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Chapter 1

Introduction

Bose-Einstein condensates (BECs), a quantum state of matter first predicted by Satyendra Nath Bose
and Albert Einstein in 1924, describe a macroscopic occupation of bosonic particles into their ground
state. With the advent of new laser cooling techniques in the 1980s and early 1990s [1–4], the first
experimental generation of BEC was achieved in 1995 [5, 6], with Eric Cornell, Carl Wieman and
Wolfgang Ketterle earning the Nobel prize in 2001 for their achievements in the field. Not long after,
the field for studying ultracold degenerate gases exploded with research such as creating degenerate
fermions [7], observations of superfluidity [8] and the realization of periodic lattice systems, such as the
Bose-Hubbard model [9].

The experimental techniques of atomic physics together with ultracold degenerate gases lend
themselves well to acting as quantum simulators. The experimental tools of atomic and optical physics
has a great track record for yielding high precision measurements, including the creation of atomic
clocks that keep time over the age of the universe [10], measure the electron dipole moment to 1
part in 10�29 [11], provide super sensitivity for searching for gravitational waves [12] or other scientific
endeavors [13–15]. By using similar techniques, we can have high precision control of interactions and
potentials that a trapped degenerate gas is subjected. By using optically or magnetically engineered
interaction in degenerate gases, both naturally occurring systems and novel quantum systems can
be engineered and studied. The thesis is focused on the use of 87Rb BECs subjected to engineered
potentials to study novel quantum systems.

1.1 Thesis Overview

Chapter 2 discusses a brief introduction to the physics of Bose-Einstein Condensates
Chapter 3 provides a overview of the methods of laser cooling and trapping used in the experiment

to bring atomic gases to the degenerate regime
Chapter 4 provides an overview of the RbLi experimental apparatus. This includes the information

about the vacuum system, various laser setups, computer data control and acquisition systems and
electromagnetic coil design and control.

Chapter 5 discusses the dynamics of spin dependent interactions. Here we quench a two spin
component condensate from a condition which is miscible to an immiscible state. The spin-dependent
interactions drive the dynamics of spin domain formation and coarsening.

Chapter 6 explores the physics and implementation of Raman coupling in our experiment. Also
discussed is the physics and and implementation of a spin 1 system in the F = 1 hyperfine ground state
of 87Rb.

Chapter 7 extends the physics of the spin-1 system to a system with magnetic ordering. Inter-
estingly we find that a spin-1 SOC system contains phase transitions of first and second order.

1
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Chapter 8 describes the novel nucleation method of vortices in a BEC subjected to synthetic
magnetic fields. Common methods to generate high vortex number utilize rapid rotation that generates
vortices on the edge of the system and slowly relax into the bulk of the condensate. By contrast, here
I explored a system with engineered high magnitude, localized synthetic magnetic fields between two
separated BECs. The low density and high magnetic field drives rapid generation, and high number, of
vortices in the system.

Appendix A covers the theory of operation and implementation of the flux gate magnetic field
stabilization system.

Appendix B discusses the FPGA instrumentation system that I had developed.



Chapter 2

An Overview of Bose-Einstein
Condensation Theory

Bose-Einstein Condensation is the quantum phenomenon wherein an ensemble of bosons, particles
with an integer unit of total angular momentum, will all occupy the ground state of the system,
forming a quantum state of matter. This process occurs when a combination of high particle density
and low temperatures crosses a critical value, formulated ahead in Section 2.1.2. Here I describe
the basic mechanisms and relationships for the physics of Bose-Einstein condensates (BECs) mostly
as a supplementary reference to the physics studied in our experiment (Chapters 5, 7, and 8). For
readers interested in a much more comprehensive description of the physics involving Bose-Einstein
condensation, I would refer them to the texts by Pethick and Smith [16] or by Pitaevskii and Stringari
[17].

2.1 Origins of Bose-Einstein Condensation

All matter can be described in the context of matter-wave duality, wherein a particle has an associated
matter wave length, given by the de Broglie wavelength �DB = h=p where h is Planck’s constant and p
is the momentum of the particle [18]. In most cases, the classical model of particles described by hard
spheres or point particles is valid, for at high temperatures the atomic wavepacket is smaller than typ-
ical sizes of the atom. By combining the formalism for the momentum p = mv , and the equipartition
theorem for free particles1 we can define the de Broglie wavelength:

�DB =
hp

3mkBT
(2.1)

With kB being Boltzmann’s constant. For a gas with N particles in a volume V, the equilibrium density
will be n = N=V particles per volume. For example’s sake we say each particle occupies a uniform
volume, we can approximate the average inter-atomic spacing as d � n�1=3. We can calculate a critical
temperature TC when the de Broglie wavelength is on the order of the inter-particle spacing:

TC �
h2n2=3

mkB
(2.2)

From this simple argument for a uniform gas we can see the critical temperature in which condensation
occurs depends primarily on the density of the particles. With an even more basic approach of simply
arranging the relevant units of the system to form a temperature will yield the relationship in Equaiton

1the equipartition theorem states that for a given temperature, the energy will be evenly distributed into all degrees
of freedom. For a monoatomic gas, the three translation modes gives 1

2
mhvi2 = 3

2
kBT .

3
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Figure 2.1: At high temperatures, using a ‘billiard ball’ model of atoms colliding is valid.
As temperatures lower, the de Broglie wavelength becomes larger and the matter-wave nature
becomes evident. Once the associated wavelength is large enough, the atoms become coherent,
and in the case of bosons, condense. Wonderful figure adapted from the Ketterle MIT group
website.

2.2 [16]. That said, the derivation of the critical temperature for condensation is derived in the following
sections.

2.1.1 Bose-Einstein Statistics
In classical physics the statistical mechanics of a system of many particles, such as a gas, is characterized
by the Maxwell-Boltzmann distribution, a probability density function that describes the probability of
a particle possessing a given velocity. Maxwell-Boltzmann statistics for distinguishable particles can
similarly model the probability of a particle possessing a given energy:

p(E) = e�(E��)=(kBT ) (2.3)

Where kB is Boltzmann’s constant, T is the temperature of the ensemble, and � is the chemical
potential. However, this distribution of energies applies to classical, distinguishable particles. If we
have an ensemble of identical bosons, particles with integer spin, we lose distinguishable nature, and
the distribution is now described by the Bose-Einstein distribution:
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p(E) =
1

e(E��)=(kBT ) � 1
(2.4)

Note that in the limit of high temperatures, the Bose-Einstein distribution becomes equivalent to the
Maxwell-Boltzmann distribution. For the derivation of the statistics for both classical and indistinguish-
able particles from microcanonical or grand canonical approaches, I recommend reading the statistical
mechanics book by Pathria [19].

2.1.2 Critical Temperature for Condensation
The interesting difference between the two probability distributions comes in at low temperatures. If
we have N atoms in an atomic ensemble, we should be able to sum along the probability distribution
in steps of energy along with the degeneracy in energies and get a result of N as well. This gives us an
the relationship:

N =

∫ 1

0

p(E)d(E) dE (2.5)

Where p(E) is the probability of occupation at an energy E, and d(E) is the density of states, a
measure of the degeneracy of the states in the system. It is worth mentioning that the Bose-Einstein
distribution requires that the chemical potential � is always less than the lowest energy in the system,
E0. For an arbitrary density of states function, we require that the integrand is a positive value as the
probability and the density of states are both positive semi-definite quantities2. Combining Equation
2.4 and Equation 2.5. In expanded form, we have:

N =

∫ 1

0

d(E)

e(E��)=(kBT ) � 1
dE (2.6)

As stated, d(E) must be positive as it is a function that counts the available energy levels nearby the
energy E. For entire integrand to be positive, we require the exponent in the denominator to be greater
than zero:

(Ei � �)=(kBT ) � 0 (2.7)
) Ei � � 8Ei (2.8)

Which implies that independent of the specifics of the energy levels and degeneracy of the system, the
chemical potential must be lower than the ground state energy level.

If we consider the system in a box, specifically a three dimensional infinite square well potential,
the allowed energies go as E = ~

2k2=2m, with the vector k having components ki = �ni=Li , where
ni is the energy level in the square potential in the êi direction, and Li is the size of the box in the êi
direction. This gives us a density of states [20]:

d(k) =
V k2

2�2
dk (2.9)

If we rewrite Equation 2.9 using the relationship E = ~
2k2=2m, and for simplicity use the standard

thermodynamic definition � = 1=kBT , we can rewrite the particle number N more cleanly as:

N =
V m3=2

p
2�2~3

∫ 1

0

E1=2

e�(E��) � 1
dE (2.10)

This expression is analytically unsolvable. However, in the special case of � = 0, T = Tc , we can
evaluate the integral, yielding the critical temperature for condensation. Using Equation 2.10 and

2I’m not one to define negative probability or a negative counting of energy levels
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Figure 2.2: Calculations of the phase space density � during our evaporative cooling stages
discussed in Chapter 3

noting that N=V = n, the density of the gas, and making the substitution x = �E:

N=V = n =
m3=2

p
2�2~3�3=2

∫ 1

0

x1=2

ex � 1
dx (2.11)

The integral, in terms of x, can be evaluated by the identity:∫ 1

0

x s�1

ex � 1
dx = �(s)�(s) (2.12)

Where � is the Gamma function, and � is the Riemann Zeta function. Using this identity in Equation
2.11 and solving for the temperature T , we get:

Tc =
2�~2n2=3

mkB
�(3=2)�2=3 (2.13)

Which has a similar functional form as the quick derivation in Equation 2.2, but with a well defined
constant of proportionality. Furthermore, we can define a quantity called the phase space density �
such that � = n�3DB which describes the number of particles contained in a volume given by �3DB.
When � ' 1, the atomic wavefunctions begin to overlap at the beginning of condensation. To increase
the phase space density in the experiment, we deploy laser cooling and evaporative cooling techniques
(Chapter 3) to simultaneously increase the density and lower the temperature to approach � � 1 (Figure
2.2).

2.1.3 The Condensate Fraction
To determine the number of particles in the system that have condensed into the ground state, we can
consider the particle number NTot = N0 + Nex:. We can quickly compute the number of particles in
the ground state, N0 using Equation 2.4. For systems with a large number of particles, we can make
the approximation of � = 0 for the excited states as E1 � � ' E1 � kBT=N0 ' E1. Therefore, as in
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Equation 2.5, we can calculate the number of particles in the excited states:

Nex: =

∫ 1

0

d(E)

e�E � 1
dE (2.14)

Where d(E) is the density of states for the given system. We are interested in the condensed fraction
of atoms, that is:

N0

NTot
=
NTot � Nex:

NTot
= 1� Nex:

NTot
(2.15)

Using Equation 2.13 and solving Equation 2.14 as before for a general temperature T, we get the
condensate fraction for a gas in a box:

N0

NTot
= 1�

(
T

Tc

)3=2

(2.16)

2.1.4 Condensation Requirements in a Harmonic Trap
In most (if not all) ultracold gases experiments, the condensates are confined in a harmonic confinement
potential: V (x; y ; z) = 1

2m
(
!2xx

2 + !2yy
2 + !2z z

2
)
. The harmonic confinement geometry changes the

conditions for condensation, as understood through Equation 2.5. However, the same procedure can
be repeated as in the previous sections, the difference being that we calculate the density of states
for the 3D harmonic oscillator. For a harmonic potential, the energy levels are E = ~!x(nx + 1=2) +

~!y (ny +1=2)+ ~!z(nz +1=2) with the integer ni � 0. The harmonic oscillator is wonderful because
the states are evenly spaced in energy, and the primary axes are not coupled together in a complex
fashion. Calculating the density of states gives:

d(E) =
E2

2~3�!3
dE (2.17)

Where �!3 = !x!y!z , is the geometric mean of the harmonic potential frequencies. Following the
method in Section 2.1.2, the critical temperature for condensation in the harmonic trap is:

Tc =
~�!

kB

(
n

�(3)

)1=3

(2.18)

� 0:9405
~�!n1=3

kB
(2.19)

The major difference here is that the critical temperature goes as the cube root of the density, not to
the power 2/3. Similarly the condensate fraction is modified:

N0

NTot
= 1�

(
T

Tc

)3

(2.20)

The cubic power to the condensate fraction value for a harmonically confined condensate assists us
in creating a large condensed fraction with less cooling. The intuitive explanation is that unlike a
uniform gas in a box, the harmonic potential will have a region of high density at the center, helping
the condensation process.

From performing the exercise of deriving the critical temperature twice for different geometry,
a pattern emerges wherein the form of the critical temperature depends on the functional form of the
density of states. Consider a generic density of states:

d(E) = cdE
p�1 dE (2.21)

Where cd is a constant prefactor, and p � 1 is the power law exponent of the density of states. It
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follows then, using the arguments as before, that the critical temperature for condensation is:

Tc =

(
n

cd�(p)�(p)

)1=p

(2.22)

This confinement agnostic form for the critical temperature shows the strong dependence between
the type of confinement and the critical temperature required for condensation. This form is also
helpful when calculating critical temperatures for condensation in different dimensional systems, as
that information is contained in the density of states. For example, the density of states of a harmonic
oscillator in an arbitrary number of dimensions can be calculated readily as the constant level spacing
allows the system to be treated as a convolution of independent oscillators:

dHO(E; l) =
E l�1

(l � 1)!

l∏
i=1

~!i

dE (2.23)

Where l is the number of dimensions3 and !i is the harmonic oscillator frequency in the êi direction.
So we can quickly calculate the critical temperature for an arbitrary number of dimensions as:

Tc =


n

�(l)�(l)(l � 1)!

l∏
i=1

~!i


1=l

(2.24)

Note that for l = 1, a one-dimensional geometry, �(1) =1 signifying that condensation cannot occur
in such a system. In a two dimensional system (the far limit of ‘pancake’ style confinement geometry
where !z >> !x;y ) we get:

Tc �
0:78

~

√
n

!i!j
(2.25)

We can extend this exercise to higher dimensions although I cannot fathom why, but I will leave that
as an exercise to the reader if they have an interest.

2.2 Condensation with Atomic Interactions

In Section 2.1, the requirements for condensation I discussed in terms of a non-interacting gas.
However, atoms in a gas do interact and this effect provides a density dependent interaction potential.
For the purpose of describing interactions between two atoms in the ultracold gas, I will attempt to
side-step the details of deriving scattering theory from first principles and instead present the requisite
information and resources to derive the origin of the interaction energy in a condensate. The principles
of quantum mechanical scattering theory can be found in both [21] and [20]. Chapter 5 of [16] provides
a detailed description of deriving the effective interaction energy for a cold, dilute gas based upon
scattering theory, as well as [22].

3I would use a more intuitive n, but that is defined as the density
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2.2.1 Effective Atomic Interaction Potentials
To account for the interactions of particles in the system, a model is used that makes the approximation
that the scattering processes between atoms is low energy process, valid for atoms in a low temperature
condensed state. This approximation allows us to only consider spherically symmetric s-wave scattering
effects to model the more complex inter-atomic potentials as an effective hard sphere scattering pro-
cess, where each atom has an effective radius ascat:, the scattering length. From the references listed
previously, one can find that the presence of interactions in the condensate approximated by this model
provides an energy proportional to the density of the atoms, specifically:

Vint(~r) =
4�~2ascat:

m
n(~r) = gn(~r) (2.26)

For 87Rb, ascat: � 100 aB, where aB = 5:3 � 10�11m. Therefore the effective ’size’ of the atoms in
collision processes is much larger than the actual extent of the atom.

Atomic species can have either positive or negative values of the scattering. Condensates with
particles that have attractive interactions (ascat: < 0) such as the more isotopically abundant 85Rb

(ascat: = �23:44aB) can exist, however after a critical number of atoms, the condensate will collapse
[23, 24]. By comparison, condensates with repulsive interactions (ascat: > 0) such as in 87Rb are in
a stable configuration, independent of particle number. In systems with spin degrees of freedom, the
interaction between atoms in different spin states can have varying scattering lengths, as described in
Section 5.1.1.

Scattering lengths are also important for evaporative cooling stages (Section 3.3.1), which rely
on the interaction of the atoms to rethermalize the ensemble after ejecting the most energetic members.
For atomic species with small scattering lengths, the evaporative cooling mechanism is less effective.
To cool them down, a technique known as sympathetic cooling [25,26] uses a two-species setup4: one
that is easy to cool and one that is not. However, the interaction between the two elements is effective
enough such that the second species cools off by interacting with the first.

2.2.2 The Gross-Pitaevskii Equation
In the regime where describing the inter-atomic interactions in the condensate by the scattering length
is valid, the Schrodinger equation is modified with the interaction term to become what is known as
the Gross-Pitaevskii Equation (GPE) [27,28]. The equation has the form:

i~
@

@t
 (~r; t) =

(
� ~

2

2m
r2 + V (~r) + gj (~r; t)j2

)
 (~r; t) (2.27)

If we require the conditions that  (~r; t) satisfies the mean-field approximation [16] as:

N =

∫
j (~r; t)j2 (2.28)

 (~r; t) = �(~r)e�i�t=~ (2.29)

Then for a system in equilibrium, the time-independent form becomes:

��(~r) =

[
� ~

2

2m
r2 + V (~r) + gn(~r)

]
�(~r) (2.30)

2.2.3 The Thomas-Fermi Approximation
In a system in which the kinetic energy term in the GPE (Equation 2.27) is much less than both the
confining potential and interaction energy, we can make the Thomas-Fermi Approximation to eliminate

4Either different elements or isotopes of the same element
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Figure 2.3: The Thomas-Fermi approximation for the BEC density, here shown in a 1D slice.
The density profile of the atoms will mirror the curvatures of the potential which confines the
atoms.

the kinetic energy term [29]. If we assume that we are in a time-independent configuration for the
condensate, we get:

��(~r) = [V (~r) + gn(~r)]�(~r) (2.31)

Note here that we are investigating the cases where  (~r) 6= 0. Rearranging terms give us the density
profile of the condensate in the trapping potential:

n(~r) =

{ 1
g (�� V (~r)) : �� V (~r) > 0

0 : �� V (~r) � 0
(2.32)

Therefore in the Thomas-Fermi limit, the shape of the density profile is a reflection of the trapping
potential, scaled with the correct prefactors. For a harmonic confinement, we get an inverted parabola
shape referred to as the Thomas-Fermi profile shown in Figure 2.3.

It is important to note that this is in fact an approximation, the discontinuity in the derivative
at the edge of the Thomas-Fermi profile would make r2� ill-defined. To account for this, we consider
the length scale in which the derivative of the density should be non-zero.

We consider the energy scale associated with the chemical potential � of the condensate to the
kinetic energy term:

� =
4�~2ascatn0

m
� ~

2

2m�2
(2.33)

Where � accounts for the length scale units from the r2 operator and n0 is the peak density of the
condensate. Solving for the length scale, we get:

� = (8�ascatn0)
1=2 (2.34)

Where we call � the healing length of the condensate. This length scale approximates the shortest
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distance over which perturbations can occur in which the density goes from zero to the bulk value. For
instance, in the experiment with vortices in Chapter 8, the healing length sets the approximate radius
of the vortex core.

2.2.4 Thomas-Fermi with a Harmonic Trapping Potential
In our experiment, and in many others, the condensate is confined in a harmonic trapping potential.
By using the Thomas-Fermi approximation in Section 2.2.3, we can quantify many properties of the
BEC, such as the chemical potential or atom number, as set by the geometry of the harmonic trap.

Knowing the density of the condensate from Equation 2.32, we can calculate the number of
atoms within the condensate:

N =

∫
d3r n(~r) =

∫
d3r

1

g
(�� V (~r)) (2.35)

From the condition that the condensate must vanish when � = V (R) in Section 2.2.3, where R is the
edge of the condensate, we can relate the harmonic oscillator frequencies, condensate radius and the
chemical potential by:

1

2
m!2i =

�

R2
i

(2.36)

Where !i and Ri are the oscillator frequency and condensate radius along the êi direction respectively.
Therefore we can calculate the atom number from:

N =

∫
d3r

�

g

(
1� x2

R2
x

� y2

R2
y

� z2

R2
z

)
(2.37)

If we define
n0 =

�

g
=

�m

4�~2ascat
(2.38)

as the maximum density at the center of the condensate, we can define the spatial density as:

n(~r) = n0

(
1� x2

R2
x

� y2

R2
y

� z2

R2
z

)
(2.39)
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If we integrate along one direction first, such as ẑ, we can calculate the column density profile of the
condensate, which is useful for absorption imaging purposes (see Section 3.5.1):

n(x; y) = 2

∫ Rz

√
1� x2

R2x
�

y2

R2y

2

n(x; y ; z) dz (2.40)

=
4Rz

3
n0

(
1� x2

R2
x

� y2

R2
y

)3=2

(2.41)

Therefore when a condensate is projected onto a two-dimensional surface, such as when imaging, the
observed density profile is not a parabola, but instead goes as the power 3/2. Fully integrating over x
and y gives the particle number in the condensate:

N =
2

5
n0 �

4

3
�RxRyRz (2.42)

Here I broke up the terms to illustrate that the result for the total atom number contains a effective
uniform density term 2=5 n0 multiplied by the volume of the ellipsoidal condensate. If we use the
geometric mean of the radii (and therefore trap frequencies via Equation 2.36) to describe the average
extent of the condensate:

N =
8�m

15g
�!2 �R5 (2.43)

Where �R = (RxRyRz)
1=3 and �! = (
x
y
z)

1=3. The inverse of this equation, the radius as a function
of number, has a 1/5 power law dependence - a little increase in measured radius means much more
atoms in the condensate!

2.3 Density Profiles and Time-of-Flight Measurement

The measurement of density profiles of atomic ensembles is important as the atomic density
reveals many other metrics relevant for calculations, such as atom number or temperature. Here I
briefly discuss the density profiles for thermal and condensed clouds, and the extraction of information
via time-of-flight (TOF) imaging.

2.3.1 Time-of-Flight (TOF) Imaging Measurement
To gain information in any of our experiments, we use absorption imaging techniques (Section 3.5.1)
to image the column density of the atomic ensemble onto a CCD camera. We can either take an image
when the atoms are still confined (an in-situ image) or take an image after abruptly turning off the trap,
letting the ensemble expand (a time-of-flight image). In-situ imaging is difficult due to the high atom
density (for absorption imaging) and the small target in which to image (� �m). To image features
in the condensate smaller than the radius, such as a vortex [30], complex techniques must be used.
For this reason, we commonly default to using TOF imaging techniques. At the end of an experiment,
we immediately remove the confining potential, after which the kinetic energy of the system causes an
expansion of the gas. This rapid expansion effectively maps the momentum distribution of the ensemble
into position space.
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Figure 2.5: In Time-of-Flight (TOF) imaging, the atoms are suddenly released from their con-
fining potential. As the gas falls, it expands due to the momentum of atoms within it. The
distribution is then imaged after a free-fall time tTOF � 20 ms)

2.3.2 Thermal Profiles

A confined thermal cloud will have a density profile of [31]:

n(x; y ; z) = n0e
� m

2kBT
(!2

x x
2+!2

y y
2+!2

z z
2) (2.44)

Where n0, the peak density can be calculated as:

n0 = N

(
m�!2

2�kBT

)3=2

(2.45)

With N being the total atom number. At the start of TOF, we release the confining potential, therefore,
besides gravity, the system is described by free-particle physics. The velocity distribution after TOF
for a thermal gas is governed by the Maxwell-Boltzmann distribution. For a sufficient TOF length, the
thermal distribution:

n(x; y ; z) = N

(
m

2�kBT

)3=2

e
� m

2kBT
(v2x+v2y+v2z ) (2.46)

is mapped to a spatial distribution:

nTOF(x; y ; z) = Ae
� m

2kBT

(
x2

�2x
+ y2

�2y
+ z2

�2z

)
(2.47)

However for imaging we project the vertical direction onto the two-dimensional image. So the thermal
distribution on the camera will have the form:
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Figure 2.6: Momentum profiles of thermal clouds and condensates after TOF imaging. As the
sample of atoms is cooled from a hot thermal cloud (left) to a condensate (right), the momentum
becomes peaked around a single value.

nTOF(x; y) = Ae
� m

2kBT

(
x2

�2x
+ y2

�2y

)
(2.48)

Where:

A = N
m

2�kBT
(2.49)

�i =
√
kBT=m (2.50)

By using a least-squares fit of the form above, we can extract the relevant information from the thermal
distribution. Here I assert that given enough time, the distribution of the thermal cloud after TOF will
become isotropic, unlike the TOF profile of a condensate, discussed in the next section.

2.3.3 Condensate Profiles
From Section 2.2.4, the density of a BEC in a harmonic trap is:

nTF(~r) =
�

g

(
1� x2

R2
x

� y2

R2
y

� z2

R2
z

)
(2.51)

The TOF density profile of a condensate is related to the harmonic trapping frequencies. For directions
of tighter confinement, the BEC will ‘explode’ outwards with a higher momentum, thus expanding to a
larger radius after a given amount of time. This is why condensates undergo anisotropic expansion in
time of flight, unlike the uniform expansion that thermal clouds achieve. This anisotropy in expansion
is considered the experimental signature to distinguish condensation from thermal ensembles.

From [32], we can calculate the anisotropic expansion according to a set of equations for the
condensate radius as a function of time:
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Figure 2.7: BEC expansion in TOF given a trap geometry of (fx ; fy ; fx) = (42:8; 43:3; 133) Hz.
Due to the tight confinement along the ẑ direction, the Castin-Dum projection shows that the
BEC will rapidly expand vertically. This more rapid expansion will invert the density profile from
being extended along x̂; ŷ before TOF (left) to ẑ after TOF (right).

Ri(t) = �i(t)Ri(t = 0) (2.52)
��i(t) =

!i

�i�i�j�k
(2.53)

Where Ri is the condensate radius along the ith principal axes. These relationships, known as the
Castin-Dum equations5 can be used to both find the time of flight density profiles, or by measuring the
TOF radii via absorption imaging, back-propagate what the original radii were when the condensate
was confined. To extract the radii from the image, we do a least-squares fit to the column density in
Equation 2.41 and extract the radii. Then we use the Castin-Dum equations to back propagate the
density profile back to the start of TOF. Using the relationships in Section 2.2.4, we can calculate the
atom number and chemical potential.

2.3.4 Measurement of Trap Frequencies
From the previous sections, it is evident that the geometry of the confining potential is critical in
determining the critical parameters of the system. Therefore, we characterize the system in terms of
trap frequencies that describe the confinement in terms of a harmonic oscillator model.

To measure the trap frequencies, we excite the n = 0, l = 1 resonance of the trap and measure
the modulation of the BEC. That is the fancy way of saying that we kick it with a magnetic force
that causes the condensate to slosh in the trap. The periodicity of the slosh gives the trap frequency
along the direction of the applied kick. A more detailed procedure is as follows. First, we prepare a
condensate in a magnetically sensitive spin state. Next we apply a biasing field along a principal axis of
the system6. We then pulse on a magnetic field gradient that imparts a force to the atoms along the
biasing field direction. We time the length of this pulse to be approximately one-fourth of the estimated

5Castin and Dum are the authors of [32], only fair they get an equation
6For the optical trap, the principal axes are x̂ � ŷ as the beams intersect at 45� to the experiment axes defined in

Section 4.1
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Figure 2.8: Measurement of trap frequencies in an optical dipole trap. The cloud is given a force
impulse and allowed to slosh in the trap. The displacement as a function of time is measured,
and the oscillation frequency extracted.

trap period, and the amplitude of the force is set to give a nice gentle push into oscillation, not a large
shove that can push the condensate into higher oscillation modes, or into regions where the potential
is no longer approximated by a harmonic trap. We then observe the motion of the condensate after
varying hold times. The position of the condensate will oscillate at the trapping frequency, which can
be then extracted by a least-squares fit of the position versus time dataset.



Chapter 3

Introduction to Laser Cooling and
Trapping Techniques

Laser cooling was instrumental in being able to create Bose-Einstein condensates in the lab as the
techniques developed were able to take a hot atomic beam and slow the atoms down in a trap with a
temperatures of few millikelvin, comparable to the best cryogenic liquid Helium experiments. Magnetic
trapping and optical trapping techniques to further cool down atomic gases also play a role in producing
a condensate, and are also discussed here. This chapter is truly an overview of the physics and techniques
for ultracold gases experiments. For readers interested in more in-depth discussions and derivations of
the physics of laser cooling and trapping, I would suggest the atomic physics books by Metcalf [33]
and Foot [22], or the multitude of theses from ultracold degenerate gases experiments in the past two
decades.

3.1 Atoms and Magnetic Interactions

In ultracold atomic physics experiments, many of the laser cooling and trapping methods we use
(Zeeman slowers, Magneto-Optical traps, and magnetic traps) take advantage of the Zeeman effect [34]
to break the energy degeneracy between the various spin components (Figure 3.1). This energy shift
comes from the interaction of the magnetic field with the electronic magnetic moment and the nuclear
magnetic moment. The limit of low magnetic field (where the applied field is much smaller than the
internal field of the atom) is referred to as the linear Zeeman effect. In this regime, the system is best
described by the hyperfine states jF;mF i. As the applied magnetic field strength is increased from
zero, the energy splitting of the spin components goes linearly as EZeeman = gF�BmFB (Figure 3.1,
bottom left). As the field is greatly increased, the strength of the internal magnetic field becomes a
perturbation compared to the applied field in what is known as the Paschen-Back effect1. Here the
spin-components are described in the jJ;mJi basis. In the intermediate regime of applied field, neither
interaction can be described as a perturbation term. For J = 1/2 atoms (the alkalis) the energy of the
spin components can be algebraically solved to give the Breit-Rabi equation:

x =
(gj � gi)�BB

�EHF

�E = � 1

2(2I + 1)
+
�BgImFB

�EHF
+

1

2

√
1 +

4mF

2I + 1
x + x2 (3.1)

1In our experiments, we go nowhere close to this regime

17
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Zeeman Shift in 87Rb

Linear Zeeman Shift, F = 1 Quadratic Zeeman Shift, F=1 mf = 0 

ε = E0 – (E1 + E-1) / 2
mF = +1

mF = 0

mF = -1

Hyperfine

Electronic

Figure 3.1: The Zeeman energy splittings in 87Rb. The energy shift across arbitrary magnetic
field strength is calculated using the Breit-Rabi formula (top). In our experiment we are mostly
concerned with the linear Zeeman shift regime for small fields, and the effect of the quadratic
Zeeman shift, a measure of the non-linearity as a function of the field strength.

Where B is the applied field, �B is the Bohr magneton, gj and gj are the electronic and nuclear g-
factors, I is the nuclear spin (I = 3=2 for 87Rb), �EHF is the energy splitting between the two hyperfine
levels, and x is a dimensionless energy parameter dependent on the properties of the atom. The energy,
�E, is given here in units of �EHF. The Breit-Rabi equation (3.1) gives the energy splitting over all
magnetic field values: the low and high field limits.

3.1.1 The Quadratic Zeeman shift
For low energies the Zeeman shift can be approximated as being linear for all spin components. However
there is still a non-linearity in the low magnetic field strength regimes that causes a small, but measurable
deviation. We call this small deviation from a linear function the quadratic Zeeman shift. In our 87Rb

experiment, we work primarily in the F=1 hyperfine states. Here we define the quadratic shift as
� = E0 � (E1 + E�1)=2, where EmF

is the energy of the mF state. The bottom right of (Figure 3.1)
shows the quadratic shift in energy to the mF = 0 state compared to the other states. This shift breaks
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Description Symbol Value

Nuclear g-factor gI -0.0009951414

Electronic Fine Structure g-factor 

(5S½)
gJ 2.00233113

Bohr Magneton μB 1.399624604 MHz/G

Nuclear Spin I 3/2

Hyperfine Energy Splitting ΔEHF / h 6.834682610904290 GHz

Helpful 87Rb Breit-Rabi Parameters 

Figure 3.2: Magnetic properties of 87Rb [35]

the symmetry between the mF = �1 states, and allows us to isolate systems via optical or magnetic
interactions to mF = 0;+1 or mF = 0;�1 only coupling schemes.

3.1.2 Oscillating Magnetic Fields a.k.a RF Coupling
In our experiment we commonly use oscillating magnetic fields (herein RF fields) to drive transition
between the spin components of the BEC (the equipment is described in Section 4.4.5). The RF field
is mathematically described as a simple field ~BRF(t) = B0 cos(!RFt), which gives an interaction term
in the Hamiltonian of the form ĤRF = �~� � ~BRF = �B0 cos(!RFt)F̂x . In matrix form we can write this
as:

ĤRF = ~

 �� 
RF cos(!RFt)=
p
2 0


RF cos(!RFt)=
p
2 � 
RF cos(!RFt)=

p
2

0 
RF cos(!RFt)=
p
2 �

 (3.2)

Where 
RF is the coupling strength of the RF field (the Rabi frequency), � = !RF�!Z is the detuning
from RF resonance where ~!Z is the energy splitting due to the linear Zeeman shift, and � is the
quadratic Zeeman shift. Transforming the matrix under rotation into the rotating frame at !RF, while
ignoring terms going as !RF + !Z we get:

ĤRF = ~

 �� 
RF=
p
2 0


RF=
p
2 � 
RF=

p
2

0 
RF=
p
2 �

 (3.3)

This system can be solved for both the eigen energies and states, as shown in Figure 3.3.

Adiabatic Rapid Passage

The most common way we manipulate the spin characteristics in our experiment is through the Adiabatic
Rapid Passage (ARP) technique. By ramping the detuning of the RF dressed state slowly with respect
to the energy gaps between the dressed state bands2, we can selectively transfer atoms between various
spin compositions. The experimental process is as follows: First we prepare the BEC in the dipole
trap in the mF = �1 spin state. We then ramp on the biasing field slowly to set the value of the
Zeeman splitting ~(!Z � �0) where �0 is a value that is far enough out of resonance that the dressed
state spin fraction and bare state are effectively identical. We then slowly ramp up the RF frequency
to !RF = !Z, while the magnetic field is still lower than resonance. We then slowly ramp the biasing
field such that Zeeman shift !Z ! !RF. By selectively choosing the end point of the biasing ramp,

2i.e. to avoid Landau-Zener tunneling
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Figure 3.3: Top: The RF dressed state creates avoiding crossings in the energy levels as a
function of the detuning from resonance. Bottom: The fractional composition of the lowest
energy RF eigenstate with respect to the bare spin states. Both figures are simulated at 
RF =

30 kHz and fRF = 25 MHz, which implies for 87Rb a quadratic Zeeman shift of �q � 90 kHz.

we choose the value of � = !RF � !Z, and hence the spin state composition as shown in Figure 3.3,
bottom. By slowly ramping off the RF, the system is brought back into the bare spin states with a spin
fraction given by the final eigenstate.
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Adiabatic Rapid Passage
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Figure 3.4: Adiabatic rapid passage uses the eigenstates of the RF dressed state to select spin
compositions via detuning dependent eigenstates.

3.2 Laser Cooling

In order to cool down our atomic gases to ultracold temperatures, we first use the properties of
laser cooling to remove momentum from the atoms. Laser cooling processes use the momentum recoil
of photons, caused by the atomic absorption and emission of photons, the generate a force upon the
atoms. Many clever schemes can be used to decelerate, trap, and drastically cool atoms using this
force.

