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Chapter 1: Introduction

My research has been divided between three separate but related laboratories.

The focus of my Ph.D. work from 2011-2015 at the University of Maryland has been

on the development of a new atom-chip based quantum simulation experiment in

the Laser Cooling and Trapping Group on the campus of the National Institute of

Standards and Technology (NIST) Gaithersburg. During 2008-2010, I worked on

the University of Maryland campus as part of the team developing an ultracold

Rb-Li quantum degenerate mixtures experiment. Prior to this, I spent 1.5 years at

NIST working in the lab that first created artificial gauge fields for Bose-Einstein

Condensates. In each of these labs, I worked with a number of di↵erent talented

people, all under the supervision of Ian Spielman. Here, I discuss my initial work

on light-induced artificial vector potentials, setting the stage for my current project,

light-less artificial gauge fields. This project’s goal is the simulation of topological

matter [1] and for quantum simulation using an atom-chip. Finally, I will describe

our most recent imaging experiment performed with the new apparatus.

Light-induced gauge fields: Ultracold atoms are highly controllable and

tunable, making them an ideal platform for simulating and studying idealized con-

densed matter systems that are often di�cult to probe in the absence of disorder.
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These systems include the integer and fractional quantum Hall e↵ects in a two-

dimensional electron gas. These topological insulators are isolated from the envi-

ronment, providing dissipation-less edge currents while insulating in the bulk. To

learn more about these fascinating states of matter, we endeavor to make neutral

quantum gases behave as charged particles in a magnetic field.

In our experiments, the Hamiltonian of a charge neutral 87Rb Bose-Einstein

condensate (BEC) is engineered to simulate the Hamiltonian of a charged particle

by introducing an artificial vector potential A into the system. The momentum,

p, of the atom’s contribution to the kinetic energy, p

2/2m, is changed to p !

p� qA, characteristic of a charged particle in an electromagnetic field. In our work

detailed in Ref. [2], a spatially uniform vector potential was demonstrated with

a BEC using a pair of counter-propagating Raman laser beams. The two-photon

Raman transition couples the atom’s internal state to its linear momentum. The

dressed-state dispersion relation becomes E ⇡ (p�qA)2/2m⇤, so that the atom has

an e↵ective mass m⇤, and the location of the shifted energy minimum determines

the strength of the vector potential. The relative strength of the vector potential

is experimentally tunable with the Raman detuning � (using a bias magnetic field

to change the Zeeman shift), and coupling, which is dependent on the Raman laser

intensity. In the experiment, we measured the vector potential’s dependence on �

at di↵erent Raman coupling strengths, which agreed with a single-particle model.

We visualized the composition of the spin-momentum coupled dressed states by

diabatically removing the Raman coupling and applying a magnetic field gradient

to Stern-Gerlach separate the internal spin states after time of flight.
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This experiment served as a stepping stone to subsequent experiments with

non-uniform vector potentials in our laboratory as well as others. These experiments

include artificial magnetic and electric fields, spin-orbit coupling, higher order par-

tial waves, Zitterbewegung, and the spin Hall e↵ect (publications [3], [4], and [5],

respectively).

Light-less artificial gauge fields: During my third year of graduate school,

I started my main thesis project, where I designed and constructed an apparatus

for 87Rb BECs. This apparatus will enable experiments with light-less artificial

gauge fields using a nanofabricated in-vacuum atom-chip. The chip will be used

solely for the purpose of creating these vector potentials; not, as is common, for

BEC production. This work strives to realize artificial vector potentials that are

unachievable using the traditional method which employs Raman laser beams.

To make significant progress in engineering vector potentials for alkali fermions,

which could realize topological insulators, heating due to spontaneous emission must

be overcome. The heating diminishes the lifetime of a Raman dressed cloud, and

limits the time during which an experiment can be performed. To achieve su�cient

Raman coupling strength with minimal heating, the single-photon detuning of a

Raman beam must be of order the excited state fine structure splitting. However,

for alkali fermions, heating due to scattering becomes prohibitive at these detunings

due to their small excited state fine structure. For example, the splitting in 87Rb is

one-thousand times that of 6Li.

