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Abstract
Wedescribe a novel technique for creating an artificialmagneticfield for ultracold atoms using a
periodically pulsed pair of counter propagating Raman lasers that drive transitions between a pair of
internal atomic spin states: amulti-frequency coupling term. In conjunctionwith amagnetic field
gradient, this dynamically generates a rectangular lattice with a non-staggeredmagnetic flux. For a
wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau
levels, as quantified by their Chern numbers.

1. Introduction

Ultracold atomsfindwide applications in realizing condensedmatter phenomena [1–4]. Since ultracold atom
systems are ensembles of electrically neutral atoms, variousmethods have been used to simulate Lorentz-type
forces, with an eye for realizing physics such as the quantumHall effect (QHE). Lorentz forces are present in
spatially rotating systems [5–11] and appear in light-induced geometric potentials [12, 13]. Themagnetic fluxes
achievedwith thesemethods are not sufficiently large for realizing the integer or fractionalQHE. In optical
lattices, largermagnetic fluxes can be created by shaking the lattice potential [14–17], combining static optical
lattices alongwith laser-assisted spin or pseudo spin coupling [12, 13, 18–24]; current realizations of these
techniques are beset withmicromotion and interaction induced heating effects. Herewe propose a newmethod
that simultaneously creates large artificialmagnetic fields and a lattice thatmay overcome these limitations.

Our technique relies on a pulsed atom-light coupling between internal atomic states alongwith a state-
dependent gradient potential that together create a two-dimensional periodic potential with an intrinsic
artificialmagnetic field.With no pre-existing lattice potential, there are no a priori resonant conditions that
would otherwise constrain themodulation frequency to avoid transitions between original Bloch bands [25].
For awide range of parameters, the ground and excited bands of our lattice are topological, with nonzeroChern
number.Moreover, like Landau levels the lowest several bands can all have unit Chern number.

Themanuscript is organized as follows. Firstly, we describe a representative experimental implementation of
our technique directly suitable for alkali atoms. Secondly, because the pulsed atom-light coupling is time-
periodic, we use Floquetmethods to solve this problem. Specifically, we employ a stroboscopic technique to
obtain an effectiveHamiltonian. Thirdly, using the resulting band structure we obtain a phase diagramwhich
includes a region of Landau level-like bands eachwith unit Chern number.

2. Pulsed lattice

Figure 1 depicts a representative experimental realization of the proposedmethod. A systemof ultracold atoms
is subjected to amagneticfieldwith a strength = + ¢( )B X B B X0 . This induces a position-dependent splitting
gFμBB between the spin up and down states; gF is the Land g-factor andμB is the Bohrmagneton. Additionally,
the atoms are illuminated by a pair of Raman lasers counter propagating along ey, i.e., perpendicular to the
detuning gradient. Thefirst beam [up-going infigure 1(a)] is at frequency w w=+

0, while the second [down-
going infigure 1(a)] contains frequency components w w dw w= + - +- ( ) ( )n1 ;n

n
0 the difference frequency
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between these beams contains frequency combs centered at dw with comb teeth spaced by 2ω, as shown in
figure 1(b). In our proposal, the Raman lasers are tuned to be in nominal two-photon resonance with the
Zeeman splitting from the large offsetfieldB0 such that gFμBB0=ÿδω0,making the frequency difference
w w-=
- +
n 0 resonant atX= 0, whereB= B0. Intuitively, each additional frequency component w-

n adds a
resonance condition at the regularly spaced points w m= ¢X n g Bn F B , however, transitions using even-n
sidebands give a recoil kick opposite from those using odd-n sidebands (seefigure 1(c)). Each of these coupling-
locations locally realizes syntheticmagnetic field experiment performed at theNational Institute of Standards
andTechnology [26], arrayed in amanner to give a rectified artificialmagnetic fieldwith a nonzero average that
wewill show is a novel flux lattice.

In practice only afinite number of lattice teeth are needed, owing to the finite spatial extent of a trapped
atomic gas. In rough numbers the spatial extent of a quantumdegenerate gas is 20 μm, and if we select a very
large gradient corresponding to a lattice spacing of 0.5 μm, this gives just 40 comb teeth. Generating the
frequency comb is straightforward. In the laboratory, acoustic-opticalmodulators (AOMs) frequency-shift laser
beams by an amount defined by a laboratory radiofrequency (rf) source. Therefore creating a comb is amatter of
first creating a frequency comb—simple with rf—and then feeding that signal into the AOM.This sort of
frequency synthesis is routine in the ultracold atom labs.

