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Abstract

We describe a novel technique for creating an artificial magnetic field for ultracold atoms using a
periodically pulsed pair of counter propagating Raman lasers that drive transitions between a pair of
internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field
gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. Fora
wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau
levels, as quantified by their Chern numbers.

1. Introduction

Ultracold atoms find wide applications in realizing condensed matter phenomena [1-4]. Since ultracold atom
systems are ensembles of electrically neutral atoms, various methods have been used to simulate Lorentz-type
forces, with an eye for realizing physics such as the quantum Hall effect (QHE). Lorentz forces are present in
spatially rotating systems [5—11] and appear in light-induced geometric potentials [12, 13]. The magnetic fluxes
achieved with these methods are not sufficiently large for realizing the integer or fractional QHE. In optical
lattices, larger magnetic fluxes can be created by shaking the lattice potential [ 14—17], combining static optical
lattices along with laser-assisted spin or pseudo spin coupling [12, 13, 18-24]; current realizations of these
techniques are beset with micro motion and interaction induced heating effects. Here we propose a new method
that simultaneously creates large artificial magnetic fields and a lattice that may overcome these limitations.

Our technique relies on a pulsed atom-light coupling between internal atomic states along with a state-
dependent gradient potential that together create a two-dimensional periodic potential with an intrinsic
artificial magnetic field. With no pre-existing lattice potential, there are no a priori resonant conditions that
would otherwise constrain the modulation frequency to avoid transitions between original Bloch bands [25].
For a wide range of parameters, the ground and excited bands of our lattice are topological, with nonzero Chern
number. Moreover, like Landau levels the lowest several bands can all have unit Chern number.

The manuscript is organized as follows. Firstly, we describe a representative experimental implementation of
our technique directly suitable for alkali atoms. Secondly, because the pulsed atom-light coupling is time-
periodic, we use Floquet methods to solve this problem. Specifically, we employ a stroboscopic technique to
obtain an effective Hamiltonian. Thirdly, using the resulting band structure we obtain a phase diagram which
includes a region of Landau level-like bands each with unit Chern number.

2. Pulsed lattice

Figure 1 depicts a representative experimental realization of the proposed method. A system of ultracold atoms

is subjected to a magnetic field with astrength B(X) By ~ Ba&XThis induces a position-dependent splitting

gr pBbetween the spin up and down states; gris the Land g-factorand  is the Bohr magneton. Additionally,

the atoms are illuminated by a pair of Raman lasers counter propagating along e, i.e., perpendicular to the
detuning gradient. The first beam [up-going in figure 1(a)] is at frequency X X, while the second [down-
going in figure 1(a)] contains frequency components X, o ( DK n );thedifferencérequency X
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a. Schematic b. X = 0 level diagram c. Coupling geometry
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Figure 1. Floquet flux lattice. (a) Experimental schematic depicting a cold cloud of atoms in a gradient magnetic field, illuminated by a
pair of counter-propagating laser beams tuned near two-photon Raman resonance. The down-going beam includes sidebands both to
the red and blue of the carrier ( () in resonance at different spatial positions along e,. (b) Level diagram showing even and odd
sidebandslinkingthe 3 and mstates with differing detuning from resonance at X = 0. (c) Spatially dependent coupling. Bottom:
different frequency components are in two-photon resonance in different X positions. Top: the recoil kick associated with the Raman
transition isalong 0Oey and thus alternates spatially depending on whether the Raman transition is driven from the red or blue
sideband of the down-going laser beam.

between these beams contains frequency combs centered at 0 > with comb teeth spaced by 2 ,asshownin
figure 1(b). In our proposal, the Raman lasers are tuned to be in nominal two-photon resonance with the
Zeeman splitting from the large offset field By such thatgr 3By = ¥ o, making the frequency difference

X, o  Xresonantat X = 0,where B= By. Intuitively, each additional frequency component X, addsa
resonance condition at the regularly spaced points X, n/% /gX g B, hdWrever, transitions using even-n
sidebands give a recoil kick opposite from those using odd-# sidebands (see figure 1(c)). Each of these coupling-
locations locally realizes synthetic magnetic field experiment performed at the National Institute of Standards
and Technology [26], arrayed in a manner to give a rectified artificial magnetic field with a nonzero average that
we will show is a novel flux lattice.