The light-induced Raman coupled Hamiltonian arises from the vector light-

shift of the Raman laser beams. The vector light-shift may be interpreted as an

3



e↵ective, spatio-temporally oscillating magnetic field. We propose to mimic this

interaction using the real oscillating (radio-frequency (RF)) magnetic fields from

an atom-chip [6]. A nanofabricated atom chip with micron scale wires will achieve

comparable length scales to the light-induced case, and the near-field magnetic fields

⇡5 µm from the chip surface will provide su�cient coupling strengths. Because

of this, the chip must be placed in-vacuum. Additionally, the individual control

over the atom-chip wires will allow for fine spatial variations in the Raman coupling

strengths not previously possible, such as abrupt turn-o↵ of the coupling (within

one lattice period ⇡3 µm) on the edges to create edge states. The first prototype

of the chip is currently being bench tested in the laboratory.

The apparatus itself has been built and reliably produces 87Rb BECs with

highly stable atom number. We use standard laser cooling techniques to magnet-

ically trap a cloud of atoms at of order 10 µK from room temperature vapor in a

spin-polarized ground state. We trap in the F=2 manifold and take advantage of

the factor of two gained in the trap strength over the F=1 manifold. We magnet-

ically transport the atoms 44 cm vertically in ⇡2 s, and achieve BEC in a crossed

dipole trap using the techniques described in [7]. We then microwave-transfer the

atoms into the ground |F = 1,mF = �1i state during dipole evaporation to reach

degeneracy. While the chip is under development, we performed our first imaging

experiment with the new apparatus.

Multiple o↵-resonance defocused imaging: In cold atom experiments,

each image of light refracted and absorbed by an atomic ensemble, carries a remark-

able amount of information. Numerous imaging techniques including absorption,
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fluorescence, phase-contrast (PCI), and o↵-resonance defocused (ORD) imaging are

commonly used. We extend ORD to image BECs. In the ORD method, there exists

an exact solution to the wave equation. This defines a direct relationship (transfer

function) between the intensity of the probe light which has interacted with the

atoms and the two-dimensional column density of the atomic cloud. This transfer

function, used to compute the column density, is characterized by divergences at

certain spatial frequencies. The locations of these divergences are dependent on

the detector distance z from the focus. By placing multiple detectors with di↵er-

ent degrees of defocus, we eliminate these systematic artifacts present in the ORD

method.

Experimentally, the multiple-camera o↵-resonance defocused (MORD) method

may be incorporated into existing set-ups with minimal additional equipment. We

use two non-polarizing beam splitters to divide the atomically absorbed and phase

shifted beam into three beams with nominally equal intensities. We simultaneously

capture the images using three cameras placed at di↵erent distances away from the

focal plane. Combining the three images eliminates the shot-noise amplification that

occurs at the divergences of single-camera reconstructions.

Further, our simulations of absorption, PCI, and MORD imaging show that

the statistical uncertainty in the measured optical depth using MORD imaging is

comparable to or below those of other imaging techniques.
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Chapter 2: Artificial Gauge Fields

2.1 Introduction to light-induced vector potentials

Here, we discuss the concept of “artificial gauge fields” [8–10] in which we

apply an engineered vector potential A to a BEC [11, 12]. The high experimental

controlability and tunability of BECs make them ideally suited for this endeavor.

An ultracold atomic gas in the presence of A can simulate various interesting con-

densed matter phenomena [13,14] that are di�cult or impossible to probe in actual

condensed matter systems. The spatial and temporal properties of A realized in the

experiment determine what phenomena is simulated.

We modify the Hamiltonian of a neutral atom Ĥ = p

2/2m + V (~r) to include

a gauge field via the replacement p ! p� qA, where p is the canonical momentum

of the atom, and q is the artificial charge associated with the fictitious vector poten-

tial A: so that the charge neutral atoms making up the BEC behave like charged

particles interacting with an electromagnetic field. Depending on the properties of

A, the BEC may experience a fictitious magnetic field B = r ⇥ A [15], electric

field E = �@A/@t [16], or more exotic e↵ects such as spin-orbit coupling (SOC)

from a matrix valued A [5, 17]. Our new atom-chip apparatus aims to expand on

the fictitious gauge fields that have been studied thus far; in particular, spin-orbit
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coupled physics. Therefore, in this chapter, we discuss the SOC case in detail. The

engineered SOC Hamiltonian models a neutral 87Rb atom as a charged particle in

a solid, whose spin state is coupled to its linear momentum.