We formally describe our systembyfirstmaking the rotatingwave approximation (RWA)with respect to the
large offset frequencyω0. This situation ismodeled in terms of a spin-1/2 atomofmassM andwave-vector

= -K i with aHamiltonian

= +( ) ( ) ( )H t H V t . 10

Thefirst term is


s= +

D( ) ( )K
H

M

X

2 2
, 20

2 2

3

whereΔ(X)=Δ′X describes the detuning gradient along ex, and s =   -  ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣3 is a Pauli spin
operator. In the RWAonly near-resonant terms are retained, giving the Raman coupling described by

å= +   +w w- - - +( ) [ ]∣ ⟩⟨ ∣ ( )( ) ( ( ) )V t V e e H.c. 3
n

K Y n t K Y n t
0

i 2 i 2 10 0

Thefirst termdescribes coupling from the sidebandswith even frequencies 2nω, whereas the second term
describes coupling from the sidebands with odd frequencies w+( )n2 1 . The recoil kick is aligned alongey

with opposite sign for the even and odd frequency components. Inwriting equation (3)we assumed that the
coupling amplitudeV0 and the associated recoil wavenumberK0 are the same for all frequency components. The

Figure 1. Floquet flux lattice. (a)Experimental schematic depicting a cold cloud of atoms in a gradientmagnetic field, illuminated by a
pair of counter-propagating laser beams tuned near two-photonRaman resonance. The down-going beam includes sidebands both to
the red and blue of the carrier (ω0) in resonance at different spatial positions along ex. (b) Level diagram showing even and odd
sidebands linking the ñ∣ and ñ∣ states with differing detuning from resonance atX=0. (c) Spatially dependent coupling. Bottom:
different frequency components are in two-photon resonance in differentX positions. Top: the recoil kick associatedwith the Raman
transition is alongey and thus alternates spatially depending onwhether the Raman transition is driven from the red or blue
sideband of the down-going laser beam.
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couplingHamiltonianV(t) and therefore the fullHamiltonianH(t) are time-periodic with period p w2 , andwe
accordingly apply Floquet techniques.

3. Theoretical analysis

The outline of this section is as follows. (1)Webegin the analysis of theHamiltonian given by equation (1) by
moving to dimensionless units; (2) subsequently derive an approximate effectiveHamiltonian from the single-
period time evolution operator; (3) provide an intuitive description in terms of adiabatic potentials; and (4)
finally solve the band structure, evaluate its topology and discuss possibilities of the experimental
implementation.

3.1.Dimensionless units
For the remainder of themanuscript wewill use dimensionless units. All energies will be expressed in units of
w, derived from the Floquet frequencyω; timewill be expressed in units of inverse driving frequencyω−1,
denoted by τ=ωt; spatial coordinates will be expressed in units of inverse recoilmomentumK0

−1, denoted by
lowercase letters (x, y)=K0(X,Y). In these units, theHamiltonian (1) takes the form


st

t w
w

tW= = +( ) ( ) ( ) · ( )kh
H

E
1

2
, 4r

2

where  w= ( )E K M2r
2

0
2 is the dimensionless recoil energy associatedwith the recoil wavenumberK0;

=k K K0 is the dimensionless wavenumber. The dimensionless coupling

t t t bW =( ) ( ( ) ( ) ) ( )x y u y u y x, , 2 Re , , 2 Im , , 5

includes a combination of position-dependent detuning andRaman coupling. Here b w= D¢ ( )k0 describes
the linearly varying detuning in dimensionless units; the function t t= å -( ) { [ ( )]u y v y n, exp i 2n0

t+ - - +[ ( ( ) )]}y nexp i 2 1 is a dimensionless version of the sum in equation (3)with w= ( )v V0 0 .
In the time domain the coupling given by equation (5) is

åst b s d t pW = + -( ) · ( ) ( ) ( )x v y l
1

2

1

2
, 6

l
l3

with

p= + - ñá +-( ) [ ( ) ]∣ ∣ ( )v y v e 1 e H.c. 7l
y l y

0
i i

In this waywe have separated the spatial and temporal dependencies in the coupling (6).