3.2.1 Providing a Force to Atoms From Light
An atom that absorbs and emits a photon will experience a shift in momentum and kinetic energy
proportional to the wavelength of the light and the mass of the atom. This imparted momentum
and energy is described by the recoil momentum ~kR = h=�, and the recoil energy ER = ~k2R=2m.
Consequentially, the force the atom will feel is simply the single photon recoil momentum multiplied
by the photon scattering rate of the atom. In the case of a simple two-level atom model, the rate in
which photons are scattered by the atoms is given as:

scatter =
�I=Isat

2�2 + �I=Isat + 4�2
(3.4)

Where I is the intensity of the light (Determined by the Rabi frequency 
), � is the detuning from
atomic resonance and � is the spontaneous emission rate. If we drive the atomic transition as hard
as possible, that is, provide a laser beam intense enough to provide non-stop atomic absorption and
emission, we will reach an intensity known as the saturation intensity, Isat = 2
2=�2. The saturation
intensity technically corresponds to the intensity of light required to place the two-level atom into an
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equal superposition of the ground and excited states, as we are instantly providing the next collision
after any decay event occurs. The scattering rate and photon recoil momentum give the force imparted
to the atoms as:

Fscatter = ~k
�I=Isat

2�2 + �I=Isat + 4�2
(3.5)

If a very bright incident laser beam illuminates the atomic beam (I >> Isat), the terms in the
numerator and denominator of Equation 3.5 will approach unity such that the maximum scattering
force the atoms feel is simply Fscatter = 1

2~k�.

3.2.2 Zeeman Slowers
One of the first methods to show laser cooling via the scattering force discussed in Section 3.2.1 was
the Zeeman slower [1]. The idea is to use the scattering force from a laser to slow down an atomic
beam of atoms by aligning the laser counter-propagating to the atomic beam.

To see how the scattering force can be used to slow down, or even stop, an atomic beam,
consider the maximal acceleration that can be applied to an atom of mass m via the scattering force:

amax =
Fmax

m
=

1

2m
~k� (3.6)

Simple classical mechanics tells us that to slow down an atomic beam with an average atomic velocity
of vbeam, we require a distance of Lsl = v2beam=amax to bring the majority of the atoms to a stand-still.

One problem with using the scattering force to slow down the atoms is the detuning term in
Equation 3.5. Even with a laser tuned to the correct resonance frequency, as the atoms slow down they
experience a Doppler shift that will cause a detuning which in turn causes the force to drop off quickly.
A cute idea was experimentally tested by Bill Phillips and Harold Metcalf [1] to spatially adjust the
Zeeman effect to adjust the resonance of the atoms as they decelerated, therefore keeping the cooling
light and the atoms in resonance until the atoms were at rest. This was accomplished with what we
now call the Zeeman slower - a tapered solenoidal coil that has a variable magnetic field propagating
along the atomic beam. The Doppler shift of kv is compensated by the field of the solenoidal coil,
keeping the atoms in resonance during the length of the Zeeman slower, hence allowing the maximum
acceleration during the whole flight of the atom.

In the case of a Zeeman slower of length Lsl, the maximal acceleration condition tells us that
the velocity of the atoms will be:

Taper Coil

Bias Coil

Slower Light

Atomic Beam
Atomic 

Source

Zeeman Slower Schematic

Figure 3.5: Schematic of a the RbLi Zeeman Slower. An atomic beam is sent in a linear
path against a counter-propagating circular polarized slowing beam. The Taper coil provides a
magnetic field that shifts the atomic resonance to balance the Doppler shift. The Bias uniformly
shifts the resonance along the slower.
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vbeam
√
1� x=Lsl (3.7)

Where x is the distance from the start of the Zeeman slower. The Doppler shift of the moving atoms
needs to be considered however. The frequency of the laser the atoms see is !d = ! + kv , where k
is the wavenumber of the laser, positive velocity is defined to be an atom traveling toward the counter
propagated laser source. The Doppler shift of the atoms emerging from an atomic source is non trivial,
for our oven at 120 �C (therefore atoms traveling at r.m.s velocity of 336 m/s), the detuning is a
healthy 425 MHz. To compensate for the Doppler shift during the whole trajectory of the atoms down
the Zeeman slower, the required field profile is:

BSl(x) =
hvbeam

��B

√
1� x

Lsl
(3.8)

A coil that matches these requirements can be designed using magneto-static computations (i.e. a lot
of Biot-Savart). In our experiment, we have both a taper and bias coil on our Zeeman slower in the
RbLi experiment (Section 4.4.1 for the design and measurements). The magnetic field profile along
both of these coils was optimized numerically for the coil spacings and currents. The bias coil is a
solenoid made from uniformly spaced current windings, and as such provides a uniform field along the
Zeeman slower. This field allows us to offset the taper field to choose the velocity of atoms at the end
of the slower.

3.2.3 Optical Molasses

While the slowing technique with the Zeeman slower can cool an atomic beam with a single velocity
direction, the atoms after the slower still will posses velocity (therefore kinetic energy) in the other two
Cartesian directions. To cool down the atoms in all directions, a set of three counter-propagating beam
pairs aligned on each Cartesian axis is used in what is known as the optical molasses. For an atom with
zero velocity, the symmetry of the system would demand that all of the scattering forces from each of
the beams cancel, imparting no net force. However, for an atom not at rest, the Doppler shift breaks
this symmetry, causing a larger scattering force to occur in the direction that opposes the motion of the
atom. If we set the frequency of the laser beams to be below resonance, one of the beams will become
resonant with the light, causing a scattering force that increases with the velocity of the atom. In fact,
the optical molasses name relates to the fact that the scattering force increases with the velocity of the
atom, like motion through a viscous fluid.

Mathematically, one a single direct the scattering force imparted onto the atom via the molasses
is the sum of the scattering force in Equation 3.5 for an atom that sees a red and blue shifted laser via
the doppler shift:

Fmolasses = F�kv � F+kv (3.9)
= Fsc(! � !0 � kv)� Fsc(! � !0 + kv) (3.10)

Where k is the laser wavenumber (or the recoil momentum of the photon), and v is the velocity of the
atom. When evaluating using Equation 3.5, the force can be cast into the form F = ��v , a dissipative
force with � equal to:

� = 4~k2
I

Isat

�2�=�
(1 + (2�=�)2)2

(3.11)

when the assumption is made that the atoms have slow velocities (such that kv << �) and I << Isat .
In order to give a damping force, we require � to be negative, hence the laser beams need to be
red-detuned from the atomic resonance.



Chapter 3. Introduction to Laser Cooling and Trapping Techniques 24

Optical Molasses

Left Right

RightLeft RightLeft

v

+kv

-kv

GeometryMoving AtomMotionless Atom

|e>

|g>

|e>

|g>

D
o

p
p

le
r

S
h

if
ts

ωlaser

Z

X

F

Figure 3.6: Simple model of the optical molasses cooling technique. By red-detuning the beams,
atoms with higher velocities will have a Doppler shift that brings them into resonance, increasing
the optical scattering force.

3.2.4 The Doppler Cooling Limit and Sub-Doppler Cooling
Although the optical molasses provides a damping force (Equation 3.11), the minimum possible velocity
(and therefore temperature) is determined by the Doppler Cooling Limit. The optical molasses provides
a net damping force to the atoms, however during each photon scattering event, the atom gains 2 ER
of energy.

By assuming a steady state situation where the input energy (heating) from the photon recoils
matches the energy dissipation (cooling) from the optical molasses:

4ERscatter = Fmol:v (3.12)

By relating the recoil energy to the kinetic energy of the atoms (ER = 1=2mhvi2), plugging in the
cooling from the molasses, and recalling the equipartition theorem relating temperature and kinetic
energy, we get:

TD =
~�

4kB

1 + (2�=�)2

�2�=� (3.13)

The minimum of this function occurs when � = ��=2, giving:

TD =
~�

2kB
(3.14)

For the � = 2� � 6:066 MHz lifetime in 87Rb, this leads to a minimum molasses temperature of
� 150�K. Nice and cold, but not enough to reach condensation.

To get cooler than this, a technique known as Sub-doppler cooling, Polarization gradient cooling,
or Sisyphus cooling, is used to get beyond this limit. This effect was experimentally discovered [36]
as an unexpected result, and was theoretically explained later [37]. Here I will describe an extremely
simple model3 or flavor of the mechanism at work. In the optical molasses one-dimensional geometry,
we have a pair of counter propagating lasers at the same frequency, but with different helicities of
circular polarization. The superposition of these two beams forms an optical lattice type structure,

3The title of Reference [37] says ‘simple theoretical models’, however is 10+ pages of math.



25 3.2. Laser Cooling

Simple Polarization Gradient Cooling Model

S = - 1/2

S = + 1/2

Excited States

Eabsorption Eemission Eabsorption < Eemission

Light Shifted 

Ground States

Figure 3.7: In polarization gradient cooling, the atom adiabatically transfers to a higher energy
state while traversing along the spatial polarization gradient. The optical interaction can cause
the atom to cycle between the excited and ground states, where the emitted photon has more
energy than the absorbed one.

where the polarization changes in space from left circular ! horizontal linear ! right circular ! etc.
over a period length equal to the laser wavelength. Specifically the polarization has a rotating field form
of ê = cos(kz)ex � sin(ky)ey with k = 2�=�. In an atom more complex than a two-level atom model,
where the ground and excited states have Zeeman sublevels with different spin angular momentum,
the polarization gradient in space will break the symmetry between the levels. Along the polarization
‘wave’, the sublevels will have a spatially oscillating light shift. An atom moving along this direction can
adiabatically transfer from being in the low energy sublevel to the high energy level without changing
spin. The atoms can then absorb a photon and decay into the lower state again, causing a reduction
in energy. This technique can in theory cool atoms down to the recoil limit: TR � ER=kB.

3.2.5 Magneto-Optical Trapping (MOT)
The Magneto-Optical Trap (MOT) is the workhorse of the atomic physics world. MOTs are commonly
the first stage of laser cooling and trapping in cold atom systems. The operation of a Sodium MOT
was first experimentally shown by Raab, et. al. [3] back in 1987. The MOT collects the slowed atoms
from the exit of the Zeeman slower by providing both a trapping force and a dissipative force (as an
optical molasses) to cool the atoms further.

The classic example of the MOT mechanism is the case of hypothetical atom with a spin-0
ground state and a spin-1 excited state with three sub levels (Figure Figure 3.8). Using a quadrupole
magnetic field (Section 3.3), we can generate a spatially dependent Zeeman shift that grows linearly
from the coil’s geometric center. Considering a one-dimensional geometry for simplicity, we illuminate
the atoms with a pair of counter-propagating beams along �x̂: one with �+ and the other with ��
polarization. If the laser light is detuned below the non-shifted atomic resonance frequency, atoms at
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σ+ 

Resonance
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Figure 3.8: Simple spin-0 to spin-1 model of magneto-optical trapping. The magnetic field
gradient shifts the energy of the atomic spins states in space. Appropriately circular polarized
counter-propagating laser beams have a spin-dependent and spatial dependent resonance that
provides a restoring force to the atoms.

x > 0 will absorb more �� photons than �+ photons and as such will feel an average force toward
x = 0. By symmetry, an atom at x < 0 will feel a force that similarly pushes the atom to x = 0. In
summary, the magnetic field helps to provide a restoring force that traps the atoms within the magnetic
field. To make a MOT in our experiment, we replicate the geometry (polarization, magnetic field)
along all three Cartesian axes. Similarly although 87Rb is not a simple atom as described in Figure 3.8,
we can use the cooling transitions between the F = 2 to F 0 = 3 states in the same way. Similar to
the Zeeman slower, the MOT also needs to have repumping light as well along all 6 laser beams (see
Section 3.2.6) to keep the atoms within the cooling transitions.

In our 87Rb MOT, we can collect billions of atoms out of the Zeeman slower within 3-7 seconds,
and they are cooled to order milliKelvin in temperature, cold enough for other cooling techniques to be
used on the way to condensation. Naturally the larger amount of atom flux out of the Zeeman slower
translates to more atoms in the MOT steady-state as well. The atom number loaded into the MOT is
highly complex, depending on: the alignment of the six MOT beams, the polarization of the beams,
the frequency of the MOT cooling and repump beams, the atomic oven temperature, the alignment
of the atomic beam axis with the MOT center4, the slower performance (slower currents, frequencies,
and alignment), and the strength of the magnetic field gradient. Needless to say, getting a MOT can
sometimes be a chore.

4The alignment of the MOT to the atomic beam path can adjusted with the bias coils (Section 4.4.3) to move the
center of the quadrupole field
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Figure 3.9: Measured MOT loading rates as a function of time. Our MOT captures order a
billion atoms within 3.5 seconds (left). As the temperature of the atomic oven is increased, the
flux of atoms in the slower atomic beam increases, allowing more atoms to be captured in a
steady-state configuration.

3.2.6 Atomic Repumping
In this discussion of light induced forces I described laser cooling processes happening in an effective
two level atom. In most cases we are exciting atoms, in 87Rb we are driving a transition between the
F = 2 to F 0 = 3 state. Unlike simple models, Rubidium is a multi-level atom with closely-spaced
hyperfine energy levels. However a laser of finite line-width could drive off-resonant transitions to other
nearby hyperfine states, which have a possibility of decaying into the F = 1 ground state. The large
splitting in the hyperfine ground states (6.8 GHz) causes the cooling light to become decoupled from
these ‘lost’ atoms. If the cooling procedure is continued, eventually all atoms will be pumped into the
inaccessible F = 1 state. To prevent this a second laser is used simultaneously with the cooling laser, a
repump laser, that is set to drive transitions between the F = 1 to F 0 = 2 states. This laser repopulates
atoms into the laser cooling transitions, allowing laser cooling to continue.
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Figure 3.10: Repumping for laser cooling in 87Rb. Because light on the F = 2 to F 0 = 3

transition can off-resonantly couple to F 0 = 2, atoms can reach the F = 1 ground state and
become uncoupled from the cooling process. The repumping scheme optical pumps these atoms
back into the cooling transition

3.3 Magnetic Trapping

Magnetic trapping of cold atomic gases is a common next stage after performing laser cooling
techniques. Magnetic trapping operates via a magnetic dipole interaction with the atoms. The atom
in a magnetic field will experience a shift in energy V = �~µ � ~B where ~µ is the magnetic moment of
the atom. For an atom in a non-zero magnitude spin state, this will generate a Zeeman shift energy
V = gF�BmFB, where gF is the gyromagnetic ratio, �B is the Bohr magneton and mF is the spin of
the atom. It follows for any potential that there is a force such that ~F = �~rV , hence the atoms will
feel a force:

~Fmag = �gF�BmF (
@B

@x
x̂+

@B

@y
ŷ +

@B

@z
ẑ) (3.15)

Thus to have a restoring force, we need to have a magnetic field that varies in space such that the
atoms experience a restoring force to a central point.

This requirement can be met by using a pair of Helmholtz coils with opposite current flow
directions, the same geometry required for the Magneto-Optical trap. By using a pair of the anti-
Helmholtz or quadrupole coils, we can achieve the restoring force to create a magnetic trap. For small
displacements from the center of the coil geometry, the magnetic field has the form:

~B = B0(x x̂+ y x̂� 2z ẑ) + B0 (3.16)
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Figure 3.11: Quadrupole magnetic field geometry. A pair of anti-Helmholtz coils (left) generate
a cylindrically symmetric magnetic field profile (center), which near the geometric center has a
linear increase in magnitude as a function of position (right). This linear region allows us to
make the magnetic trapping approximations in Equation 3.19.

Where B0 is the strength of the quadrupole magnetic field, and B0 is any spatially uniform magnetic
fields. For a geometry where the coil axis is along the ẑ direction (which is true in our experiment), the
potential energy in the absence of uniform fields becomes:

V (~r) = gF�BmFB
0
√
x2 + y2 � 4z2 (3.17)

If we add a background uniform field with strength B0 along the ẑ direction, we get:

V (~r) = gF�BmFB
0

√
x2 + y2 � 4(z +

B0

B0
)2 (3.18)

For very near the center of the coil geometry (which is valid for small atomic clouds versus the 10 cm
length scales of the coils), the potential becomes linear in all directions, and radially symmetric along
the coil axis:

V (~r; z) = gF�BmFB
0(r � 2jz � B0

B0
j) (3.19)

It is important to note that for atoms to be trapped we need gF�BmF > 0. For the 87Rb F = 1 states,
this results in the mF = �1 state being magnetically trappable, the mF = 0;+1 states will either feel
no force or explode outward respectively. For this reason, before loading our magnetic trap, we quickly
optically pump the atomic cloud into the mF = �1 state. The magnetic trapping potential is quite
robust and only limited by the quality of the vacuum system we have. In our experiment we see 1=e

atom number lifetimes in our trap of about 35 seconds.
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Figure 3.12: The measured lifetime of atoms in RbLi experiment’s magnetic trap

3.3.1 Evaporative Cooling
Evaporative cooling is used to cool atoms down further after the laser-cooling stages of our experiment.
Evaporative cooling works by selectively removing the hottest atoms in the cloud, which carry away large
amounts of energy. This is done by lowering the strength of the trapping potential in which the atoms
are confined. As the trap depth gets lower, the population of atoms that have a sufficient velocity (and
kinetic energy / temperature) can escape the trap. As these atoms leave the trap, the population of
atoms left in the cloud rethermalize with each other through scattering processes. The result is that the
average temperature of the remaining atomic cloud, by selectively ejecting hot atoms, is lowered. This
process can be extended to continuously and adiabatically (with respect to rethermalization) lowering
the trapping depth until the desired temperature is reached.
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Figure 3.13: Evaporative cooling in a gas occurs when the potential of the trap is lowered,
allowing the atoms with the most energy to escape. The loss of the atoms removes energy from
the system, and the remaining atoms rethermalize through collisions to a lower temperature.
This process can be repeated to further cool the sample.

3.3.2 RF Induced Evaporation
In magnetic traps, evaporation is done via a forced RF evaporation scheme. Instead of lowering the
trapping potential and allowing the atoms to escape, an RF field with a large frequency is applied to
the atoms. Due to the Zeeman effect, there exists a distance away from the trap center such that the
atoms are on resonance, specifically where ~!RF = �BgFB

0r , where B0 is the strength of the magnetic
field gradient of the magnetic trap. An atom within this region of space will be transfered from the
magnetically trappable to untrappable states, and ejected from the cloud. By beginning the RF at a
frequency far beyond the atomic distribution’s radial extent, and similarly adiabatically lowering the
frequency, the hottest atoms will be ejected, allowing the atomic cloud to undergo evaporation. In our
experiment we typically ramp the RF frequency from 22 MHz down to 5 MHz in 3 seconds to give us
a thermal cloud at � 30�K, cold enough to efficiently load the atoms into our optical dipole trap.
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Figure 3.14: Top: In RF evaporative cooling in a magnetic trap, the potential is held constant
while a resonant RF field is used to eject hot atoms into an untrappable spin state. Because
of the magnetic field gradient, the resonance condition for the RF becomes a function of space,
allowing the selective removal of atoms at high temperatures. Reducing the RF frequency will
progressively select cooler and cooler populations to eject. Bottom: Measured temperature and
atom number as a function of the end point of the RF frequency sweep.

3.4 Optical Trapping

A light-field that illuminates an atomic system can perturb the energy level structure of the atoms.
This effect, known as the a.c. Stark shift or the light shift, is used within degenerate gas experiments
to confine the atomic clouds or condensates in space without a magnetic field component [38]. The
confinement of condensates in a purely optical trap is advantageous as this opens up the study of spinor
dynamics within the system [39,40], as with magnetic traps only the magnetically trappable states can
be studied.

The origin of the dipole force due to an electric field at an atom can be understood from the



33 3.4. Optical Trapping

Optical Dipole Trapping

Trap Depth

G
a
u

ss
ia

n
 B

e
a
m

 

C
ro

ss
-S

e
c
ti

o
n

Beam 

Size

Dipole Beam

Beam Waist - w0

Rayleigh Range

zR

1

𝟐

Distance Along Beam

Figure 3.15: Trapping atoms using an optical field. The red-detuned light creates an intensity
dependent attractive potential. The geometry of the optical trap is determined by the size and
focus of the optical trapping beam.

classical ‘electron on a spring’ harmonic oscillator model of the interaction of light with atoms. Using
the assumption that the nucleus acts as a point charge and the electron is a uniform charge cloud of
radius5 R, we can write the internal electron-nucleus force as:

F = �m!20~x (3.20)

Where:

!20 =
e2=mR3

4��0
(3.21)

Where e is the electron charge, m is the electron mass, and � is the Electric Constant. Including a
perturbing electric field we get the equation of motion for the displacement of the electron-nucleus:

d2

dt2
~x+ !20~x =

e

m
~E(~r; t) (3.22)

Typically as a fudge factor to account for absorption, scattering and other lossy processes, a dissipative
term is added, yielding the Lorentz Model of the atom:

d2

dt2
~x+ 2�

d

dt
~x+ !20~x =

e

m
~E(~r; t) (3.23)

Solving this equation using a plane wave oscillating electric field (~E = ~E0e
�i!t) gives the complex

polarizabilty of the atom:

�(!) =
e2

2m!

(!0 � !) + i�
(!0 � !)2 + �2 (3.24)

5s orbital spherical electron distribution
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Where:
~p = �(!)~E (3.25)

We can calculate the dipole energy using V = �p̂ � ~E. Calculating this horrid expression and averaging
over the oscillation cycles we get:

V =
�e2jE0(~r)j2

4m!

!0 � !
(!0 � !)2 + �2 (3.26)

Using the relationships between potential energy and forces, we can define the force:

~Fdipole(~r) = �~rV =
e2rjE0(~r)j2

4m!

!0 � !
(!0 � !)2 + �2 (3.27)

If we recast this in terms of a Rabi frequency and take the limit � = !0 � ! >> �, we can achieve a
substantial dipole force operating on the atoms with minimal absorption effects. In this limit, we get:

Vl ight =
~
2

4�
(3.28)

Where 
 is the Rabi frequency and � is the detuning from resonance. For a negative detuning, this will
create a downward shift in energy, causing the state to become more preferable to an atomic system.
Because the shift depends on 
2, a more intense light field will create a larger shift in energy. To use
this effect to create a trapping potential, a spatially dependent intensity is used, specifically in the form
of a Gaussian laser beam. A Gaussian beam propagating in the ẑ direction has the intensity profile:

I(x; y ; z) =
2P

�w2(z)
exp(

�2(x2 + y2)
w2(z)

) (3.29)

Where P in the power in the beam and w is the waist of the beam (the beam radius orthogonal to the
propagation direction):

w(z) = w0

√
1 +

z2

z2r
(3.30)

Where w0 is the beam waist (the 1/e radius of the beam at focus) and the Rayleigh range
zr = �w0=� is the measure of the distance along the beam propagation direction in which the radius
increases to

p
2w0. In the limit for a far detuned laser beam, the energy shift from the a.c. Stark shift

takes the form:

V =
~�2I

8�Isat
(3.31)

When the detuning is positive (� > 0) the presence of the laser beam causes a positive gain in energy
that repels the atoms (sometimes used on purpose to blow holes through condensates [41]). In the
case of negative detuning (� < 0), the potential becomes attractive, and the atoms will seek locations
of high intensity. For a laser beam with a tight focus placed by the atoms, they will feel a confining
potential at the location of minimum beam waist (highest intensity).

For a laser beam with a Gaussian profile (Equation 3.31), the trapping potential can be calculated
as:

V =
~�2

8�Isat

2P

�w2(z)
exp(

�2(x2 + y2)
w2(z)

) (3.32)

If we approximate the potential as a harmonic oscillator, i.e. take a series expansion, we find a potential
of the form:
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V (x; y ; z) =
1

2
m(!xx

2 + !yy
2 + !zz

2) (3.33)

!2x =
4V0

mw2
0

!2y =
4V0

mw2
0

!2z =
2V0

mz2R

Where V0 is the depth of the trap, and !i are the characteristic trapping frequencies in each
Cartesian direction. A single laser beam provides a tight radial confinement potential. The Rayleigh
range of the focused beam is typically much larger then the beam waist therefore the axial confinement
will be small by comparison. To provide tight confinement along both directions, a pair of optical dipole
trapping beams can be used to form what is known as a crossed dipole trap. In this scheme, two trapping
beams are intersected at the atoms (typically at 90 degrees) such that there is tight confinement along
all three axes of the trap. The trapping potential of the two potentials are superimposed together
in space. The geometry of the crossed dipole trap can be experimentally adjusted by shaping each
of the two beams via optical elements, or altering the ratio of power between the two beams. In
our experiment, we have altered the optical dipole trap geometry to give both quasi one dimensional
trapping potentials (Figure 5.3) and cylindrically symmetric traps (Chapter 7).

3.5 Measurement of Cold Atoms

The most critical portion of any experiment is the measurement. The goal of most experiments is to
apply a controlled evolution of the system and measure the effects upon the atomic ensemble. In order
to retrieve the information in the ensemble, we as the experimenters need a method to probe and
measure the state of the system. With ultracold atomic systems, most measurement techniques involve
capturing an image of a laser beam that has passed through the atoms. The workhorse method of
measurement, absorption imaging, illuminates the condensate with on resonance laser light and images
the beam to extract information via the absorption behavior of the atoms. Other techniques can also be
used that focus on the dispersive properties of the atoms, including phase-contrast imaging [42], which
provides a non-destructive imaging method. During my tenure the RbLi experiment has exclusively
used absorption imaging, and as such is discussed primarily.

3.5.1 Absorption Imaging
Absorption imaging is the standard method of imaging in ultracold atomic experiments. The measure-
ment process is destructive, as the protocol involves on resonance light that provides momentum to the
atoms. This is a large limitation of the method, however from a single image we can obtain the density
profile of the atoms which allows us to calculate parameters such as temperature or momentum when
combined with time-of-flight imaging.

To describe the processes used in absorption imaging and use it as a measurement technique,
we need to understand the basic processes of atomic absorption. To model the absorption process,
we consider a laser beam with intensity I propagating along ez through a gas of atoms with density
n in a rectangular volume A � �z . The atoms themselves have an optical absorption cross section, �,
which characterizes the probability of the absorption process occurring. The fraction of the light that
is absorbed is the volume density n multiplied by the thickness of the sample �z and the effective
area of each atom: �n�z . The cross section � is frequency dependent with the functional form of



Chapter 3. Introduction to Laser Cooling and Trapping Techniques 36

Atomic Absorption and Optical Depth
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Figure 3.16: A sample of atoms with density n is intersected by a beam of cross-sectional area
A for a length �z. The absorption of light from the atoms causes an attenuation in the beam
related to n and �z given by Beer’s law.

Lorentzian centered around the atomic resonance. Therefore the rate in which the beam is attenuated
as it propagates through the atomic sample is:

dI

dz
= �n�(!)I (3.34)

Which is readily solvable to give the intensity as a function of distance through the atomic sample:

I(!; z) = I0 exp(�n�(!)z) (3.35)

Equation 3.35 is known as Beer’s law [43]. In the context of absorption imaging, we define the optical
depth of the atomic gas OD such that OD = n�(!)z . Making this substitution and rearranging
Equation 3.35:

OD = ln(
I

I0
) (3.36)

Description Symbol Value

Saturation Intensity |F=2,mF=±2> 

to |F=3,mF=±3>, σ±
Isat 1.662 mW / cm2

Peak Optical Cross-Section σ0=3λ0
2 / 2π 2.9 x 10-9 cm2

Helpful 87Rb Absorption Imaging Parameters 

Figure 3.17: Parameters used in calculating atom number from absorption imaging.
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Figure 3.18: For absorption imaging, three separate images are taken. First, the atoms are
illuminated by the probe beam and the CCD camera detects the shadow in the beam from the
atomic absorption (left, absorption image). Next an image of the beam without the atoms is
taken (center, probe image). Lastly an image of the background with no light is taken to account
for stray light hitting the camera (right, background image).

This equation is at the heart of absorption imaging. By taking an image of the resonant light passing
through the image, we obtain the information about I(x; y) (the absorption image, Figure 3.18). By
taking a second image of the probe beam with no atoms, we obtain the initial intensity of light, I0(x; y)
(the probe image, Figure 3.18). Because we do not have some sort of three-dimensional camera, the
optical depth OD represents the integration of the atomic density along the probe beam direction, that
is: ODmeas = �(!)

∫ �z

0 n(x; y ; z) dz: By knowing the value of the optical cross-section �(!), we can
directly measure the atom density. To make the numbers easier, we always use circularly polarized light
that we keep on resonance, giving a straight forward calculation of the cross section (Figure 3.17).

Experimentally, we also take a third shot in each sequence to measure the background light
incident on the camera (the background image, Figure 3.18). For this shot we disable all of the lasers,
allowing only the ambient light to be measured. We subtract this image from both the absorption and
probe images, thus our experimentally measured optical depth is:
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OD = ln(
Iabs � Ibg
Iprobe � Ibg ) (3.37)

For 87Rb we address the jF = 2; mF = �2i to jF 0 = 3; mF = �3i transitions for absorption imaging.
Because we work with the F=1 manifold when doing BEC experiments, we first use the repump laser to
transfer atoms out of the F=1 states to F=2 in a 100 �s pulse, and then image with the probe beam
for approximately 20 �s.

3.5.2 High Intensity Absorption Imaging
In the previous section, the formalism assumed the case where the intensity of light was much less than
the saturation intensity of the atomic transition (I << Isat), leading to the approximation that most of
the atoms in the sample were in the ground state. In the case of very dense atomic samples (such as
BECs), a weak probe beam incident on the atomic sample may be completely absorbed. In this case,
a ratio of the absorption imaging intensity to the solely probe beam intensity is not sufficient all light
is attenuated.

The solution at first glance is to increase the amount of power in the probe beam to the point
where the flux of photons through the atomic sample is greater than the rate in which they can be
scattered at peak density. This approach can lead to problems. First, our Beer’s law approximation
that most of the atoms in the ground state fails, and the different populations of atoms in both the
excited and ground states must be considered. Secondly, with a high intensity probe beam, the CCD
camera used for imaging can saturate. A solution to this problem is to decrease the probe pulse time.
Note that this time cannot be reduced arbitrarily. There is a lower limit on the system given by the
linewidth of the transition being used for absorption - the atoms have to at least have time to scatter
photons!

To avoid approximations of low power, we need to consider a modified Beer’s law where atoms
can be in either the ground or excited states (see Reference [44] for a wonderful description):

dI

dz
= �n �0

��
1

1 + I=(Isat��)
I = �n�(I; !)I (3.38)

Where � is an empirically determined value that accounts for polarization impurities and corrections to
the two-level atom model. Solving this differential equation for the optical depth yields:

OD(x; y) = �0

∫
n(x; y ; z) dz (3.39)

= ��� ln( Iabs � Ibg
Iprobe � Ibg ) +

Iprobe � Iabs � Ibg
Isat

(3.40)

The result is an extra term that includes a direct subtraction of the probe and absorption images, instead
of just a ratio. This process can introduce noise into the images due to the linear term, however at
large optical depths, such as those in BECs, we can recover the atom density correctly. Reference [44]
describes a calibration procedure for �� and Isat.
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The RbLi Experimental Apparatus

4.1 The RbLi Apparatus

The RbLi experimental apparatus was constructed to facilitate the laser cooling and trapping of both
87Rb and 6Li (Figure 4.1). The design contains a traditional (tried and true) Zeeman slower atomic
source combined with a magneto-optical cooling and trapping stage. For the experimental geometry
used throughout this chapter, I define x̂ to be along the Zeeman slower axis, with +x̂ defining the
vector from the experimental cell towards the atomic source. Similarly ŷ is the direction orthogonal to
the x̂ direction and +ẑ is the direction opposite of gravity.

4.1.1 Experimental Layout
The science within the RbLi apparatus takes place within a glass cell under ultra-high vacuum. To
create an atomic source a pair of ovens, loaded with Rubidium and Lithium, are heated to create an
atomic vapor of each element. The hot atomic vapor is collimated through an aperture and enters the
Zeeman slower. The Zeeman slower, using a slowing beam and a solenoidal current wrapped around the
slower, is able to cool the atomic beam to within the capture velocity of the MOT at the experimental
cell. For the MOT, six cooling and repump beams, following paths along �x̂ � ŷ and �ẑ overlap at
the center of the experimental cell. Above and below the experimental cell are a pair of anti-Helmholtz
coils that provide a magnetic field gradient used for creating the MOT, magnetic trapping and generic
magnetic field gradient creation. Figures 4.5 and Figure 4.45 show the XY and XZ layouts of the system
respectively.

On the +ŷ side of the experimental optics is the arrangement for the optical dipole trapping
laser. The dipole provides the trapping potential for confining atoms when at degeneracy. The dipole
beams propagate along the x̂ � ŷ and �x̂ + ŷ directions, however slightly rotated within the xy plane
so as to dodge the MOT optics. The entire system is enclosed by a box of 1/4” black plexiglass.
This enclosure helps to keep out stray light, keep temperatures stable, but most importantly, provide a
barrier of safety between the lab and the high power laser for optical dipole trapping.

39



Chapter 4. The RbLi Experimental Apparatus 40

RbLi Experimental Apparatus

Glass Cell

Zeeman Slower

Oven

UHV System

Lab Coordinates:

Slower Beam 

Window

Figure 4.1: The RbLi Experimental Apparatus, prior to installation of cooling and trapping
optics. An atomic oven is connected to the experimental glass cell via a Zeeman slower.

4.1.2 Oven Vacuum System
The RbLi apparatus has a dual species oven chamber design. The Rubidium and Lithium ovens come
into the apparatus in series. As the Rubidium is heated up in the rear chamber, it flows through narrow
and slightly angled nozzle port into the Lithium oven, which also serves as a mixing chamber for both
species.

The Rubidium and Lithium reservoirs and nozzles are wrapped in heater tape. To generate a
large enough vapor pressure to create an atomic beam of Rubidium to load our MOT, the Rubidium
and Lithium ovens need to be heated to 120 �C and 160 �C respectively. The nozzles are also heated
to prevent buildup from occurring in the narrow passages. The Rubidium nozzle is heated to 400 �C,
while the Lithium nozzle is kept at 240 �C. The Lithium setup is kept warm, but because we are not
actively doing experiments involving Lithium, we keep the oven quite cool compared to the temperature
require to make a Lithium atomic beam (�350 - 400 �C). The entire region of reservoirs and nozzles is
wrapped in aluminum foil to better insulate and spread the heat. Each region is separately temperature
stabilized by using heater tape, an individual thermocouple, and an Omega CNI 3233 temperature
controller unit to regulate each region. The controllers each drive an Omega high voltage solid state
relay that connects power from an AC power source, that we controller with variable transformer units,
to the heater tape.

Both species then travel out of the heated oven units into a main chamber that contains a cold
cup and an oven shutter. The cold cup is a cylindrical copper unit that is thermo-electrically cooled,
via a copper bar connection to outside of the chamber, to approximately -30 �C. The head depositing
side a thermo-electric cooler (TEC) providing the cooling is connected to a closed loop water chiller
unit. The cold cup design helps to capture excess atomic deposition in the oven chamber instead of
damaging our ion pumps.

The portion of the atomic beam that travels past the cold cup traverses the oven shutter region.
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Figure 4.2: Schematic of dual species oven.

The oven shutter is used to block the atomic beam when not loading the MOT as the atomic beam
causes unwanted heating in the later stages of cooling our atomic clouds. The shutter is constructed
from a disassembled hard disk drive actuator arm with a metallic flag at the end. By sending this
device current, via vacuum-friendly kapton sealed wires connecting to outside of the oven chamber,
this makeshift shutter can be actuated to enable or disable the atomic beam. From the shutter the
atomic beam travels down the Zeeman slower, which acts as both a collimator for the beam and a
differential pumping stage between the oven vacuum chamber and the experimental vacuum chamber.

4.1.3 Experiment Side Vacuum System
The experimental vacuum system consists of the glass cell where we perform our BEC experiments,
as well as Titanium-sublimation (Ti-Sub) pump and ion pump units. At the end of the apparatus is a
vacuum window in which the slower beam is passed down the x̂ direction of the apparatus, all the way
back to the oven. The glass cell is 1.25” wide square diameter and 8” along the slower (x̂) axis. The
cell is made from 1/8” uncoated Pyrex glass. The cell center is the geometric center of our experiment,
and as such all electromagnetic coils, except the slower units, have their geometry fixed by design with
this point in the enter.
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Figure 4.3: RbLi Apparatus vacuum system components when being installed.