In solids with SOC, a particle moving with momentum ~k = ~(kx, ky, kz) in a

static electric field E = E
0

ez in the laboratory frame experiences a magnetic field

BSO = E
0

(~/mc2)(�ky, kx, 0) in its moving frame [17], where c is the speed of light

and m is the mass of the particle. In the moving frame, the electron’s magnetic

moment µ
B

couples via the Zeeman interaction to this field: Ĥz = �µ
B

· BSO.

This e↵ective Zeeman interaction, called Rashba SOC, couples the spin and linear

momentum of the charged particle: �µB · BSO / �̂xky � �̂ykx, where �̂x,y,z are

the Pauli matrices operating on the internal spin states. In two dimensions, linear

SOC can be described by the sum of the Rashba term and the Dresselhaus (/

��̂xky � �̂ykx) term. In a landmark experiment [17], a Hamiltonian was engineered

in cold atoms to realize a system with equal Rashaba and Dresselhaus SOC:

ĤSOC =
~2k̂2

2m
1̂� [B̂ + B̂SO(k̂)] · µ =

~2k̂2

2m
1̂ +

⌦

2
�̂z +

�

2
�̂y + 2↵k̂x�̂y, (2.1)

where ⌦ is the Raman coupling strength, and � is the detuning from Raman res-

onance. The constant ↵ describes the SOC strength. Generally, ↵ is fixed by the

properties of a solid, and is only slightly-tunable in any given sample. However, in

cold-atom systems, the coupling strength can be experimentally controlled [17] by

changing the intersection angle between the Raman laser beams (for light-induced

SOC), or by changing the “Raman” wire periodicity of an atom-chip. In the follow-

ing, we describe the origin of these terms in the spin-orbit coupled Hamiltonian for
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a neutral 87Rb atom interacting with electromagnetic fields.

2.2 Experimental set-up

We use a Raman dressing scheme to introduce a vector potential into the

Hamiltonian of a 87Rb BEC. We start with the BEC in the magnetically trappable

5S
1/2 ground hyperfine state |F = 1,mF = �1i, the atoms are then dressed with two

Raman laser beams counter-propagating along ex with frequencies !L and !L+�!L,

and orthogonal linear polarizations, as shown in Fig. 2.1. We apply a bias field B
0

ey,

which sets the quantization axis and Zeeman shifts the atom’s hyperfine states. The

atoms experience two-photon Raman transitions [18, 19] between the mF levels of

the ground F = 1 state with single-photon recoil momentum ~kr = 2⇡~/� from

each Raman beam, where � is the wavelength of the beams. We define recoil energy

Er = ~2k2

r/2m, where m is the mass of the atom.

The general set-up described by Fig. 2.1 is used in all of the fictitious gauge

field experiments performed on the “RbK” apparatus, with slight variations in the

values of �, B
0

, and the intersection angle between the two Raman laser beams.

Next, we discuss the Hamiltonian of the Raman dressed atom.

2.3 Dressed state Hamiltonian: three-level case

The real-space Hamiltonian for a BEC dressed using the Raman coupling

scheme described in Sec. 2.2 is

Ĥ =

~2(k2

y + k2

z)

2m
+ V (r)

�
1̂ + Ĥx, (2.2)
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BEC

Raman Raman

B0𝐞𝐲

𝐞𝐱

𝐞𝐳

𝜔𝐿 𝜔𝐿 + ∆𝜔𝐿

Figure 2.1: Raman coupling set-up. Two Raman laser beams counter-propagating
along ±ex with crossed linear polarizations provide two-photon coupling between
the magnetic sublevels mF of the ground electronic state 5S

1/2, F = 1 of 87Rb. The
F = 1 state is Zeeman split by an external magnetic field applied along ey that
defines the quantization axis. With respect to the quantization axis, the beams
propagating along ex and -ex have polarizations ⇡ and �, respectively.

where we may separate the Raman coupled part of the Hamiltonian, Ĥx, from the

rest of the Hamiltonian because the momentum transfer direction of the Raman

beams is only along ex. The Ĥy,z Hamiltonian is that of a free particle (first term

on the right-hand side), plus V (r). The optical dipole trap provides the potential

V (r), and the unit matrix acting on the Zeeman split F = 1 spin space |mF i 2

{|� 1i, |0i, |+ 1i} is 1̂ .