3.2. EffectiveHamiltonian
Wecontinue our analysis by deriving an approximateHamiltonian that describes the complete time evolution
over a single period from τ=0−ò to t p= -2 with   0. This evolution includes a kick v0 at the
beginning of the period τ+= 0 and a second kick v1 in themiddle of the period t p=- ; between the kicks the
evolution includes the kinetic and gradient energies. In the full time period, the complete evolution operator is a
product of four terms:

 


p pº - - =


( ) ( ) ( )( ) ( )U U U U U U2 , 0 lim 2 , 0 . 8
0

0 kick
1

0 kick
0

Here

p s b= - +
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭ ( )kU E xexp i
1

2
90 r

2
3

is the evolution operator over a half period, generated by kinetic energy and gradient. The operator

= -[ ( )] ( )( )U v yexp i 10l
lkick

describes a kick at t p= l .
We obtain an effectiveHamiltonian by assuming that the Floquet frequencyω greatly exceeds the recoil

frequency,  E1 r, allowing us to ignore the commutators between the kinetic energy and functions of
coordinates in equation (8).We then rearrange terms in the full time evolution operator (8) and obtain (see
appendix)

p= - +[{ ([ )]]} ( )kU E vexp i2 , 11eff r
2

eff

3
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where veff is an effective coupling defined by

p- = ps b ps b- -( ) ( )( ) ( )v U Uexp i2 e e . 12x x
eff

i 2
kick
1 i 2

kick
03 3

The function vl(y) entering the kick operators ( )U l
kick is spatially periodic along the y directionwith a period

2π. This period can be halved toπ by virtue of a gauge transformation s= -( )U yexp i 23 . Subsequently, when
exploring energy bands and their topological properties, this prevents problems arising fromusing a twice larger
elementary cell. Following this transformation the evolution operator becomes

p s= - + +{ [ ( ) ]} ( )k eU E vexp i2 2 , 13yeff r 3
2

eff

where vl(y) featured in the kick operators ( )U l
kick has now the spatial periodicityπ along the y direction, i.e. it

should be replace to

p= + -   +( ) [ ( ) ]∣ ⟩⟨ ∣ ( )v y v e 1 H.c. 14l
y l

0
i2

The algebra of Paulimatrices allows us towrite the effective coupling ( )rveff featured in the evolution
equations (12) and (13) as:

sW=( ) ( ) · ( )r rv
1

2
, 15eff eff

whereW = W W W( ), ,eff eff,1 eff,2 eff,3 is a position-dependent effective Zeeman fieldwhich takes the analytic form

p s s s- = - - -( ) ( )v q q q qexp i2 i i i . 16eff 0 1 1 2 2 3 3

Here q0, q1, q2 and q3 are real functions of the coordinates (x, y), allowing to express the effective Zeeman field as

pW = -

∣∣ ∣∣
( )q

q
qarccos , 17eff

1
0

where q is a shorthand of a three dimensional vector (q1, q2, q3). In general the equation (16) givesmultiple
solutions that correspond for different Floquet bands. Our choice (17) picks only to the two bands that lie in the
energywindow from-1 2 to 1/2 covering a single Floquet period.

Comparing (12) and (16) andmultiplying fourmatrix exponents give explicit expressions

pb= ( ) ( )q f f xcos cos cos , 180 1 2

pb= + -( ) ( ) ( )q f f y x f f ysin cos cos cos sin sin , 191 1 2 1 2

pb= + +( ) ( ) ( )q f f y x f f ysin cos sin cos sin cos , 202 1 2 1 2

pb= -( ) ( )q f f x f fcos cos sin sin sin 213 1 2 1 2

with

p=( ) ( ) ( )f y v y2 cos , 221 0

p=( ) ( ) ( )f y v y2 sin . 232 0

These explicit expressions show that the resulting effective Zeeman field (17) and the associated effective
coupling (15) are periodic along both ex and ey, with spatial periods b= /a 2x and p=ay respectively.
Therefore, although the originalHamiltonian containing the spin-dependent potential slope sµx 3 is not
periodic along the x direction, the effective FloquetHamiltonian is. The spatial dependence of the Zeeman field
components Weff,1, Weff,2 and Weff,3 is presented in thefigure 2 forβ=0.6 giving an approximately square unit
cell. Infigure 2we select v0=0.25where the absolute value of the Zeeman field Weff is almost uniform, as is
apparent from the nearly flat adiabatic bands shown infigure 3 below.