4.1.4 RbLi Experimental Cooling Sequence
Our apparatus is designed to rapidly generate 87Rb BECs that are loaded into a crossed optical dipole
trap. As absorption imaging is a destructive measurement technique, we have to generate a new
condensate per measurement. The cycle to take atoms from our experimental ovens to a trapped
condensate is described here in an overview.

First, we heat our Rubidium atomic source to 120 �C, creating a collimated atomic beam that
travels down our Zeeman slower. These atoms are slowed and captured into our MOT. In order to have
enough atoms at the condensate, after all losses, we continue the MOT loading process for 7 seconds.
We then turn off the magnetic gradient field for the MOT, and perform an optical molasses cooling
stage for a brief �15 ms. Within milliseconds after the molasses cooling stage, we optically pump the
atoms into the j1;�1i state, which are magnetically trappable. We then snap on the magnetic trap
to capture the atoms. We then compress the atomic cloud by adiabatically increasing the depth of the
trap, and then perform an RF forced evaporation stage for 3 seconds to further cool the cloud.

After the evaporation stage, we relax the trap while simultaneously transferring atoms into a
single optical dipole trap. Here we reduce the strength of the magnetic trap such that the combined
optical and magnetic trap will still confine the atoms against gravity. Next we transfer to a crossed
optical dipole trap and slowly remove any magnetic trapping. The transfer to a pure optical dipole trap
acts as a preliminary evaporation stage. To reach condensation, we further relax the optical dipole trap
by lowering the intensity in the beams, causing more evaporative cooling to take place. Once we have a
condensate, we commonly use an adiabatic rapid passage technique to prepare the BEC in a preferred
spin configuration before performing an experiment.



43 4.1. The RbLi Apparatus

RbLi Experimental Sequence
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Figure 4.4: Cooling sequence for the experiment. The process to reach BEC requires multiple
laser cooling and evaporative stages. Images show representative absorption images at the various
stages.

4.1.5 Experiment Side Optical Setups
Slower Optics

The slower optics are at the end of the apparatus, on the far side from the ovens. The optics are build
in a vertical cage mounted structure that reflects into a viewport at the end of the apparatus, down the
glass cell, Zeeman slower and into the oven. The slower repump and slower cooling light are brought
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over to the experiment and combined in fiber optics. Traditionally we have aligned the slower beam
by viewing the oven with an infrared camera, and adjusting the alignment and focusing until we see
maximal florescence.

MOT Optics

The experiment has a set of six MOT beams that intersect at right angles at the center of the glass
cell. Both the MOT cooling and repump light are combined in fiber optics from the laser boards, then
multiplexed into 6 separate fiber lines. Each of these fiber lines terminates at a fiber launch on the
experiment side. Each of these launches are identical in construction. Primarily the units consist of
fiber collimation optics, a telescope to enlarge the MOT beams to approximately one inch in diameter,
and a �=4 waveplate to create the circular polarization necessary for the MOT. The light from each
MOT fiber launch is reflected via gold mirrors1 and through a two mirror periscope consisting of two
elliptical one inch gold mirrors. The light then crosses the glass cell.

1Gold mirrors help preserve the circular polarization of the beams
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Originally the last gold mirror on the telescope was connected to a flipper mirror unit, so when
the MOT stage was complete, the large mirrors could be rotated out of the way, allowing more optical
access for later experimental stages. However in the early years of the experiment, these flipper mirrors
repeatedly malfunctioned (both slowly with the motors in the units dying and instantly where springs
popped off the mount onto the floor), ruining our MOT alignment. After the nth time of repairing
these units, we switched the MOT periscopes in plane with the glass cell with static mirror mounts,
and we have had no issues since. However the price we pay is now we have all other optical beams
coming in at non 45 degree angles to dodge the MOT mirrors. Summary to anyone who reads this: do
not use flipper mirrors in new designs.

To align these beams, we used optical cage assembly that could be attached to our quadrupole
coil holders above and below the glass cell. The connection points for the optomechanics and the coil
holders ensured 90 degree intersections. Using cage based alignment tools, we can, with great effort,
get all the MOT beams orthogonal.

Optical Dipole Trap Optics

The optical dipole trap optics intersect the glass cell and atoms at nearly the same x̂� ŷ trajectory as
the MOT beams. However, because of issues with the MOT mirrors and geometry (see last section),
the optical dipole traps beams were rotated slightly in plane from the more natural x̂ � ŷ geometry.
The optical dipole beams, unlike other systems, are not brought to the experiment side via fibers, but
in free space optics adjacent to the main experimental optics (Figure 4.23). The tight and crossing
beams originate from the +ŷ side of the experiment. Both beams have telescope systems to reshape
the beam geometry before a final lens near the glass cell that focuses the dipole beam at the atoms.
Current, and for most of the work we have done, the lens systems produce a 67 �m waist for the tight
beam, and a 300 �m waist for the crossing beam at the atoms.

Because of the intense amount of light involved, the ODT beams after propagating through the
atoms need to be reflected into high power beam dumps to avoid burning through any nearby objects,
wires or surfaces. In the later stages of the experiment (circa Spring 2015), the Raman beams were
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overlapped with the ODT beam optical path via dichroic mirrors, making alignment of both systems
more straight forward.

Raman Optics

The Raman beams are used in our synthetic gauge field and spin-orbit coupling experiments. On the
experiment side they are ported in from fiber lines into specialized fiber launches. We use a 7.5mm
aspheric lens to collimate the beam, followed by a Glan-Taylor polarizer as the exact polarization
matters with the Raman coupling scheme. The light then traverses a pickoff into a power detector that
is used for intensity stability. The light then goes through both a �=4 and �=2 waveplate to give full
polarization control. Lastly the light is focused down at the atoms with a 1000 mm lens at the end
of the launch. All three beams propagate with the ODT beam lines via dichroic mirrors added to the
system. When setting the polarization, the measurement with the polarimeter is done after the glass
cell itself instead of after the launch, given the polarization distortion effects from dielectric mirrors.

Picomotor Mirrors

The Picomotor mirrors from New Focus Optics are computerized stepper mirrors whose deflection angle
can be electronically incremented on the order of mircoradians. Given the precision down to microns
we need to align critical beams, such as the ODT beams or the Raman beams, this form of alignment
vastly reduces alignment time and increases day-to-day stability of the system. Currently all of the
Raman beam lines have a Picomotor mirror on the last tunable mirror before the atoms. The crossing
ODT beam also has a Picomotor mirror for ease of alignment. The tight direction ODT beam will be
upgraded as well, however as of writing it currently is aligned well, and we wait for a better opportunity
to switch out the optics.

Vertical Optics

The optics on the upper and lower tiers of the experiment primarily are for the vertical MOT beams
and our XY imaging system. A side on view showing the verical optics systems is shown in Figure 4.46.
To combine the vertical probe path and vertical MOT beams, we used a pair of flipper mirrors that
can rotate out of the way. We shine the MOT beams on these mirrors, and rotate them out after the
MOT stage.

4.1.6 Ultraviolet LEDs and Preventing Lithium Buildup
In the original design of the system, both Rubidium and Lithium were going to be present within the
vacuum system. More importantly, Lithium was going to be heated out of the oven and shot down
the Zeeman slower into the ultra high vacuum region of the apparatus. Lithium is problematic in a
vacuum system as it can be absorbed into glass, reducing (or blocking) the transmission of laser light.
The thesis from Claudiu Stan at MIT (reference [45], section 2.2.4) covers the woes of Lithium quite
well. The end solution to avoid absorption of Lithium was to heat the windows to prevent the Lithium
from sticking onto the windows.

Given our apparatus design, we decided to forgo a heated window system and instead were going
to use an array of UV light sources to prevent the Lithium from sticking. The mechanism, light-induced
atomic desorption, is related to the physics of the photoelectric effect. An incoming photon can be
absorbed by an atom on a surface, gaining the kinetic energy to eject from the surface. This method
has been used previously to increase vapor pressures enough to load MOTs from background atoms [46].

The design I made uses a set of 3W UV LED spotlight units from Mightex. Two of these units
are placed at the end of the apparatus, aimed at the vacuum window where the slower beam enters.
Another unit is placed by the glass cell, and another placed to illuminate the oven window. These units
can be toggled on and off with a digital TTL signal (DO2-12) so the LEDs can be turned on in between
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cycles, or overnight2. Although we do not plan to run Lithium in the near future, the LEDs can also
prevent any Rubidium from depositing within the vacuum system as well.

4.2 Computer Control Systems

For modern ultracold atomic physics experiments, precise timing and control of experimental
parameters is of extreme importance. In order to go from a hot jet of thermal atoms out of an oven
to a nanokelvin cooled BEC, there are many parameters in the systems, such as laser frequencies
and intensities, currents in electromagnetic coils, and radio frequency fields that are parameterized at
exactly the right moment (down to microseconds precision) in order to effectively capture and cool the
atoms down to degeneracy. In order to coordinate the myriad of electronic components and instruments
through out the lab that are required to reach our experimental goals, we use a computer control system
that marshals all of the other instruments via analog and digital signaling. Our lab utilizes two separate
computers in order to control and monitor the experiment, the ‘Control’ and ‘Imaging’ computers.

4.2.1 Control System
The control computer is tasked with sending the correct signals to all of the various instruments
throughout the experiment. The control computer utilizes National Instrument’s LabView software
and the ‘SetList’ custom code widely used (in one version or another) throughout the JQI ultracold
atom physics groups. This code is the front end for the user/experimentalist to input the sequence of
commands that can be then translated as signals sent to various instruments in the lab.

2a practice that should be enforced more

Digital Lines / Devices

Sequence Flow

Columns: Individual Channels (Analog 

Values)

Figure 4.7: Computer control program example. Rows in the program represent steps within
the cycle, and columns represent digital 5V signal toggling or analog voltages sent to laboratory
equipment.
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The software acts as very large linear state machine that increments in steps through a predefined
cycle that is programmed by the user. At each stage, each variable (whether it be a signal that sets a
certain amount of current in a coil to produce a given magnetic field, or the frequency of an AOM) is
updated as output by the system. To translate the computer commands to electronic signals that the
experimental hardware can interface with, we have deployed 6 National Instruments USB-6229 Analog-
Digital conversion adapters. These devices are tasked with three purposes. First, outputting both digital
TTL signals used for precise timing of state toggling of devices, like optical shutters, flipping mirrors or
RF switches. Second, the USB-6229 devices output analog signals to control experimental equipment
such as electromagnetic current control or laser beam intensity, both variable and continuous values.
The analog output channels allow us to command voltages of �10 V to the various instruments in the
lab with approximately 2:5 �s updates. Lastly, these devices also allow for data acquisition on analog
to digital lines which we have used to record analog waveforms within the experiment. The NI devices
are also electrically isolated from the control computers via fiber optic USB extenders and hubs. The
goal of this setup was to effectively isolate the ground on each device and prevent electrical ground
loops (which act as antennas and pick up noise on a wire) from being formed on our signal lines.

The NI devices we use cannot drive large electrical loads on the analog outputs, such as 50 ohm
terminated inputs found in many instruments using BNC cabling. In many cases, these signals are fed
through a buffering circuit based around the Texas Instruments BUF-634P amplifier IC. This IC has a
high response bandwidth (�30 MHz) and is able to drive large amounts of current with wide voltage
rails, much more than the NI devices themselves can provide.

Our experiment also deploys a set of three Novatech 409B direct-digital synthesizer (DDS)
modules to generate frequency precise RF waveforms. These devices provide stable frequency sources
used in our RF coil when addressing atomic samples and for AOMs used in the lab. The frequency
accuracy and stability of these devices, order Hz out of MHz as measured against a Rubidium atomic
clock, allows for a high degree of control when targeting atomic resonances within our system.

In order to properly time all these state/signal updates, at the core of the experiment lies
a Spin Core PulseBlaster USB TTL pulse generator, a programmable digital pulse generator. This
device is programmed to send out update pulses to all other sequenced devices to synchronize all cycle
steps between devices. The computer staging software downloads a series of pulses on this device
that correspond to when various devices in the lab need to update an output signal. To do so, the
PulseBlaster device sends a TTL trigger signal to NI-6229 AO/AI devices or Novatech 409B devices
signaling to output the next value in the sequence on each channel. In the end, these devices translate
the bulk of information between the experimental staging on the computer and the instruments required
to do the experiment. Any other information is either hand coded, in the case of programmable stepper
mirrors, or through grad student coding (i.e. turning a knob).

To prevent ground loops across the lab, we electrically isolate the computer systems from the
devices in the lab. We use a set of USB to optical fiber adapters to break ground between the
computers and the rack mounted equipment. At the equipment side, the optical fiber terminates into
a USB hub unit, allowing us to connect instrumentation to the USB bus remotely. Recently we have
also begun deploying devices, such as cameras, over Gigabit Ethernet connections, as the connection
are transformer isolated.

4.2.2 Acquisition System
The data acquisition computer is used within the experiment to collect images from the CCD cameras
within the experiment and to record any analog signals captured during a run of the experiment (the
CCD camera systems we use are further described in Section 4.5). The cameras are connected to the
imaging computer via an optically isolated FireWire connection or via a Gigabit Ethernet connection.
This computer similarly uses LabView code to communicate with the control computer and the CCD
cameras so that it captures and downloads the images at the correct time wthin the experimental
cycle. The acquisition computer, after capturing the images, saves the images in a RAW format to
the hard disk for later analysis, and/or passes the RAW info to our custom image analysis written
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Device 1 Device 2 Device 3 Device 4 Device 5 Device 6
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Figure 4.8: Mapping of the analog and digital signals from the computer control software to
the laboratory equipment.

the Wavemetrics Igor data analysis program. The custom program provides, in real time after each
shot, the calculation of the optical depth from each image, and along with the calibration of OD and
magnification, uses the calculations from Chapter 2 and 3 to determine the various parameters of the
atomic cloud in real time, such as: the atom number, temperature, optical depth, and relative position.

4.3 Laser Systems

We have a few main laser systems in the RbLi experiment. For laser cooling, we have separate cooling
and repump lasers that are � 6:8 GHz apart in frequency. To frequency stabilize these lasers, we have
a separate master laser and saturated absorption spectroscopy setup that provides a reference to the
other Rubidium laser cooling lasers. For creating an optical dipole trap for the condensate, we have a
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Figure 4.9: Mapping of other devices in the lab from the computer control software.

high power (30W) 1064 nm fiber laser. We also have a laser system to create optical Raman coupling
in our experiment, as well as a lithium laser cooling setup.

All of the laser systems in the RbLi experiment (with the exception of the high power optical
dipole trap laser) are on separate optical tables from the main experiment. All light is ported over in
polarization maintaining fibers to the experimental optics. This design allows for independence between
the alignment of the laser boards and the alignment of the experiment side optics. Each laser is also
kept on its own optical breadboard, allowing the laser unit to be transported easily if needed.

4.3.1 Rubidium Laser Cooling Scheme
For laser cooling and trapping Rubidium, we used three separate laser systems: one to address the
F = 2 to F 0 = 3 cooling transitions; one to repump atoms from the F = 1 ground state; and one that
provides a reference frequency lock to a saturated absorption spectroscopy cell. We conveniently name
these laser systems the cooling, repump, and master lasers respectively.
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Figure 4.10: The hyperfine structure of Rubidium. Colored lines indicated the set frequencies
of the cooling lasers.

In the RbLi experiment, both the cooling and repump lasers for Rubidium are beat-note locked
to the master laser which itself is frequency stabilized, via saturation absorption spectroscopy, to the
F = 3 to F 0 = 3 and F = 3 to F 0 = 4 cross over transition in the P3=2 state of 85Rb. Light from
the master laser, cooling laser and repump laser is injected into optical fibers and combined in a Font
Canada 4x4 fiber combiner and multiplexer. One port of the fiber multiplexer is tapped off to a EOT
GaAs ET-4000AF high speed amplified photodiode. The photodiode has a frequency bandwidth up
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Figure 4.11: Relative locking frequencies between the Rubidium cooling lasers. All units in MHz.

to 9 GHz, thus is able to resolve a range of frequencies spanning between the 87Rb F = 1 to F = 2

6:8 GHz hyperfine splitting. All three frequencies combined onto the single photodiode creates multiple
beat frequencies at the differences between the three lasers.

To use this to beat-note lock the lasers, we high pass filter the photodiode signal to get a
beat note between the master laser and repump. Similarly we low pass filter the photodiode signal
to get the beat note between the master and cooling laser. To generate an error signal for both
the repump and cooling lasers, we use a PLL device to first frequency divide the beat-note signal
from microwave frequencies to RF frequencies, then we use a frequency comparator that compares the
frequency between the particular beat note signal and a DDS generated target frequency. The frequency
comparator outputs a positive 5 Volt signal when the laser frequency is too high, and 0 Volts when the
frequency is too low. This signal, while not perfectly continuous, is used as an error signal fed into a
PID controller.

Both the cooling laser and repump laser use the PLL generated error signal to frequency lock
via a Precision Photonics LB1005 PI controller (Figure 4.13). We use the error offset feature on the
PI controllers to set the error signal to +2.5 Volt signal when the laser frequency is too high, and -2.5
Volts when the frequency is too low. The controller outputs a correction signal to feed back to the
frequency of the laser. We take it and both high pass and low pass the signal into two signals. The low
frequency signal is connected to the laser cavity piezo, which has a response time on the order of kHz.
The high frequency signal is used to modulate the laser diode current. This modulation is connected
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Figure 4.13: Frequency locking electronics configuration for the Cooling and Repump lasers

to the DC current port on the DL Pro laser unit. For optimal performance, it is important to tune the
PI controller gain and frequency cutoff, as well as the current feed forward gain on the piezo command
(see Toptica Dl Pro manual) to extend the mode-hop free range of the laser.

4.3.2 Rubidium Master Laser
The Rubidium master laser system for the RbLi experiment was built to provide a stable frequency
reference for the other laser cooling systems. The system consists of a New Focus Vortex II TLB-6900
extended cavity diode laser used for frequency locking via a saturated spectroscopy setup. The light
from the master laser is passed through a pick-off plate to generate the pump and probe beams. The
pump beam is then passed through a �=2 waveplate and a polarizing beam cube, with the waveplate to
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Figure 4.14: Layout of the Rubidium master laser optics for saturated absorption spectroscopy.

control the ratio of light that is reflected or passed through the cube. The light that is passed through
the cube is fiber coupled into the beat note locking system. Light that is reflected through the cube
is passed through an AOM at 82 MHz and �=4 waveplate, then is retro-reflected. The modified pump
beam is then passed counter-propagating with the probe beam through a Rubidium vapor cell that has
been magnetically shielded. The two beams have a frequency difference of twice that of the AOM drive,
which addresses atoms moving at a specific velocity, via the Doppler shift. The probe beam is then
passed onto a photodiode, which measures the absorption of the light by the Rubidium atoms, giving
our frequency reference.

To lock the frequency of the master laser, we use an FPGA based lock-in amplifier and PID
controller combination. The FPGA system generates a � 100 kHz, 2Vpk�pk sine wave that is coupled
into the frequency modulation port of the AOM driver. The small oscillations in frequency cause an
amplitude modulation, at the same � 100 kHz frequency, in the absorption / probe signal.

The absorption signal from the home-built amplified photodiode is sent into the FPGA based
lock-in amplifier. The lock-in amplifier digitally multiplies the reference signal versus the photodiode
signal to extract the amplitude and phase of the signal at the modulation frequency. The amplitude of
the signal is a measure of the slope / derivative of the absorption spectrum at a given center frequency
(Figure 4.15). The phase of the signal extracted by the lock-in amplifier reports if the absorption
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Figure 4.15: Frequency modulation of the absorption signal and the resulting modulation on the
probe signal at the photodiode. The phase and amplitude of the probe oscillation with respect
to the original frequency modulation at the AOM gives the derivative of the absorption signal.

modulation signal is in phase (indicating a positive derivative) or out of phase (a negative derivative).
By modulating the signal while scanning the center frequency across an atomic absorption feature,
the lock-in amplifier will generate a derivative signal with a zero crossing at the zero-velocity atomic
absorption frequency. This zero crossing provides the error signal measurement for the PID controller.
By engaging the PID controller, the system will stabilize around the absorption feature center. By
knowing which absorption feature we have locked the laser to (in our case we lock to the F = 3 to
F 0 = 3 and F = 3 to F 0 = 4 cross over transition in the P3=2 state of 85Rb), we produce an absolute
frequency measurement and source to which we can lock other lasers to via a beat-note scheme.
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Figure 4.16: Schematic of the FPGA based frequency locking electronics for the Rubidium
master laser. The FPGA device generates the AOM frequency modulation signal, calculates the
derivative of the absorption features from the photodiode signal, and sends a correction signal
to the laser.

4.3.3 Rubidium Cooling Laser
The Rubidium Cooling Laser system is primarily designed to provide laser light for the F = 2 to F 0 = 3

cooling transitions in both the MOT and slower stages. This system also provides the resonant light
used in the absorption imaging of our atoms. The system is based on light from a Toptica DL Pro
extended cavity laser system, with a laser diode chosen to operate near 780 nm. The light from the
laser is, right after exiting the laser unit, split into two beams. The first beam goes to both the fiber
coupler used for the beat-note lock, and is also split into a pair of probe beams for the XY and XZ
absorption imaging systems.
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The rest of the light from the laser is sent into a Toptica BoosTA tapered amplifier giving
approximately 650 mW of power, out of the specified 1 W. The light out of the tapered amplifier is
broken off into subsections of double passed AOMs for the the MOT and slower cooling light. Both
of these systems used the double passed AOM configuration to allow frequency and intensity control
of the MOT and slower cooling light. Both beams are then injected into optical fibers, where they are
combined with the repump light and multiplexed on the experiment side. The cooling board also has
a transverse cooling unit that uses light from the zeroth order of the slower cooling AOM to provide
transverse cooling on the experiment side. We rarely use this line for transverse cooling, but more often
as a fiber coupled light source for diagnostics elsewhere. Figure 4.17 shows the cooling board setup in
finer detail. Settings for the Cooling laser are in Figure 4.18

Rubidium Laser System Properties

Setting Value

Cooling Laser Current 96 mA

Cooling Laser Temperature 21.9 °C

Cooling Laser Piezo 350 - Knob

BoosTA Current 1600 mA

BoosTA Output Power ~ 650 mW

Repump Laser Current 202 mA

Repump Laser Temperature 20.4 °C

Repump Laser Piezo 250 - Knob

Master Laser Current 84.6 mA

Master Laser Piezo 74 V

Figure 4.18: Parameters for the various Rubidium cooling lasers
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4.3.4 Rubidium Repump Laser
The Rubidium Repump laser is designed to provide laser light to repump atoms back into the cooling
transitions for the MOT and slower stages of the experiment. The system uses a Toptica DL Pro 100
extended cavity laser system, with a laser diode chosen to operate near 780 nm, similar to the cooling
laser. This system does not have a tapered amplifier as the diode itself generates approximately 100
mW of laser light. We pass this light through a 3:1 telescope to improve our efficiency when aligning
through AOMs and fiber injecting the light. This light is picked off via polarizing beam cubes and �=2
waveplates into a MOT repump unit, a slower repump unit, and the remaining light is fiber coupled
into the beat note lock system. The Slower repump light is put through a double passed AOM at 40
MHz, and we counter-propagate the +1 order. Similarly the MOT repump unit uses a double-passed
80 MHz AOM where we counter-propagate the -1 order of the AOM. Settings for the Repump laser
are in Figure 4.18
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Rubidium Repump Laser and Optics
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Figure 4.19: Rubidium Repump laser optical setup
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4.3.5 Lithium Saturated Absorption Spectroscopy
Before Rubidium and Lithium mixtures were abandoned, I had spent a fair amount of time designing
and assembling the Lithium saturated absorption spectroscopy oven and optics. Given the Lithium oven
and optics sit cleanly on an optical breadboard, and the Lithium light used to lock is fiber coupled in,
this board as a unit is complete and can be easily integrated into any future Lithium experiments by
picking it up and moving it. That said, the following is a description of the Lithium oven, the optical
setup and the absorption properties.

Due to the poor vapor pressure of Lithium, it needs to be heated up to a range of 350� 400 �C

to produce an optically thick vapor so that absorption can be measured. To create these conditions,
I built a stainless steel cell to house the Lithium sample when heated3. The design of the cell is
straightforward: There are two view ports that provide a laser path towards an internal steel bucket
housing the Lithium (Figure 4.20). Because Lithium wants to oxidize, the cell is pumped down to
vacuum, and the view ports are a large distance away from the Lithium housing to help prevent any
‘caking on’ of the Lithium. To further protect the view ports from being contaminated with Lithium,

3The cell design credit goes to Subhadeep De and Ian Spielman

Viewport

Viewport

Li 

Containment

Figure 4.20: Top: Lithium saturated absorption spectroscopy cell during construction. Bottom:
The Lithium cell in the optical setup, with heat insulation materials applied.
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Figure 4.21: Lithium saturated absorption spectroscopy optical setup

I back flowed the chamber with Argon gas to a pressure of approximately 10 mTorr. To heat the cell,
I wrapped the entire unit with heating tape in two specific sections: one to heat the cell (and Lithium
atoms) up, and another to heat the view ports, to prevent Lithium from sticking onto the windows.
The entire unit was then wrapped, excessively, with aluminum foil to insulate the heat within the cell
and to prevent large amounts of heat from reaching the nearby optics.

The saturated spectroscopy optical setup is very similar to that for Rubidium: in general a pump
and probe beam are sent counter-propagating through the Lithium vapor and a photodiode captures
the absorption signal (Figure 4.21). In this setup, the light from the (now defunct) Lithium laser system
is fiber coupled onto the board. This light proceeds through a simple beam splitter to create the pump
and probe beams. A �=2 waveplate before the beam splitter helps to adjust the ratio of power between
the two beams. The pump is double passed through an 80 MHz AOM, then retro-reflected against
the probe beam in the Lithium vapor cell. The probe is aligned onto a photodiode to measure the
absorption.

In this setup, I used isotropically enriched 6Li in the vapor cell, as this is also what is loaded
into the main apparatus. With the saturated absorption optics in place, we measured the absorption
signal from the atoms at the 6Li D1 line and were able to measure the 228 MHz hyperfine splitting in
the ground state of Lithium. This setup was also used to determine the amount of Argon buffer gas
to place in the cell. I allowed the Argon to flow until I begun to measure pressure broadening of the
hyperfine states (Figure 4.22). I found that the best temperature for the cell was at about 380 �C as
it gave the best contrast in the absorption features before saturating.
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Figure 4.22: Measured absorption signal from the 6Li D1 transition using the Lithium cell

4.3.6 Optical Dipole Trap Laser
Our optical dipole trapping laser system uses a 30 W IPG Photonics 1064 nm fiber laser. While the unit
can provide 30 W we only set the laser to 11 W normally, with the extra trapping power initially planned
for including Lithium into the design. The light from the laser head is highly Gaussian, making optical
systems more manageable. The light from the laser is passed through a 4:1 telescope, decreasing the
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Figure 4.23: Optical dipole trap fiber laser optical setup.
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beam waist to 0.5 millimeters. The light then passes through a 80 MHz AOM used to control the
intensity of the beam. The zeroth order of the beam is deflected into a beam dump. The first order
out of the AOM is propagated further to a pickoff, where a small sample of light is targeted onto
an InGaAs photodiode unit. We previously used a common Si photodiode for this purpose, but we
begun having large intensity stabilization issues owing to the Si photodiode having both poor response
at 1064 nm and temperature drifts as well. With a more stable detection system, we use this signal
with a PID controller to feed back to the amplitude of the power AOM RF signal, hence controlling
the laser intensity. This intensity controlled beam is passed through a second AOM, which generates
two separate beams for our crossed optical dipole trap: a tight primary beam (1st order), and the
crossing beam (0th order). These beams are reflected towards the experimental optics setup in Figure
4.5. A shutter that has a mirror attached to it is placed in line with both beams. When the shutter is
powered down (its default state), the two trapping beams are deflected into a beam dump. This setup
was originally fiber coupled to the experiment like all other laser systems, however after burning out
multiple fibers on accident, we decided to put this laser on the experimental optics table. Post-fibers
exploding, we have purchased new fibers with high power connectors and internal design. We have not
implemented this because: 1) If it ain’t broke don’t fix it 2) The lab will move soon anyway, let us do
it then.

4.3.7 Raman Coupling Laser System
The Raman laser system is used within our research to generate synthetic gauge fields and spin-orbit
coupling in our condensates. This laser system provides the means to do the experiments in both
Chapters 7 and 8. The diagram in Figure 4.24 shows the setup for our Raman laser system. The
alignment of these beams into the atoms at the experimental apparatus is depicted in Figure 4.5.

To get large amounts of power, this system uses a pair of tapered amplifiers, with a 1 W
capability each. Originally the seed beam from the DL Pro was passed through a 50/50 beam splitter
into both amplifiers. However, the mode out of the DL Pro was not coupling well with the TA chips.
The solution was to inject light into the TAs in serial, one TA seeding a second. In between the two
TAs we placed an optical fiber connection. On the output port of the fiber, the mode is very Gaussian,
allowing for great coupling to the second TA.

Because we use one tapered amplifier to seed another, there is the obvious failure mode of too
much power being passed from the first to the second, causing a broken second amplifier. To prevent
this, we have placed a power monitor at the output of the fiber from the first TA to the second. This
value is monitored by an interlock system implemented on a microcontroller. If it detects too little
power (the TA chips need minimum power), or too much power, it will send an interlock signal to both
of the TA power supplies.

When initially using this system, we found that the amplified spontaneous emission (ASE) light
from the TAs was large enough in intensity that it heated up our BECs. To solve this we put a Semrock
laser line filter after the amplifiers, and adjust their incident angle with the laser beam until we maximize
power.
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Figure 4.25: Custom tapered amplifiers constructed for the Raman laser system. A TA chip is
mounted into a custom machined piece of copper which is thermally regulated.

The tapered amplifiers are designed and constructed in house. The design uses a small TA chip
(which we have gotten from both vendors Eagle Yard and M2) that is mounted into a custom milled
copper plate to house it. The copper plate is thermo-electrically cooled to regulate the temperature
of the TA chip. Light being injected into the TA passes through a short focal length lens mounted in
a full XYZ translator so that the alignment can be fine adjusted. On the output of the TA there is a
cylindrical lens to account for the asymmetric divergences of the elliptical beam. The entire system is
mounted into a ThorLabs optics cage assembly in order to put the optics on axis with one another.

To generate the double frequency beam in our spin-1 spin orbit coupling experiment (Chapter 7),
the light on the Raman 3 beam line can be diverted, by a �=2 and polarizing beam cube combination,
to a path that combines with the Raman 2 beam line via polarization optics. In this scheme, the Raman
2 and 3 beams are combined on a beam cube with orthogonal polarizations. Another polarizing beam
cube then acts as a polarizer, combining the two frequencies, but rejecting half the power. We originally
generated the two Raman frequencies on a single AOM via combing two RF signals prior to the AOM,
however there were unwanted higher harmonics and beat tones that introduced noise and heating into
our Raman experiments and measurements. We forwent this method, and went with what we knew
had no noise issues.

All of the AOMs on this board are controlled via RF electronics that we designed and built,
versus the commercial drivers on the laser cooling systems. The schematic of the system for each
AOM is effectively the same as our RF antenna for interacting with the atoms (Figure 4.37), except
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Figure 4.26: Measuring the oscillation of spin population after pulsing on the Raman coupling.
The form of the oscillations can be fit to the Raman Hamiltonian (Section 6.1.3) to give a
calibration of the coupling strength.

the AOMs only require a 2 W amplifier. In this method, we use a Novatech 409B to precisely set the
frequencies of the Raman AOMs. This digital precision of the frequencies is what allowed us to perform
the first-order transition measurements down to Hertz in width in our spin-1 experiment (Chapter 7).

Power Calibrations

To calibrate the power of the Raman coupling, we first find RF resonance in the system via an RF field
and a biasing magnetic field. Next we pulse on the Raman beams (with frequency difference equal
to that of the RF frequency) for a variable amount of time (typically order tens of microseconds) and
measure the population fraction. By measuring the fraction in the f = 1 state as a function of time, it
becomes straight forward to use the governing physics in Equation 6.9 to extract the coupling strength

R.

By doing this measurement while recording the Raman beam intensity at the experiment side
via photodiodes (Figure 4.5) we can calibrate the power in the beams to the photodiode signal and to
the Raman coupling strength. Given a daily calibration of the photodiode measurement to the coupling
strength measured from the pulsing data, we can use the photodiode signals to measure the shot-to-
shot coupling strength in the Raman beams. This calibration and photodiode measurement is also used
to implement intensity control via FPGA based PI controllers (see Appendix B). While in most cases
the photodiode signal is constant during calibration, for experiments where we have two frequencies on
a single beam (Chapter 7) the beat tone of the two frequencies arrives at the photodiode. To measure
the coupling strength, we measure the amplitude of the beat signal, and divide the amplitude by 2 (as
the photodiode records intensity, not the electric field!).

4.3.8 Laser Wavemeters
To monitor the output of the Rubidium cooling lasers (the Cooling, Repump and Master lasers), we use
both a wavelength meter to measure the absolute wavelength of each laser, as well as the mode profile
of the beams. To do this, we inject light from each system into fiber, then combine and multiplex it out
to a fiber coupled Bristol 521 wavemeter, and a Thorlabs SA200 Fabry-Perot interferometer (an optical
cavity). The wavelength meter allows us to tune each of the laser wavelengths coarsely to the desired
value used for locking. The wavemeter is traditionally used when the laser parameters have drifted such
that the locking region of the respective laser is no longer evident. Because the wavemeter receives all
three wavelengths of light over fiber, we have to block off4 all lasers except the one of interest so as to

4i.e. card in front of the fiber launches
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Figure 4.27: Light from the Cooling, Repump, and Master laser setups are fiber coupled into
a fiber multiplexer, which provides light for wavelength measurement at the wavemeter, and
observation of laser mode at the interferometer.
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Figure 4.28: Schematic of the 19” rack mounted laser profiler.

get a reliable wavelength measurement.
Similarly, we use the optical cavity to monitor the mode of each laser. For laser cooling purposes,

we require each laser to be operating in a single mode configuration, which appears on the optical cavity
output signal as a single peak. By comparison, if the laser is in a parameter regime that produces multi-



Chapter 4. The RbLi Experimental Apparatus 70

mode behavior, the wavemeter will show a forest of peaks representing all of the lasing frequencies
present. Similar to the wavemeter, to identify a single laser signal, the two other laser inputs must
be blocked off. In most operating conditions, the observation of three peaks, corresponding to three
single-mode lasers, represents correct system operation.

For the Raman and other laser systems, I built a wavemeter setup similar to that used for the
cooling setup, however I designed it to be both rack mounted and independent of target wavelength5.
To save space and make the system effectively act as a ‘black box’ that profiles the lasers, I built the
optical cavity optics into a Thorlabs RBX32 rack mounted slide out optical breadboard. The front
panels of the box has a set of four fiber inputs that are multiplexed in fiber into both the cavity and
the wavemeter. This unit provided the space inside to place the multimode fiber multiplexer units, the
free space optical cavity optics and the Bristol 521 wavemeter in a single package, freeing up space on
the optical tables.

4.4 Magnetic Field Control

Magnetic fields generated from electromagnetic coils are an important tool within the RbLi
experiment. Because 87Rb has a non zero hyperfine spin ground state (specifically F = 1), magnetic
fields break the degeneracy of the spin states of the atoms via the linear Zeeman effect. Therefore
magnetic fields are instrumental in the control of the spin degree of freedom for laser cooling or quantum
manipulation of a BEC.