The coupling between the spin states in Ĥx comes from the atom-light inter-

action between the BEC and Raman beams. An atom interacts with the electric

fields

E
1

(r, t) = E
1

eikLx�i!Lt
ey, and E

2

(r, t) = E
2

e�ikLx�i(!L+�!L)t
ez (2.3)

of the two Raman beams (Fig. 2.1). For beams of equal intensities E
1

= E
2

= E
0

,

the total electric field is

E
total

(x, t) = E
0

⇥
e�ikLx�i!Lt

ey + eikLx�i(!L+�!L)t
ez

⇤
. (2.4)

The interaction Hamiltonian arises from the vector light-shift proportional to E⇤
total

⇥

E
total

, which behaves like an e↵ective magnetic field Beff / �E2

0

cos(2kLx+�!t)ex.
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Along with the atom’s magnetic moment µ = gFmFµB, this gives rise to the Raman

interaction ĤR = �µ ·Beff . In the frame rotating at frequency �!L, and using the

rotating-wave approximation, the interaction Hamiltonian in the basis of the bare

spin states {|� 1i, |0i, |+ 1i} is

Ĥx/~ = ⌦R/2

0

BBBBBB@

0 ei2kLx 0

e�i2kLx 0 ei2kLx

0 e�i2kLx 0

1

CCCCCCA
. (2.5)

In momentum space, we use the spin-momentum basis to find the gauge transformed

Hamiltonian

Ĥx/~ =

0

BBBBBB@

~(kx + 2kL)2/2m� � ⌦R/2 0

⌦R/2 ~k2

x/2m� ✏ ⌦R/2

0 ⌦R/2 ~(kx � 2kL)2/2m+ �

1

CCCCCCA
. (2.6)

The tunability associated with inducing artificial gauge fields in a cloud of ultracold

neutral atoms is evident: the laser intensity determines the Raman Rabi frequency

(coupling strength) ⌦R, the strength of the bias magnetic field determines the Zee-

man shifts, i.e., the Zeeman detuning � and the quadratic Zeeman shift ✏/h = ✏BB
2

0

,

where ✏B = 7.1772⇥ 10�2 kHz/G2.

Diagonalization of Ĥx results in three eigenvalues Ej(k̃x), where j = 1, 2, 3.

The properties of the resulting dispersion relations are largely dependent on the

values of ⌦R, and �. The quadratic Zeeman shift ✏ provides a small energy o↵set to

the dispersion curves. Example plots of Ej(k̃x) are shown in the left-hand column of

Fig. 2.2. The sans-Raman coupling, free-particle dispersion curves of the bare spin

states are shown in black; the three Raman dressed energy bands are shown in red.
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The lowest energy band is approximately harmonic about the dispersion minimum

k̃min: Ej=1

(k̃x) ⇡ ~2(k̃x � k̃min)2/2m⇤, where ~k̃min = qA, and m⇤ is an e↵ective

mass. In Sec. 2.4.1, we discuss the procedure used to load atoms into the lowest

energy dressed state Ej=1

. The induced vector potential, given by the position of

the dressed state minimum, is A = (Ax, 0, 0). This vector potential commutes with

itself, i.e., A is “Abelian.”

The Raman beams couple spin states with the atom’s linear momenta; |mF , kxi.

The two-photon Raman transition couples adjacent mF states, i.e. states that di↵er

in angular momentum by ~�mF = ±~ and by linear momentum 2~kr. The three

Raman-coupled basis states [2, 20] are

 (k̃x) = {|� 1, k̃x + 2kri, |0, k̃xi, |+ 1, k̃x � 2kri}. (2.7)

Next, we describe the experimental sequence we developed to demonstrate the gauge

field Hamiltonian 2.6, and describe the results.

2.4 Experimental procedure

2.4.1 Adiabatic dressing

In our first fictitious fields experiment [2], Raman dressing was used to create

a light-induced, spatially uniform, e↵ective vector gauge potential for a 87Rb BEC

in the F = 1 ground hyperfine state. This experiment, paved the way for the many

non-uniform artificial gauge fields experiments that followed. The results of the

uniform vector potential experiment agreed with the single-particle model described

11



above.