3.3. Adiabatic evolution andmagneticflux
Beforemoving further to an explicit numerical analysis of the band structure, we develop an intuitive
understanding by performing an adiabatic analysis ofmotion governed by effectiveHamiltonian

ss W= + +( ) ( ) · ( )r k eh E 2
1

2
24yeff r 3

2
eff

featured in the evolution operatorUeff, equation (13). The coupling fieldW ( )reff is parametrized by the spherical
angles q ( )r and f ( )r defined by

q =
W
W

( )cos , 25eff,3

eff

f =
W
W

( )tan . 26eff,2

eff,1
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This gives the effective coupling [12]

s q q
q q

W = W
-

f

f

-⎡
⎣⎢

⎤
⎦⎥· ( )1

2

1

2
cos e sin

e sin cos
, 27eff eff

i

i

characterized by the position-dependent eigenstates

q
q

q
q

+ = - =
-

f

f-⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∣ ⟩

( )
( )

∣ ⟩ ( )
( )

( )
/

/

/

/

cos 2

e sin 2
,

e sin 2

cos 2
. 28

i

i

The corresponding eigenvalues

=  W( ) ( )rv
1

2
, 29eff

are shown infigure 3 for various value of the Raman coupling v0. As one can see infigure 3, for v0=0.25 the
resulting bands ( )rv (adiabatic potentials) are flat and have a considerable gap w» 2, a regime suitable for a
description in terms of an adiabaticmotion in selected bands [27].

As in [28], we consider the adiabaticmotion of the atom in one of theseflat adiabatic bandswith the
projection Schrödinger equation that includes a geometric vector potential

q f=  - ( ) ( ) ( )A r
1

2
cos 1 . 30

This provides a syntheticmagnetic flux density =  ´ ( ) ( )B r A r . The geometric vector potential ( )A r
may contain Aharonov–Bohm type singularities, that give rise to a syntheticmagneticflux over an elementary
cell

Figure 2.Coupling components (a) W ( )reff,1 , (b) W ( )reff,2 and (c) W ( )reff,3 for v0=0.25 andβ=0.6 calculated using equations (17)–
(23). The corresponding eigenvalues of the coupling = W( )rv 2eff are presented by the thick red solid lines in thefigure 3.

Figure 3.Adiabatic Floquet potentials given by equation (29) forβ = 0.6ms. (a)Thin black dotted lines denote the spin-dependent
gradient slopes without including the Raman coupling (v0 = 0); (b) thin blue solid lines denote effective adiabatic potentials forweak
Raman coupling (v0=0.05) (c) red solid lines denote nearlyflat adiabatic potentials that are achieved for stronger Raman coupling
(v0=0.25). All the curves are projected into x plane for various y values. Aweak y dependence of the adiabatic potentials is seen to
appear in the strong coupling case (c)making the superimposed red lines thicker.
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åa = - ∮ · ( ) ( )r A rd . 31
singul

The singularities appear at points where q p= , where the anglef and its gradient f are undefined and
q = -cos 1. The term q -cos 1 in (30) is nonzero and does not remove the undefined phase f . Our unit cell

contains two such singularities located at = ( )r a a, 3 4x y and = ( )r a a3 , 4x y , containing the sameflux, so that
they do not compensate each other, giving the syntheticmagnetic flux p2 in each unit cell. Note that usually
the optical lattices are sufficiently deep, and the p2 flux per elementary is topologically trivial. In that case the
tight bindingmodel can be applied, with the tunneling taking place only between the nearest-neighboring sites
of the square plaquette. The p2 flux over the square plaquette can then be eliminated by a gauge
transformation. Yet if the lattice is shallow enough, the tight bindingmodel is not applicable and the above
arguments do notwork. In the present situation, themost interesting topological lattice appears for aflat
adiabatic trapping potential shownby a solid red curve infigure 3. In such a situation there are nowell defined
lattice sites, and the p2 flux per elementary cell results in topologically non-trivial bands explored in the next
subsection.