In practice only a finite number of lattice teeth are needed, owing to the finite spatial extent of a trapped
atomic gas. In rough numbers the spatial extent of a quantum degenerate gasis 20 m, and if we select a very
large gradient corresponding to a lattice spacing of 0.5 m, this gives just 40 comb teeth. Generating the
frequency comb is straightforward. In the laboratory, acoustic-optical modulators (AOMs) frequency-shift laser
beams by an amount defined by a laboratory radiofrequency (rf) source. Therefore creating a comb is a matter of
first creating a frequency comb—simple with rf—and then feeding that signal into the AOM. This sort of
frequency synthesis is routine in the ultracold atom labs.

We formally describe our system by first making the rotating wave approximation (RWA) with respect to the
large offset frequency . This situation is modeled in terms of a spin-1/2 atom of mass M and wave-vector

K iV with a Hamiltonian

H{t) Ho V(). (1
The first term is

K2 %X)
H : s

o M > 13 2
where A(X) = A'Xdescribes the detuning gradient alonge,, and § 3 3 is aPauli spim
operator. In the RWA only near-resonant terms are retained, giving the Raman coupling described by

V() Vo gdeoY 210 @l KoY @n X g H.c. X ()3
n

The first term describes coupling from the sidebands with even frequencies 21 , whereas the second term
describes coupling from the sidebands with odd frequencies (2n 1) X The recoil kick is aligned along 0ey
with opposite sign for the even and odd frequency components. In writing equation (3) we assumed that the
coupling amplitude V; and the associated recoil wavenumber K are the same for all frequency components. The
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coupling Hamiltonian V(#) and therefore the full Hamiltonian H(#) are time-periodic with period 2 Q' >, and we
accordingly apply Floquet techniques.

3. Theoretical analysis

The outline of this section is as follows. (1) We begin the analysis of the Hamiltonian given by equation (1) by
moving to dimensionless units; (2) subsequently derive an approximate effective Hamiltonian from the single-
period time evolution operator; (3) provide an intuitive description in terms of adiabatic potentials; and (4)
finally solve the band structure, evaluate its topology and discuss possibilities of the experimental
implementation.

3.1. Dimensionless units

For the remainder of the manuscript we will use dimensionless units. All energies will be expressed in units of

/23, derived from the Floquet frequency ; time will be expressed in units of inverse driving frequency ',

denotedby =t spatial coordinates will be expressed in units of inverse recoil momentum Kj, ', denoted by
lowercase letters (x, y) = Ky(X, Y). In these units, the Hamiltonian (1) takes the form

h( Y % Ry, (4

where E, /22 /(2M7 X is the dimensionless recoil energy associated with the recoil wavenumber Ko;
k K /Kgis the dimensionless wavenumber. The dimensionless coupling

Qxy, ) (2Reu(yUl),2Imu(y,) , 3 U (b

includes a combination of position-dependent detuning and Raman coupling. Here % (A ko) describes
the linearly varying detuning in dimensionless units; the functionu(y, ) wog{expfy 20)]
exd( y (20 2 U} isadimensionless version of the sum in equation 3) with v~ Vp/ (% X).
In the time domain the coupling given by equation (5) is

%nu-a %wa cei(y) ( C, T (OE
|

with
vi(y)  Qo[e¥ ( )'eV H.c. m gy

In this way we have separated the spatial and temporal dependencies in the coupling (6).

3.2. Effective Hamiltonian

We continue our analysis by deriving an approximate Hamiltonian that describes the complete time evolution
over asingle period from = 0 — Oto 2 ewith@ | O.Thisevolution includes a kick v, at the
beginning of the period + = 0and asecond kick v; in the middle of the period U ; between @e kicks the
evolution includes the kinetic and gradient energies. In the full time period, the complete evolution operator is a
product of four terms:

U@ .0 IimU(@w ¢,0 ¢ UURQUoUR. (8
el 0

Here
Uo exp{ i I:Erkz %Qg X]} T cC 9

is the evolution operator over a half period, generated by kinetic energy and gradient. The operator

Ul expl w(Y] (10

describes a kick at U. Q

We obtain an effective Hamiltonian by assuming that the Floquet frequency  greatly exceeds the recoil
frequency,1  E, allowing us to ignore the commutators between the kinetic energy and functions of
coordinates in equation (8). We then rearrange terms in the full time evolution operator (8) and obtain (see
appendix)

Uert  expl{ 2QEk* )ll} | (1
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where v is an effective coupling defined by
exp( i2Qe) eyl el 72O (1p

The function v,(y) entering the kick operators U{l), is spatially periodic along the y direction with a period
2 .This period can be halvedto by virtue of a gauge transformation U~ exp( ¥ &/ 2. Subsequently, when
exploring energy bands and their topological properties, this prevents problems arising from using a twice larger
elementary cell. Following this transformation the evolution operator becomes

