabatic response of pseudospin magnetiza-
tion within the ground DS Bloch sphere, showing
the nontrivial acquisition of a Wilczek-Zee phase
after a 2p-rotation. The solid lines simulate the
experiment by numerically solving the TDSE (15).
(C) Deflection during the phase ramp. The
state was slightly deflected along hĜ4i, resulting
from our finite ramp time (black circles),
changing from positive to negative. The black
curve shows the theoretically expected linear
response based on Eq. 6 (15).

Fig. 4. Generalized magnetization. (A) Sche-
matic of the control field trajectory. The two
phases (fA, fB) are ramped for T = 4 ms with
the laboratory parameters WA/2p = WB/2p =
1.41 kHz and d = 0. (B) Quantum states were
measured by evaluating the expectation values
of the five Dirac matrices. The red curves plot
the trajectories expected for adiabatic motion,
whereas the black curves are numerical simulations,
including our finite ramp time (15).
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Non-Abelian Berry curvatures and
Chern numbers
With the ultimate goal of evaluating Chern num-
bers in mind, we characterized the non-Abelian
Berry curvatures on spherical manifolds in pa-
rameter space. Accordingly, we adopt spherical
coordinates described by a radius q and four
angles q1 ∈ [0, p], q2 ∈ [0, p/2], f1, and f2 that are
related to our experimental control parameter
space viaWA = q sin q1 cos q2,WB = q sin q1 sin q2,
d = q cos q1, f1 = (fA + fB)/2, and f2 = (fA − fB)/2.
After preparing the system in its ground state

at q0, wemeasured the deflection along the q1 di-
rection, while rotating the control field along
qTðtÞ ¼ q0½�cosð2pt=T Þ;�cosð2pt=T Þ;∓sinð2pt=
T Þ;0;∓sinð2pt=T Þ�= ffiffiffi

2
p

by ramping f1 from 0 to
±p (half-circles in Fig. 5A). The geometric force
Mq1 is directly obtained from the deflection of
hĜ4i . Figure 5B plots the deflection during this
ramp for four different initial states (marked by
jAi, jBi, jCi, and jDi in Fig. 5D) within the DS,
manifesting the state dependence of the geo-
metric force in the non-Abelian gauge field in
contrast to Abelian cases. The net deflection
during any given ramp gives the integrated geo-
metric force.
To confirm that our drive was in the linear re-

sponse regime, we measured the geometric force
as a function of ramp time T (Fig. 5C). From both
the data and TDSE simulations (dashed curves),
the geometric force (solid curves) is almost linear
with respect to velocity for T ≥ 12p/q.
The components of the Berry curvatures can

be reconstructed from the integrated geometric
force. Owing to the symmetry of our experimen-
talHamiltonian, the geometric force components
must be almost constant in spherical coordinates
during the ramp in the linear response regime.
By measuring the geometric force experienced
by four independent initial states all within the
DS, we determined the four independent pa-
rameters present in the 2-by-2 matrices describ-
ing each element (labeled by b and g) of the
representation of the non-Abelian Berry curva-
ture F bg

ml . Following this procedure for T ≥ 12p/q,
we obtained 2q20F̂q1f1 ¼ 0:01ð3ÞÎ 0 þ ½�0:06ð5Þ;
0:08ð5Þ; 0:98ð3Þ� � ^s, in agreement with the the-
oretical value, 2q20F̂q1f1 ¼ ŝz (here, Î0 is the iden-
tity operator).
We thoroughly investigated the state depen-

dence of the geometric force by studying the
evolution of 225 initial states covering the Bloch
sphere of the initial DS (Fig. 5D). For each initial
state, we recorded the deflection after a 250-ms
ramp to obtain the Berry curvature component
hF̂q1f1 i. Figure 5D shows the initial-state Bloch
sphere colored according to the curvature; the
theoretically computed result (top) is in good
agreement with experimental result (bottom).
By changing the path and the direction along

which we measure the deflection, other compo-
nents of the curvatures can be measured. For
example, by rotating the control field along
qTðtÞ ¼ q0½�cosð2pt=T Þ;�cosð2pt=TÞ;∓sinð2pt=
T Þ;0; Tsinð2pt=T Þ�= ffiffiffi