For aweak coupling (such as v= 0.05) the geometricflux density º ( ) ( )B r B r is concentrated around the
intersection points of the gradient slopes shown in infigure 3 and has a veryweak y dependence.With increasing
the coupling v, the flux extends beyond the intersection areas and acquires a y dependence. Figure 4 shows the
geometricflux density º +( ) ( )B r B r for the strong coupling (v0= 0.25) corresponding to themost flat
adiabatic bands. In this regime the flux develops stripes in the x direction and has a strong y dependence. For the
whole range of coupling strengths  v0 1 20 the total syntheticmagnetic flux per unit cell is 2π and is
independent of the Floquet frequencyω and the gradientβ.

Now let us discuss the effect of an extra spin-independent trapping potential. The present scheme requires a
large spin-dependent energy gradient whichwould have a huge influence on the relative trapping for the two
spin states without the Raman coupling or for a weakRaman coupling. In that case onewould expect that the
stable positions for any trapped sample of the two spin states would live at entirely distinct locations, possibly
with no overlap. Yet we are interestedmostly in a sufficiently strong Raman couplingwhere the two spin states
getmixed, and the atomicmotion takes place in almost flat adiabatic potentials shown in red infigure 3.
Therefore the atoms are no longer affected by the steep spin-dependent potential slopes, and the spin-
independent trapping potential would not cause separation of different spin states. Instead, the extra spin-
independent parabolic trapping potential would simplymake the flat adiabatic trapping potentials parabolic. Of
course, one needs to be all the time in the regimewhere theRaman coupling is strong compared to the
characteristic energy of the spin-dependent potential slope. That is whywe propose to introduce the spin-
dependent potential gradient only at the final stage of the adiabatic protocol discussed in section 3.5.

3.4. Band structure andChern numbers
Weanalyze the topological properties of this Floquet flux lattice by explicitly numerically computing the band
structure and associated Chern number using the effectiveHamiltonian (24)withoutmaking the adiabatic
approximation introduced in section 3.3. Again the gradient of the originalmagnetic field is such thatwe
approximately get a square lattice,β=0.6. Furthermore, we choose the Floquet frequency to be ten times larger

Figure 4.Geometric flux density =  ´ ( ) ( )B r A r computed for v0 = 0.25 andβ = 0.6 using equation (30). The overall spatial
structure of thisflux density does not depend on the gradientβ; rather it scales with the corresponding lattice constant b= /a 2x .

6
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than the recoil energy, Er=0.1. Note that one can alter the length of the plaquette along the x direction (and
thus theflux density) by changingβ representing the potential gradient along the x axis.

First, let us consider the case where v0=0.25 corresponding to themost flat adiabatic potential. In this
situation theChern numbers of thefirstfive bands appear to be equal to the unity, as one can see in the left part of
figure 5. Thus theHall current shouldmonotonically increase when filling these bands. This resembles theQHE
involving the Landau levels. Second, we checkwhat happenswhenwe leave the regime v0=0.25where the
adiabatic potential isflat, and consider lower and higher values of the coupling strength v0. Near v0=0.175we
find a topological phase transitionwhere the lowest two energy bands touch and their Chern numbers change to
c1=0 and c2=2, while the Chern numbers of the higher bands remain unchanged, illustrated infigure 6. In a
vicinity of v0=0.3 there is another phase transition, where the second and third bands touch, leading to a new
distribution of Chern numbers: c1=1, c2=−1, c3=3, c4=1. Interestingly theChern numbers of the
second and the third bands jump by twounits during such a transition.

Finally, we explore the robustness of the topological bands. The right part offigure 5 shows the dependence
of the band gapΔ12 between thefirst and second bands on the coupling strength v0 and the potential gradientβ.

Figure 5. Left: band structure calculated using the effectiveHamiltonian (24) for v0=0.25,β=0.6 andEr=0.1. Right: the band gap
D12 between thefirst and second bands for Er=0.1 and various values of v0 andβ. The letters A, B andC indicate the regions where
the Chern numbers of thefirst three bands correspond to the right,middle and left parts of thefigure 6.