Uert  exp{ i2[E(k Qaey/P*> wd} . T (33
where v/(y) featured in the kick operators U IE:():k has now the spatial periodicity alongthe y direction, i.e. it
should be replace to

vi(y)  Qe[e® (3] H.c. m (343

The algebra of Pauli matrices allows us to write the effective coupling ¢ (r) featured in the evolution
equations (12) and (13) as:

Ve (r) %neﬁ(r) o, (19

where Qett (B3 e B efi i position-dependent effective Zeeman field which takes the analytic form

exp( i2vr) ¢ iR ig 2 g a3 T (16
Here qo, 41, 9> and g5 are real functions of the coordinates (x, ), allowing to express the effective Zeeman field as
Qs Q liarccosq0 , ( 1y
q

where q is a shorthand of a three dimensional vector (41, 42, 43). In general the equation (16) gives multiple
solutions that correspond for different Floquet bands. Our choice (17) picks only to the two bands that lie in the
energy window from  1/2to 1/2 covering a single Floquet period.

Comparing (12) and (16) and multiplying four matrix exponents give explicit expressions

0, cosf cod, cdN G , (18
q sinfcosf, cosy Q&  cob sy iy ( 1o
q, sinfcosf, sily Q&  co§ sif, coy ()20
g; cosf; cod, siQ Y sify sif, (21
with
fi(y) 2Qocogy), (29
f,(y)  2Qosin(y). (23

These explicit expressions show that the resulting effective Zeeman field (17) and the associated effective
coupling (15) are periodic along both ey and ey, with spatial periods a, 2/ Canda,  Qrespectively.
Therefore, although the original Hamiltonian containing the spin-dependent potential slope r X Fisnot
periodic along the x direction, the effective Floquet Hamiltonian is. The spatial dependence of the Zeeman field
components 8efr 1 8o 2and ey 3is presented in the figure 2 for = 0.6 giving an approximately square unit
cell. In figure 2 we select vy = 0.25 where the absolute value of the Zeeman field 8y is almost uniform, as is
apparent from the nearly flat adiabatic bands shown in figure 3 below.

3.3. Adiabatic evolution and magnetic flux
Before moving further to an explicit numerical analysis of the band structure, we develop an intuitive
understanding by performing an adiabatic analysis of motion governed by effective Hamiltonian

hei(r) Edk  Tey/2)? %neﬁ-a (24)

featured in the evolution operator U,g, equation (13). The coupling field Qg (r) is parametrized by the spherical
angles Rr)and Qr) defined by

cosR Bett3 , (2%
ff
tan G —ef2, (26
8eff,l
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Figure 2. Coupling components (a) 8g,1(r), (b) et Ar) and (c) 8Sefr,dr) forvy = 0.25and = 0.6 calculated using equations (17)—
(23). The corresponding eigenvalues of the coupling v(r) 0 /2are presented by the thick red solid lines in the figure 3.

V4
(a) (b)
! I~ P =
1l \/ \/ (©)
Ll ~— \/
e N

Figure 3. Adiabatic Floquet potentials given by equation (29) for = 0.6 ys. (a) Thin black dotted lines denote the spin-dependent
gradient slopes without including the Raman coupling (vo = 0); (b) thin blue solid lines denote effective adiabatic potentials for weak
Raman coupling (vy = 0.05) (c) red solid lines denote nearly flat adiabatic potentials that are achieved for stronger Raman coupling
(vo = 0.25). All the curves are projected into x plane for various y values. A weak y dependence of the adiabatic potentials is seen to
appear in the strong coupling case (c) making the superimposed red lines thicker.

This gives the effective coupling [12]

1 1 cos elCsiR R
—Qeff o = 8 , 2
2 e 2 eﬁ[e‘ Csin coR ] @7

characterized by the position-dependent eigenstates

cos(R 2 e 'Csin(R 2 29
€Csin(R 3) cos(R3 |
The corresponding eigenvalues
W S & (29

are shown in figure 3 for various value of the Raman coupling v,. As one can see in figure 3, for vy = 0.25 the
resulting bands V(r) (adiabatic potentials) are flat and have a considerable gap X X/2, a regime suitable for a
description in terms of an adiabatic motion in selected bands [27].