4.4.1 Zeeman Slower
The Zeeman slower in our experiment connects the oven region of the apparatus to the experimental
glass cell. The slower is a 0:71 meter long stainless steel tube that the atomic beam travels down with
two coils wrapped around it: a taper coil and the biasing coil. Both coils are made from copper tubing,
allowing internal water flow to help dissipate the large amount of heat generate from ohmic losses.

The taper coil is a solenoidal electromagnet with variable coil spacing, giving a non-uniform
field profile that varies along the slower length. The spacing of the coils is designed to counteract the
decreasing Doppler shift of the slowed atoms, thereby keeping the slower laser beam on resonance for
maximum slowing efficiency. In our loading procedures, this coil runs at approximately 135 A yielding
a maximum field of 240 G at the oven side of the slower.

The bias coil is similarly a solenoidal electromagnet with uniform windings, giving a uniform field
profile down the entire slower. The uniform field is used to shift the resonance of the atoms across the
entirety of the slower. In our MOT loading procedures, this coil runs at approximately 20 A, yielding a
54 G field uniformly down the slower.

The slowing laser beam is counter propagated against the atomic beam. Both the slower light
from the cooling and repump laser systems are combined in an optical fiber combiner before being
aligned into the slower. The laser light is passed through a �=4 waveplate in order to create the circular
polarization for the slower operation.

Measuring Atomic Velocities

To measure the performance for MOT loading, we used a probe beam to measure the velocity profile
of the slowed atoms. Because the linewidth of the atomic transition is small compared to the Doppler
broaden width of the thermal atoms, measuring the frequency dependent absorption is proxy for mea-
suring the velocity itself. For 87Rb, this gives approximately 1:28 MHz=m=s. By passing a probe beam
through the atoms and measuring the absorption as a function of frequency, we reclaim the velocity
profile (Figure 4.30). To measure both the longitudinal and transverse velocities, we intersected the

5The plan was to hook up any 1064 nm lasers or unknown future lasers as well
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Figure 4.29: Top: Schematic of the Zeeman slower, including the uniformly spaced Bias coils
and the Doppler compensating Taper coil. Bottom: Measured and calculated field profiles of the
Bias and Taper coils along the slower axis.

probe and atomic beams at a 45� angle. Because of the large frequency range required for this scan
(� 500 MHz), we had to borrow fiber coupled light from another experiment with a separate laser
system, in addition to our own cooling and repump lasers. We can measure that our slower, when
optimized, can shift the velocity profile at the glass cell from 300 m/s to 50 m/s.
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Figure 4.30: Characterization of the Zeeman slower. We measure the velocity of the atoms as
a function of atomic resonance and see a large profile of slowed atoms after the slower compared
to background.

4.4.2 Quadrupole Coils
The quadrupole coils in the RbLi experiment are an anti-Helholtz coil pair mounted immediately above
and below the glass experiment cell. The coils are wound with 40 turns of square copper tubing
(allowing for water cooling) in a configuration of 8 layers of 5 turns each. The current for the coils is
provided by an Aglient 6690A power supply that operates at maximum 15V and 440A of current.

The current in the quadrupole coils is regulated by a bank of 20 MOSFETs in parallel that all
share a common gate voltage that is controlled by a PI servo. The large number of MOSFETs, along
with water cooling, allow us to run large currents with the voltage on the power supply held constant
at 15 V. Due to the low resistance of the quadrupole coils, the majority of the voltage drop, and thus
power dissipation, occurs at the MOSFETs, which creates the requirement for water cooling and large
number of parallel units to share the power load. The advantage of this configuration is that it allows
us to quickly change field values on the quadrupole as the larger available voltage helps counteract the
large inductive kickback from the coils to snap-on commands. This configuration reduced the turn on
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Figure 4.31: Geometry of the quadrupole coils. The coils are mounted in an anti-Helmholtz
configuration immediately above and below the glass experimental cell.
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Quadrupole Coils and Coil Holders Quadrupole Coils Mounting

Figure 4.32: Left: Construction of the quadrupole coils from copper tubing. Right: Installation
of the coils into the apparatus.

time of the coils from approximately 100 ms to 5 ms, allowing for much more repeatable Stern-Gerlach
spin separation pulses, or magnetic trap turn ons.

However, because of the high inductive voltages generated during a quick snap on of current, a
variety of elements were put in parallel with the MOSFET bank to prevent reverse currents that can
cause the MOSFETs to: pop, catch fire, silently stop working and destabilize your system. To combat
these problems we put a set of varistors in parallel to prevent large voltages from building up. Because
these varistors still failed under various conditions, causing failed MOSFETs, we placed a set of diodes
to allow current from source to drain so that reverse currents could bypass the MOSFETs. Through trial
and error we found that having diodes rated for different situations put together in parallel, i.e. rapidly
responding diodes with low current rating plus large current diodes with a slow response, provided a
sufficient amount of protection.

The strength of the gradient was measured using the position of condensates after time of flight
imaging. The condensates were prepared in pure mF = �1 states. The current was ramped to a

MOSFET Bank Assembly

MOSFETs and cooling plate MOSFETs and copper bar 

drain / source connections

Gate

Drain

Source

Source

IXFN 520N075T2

MOSFET

Figure 4.33: Quadrupole MOSFET bank used for current regulation. Due to the high currents
and heat dissipation involved, the bank consists of 20 MOSFETs on a water cooled plate. This
allows for both high and low currents at a constant power supply voltage.
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variable value with a biasing field along one of the principal axes of the experiment, allowed time to
relax, and the condensate was released for time-of-flight with the current still constant. By watching
the position of the condensate as a function of quadrupole current, we can measure the acceleration,
thus force and magnetic field gradient, due to the coils. By repeating this in all directions, with both
mF = �1 condensates (which will feel equal magnitude and opposite direction forces), we can calibrate
the magnetic field gradient from the coils in all directions. We find that the coils have, in 87Rb centric
units, 200 Hz= �m in the vertical direction and 100 Hz= �m in plane, matching the 2:1 geometry of
the anti-Helmholtz coils.

4.4.3 Bias Coils
The bias coils in the RbLi experiment are used to generate uniform magnetic fields across the atomic
cloud (Figure 4.34). There are three sets of Helmholtz aligned coil pairs, each set along one of the
principal axes of the experiment. The coils are created from 15 turns of 16-gauge magnet wire. All
coils are driven on independent Kepco BOP �20 A power supply units with hall probe based PID servo
electronics that give a precision (not accuracy) of approximately 100�A control over the �20 A output
range.

The X and Y coils are mounted on rectangular aluminum structures that are parallel to the glass
cell. The Z coil pair is mounted on top of the quadrupole coils, and are the closest coil pair and produce
the largest magnetic field per Ampere. As such, the Z bias coils are the primary biasing coils used in
experiments that require high (+10 MHz) biasing fields. The Y coil is used as the primary biasing coil
where the field must be in plane. The X coil, owing to its distance from the atoms and weak field
strength, is exclusively used to cancel background magnetic fields.

Each of the coils is calibrated in field strength by performing an experiment to measure the linear
Zeeman shift generated by each of the coils at various currents. We subject the BEC to an RF field
that we adjust to find resonance with the linear Zeeman shift at a given coil current. We repeat this
measurement for various RF frequencies and current combinations to develop a proportional relationship
between the current and Zeeman shift. By knowing the gyromagnetic ratio for 87Rb ( � 0:7 MHz=G)
we can compute the magnetic field strength as a function of current. By repeating this measurement
on each coil, for both positive and negative currents, we gain information on the field strength of each
coil. This measurement process also gives the background magnetic field within the experiment. By
measuring resonance while varying the current, hence magnetic field strength, across a wide range we
find the value which minimizes the RF frequency that brings the system to resonance. In Figure 4.35,
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Figure 4.34: Geometry of the biasing coils used in the experiment to provide spatially uniform
magnetic fields along the primary experiment axes.
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Figure 4.35: Calibration of coil field strength and background field via RF spectroscopy.

this corresponds to the zero crossing of the linear fits.

4.4.4 Gradient Shim Coils
Above and below the glass cell, mounted onto the far side (from the cell) of the quadrupole coil holders,
are three sets of coils that produce magnetic field gradients. These coils, named the ‘Gradient Shim
Coils’ are arranged on top in bottom in a clover-leaf pattern, with opposing coils being in pairs. Each
set, top and bottom, has a center coil which together form a classic anti-Helmholtz coil configuration.
The other directions, XY and YX, have two coils on the top and the bottom that together form a
magnetic field gradient along the x̂ + ŷ and x̂ � ŷ respectively. The coils are placed along these axes
because they match the principal axes of the optical dipole trap. Another set of gradient shim coils
were used in our spinor domains experiment (Section 5.2.1), but have since been removed in favor of
the design here.
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Figure 4.36: Geometry of the gradient shim coils, used to cancel out background magnetic field
gradients at the atoms.
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4.4.5 RF Coil
To interact with the atoms using RF fields, with frequencies on the order of MHz, we have a set
of coils printed onto a thin PCB that is placed snuggly between the top of the glass cell and the
quadrupole coils. The multi-coil design allows us to generate linearly polarized RF fields in either the
x̂ or ẑ directions, depending on the geometry of the magnetic biasing field. We use a Novatech 409B
direct-digital synthesizer to provide a computer controlled signal generator. To control the amplitude of
the RF waveform, we can use both a digitally stored command in the Novatech, or for faster amplitude
changes we can use a RF-mixer (a mini-circuits ZAD-3+) connected to a dc voltage source. The RF
waveform amplitude can be adjusted, non-linearly, by adjusting the dc voltage that couples into it. We
also use a digital switch (a mini-circuits ZYSWA-2-50DR), under computer control via a digital line,
to enable and disable the RF signal from being propagated to the coil. The RF signal is then passed
through a 10W RF amplifier and then onto the coil. After the coil, we place a high-power attenuator
and 50 
 coupled termination onto the line to prevent reflections of the signal. To measure the coupling
strength of the RF coil, we perform an on resonance Rabi pulse and measure the fractional populations
of atoms in the spin states, and compare to theory (similar to calibrating the Raman coupling strength,
as described in Section 4.3.7). For our RF coil setup, our maximum power described as a Rabi frequency
is approximately 
RF � 2� � 35 kHz.

RF Coil Signal Path
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Coil Termination
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DO4_15

Digital Channel

Generate 
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Control 

Amplitude

Enable /

Disable
Amplify

RF Coil PCB

Figure 4.37: Top: Schematic of the RF coil signal path. Bottom: PCB printed RF coil placed
immediately above the experimental glass cell.
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4.4.6 Table Coils
The ‘Table Coils’ are two large single coils along both the Y and Z directions. These coils are used
primarily for generating a small uniform biasing field at the atoms for calibrating and deploying our
magnetic field stabilization system (see Section 4.4.7). Both are single coils, therefore they do not
make magnetic fields as uniform as the Helmholtz biasing coils. However the diameters of the table
coils (meters) compared to the condensate (microns) makes the uniform field approximation valid.

The Y table coil consists of 10 loops of magnet wire along a square 80-20 aluminum structure
enclosing the apparatus. By design of the enclosure structure, the Y table coil is close to being centered
on the atoms and glass cell. The Z table coil is 20 turns of magnet wire looped along the side of the
40 � 80 optics table.

4.4.7 Magnetic Field Stabilization
Magnetic field control in spinor condensate experiments is important as any stray field can cause an
unwanted linear Zeeman effect that can cause energy shifts larger than those characteristic to the
system. These can be slowly drifting fields throughout the day, or radiated 60 Hz line noise coming
from laboratory electronics. In 87Rb experiments in the F = 1 ground manifold, any stray fields break
the symmetry between the mF = �1 states, causing a preference that may be unwanted. In our
experiment, we have gone through extensive measures to characterize and combat these unwanted
sources of noise.

Y Table Coil Z Table Coil

Field Strength 

(mG / A)
30.73 64.3

Field Strength 

(MHz / A)
0.0215 0.045

Resistance (Ω) 1.6 11.4

Coil Windings 10 20

Table Coil Geometry

Z

Y

Figure 4.38: Geometry of the table coils. These coils are used primarily for background magnetic
field cancellation.
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Measuring Magnetic Field Stability

To measure the magnetic field noise in the system, we use RF coupling to create a combination of the
F = 1 spin states. We typically use an Adiabatic Rapid Passage scheme to take a mF = �1 BEC and
create an equal mixture of mF = 1; 0. In measurements, we go to a high enough linear Zeeman shift
such that the mF = 1 state does not become involved, thus simplifying the measurement for us. To
measure the magnetic field, we first find the command on the bias coils to create a 50/50 mixture of
the two spins. Next we let the system run, collecting information about the relative populations of the
spins as a function of time.

By knowing the power and frequency of the RF field, we can calculate the relative populations
that should be appearing as a function of detuning. If we invert the relationship, we have a function
of detuning as a function of measured population fraction. Because we have the RF field set precisely,
the detuning drift measured must be due to the magnetic field and Zeeman effect.

More empirically, we can also use a measurement of the fractional population as a function of
the magnetic field (and hence detuning) that we command on the bias coil. This also gives a similar
fractional population versus detuning dataset that can be inverted to give the shift in the field as a
function of fractional population. It is also important to note that the power of the RF field, in terms
of Rabi frequency, can broaden or narrow the resonance, giving a measurement across large or narrow
detuning ranges.

Background Stability

Using the methods described in the previous section, we can measure the field noise in our experiment.
The field noise measured in both the Y and Z directions is shown in Figure 4.40. Both directions have
approximately a milligauss shot-to-shot variability. However, the Z direction also shows a long term
drift, on the scale of an hour or so, where the field can drift by a few milligauss. This is problematic as
our typical data collection scans requires such an amount of time to perform, without time in between
to find resonance.

Flux Gate Feed Forward System

In order to improve the magnetic field environment of our system, I developed a magnetic field sta-
bilization system based on a pair of flux gate magnetic field sensors place near the experimental cell.
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Figure 4.40: Measurement of the magnetic field drift in the Y and Z experimental directions as
a function of time.

The system measures the ambient magnetic field environment, then through calibrations, feeds a signal
forward to the bias control servo to cancel the variation in the magnetic field.

The flux gate system successfully removes the slowly drifting background magnetic field in the
experiment. However, shot-to-shot noise still remains within the system that could be related to many
factors due to the method of measuring the field with the atoms. Any uncertainty in the condensate
preparation and measurement, such as the repeatability of our RF adiabatic rapid passage scheme, or
the variation in the imaging and measurement performance, could limit our ability to measure beyond
this limit.

The flux gate system, with both the DC and 60 Hz magnetic field sensing and removal mecha-
nisms, is described in detail in Appendix A.

Magnetic Fields and Lab Temperature

In many experimental systems, there is a substantial effort to keep the lab temperature stable. For
atomic physics experiments, temperature stability is necessary due to the sensitivity of laser diode mode
behavior, the alignment of optics, and the polarization stability of optical fibers. However, for those
who work with sensitive atomic resonances in the RbLi experiment, it is to be noted that magnetic
fields also depend on the lab temperature as well.

Given the slow background magnetic field drift measured in the lab, attention turned to other
possible sources of error that operate on long time scales. One possible source of field drift was due
to not the background fields necessarily, but that our electronics could have temperature dependent
effects that cause slight resistance or gain shifts. To test and see how large of an effect this is, a
set of temperature transducers, based on the precision AD590 temperature-to-current device, were
constructed6 and placed in the lab near the experimental cell and near the bias coil servo electronics.

6Credit for this project belongs to two undergraduate students under my guidance, Doug Hockey and Brendan Van
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Figure 4.41: Magnetic field drift in the Z direction without and with the flux gate correction
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Figure 4.42: Correlation between lab temperature and magnetic fields as measured by the atoms.
The measurements give an approximately 0:34 mG=V effect.

The temperature was recorded simultaneously along with atomic resonance data to make a correlation
between the two. To help get a wider range of temperatures in the lab to correlate against, the lab
thermostat, in perhaps poor judgment, was blasted with a hot air gun to cause a large influx of cold
air into the lab.

From these measurements, the trend of the correlations show there is an approximately 0:34mG=V
effect. Whether this is due to the control electronics or some other temperature dependent correlation
is still undetermined.

4.4.8 High Power Op Amp Current Sources
Given the need to reduce magnetic field noise at the atoms, as described in Section 4.4.7, another source
of noise we investigated was the Kepco bipolar power supplies we use on our bias coils. Given their
tendency to radiate 60 Hz noise, we needed an alternative high current source. Unlike the quadrupole,
and slower coils, the bias coils require a bipolar current source, therefore our MOSFET based current
stabilization schemes would not be effective.

To get a bipolar current source that we could control, we opted to build a current source based
on a bank of Apex PA05 High Power Operational Amplifiers7. These amplifiers are designed to be
standard operational amplifiers that can operate at high power voltages from �50 V at up to 30 A
output. The idea was to have very quiet DC power supplies that provide a < �50 V source with high
current capabilities that act as the power source for the PA05 op amps.

By making a standard and simple non-inverting op amp circuit with the PA05, a command
voltage at the op amp input determines the output current (for a fixed load). The circuit is designed
with two resistors that set the voltage gain across the op amp. Considering that most voltage command
signals in our lab are �10 V signals, a non-inverting gain allows voltage commands that can utilize
the full �50 V output range of the power source if needed. The circuit includes op amp bypassing
capacitors arranged for a 30 A output (330 �F, as given by the Apex application notes pages). The
circuit design also has a connection to the shutdown pin of the op amp, allowing a TTL disabling
Hook, for their project designing the temperature sensors and performing the following measurements

7Credit for this project belongs to two undergraduate students under my guidance, Smita Speer for the design of the
operational amplifier circuit and box construction, and Ben Cannon for installing the hall probe sensors within the box
and integrating it within our experiment.
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Op Amp Circuit Board

Water Cooling System

Populated Circuit In-Situ

Apex PA05 High Current Op Amp

Specifications

Voltage ± 50 V

Current 30 A

Slew Rate 100 V / μs

Bandwidth 3 MHz

Power 

Dissipation
250 W

Figure 4.43: PA05 high power op amp current supply box. The PA05 high power op amps
are mounted into custom PCBs, then mounted onto water cooled heat sink units. The entire
assembly contains cooling for four op amps.

mechanism, useful for quick snap offs or interlock operation.
The high power ability of the PA05 op amps means that the op amps themselves will dissipate

an enormous amount of heat when pushed to their maximum limits. For this reason, the op amps are
mounted into custom heat sinks, available from Apex, that fits the proprietary connectors of the PA05,
allowing the underside of the PA05 to be flush against the heat sink with the pins poking through.
During assembly, we placed thermal conductive paste between the op amp and heat sink to ensure good
thermal conduction. To go to the extreme, the heat sink itself is mounted onto water cooled plates.
However, due to the geometry of the heat sink, the op amp is at the bottom, with the fins on top. The
water cooling plates, due to these restrictions, are placed in contact with the op amp side of the heat
sinks with as much area overlap as possible. In a test where 115 W of heat were constantly dissipated
at the op amps, the unit measured a maximum temperature of only 120 �F, with effectively8 no water
cooling.

Again due to the geometry restrictions of the heat sinks, any connections to the op amp must
be made at the pins, which poke up in a flat region between the fins of the heat sink. The circuit for
controlling the current was printed onto a PCB which fit into the slot between the fins of the heat sink.
The op amp connects to a socket soldered onto the PCB (the socket, again, is a special part available

8The chiller unit running the water to the cooling plates hardly had the pressure to push water through the test coil
and the water plates
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from Apex), allowing separation between the PCB and heat sink / op amp unit.
The entire current supply box duplicates the op amp and cooling setup four times, providing

current control on the four separate op amp blocks. Each block also has a hall probe in line to measure
the current at the output of the op amp. The output of the box has a voltage input that goes to the
input pin of the op amp, a hall probe measurement voltage output, a red banana jack connector for
current out of the op amp, and a black banana jack connector that goes to ground9.

Sadly, as of writing, the noise performance of this system has not been tested as we have not
yet acquired a quiet DC power supply, and interest in the project has waned. However, the system has
been faithfully powering our gradient shim coils without incident.

4.4.9 Water Cooling for Electromagnetic Coils
In order to dissipate the heat due to ohmic losses in our high current systems, like the quadrupole coil
and Zeeman slower, we installed a water cooling system in the experiment. The major electromagnetic
coils, such as the Zeeman slower, quadrupole coils and slower biasing coils, are wound with copper
tubing10 that has cooling water flow inside. The water in these coils flows in a contained loop, with a

9The box assumes you always want to connect one side of the coil to ground
10We specifically used refrigerator tubing when possible as the standard to be clean enough for drinking water meant

these would be more free of particulates and oils
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Figure 4.44: Top: Schematic of the RbLi water cooling system. Bottom: Mapping of flow
control valves to the associated electromagnetic coil.
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chiller to cool the water and hold a reservoir, a booster pump to increase the water pressure up to 170
psi before the coils, a set of valves to control flow to individual systems, and flow meters to electronically
detect the flow of water in the experiment. The flow meters act as an interlock to the high current
systems: if the flow meters do not detect flow in the water cooling system, a set of interlock electronics
will disable the high current power supplies, thus preventing an overheating (or other) catastrophe.
Similarly, an advantage of using a closed loop water cooling system is that it has a finite amount of
water contained within in so that if any large leaks occur, the flooding can be minimized. To cool the
large amount of heat generated at the MOSFET regulation banks in our experiment, we used water
cooled aluminum plates connected to the water system supplied by the building facilities.

4.5 Imaging System

While everything else in this chapter has been about the design of the different elements of
the RbLi experiment to trap and cool atoms, the imaging systems are the only setups we have to
directly measure the state of the atoms. We have two imaging setups within the experiment. The first
system images in the XZ direction: we use this system mostly for images of large atomic clouds, such
as magnetically trapped atoms, and other diagnostics. The second imaging system is the XY system
which views the atoms from below. The XY system is the primary imaging system used to measure the
system when at the BEC stage of an experiment.

4.5.1 XZ Imaging Setup
The XZ imaging system looks at the atomic cloud ‘side-on’, with gravity being along the vertical axis
of the image. This imaging direction is used primarily for diagnostics as its low magnification is able to
image all stages of creating a condensate, from MOT to BEC, also with variable times of flight without
the need to refocus the camera. The design of the XZ imaging system is depicted in Figure 4.45.

The system uses probe light that comes from a fiber coupled line on the cooling laser board.
The light is collimated into a wide (� 1”) beam waist, and by using a polarizing beam splitter and �=4
waveplate, the beam is made circularly polarized. The probe beam is then passed through the atoms,
then through a two element telescope, with a 50 mm 1” spheric lens and a 125 mm plano-convex lens,
giving a designed 2.5 magnification and experimentally measured 2.54 magnification. The image is then
focused onto a Point Grey Blackfly PGE-50H5M-C CCD camera. The camera is on both a translation
stage to find focus, and a rotation mount that allows us to precisely align the vertical of the camera
with the direction of gravity.

The Blackfly camera has a 2448 � 2048 pixel array with 3:45 �m per pixel, which yields a
3:36 mm�2:8 mm field of view of the atomic cloud with a 1:38 �m=pixel resolution. The field of view
and resolution together allow the XZ imaging system the ability to view both large magnetically trapped
clouds and BECs with resolution equal to the primary, XY, imaging system. The disadvantage of the
camera, however, is that the Gigabit Ethernet connection requires � 300 ms per image to transfer,
causing a long delay between the three shots for absorption imaging. The images at full resolution are
large, causing issues with computation speed while doing analysis. For this reason, it is recommended
to use Region of Interest (ROI) modes to take smaller images when possible.
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Figure 4.45: XZ imaging system optical setup

4.5.2 XY Imaging Setup
The XY imaging system is the primary measurement method used in the experiment. The system
starts with fiber coupled light from the cooling laser system. This light is collimated through a 7:5 mm

aspheric lens to give a beam waist of approximately 300 �m at the atoms. The probe beam is then
passed through a Glan-Taylor polarizer and a �=4 waveplate to ensure a nearly pure circularly polarized
beam. The beam then traverses off of two gold mirrors (to maintain polarization qualities), then
vertically toward the glass cell and atoms. Because the MOT also requires vertical beams, the imaging
probe and MOT beams must share the same vertical trajectory. We remove the MOT light (and
downward pointing mirror) by using a pair of flipper mirrors that are removed from the vertical beam
path when we image, allowing the probe beam full access.
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Figure 4.46: XY imaging system optical setup

After the light has passed through the atomic sample, the beam passes through a two lens
compound objective and a second compound lens pair to give a magnification to the system. Lastly,
this light is passed onto the Point Grey Flea3 CCD camera for imaging. The camera is mounted on a
micrometer stage so we can precisely focus the image. Similarly the camera is mounted on a rotation
mount so we can align the camera axes, typically to either the optical dipole trap coordinates (x̂� ŷ)
or the experiment coordinates (x̂, ŷ).

4.5.3 Calibrating the Magnification
We use two methods for calibrating the magnification of our imaging systems. The first is to measure
the free fall acceleration of the BEC during time-of-flight imaging. The technique is simple: We prepare
a mF = 0 BEC (because of the insensitivity to magnetic forces), release it in TOF, and vary the time
until we take the image of the BEC. By measuring the vertical displacement of the BEC (in pixels!)
compared to the time of free-fall, we can use the standard �Y = 1

2at
2 to find the acceleration in

pixels/s2, and compare to standard gravitational free-fall of � 9:8m=s2 and the camera pixel size:

M =
ameas:

g
�Px (4.1)

Where ameas: is the measured acceleration in pixels/s2 and �Px is the size of the pixel on the camera
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Figure 4.47: Gravitational displacement of BEC versus variable TOF time. Measuring the
acceleration in pixels/s2 and comparing to g = 9:81m=s2 gives the magnification

chip. This calibration method is useful as it makes no assumptions about the system other than the
gravitational field.

This measurement naturally is performed for the XZ imaging. As such, we align the vertical
axis of the image with the direction of gravity prior to the magnification measurement by rotating the
camera until the horizontal displacement of the BEC in the image is invariant under different TOF
times.

This method can be extended to calibrate the magnification in the XY imaging direction as well.
After the XZ imaging is calibrated, we can perform an experiment where we prepare an mF = �1
BEC and apply a constant gradient along the x̂ direction (the horizontal axis of the XZ camera)
during TOF, while varying the TOF again. The cloud, due to the constant acceleration due to the
magnetic force, will again move across the image. Doing this scan using the XZ imaging measures the
calibrated acceleration due to the magnetic force in m=s2. By comparing this value to the acceleration,
in pixels/s2, measured from the same scan using XY imaging, the magnification can once again be
measured.

Another method we use to calibrate the magnification of the imaging system is through lattice
diffraction. We use a Raman coupling pulse to impart different momenta populations to the condensate.
Because the momentum is well defined in units of kR = 2�=�R where �R is the laser wavelength, we
know the velocity of the atoms during TOF, and hence can calculate the distance they should move in
a given time period. By measuring the displacement in pixels and comparing, we have another metric
for magnification.

4.5.4 Calibrating the Focus
To focus our imaging systems, we use density-density correlations in images of BECs. This technique,
which we stumbled upon during our spinor domains experiment (Chapter 5), allows us to set the focal
plane to within microns of the correct location. The method relies on a BEC that has spatial density
modulations across a large swath of frequencies, such as spinor BECs with domains, BECs with vortices,
or other atomic interference pattern effects. When passing probe light through the condensate, modeled
as a set of random scatterers, a set of fringes appear in the power spectral density (PSD) of the image.
The wavevector that the fringes in the PSD occurs at diverges when the focal plane is at the center of
the scatterer distribution (see Figure 4.48, left panel). The detailed theory of this method is discussed at
length11 in Reference [47], from here I will discuss the practical implementation within our experiment.

11Theory data and fits presented here, and moreover the work of developing the theoretical model of this method goes
to lab colleague Andika Putra
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To find focus, we create a BEC with spatial noise at higher wavenumbers so as to give contrast
in the PSD between signal and the fringes. Next to scan the focal plane we vary the TOF time before
imaging the condensate. By taking a one-dimensional PSD measurement12 at each TOF time (hence
distance from focus), we can observe the fringe pattern in the PSD and locate the diverging point as
a function of the focal distance (Figure 4.48, center panel). The fringe locations in the experimental
data can be located and fit according to the theory in Reference [47], giving us the optimal focal
distance, and similarly TOF time (Figure 4.48, right panel). When using the TOF time as a variable
focus adjustment, we must account for the quadratic increase in focal distance as a function of time.
This effect otherwise leads to asymmetric distributions, as shown in Figure 4.48.

12slices for our 1D spinor experiment, later radial averages when using vortices
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Chapter 5

Domain Formation in Crossing the
Miscible-Immiscible Transition in a
Spinor BEC

The establishment of out of equilibrium domains formed by quenching through a phase transition is
ubiquitous in physical systems ranging from grain formation in minerals [48], domain nucleation in
magnetic systems [49], to Kibble-Zurek phenomena such as structure growth in the early universe [50],
and spontaneous vortex formation in quenched BECs [51].

Here we study a similar quantum quench in a two component spinor BEC, where the spin degree
of freedom is initialized in a maximally excited state where the spin distribution is uniform across the
BEC. Because of the spin dependent interactions in 87Rb, the mf = �1 states will gain energy by
spatially separating. We follow the resulting dynamics during which spin domains rapidly form, and
subsequently slowly relax towards equilibrium as the domain size increases and the domain number
decreases.

5.1 Background and Theory

5.1.1 Spin-dependent Interactions and Miscibility
In our system we utilize 87Rb in the F = 1 ground state and hence focus on the mf = 0;�1 magnetic
hyperfine states. Here there are two s-wave scattering channel lengths a0; a2 due to the two possible total
angular momentum states of F = 0; 2 from two spin 1 particles interacting. For 87Rb, a0 = 101:8 aB
and a2 = 100:4aB where aB = 5:29�10�11m is the Bohr radius. We can calculate the spin-dependent
interaction coefficients c0; c2 as

c0 =
4�~2

m

a0 + 2a2

3
= 100:84aB

4�~2

m
(5.1)

c2 =
4�~2

m

a2 � a0
3

� �4:7� 10�3 c0 (5.2)

For our 87Rb BECs the c0 term determines the spin-independent interaction strength, and
contributes a term in the Hamiltonian that only depends on the total density of 87Rb atoms. However,
the c2 term is present when the density of both mf = �1 atoms is non-zero at any given location
in space. This spin-dependent interaction energy is weak compared to the spin-independent energy

89
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Figure 5.1: Interactions in the 87Rb F = 1 ground states. The mF = �1 states have dif-
ferent interaction energies when interacting in a different-spin configuration than a same-spin
interaction.

(� 0:5%), however the sign of the spin interaction is negative. The spins gain energy when densities
overlap, and is the source of immiscibility in our system. When a spatially uniform mixture of the
mf = �1 state is made, the c2 term drives an interaction that is ferromagnetic, causing spin domains
to form within the condensate.

5.1.2 Spinor BEC Hamiltonian

This experiment explores the time-evolving magnetization of two-component 87Rb BECs in the 5S1=2
electronic ground state. Our BECs are well described in terms of a spinor wave-function 	(r) =

f "(r);  #(r)g, where the j"; #i pseudo-spins label the jf =1; mF =�1i atomic spin states. The dy-

Sudden Transition to 

Spatially Mixed State Spin Domain Formation

Time

Immiscibility and Spinor Domain Formation

Figure 5.2: Spinor immiscibility occurs when the same-spin interaction energy is less than that
of interaction with differing spins. The transition between these conditions causes the formation
of spin domains, in which the opposite spins repel each other to minimize energy.
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namics are governed by the spinor Gross-Pitaevskii equation (sGPE)

i~@t ";#(r) =

[
� ~

2r2

2m
+ V (r) + (c0 � c2) n(r) (5.3)

+ 2c2N j ";#(r)j2
]
 ";#(r) +


?

2
 #;"(r);

a continuum analog to the transverse field Ising model. n(r) = N
[
j "(r)j2 + j #(r)j2

]
is the total

density; m is the atomic mass; V (r) is a spin-independent external potential (here a harmonic potential
from an optical dipole trap); 
? describes the Zeeman shift of a transverse magnetic field; and c0;2
are the spin-independent and spin-dependent interaction coefficients [52, 53]. This Hamiltonian has a
Z2 symmetry describing a reversal of j"i and j#i, which is absent in most binary mixtures [54–57].

Because the typical c0n(r) spin-independent energy vastly exceeds the c2n(r) spin-dependent
energy scale, we make the conventional Thomas-Fermi approximation for the overall density distribution
n(r) characterized by a chemical potential �, and a minimum healing length �=~=

p
2m�. This gives

n(r)=[�� V (r)] = [c0 + c2M2
z (r)

]
, which depends very weakly on the z component of the local magne-

tization vector, M(r)=fMx(r);My (r);Mz(r)g=
{
2Re[ �"(r) #(r)]; 2Im[ 

�
"(r) #(r)]; j "(r)j2 � j #(r)j2

}
.

The spin degrees of freedom vary almost exclusively with axial, not radial, position [58] because
our extremely anisotropic condensate’s � 3:9 �m radial extent is comparable to the minimum spin
healing length �s=�jc0=c2j1=2=3:20(4) �m (see Figure 5.3). Theoretically, we may describe the spin
degree of freedom as a 1D spinor [59] with components �";#(z) = j�";#(z)j e i�";#(z); retaining terms
through first order in c2=c0, we obtain an effective 1D sGPE

i~@t�";# =

[
�~

2@2z
2m

�g1D(z) + 2g1D(z) j�";#j2
]
�";#: (5.4)

The 1D interaction strength g1D(z) / c2 is related to a 1D healing length �1D �
√
3=2�s . These

two 1D sGPE’s are coupled by the local constraints j�"(z)j2@z�"(z) + j�#(z)j2@z�#(z) = 0 (i.e., no
mass currents in our experiment). To make the analogy explicit, we dropped terms quadratic in j�";#j2
resulting from integrating out the transverse dimensions. These repulsive terms do not affect the
dynamics at short times after the quench, but must be included at long times.

5.2 Experimental Setup and Execution

In our experiment, we prepare a transversely magnetized two component spinor BEC described
by a U(1) order parameter, and observe the formation and spatial expansion (coarsening) of domains
following a quench into a phase with a U(1)�Z2 order parameter [60, 61], unexplored by previous
studies with binary condensates (miscible [54, 55] or immiscible [56, 57]). As compared with three
component systems [58, 62–67], the relative simplicity present here allows us to identify an intriguing
analogy between our spin system and a single-component attractive BEC as it collapses [59, 68–70].

We produce N=7:0(5)�105 atom 87Rb BECs in the jf =1; mF =0i hyperfine state, originating
from cold jf =1; mF =�1i thermal clouds formed in a hybrid magnetic/optical trap [71]. To initially
transfer atoms to the jf =1; mF =0i state from jf =1; mF =�1i, we applied a RF field while off of
resonance and used an adiabatic rapid passage technique to transfer atoms while in the dressed RF
state. These BECs are subject to a uniform magnetic field with magnitude B0=107:0(2) �T and are
confined in the extremely anisotropic crossed optical dipole trap depicted in Figure 5.3. Our dipole trap
is formed from a pair of axially symmetric 1064 nm laser beams intersecting at right angles with 1=e2

radii�67 �m and�300 �m. The radial (er , i.e., in the ex � ey plane) and axial (ez ) trap frequencies
are !r=2� = 135(3) Hz and !z=2� = 3:1(2) Hz respectively. Our T = 90(8) nK condensates have
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Rz: 170 µm
ωz: 3.2 Hz

Rdipole, Ʇ - 300 µm 

RꞱ: 3.9 µm
ωꞱ: 135 Hz

Rdipole,z - 67 µm 
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Optical Trap: 

42:1 Length/Axial 

Ratio

Figure 5.3: Experimental trap geometry for the spinor domains experiment. The optical trapping
beams were configured to make a quasi-1D trap in order to restrict domain formation to a single
direction.

radial and axial Thomas-Fermi radii of Rr = 3:9(1) �m and Rz = 170(7) �m. The BECs’ 170 �m
axial radius is not small compared to the dipole laser’s 300 �m waist along the axial direction; as a
result, we expect small deviations from the conventional inverted parabola density profile, explicitly the
introduction of quartic trapping terms.