The experiment started with a BEC prepared in |mF = �1, kx = 0i to be

loaded into the lowest energy Ej=1

(k̃x) Raman dressed state. To adiabatically load

into Ej=1

(k̃x), the BEC must be loaded with quasimomentum k̃min, which is where

k̃x = 0 when � = 0. However, a 3D BEC created in a hybrid quadrupole plus

crossed-dipole trap using the methods described in Ref. [7], would start out in the

dressed state j = 1 with quasimomentum k̃x = �2kr.

To transfer the atoms to the k̃x = 0 state, the atoms are first RF dressed

with RF frequency !rf = �!L and loaded into the lowest energy RF dressed state.

This is a two step adiabatic process: first, the RF coupling is ramped onto the

desired value in 1 ms with the detuning set far o↵ resonance (by turning up the

bias magnetic field). Then second, the detuning is ramped to resonance in 9 ms.

Adiabaticity is easily reached because the RF-dressed band gap energy ~⌦RF/
p
2

where ⌦RF/2⇡=12 kHz has the a�liated time scale ⇡ 20 µs, which is much less

than the ramp times.

Next, the atoms in the lowest energy RF dressed state are Raman coupled

by ramping on the Raman beams adiabatically (with respect to the energy gap

⇡ ~⌦R between the dressed energy bands and the trap frequency along ex) to the

desired Raman coupling strength ⌦R in 20 ms. The RF coupling is then turned o↵

in 2 ms, leaving the atoms in the lowest energy Raman dressed state j = 1 with

k̃x = 0. Atoms in an e↵ective vector potential (i.e. k̃min 6= 0) may then be achieved

by adiabatically ramping on a detuning � away from Raman resonance (� = 0) in

⇡ 20 ms. This combined coupling scheme was studied in Ref. [21].
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The dressing procedure described for this particular experiment is common to

all experiments (with variations in the exact energy and time scales) that followed,

with the exception of the synthetic partial waves [3] experiment. This experiment

observed e↵ective higher order partial waves as a result of the modified collision

interactions between two BECs that were Raman dressed with equal and oppo-

site momenta. In the partial waves experiment, instead of preparing the atoms by

loading them all into the energy minimum of the lowest energy dressed state, two

spatially overlapping BECs were prepared with momenta ±2kL. Since the BECs

then load into the Raman dressed energy band at kmin = ±2kL, the atoms oscillate

in the optical trap. Because of this, the Raman dressing sequence was modified:

the Raman beams were ramped on in 1 ms, still adiabatic with respect to the band

gap, but fast compared to the quarter period of the optical trap frequency along

ex. Doing so ensures the momenta of the two BECs remain the same during the

dressing stage. At a quarter period, a BEC with non-zero starting momentum would

maximally change its speed inside a harmonic trap.

Next, we discuss the techniques used to make measurements on a Raman

dressed cloud after performing an experiment. Again, these techniques apply gener-

ally to any gauge fields measurements made in the lab, but we refer to the original

vector potential experiment and discuss its results.
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2.4.2 Measurements

The relative strength of the vector potential is experimentally found by mea-

suring the spin and momentum decompositions of the Raman dressed BEC. Though

a ground-state BEC has zero group velocity, the momenta of the three spin compo-

nents under Raman dressing are dependent on the values of � and ⌦R. To prepare

for the measurement, we diabatically turn-o↵ the Raman coupling (i.e. the Ra-

man laser beams) and apply a magnetic field gradient to Stern-Gerlach separate

the three spin states after time-of-flight (TOF). During TOF, the cloud ballistically

expands and the three momentum components become spatially resolved, as shown

in the right-hand column of Fig. 2.2. The presented data is spin- and momentum-

separated along the vertical and horizontal axes, respectively. The on-resonance

case, (a), shows the expected ±2kr momenta acquired by the mF = ±1 states from

the two-photon Raman coupling. At a non-zero detuning, ~� = �2Er, shown in (b),

all spin states have acquired a non-zero velocity, along with corresponding changes

in the population fractions (such that the mean velocity remains zero).