Asin [28], we consider the adiabatic motion of the atom in one of these flat adiabatic bands with the
projection Schrodinger equation that includes a geometric vector potential

Ao(r) o;-(cos I R. G (3D

This provides a synthetic magnetic flux density B (r) < 04 (r).Thegeometric vector pgtential A o(r)
may contain Aharonov—Bohm type singularities, that give rise to a synthetic magnetic flux over an elementary
cell
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Figure 4. Geometric flux density B (r) < g4 (r)computedforvy= 0.25gnd = 0.6 usingequation (30). The overall spatial
structure of this flux density does not depend on the gradient ; rather it scales with the corresponding lattice constant ay, 2/ C

B e dr-4 (r). (30

singul

The singularities appear at points where R Qwhere the angle ¢ and its gradient < Care undefined and
cosR 1Theterm coOSR  1in (30)is nonzero and does not remove the undefined phase < (. Our unit cell
contains two such singularities locatedat r  (ay, 3a)/4andr  (3ay, &) /4, containing the same flux;, so that
they do not compensate each other, giving the synthetic magnetic flux 02 Q@n each unit cell. Note that usually
the optical lattices are sufficiently deep, and the 02 (flux per elementary is topologically trivial. In that case the
tight binding model can be applied, with the tunneling taking place only between the nearest-neighboring sites
of the square plaquette. The 02 (Flux over the square plaquette can then be eliminated by a gauge
transformation. Yet if the lattice is shallow enough, the tight binding model is not applicable and the above
arguments do not work. In the present situation, the most interesting topological lattice appears for a flat
adiabatic trapping potential shown by a solid red curve in figure 3. In such a situation there are no well defined
lattice sites, and the 02 (flux per elementary cell results in topologically non-trivial bands explored in the next
subsection.

For aweak coupling (such as v = 0.05) the geometric flux density B(r) W B o(r) is concentrated around the
intersection points of the gradient slopes shown in in figure 3 and has a very weak y dependence. With increasing
the coupling v, the flux extends beyond the intersection areas and acquires a y dependence. Figure 4 shows the
geometric flux density B(r) WB (r) for the strong coupling (vo = 0.25) corresponding to the most flat
adiabatic bands. In this regime the flux develops stripes in the x direction and has a strong y dependence. For the
whole range of coupling strengths 0 < Vp < 1/ 2the total synthetic magnetic flux per unit cellis2 andis
independent of the Floquet frequency and the gradient

Now let us discuss the effect of an extra spin-independent trapping potential. The present scheme requires a
large spin-dependent energy gradient which would have a huge influence on the relative trapping for the two
spin states without the Raman coupling or for a weak Raman coupling. In that case one would expect that the
stable positions for any trapped sample of the two spin states would live at entirely distinct locations, possibly
with no overlap. Yet we are interested mostly in a sufficiently strong Raman coupling where the two spin states
get mixed, and the atomic motion takes place in almost flat adiabatic potentials shown in red in figure 3.
Therefore the atoms are no longer affected by the steep spin-dependent potential slopes, and the spin-
independent trapping potential would not cause separation of different spin states. Instead, the extra spin-
independent parabolic trapping potential would simply make the flat adiabatic trapping potentials parabolic. Of
course, one needs to be all the time in the regime where the Raman coupling is strong compared to the
characteristic energy of the spin-dependent potential slope. That is why we propose to introduce the spin-
dependent potential gradient only at the final stage of the adiabatic protocol discussed in section 3.5.

3.4.Band structure and Chern numbers

We analyze the topological properties of this Floquet flux lattice by explicitly numerically computing the band
structure and associated Chern number using the effective Hamiltonian (24) without making the adiabatic
approximation introduced in section 3.3. Again the gradient of the original magnetic field is such that we
approximately get a square lattice, = 0.6. Furthermore, we choose the Floquet frequency to be ten times larger
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and consider this expansion up to the leading term %[X, Y], essentially the second term in the Magnus
expansion.
Neglecting the commutation between E k?and 3 x, one can write

Up e [Ek* 35 x|  iEREIR:x C T oy C (3

The error in doing so is approximately iZE’ Cilx k9 % E K3 SinceE C 1 this prov?des asmall
momentum shift along the x direction. Furthermore, we shall neglect the commutation between E k?and v,(y).
The error in doing so is approximately iEQEr «y[¥ k4 T E k 5.Sincethe Floquet equency greatly T
exceeds therecoil frequency E; land < 1, thisalso provides a small momentum shift along the y direction.
With these assumptions, one has

o
U2QO UUBUUYL, e B egRr Q x
where
e 2w gQsx2givi(y) gi QY2 gW(IT c Q

Finally under the above assumptions one can merge the exponentsin U (2 Q 0), giving equation (11).
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