The spinor experiment is initiated by a 34 �s RF-pulse that puts each atom into an equal-
amplitude superposition of the j"; #i = jmF = �1i spin states, the ground state when 
? is large;
the system then evolves according to Equation 5.3 with 
? = 0. This procedure is equivalent to
rapidly quenching 
? to zero: the ground state goes from breaking a U(1) symmetry to breaking a
different U(1) symmetry along with a Z2 symmetry. While a conventional BEC breaks just a single
U(1) symmetry associated with a wave function’s overall phase (generated by the identity), our spinor
Hamiltonian adds a U(1) symmetry associated with the relative phase of the spin (generated by the Pauli

Allow the 

uniform mixture 

to evolve for a 

set amount of 

time (typically 0 

to 20 seconds)

Start with BEC in

mf = 0 state 

trapped in an 

optical dipole 

trap (~106 atoms 

in a trap with a 

50:1 1D trap )

Apply π/2 pulse 

using an resonant 

RF field (at 0.75 

MHz) transferring 

the mf=0 atoms 

to a spatially 

uniform mf =+/-1 

mixture

Measure state of 

the system with 

Time of Flight 

absorption 

imaging

Figure 5.4: Experimental sequence used to prepare, evolve, and measure the spinor system.
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matrix ��z ), as well as a discrete Z2 symmetry. Post quench, the formation of spin domains corresponds
to breaking the Z2 symmetry, while within a specific domain, a new U(1) symmetry is broken. This is
generated by a combination of the overall and relative phases: each spin domain has a broken generator
(�1� ��z)=2, leaving behind a “sneaky” unbroken U(1) symmetry generated by (�1� ��z)=2.

The quenched binary mixture is held for a variable duration thold, up to 20 s, while spin structure
forms and evolves. Spin mixing collisions are suppressed because the relatively large 82 Hz quadratic
Zeeman shift greatly exceeds the c2n(r)�6 Hz spin dependent energy [62]. As a result, we observe no
population in mF =0 for the entire duration of our experiment.

After thold, we remove the confining potential and allow the atomic ensemble to expand for
19:3 ms, during which time we Stern-Gerlach [72] separate the spin components and measure the
density distributions with absorption imaging.

5.2.1 Magnetic Field Gradient Calibrations
To help remove the effects of background magnetic field gradients, which themselves can cause spin
domains and spin-flow, we used an RF �-pulse (� 16 �s long) to rapidly (compared to the domain
dynamics) flip the two populations between mF = �1. This pulse, when placed at the midpoint of the
quench hold time, causes each spin state to experience an equal force-impulse along the gradient in
both directions that effectively cancel out. This method helped to remove large scale spin separation
in our BEC due to gradients while leaving the spinor dynamics, which occur at a shorter periodicity,
unaffected.

Along each principal axis we also deployed three gradient shim coils - coil pairs in an anti-
Helmholtz configuration - in order to compensate for background magnetic field gradients in our system.
The field gradients from the ambient and coil sources were measured using time-of-flight imaging.
Knowing the mass of 87Rb and the duration of the time-of-flight procedure, we can measure the
distance the atoms move during this time and calculate the force that the atoms felt due to the
magnetic field gradient while falling. We perform this measurement using both pure spin �1 BECs,
exploiting the symmetry between the states to increase our measurement efficiency. To determine the
strength of the magnetic field gradient in a given direction, we apply a sizable biasing field (� 3 MHz)
to provide a well defined quantization axis. By repeating this measurement over many bias field, spin
state, and gradient coil configurations1 , we can calculate the ambient magnetic field gradients, and
know how to compensate correctly for them. In later experiments, these coils were disabled and were

1credit to colleague Dan Campbell for doing this ‘fun’ task
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Figure 5.5: First generation gradient shim coil geometry and the measured magnitude of back-
ground gradients at the atoms
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replaced with the cloverleaf coils described in Section 4.4.4.

5.3 Measurement and Reconstruction

5.3.1 Reconstruction
We detect the resulting density distribution by absorption imaging. By using a Stern-Gerlach pulse
during time of flight, we spatially separate the spin components on different regions on the image. In
order to retrieve the full density distribution of the BEC, along with the fractional populations, we used
a least-squared fitting approach to optimize reconstruction of the profiles into a single Thomas-Fermi
profile (Figure 5.6). First, the locations of the two spin distributions was cropped into two equally sized
regions of interest, with the centers of the regions being fit parameters. Next the two regions we summed
together and a Thomas-Fermi fit was performed. The overlapping fit was optimized by minimizing the
fit residuals of the total Thomas-Fermi profile. In addition to varying the center coordinates of the
two regions, a scale factor parameter was added to resize one region versus the other. We found
that our Stern-Gerlach procedure asymmetrically affected the mF � 1 states, causing the two resulting
distributions to vary in expansion size on the order of � 3%

5.3.2 Extracting Mz and Mx Simultaneously
By obtaining the population fraction of each spin state, we were able to reconstruct both Mx(x; z) and
Mz(x; z), projected onto the ez�ex imaging plane. A brief RF pulse lasting 9:4�s just before TOF can
partially re-populate jmF =0i. Following TOF expansion and Stern-Gerlach separation, the distribution
of all three spin states contains sufficient information to obtain Mx and Mz simultaneously.

|+1> |-1> Reconstruction Comparative

Single Spin 

BEC Density 

Profile

Density Profile Reconstruction

Align BEC 

centers with 

summed TF Fit

+

Figure 5.6: Reconstruction of the BEC density profile from the spin-separated distributions.
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By knowing both the power of the RF pulse, 
RF and the pulse duration tpulse = 
RF=4, we can
calculate Mz :

Mz =
j "j2 � j #j2
cos(tpulse
RF)

(5.5)

Similarly by observing the fraction of atoms that are measured in the mF = 0 state, we can
extract Mx simultaneously:

Mx =
j 0j2

sin2(tpulse
RF)
(5.6)

We can use these relations to reconstruct the full magnetization profile of the BEC, such as the
shots in Figure 5.12.

5.3.3 Flirting with Spin-Selective Imaging
Initially in order to measure the spin domains, we used a spin-selective imaging technique to measure
the population of either the mF = �1 spin state. Due to the absence of microwaves to selectively pulse
atoms out of the F = 1 hyperfine ground states to the F = 2 manifold, we opted to try a polarization
and frequency dependent method using our repump laser before absorption imaging (Figure 5.7). The
idea was to create a sizable magnetic field that would, by the linear Zeeman effect, create a large energy
shift between individual states in the F = 1 and F 0 = 1 manifolds. By also using a circularly polarized
repump beam, we could further restrict the transitions that could occur. We could reverse the direction
of the biasing field to switch between the spin states.

Figure 5.9 shows the imaging efficiency as a function of our repump detuning. We were able to
identify peaks corresponding to the F 0 = 2 and F 0 = 1 hyperfine manifolds, measured to be 153 MHz

apart, compared to the actual 156 MHz. This allowed us to confidently set the transition to the F 0 = 1

transition.
When using this technique on a simple system with 2 large separated spin domains, we saw a

contrast between the states on the order of 5 at maximum. For large domains (Figure 5.9), the contrast
was sufficient to identify the spin domains. However with smaller domain size (Figure 5.7), the low
contrast began to make differentiating separate domain difficult. The time of flight imaging technique
clearly had an advantage in resolving small domains in the elongated BEC (for example, Figure 5.17,
and with reconstruction techniques were superior. Thus the in-situ imaging work was abandoned.

Spin Selective Imaging Scheme

-0.7 MHz / G

0.93 MHz / G

F’=1

F=1

Figure 5.7: Left: Targeting atomic transitions for imaging using an offset repump laser pulse.
Right: In-situ image of a spinor BEC.
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Figure 5.8: Measurement of atomic transitions for spin selective imaging by scanning the repump
laser frequency

5.3.4 Upgrade to Higher Resolution Imaging
For this experiment, we switched our primary imaging system to a higher magnification of approxi-
mately 6.25 in order to image the in-situ spinor domains. Although in the end we used time of flight
measurements and reconstructed the in-situ spin densities, this higher magnification was still in place
as the expanded BECs after the measurement procedure optimally fit into the imaging plane. Later
this system would be switched out for an imaging solution with a magnification of 3.

|+1> |-1>

Spin Interaction / Repulsion
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Trap

Thomas-

Fermi BEC 

Profile

Spin Selective Imaging

Figure 5.9: Spin-Selective imaging example illustrating the low contrast between the states.



97 5.4. Results

Magnification 6.25 

Imaging System

68 mm Compound Objective:

60 mm Achromatic Doublet

AC254-060

Rotation Mount

Micrometer Stage (Focusing)

Flea3 CCD

FL3-FW-03S1M-C

648x488 px
5.6 μm/px

Glass Cell
Slower

300 mm Plano-Convex

LA1484

Coil Holders

Coil Holders

MOT Flipper Z1

325 mm Compound Lens:

750 mm Plano Convex

LA1727-B

500 mm Achromat

AC508-800-B

91 mm

Separation

Z

X

Figure 5.10: Upgraded imaging system for higher resolution imaging of the spinor domain BECs.

5.4 Results

The initially (thold = 0) uniform χ(z) = (j"i+ j#i) =p2 spin superposition is dynamically un-
stable, as indicated in Figure 5.12b’s snapshots. At this unstable point, small spin-wave excitations
have an (~!=�1D)

2=(k�1D)
2
[
(k�1D)

2 � 2
]

energy spectrum [67], where �1D=~
2=2m�21D is a typical

1D spin interaction energy. When ~! is imaginary – for k�1D 2 (
0;
p
2
)

– the associated modes
grow exponentially with peak gain at k =1=�1D, amplifying any existing spin fluctuations, classical or
quantum. Figure 5.13 depicts the magnetization Mz(z), showing the initially unmagnetized conden-
sate developing visible structure after about 200 ms. The experimental data plotted in Figure 5.13a is
in qualitative agreement with a stochastic-projective GPE (SP-GPE) simulation [73], with parameters
nearly matched to our experiment, Figure 5.13b. In what follows, we make several quantitative compar-
isons between the two. The SP-GPE’s stochastic noise term was chosen to match the experimentally
observed temperature, and was not tuned to match the onset-time for domain formation. While the
amplitude of these spin waves grow with an exponential time constant �(k)=1=Im(!(k; z)) [minimum
at �(z) = 2m�21D(z)=~� 42 ms], Figure 5.13a shows that no structure is visible until thold� 200 ms.
Representative reconstructions of Mz(x; y) at six hold times are depicted in Figure 5.12.

Our simulations predict that structure begins to grow immediately, however the domains that
have formed directly after the quench cannot be detected due to the magnetization Mz(z) at the
beginning of the exponential formation process being smaller in magnitude than the technical noise
(primarily due to shot noise in density fluctuations across the BEC) in the system. The methodology of
detecting a spin domain in the BEC is based upon detecting the number of modulations in Mz(z) that
are larger in amplitude than the measured noise in Mz(z). After the quench when the magnetization
of the domains grows rapidly in amplitude, there is a threshold once domains will become statistically
measurable in the analysis. This measurement effect is evident in the rapid increase of domains we
experimentally detect in Figure 5.14 at�200 ms.
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Figure 5.11: Spinor domain experimental evolution in raw images from domain onset through
the coarsening stages.

Figure 5.13 also shows that spin structure forms more slowly in the lower density periphery
of the system where �1D and � are larger. To quantify this effect, Figure 5.14 plots the number of
spin-regions visible above the noise, along with the results of our SP-GPE simulations, and a local
density approximation (LDA, accounting for our systems inhomogeneous density profile) prediction for
the expected pattern of domain growth. This number increases for short times because spin-regions
become visible in the system’s center before its edges, and does not initially reflect a change of their
spatial size.

The spin modulations continue to grow in amplitude until, at thold � 300 ms, they form fully
spin polarized domains of j"i, and j#i, with a spacing set by the dynamic growth process, not by the
system’s equilibrium thermodynamics. After this period of rapid growth, the polarized spin domains
evolve slowly, equilibrating, for the remaining 20 s duration of our experiment.

Our BEC has a � =10(1) s lifetime, implying that the domain pattern must evolve in time as
the BEC slowly contracts. The simplest model – in which the domain pattern contracts together with
the dwindling BEC (where each domain simply contracts) – is obviated by Figure 5.14, that shows
the number of domains decreasing after thold � 1 s. Indeed, once a domain becomes smaller than
� 2�1D(z), it can no longer reach full spin-polarization in its center, and it ceases to be a barrier for
the hydrodynamic flow of the other spin state. As a result, small domains de-pin and can move freely
until they coalesce with another domain of the same spin.

While Figure 5.13 and Figure 5.14 qualitatively suggest that the domains gradually expand as
thold increases from 300 ms to 20 s, it is difficult to obtain a quantitative measure of domain size from
data in this form. Indeed, the data show that while measurements at neighboring times have similar
domain sizes, the exact domain pattern has a significant element of randomness – primarily in the form
of phase shifts – likely resulting from subtle differences in the initial conditions, as amplified by the
subsequent exponential gain process. To mitigate these effects, we turn to the power spectral density
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Figure 5.12: Images showing the progression from a uniformly magnetized condensate (short
times) in which domains appear (intermediate times), and then grow spatially (long times).
During this process the condensate slowly decays away

PSDx;z(k) =
∣∣∫ Mx;z(z) exp(ikz)dz

∣∣2 obtained from these data. With the PSD, we can compare
different realizations even in the presence of spatial phase shifts of the domain structure.

Figure 5.15 shows PSDz(k) derived from Mz(z) shown in Figure 5.13. For short times (thold .
300 ms), a narrow peak associated with the growing spin modulations develops. Once the spin domains
reach unity polarization, the magnetization’s magnitude saturates and the boundaries between domains

-200

-100

0

100

200

0.1 1 10
thold (s)

-200

-100

0

100

200

Spinor Domain Time Evolution

Data

SP-GPE Model

P
o

si
ti

o
n

 (
μ
m
)

P
o

si
ti

o
n

 (
μ
m
)

Figure 5.13: (Top) Experimental data and (Bottom) finite temperature simulation using the
SP-GPE method. In both simulation and experiment, the spatial structure of Mz(z) coarsens
after an initial growth period as domains coalesce.



Chapter 5. Domain Formation in Crossing the Miscible-Immiscible Transition in a Spinor BEC 100

Spinor Domain Formation

30

25

20

15

10

5

0

N
u

m
b

e
r 

o
f 

D
o

m
a
in

s

0.1 1 10

thold (s)

Rz / 2ξ1D

Experiment

spGPE

Figure 5.14: Number of domains as a function of thold. The red symbols depict the experimentally
observed number of domains (typical uncertainty plotted on the leftmost point) and the blue curve
plots the results of our SP-GPE simulation (uncertainties denoted by the blue band). In both
cases, the uncertainties reflect the standard deviation over many realizations. In addition, the red
curve fits the data to a model assuming exponential growth along with a non-zero observation
threshold, in the LDA. The grey symbols correspond to the ratio Rz=2�1D: an estimate of domain
number, assuming the system with length 2Rz is partitioned into domains of local size ��1D(z)

(the size at which domains initially form); the weighted average of this over our system is about
4�1D.

– domain walls – sharpen, broadening PSDz(k) starting at thold�250 ms. At longer times, the broad
peak drifts to smaller wavevectors, indicating an increasing typical domain size. Figure 5.15b compares
this peak location for both experiment and theory against 1=�1D. Figure 5.15 plots experimental data
with red symbols and SP-GPE simulation with the blue curve. Our analytical model predicts maximum
gain at this wave-vector and indeed our SP-GPE simulation shows peak gain at 1=�1D. By contrast,
the peak in PSDz(k) for the experiment is at slightly smaller k .

Because the � 2�1D(z) minimum domain size increases as the condensate depletes away, it is
plausible that the increase in domain-size results exclusively from an increasing cutoff in the minimum
domain size. If we assume a proportional relationship between 1=�1D(z) (Figure 5.15, grey symbols)
and the peak in PSDz(k) such that the ratio of one over the other would hold constant we see in
Figure 5.15b that for thold > 2 sec this theory could describe the data. To highlight this possible
relationship, we display the ratio between PSDz(k) and 1=�1D(z) – essentially constant – on a linear
time scale in Figure 5.16 (the uncertainties reflect the standard deviation of the mean at each thold).

Unlike PSDz(k), PSDx(k) is peaked about zero; this is because Mx(z) is only appreciable in
the domain walls where the gas is not fully polarized: it consists of a series of narrow peaks. By
showing that the width of the peak in PSDx(k) tracks the inverse spin-healing length, Figure 5.15c
demonstrates that the domain walls are sized according to �1D (grey symbols).

For c2 < 0, as in 87Rb, Equation 5.3 and Equation 5.4 describe our system’s spin degree of
freedom as a single component attractive BEC (the overall density follows the conventional Thomas-
Fermi profile). The process of domain formation is a spinor analog to the “chain of pearls” pattern
that forms in 1D BECs quenched from repulsive to attractive interactions [68, 69]. In that case, the
growth of structure results from a modulational instability with peak gain at k = 1=� set by the
conventional healing length. Attractive Bose systems are intrinsically unstable against collapse [70],
however for spinors, any eventual collapse is stymied by an effective hard core interaction resulting from
the bounded individual spin wavefunctions, and higher order interaction terms omitted from Equation
5.4.
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Power Spectral Density During Domain Dynamics
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Figure 5.15: Power spectral density. Top: PSDz(k) as a function of thold showing the formation
of a peak at finite wave-vector k , followed by the gradual movement of that peak to smaller
k as the spin domains expand. Each vertical slice represents a single experimental realization,
i.e., no averaging. The color scale depicts increasing spectral power with darker color. Middle:
Wavevector of PSDz(k)’s peak. Bottom: Width of PSDx(k), which always peaked around
zero. In the middle and bottom panels, the red symbols depict the experimentally observed peak
location (typical uncertainty plotted on the leftmost point) and the blue curve plots the results
of our SP-GPE simulation (uncertainties denoted by the blue band). In these three cases, the
uncertainties reflect the standard deviation over eleven realizations, i.e., the middle and bottom
panels are averaged data. The grey symbols mark 1=�1D, the homogenous-system wave-vector
of maximum gain (the uncertainties are comparable to the symbol size).
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Figure 5.16: Ratio of peak in PSDz(k) over 1=�1D plotted on a linear time scale. We use only the
seven data runs that include thold > 6 sec. The red symbols depict the experimentally observed
peak location and the blue curve plots the results of our SP-GPE simulation (uncertainties
denoted by the blue band).
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5.4.1 Forced Counterflow
As an extra interest, we examined the effects of a system that was not only quenched from a miscible
to immiscible state, but also gave the system a ‘kick’ to induce dynamics in the system. Contrary to
the gradient cancellation schemes of Section 5.2.1, in this system we purposely introduced a gradient
to cause spins to flow. In these data runs, we followed the same experimental sequence to create BECs
and the immiscible system as described in Figure 5.4. However, to introduce the kick, we created a
pulse on the y pair of magnetic field gradient shim coils (Figure 5.5). This pulse was shaped to be
a one period long sine wave, with a period of 160 ms, and with extra terms to create a continuous
derivative at the start and end of the pulse for a smooth transition. The oscillatory nature of the kick
imparts momentum in both directions for both spin populations, causing the small unformed domains
to slosh into one another.

The forced counterflow, as one may expect, generates more domains in the system than an
unperturbed method. In Figure 5.17, the short term and long term behavior of the domains shows that
the induced flow system generates more domains, but also they do not coarsen to larger domains as
rapidly as the unperturbed case. When comparing the power spectral density (Figure 5.18), the induced
counterflow has domains that begin to appear slightly earlier than normal (� 50 ms), with higher
spatial frequency on average, suggesting the generation of smaller, but less energetically favorable, spin
domains.

Short Times Long Times
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Preparation

Induced 

Counterflow

Domain Formation with Induced Flow

Figure 5.17: Spinor domain formation with and without induced flow
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Figure 5.18: Power spectral density (PSD) of spinor domain formation with and without induced
flow

5.5 Conclusion

We observe the full gamut of time scales starting with the dynamical generation of spin-domains
from an initially non-equilibrium system followed by their subsequent relaxation to progressively larger
domains, i.e., coarsening. However, for times > 2 sec this coarsening occurs with the only other relevant
length scale: the spin healing length �1D.
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Chapter 6

Creating Artificial Gauge Fields via
Optical Raman Interactions

While ultracold degenerate gas systems lend themselves well to acting as quantum simulators due to
the high degree of control provided, there are many systems in physics that cannot be accessed this
way due to the inherent charge neutral property of our condensates. This is problematic as many topics
in physics involve electromagnetic phenomena, and hence cannot be realized in a standard degenerate
gas system.

Many experiments [74–76] have exploited the equivalent mathematical form of the electromag-
netic Lorentz force and the Coriolis force present in rotating systems. In these systems, rotating the
condensate within a confining trap creates an energy term in the Hamiltonian analogous to a con-
densate of charged particles with a uniform magnetic field present1. These systems exhibit properties
similar to other ‘super’ systems - superconductivity and superfluidity - namely the signature creation
of quantized vortices of rotation2. The disadvantage of this method is that only one analogous system
can be created - a uniform magnetic field. For other geometries, or to simulate an electric field, one
needs to be able to engineer a more complex vector potential. A Raman coupling scheme provides this
ability by using the connection between a geometric phase (a Berry’s phase [77]) and the form of the
vector potential in quantum mechanics [20]. Using such a Raman coupling scheme, the engineering of
light induced artificial electric [78] and magnetic [79] fields have been created through modifying the
dispersion relation in a controllable manner.

Here I describe the basic physical principles involving Raman coupling as it forms the basic of the
theory for Chapter 7 and Chapter 8. The first part of this chapter provides the framework for Raman
coupling schemes and generating artificial fields, relevant for the non-uniform magnetic fields described
in Chapter 8. The second half of this chapter describes our Raman coupling scheme that couples all of
the F = 1 states of 87Rb simultaneously, and forms the basis for the exploration of magnetic phases in
Chapter 7.

6.1 Artificial Gauge Fields and Raman Coupling

6.1.1 Electromagnetism in Quantum Mechanics
In classical physics, the electromagnetic field is primarily described by the physical electric and magnetic
fields (~E and ~B), mathematically represented by two vector fields in space. These fields, through the

1Without the more complex issue of electromagnetic atomic interactions beyond the usual
2for much more detail on this topic, skip on ahead to Chapter 8
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Lorentz force F = q(~E+~v� ~B) for particle of charge q with velocity ~v, can describe the motion of any
particle. Furthermore, the evolution of the electromagnetic fields are governed by Maxwell’s equations,
themselves only reliant on the electromagnetic fields.

In quantum mechanics, we typically deal with energies, not forces. To account for the electro-
magnetic fields, we instead use a formalism with the introduction of a scalar potential � and vector
potential ~A such that: E = ~r� � @~A

@t and ~B = ~r� ~A. The Hamiltonian for a particle in an electro-
magnetic field is given by:

~H =
~
2

2m
(~p� q~A)2 + q� (6.1)

By using a Raman coupling scheme, described in the next section, we can optically induce terms
in the Hamiltonian for our BECs that have the same form as Equation 6.1.

6.1.2 Raman Coupling Scheme
In our system, we created a Raman coupled system with the following setup (see Figure 6.1). First, we
create our 87Rb condensate in our optical dipole trap and subject it to a biasing magnetic field along
the ŷ direction, which by the linear Zeeman effect breaks the degeneracy between the 87Rb F = 1

states, separating them by an energy3
~!Z . We then subject the BEC to two Raman beams, with their

frequency difference !1 � !2 = !R � !Z , that intersect the condensate.
Within this setup, we consider the case of two counter propagating Raman beams as in Figure

6.1. These beams have oscillation frequencies !0 and !0 + �! where !0 � �!. Given the geometry,
the electric fields produced by the two laser beams can be written as:

~E1 = E1êi exp(i(kx � !0t)) (6.2)
~E2 = E2êj exp(i(�kx � !0t � �!t)) (6.3)

Where E1, E2 are the field amplitudes, k = 2�=�R is the wavevector and êi , êj are the polarizations
3I am assuming the quadratic Zeeman effect is negligibly small for now

Schematic Level Diagram
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Figure 6.1: Left: Geometry of the Raman coupling scheme. Right: Raman coupling between
the F = 1 states of 87Rb.
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of the two laser beams. It follows through the principle of superposition that the total field seen by the
atoms is the sum of the two fields:

~E = exp(�i!0t)fE1êi exp(ikx) + E2êj exp(�ikx � i�!t)g (6.4)

We are interested in the vector light shift ~E��~E of the total electric field. The vector light shift term is
proportional to an effective magnetic field B̂e� / ~E��~E which then interacts with the atoms according
to �~� � B̂e� = �gfmF ~F̂ � B̂e� with gf being the gyromagnetic ratio, mF being a particular spin state
(note the spin dependence, hence the ‘vector’ nature of the interaction) and F̂ being the spin-1 spin
projection operator [80]. We compute this and find

~E� � ~E = 2E1E2(êi � êj) cos(2kx + �!t) (6.5)

Giving an interaction term:

ĤRaman = �2gfmF ~E1E2(êi � êj) � F̂ cos(2kx + �!t) (6.6)

If we set the polarizations êi , êj equal to ŷ, ẑ, then we get a projection of the interaction with the F̂x
operator:

ĤRaman = �2gfmF ~E1E2F̂x sin(2kx +�!t) (6.7)

If we scrunch numerical coefficients into an interaction strength 
R, we get:

ĤRaman =
~
Rp
2
cos(2kx +�!t)F̂x (6.8)

6.1.3 The Raman Coupled Hamiltonian
Using the result in Equation 6.8, we make a transformation into the rotating frame at �! and into the
momentum basis. Due to the non-commutative position and momentum terms in the Raman coupling
Hamiltonian, we get a Hamiltonian which has a spin-dependent momentum offset:

ĤRaman =

 ~
2

2m (p � 2k)2 � � 
R=
p
2 0


R=
p
2 ~

2p2

2m + ~� 
R=
p
2

0 
R=
p
2 ~

2

2m (p + 2k)2 + �

 (6.9)

Where the terms � and � are the Raman detuning from resonance and the quadratic Zeeman shift
(Section 3.1.1) respectively. We define the characteristic energy of the system in terms of the recoil
energy EL = ~

2k2L=2m and the recoil momentum KL = 2�=�R.
Here I focus on the transformation of the kinetic energy in the x̂ direction (the Raman direction

defined by the polarizations of the Raman beams) as the ŷ and ẑ directions are unchanged. The Raman
interaction Hamiltonian in Equation 6.9 governs the physics behind Chapter 7 and Chapter 8.

The eigenstates for the Raman Hamiltonian consist of three separated energy-momentum dis-
persion bands (Figure 6.2) that arise from the avoided crossing of the offset bare state dispersions
(~2(k�2)2=2m, dashed curves in Figure 6.2) as 
R is increased. For the experiments presented within
the rest of this thesis, I am only concerned with the lowest energy band of the Raman Hamiltonian - we
make the good assumption here that we load atoms adiabatically into the lowest band (ground state)
and they like to stay there.
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Increasing Raman Coupling Strength, ΩR

Figure 6.2: The effect of Raman coupling on the atomic dispersions. As the coupling strength

R is increased, the eigenenergies of the system form a band structure owing to avoided crossing
in the system.

6.1.4 The Scalar and Vector Light Shifts
For our Raman processes, we want the two-photon transition caused by the two laser beams to be
off resonance. However, when operating at a wavelength away from resonance, we must contend with
other effects. From the arguments in Section 3.4 about optical trapping, an optical field applied to an
atomic system will cause a shift in the energy levels of the system. Here we refer to this field as the
scalar light shift, or scalar polarizabilty. This effect is highly undesirable in our system as the presence
of the Raman beams will affect the trap geometry, and any alignment drifts will move the trapping
potential as well4. For the scalar light shift, as in Equation 3.28, in the limit of large detuning from
resonance the light shift goes as:

�Vl ight /

2

�
(6.10)

Where 
, as usual, is the Rabi frequency proportional to the intensity of the light, and � is the detuning.
In a hand-waving argument, we can say then that for blue shifted light (� > 0) the field will raise

the energy of the system making an anti-trap, and for red-shifted light (� < 0) we get an attractive
trapping potential. Consider the case where we have two resonances in the system, in our case the
87Rb D1 and D2 lines. For frequencies of light that are in between the two resonances, there is both an
effective trapping and anti-trapping potential. Some form of the intermediate value theorem then says
that there must be a frequency in between these two resonances such that their effect cancels, leaving no
energy shift. We call this frequency the magic wavelength [81,82], and in 87Rb, �magic = 790:024 nm.
For this reason, our Raman laser is set (but not locked) to 790:024 nm when we perform experiments.

For systems where ~E� � ~E is non-zero, we also are concerned with the vector light shift, which
shifts the different Zeeman sublevels with different energies. I measured this effect in the lab by
measuring the shift in an RF resonance when only one of the Raman beams is present in the sample.
By scanning for resonance with no beams on, and each of the two Raman beams on, we can visually
see the shifting resonance in Figure 6.3. Here the measure of resonance is related to measuring the
relative fractions of atoms in the mF = �1; 0 states, as described in Section 4.4.7.

Polarization of the Raman beams strongly influences the magnitude of the vector light shift.
While holding the system at resonance, one beam at a time was sent toward the atoms while a �=4
waveplate was rotated, therefore adjusting the polarization of the Raman beam. The data in Figure

4This can be used as an alignment technique when setting �R 6= 790 nm and moving the condensate with the Raman
beams
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Figure 6.3: Shift in resonance due to the vector light shift. The resonance was first measured
with no Raman beams present (blue) and the presence of a Raman beam, one at a time, shifted
the resonance, signifying a state-dependent energy shift.

6.4 show that the atomic resonance of the system changes on the order of the recoil energy EL as the
polarization changes. This measurement can help optimize the polarization in the beams at the atoms,
including any effects of the Raman beams traversing the glass experiment cell.
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Vector Light Shift and Polarization
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Figure 6.4: Measurement of the vector light shift effect on atomic resonance as a function of the
polarization in each Raman beam. A �=4 waveplate on each Raman beam was rotated through
360�, and the resonance shift measured.

6.1.5 Synthetic Magnetic and Electric Fields From Raman Coupling

Definition of the Synthetic Vector Potential Ax

Once the atoms are adiabatically loaded into the Raman dressed state, their dispersion is defined by
the curvature of the lowest band. In general, we describe this dispersion engineering by:

E(kx) =
~
2(kx � Ax(
R; �))

2

2m�(
R; �)
(6.11)

Where Ax=~ = kmin, the momentum corresponding to the lowest energy possible, and m� is the
effective mass, which is to account for the correction of the dispersion curvature compared to the
parabolic free-particle dispersion. Figure 6.5 shows how the value of the vector potential is determined
in the dispersion curve.

It is important to note that the properties of the Raman dispersion, Ax and m�, can be adjusted
directly via the Raman coupling strength 
R and the detuning �. The detuning plays a large role in
shaping the dispersion, as the detuning can break the symmetry of the mF = �1 states, causing a
preference for one state, and accordingly shifting Ax as well. Figure 6.6 shows how the dispersions
change as a function of �. As the detuning from resonance is increased, the dispersion curve will ‘tilt’
in such a way that the minimum in the momentum dispersion (defined as Ax above) is no longer zero
(shown by the solid light-blue curve). Furthermore, as the detuning is increased, the zero energy of the
dispersion will decrease as well.

If we measure the vector potential as a function of detuning, we get the relationship shown in
Figure 6.7. For large values of �, the vector potential Ax will asymptote to �2kL.
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Figure 6.5: The definition of the Vector Potential Ax is given by the momentum value associated
with the minimum energy in the Raman dispersion. The change of the vector potential as a
function of the detuning � from resonance is shown at negative values (left) and positive values
(right).

Creating Synthetic Magnetic Fields

In the context of vector potentials, the magnetic field ~B is defined as ~B = ~r � ~A. Previously we
applied a real magnetic field (a constant biasing field)5 of B0ŷ as described in Section 6.1.2, which for
our spatially uniform one-dimensional vector potential Ax , @A

@xi
= Be� = 0. However if we apply a real

magnetic field profile of B(y) = B0+B
0y , a linearly dependent field strength along the ŷ direction, this

will create a linearly dependent detuning �(y) = �0 + �
0(y). From looking at Figure 6.7 and Equation

6.11, we note that the vector potential now becomes a function of y as well: Ax(y). In this case the
term Be� = @A

@y 6= 0, yielding an effective magnetic force on the atoms. For calculations of magnetic
field strength, we define the effective “charge” of atoms to be that of the electron charge e.

For schemes with 
R > 4EL (a single dispersion minima) and �0 > 0, this yields a quasi-linear
region near y = 0, giving a Be� that is constant. If 
R and �0 are tuned such that the majority of
the condensate is within this region of constant magnetic field, the system becomes equivalent to the
original rotating trap experiments that first created vortex lattices in BECs [74–76]. The physics of
this system is extended further to examine the effects of non-uniform fields across the condensate in
Chapter 8, and the consequences on vortex nucleation when crossing a transition between a non-uniform
to uniform field configuration.

Creating Synthetic Electric Fields

The electric force is related to the rate in which the vector potential changes in time, that is: ~E = @A
@t .

This effect has been previously studied [78], and here I want to point out our application of the synthetic
electric field in the experimental apparatus. Because the value of Ax depends on 
R, it follows that a
time dependent change in 
R, effectively the intensity of the Raman laser beams, will cause a synthetic
electric field. We commonly need to increase the Raman coupling in slow ramp ups to avoid large
momentum transfers via the electric effect. We also use the electric field to our advantage when
doing TOF imaging. When we release the condensate from the optical dipole trap before imaging,
we also suddenly switch off the Raman beams. The rapid change imparts momentum to the different

5We purposely balance the biasing Zeeman field such that at the center of the BEC, �0 = 0
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components (spin and momentum) of the condensate, which after the TOF free-fall, have become
spatially separated. This separation is what allows us to measure the momentum states of the BEC
(see Section 6.1.6).
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Effective Vector Potential and Magnetic Field
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Rotational Motion (Vortices) from an Effective Magnetic Field

Figure 6.9: Observed vortex formation in a BEC subject to a synthetic magnetic field. A uniform
synthetic field induces a Lorentz force to the ‘charged’ particles, causing cyclotron (rotational)
motion
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6.1.6 Measuring Raman Coupled Systems in TOF
To measure the spin in momentum states of the condensates, we have two methods available, a snap-off
method and an adiabatic deloading method.

The snap-off method is a projection of the Raman dressed state into the bare spin-momentum
basis. In this method we turn off the Raman coupling instantly at the start of TOF (hence the snap-
off name) and allow the atoms to free-fall. The projection to the bare states will cause the states
with differing momentum to be spatially displaced after having time to expand (this is essentially the
argument of TOF being a mapping of momentum to position space in Section 2.3.1). To resolve the
spin components, we apply a Stern-Gerlach pulse that separates the spin components on the imaging
axis orthogonal to the momentum direction. This method allows us to image all jmF ; ki states of the
BEC.