2.5 Dressed state Hamiltonian: two-level case

We next describe the two-level Raman-coupled scheme used to realize SOC.

Experimentally, we want to reduce the thee-level system into an e↵ective two-level

system and simulate the two spin states of a spin-1/2 fermion such as an electron.

This is accomplished by applying a bias field large enough to detune the mF =

+1 state from Raman resonance with the mF = 0,�1 states via the quadratic
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Figure 2.2: In the left-hand column, the bare spin free-particle dispersion curves
are shown in black. The energy dispersion relations of the three Raman dressed
eigenstates Ej(k̃x) where j = 1...3 are depicted in red. In the right-hand column
are the corresponding images taken in the laboratory after TOF, which shows the
spatially resolved spin and momentum decompositions of the Raman dressed state.
In both cases (a) and (b), the atoms were dressed with Raman coupling strength
~⌦R =4.85 Er, and quadratic Zeeman shift ~✏=0.44Er. (a) ~� = 0, the minimum
of the lowest energy dressed state Ej=1

is at k̃x = 0, i.e. there is no e↵ective vector
potential. (b) ~� = �2Er, the Ej=1

minimum, indicated by the black arrow, shifts
to k̃min 6= 0, so that each spin state acquires a non-zero phase velocity from the
induced vector potential.

Zeeman shift (|✏| � |�|,⌦). The bias field B
0

e

y

provides the linear Zeeman shift

!z/2⇡ ⇡ 4.81MHz, and the Raman beams have a fixed frequency di↵erence �!L ⇡

!z (Fig. 2.3). We are left with two pseudo-spin states | "i = |F = 1,mF = 0i and

| #i = |F = 1,mF = �1i with respect to the ey quantization axis. The relevant

coupled states are reduced to

 (kx) = {|� 1, kx � kLi, |0, kx + kLi} (2.8)
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5𝑆1/2
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≈ 5 𝑀𝐻𝑧

𝛿/2

Figure 2.3: Two-level energy diagram for the spin-orbit coupling scheme. A two-
photon Raman transition couples the atom’s internal state to its linear momentum.
The Raman laser beams have a single-photon detuning �, which is of order the
excited state fine structure splitting. The Raman beams are detuned by � from the
|�1i and |0i Zeeman states. A large enough magnetic field provides the quadratic
Zeeman shift of order the linear shift |✏| � |�|,⌦. This decouples the |+1i state from
the |�1i, |0i states (negligible Raman coupling to the |+1i state).

The Raman beam geometry was modified to intersect at ✓ = ⇡/2 for the SOC

case [17] so that the new energy scale EL = ~2k2

L/2m, where kL = krcos(✓/2) =

p
2⇡/�. The associated two-level Hamiltonian is

Ĥx/~ =

0

BB@

~
2m

(kx � kL)2 + �/2 ⌦R/2

⌦R/2
~
2m

(kx + kL)2 � �/2

1

CCA (2.9)

Here � = �!L � !z is the detuning from Raman resonance, and ⌦R is the Raman

coupling frequency. The SO coupling strength ↵ = EL/kL is a function of the

Raman beam wavelength � and intersection angle ✓, but is independent of the

Raman coupling strength ⌦R.
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Diagonalization of the Hamiltonian for a given coupling strength ⌦R gives

dispersion curves symmetric about quasimomentum q = 0 for � = 0 Fig. 2.4.

-2 -1 0 1 2
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0

Quasimomentum kxêkL

En
er
gy
EHk x
LêE L

Figure 2.4: SOC dispersion curves. Black curves give the free-particle dispersion for
the bare spin states absent Raman coupling. For small Raman coupling strengths
⌦R < 4EL, the Raman coupled dispersion has two minima. For large ⌦R > 4EL,
the dispersion has a single minima. In both cases, the curvature about the minima
has been modified from the free-particle case, so that the Raman-coupled atom has
a single-particle e↵ective mass m⇤.

The dispersion curves are plotted for � = 0 and varying Raman coupling strengths

⌦R. In the SOC regime where ~⌦R < 4EL, dispersion curves have two minima

corresponding to dressed pseudo-spin states | "0i and | #0i. For larger coupling

strengths, the two minima combine into a single minimum, so that the system

described is a spinless boson. The dressed states decompose into the bare spin

states, and the location of the dressed minima are variable with �. It is in the single-

minimum regime that previous experiments realized artificial electric and magnetic

fields [15, 16].