2
p

by ramping f2 and evalu-
ating the deflection along the q2 direction at q0,
we obtained 2q20 F̂q2f2 ¼�0:08ð3ÞÎ 0þ ½�0:12ð5Þ;

�0:07ð5Þ; 1:00ð3Þ� � ^s, also in good agreement
with the theoretical value, 2q20 F̂f2q2 ¼ ŝz.
Just as in classical electromagnetism, where

the fields from electric or magnetic sources fall
off as 1/q2, the non-Abelian gauge field strength
also follows a 1/q2 scaling law, as required by the
generalized Gauss’s law (see Eq. 2) that defines
the second Chern number. By repeating the same
Berry curvature measurement (F̂f2q2 ) for differ-
ent q0, while keeping 2p/qT = 0.25 constant to
remain in the linear response regime, the Berry
curvature componentshF̂f2q2 i indeed had the 1/q

2

scaling of a monopole source (Fig. 5E); this also
suggests that hF̂f2q2 i diverges at q→0.

Taken together, these fields provide sufficient
information to extract the second Chern num-
ber of a 4-sphere with radius q0.We evaluate the
second Chern number using the relation

C2 ¼ 3q40
4p2

∫S4 tr½Ff1q1Fq2f2 �d4S ð7Þ

where S4 defines the 4-sphere andd
4S= sin3 q1 sin

2q2dq1dq2df1df2. Equation 7 relies on the rota-
tional symmetry of Ĥ(q), which gives the nu-
merically confirmed (15) relationstr½Ff1q1Ff2q2� ¼
tr ½Ff1q2Fq1f2 � ¼ tr ½Ff1f2Fq2q1 � . From the non-
Abelian Berry curvature measurements in the
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Fig. 5. Deflection of states within the ground-state manifold owing to non-Abelian Berry
curvatures. (A) Schematic of the control field trajectory. (B) Deflections along q1 were measured
during the T = 6 ms ramp. hĜ4iwas measured for four independent initial states (jAi, jBi, jCi, andjDi)
within the DS at q0. Here jAi ¼ ð

ffiffiffiffiffi
2

p
j1i � j2i þ j4iÞ=2 and jBi ¼ ð�j2i þ

ffiffiffiffiffi
2

p
j3i � j4iÞ=2 are the basis

states for the DS, jCi ¼ ðjAi þ jBiÞ=
ffiffiffi
2

p
, andjDi ¼ ðjAi þ ijBiÞ=

ffiffiffi
2

p
. (C) Geometric force as a function of

1/Tmeasured for the four initial states (jAi, jBi, jCi, and jDi) at q0.The dashed lines assume linearity,
and the solid curves are the outcomes of our TDSE simulations (15). (D) Expectation values of the
non-Abelian Berry curvature hF̂q1f1 i in the ground state manifold at q0 are mapped onto Bloch spheres
associated with the state within the DS at q0. The four initial states used in (A) to (C) are also shown
in the theoretical (top sphere) and the experimental (bottom sphere) plots. (E) 1/q2 scaling in the
strength of the curvature.The matrix components of the curvature hF̂f2q2 i are evaluated for various q0.
The data show excellent agreement with the theory that exhibits 1/q2 dependence (solid lines).
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previous section, we directly obtained C2 ¼
2q40tr½Fq1f1 ðq0ÞFf2q2 ðq0Þ� ¼ 0:97ð6Þ for the ground
state, consistent with the theoretical value C2 = 1.
We repeated the measurements for the excited
state and foundC2 ¼ 2q40tr½Ff1q2 ðq0ÞFf2q1 ðq0Þ� ¼
�0:93ð6Þ, also in agreement with the theoret-
ical value C2 = –1. These nonzero Chern num-
bers inform us that themanifold is topologically
nontrivial.
Because the system is time-reversal symmet-