In the first 2 ms of TOF we decrease 
R adiabatically to 0 while simultaneously ramping the
detuning � � EL from resonance. This process maps the laser-dressed system into a single spin-
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115 6.2. Raman Coupling in a Spin-1 System

|-1>

|0>

|+1>

Spin-Dependent TOF Velocity

+2 KL0 KL-2 KL

Momentum Direction

S
p

in
 D

ir
e
ct

io
n

Figure 6.11: Projection of each jmF ; kLi state on the camera. The spins travel in different
amounts along the Raman coupling momentum direction.

momentum state BEC [83], and in addition imparts a position-dependent artificial electric field as A
becomes constant, inducing an overall shearing motion. This method works well for measuring the
composition of the Raman eigenstates, or for observing structure such as vortices.

Calibrating the Raman Coupling Measurements

We found in our system that when performing snap-off style imaging, we saw that the mF = �1 states
traveled asymmetrically during TOF. This effect, owing most likely to small background magnetic field
gradients present during TOF, needs to be accounted for when doing experiments that measure the
momentum state of the BEC as a function of position on the camera. To calibrate the spin and
momentum states on the camera, we first prepared the system with an equal mixture of the mF states
using an RF pulse, then pulsed the Raman coupling briefly to populate momentum states at�2; 0;+2kL.
This method produces a small population of atoms in all states, which can be measured simultaneously
(Figure 6.11). By letting the apparatus run taking many shots like in Figure 6.11, we can gather a
statistical measure of the location of each jmF ; kLi state on the camera along with uncertainties.

6.2 Raman Coupling in a Spin-1 System

In the limit of low biasing fields, such that �q < 
R (�q is the quadratic Zeeman shift, Section
3.1.1), the coupling scheme in Section 6.1.3 can address all of the mF states equally, allowing full control
of the F = 1 ground state. However, as biasing field strength increases, so as to have the energy gap
between the states larger, �q will increase to where �q > 
R for all experimentally obtainable values of

R. Previous experiments [84] with artificial gauge fields were performed in pseudo spin 1/2 systems
where either the mF = �1 or mF = +1 state is detuned far away to where the Raman coupling only
addresses a transition from one of the mF = �1 states to mF = 0, using this single spin coupling as
an advantage.
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Figure 6.12: Energy level diagram for a spin-1/2 (left) and spin-1 (right) Raman coupling
scheme. For large biasing magnetic fields, the quadratic Zeeman shift causes an asymmetry in
coupling between the mF = �1 states, and only one transition can be on resonance with a two
frequency Raman scheme, allowing for an effective spin-1/2 system. By adding a third frequency,
all three states can be coupled, regardless of the quadratic shift.

We developed a scheme that Raman couples all of the F = 1 states in 87Rb together for an
arbitrary strength biasing field, providing spin-1 spin-orbit coupling in all situations. To do this, we have
two counter-propagating Raman beams with frequencies !1 and !2 intersecting the BEC as previously.
However we now put a second frequency onto one of the beams such that there is a super position of
!2 and !3 frequencies. In this scheme, the !2 frequency address the mF = �1 to mF = 0 transition
and !3 frequency address the mF = +1 to mF = 0 transition (Figure 6.12).

6.2.1 An Optically Tunable Effective Quadratic Zeeman Shift
As before with the two beam case, we are interested in the interaction of the atoms and the effective
magnetic field arising from the vector product of the electric field. If we write down the superposition
of the field for a three frequency coupling scheme in a method similar to Section 6.1.2, we get:

~E = E1êie
ikx�i!1t + E2êje

�ikx�i!2t + E3êje
�ikx�i!3t (6.12)

I will assume that E2 and E3 are the same (i.e. we put the same power into each frequency component
of the beam, as done in experiments). Following the same steps as previously we can arrive at the
interaction terms from these beams:

ĤRaman =
~
Rp
2
F̂x (cos(2kx � (!1 � !2)t) + cos(2kx � (!1 � !3)t)) (6.13)

Here I define a relative frequency �! = !3�!2 = 2�q +2�e� where �q is the quadratic Zeeman shift of
the system, and �e� is a term we call the effective Zeeman shift which I will describe more momentarily.
Using this definition and making a transformation into the frame rotating at !1 � �!=2, we get a total
Hamiltonian of the form:
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ĤRaman =

 ~
2

2m (p � 2k)2 � � 
R=
p
2 0


R=
p
2 ~

2p2

2m + �e� 
R=
p
2

0 
R=
p
2 ~

2

2m (p + 2k)2 + �

 (6.14)

Where
�e� =

�!

2
� �q =

!3 � !2
2

+ �q (6.15)

By adjusting the relative frequencies of !2 and !3, we can alter the effective quadratic Zeeman shift
that the mF = 0 state experiences.

Floquet Theory in the Spin-1 Coupling Scheme

The spin-1 Raman coupling Hamiltonian has some subtlety hiding beneath the surface of Equation
6.14. The use of the rotating wave approximation in the transformation involving �! is only that,
an approximation. The introduction of a third frequency creates a plethora of issues arising from the
different beat-tones present in the optical field. To be accurate and find the true energies of the system,
we need to consider the system in a Floquet formalism [85]. Floquet theory is roughly a temporal version
of Bloch’s theorem for a spatially periodic Hamiltonian. For the time-dependent periodicity, we have a
Hamiltonian of the form:

Ĥ(t) = Ĥ0 + V (t) (6.16)

With V (t) being periodic with period T:

V (t + T ) = V (t) (6.17)

Then the solutions take the form of:

 (t) = e�int�(t) (6.18)
�(t + T ) = �(t) (6.19)

Where n, as usual, is an integer. The idea of the Floquet solution then is to use these conditions to
recast the periodic Hamiltonian into one in which we look for solutions in the frequency state basis.
The solution gives a set of repeating energy-bands that are separated by the value of the real quadratic
Zeeman shift �q . For this reason in the experiment in Chapter 7 we set the linear Zeeman shift (the
difference in !1�!2) to 25 MHz, yielding �q � 90 kHz, which helped to decouple interactions between
the Floquet bands.

Although we work at high Zeeman splittings to reduce the coupling between the Floquet bands,
there is still an effect present. For working at 25 MHz (such as in Chapter 7), the corrections to �e�
due to the coupling 
R in the Floquet bands can be approximated by the polynomial:

��q(
R) = �q +
2
R

{�4:9 � 10�2 + 1:56 � 10�2
R � 4:41 � 10�3
2
R

� 5:8 � 10�4
3
R � 2:76 � 10�5
4

R

}
(6.20)

Where all terms are in units of EL.

6.2.2 Spin-1 Raman Coupling Parameter Space
From the spin-1 Hamiltonian in Equation 6.14, we can calculate the effect of tuning the effective
Quadratic Zeeman shift in the system at a fixed value of 
R. For the rest of this discussion, I am
assuming that the detuning � = 0, which keeps the symmetry between the mF = �1 states. In the
regime of very little Raman coupling (
R � 0), we have that the bare quadratic Zeeman shift will shift
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Floquet Bands in the Spin-1 Raman Scheme
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Figure 6.13: Three Floquet bands calculated for the spin-1 setup with �q � 90 kHz,
!R = 25 MHz. Dashed lines represent the free-particle dispersions at zero coupling with
mF = �1; 0;+1 represented as blue, purple, red respectively.

the bare mF = 0 dispersion state downward in energy compared to the mF = �1 states. However,
as we increase the values of �e� , the mf = 0 state will reach a critical value when all three states are
degenerate in energy, and an increase further will put the mF = 0 dispersion higher in energy than the
other two states (Figure 6.14). A large enough value of �e� can even make the mF = 0 state disappear
into an unstable configuration.

If we hold the value of �e� constant and increase the value of 
R, a similar process occurs. As
the coupling strength 
R increases, the bands between dispersion widen, and the k = 0 state can go
from being stable to metastable to unstable (Figure 6.15).

From this description, we can see that between the values of �e� and 
R, there exist different
regions where the Raman coupled dispersions will have three, two or one minima. Naturally, this leads
to a parameter space with different phase transitions that can exist. Figure 6.16 shows a parameter
space between �e� and 
R that shows the different regions of dispersions that can exist within the
system. Furthermore, there are regions in the parameter space that have metastable configurations,
and sets of points where the energy of each dispersion minima is degenerate. The physics of this
complex parameter space is explored in Chapter 7 in the context of a magnetic model with phase
transitions. Here it is presented as a reference for the ideas presented later.

Critical Locations in Parameter Space

Starting from Equation 6.14 for the spin-1 Hamiltonian, it is possible to algebraically solve6 for the
locations where the system undergoes transitions between the number of minima and also solve for the

6Algebraically solve means use Mathematica
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Increase Effective Quadratic Zeeman Shift, εq

Figure 6.14: As the effective quadratic shift �q is increased (with 
R = 2EL constant), the
minima in the dispersion associated with the mF = 0 bare state raises in energy with respect to
the other minima. Increasing the value can take the system from 3 to 2 minima in the dispersion.

line of points where all the energy minima in the system are degenerate.
The tricritical point of the system (where all of the regions touch) is located at7:

(
C; �C) = (16

√
5
p
5� 11; 24

p
5� 52) (6.21)

� (6:795 ER; 1:666 ER) (6.22)

The boundary between the 3 minima and 2 minima regions is given by (for 
R less than 
C):


 =

√
1

8

[
�16 + 72�e� � �2e� � (12 + �e�)

√
�112 + �e�(88 + �e�)

]
(6.23)

Where the boundary is given the term of � that gives a real solution. Similarly, this equation gives the
7All of these trends are true up to the annoying

p
2 factor that may or may not be in the definition of the coupling

strength 
R

Increasing Raman Coupling Strength

(Example at εq = 2)

Figure 6.15: At particular fixed values of �q (here = 2EL), incrasing the Raman coupling strength

R causes the system go from 3 to 2 to 1 minima as the increased coupling strength causes a
flattening of the band.
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Figure 6.16: Tuning the parameters coupling (
R) and relative frequencies (effective shift �q)
of the Raman beams yields a parameter space with distinct classes of dispersion relations.

2 to 1 transition boundary for the positive term, with 
 > 
C. The boundary for the 3 to 1 transition
is given by (for (
R; �) less than (
C; �C)):


 =

√
�8(4 + �e�)3
27(�e� � 4)

(6.24)

The triple-degenerate line, where all three wells have the same energy minima is given by (for (
R; �)
less than (
C; �C)):


 =

√
�8

(
�72 +

√
�(�36 + �e�)2(�4 + �e�) + 10�e�

)
(6.25)

6.2.3 Experimental Implementation

Generating a Double Frequency Beam

We developed two methods to generate the double frequency beam for !2 and !3. When first testing
the system and studying the physics, we originally sent the two frequencies to a single AOM via
combing two RF signals prior to the AOM and amplifier. This method generated noticeable higher
harmonics (measured as beat tones on a photodiode) that introduced noise and heating into our
Raman experiments and measurements. After the experiment in Chapter 7, we had developed an RF
filter circuit to mitigate this effect. However, for the experiment in (Chapter 7), we combined the light
between two beam lines in free space via polarization optics, as described in Section 4.3.7. The optics
used to focus the beam and set the polarization at the atoms is described in Section 4.1.5, and the
Raman laser system in Section 4.3.7

BEC Lifetimes and Raman Coupling

The lifetime of the BEC when dressed with the Raman beams is much less than that of the bare
condensate due to heating from spontaneous emission. This typically limits Raman experiments in our
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Figure 6.17: Measurements of the BEC lifetime prior to installing laser-line filters after the
tapered amplifiers. The presence of the Raman beams quickly heated the condensate.

apparatus to around one second in length. However, in the original setup we found that the Raman
coupling would cause the immediate destruction of the condensate. We traced this issue back to
the amplified spontaneous emission (ASE) of the tapered amplifiers (TAs) (Section 4.3.7) we used to
generate the Raman beams. To block the ASE, we placed a set of laser-line optical filters (Semrock
808 nm) after the TAs and adjusted the angle to maximize 790 nm transmission.
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Chapter 7

Magnetic Phases of Spin-1 Spin-orbit
Coupled Bose Gases

In Chapter 6, I laid the foundations for the spin-1 coupling scheme and described the parameter space of
the dispersion energy as the function of the Raman coupling power 
R and an optically induced effective
Zeeman shift �e� . For this spin-orbit coupling (SOC) system, Figure 6.16 described the various regions
where the dispersion could have 1, 2 or 3 distinct energy minima corresponding to similarly distinct
Raman states.

Here I describe our experiment investigating the connection of this system to a magnetic model
involving quantum phase transitions of both first and second order. In the magnetic model, the system
can transition between an unmagnetized state that is effectively a polar BEC state (all the atoms are in
jmF = 0; k = 0 kLi), to a ‘ferromagnetic’ state (all the atoms are in jmF = �1; kL = �2 kLi). As the
system undergoes transitions to have the global minima in the energy in different states, the system
quickly condenses into this new ground state, as evidenced by our observations of a narrow first order
transition.

7.1 Magnetic Ordering in the Spin-1 Spin-Orbit Coupled System

7.1.1 Definition of Magnetic Order in the Spin-1 SOC System
For spin-1/2 systems (i.e, total angular momentum, f = 1=2) like electrons, ferromagnetic order can
be represented in terms of a magnetization vector M = hŜi=~. This is rooted in the fact that the
three components of the spin operator Ŝ transform vectorially under rotation. More specifically, any
Hamiltonian describing a two level system may be expressed as H = ~
0 +
1 �Ŝ, the sum of a scalar
(rank-0 tensor) and a vector (rank-1 tensor) contribution. The former, described by 
0, gives an overall
energy shift, and the latter takes the form of the linear Zeeman effect from an effective magnetic field
proportional to 
1. Going beyond this, fully representing a spin-1 (total angular momentum f = 1

with three mF sublevels: j�1i, j0i, and j+1i) Hamiltonian with angular momentum F̂ requires an
additional five-component rank-2 tensor operator – the quadrupole tensor – and therefore there exist
“magnetization” order parameters that are not simply associated with any spatial direction [60,62,86].

Studies in GaAs quantum wells [87, 88] showed that material systems with equal contributions
of Rashba and Dresselhaus SOC described by the term �kx F̂z , subject to a transverse magnetic field
with Zeeman term 
1F̂x , can equivalently be described as a spatially periodic effective magnetic field.
Our experiments with spin-1 atomic systems use Raman laser with wavelength � to induce SOC of this
form [89–95] with strength � = 2~kR=m, where the single-photon recoil energy and momentum are

123
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ER = ~
2kR

2=2m and ~kR = 2�~=�. This atomic system can therefore be described by the magnetic
Hamiltonian:

Ĥ =
~
2k2

2m
+Ω1(x)�F̂+
2F̂

(2)
zz ; (7.1)

describing atoms with mass m and momentum ~k interacting with an effective Zeeman magnetic field
Ω1(x)=
1 = cos(2kRx)ex � sin(2kRx)ey helically precessing in the ex -ey ; and an additional Zeeman-
like tensor coupling with strength 
2. From Section 6.2.2, our value of 
R maps to the strength of
the vector interaction with the spins, 
1. Here, F̂(2)zz =~ = F̂2z=~

2� 2=3 is an element of the quadrupole
tensor operator, where the strength of the interaction 
2 is related to the effective Quadratic Zeeman
shift in Section 6.2.1 by the relation 
2 = ��q .

For the magnetic model, we consider a magnetization term to track the relative population of
the Raman states:

Mz =
n�1 � n0
n�1 + n0

(7.2)

Where n�1 is the atom number in the sum of the mF = �1 states, and similarly n0 is the population
in the mF = 0 state. Here Mz represents the order parameter of our model system. Because we are
defining the magnetization based on the number of atoms in the absolute value of the spin component,
the system is reminiscent of a spin-1/2 system with the spin states either pointing up or down.
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Figure 7.1: Calculation of the magnetization Mz in the magnetic system as function of 
1 at
fixed 
2 = 2EL. Insets: As 
1 is increased, the dispersion energy in the Raman coupling scheme
(Section 6.2.2) will transition from having a different number of minima.
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However, in our system we can define a second order parameter Mzz :

Mzz =
n0

n�1 + n0
(7.3)

This order parameter, that we call the tensor magnetization, is related to the tensor operator 
2 in our
model Hamiltonian.

7.1.2 Parameter Space in the Magnetic Model
As described in Section 6.2.2, this system contains a parameter space that, in the magnetic model,
depends on the values of 
1;
2. Figure 7.2 shows the parameter space within this new framework
with the magnetization Mz shown.

From the discussion of critical lines and points in Section 6.2.2, we can calculate regions where
first-order transitions and second-order transitions can occur. These two phase-transitions continuously
connect at the point (
�

1;

�
2) (as defined in Equation 6.22), the purple circle in Section 6.2.2, where

the small-
1 first-order phase transition gives way to the large-
1 second-order transition, and together
these regions constitute a curve of critical points f(
C

1 ;

C
2 )g.

Second-Order Transitions

The second-order transition can be intuitively described starting in the large 
1 limit where the system
forms a spin helix BEC. This order increases the system’s kinetic energy, leading to the second-order
phase transition into the ferromagnetic phase shown in Figure 7.4 as 
1 is varied. This second-order
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Figure 7.2: Phase Diagram for jMz j in the magnetic model with parameters 
1 and 
2. Dark
blue shading represents the value of jMz j, the first and second order transitions in the system are
represented by pink and orange lines respectively. The region contained by the light blue dashed
line represents where metastable magnetic states are present.
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Parameter Space and Magnetization

0 2 4 6 8

-4

-2

0

2

4

0 2 4 6 8

-4

-2

0

2

4

0 2 4 6 8

-4

-2

0

2

4

0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

0 2 4 6 8

0

0.5

1

M
a
g

n
e
ti

za
ti

o
n

 <
|M

Z
|>

Ω1 (ER) 

Ω1 (ER) 

Ω1 (ER) 

Ω1 (ER) 

Ω1 (ER) 

Ω1 (ER) 

Ω
2

(E
R
) 

Ω2 = 1 ER Ω2 = -2 ER Ω2 = -4 ER

Figure 7.3: Magnetic states as a function of 
1 at select 
2. Left: At positive 
2, the system
goes from having metastable magnetized (Mz > 0) states available (blue), to having a single
unmagnetized state (Mz = 0, purple). Center: At lower 
2, the system can undergo a continuous
transition from magnetized states to unmagnetized states in a second order transitions. At low

1, the unmagnetized state can persist as a metastable state. Right: With 
2 decreased further,
the magnetization profile no longer contains any metastable states.

phase transition is analogous to other systems with effective spin-degrees of freedom such as double-leg
ladders [96] or engineered optical lattices [97,98].

First-Order Transitions

In the limit of infinitesimal 
1, the tensor magnetization terms favors either a polar BEC for 
2 > 0

(mF = 0: unmagnetized, Mz = 0), or a ferromagnetic BEC for 
2 < 0 (mF = +1 or �1: magnetized,
jMz j = 1). As with spinor BECs [64], these phases are separated by a first-order phase transition at

2 = 0, where the mF = 0 state is either lower or higher than the mF = �1 states due to the tensor
energy shift (i.e. quadratic Zeeman shift of the mF = 0 state). As bosons have a strong preference to
condense into the lowest energy state of the system through Bose stimulation [99], immediately after
the configuration has crossed the transition the state of the system will change.

Metastable States

From Figure 7.5, for values of 
2 not far from the first-order transition, all three magnetic states exist.
Here a metastable state with Mz = 0 persists in the ferromagnetic phase, and a pair of metastable
states with Mz 6= 0 persists in the unmagnetized phase. As mentioned in the previous section, after
crossing the first-order phase transition, the BEC will condense into the lowest energy state. However,
this process takes dramatically longer for the first-order transition than the second-order transition (up
to 1:5 s compared to 50 ms).

Another interesting configuration is one where the values of 
1 and 
2 place the system on a
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netic states begin to approach a value of Mz = 0. The two states merge continuously to a single
unmagnetized state for large enough 
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energy.

critical point of the first-order transition. In this situation, all three states are degenerate in energy1

which can lead to interesting many-body phases where the miscibility of the different bare spin states
is altered [100], including an tripartite mixture in-plane ferromagnetic phase with no analogue in spinor
BECs or effective spin-1/2 SOC BECs [101].

1Our group lovingly refers to this condition as being on the ‘triple degenerate line’
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Figure 7.5: First order phase transition. As 
2 increases, the unmagnetized state (bare state
� jmF = 0; k = 0i) raises in energy with respect to the symmetric ferromagnetic states. When
at higher energy, the BEC will condense into the energetically favorable ferromagnetic states. For

2 near the transition all three states exist, with either the unmagnetized state or magnetized
states being metastable. Solid black line represents the uncoupled minimum energy.

7.2 Experimental Setup and Measurements

As shown in Figure 7.6, we realized the magnetic system by illuminating 87Rb BECs in the
F = 1 ground state manifold with a pair of counter propagating and orthogonally polarized Raman
lasers that coherently coupled the manifold’s mF states. Physically, the spatial interference of the
orthogonally polarized laser beams give rise to the helical effective magnetic field with period �=2. As
first showed [90] using effective F = 1=2 systems, this introduces both a spin-orbit and a Zeeman term
into the BEC’s Hamiltonian, equivalent to Equation 7.1. Here the quadratic Zeeman shift from a large
bias magnetic field B0ez split the low-field degeneracy of the j�1i $ j0i and j0i $ j+1i transitions,
and we independently Raman coupled these state-pairs with equal strength 
1. We dynamically tuned
the quadrupole tensor field strength 
2 by simultaneously adjusting the Raman frequency differences;
as shown in Figure 7.6 we selected frequencies differences where the detuning from the j+1i to j0i and
j�1i to j0i were both equal to 
2 (see Methods Summary). Without this technique, only the upper
half-plane of the phase diagram (Figure 7.2) would be accessible, containing only an unmagnetized
phase and lacking any phase transitions.

In each experiment, we first prepared BECs at a desired point in the phase diagram, possibly
having crossed the phase transition during preparation. A combination of trap dynamics [102, 103],
collisions, and evaporation [104] kept the system in or near (local) thermal equilibrium. We then made
magnetization measurements directly from the Bose-condensed atoms measured in the spin resolved
momentum distribution obtained using the time-of-flight (TOF) techniques described in Section 6.1.6.
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7.2.1 Control of Magnetic Field Noise
In order to make precision measurements of the phase transitions, we needed to have absolute control
of the magnetic fields within the experiment. Section 6.1.5 describes the effect of detuning the Raman
coupling resonance, and the subsequent shifting of the minima of the energy dispersion. In our system,
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Figure 7.7: Magnetization jMz j as a function of 
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2 = 2:5ER. The solid curve represents
zero detuning. The dotted curve represents the magnetization with a detuning of � = 0:2ER. The
shaded region between the two curves represents the region of uncertainty for such a detuning.
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we attempt to combat this by using magnetic field stabilization techniques (Section 4.4.7), in particular
using the flux gate field stabilization system (Appendix A) to remove long term drift.

Through such efforts, we have an approximate 1 mG shot-to-shot variation in the magnetic field
as measured by the atoms. However, this translates into an � 0:2ER detuning in the system. Figure 7.7
illustrates the woes of the magnetic field: a small detuning uncertainty can change the magnetization
drastically near the transition lines described in Section 6.2.2. We can further try an post-select images
that are obviously highly detuned (as measured by an imbalance in mF = �1 in the measurement
process), however this ultimately limits the precision we can achieve.

7.3 Measurements

7.3.1 Second-Order Scans
Our experiment first focused on second phase transitions. We performed the scans in the following
sequence (see Figure 7.8). First, we prepared the condensate in the unmagnetized phase (
2 > 0) and
ramped 
1 far into the spin-helix phase. We then reduced the value of 
2 > 0 to the regime where
second order transitions can occur. We then ramped 
1 toward zero, while trying to slowly cross the
second order phase transition where the system goes from one to two minima (Figure 7.4). We ramped

1 at a rate of � �40ER=s, allowing the system to adiabatically track the ground state, and allowed
50 ms for equilibration before the measurement process described in Section 6.1.6.

By measuring at various end values of 
1 at a given 
2, we can map out the magnetization
(Figure 7.9). In each case, data is plotted along with theory with no adjustable parameters. Repeating
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1 to cross the second-order transition.
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Measurement of Phase Transition Boundary
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the horizontal scan processes for 
�
2 < 
2 < 0, we found a sharp first-order transition within the

magnetic system.
Using data of this type for a range of 
2 and fitting to numeric solutions of Equation 7.1, we

obtained the critical points plotted in Figure 7.10, bottom. Because horizontal cuts through the phase
diagram are nearly tangent to the transition curve for small 
2, this produced large uncertainties in 
C

1

for the first-order phase transition.

7.3.2 First-Order Scans
We studied the first-order phase transition with greater precision by ramping 
2 through the transition
at fixed 
1 and found near perfect agreement with theory. To perform these scans, we start with
the BEC in an unmagnetized state with 
2 > 0, similar to the horizontal scans described previously.
Here, we ramp 
1 < 
C

1 to stay primarily within the first-order transition regime. We then ramp 
2

across the first-order transition, and measure the tensor magnetization Mzz after a hold time between
0:2 ms and 2 s to allow for equilibration. The reason for this sequence is two fold. First, similar to the
argument for horizontal scans for the second order transition, the curve for the first order transitions
is perpendicular to a ramp in 
2. Secondly our control of 
2, set by the frequency difference in the
Raman beams used in the experiment, can be controlled to incredibly high precision, allowing us to
precisely measure the location and width of the first-order transitions.

For all the experimentally measured critical points (Figure 7.10), separating the unmagnetized
and ferromagnetic phase, we also measured the corresponding transition width defined as the required
interval for the curve to fall from 50% to 20% of its full range. This width � decreases sharply at

�
1, marking the crossover between second- and first-order phase transitions as shown in Figure 7.10,

bottom. In these data, the width of the first-order transition becomes astonishingly narrow: as small
as 0:0011(3)ER = h � 4(1)Hz at 
1 = 0:41(1). This narrowness results from the energetic penalty
associated with condensation into multiple modes for repulsively interacting bosons.



Chapter 7. Magnetic Phases of Spin-1 Spin-orbit Coupled Bose Gases 132

Measurement of Phase Transition Boundary

Ω1 (EL)

Ω
2

(E
L
)

W
id

th
 (

E
L
)

-3

-2

-1

0

0 1 2 3 4 5 6 7 8

0

0.5

Figure 7.10: Top: Measurement of the phase transition locations for the magnetic system. Red
circles represent vertical scans through parameters space, while teal circles represent horizontal
scans. The theory lines for the first and second order transitions are highlighted by solid pink and
orange lines, respectively. The critical location where the two transition orders meet (
C

1 ,
C
2 ) is

represented by the purple circle with 
C
1 mapped as a vertical purple line. Bottom: The width

of the phase transitions ( 20% and 50% widths)



133 7.3. Measurements

Ω
2
 (
E

R
)

0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4

First-Order Transition Measurements

1.) Start with 

BEC in

mf = 0 in 

polar phase

2.) Ramp Ω1

Ω1 (ER)

3.) Ramp Ω2

4.) Measure 

System

Figure 7.11: Ramping sequence used for the horizontal (primarily first-order transition) mea-
surements. We first ramp to a constant 
1 in an unmagnetized state and then ramp 
2 across
the transition to a target value.
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Figure 7.12: Quenching dynamics The system was prepared in the unmagnetized phase with

1 = 0:74(8)ER and 
2 was ramped through the phase transition at ramp-rates d
2=dt =

�0:2;�0:3;�0:4, and �0:5ER=s (blue, black, red, and green symbols, respectively). The curves
are guides to the eye.
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Figure 7.13: Experimental sequence for measuring the metastability in the magnetic system.
For each value of (
1,
2) that we measured, we take three separate measurements. The three
measurements are performed with the ramp shown, but initializing the BEC in either the mF =

1; 0;�1 states.

7.3.3 Metastable Scans
Systems taken through a first-order phase transition can remain in long-lived metastable states as
described previously in Section 7.1.2. We began our study of this metastability by quenching through
the first-order transition at 
1 = 0:74(8)ER with differing rates from 0:5 to 0:2 ER=s, as shown
in Figure 7.12. We observed the transition width continuously decreases with decreasing ramp rate,
consistent with slow relaxation from a metastable initial state.

We explored the full regime of metastability by initializing BECs in each of the mF states, at
fixed 
2, then rapidly ramping 
1 from zero to its final value fast enough that the system did not
adiabatically follow into the true ground state, yet slow enough that the quasi-equilibrium metastable
state was left near its local equilibrium. We found that the rate . 200ER=s was a good compromise
between these two requirements. For points near the first-order phase transition three metastable states
exist (Figure 7.14); near the second-order transition this count decreases, giving two local minima which
merge to a single minimum beyond the second-order transition.

We experimentally identified the number of metastable states by using Mz and its higher mo-
ments, having started in each of the three mF initial states. A small variance in Mz , less than 0.25,
indicates the final states are clustered together (associated with a single global minimum) and it in-
creases when metastable or degenerate ground states are present. We distinguished systems with two
degenerate magnetization states (Mz � �1) from those with three states by the same method, since
when Mz � �1, the variance of jMz j is smaller than 0.25, and it distinguishably increases beyond 0.25
as a third metastable state appears with Mz = 0. In this way we fully mapped the system’s metastable
states in agreement with theory, as shown in Figure 7.14.
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Figure 7.14: Top: Measured magnetization plotted along with theory. The system was prepared
at the desired 
2 = �2ER; 
1(t) was then increased to its displayed final value; during this
ramp 
2 also changed, and the system followed the curved trajectory in the bottom panel. Each
displayed data point is an average of up to 10 measurements, and the colored region reflects the
uncertainty in theory resulting from our � 5% systematic uncertainty in 
1. Circles/crosses/stars
represent data starting in mF = +1, 0, and �1 respectively. Bottom: Parameter space theory
and experiment. Blue: two states; black: three states; white: one state. Colored areas denote
calculated regions where the color-coded number of stable/metastable states are expected. Green
star represents the critical point where the phase transitions (dark/light solid green) go from first
to second order. Symbols are the outcome of experiment. Each displayed data point is an
average of up to 20 measurements.

7.4 Conclusion

In conclusion, we accurately measured the two-parameter phase diagram of a spin-1 BEC, con-
taining a ferromagnetic phase and an unmagnetized phase, continuously connecting a polar spinor BEC
to a spin-helix BEC. The ferromagnetic phase in this itinerant system is stabilized by SOC, and vanishes
as the SOC strength ~kR goes to zero. Our observation of controlled quench dynamics through a first-
order phase transition opens the door for realizing Kibble-Zurek physics [50,105] in this system, where
the relevant parameters can be controlled at the individual Hz level. The quadrupole tensor field / F̂

(2)
zz

studied here is the q = 0 component of the rank-2 spherical tensor operator F̂(2)q , with q 2 f�2;�1; 0g.
The physics of this system would be further enriched by the addition of the remaining four tensor fields.
The q = 0 term we included is the simplest of the tensor fields to deploy, as it required control over fre-
quencies. The q = �1 components are relatively simple to incorporate by RF-coupling the jmF = �1i
to jmF = 0i and jmF = +1i to jmF = 0i transitions with different phases. The q = �2 components
require direct coupling between jmF = +1i and jmF = �1i which is straightforward using two-photon
microwave transitions, but is challenging to include with significant strength.
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Chapter 8

Vortices in Non-Uniform Magnetic
Fields

8.1 Overview of Vortices in Quantum Fluids

Degenerate ultracold atomic gases are a kind of quantum fluid which can have behavior analogous to
those present in other quantum systems ranging from exotic materials [106,107], to neutron stars [108].
Quantized vortices are a common element present in superconductors [109], superfluids [110], and di-
lute atomic Bose-Einstein condensates (BECs) [74], or any system where the single valuedness of the
wavefunction demands quantized circulation.

Here I discuss the physics of vortices in BECs, and the conditions in which they are energetically
favorable to form within the condensate. In the following sections, I take a hydrodynamic approach
that treats the condensate as a superfluid for all practical purposes.

8.1.1 Mass Flow and Conditions for Quantized Circulation
To consider the fluid flow of a condensate, we need to discuss the condensate in terms of a density and
mass flow. We start we the time-dependent Gross Pitaevskii equation:

i~
@

@t
 (~r; t) =

(
� ~

2

2m
r2 + V (~r) + gj (~r; t)j2

)
 (~r; t) (8.1)

As mentioned we are interested in the density n = j j2. Using the hydrodynamic description of
BECs [16], to find the velocity of the fluid we multiply Equation 8.1 by  � and subtract by the complex
conjugate to get:

0 =
@

@t
j j2 +r �

(
~

2mi
( �r �  r �)

)
(8.2)

We define the velocity of the condensate as:

~v =
~

2mi

( �r �  r �)
j j2 (8.3)

Making the substitution that n = j j2 and the definition of v into Equation 8.2:

0 = @tn +r � (n~v) (8.4)

137
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Figure 8.1: Radial cross-section of a uniform medium with a vortex at the center. Due to the
conditions on the wavefunction, the density must go to zero at the vortex core and at far distance
the density will approach a constant value.

Which is the continuity equation for the dilute gas (directly analogous to the continuity for fluids [111]
and for charge conservation in electromagnetism [112]).

If we consider a wavefunction of the form  (~r) = f (~r)e i l�(~r), that has a real amplitude f and a
imaginary phase factor term then by Equation 8.2 it follows that the velocity of the condensate is given
as:

~v =
~

m
r�(~r) (8.5)

The interesting result from this hydrodynamical model is that the velocity flow of the condensate is
irrotational, i.e. r � ~v = 0. The wavefunction of the condensate must also be single-valued and
continuous, therefore along any closed loop in space, the phase of the condensate can only advance by
2�l where l is an integer value. This requirement, more mathematically stated is:

�� =

∮
r� � d~l = 2�l (8.6)

Using the identity in Equation 8.5, we get:

� =

∮
~v � d~l = 2�~l

m
=
h

m
l (8.7)

Therefore the circulation of the velocity around a closed curve is quantized in angular momentum,
leading to singular defects in the density, i.e. vortices, at a central point. The winding phase of � must
become singular at a point in the advancement by 2� in a rotational geometry. Therefore to avoid a
diverging wavefunction at the central point, the density f of the condensate goes to zero.