For non-zero detuning and ~⌦R � 4EL, the dispersion minima kmin shifts. The

new minima are approximately harmonic near k̃min: E(kx) ⇡ ~2(kx ± kmin)2/2m⇤,

with e↵ective mass m⇤ = ~2[d2E(kx)/dk2

x]
�1 determined by the dispersion curva-
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ture. Dressed energies E(kx) are analogous to the Hamiltonian (p � qA)2/2m for

a particle with charge q interacting with vector potential A. Then k̃min = qA/~

and the magnitude of A(�,⌦R) are bounded: �2kL < qA/~ < +2kL [2]. The

strength of the vector potential A determines the fraction of atoms in each spin

and momentum state. Further, the strength, spatial, and temporal properties of A

are experimentally controlled with di↵erent Raman beam intensities to vary cou-

pling strength ⌦R, and properties of the detuning via changes in bias magnetic field

(Zeeman shift) � [15, 16].

It has been shown experimentally [17] that, absent Raman coupling, a BEC

formed from | ", kx = k̃x + kLi and | #, kx = k̃x � kLi spatially mix. However, a

quantum phase transition into SOC occurs when ⌦R = 0.19EL. In this regime, the

dressed spin states spatially separate from e↵ective spin interactions.

The two-minima regime of the two-level Raman dressed Hamiltonian was used

to realize the spin-Hall e↵ect (SHE) for the first time in a BEC. In the SHE, two spin

states experience equal and opposite spin-dependent Lorentz-like forces. The force

is orthogonally directed to the particle’s direction of motion, in analogy to the Hall

e↵ect for charged particles. The SHE has been observed for electrons flowing in spin-

orbit coupled condensed matter systems [22, 23]. In our experiment, we introduced

spin-dependent Lorentz forces to pseudospin-1/2 87Rb BECs by engineering spin-

and space-dependent vector potentials [5].

The experimental realization of the SHE built on the methods described for

two-level Raman dressing of a 87Rb BEC, with a key new feature: spatially inhomo-

geneous SOC. Since the Raman coupling strength is proportional to the intensity of
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the Raman beams, the strength of ⌦R, and therefore of A, is dependent on where

in space the atomic cloud is located inside the Raman beams’ Gaussian intensity

profile. The dynamic control over the optical trap beam allowed the Raman cou-

pling to be both position and time dependent. The dressed state was prepared with

equal populations in each (dressed) spin polarized state. The spin mixture was then

suddenly displaced in the harmonic trap to a final displacement associated with a

di↵erent ⌦R. Each spin state acquired momentum along ex, which was both op-

posite in direction for the two spins, and related to its final momentum along ey,

characteristic of the SHE.

2.6 Dressed states without lasers: atom-chip experiment

2.6.1 Motivation

Going beyond spin-orbit coupling (SOC) achieved in previous bosonic 87Rb

experiments necessitates more involved experimental set-ups. For example, non-

Abelian SOC requires Raman coupling in more than one-dimension. The Raman

detuning, �, must provide su�cient Raman coupling ⌦R / 1/�2, but also be far

enough detuned from the excited state fine structure splittings to limit scattering.

The scattering rate is proportional to 1/�2, so that we quickly reach a limit as � is

increased to minimize scattering. In the case of an optical dipole trap discussed in

Sec. 2.7, scattering is not a limiting factor because the light-shift for large detunings

scales as 1/�, so that a far-red detuned laser beam can provide strong confine-

ment at high intensities. For su�cient Raman coupling and minimal scattering, the
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optimal detuning from the ground to first excited fine structure (D1) transition is

approximately equal to the excited state fine structure splitting, 7.1 THz for 87Rb

(Fig. 2.3).

Future experimental interests include the study of alkali fermions such as 40K

and 6Li, for the modeling of topological insulators with neutral atoms. However, the

light-induced Raman coupling scheme will result in high rates of scattering: the fine-

structure splitting is only 1.7 THz for 40K, and just 10 GHz for 6Li. Therefore, the

lifetime for moderate Raman coupling strengths will be limited by large spontaneous

emission rates. This limit on experimental lifetime imposed by scattering rates

suggests the need for a non-optical coupling method.