ric, the first Chern form is zero, and therefore
Eq. 3 for the first Chern number should be zero
for both degenerate manifolds. Indeed, all the
measured non-Abelian Berry curvatures were
traceless (q20tr½F̂f2q2� ¼ �0:08ð3Þandq20tr½F̂q1f1� ¼
0:01ð3Þ for the ground state, and q20tr½F̂q1f2 � ¼�0:02ð3Þ and q20tr½F̂f1q2 � ¼ 0:00ð3Þ for the ex-
cited state), so that the first Chern number,
which is the surface integral of the trace of the

individual curvatures, was also zero. Thus, the
nontrivial topology of the monopole field is not
expressed by a first Chern number.

Topological transition

We concluded our measurements by inducing
a topologically nontrivial-to-trivial transition
of the manifold by displacing the 4-sphere in
parameter space from the origin by an amount
qoffset = qoffset(q0/q0) (Fig. 6A). The topological
transition occurs at the critical displacement
qcrit = q0 when the Yang monopole departs the
manifold. Figure 6B shows our observed tran-
sition of the second Chern number from ±1, for
the ground and excited states, to zero as the off-
set coupling qoffset was increased. This transition
is associated with the topology of the manifold
changing from topologically nontrivial to trivial.
The smoothness of the observed transition was

caused by the breakdown of the linear response
near the transition point. Our theory [continuous
curves in Fig. 6B, and see (15)] shows that slower
ramps enlarge the region in which linear re-
sponse is valid andmake the transition sharper
(Fig. 6B). Topological transitions have been ob-
served in a range of experiments (6, 7, 25); how-
ever, in all of these cases, the observed topological
phaseswere only identified by aDiracmonopoles’
first Chern number and enclosing 2D manifolds.
By contrast, in our system, the first Chernnumber
is zero everywhere and the second Chern number
characterizes the topological phase, arising from
aYangmonopole at the origin of parameter space.
The opposite topological charges observed in the
ground or excitedmanifolds result fromamono-
pole in one manifold acting as an antimonopole
in the other.With these Chern numbermeasure-
ments,we confirmed that the engineered topolog-
ical singularity in our system indeed simulated a
Yang monopole.

Discussion and outlook

Our work can be extended to other quantum sys-
tems, including ions, thermal atoms, and supercon-
ducting qubits. The Chern number characterizes
a source of gauge field with high symmetry, a
symmetry that naturally arises in particle physics
in contexts such as quantum chromodynamics.
The monopole field and the second Chern

number have been discussed theoretically in the
context of 4DquantumHall effect (4DQH) (27, 28),
spin-Hall effect (29), exotic charge pumping (30),
and fermionic pairing (31) in condensed matter
systems. Themodel we explored experimentally
is equivalent to the (4 + 1)-D lattice Dirac Hamil-
tonian relevant to 4DQH. The 4DQH is a gener-
alized quantumHall effect and is the root state of
a family of topological insulators, which are ob-
tained by a dimensional reduction procedure
(32). The observed transition in Fig. 6B can be
regarded as the type of phase transition present
in the band topology of 4DQH systems. A con-
formal mapping from a 4D spherical manifold
in parameter space to a 4D crystal momentum
space, 4-torus, directly recasts our Hamiltonian
as the Dirac Hamiltonian.
Our observation lays the groundwork for sim-

ulating objects in high-energy physicswith atomic
quantum systems. Lattice extensions of our work,
where lattice sites or bands play the role of spin
states,may allowquantumsimulation of emergent
many-body dynamics with non-Abelian gauge
fieldswith highly controllable ultracold quantum
gases systems (33–36).
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