8.1.2 Vortices in BECs
A Single Vortex in a Uniform Fluid

Before going full into the physics of vortices in condensates, I start with an introductory case here for
the vortex in a spatially uniform fluid (i.e. V (x; y ; z) = 0). Here I focus on the energy cost for a vortex
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to be placed into the system. We can calculate the energy cost of the vortex being present by looking
at the Hamiltonian of the system:

E = h j Ĥ j i =
∫
 �Ĥ dr

=

∫
d~r

(
~
2

2m
jr j2 + V j j2 + g

2
j j4

) (8.8)

However, we can simplify for our case of a uniform gas with a trapping potential V = 0. From the
discussion in the previous section, I start with a generic wavefunction with a real valued amplitude and
imaginary phase term that can contain a phase winding:

 (r; z) = �(r; z)1=2e i l� (8.9)

Where � is the density of the BEC (a real-valued function), � is the phase angle of the wavefunction,
and l is an integer to account for multiples of 2�. If we cast the energy calculation in terms of cylindrical
coordinates (i.e. no z dependence), and insert our generic wavefunction we get:

E =

∫
d~r

(
~
2

2m

[
(@r�)

2 +
�2l2

r2

]
+
g

2
�4
)

(8.10)

To perform this integral, we need to put bounds on the volume in which we are integrating over (as
a uniform gas will have infinite energy in infinite space). Here I consider the volume of a cylinder of
radius a, such that the integral becomes:

E =

∫ a

0

2�rdr

(
~
2

2m

[
(@r�)

2 +
�2l2

r2

]
+
g

2
�4
)

(8.11)

Note that this is the total energy of the system, including the vortex. To find the energy cost of the
vortex, we need to subtract the energy of the system without the vortex. For the uniform system with
no vortex, the density is a constant uniform value of � = �c . If we take Equation 8.11 with l = 0 (no
circulation) then we get the energy of the stationary state, E0:

E0 =

∫ a

0

2�rdr
(g
2
�4c

)
(8.12)

However, we also need to account for the difference in the density form the vortex and non-vortex
configurations. Under the constraint of constant atom number in a given volume, when the vortex
is present the density far from the core must be larger then in the uniform case as the mass near
r = 0 has been displaced outward to larger r . This effect will change the interaction energy term in
Equation 8.11 between the vortex and non-vortex scenarios. To account for this, we again consider our
cylindrical volume of radius a. The atom number is constant, which means the integration over the
number densities must be equal as well. The expression for the particles per unit length nl for the no
vortex case:

nl = �a2�2c �
∫ a

0

2�dr
(
�2c � �2

)
(8.13)

Note that in the limit of the vortex density profile � becoming constant, this expression simply evaluates
to the average density in a uniform medium. Combining number density with the interaction energy
definition, the energy density from interactions becomes:

Eint =

∫ a

0

2�rdr
(g
2
�4c

)
� �2cg

∫ a

0

dr 2�r(�2c � �2) (8.14)

Using the correction from the density profile modifying interactions, we can subtract the energy
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of the system without a vortex, E0, from the total energy of the system with the vortex, Ev :

Ev =

∫ a

0

2�rdr

(
~
2

2m

[
(@r�)

2 +
�2

r2
l2
]
+
g

2
(�2c � �2)2

)
(8.15)

Which vanishes if l = 0 (no vortex) and the density becomes constant. The amplitude of the condensate
wavefunction can be determined directly (i.e. numerically) by solving the GPE for �:

�� =
~
2

2m

[
�1

r
@r (r@r�) +

l2

r2
�

]
+ g�3 (8.16)

In the case of a numerical solution, the energy of the vortex in the uniform fluid can be calculated using
Equation 8.15 [16]:

Ev =
�~2�c

m
ln

(
1:464

a

�

)
(8.17)

Where � = (8�ascatn0)
1=2 (Section 2.2.3) is the healing length of the condensate.

Vortices in a Trapped Condensate

As an extension to the uniform condensate, we can advance the discussion to the energy associated
with a vortex inside a confined condensate. For simplicity, I consider the case of the experimentally
relevant geometry of a harmonic potential where there is a cylindrical symmetry !x = !y 6= !z with
a vortex at r = 0. Because the radius of the condensate in plane, RTF, is significantly larger than the
size of the vortex, approximately the healing length �, the result in Equation 8.17 is valid for length
scales intermediate to these two.

To account for the trapping potential in plane, we consider the kinetic energy of the rotating
condensate for values of RTF > r > a. Each particle at a distance r will have a kinetic energy of
E = 1=2mv(r)2. To find the total kinetic energy contribution, we integrate along the radial direction
and multiply by the density of atoms as a function of the radius:

EK =
1

2
m

∫ RTF

a

dr 2�rn(r)v(r)2 (8.18)

Where n(r) is the radial density of the condensate. The density profile of the condensate at a radius r
away from the vortex core is simply given by the Thomas-Fermi profile (Section 2.2.4):

n(r) = n0(1�
r2

R2
TF

) (8.19)

Where n0 is the density at the center of the condensate if there were no vortex present. The velocity
of the condensate can likewise be calculated from the expressions in Equation 8.5 and Equation 8.7:

v(r) =
~

mr
(8.20)

If we combine Equation 8.19 with Equation 8.20 in Equation 8.18, we get the kinetic energy contribution
as:

EK =
�n0~

2

m

∫ RTF

a

dr
1

r

[
1� r2

R2
TF

]
(8.21)

Evaluating Equation 8.21 gives the energy cost due to the trap as:
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EK =
�n0~

2

m

[
ln(RTF)� ln(a) +

1

2

(
a2

R2
TF

� 1

)]
(8.22)

(8.23)

Using the approximation that a << RTF to neglect the quadratic term, we get a final approximate
contribution of:

EK =
�n0~

2

m

[
ln

(
RTF

a

)
� 1

2

]
(8.24)

To find the total energy of the vortex in the trapped system, we add the kinetic energy in Equation
8.24 to the uniform case in Equation 8.17 to get the total energy of:

Ev =
�n0~

2

m

[
ln

(
1:464

a

�

)
+ ln

(
RTF

a

)
� 1

2

]
(8.25)

=
�n0~

2

m
ln

(
0:888

RTF

�

)
(8.26)

Thus the presence of the trap does not significantly change the functional form of Ev , but just the
numerical constant within the logarithm.

To consider the energy cost for the full three dimensional system, under the condition that
Rz >> �, we can approximate the energy of the vortex in the condensate as being composed of
multiple two dimensional systems with a central vortex [113]. In this description the density profile n0,
(and therefore the healing length �) and the radial extent of the condensate RTF all become functions
of z . For a radial slice, we get a small energy contribution described by Equation 8.26:

dE(z) =
�n(z)~2

m
ln

(
0:888

RTF(z)

�(z)

)
dz (8.27)

Again, the Thomas-Fermi description of the condensate (Section 2.2.4) saves us from effort as we can
quote the density and radius as:

n(z) = n0

(
1� z2

R2
z

)
R(z) = RTF

(
1� z2

R2
z

)1=2 (8.28)

The healing length is slightly trickier, but likewise can be computed as:

�(z) = �0 (n0=n(z; r = 0))1=2 (8.29)

Where �0 is the healing length at the center of the condensate, n0 is the density at the center of the
condensate and n(z; r = 0) is the density along the z-axis of the condensate. Therefore we can express
the vortex energy per slice of the condensate in Equation 8.27 as:

dE(z) =
�n0~

2

m

(
1� z2

R2
z

)
ln

(
0:888

RTF

�0

[
1� z2

R2
z

])
dz (8.30)

If we want the total energy of the vortex, we integrate across all values of z :
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Ev =

∫ Rz

�Rz

dE(z)

= 2

∫ Rz

0

dz
�n0~

2

m

(
1� z2

R2
z

)
ln

(
0:888

RTF

�0

[
1� z2

R2
z

]) (8.31)

Here I used the z axis symmetry of the condensate to alter the bounds of integration. Thanks to an old
table of integrals hidden deep somewhere within the catacombs of mathematical knowledge, a similar
integral can be evaluated as [113]:∫ 1

0

dx(1� x2) ln(1� x2) = 1

9
(12 ln(2)� 10) (8.32)

Using the relationship in Equation 8.32 to evaluate Equation 8.31 for the vortex energy (using appro-
priate rescaling of the integration variable z), we get:

Ev =
4�~2n0Rz

3m
ln

(
0:671

RTF

�0

)
(8.33)

Given the trap geometry the condensate is in, and the number of atoms within the condensate, the
energy of a vortex forming can be calculated using Equation 8.33. The astute reader may wonder how
a vortex can form, as Equation 8.33 suggests a vortex will always carry an energy penalty that the
system will avoid. In the next section I will discuss the barrier of entry of vortices, and the associated
rotational dynamics to create conditions favorable for vortices to nucleate within the BEC.

Rotating Condensates and the Barrier to Entry of Vortices

For a vortex to be energetically favorable, we must compare the energy of the stationary ground state
compared to the energy of a condensate with a vortex in a frame rotating with an angular frequency 
.
The energy of the condensate rotating around the z-axis in the rotating frame is given as ER = ES�
Lz ,
where ER and ES represent the rotating and non-rotating energies respectively [114]. Therefore we
can define a critical value of the rotation frequency such that the rotating state will be energetically
favorable as:


c =
ER � ES

Lz
(8.34)

We know the difference in the numerator as the vortex energy Ev from Equation 8.33. The angular
momentum, on the other hand, is still to be calculated. The angular momentum Lz of the condensate
is ~ multiplied by the number of particles in the condensate. Cast in terms of a density, we calculate:

Lz =

∫ Z

�Z

dz

∫ RTF

0

2�dr

(
1� r2

R2
TF

� z2

R2
z

)
(8.35)

This is simply the result derived in Equation 2.42 for the atom number in the Thomas-Fermi approxi-
mation multiplied by ~:

Lz =
8�

15
~n0RzR

2
TF (8.36)

We can combine Equation 8.34 with Equation 8.36 to get the critical angular frequency of rotation in
which the vortex state becomes energetically favorable:


c =
Ev

Lz
=

5~

2mRTF
ln

(
0:671

RTF

�0

)
(8.37)



143 8.1. Overview of Vortices in Quantum Fluids

Connection Between Rotation and Magnetic Fields

In the context of Section 8.2, it is important to discuss the relationship between magnetic fields and
rotation in terms of vortices. The equivalence of the Lorentz force for particles in uniform magnetic
fields and the Coriolis force for a rotating system allows us to extend the discussion of vortices as
introduced by magnetic fields, here specifically synthetic magnetic fields acting upon our charge neutral
BECs. For a given synthetic field B, we can define a cyclotron frequency such that 
 = qB=m. Here
the cyclotron frequency has a direct correspondence to the rotation frequency in the previous section,
allowing us to similarly define a critical synthetic magnetic field strength in which vortices appear:


c =
qBc

m
=

5~

2mRTF
ln

(
0:671

RTF

�0

)
(8.38)

Or in terms of the magnetic field:

Bc =
5~

2qRTF
ln

(
0:671

RTF

�0

)
(8.39)

8.1.3 Experimentally Generating Vortices in Condensates
Since the first observation of vortices in BECs [115] there have been various mechanisms used to
nucleate vortices into condensates. In this section I will provide an overview to the varying methods
and their characteristics.

Engineering Phase Windings

In various experiments, vortices were created in BECs by generating a wavefunction that has a phase
singularity imprinted into it, as described in Equation 8.5. From Equation 8.5, this will create an
azimuthal mass flow, thereby generating a vortex. These methods typically generate a low number of
vortices (order unity) as it becomes more experimentally difficult to generate the requisite number of
phase windings required for more circulation. Examples are shown in Figure 8.2.

Applied Rotation to Condensates

In comparison to imprinting the appropriate phase conditions, other experiments created vortices in
a BEC via rotation of the cloud. This method includes those that use a blue detuned optical beam
rotating in time (providing the time dependent force) and rotating traps. This method uses the rotation
of the condensate to cause the vortex state to be energetically preferable as discussed in Section 8.1.2.
In this method, a stationary BEC is subjected to a rotation, and the system is allowed to evolve into
the rotating ground state configuration preferring vortex formation.

Rotating traps can produce large number of vortices (Figure 8.3) as the BEC relaxes into the
rotating ground state. The number of vortices Nv the system can support at a given rotation 
 is
given by:

Nv =
2m


h
A (8.40)

Where A is the area of the condensate projected onto the rotation vector direction. From the density
profiles of a confined condensate (Section 2.2.4), the area is related to the number of atoms in the
condensate, hence a larger condensate with many atoms can support a larger number of vortices
in rotational equilibrium. While the system can support many vortices in equilibrium, the time to
equilibrate can be comparable to the lifetime of the condensates (� 1 second). Over these long times,
the vortices are predicted to form a triangular lattice (Figure 8.3) in an infinitively large medium [118].
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Vortices via Engineering the Phase

Merging 

Condensates

Phase 

Imprinting

Figure 8.2: Top: Vortices generated by three separated BECs which are then merged together.
The phase difference between the BECs can vary such that there is an azimuthal phase winding,
thereby generating flow. Picture from experiment in [116]. Bottom: An inverting magnetic field
is used to introduce a topological phase into the condensate. Picture from [117].

Generating Vortices via a Synthetic Gauge Field

Owing to the analogy between the Lorentz force and the Coriolis force, a BEC of charged particles
will experience the same vortex nucleation dynamics as a rotating charge neutral BEC. As described
in Chapter 6, we can create a synthetic magnetic field that will drive vortex nucleation within the
non-rotating condensate. This approach is unique in that there are no time-dependent potentials, i.e.
the synthetic magnetic field is at rest in the lab frame.

This method can be extended into cases where the optical generation of the synthetic field is no
longer uniform. In such cases, the non-uniform field can be high strength and tightly confined, creating
regions where the effective rotational force overwhelms the other local energy scales, thereby rapidly
nucleating vortices into the condensate. The experiment and observations of such effects is described
in the latter half of the chapter in Section 8.2.

Vortex Lattice in Rotating BEC

Figure 8.3: Vortices and vortex lattice generated from a stirring laser. Image from Reference
[119]
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Figure 8.4: Onset of vortex nucleation via synthetic magnetic fields as measured by the shear
in the BEC density after TOF [83]. The sudden increase in shear as the detuning gradient
is increased (which determines the synthetic field strength, Section 6.1.5) coincides with the
observation of vortices in the system.

8.2 Rapid Entry of Vortices via Non-uniform Synthetic Gauge
Fields

In this section I discuss the experiment exploring a new mechanism for vortex nucleation in BECs
using non-uniform synthetic magnetic fields. In the uniform field experiments, the number of vortices
and the rate in which vortices are created is dependent upon the rate of rotation and the density of
atoms in the condensate [120–122]. It is energetically favorable for vortices to form at the systems
edge, where the low atomic density facilitates vortex formation. These vortices then migrate toward
the center of the condensate, where they can ultimately relax to form a vortex lattice.

Even in cases where the effective magnetic field is not uniform across the condensate, the same
mechanisms of vortex nucleation, the coupling of perturbations to higher trap modes, applies [123].
Furthermore, the arrangement of the vortices across the condensate will be correlated with the geometry
of the effective magnetic field, where vortices preferentially congregate in high field regions. We first
prepared pairs of independent BECs in a double-well potential, with an engineered strong artificial
magnetic field present in the barrier separating the BECs. We then merged the BECs by lowering the
barrier and expanding the region of artificial field to nominally uniformly cover the resulting single BEC.

Here we created an inhomogeneous laser-induced artificial magnetic field ( [124]) initially max-
imized in the space between a pair of separated BECs. Initially, the atomic density in the high field
region was small but non-zero, allowing the ready formation of “hidden vortices” [125]. We then grad-
ually expanded the region of high field while merging the BECs, eventually reaching a single BEC in the
uniform field limit. In comparison to rotating trap experiments, this method rapidly nucleates vortices
in the low atomic density regions between the condensates, which become located at the condensate
center after the two BECs merge.

The strength and location of the artificial field, as well as the double-well potential is determined
by two parameters, the strength of the Raman coupling interaction, and the spatial detuning used to
generate the synthetic magnetic field.
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Figure 8.5: Left: Synthetic vector potential curves as a function of increasing Raman coupling
strength 
R. At small values of 
R, the vector potential has large discontinuities, generating
large magnetic fields. Left: Calculation of synthetic magnetic field at various values of 
R. Both
plots are at �0 = 300 Hz= �m and colors correspond to same values of 
R on each plot.

8.2.1 Generating the Separated BECs and Synthetic Field
In Section 6.1.5, I outlined the methods to generate a synthetic magnetic field in BECs via optical
interactions. However the original experiments did not fully explore the parameter space between the
strength of the spatial detuning and the Raman coupling strength. Within experimentally accessible
regimes, there can exist interesting linear vortex structures as predicted by GPE simulations. Here I
want to develop the origin of the different parameter regimes in the system, and discuss the different
behavior that is manifested.

First, as described in Section 6.1.3, I restrict the study of the system to the lowest dispersion band
of the Raman Hamiltonian, under the assumption that the energy difference between the dispersion
bands is larger than any other characteristic energy scale. Our system then can be described by an
equivalent Hamiltonian for a spinless boson with an vector potential in the x̂ direction:

Ĥ =
~
2

2m
(k2y + k

2
z ) + V (r) +

~
2

2m
(kx � Ax(
R; �))

2 (8.41)

Where Ax , the effective vector potential, depends on the Raman coupling strength 
R, and the
detuning from the Raman resonance �. Here I describe the energy and momentum, as per usual, by
the characteristic units EL = ~

2k2L=2m and kL =
p
2�=�R, where �R is the wavelength of the Raman

beams creating the interaction.
For small 
R and � = 0, the dispersion relationship in the F = 1 manifold of 87Rb has three

minima at k � �2; 0;+2 kL, with an energy degeneracy between the k = �2 kL states. As 
R is
increased, the dispersion bands will transition from multiple minima to a single minima [84,126]. As a
detuning � is added, the symmetry between the spin-momenta states is broken and as � increases, the
dispersion band will deform towards a single global minima as described back in Section 6.1.5.
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For a pair of � and 
R values, the dispersion relation for the lowest Raman band can be computed
and its global minimum energy found. The value of the artificial vector potential Ax is defined at the
momentum of the global dispersion minima, and the scalar value � is defined as the downward shift
in energy from the uncoupled state. For all j�j > 0, the presence of the Raman coupling will increase
the magnitude of A and shift the minimum dispersion energy � lower as j�j becomes larger (see Figure
6.6).

When a linear spatially dependent detuning �(y) = �0y + �0 is introduced, the vector potential
becomes a function of y , Ax(y). As a corollary, the spatially dependent vector potential causes the
BEC to experience an effective magnetic field r � Ax(y) = �B(y)ez as r � Ax(y) becomes non-
zero. Similarly, the energy shift � becomes a spatially dependent scalar potential �(y). Because �(y)
is negative semi-definite, it always acts as an effective ‘anti-trapping’ mechanism that competes with
the trapping potential along the ŷ direction. It becomes immediately clear that depending on the
parameters 
R, �0 generating �(y) and the trapping potential geometry, there can be different regimes
within the system.

In the limit of 
R ! 0 and �0 > 0, the system is described by a simple spin dependent potential
�(y) combined trapping potential. If the linear detuning is generated via magnetic field gradient in ŷ,
�(y) simply becomes the linear Zeeman shift when 
R = 0. Depending on the magnitude of �0, the
spin components of the BEC will either phase separate in trap, or with large �0, spatially separate into
multiple spin dependent trapping potentials. For the limit of large 
R, �(y) becomes weak and the
optical trap dominates. In this regime, both the effective trapping potential has a single minima and
the vector potential smoothly varies over the BEC, producing a nearly constant effective magnetic field
B.

The regime of interest occurs with finite 
R and large �0. Here the scalar potential �(y)
dominates at distance on the order of the BEC size and will create separated minima in position space
with a potential barrier of height VB. However with finite Raman coupling, the BECs in separate
potential wells also experience a vector potential Ax � �2kL.

In this regime, 
R is small enough that at � = 0, the dispersion relation �x(k) has configurations
that support three separate local minima. Small amounts of detuning will break the symmetry and favor
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into a single potential well. Bottom: GPE simulations of the spatial density of atoms at the
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a global minima at � �2kL. For a spatially dependent detuning, the value of Ax(y) will undergo abrupt
transitions located at �y � from k = 0 to k = �2. These abrupt transitions in Ax(y) correspondingly
create large values of B(y)ez around �y �. Because of the design of the vector potential only being
monotonically increasing along ŷ (owing to the linear detuning), all points in the BEC within the narrow
one-dimensional band � �y � will experience the large effective field and areas outside the band will
have B � 0.

If the scalar potential �(y) creates a geometry with VB � �, the chemical potential of the BEC,
that supports a non-negligible atom density at �y �, there will be a slice through the BEC with large
effective magnetic field within a narrow band. The large field creates similarly large amounts of angular
momentum over a narrow region, leading to phase singularities, i.e. vortices, that due to the 1D nature
of the strong field, are restricted to a one dimensional strip at � �y � within the BEC, with a spacing
equal to 2�=�k . Indeed, previous simulations have predicted that within these overlap regions linear
vortex structures are formed and are in equilibrium [127].
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8.2.2 Experimental Setup
To study the vortices in this system, we prepared our BEC with an equal fraction of atoms in the
mF = �1 states and linearly ramped on the detuning gradient from zero to a desired final value �0 over
half a second from 0 to the desired experimental value (up to 450 Hz=�m) over 0:5 seconds. When
�0 6= 0, the magnetic gradient phase separated the two spin components, forming the precursors of the
potential wells in Figure 8.7. We waited an additional 100 ms for the magnetic field environment to
equilibrate before linearly ramping on the Raman lasers to a final coupling 
R. To measure the system
at a given (
R; �

0), we then linearly ramp up 
R to a measurement value.
Our gradient coils produced a small unwanted contribution to the bias field which we compen-

sated for by adjusting the current in our bias coils, thereby keeping the bias at the system’s center
constant. The measurement of momentum distributions is highly sensitive to the trapping potential
and any constant detuning will break the degeneracy between states, and will skew the distribution
accordingly. Even with the average detuning noise within our apparatus (� 0:35 EL), the location
transition region can vary up to 2 EL, and accordingly affects vortex nucleation properties. Similar to
the discussions in Chapter 7, we used the magnetic field stabilization system as described in Section
4.4.7 and Appendix A to remove long term drift.



151 8.2. Rapid Entry of Vortices via Non-uniform Synthetic Gauge Fields

Non-Uniform Effective Fields Geometry

BEC

ω1

Y

X

B(y)

ω2

ω2 - ω1= ωZ ≈3 MHz

Figure 8.11: We subjected 87Rb BECs to a linearly varying B = (B0 + B0y)ey magnetic field
which gave a position-dependent Zeeman splitting ~!Z(y) = gF�BjB(y)j between the three
mF states of the f = 1 ground state manifold. We then illuminated our BECs with a pair of
cross-polarized � = 790 nm laser beams propagating along ex � ey . The frequency difference
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strength 
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8.2.3 Measurement and Analysis
We measured our system using standard time-of-flight (TOF) techniques followed by absorption imag-
ing. We initiated TOF by suddenly turning off the confining potentials and in the first 2 ms of TOF
we ramped 
R to zero and simultaneously ramped the detuning 75 EL from resonance. This process
mapped the laser-dressed system into a single spin state [83], and imparted a position-dependent artifi-
cial electric field as the vector potential becomes constant, inducing an overall shearing motion [83]. In
the regime where one-dimensional vortex structures are predicted to form, it is exceedingly difficult to
image the structures in-situ via absorption imaging because of the predicted minimum vortex spacing
of �R=2

p
2 � 300 nm.

Vortex Counting Algorithm

We developed a vortex counting algorithm in order to systematically measure the number of vortices
observed with the BEC. The algorithm is as follows: First, a low-pass filter is applied to the image of
the BEC density. This filter removes small scale noise and density modulations, leaving behind only the
Thomas-Fermi profile. All regions within the image that are above a threshold value (typically set to
be 20 percent of the max density) were considered to be within the BEC region.

The compared to only using a least-squares fitting algorithm to extract a Thomas-Fermi profile
of the BEC is that in most images, the shearing and deformation of the gas from the vortex dynamics
generates a profile that is no longer properly describe by a Thomas-Fermi shape. In the case of a
BEC near the separated-chain region of parameter space, the cloud is thinly spread across momentum
and position space. Next, using the low pass density profile, a high pass density profile is obtained
by subtracting the unfiltered profile and the low pass profile. The result gives the density modulations
that are convolved with the approximately Thomas-Fermi profile. This image also has the threshold
applied, making all regions outside of the marked BEC region zero density, and leaving those within at
their high-pass values.

Using the prepared density image as previously described, the core of the counting algorithm is
to look for islands of negative values within the density modulations. The image is further prepared by
setting all values greater than zero to zero, leaving only negative density modulations (the vortices).

Next, the minimum density value is found within the image. In small steps starting at this
minimum value up to 0, the image has a threshold applied at min + � and all regions that are between
the minimum density and the threshold are set to one, creating a binary (black and white) image
showing regions that have a density within that region. To determine the location of each region, a
boundary tracing algorithm is applied to generate a set of points that are on the perimeter of each
region. To find the center of each region, a center of mass calculation is performed on the perimeter
points, generating the approximate center of the bounded region. This process is repeated for each
(x,y) region center found, and for each threshold value incremented.

After iterating threshold values and determining regions, the set of center points is filtered to
remove duplicate points. Next, a 2D minimization algorithm is applied iteratively using each center
point as the starting value, generating a new set of vortex center points. This step weeds out any weak
local minima within the density profile. Lastly the relative distances between each of the minima points
is generated. Due to the discrete nature of the density profile data, the local minimization solver may
find solutions that are separated by a grid point or two, marking them again as duplicate points. The
points that remained are considered the vortices within the BEC.

Due to the chaotic nature of the vortex arrangement, only those vortices within the central
region of the BEC were counted as they were clearly resolvable. This rejection criterion implies the
counting algorithm conservatively reports the number of vortices within the BEC.

Using Variance to Count Vortices

Our counting algorithm performs poorly for disordered vortices, and for those with poor contrast,
especially in distributions when the two condensates are partially merged. We found that the variance of
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Figure 8.13: Algorithm to count vortices in images of the condensates. The procedure uses
2D filtering methods to extract the frequency modulations in the BEC density corresponding to
vortices.

high-pass filtered images gave a signal proportional to the vortex-number in images where the counting
algorithm succeeded. For BECs with few or no vortices, there should be relatively low variance as
the Thomas-Fermi profile has been removed by the filter; only high spatial frequency imaging noise
remains. For BECs with many vortices, the variance increases as the regions with and without vortices
form a series of high and low peaks in the filtered image respectively. We compared the variance to the
counter vortex number for � 2500 independent realizations at various 
R and �0 values and confirmed
that the variance is proportional to the vortex number. We therefore use these variances as a proxy
signal for the vortex number. The variance measurement of the number of vortices shows a much more
dramatic onset of vortices in the non-uniform field regime versus the uniform field regimes compared
to the vortex counting algorithm (Figure 8.14). This method accounts for many more vortices that the
counting algorithm could identify reliably.
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8.2.4 Results
Momentum Distributions

To examine where in the parameter space (
R; �
0) possessed regions of high magnetic field and rapid

vortex nucleation within the BEC, we first examined the distribution of momentum in the BEC as a
function of 
R and �0. For the three different possible trap geometries, there can be equally three
classes of momentum distributions that arise. First, when there are two separated BECs, there are
two distinct peaks in the momentum distribution of the BECs at �2 kR. In the regime where the two
separated BECs are beginning to overlap (when VB � �), the BEC will span a larger set of momenta.
In the high coupling limit when 
R creates a single well in both momentum space and position space,
the momentum of the cloud is centered around k = 0 kR (Figure 8.15, top)

The momentum distributions are drastically different in each of the three parameter regimes
shown in Figure 8.15. Firstly, when there are two separated BECs (left column) the momentum
distribution is sharply peaked at �2 kR, maximizing hk2i � 4 kR

2. As these BECs begin to overlap
(center column) (when VB � �), the momentum distribution spans the full regime from �2 kR to
2 kR, reducing hk2i. Lastly, in the coupling limit when 
R when the BECs merge (right column), the
momentum distribution is sharply peaked at k = 0 kR and hk2i ! 0. Thus hk2i parameterizes these
different regimes.

To study hk2i for a range of 
R and �0, we prepared our system at the desired �0 with 
R = 0,
with a BEC consisting of an equal mixture of mF = �1. When �0 6= 0, the magnetic gradient phase
separated the two spin components, forming the precursors of the potential wells in Figure 8.8. We
then ramped on 
R with a � 10ER=s rate chosen to be adiabatic with respect to the system’s center
of mass dynamics (but not the time scale for vortex formation), and then held 
R constant at the final
value for 150 ms, allowing the system to equilibrate.

Figure 8.15, bottom depicts the evolution of hk2i at �0 = 300 Hz=�m as a function of Raman
coupling strength 
R, and shows the three qualitative regimes outlined above. For 
R & 3, hk2i
decreases slowly, as expected for the separated well configuration, then as the wells merge (3 . 
R . 5)
hk2i drops rapidly, before saturating to zero in the single well regime.

We observe that for the separated BEC regime, hk2i � 4kR
2. As the coupling is increased the

two separated BECs begin to merge as the scalar potential �(y) begins to weaken as 
R increases.
This onset of the merging of the condensates is correlated to a rapid decline in hk2i, indicating a
measurement in the VB � � region of the parameter space. As 
R increases further, �(y) becomes
weak in comparison to the trapping potential, and the system forms a single well potential. In this
region where the BEC has a single potential well, hk2i asymptotes towards zero (Figure ??e).
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Figure 8.15: Second moment of the momentum distributions at �0 = 300 Hz=�m as a func-
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R, with the left, center, and right columns being 
R = 3; 4; 5EL respectively. Top:
GPE-computed 2D momentum distributions k(x; y) using the same parameters. Middle: Ex-
perimentally measured momentum distributions after TOF Bottom: Experimentally measured
second moment of the momentum distributions at �0 = 300 Hz=�m as a function of 
R. Shared
region represents theoretical prediction, accounting for uncertainties.

Rapid Entry versus Standard Entry

Because the variance acts a proxy measurement of vortex number that is indifferent to the chaos of the
vortex distribution, we took advantage of the metric and studied the variance in two different regions
of the BEC: the inner and outer halves. Since in a conventional nucleation process the vortices come
from the system’s edge, we expect for this regime the outer signal to be larger as vortices nucleate
and smaller in the inner region as vortices must migrate inwards. In contrast, for our merged BECs
we expect vortices to be preformed in the system’s center, quickly dispersing across the BEC once the
merging process has occurred. We distinguished these two potential mechanisms for vortex formation
by studying the variance in the inner and outer halves of the system.

For parameters where a high strength magnetic field does not intersect the BEC at all 
R, the
variance in the outer region of the BEC begins to increase noticeably before the variance in the inner
region (Figure 8.17). The interpretation here is that, similar to previous rotational experiments, the
vortices are nucleated on the periphery of the BEC and evolve inward toward a lower energy state. For
parameter trajectories that do have a high-strength magnetic field region, the variance in both the inner
and outer regions simultaneously increase at the onset of vortices within the system at approximately
where the theory predicts the two spatial wells to combine. The simultaneity of the increases implies
that the vortices were nucleated from the inside of the BEC and quickly disperse across the cloud.

For parameter regimes where there was not a large effective magnetic field, we observed a slow
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Figure 8.16: Magnitude of hk2i in the parameter space of 
R and �0. The overlapped region
between the dashed lines was calculated from theory to be at the 80% and 20% of the maximum
moment at a given �0.

increase of vortices as 
R was ramped up. At higher values, the number of vortices began to drop
as the density of the BEC lessened as well for the longer ramps (Figure 8.17). By comparison, for
parameter regimes where a vortex chain was predicted, there was a sudden turn on of vortices as 
R

was increased. The stark difference in rapid appearance of vortices, together with higher vortex number,
suggests that the vortices are being nucleated into the system via a different mechanism.
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Figure 8.17: Top: Vortex number as a function of 
R in the non-uniform (blue triangle) and
uniform (red circles) effective field regimes (at �0 = 300 Hz=�m; 100 Hz=�m respectively). The
vortices suddenly enter when the BECs merge. The vertical purple and orange lines represent
the onset of vortices in the uniform and non-uniform cases respectively. Middle: Variance in the
outer (dark red) and inner regions (light red) of the BEC for the uniform field method regime.
Here the inner variance lags the outer variance, suggesting vortex formation at the condensate
periphery. Bottom: Variance in the outer (dark blue) and inner regions (light blue) of the BEC
for the non-uniform field method regime. For a non-uniform field, the condensate experiences a
jump in inner and outer variance simultaneously.

Rapid Quenches To Uniform Field

In a separate study I examined the dynamics of the system after crossing between the non-uniform to
uniform transition suddenly. To do this I first ramped up the detuning gradient as described in Section
8.2.2 to a specific value. Next I ramped 
R up to a value before the transition region. Next the value of

R was increased instantly to a value beyond the transition. Lastly, the system was held for a variable
hold time to observe the resulting dynamics.

When performing the quench across the transition, the two separated BECs in a double well
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Figure 8.18: Dynamics after a quench through the separated to merged regions of the ex-
perimental parameter space. By varying the hold time, the two BECs can be seen to collide,
producing many vortices.

potential are suddenly placed into a single well potential and offset from the center. This causes the
two BECs to gain momentum as they fall toward the trap center. The two clouds, both with different
momentum characteristics due to the vector potential, begin to collide, producing a set of interference
patterns and vortices (Figure 8.18). If held for much longer, the system will relax into a single BEC
with many vortices present.



Appendix A

Flux Gate Magnetic Field
Stabilization System

This chapter details the operation of the flux gate magnetic field stabilization system described in Section
4.4.7. This system uses an FPGA circuit board that I designed to read the background magnetic field
in our experiment, and produce a correction signal that drives our biasing coils to cancel the noise at
the atoms. The performance of this system is also described in Section 4.4.7

A.1 Theory of Operation

A.1.1 Flux Gates
To measure the magnetic field, we use a set of Stefan-Mayer model FL1-100 flux gates (Figure A.1).
These units work well within our experiment, as they are compact and low power. The total measure-
ment range of 1 Gauss over 10 Volts allows for a wide window of measurement with high resolution.

As helpful as the sensors are at measuring small magnetic field, there are many problems for
us to use them in a direct feedback form of stabilization. The flux gates, due to their method of
measuring the field, generate a magnetic field in the 10 kHz� 30 kHz frequency range (see section iv
of reference [128]). This field can cause a back action with the atoms, making direct feed forward or
feed back schemes difficult. Even worse, the field generated from our bias coils are registered on the flux
gates themselves, thus any feedback to correct a field will cause a feedback loop, making conventional
locking impossible.

To combat these issues, we do a few things. First, to help reduce the radiated kilohertz noise
from the flux gates, we enclosed them in aluminum shields. Secondly, I had developed a way to toggle
the power of the flux gates on and off via a 5V TTL line, allowing us to turn off the flux gates at
sensitive portions of the experiment. The last problem is the most difficult: every other coil in the
experiment (quadrupole, Zeeman slower, bias coils, etc.) produces a signal at the flux gate that can
quickly saturate the 1 Gauss full range. Therefore for most of the experimental cycle, the flux gates
cannot be engaged as their output signal is railed and useless, another reason direct feedback will not
work.

The solution was to make a track and hold measurement system, with a complexity that required
the flexibility of the FPGA system. The idea is that at the end of the evaporation in the optical dipole
trap, all of the electromagnetic coils in the experiment are off (or canceling true DC background fields),
therefore a measurement at this time is a (or at least the best) measurement of the background field.
For any other times outside of this window, the correction system can keep the flux gates powered
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Stefan Mayer FL1-100 Flux Gate

Specifications

Range ±1000 mG

Output 100 mG / V

Temperature 

Drift
1 µG/°C

Bandwidth 0 – 1KHz

Power ± 15V @ 30 mA
Data and PCB image from Stefan Mayer Instruments

Figure A.1: Stefan-Mayer FL1-100 Flux Gate

down, and output a correction signal based on the last measurement. By measuring the drifting field
during this window each cycle and then updating the correction signal to a cancellation coil, we can
remove long term field drifts (see Section 4.4.7).