Figure 6.Dependence of Chern number for the bands calculated using the effectiveHamiltonian (24) on the coupling strength v0 for
b = 0.6 andEr=0.1.Herewe present theChern numbers c1, c2 and c3 of the three lowest bands.
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One can see that the band gap ismaximum for v0=0.25when the adiabatic potential is themost flat. The gap
increases by increasing the gradientβ, simultaneously extending the range of the v0 values where the band gap is
nonzero. Therefore to observe the topological bands, one needs to take a proper value of the Raman coupling
v0≈0.25 and a sufficiently large gradientβ, such asβ=0.6.

We nowmake some numerical estimates to confirm that this scheme is reasonable.We consider an
ensemble of Rb87 atoms, with  = = =∣ ⟩ ∣ ⟩f m2, 2F and  = = =∣ ⟩ ∣ ⟩f m1, 1 ;F the relativemagnetic
moment of these hyperfine states is» -2.1 MHz G 1, where 1G=10−4 T. For a reasonablemagnetic field
gradient of 300G/cm, this leads to the  p p mD¢ » ´ = ´- -2 600 MHz cm 2 60 kHz m1 1detuning
gradient. For Rb87 withλ= 790 nm laser fields the recoil frequency is w p =2 3.5 kHzr . Alongwith the driving
frequencyω=10ωr, this provides the dimensionless energy gradient b w= D¢ »( )k 1.30 , allowing easy
access to the topological bands displayed infigure 5.

3.5. Loading into dressed states
Adiabatic loading into this lattice can be achieved by extending the techniques already applied to loading into
Raman dressed states [29]. The loading technique begins with a Bose–Einstein condensate (BEC) in the lower
energy ∣ ⟩ state in a uniformmagnetic fieldB0. Subsequently one slowly ramps on a single off resonance RF
couplingfield and the adiabatically ramp the RF field to resonance (at frequency δω). This RF dressed state can be
transformed into a resonant Raman dressed by ramping on theRaman lasers (with only theω0+δω frequency
on the k− laser beam)while ramping off the RFfield. The loading procedure then continues by slowly ramping
on the remaining frequency components on the k− beam, andfinally by ramping on themagnetic field gradient
(essentially according in the lattice sites from infinity). This procedure leaves the BEC in the q= 0 crystal
momentum state in a single Floquet band.

4. Conclusions

Initial proposals [30–32] and experiments [26]with geometric gauge potentials were limited by the small spatial
regions over which these existed.Herewe described a proposal that overcomes these limitations using laser
coupling reminiscent of a frequency comb: temporally pulsed Raman coupling. Typically, techniques relying on
temporalmodulation ofHamiltonian parameters to engineer lattice parameters suffer frommicro-motion
driven heating. Because ourmethod is applied to atoms initially in free space, with no optical lattice present,
there are no a priori resonant conditions that would otherwise constrains themodulation frequency to avoid
transitions between original Bloch bands [25].

Still, no technique is without its limitations, and this proposal does not resolve the second standing problem
of Raman coupling techniques: spontaneous emission process from the Raman lasers. Our new scheme extends
the spatial zonewhere gaugefields are present by adding sidebands to Raman lasers, ultimately leading to a
µ N increase in the required laser power (whereN is the number of frequency tones), and therefore the
spontaneous emission rate. As a practical consequence it is likely that this techniquewould not be able reach the
low entropies required formany-body topologicalmatter in alkali systems [13], but straightforward
implementations with single-lasers on alkaline-earth clock transitions [33, 34] are expected to be practical.
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Appendix. Stroboscopic evolution operator

The stroboscopic evolution operator (8) reads explicitly

p = = p s b p s b- + - - + -
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( )( ) ( ) ( ) ( )U U U U U2 , 0 e e e e . 32k kE x v y E x v y

0 kick
1

0 kick
0 i 1

2 i i 1
2 ir

2
3 1 r

2
3 0

In themainwe have approximated the evolution operator by equation (11). To estimate the validity of the latter
equation, let usmake use of the Baker–Campbell–Hausdorff formula

= = + + + ¼[ ] ( )e e e Z X Y X Ywith
1

2
, 33X Y Z

8
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and consider this expansion up to the leading term [ ]X Y,1

2
, essentially the second term in theMagnus

expansion.
Neglecting the commutation between kEr

2 andσ3βx, one canwrite

= »p s b p s b- + - - p⎡⎣ ⎤⎦ ( )U e e e . 34k kE x E x
0

i 1
2 i ir

2
3 r

2
2 3

The error in doing so is approximately bs b s- =p p[ ]kE x E ki , x4 r 3
2

2 r 3. Since b E 1r , this provides a small

momentum shift along the x direction. Furthermore, we shall neglect the commutation between kEr
2 and vl(y).