Due to the bulky size of the flux gates, we are not able to get the flux gate sensors any closer to
the atoms than � 10 cm. Since we cannot put a flux gate close, or on the atoms, we cannot directly
measure the field at the atoms. To improve our measurement of spatially uniform background fields,
we deployed a pair of flux gates symmetrically across the glass experimental cell. The two flux gate
sensors are placed in opposite directions (�ẑ). We then calculate the average background field signal
from the two sensors as:

VFG�Total =
1

2
(VFG1 � VFG2) (A.1)

The assumption we are using is that the background field does not vary in a discontinuous fashion
over the 30 cm distance between the two sensors, hence to a linear order we are extrapolating the field
at the glass cell. That said, we still do find the magnetic field sensed by the flux gates and atoms is
different, and still needs to be calibrated.
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Flux Gate Placement
Y

X
Glass Cell

Slower

Measure Field in +ොz

Measure Field in −ොz

1

2

Figure A.2: Placement of fluxgates to measure the magnetic field in ẑ

A.1.2 Low Frequency Field Rejection
To remove the long term drifts in the experiment, there is a track-and-hold algorithm that uses non-
continuous measurements to overcome the issues previously mentioned. To do this, first the flux gate
signal is connected to the FPGA system at an analog input channel. The FPGA board is set to have
the channel be read differentially so that both the flux gate positive and negative values can be read.
The ADC subtracts these two values and reports them as a digital value within the FPGA. Next,
the measured signal is subtracted by a reference value that we set. This gives us the field strength
difference from now and where we want to be (the reference). Next, the difference in the field, �B,
is fed into the track and hold system. To prevent feedback loops, this part of the algorithm must be
enabled remotely. When the Measurement Active signal is enabled, �B is continuously averaged for the
length of the enable signal, thereby extracting the low frequency components of the �B signal. This
operation is naturally implemented with a low-pass filter algorithm in hardware. With the DC value
of �B, the system multiplies by a scaling coefficient that is the combination of: the flux gate scaling,
the calibration of flux gate field versus field at the atoms, the field generated in the correction coil
per amp run through it, and the coil amps per command volt (see Section A.2.4). After �B is scaled
appropriately to give a feedback signal, this signal is output from the FPGA device to the correction
coil current command port. When the measurement active signal is enabled, the output of the device
puts out 0 V so that the field from the correction coils is disabled, allowing measurement of the true
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5V – Process
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Calibration 
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Output 
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16-bit code 
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Flux Gate DC Compensation Algorithm

Averaging 

Filter

Subtract 

Reference 

Value

Figure A.3: Flux gate low frequency compensation algorithm
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field.

A.1.3 60 Hz Field Rejection
Line noise (aka 60 Hz noise) originates from currents flowing in the 120 V AC lines, powering most
lab equipment. That said, it is hard to remove all the sources of 60 Hz magnetic field noise in the
lab without having any electricity left1! To counteract the effects of 60 Hz magnetic field noise at the
atoms, we can measure the spatially uniform 60 Hz signal between the flux gate pair and send a signal
back to the correction coils to counteract the effect.

However, this plan requires a few things. First, the correction coil and current source must
be able to operate faster than 60 Hz, so that the phase lag between measurement and correction is
negligible. Second, in order to send a 60 Hz anti-signal, we need to know the amplitude and phase of
the measured background field. This is where the FPGA flexes its muscle.

To get the amplitude and phase out of the flux gate measured signal, I deployed a phase-sensitive
detector: a lock-in amplifier. A 60 Hz 5V TTL is generated from a direct connection to the 120 V
AC line, with appropriate electronics to downsize the voltage and filter out high frequency noise. This
input oscillator tied to the line frequency acts as the reference signal for the lock-in amplifier. One
could simply digitally synthesize a 60 Hz signal with great precision, however the line frequency varies
in time to maintain synchronization with atomic clocks and across the power grid. Because we want

1All plans about interchanging lead-acid +12V battery banks aside
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a very narrow filter at exactly the power line frequency, it is simple enough to digitize the power line
signal into a clock itself. All that said, herein I refer to this frequency varying signal still as the 60 Hz
signal.

With the 60 Hz TTL in the FPGA, a digital-numerical PLL is used to determine the phase-
increment value of a 32-bit DDS clock source. The digital PLL pulls back the 32-bit frequency code
and phase that follows the 60 Hz signal, with a stable lock to within a microsecond. This code allows
digital synthesis of TTL signals at higher harmonics, as well as arbitrarily phase shifted versions of the
60 Hz line signal. This arbitrary phase shift allows the creation of a 0 degree and 90 degree phase
separated pair of TTL signals at 60 Hz. These TTL signals are individually multiplied against the
calculated �B in Figure A.3, generating a pair of signals X and Y such that:

A =
√
X2 + Y 2 (A.2)

tan(�) = Y=X (A.3)

Where A is the amplitude of the 60 Hz signal present on the �B signal and � is the phase delay between
it and the 0 degree phase TTL.

It is worth mentioning that the extraction of the amplitude and phase requires a square root
function and arctangent computation in hardware. To avoid excessive resource usage, a hardware
friendly square root approximation that only involves two additions and bit shifts is used, at the cost of
� 3% accuracy. To compute the arctangent, I wrote a hardware CORDIC algorithm consisting of a few
pre-stored values of arctangent that computes arbitrary angles via successive shift and add operations.

With the amplitude, frequency and phase of the 60 Hz signal known precisely, these parameters
are fed into a DDS sine wave generation module that I wrote, creating an anti-signal that can be fed
to the correction coils. Lastly this signal is added to the DC correction signal in Section A.1.2.

To further improve the reduction of line noise, the digital-numerical PLL gives the ability to
easily multiply the base frequency of the 60 Hz input TTL, allowing us to create higher harmonic TTLs
(i.e. 120 Hz and 180 Hz), and deploy the same lock-in amplifier algorithm to generate an anti-signal
at those frequencies as well. Using this algorithm for the 60 Hz and the next 2 harmonics, most of the
flux gate line noise components can be matched and eliminated (see Figure A.5).

It is important to note, because of the track-and-hold method of measuring the B field, the 60
Hz amplitude and phase are measured during the Measurement Active signal enabled; the frequency is
measured continuously from the input clock line. Therefore the anti-signal fed to the correction will
be locked at phase, amplitude and frequency until the next measurement is enabled. As mentioned
previously, the 60 Hz waveform can drift over time, but the 1 minute timescale of a normal BEC
experiment from start to finish is much shorter than this variance time. In fact, the SoftScope trace
in Figure A.5 was taken a few minutes after the measurement trigger in order to see the feed forward
stability.

Lastly, this 60 Hz removal method is independent of the flux gate measurement, that is it is
general enough in design to remove 60 Hz signals from any digitized signal. It would be possible,
considerable device resource constraints aside, to place such a filter on every analog in line on an
FPGA system where the input analog signal is immediately subtracted by the anti-signal before being
processed else where.
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Flux Gate 60 Hz Compensation Performance Example

Flux Gate 1

Flux Gate 2

60 Hz TTL

ΔB
60 Hz Correction
(Phase shifted to show match)

Figure A.5: SoftScope measurement from the FPGA device showing the 60 Hz matching wave-
form. Look closely, they lie right on top of each other.

A.2 Usage and Calibration Protocols

A.2.1 Flux Gate Controller Box and Connections
The flux gate controller is based on the FPGA PCB (Appendix B) that I designed. There are a few simple
modifications to the board. First, the ADC channels for the flux gates were set to read a differential
signal; at no point are the inputs connected to ground. Given the 100 mG/V measurement of the flux
gates, the FPGA system when reading over �10 V has a maximum precision of 30 microgauss. To aid
in the 60 Hz cancellation, a simple circuit connected to the AC power entering the box takes the 120 V
line waveform and turns it into a 60 Hz 5V TTL signal that the FPGA can process. This TTL provides
the reference signal for the 60 Hz cancellation lock-in amplifier.

The front side of the box has connections for up to 3 flux gates. Flux gate port A is a simple
monitor port. Flux gate ports B and C are used in the cancellation system, providing the signals in the
averaging mechanism described in Equation A.1. Each of the three flux gate signals can be read out
of three BNC ports on the box, removing the need for separate differential amplifiers if one wants to
simply see the field measurements. Note that the flux gates need to be powered on to see a signal2.

2Because I’ve fooled myself enough times wondering where the signal went, only to find I did not toggle the power to
the flux gates
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FPGA Flux Gate Controller System

Correction

Signal

Flux Gate CFlux Gate A Flux Gate B

Front Panel

Back Panel Flux Gate Connector

Signal + Signal -

-15V+15V

Figure A.6: Connections for the FPGA-based flux gate controller

When constructing the current source and correction coil, it is useful to consider the voltage to
current to field calibrations. It is a sad fact that there is a few mV of noise on the correction signal
line. If through the calibrations the correction signal for a milligauss field jump is the same size, then
the correction signal noise will introduce more magnetic field noise than it corrects. For this reason,
it is helpful to use the large ‘table coils’ (Section 4.4.6) to make feedback corrections. For example,
the bottom table coil has a 64.3 mG/A magnetic field and 11.4 
 resistance. Given a 1:3 voltage
command:output (which is currently true), the coils generate 16.9 mG per volt from the correction
signal. In this scheme, the millivolt noise on the line only translates into tens of microgauss magnetic
field, far below our usual shot-to-shot stability.

Flux Gate Power Control

To disable the flux gate power when not making a measurement in order to avoid any magnetic noise at
the atoms, I quickly constructed a TTL compatible power enable/disable circuit. The circuit consists
of an input 5 V signal that is passed through two operational amplifier circuits: one that has gain +3
and the other gain -3. The op amps then output low current �15 V voltages. To provide the � 30mA

currents to each flux gate, a set of BUF634p buffer chips are placed at the outputs of the operational
amplifiers. These devices each can provide 250 mA at �15 V (given the correct power supply), more
than enough power sourcing for multiple flux gates. Although functional, this design could be better
improved with a dedicated high current switching IC, such as ADG5434, and use of surface mount
component PCB fabrication, versus the wire and vector board construction currently deployed.
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FPGA Flux Gate Controller System Connections

Flux Gate CFlux Gate A Flux Gate B

Front Panel

Flux Gates

XLR

Connections

Flux Gate

Signal Measurements

Correction

Signal

Voltage Controlled 

Current Source Correction

Coil

Figure A.7: Front panel connection guide

A.2.2 Manual Readings From Flux Gates
To make a measurement of the field as given by the flux gates when not in an experimental cycle, one
can use the signal output ports on the front of the device (Figure A.6). Given the default state of the
system in manual control to make a MOT, remember to set the currents of the quadrupole, slower bias
and slower taper coils to zero, or else the flux gates will saturate and the signal will be useless. Also,
the flux gates need to be powered on using the DO4-13 digital line.
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+5V TTL
Gain +3x

Op Amp

Gain -3x

Op Amp

BUF634P

BUF634P

+15V

-15V

+15V @ 250 mA

-15V @ 250 mA

Flux Gate Power Enable Circuit

Figure A.8: Power on/off TTL toggle circuit schematic

A.2.3 Experimental Cycle Setup
To get the feedback system to work, the timing of the measurement active signal must be set correctly,
and the feed forward coefficient must be calibrated. First, the experimental cycle must have the FPGA
device measuring at a time step when all of the other coils are off, or the bias coils are on at low
field (the flux gates cannot be saturated). There also needs to be wait time before measuring if coils
have been recently(� 200 ms) turned off, as coils such as the quadrupole have long eddy current and
inductive timescales. Next the flux gates need to be powered on for � 100 ms, then the measurement
active signal enabled. The more time given on this step, the better the measurement for both DC and
AC magnetic fields will be. When done, disable the measurement line and power to the flux gates, the
new correction value will be updated at the output.

A.2.4 DC Correction Calibration Protocol
Before calibrating for the feed forward coefficient, the reference magnetic field value needs to be set.
The reference magnetic field values act as the ‘zero field value’ in the sense that the flux gate system

PulseBlaster Line 2: 

Measurement Enable

DO4_13: 

Power Flux Gates

Dev4 

Digitals

PulseBlaster

Digitals

Turn off all coils

Wait for field to stabilize

Measure field

Turn off flux gate

Flux Gate Track-and-Hold Measurement Sequence

Figure A.9: Measurement steps for flux gates in CycleX experiment
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Flux Gate Measurement Sequence
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Figure A.10: Measurement and Correction signals during the track and hold process

will always output the signal required to correct to get this field measurement back.
After setting the experimental cycle up as described above, one needs to use their favorite method

(usually Adiabatic Rapid Passage, Section 3.1.2) to get the background magnetic field plus applied field
at a known atomic resonance. Once on resonance, we set the reference value to the background field
measured during the magnetically quiet stage in the cycle. To do this in an easy way with the cycle
running, take the measurement signal connected to the FPGA device and connect it to the Reference
Capture Trigger (Figure A.6, back panel schematic) for a cycle or two. This will cause the FPGA device
to set the internal reference value to what the field is when triggered at the magnetically quiet portion
of the experiment. After the one or two cycles, connect the signal back into the Measurement Active
TTL line.
To get the feed forward coefficient we require 4 values:

• The conversion of flux gate voltage to field measured at the flux gates. This is simply the 100
mG/V calibration in Figure A.1.

• The field at the atoms (measured through ARP, Section 4.4.7) as a function of field at the flux
gates. This is the value of a in equation A.4.

• The field generated at the atoms as a function of current on the correction coil. This is the value
of b in equation A.4.
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Coil 
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Figure A.11: Example raw data set required for calibrations of flux gate system

• The current flow in the correction coils as a function of voltage command to the power supply
or servo the coils are connected to. This is the value of c in equation A.4.

All of these allow one to calculate the feed forward coefficient as:

CFG =
100 mGFluxGate

1 VFluxGate
� amGAtoms

1 mGFluxGate
� 1 ACoil

b mGAtoms
� 1 VCoilCMD

c ACoil
(A.4)

Knowing the coefficient CFG gives the FPGA the knowledge to compute the command signal to the
correction coil:

VOutput = CFG�BMeasured (A.5)

Now it is very simple3, the experimentalist just needs to find the values of a, b, and c in equation
A.4. If using the bias coils in the experiment to provide a correction signal, the value of c is a freebie,
see Section 4.4.3. After getting all these values, hook up the correction coil of your choice to power
supply of your choice. Next, find resonance with no current in the coil. Then introduce current into the
correction coil, enough to where you see the resonance change at the atoms, but not wildly far away.
At this point, you need to record the voltage across the coil and the current on the coil, as well as the
amount of current in the bias coil required to get the system back to resonance and the measurement
of the voltages on the flux gates (via softscope or the analong output ports on the front of the box).
Repeat this procedure for many different currents, both positive and negative. With enough points,
the linear relationship between the flux gate field measurement and atomic field measurement should
become clear. A bonus is that the correction coil is now calibrated, with the linear relationship between
field shift measured by the atoms and current in the coil. Now crunch numbers4, get value.

A.2.5 60 Hz Correction Calibration Protocol
Previously it was found that the scaling factor for the 60 Hz field noise correction system was approxi-
mately 2, owing to the fact that I had not included in hardware the 1/2 factor in amplitude measurement
from the lock-in amplifier calculation. Thus a scale factor of 2 input into the software for the 60 Hz
correction (see Section A.2.6) is required for normal operation. If there are fears that the calibration is
somehow different, a calibration and measurement procedure can be performed.

To do this calibration, I measured the change in resonance (and hence field described in Section
4.4.7) as a function of time, over � 50 ms, a large enough time window to see 60 Hz oscillations.
The idea is that by changing the gain of the 60 Hz correction signal, there should be coefficients that

3I kid.
4Useful - 87Rb F = 1 ground state: 0:7 MHz=G
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Generating and Calibrating 60 Hz Field Noise
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Figure A.12: Example raw data set required for calibrations of flux gate system

‘overdrive’ the system and induce 60 Hz oscillations, or those the over correct the 60 Hz waveform and
change the phase of the oscillation by 180 degrees. I repeated the resonance oscillation scan for many
different 60 Hz correction signal gain coefficients to see how the oscillations changed Section A.12. By
measuring the amplitude of the oscillation as a function of the gain, a linear trend appears where the
x-axis intercept gives the gain that cancels out the 60 Hz noise at the atoms.

Two things to note about the amplitude to gain relationship in Section A.12. First, measuring
the oscillation amplitude near the correct gain value is difficult, and the intrinsic noise in the system
washes it out, requiring measurements at larger gain magnitudes. Second, if the gain is too high, the
shift in the field can be larger than the resonance width, causing non-linear effects or signal clipping.

A.2.6 Programming the Coefficients
(This section may change in the future if the newer FPGA software is deployed for the Flux Gate
controller box)

To program in the calibration coefficient for the control signal, connect to the flux gate box via
the USB connection. Click the ‘Flux Gate Controller’ tab, and put the value into the ‘Track/Hold Gain’
box. Note this value can be positive or negative, make sure you are removing the signal, not doubling
it! As of this moment, to insert the 60 Hz gain coefficient, similar to before, go to the PID control tab
and type into the P gain setting. This is a band-aid method, co-opting an already established 32-bit
register to act as the gain coefficient for the 60 Hz waveform.

A.2.7 Troubleshooting
Turn the box off, then back on. Repeat till working.
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Setting Flux Gate Coefficients

1.) Connect to device, click ‘Flux Gate Controller’ 2.) Input feed forward coefficient

Figure A.13: Example raw data set required for calibrations of flux gate system

Sometimes this box and oscilloscopes do not behave together and a lot of noise appears on the
line.
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Appendix B

Modern FPGA Instrument System

This appendix chapter serves as documentation of work performed on the current FPGA based platform.
This work encompasses extensive hardware and software development (being a large portion of my
technical work within the RbLi experiment) and as such is a lengthy read. Enjoy!

B.1 Hardware

After the experience with the development of the first version of the FPGA board, there were
many shortcomings that needed to be addressed. First, the FPGA board design borrowed from previous
research groups did not have the analog-digital conversion focus that we require for our experiment.
As a result, the older system had many electronic noise issues that caused signal degradation in our
experiments. Furthermore the FPGA chip itself was an outdated part with relatively few resources to
implement more complex calculations, effectively forcing corners to be cut in code so that it would
reduce its firmware footprint and compile and execute in the chip.

The goal for the next version was to have a more robust analog front end that could adapt to
arbitrary signal control within the experiment (for example the flux-gate based magnetic field stabiliza-
tion scheme described in Section 4.4.7). Also, the holy grail of such a project was to have that such
devices could integrate with the computer control systems within the experiment, bypassing the need
for commercial analog-digital conversion instruments at all. In our current implementation, the com-
puter control systems convert digital signals to analog waveforms, which then control various laboratory
instruments via those analog signal levels. However, when the analog signal is sent to a remote device,
it will inevitably acquire electronic noise, degrading the precision of the signal. Some of these analog
control signals are sent to FPGA based devices to control a servo set point for instance. At the FPGA
instrument, the signal has to be re-digitized with an ADC, which will not acquire all of the information
originally sent and acquire noise. However, if the FPGA devices were sent data digitally, there would
be � amount of signal degradation, no 60 Hz line noise, or update timing issues. Thus, one objective
for the next version was to be able to load a set of digital sequence values (i.e. the set point for a
PID controller) for each step in an experimental sequence, effectively an arbitrary waveform generator
embedded within each device.

To address these issues, a custom PCB for analog control was designed around the use a cheap,
but powerful, off-the-shelf FPGA development unit.

B.1.1 DE0-NANO FPGA Board
For the second generation FPGA instruments, I used a Terasic DE0-NANO FPGA development boards
as the starting point of the design. The boards come built with a modern (as of 2013) Altera Cyclone IV
FPGA, built in USB-JTAG programming circuitry, and importantly 32 MB of RAM to which sequencing

173
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Figure B.1: DE0-Nano Development board. (Figure from Terasic website)

data can be stored. It is worth noting that while 32 MB is small for today’s systems, there is enough
space to store 4 million experimental steps for a four channel PID controller. Assuming that the data
is triggered intelligently, this is more than adequate amount of space for the typical experimental cycle
run within the lab.

B.1.2 Custom Circuit Board for Digital Control of Analog Signals
The design of the PCB is divided into two separate regions - the analog and digital sections of the
board. To help prevent high speed switching noise from the FPGA from contaminating the analog
portion of the board, the analog and digital sections are electrically disconnected from each other, with
digital isolators bridging the connection between the FPGA and analog-digital converter ICs.

FPGA PCB

Digital 

Section

Analog 

Section

Figure B.2: The second version of the FPGA board
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B.1.3 Digital Section
FPGA

One of the most prominent features on the digital side of the custom PCB is the socket for attaching the
DE0-Nano development board to the FPGA board. To remove the need for ribbon cables (which can
radiate digital noise), the boards ‘socket’ into one another. A helpful feature of the development board
is the physical arrangement of the connector pins. All pins are neatly arranged into two separate banks,
making it simple to directly connect the board into another appropriately designed PCB. Similarly the
power pins on the development board can be attached in the same way, providing all requisite power
and communication connections. Another advantage of having a socketed design allows ‘hot swapping’
of different development boards that are flashed with different code set.

FPGA PCB: DE0-NANO FPGA Socket

Figure B.3

Direct-Digital-Synthesis IC for RF Waveforms

Another digital subsystem of the custom PCB is the inclusion of a Direct-Digital-Synthesis (DDS) IC.
This IC, the AD9911, was chosen as it is able to drive frequencies up to 250 MHz with 10 bits of
amplitude resolution. The large frequency range allows for the device, with an appropriate external
amplifier, to act as a precise AOM driver that can be digitally controlled. The device also features
digital triggering lines for near-instantly switching between pre-programmed frequency values, helpful
for doing high-speed frequency ramps.

The DDS output contains, in series with the RF signal path, a mini-circuits AD1T1 transformer

Filtering 

Components
Transformer

AD9911 DDS

SMA

RF 

Out

Figure B.4: DDS region of the FPGA PCB
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to AC couple the RF waveform. Also there are placements on the PCB for a frequency filter that
attenuates frequencies above 250 MHz, helping to reject noise from the waveform.

USB Remote Communication

The second most important portion of the custom PCB (next to the FPGA itself) is the USB com-
munication section of the board. The design is centered around an FTDI FT232H USB-to-Parallel
interface chip. This chip was specifically chosen for its ability to communicate at full USB2.0 speeds
(480 Mbps), especially helpful if loading experimental ramps into the FPGA memory. The design runs
8 bits in parallel from the FPGA to the FT232H chip, with all data transactions timed to a provided 60
MHz clock source (see FTDI 245 synchronous communication documentation on the FTDI website).
There is also an attached EEPROM chip that stores the USB configuration information, such as vendor
and part ID numbers, that is provided to the remote operating system upon USB connection.

Digital Inputs and Outputs

A set of pins on the custom PCB are digital lines that run directly to and from the FPGA, to be used
for high speed digital signaling and timing. To adapt the design for laboratory electronics, a set of
8 lines each were dedicated to providing digital inputs and outputs respectively. The inputs are 50


terminated lines, connected via BNC or SMA connectors. The outputs have a high current digital driver
allowing interface to other 50
 terminated instruments. The trace spacing and widths on the PCB
were calculated to give approximately 50
 impedance as well, to further reduce ringing on the digital
lines.

FPGA PCB: Digital IOs
InputsOutputs

- 50 Ohm Terminated

- Multiple Connection 

Adapters 

- 25 Ohm High Current 

Drivers

- Multiple Connection 

Adapters 

Figure B.5

Secondary Digital Inputs and Outputs

In addition to the high speed digital line, a bank of 16 digital inputs and 16 digital outputs were placed
on the board using a set of shift register ICs, effectively multiplexing 3 FPGA digital lines into 16.
These lines, because of the shift register design, are best served for digital timing the is not faster
than � 100 kHz. These uses include things such as LED indicators, front panel knobs and switches.
The input lines have a 50
 terminated arrangement, along with a Schmitt trigger IC to help reduce
any ‘bounce’ effects from switches and knobs. The outputs equivalently have 50
 digital drivers for
interfacing with other laboratory instrumentation or providing moderate current to objects such as
LEDs.
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FPGA PCB: Digital IOs

Secondary Digital Outputs

Secondary Digital Inputs

GND pins

1 16

1 16

Figure B.6

B.1.4 Analog Section
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FPGA PCB: Analog Section

Figure B.7
The main usage of the FPGA system is to interface with experimental instruments and objects

via analog signals, and as such there is a half of the PCB dedicated to the digitizing of analog signals.

Analog-to-Digital Converters (ADCs)

For analog signal acquisition, the PCB is loaded with Analog Devices ADAS3022 16-bit ADCs. The
ADCs provide high resolution, high update frequency up to 1 MHz along with built in variable gain
amplifiers for resolution of �300 �V to 10 �V per bit, with the maximum input voltage range being
�20:48V

The ADC is a compromise between high precision and high speed. It was chosen to be well-
rounded in performance for all experimental control situations, from intensity stabilization to thermal
regulation. Each of the four channels of the ADCs are differentially coupled, thereby rejecting any
common mode (ground) noise in the signal. By default there is an in-line anti-aliasing filter at 1 MHz

to help reject high frequency noise from being injected into the ADC. By default each input channel
is terminated into 1 M
 to ground, with the option of making the termination float to the outer
connection of the SMA connector by removing a 0
 resistor. For measurements that require a current
dropped across a resistor, for instance a hall probe for current, the 1M
 resistor can be replaced with



Appendix B. Modern FPGA Instrument System 178

Ch. 1

FPGA PCB: ADC Channels

Ch. 2

Ch. 3

Ch. 4

Ch. 5

Ch. 6

Ch. 7

Ch. 8

ADAS3022 ADC – 16 bit resolution @ 1 MSPS

Built in ±20.48V, ±10.24V, ±5.12V, ±2.56V, 

±1.28V, ±0.64V Differential Input ranges

Input Circuit Model

Figure B.8

a more suitable 50 
 or 100 
 resistor.

Digital-to-Analog Converters (DACs)

For generation of analog signals, the system uses a pair of Analog Devices AD5686R DACs, with four
16-bit channels, to provide 8 output channels. To provide a bipolar signal from the usually unipolar
AD5686Rs, each channel has a AD8251 instrumentation amplifier before the output connector that
subtracts the value of the voltage reference from the output signal, giving a bipolar output.

Ch. 4

FPGA PCB: DAC Channels

Ch. 2

Ch. 2

Ch. 1

Ch. 8

Ch. 7

Ch. 6

Ch. 5

AD5686R DAC – 16 bit resolution @ 1 MSPS

±10V, ±5V, ±2.5V output ranges

Input Circuit Model

Figure B.9

The reasons for using the AD8251 are that they provide differential outputs for the analog
output channels, but more importantly have 2-bit digitally adjustable gain settings, giving options of
gain 1; 2; 4; 8, which leads to possible output ranges of �2:5; 5; 10; 20V. The additional output options
are helpful for commanding systems that do not need large voltage range, keeping the 16-bit resolution
over a small range of voltages. By reducing the output range, the resolution in voltage increases, thus
providing more stabilization to the system or signal. The gains on the instrumentation amplifiers are
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set in code via the FPGA, and as such can be adjusted dynamically from a remote system, on the fly,
no resistors or jumpers required. An improved version of the board would benefit from a multiplier
based DAC system with adjustable offsets and limits for full resolution control.

Analog Power

The analog section uses a separate power supply from the digital section of the PCB to remove the
switching noise from any analog signals. The analog portion of the board requires both �15 V power
to provide the bipolar input and output ranges required. The board is equipped with a pair of 7815 /
7915 equivalent �15V regulators so that the user can simply connect bipolar sources greater than 15V
to it. A 5V regulator in series with the 15V regulator is also used to provide digital power to the ADCs
and DACs. To help with diagnostics, there are 3 ‘power good’ led indicators that verify the correct
operation of the �15;+5 V power sources. If the LEDs do not light up, there is an issue with the
power supply as labels on the PCB. For reference, the board draws approximately 350 mA of current
on the positive and negative inputs during operation1.

FPGA PCB: Analog Power

+5V Regulator

+15V Regulator

-15V Regulator

‘Power Good’ 

indicator LEDs
±18V, GND input

Figure B.10

To help reduce noise in the system, all ICs are connected in series to the power supplies with
a ferrite bead, and to ground with a pair of 10 uf and 0.1 uf capacitors. The combination acts as an
LC filter over a wide range of frequencies, and the ferrite bead ohmically dissipates the power at high
frequencies.

B.2 FPGA Software Design

The firmware on the FPGAs consists of both Verilog code to generate hardware logic for digital
signal processing, but also an Altera Nios 2 ‘soft’ processor programmed into the FPGA hardware.
By embedding a microprocessor into the FPGA, operations such as communication and low speed
calculations can be easily facilitated into the system with no cost to hardware resources.

1I did not test for the max current draw, i.e. all outputs are dumped into low resistance loads at high voltage, etc.
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B.2.1 System-on-Chip (SOC) Design
To take advantage of the microprocessor in the system, the FPGA instrument system was build in a
system-on-chip design style. All DSP hardware hardware blocks are embedded as different objects in
the interconnected system, along with the processor, memory and other auxiliary functions such as
timers. All of the devices are connected to one another through an interconnection bus that assigns
memory address space to the various objects connected, allowing for arbitrary communication between
objects.Each of these objects have different regions of memory that can be assigned. For a custom
made PID controller object connected to the system, the registers within its address range correspond to
different parameters, such as the proportional gain, or a maximum output value. Each of the hardware
objects attached to the system can also communicate to remote ICs and external hardware logic as well
using their own external connections.

B.3 USB Remote Communication
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Figure B.11: Sample SOC Architecture



Appendix B. Modern FPGA Instrument System 182

B.3.1 Packet Structure

To communicate with the FPGA devices over USB, a custom packet structure and protocol was de-
veloped. Because the actual USB communication protocols are transparent to the FPGA, the packet
structure helps to define a protocol for flow control, data length and error checking. Without such
structure, if multiple commands are queued up within the FPGA’s read buffer, it would not be able to
delineate where the commands begun or end thus causing possible data corruption that would go unac-
counted for2. When dealing with large data transfers, like programming arbitrary waveform generation
or retrieving data logging tables, having the communications buffer fill up is a fact of life.

The packet structure is designed to be similar to both of the common internet UDP and TCP
protocols. There is a header that contains the size and relevant information as to the payload of the
packet, a data section and all followed by a checksum value. In detail, the first two bytes of the packet
contain the size of the packet, including header, data and checksum bytes. The next two bytes provide
a command sequence. This tells the the FPGA device how to interpret the data in the address and
data fields. For instance, the command field can distinguish between reading data and writing data
into memory locations. The packet number field is a 4 byte field that increments upon each packet
transaction. This field is primarily used for flow control purposes, similar to the TCP sequence number
field. The data field contains the data payload sent to the device. The interpretation of the bytes in
this field depend on the command. The last two bytes of the packet are for an appended checksum
value. The checksum is calculated using the CRC-16-CCITT convention with polynomial 0x1021. On
these instruments, the hardware logic for USB data transfer automatically3 handles the generation of
the CRC as bytes are read in or out (see Section B.4.2).

All the fields in the packet are represented in a little endian format. Because the embedded
processor uses a little endian format as well, this allows quick copying of data from the packet to a
location in the instrument’s memory space in a data content agnostic method. This ambivalence to
the packet content also allows for the use of a direct-memory-access (DMA) controller to copy data
from a packet to system memory-space at high speed, drastically increasing efficiency for large data set
operations.

B.3.2 Commands

The following are a list of commands can be sent to a standard instrument.

2Which did happen when first testing...
3The hardware calculates the checksum, but the code on the soft processor checks if the CRC is correct when it reads

out each packet, therefore can be disabled in the code if checksum is unwanted.

Figure B.12: Packet Structure
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Command
Code

Description

0x3000 Returns list of all registered custom devices on the system. Reported in a single ASCII
string, sub fields divided by commas, devices by semicolons in format:
Type, Name, Memory Base Address, IRQ Number, IRQ Controller ID, Memory Span,
Saveable Flag, Structure Pointer, Structure Size;

0x3001 Read the device’s name
0x3002 Write the device name
0x3010 Read from memory at the value in the address field of the packet, for the length specified

in the data field of the packet.
0x3011 Write to memory at the value in the address field of the packet, for the length of the

data field of the packet
0x3020 Returns an identical packet to the one sent, a ’ping’ for simple communication diag-

nostics

B.3.3 Device Communication Model
Given the small subset of commands for communication with the device, it may seem confusing as how
to go about setting parameters within the system. The SOC design methodology describes in Section
B.2.1 the memory-mapped structure of all the subdevices within a system. To set a parameter on
a function generator, such as the frequency, one requires the base address of the function generator
and the knowledge of what the memory offset is to the frequency registers. By sending a command
0x3011 with the correct address (the device’s base plus offset), the correct parameter will be updated.
Command 0x3000 to the device is especially useful, as it enumerates the various subdevices in the
system, and their memory-mapped locations in the instrument.

This model was deployed as it requires a minimal number of commands for an arbitrary amount
of subdevices within the system. This means being able to have a single physical FPGA and PCB that
can easily operate multiple distinct laboratory instrument functions, and having easy access to them.

To provide extra information about the different subdevices, the user can access the structure in
the processor memory associated with specific subdevice. This structure in the CPU memory, located
at the address given in by command 0x3000, can have unique identifier fields for each device. For
instance for an oscilloscope subdevice, the names of the channels, and their scalings, can be saved into
the CPU memory versus a resource intensive setup in the hardware itself.

B.4 System Sub-devices

The following is an enumeration of the different devices that can be found on one of the FPGA devices,
and their memory-mapped structures.
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B.4.1 System Info

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 R Number of 1 second ticks since the device was 

powered

1 R/W Firmware Version Code

2 R/W QSYS Code Build Time

3 R/W QSYS Code Build ID

4 R Upper 64-Bit number of CPU ticks since start

5 R Lower 64-Bit number of CPU ticks since start

Figure B.13: System Info Subdevice Memory-Mapping
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B.4.2 USB

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 -- --

1 -- --

2 R RXD Buffer Fill

3 R TXD Buffer Fill

4 R IRQ State

5 R/W
Number of bytes in the RXD buffer that triggers 

and IRQ to the CPU to indicate data received

6 R RXD Buffer Size

7 R TXD Buffer Size

8 R Number of bytes sent from the device

9 R/W

Running CRC value on the RXD channel, writing 

anything causes the running CRC to reset (useful at 

end of packet)

10 R/W

Running CRC value on the TXD channel, writing 

anything causes the running CRC to reset (useful at 

end of packet)

11 R
Number of bytes in the current RXD CRC 

calculation

12 R
Number of bytes in the current TXD CRC calculation

15 R Number of bytes read into the device

Figure B.14: System Info Subdevice Memory-Mapping
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B.4.3 PID

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 R Data size (in bits)

1 R Coeffcient size (in bits)

2 R
Shift of the proportional gain for fixed-point 

arithmetic

3 R General fixed point shift of coeffcients

4 R Sampling rate, in Hz

5 R/W Error Offset

6 R/W Maximum Output

7 R/W Minimum Output

8 R/W Enable PID Controller

9 R/W Enable Integrator

10 R/W Enable Derivative

11 -- --

12 R Read Input A

13 R Read Input B

14 R Read Input C

15 R Read Input D

16 R Read output signal

17 R

State of PID Controller (0 - Off, 1- Bad Lock, 2 –

Locked, 3- Locked near minimum / maximum 

output)

20 R/W Enable external lock signal port

21 R State of external lock

32 R/W P Coeffcient

40 R/W I Coeffcient

48 R/W D Coeffcient

Figure B.15: Function Generator Subdevice Memory-Mapping
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B.4.4 Function Generator

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0 R/W Amplitude Value

1 R/W Offset Value

2 R/W Phase Value

3 R/W Frequency Value

4 R/W On/Off Toggle

5 R/W
Function Selector

6 R Read default output

7 R Read triangle output

8 R Read sawtooth output

9 R

Read square output

10 R

Read sine output

11 R
Read cosine output

12 R
Read tangent output

13 R Read TTL output

Figure B.16: Function Generator Subdevice Memory-Mapping
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B.4.5 Analog IO Controller

Memory 

Offset

Access 

(Reading and

Writing)

Register Description

0-7 R Read Analog Out (AO) value, Channel 1-8

8-15 R Read Analog In (AI) value, Channel 1-8

16-23 R/W
Static Analog Out value, Channel 1-8

24-31 R/W

Analog Out gain 

0 - ±2.5V

1 - ±5V

2 - ±10V

3 - ±20V)

32-39 R/W

Analog In gain

0 - ±24.576

1 - ±10.24V

2 - ±5.12V

3 - ±2.56V

4 - ±1.28

5 - ±0.64V

7 - ±20.48

40 R/W Enable Static analog out values

Figure B.17: Analog IO Controller Subdevice Memory-Mapping
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