The error in doing so is approximately s p s- =p [ ]kE y E ki ,x y y2 r ,
2

r 3. Since the Floquet frequencyω greatly
exceeds the recoil frequency E 1r andβ<1, this also provides a smallmomentum shift along the y direction.
With these assumptions, one has

p = » p p- -( ) ( ) ( )U U U U U2 , 0 e e ,kE v
0 kick

1
0 kick

0 i2 i2r
2

eff

where

=p ps b ps b- - - - -( ) ( )e e e e e .v x v y x v yi2 i 2 i i 2 ieff 3 1 3 0

Finally under the above assumptions one canmerge the exponents in p( )U 2 , 0 , giving equation (11).

References

[1] Bloch I, Dalibard J andZwergerW2008Many-body physics with ultracold gasesRev.Mod. Phys. 80 885–964
[2] GreinerM,MandelO, Esslinger T,Hänsch TWandBloch I 2002Quantumphase transition from a superfluid to amott insulator in a

gas of ultracold atomsNature 415 39–44
[3] LewensteinM, Sanpera A andAhufinger V 2012Ultracold Atoms inOptical Lattices: Simulating QuantumMany-Body Systems (Oxford:

OxfordUniversity Press)
[4] LewensteinM, Sanpera A, Ahufinger V,Damski B, Sen (De)A and SenU 2007Ultracold atomic gases in optical lattices:mimicking

condensedmatter physics and beyondAdv. Phys. 56 243–379
[5] Abo-Shaeer J R, RamanC,Vogels JM andKetterleW2001Observation of vortex lattices in Bose–Einstein condensates Science 292

476–9
[6] CooperNR2008Rapidly rotating atomic gasesAdv. Phys. 57 539–616
[7] Fetter A L 2009Rotating trapped Bose–Einstein condensatesRev.Mod. Phys. 81 647
[8] GemelkeN, Sarajlic E andChu S 2010Rotating few-body atomic systems in the fractional quantumHall regime arXiv:1007.2677
[9] MadisonKW,Chevy F, Bretin V andDalibard J 2001 Stationary states of a rotating Bose–Einstein condensate: routes to vortex

nucleationPhys. Rev. Lett. 86 4443–6
[10] MatthewsMR,Anderson B P,Haljan PC,Hall D S,WiemanCE andCornell E A 1999Vortices in a Bose–Einstein condensate Phys.

Rev. Lett. 83 2498–501
[11] Wright KC, Blakestad RB, LobbC J, PhillipsWDandCampbell GK 2012Driving phase slips in a superfluid atom circuit with a

rotatingweak linkPhys. Rev. Lett. 110 025302
[12] Dalibard J, Gerbier F, JuzeliūnasG andÖhberg P 2011Colloquium: artificial gauge potentials for neutral atomsRev.Mod. Phys. 83

1523–43
[13] GoldmanN, JuzeliūnasG,Öhberg P and Spielman I B 2014 Light-induced gauge fields for ultracold atomsRep. Prog. Phys. 77 126401
[14] Eckardt A 2017Colloquium: atomic quantumgases in periodically driven optical latticesRev.Mod. Phys. 89 011004
[15] JotzuG,MesserM,Desbuquois R, LebratM,Uehlinger T,Greif D and Esslinger T 2014 Experimental realisation of the topological

Haldanemodel with ultracold fermionsNature 515 237–40
[16] Struck J, Ölschläger C,WeinbergM,Hauke P, Simonet J, Eckardt A, LewensteinM, Sengstock K andWindpassinger P 2012Tunable

gauge potential for neutral and spinless particles in driven optical latticesPhys. Rev. Lett. 108 225304
[17] Windpassinger P and Sengstock K 2013 Engineering novel optical latticesRep. Prog. Phys. 76 086401
[18] AidelsburgerM, AtalaM, LohseM, Barreiro J T, Paredes B andBloch I 2013Realization of theHofstadterHamiltonianwith ultracold

atoms in optical latticesPhys. Rev. Lett. 111 185301
[19] CooperN 2011Optical flux lattices for ultracold atomic gases Phys. Rev. Lett. 106 175301
[20] GoldmanN, Budich J C andZoller P 2016Topological quantummatter with ultracold gases in optical latticesNat. Phys. 12 639–45
[21] JakschD andZoller P 2003Creation of effectivemagneticfields in optical lattices: theHofstadter butterfly for cold neutral atomsNew J.

Phys. 5 56
[22] Javanainen J andRuostekoski J 2003Optical detection of fractional particle number in an atomic Fermi–Dirac gasPhys. Rev. Lett. 91

150404
[23] MiyakeH, SiviloglouGA,KennedyC J, BurtonWCandKetterleW2013Realizing theHarperHamiltonianwith laser-assisted

tunneling in optical latticesPhys. Rev. Lett. 111 185302
[24] OsterlohK, BaigM, Santos L, Zoller P and LewensteinM2005Cold atoms in non-Abelian gauge potentials: from theHofstadter ‘moth’

to lattice gauge theoryPhys. Rev. Lett. 95 010403
[25] WeinbergM,Ölschläger C, Sträter C, Prelle S, Eckardt A, Sengstock K and Simonet J 2016Multiphoton interband excitations of

quantumgases in driven optical latticesPhys. Rev.A 92 043621
[26] LinY J, ComptonRL, Jimenez-Garcia K, Porto J V and Spielman I B 2009 Syntheticmagnetic fields for ultracold neutral atomsNature

462 628–32
[27] YiW,Daley A J, Pupillo G andZoller P 2008 State-dependent, addressable subwavelength lattices with cold atomsNew J. Phys. 10

073015
[28] JuzeliūnasG and Spielman I B 2012 Flux lattices reformulatedNew J. Phys. 14 123022
[29] LinY-J, ComptonRL, Perry AR, PhillipsWD, Porto J V and Spielman I B 2009 Bose–Einstein condensate in a uniform light-induced

vector potential Phys. Rev. Lett. 102 130401
[30] GünterK J, CheneauM, Yefsah T, Rath S P andDalibard J 2009 Practical scheme for a light-induced gauge field in an atomic Bose gas

Phys. Rev.A 79 011604

9

New J. Phys. 20 (2018) 055001 TAndrijauskas et al

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/RevModPhys.81.647
http://arxiv.org/abs/1007.2677
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1088/0034-4885/76/8/086401
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.106.175301
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1088/1367-2630/5/1/356
https://doi.org/10.1103/PhysRevLett.91.150404
https://doi.org/10.1103/PhysRevLett.91.150404
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevA.92.043621
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature08609
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1088/1367-2630/14/12/123022
https://doi.org/10.1103/PhysRevLett.102.130401
https://doi.org/10.1103/PhysRevA.79.011604


[31] JuzeliūnasG, Ruseckas J, Öhberg P and FleischhauerM2006 Light-induced effectivemagnetic fields for ultracold atoms in planar
geometries Phys. Rev.A 73 025602

[32] Spielman I B 2009Raman processes and effective gauge potentials Phys. Rev.A 79 063613
[33] Kolkowitz S, Bromley S L, Bothwell T,WallML,Marti GE, Koller AP, ZhangX, ReyAMandYe J 2017 Spin–orbit-coupled fermions

in an optical lattice clockNature 542 66
[34] Livi L F et al 2016 Synthetic dimensions and spin–orbit couplingwith an optical clock transition Phys. Rev. Lett. 117 220401

10

New J. Phys. 20 (2018) 055001 TAndrijauskas et al

https://doi.org/10.1103/PhysRevA.73.025602
https://doi.org/10.1103/PhysRevA.79.063613
https://doi.org/10.1038/nature20811
https://doi.org/10.1103/PhysRevLett.117.220401

	1. Introduction
	2. Pulsed lattice
	3. Theoretical analysis
	3.1. Dimensionless units
	3.2. Effective Hamiltonian
	3.3. Adiabatic evolution and magnetic flux
	3.4. Band structure and Chern numbers
	3.5. Loading into dressed states

	4. Conclusions
	Acknowledgments
	Appendix. Stroboscopic evolution operator
	References