2.6.2 Light-less “Raman” coupling

Figure 2.5: The magnetic sublevels of the ground hyperfine F = 1 state are Raman
coupled with RF fields from an atom-chip. The RF frequency detuned � from
RF resonance couples the spin states (pictured). An RF field has the wavelength
scale ⇡ 10 m, compared to the length scale ⇡ 800 nm associated with Raman
transitions using laser light. Thus, the length scale associated with an RF field is
not appropriate for imparting momentum kicks on the atom; we therefore propose
the use of a moving near-field RF field to achieve the desired length scales.

In this section, we introduce light-less Raman coupling using radio-frequency

(RF) magnetic fields from an atom-chip. As we showed in Sec. 2.3, the atom-light
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interaction looks like a rapidly varying e↵ective magnetic field (vector light-shifts)

where

B

e↵

/ e

z

cos(�k · x� �!t). (2.10)

To eliminate lasers and use radio-frequency (RF) magnetic fields to Raman couple

the Zeeman split ground hyperfine states |F = 1,mF = �1, 0i of 87Rb, we will

use an atom-chip in place of Raman beams to eliminate spontaneous emission and

spatial constraints that arise with use of complicated laser beam set-ups. The RF

will couple the spin states in the usual way, as shown in Fig. 2.5. The strong near-

fields of the atom-chip will replace the laser-atom interaction [6]. The coupling field

produced by the chip must carry momentum (as in the Raman-with-light case) to

couple the hyperfine states. We will accomplish this using a set of semi-rectangular

gold wires spaced a ⇡ 900 nm apart on an atom-chip. The wire separation is etched

with ion milling. This results in the separation between the wires to taper from

⇡ 150 nm at the top, down to ⇡ 50 nm at the bottom (see Fig. 2.6). The wires

carry currents

Im = I
0

sin(qx� !t+ �m), (2.11)

wherem is the wire number, q is the wave vector, and �m is the phase. A three-phase

current scheme creates a moving magnetic lattice, and the speed of the motion is

determined by the frequency of the changing current in the “Raman wires.” The

currents of neighboring wires are shifted in phase by 2⇡/3 to produce the moving

magnetic lattice.

The proposed atom-chip must be placed in-vacuum because we require chip-
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to-BEC distance of ⇡ 5µm (Fig. 2.6), a distance which is within the “sweet spot”

region for both a strong and spatially uniform (along ex) Raman coupling strength.

The chip design considerations are further discussed in Sec. 2.6.3.

The chips are fabricated at the Center for Nanoscale Science and Technology

(CNST) at NIST Gaithersburg using electronic beam lithography, and the gold

wires were written on a commercially purchased Si substrate. A thin ⇡ 5 nm layer

of titanium was deposited on the Si to bond to gold. Each Raman wire has a cross-

section of 150 nm (height) by 850 nm (width), with a spacing ⇡ 150 nm between

individual wires at the surface. Due to fabrication constraints, the spacing between

wires tapers down from 150 nm to 50 nm at the base. The first test chip is pictured

in Fig. 2.7. To ensure uniform coupling over the entire length of a BEC, 96 parallel

wires were fabricated. Three distinct regions of wires were fabricated with di↵erent

wire periodicities. This added flexibility will allow the light-less Raman scheme to

be realized with three di↵erent characteristic length scales.

150 nm

900 nm 150 nm

BEC
≈ 5 um

. . . 

Si

Au

𝐞𝐳
𝐞𝒙

Figure 2.6: To achieve su�cient Raman coupling strengths, the BEC must be ⇡ 5µm
from the chip surface (i.e. within the evanescent region of the moving RF magnetic
field produced by the chip). Adjacent wires are spaced ⇡ 900 nm apart, and the
separation between wires varies between ⇡ 150 nm (top) to ⇡ 50 nm (bottom). The
separation taper is a consequence of the ion milling technique used to etch the wires
during fabrication. The near-field wavelength of the three-phase RF field is then
2.7µm.
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Images courtesy of the NIST Center for Nanoscale Science and Technology (CNST)

Au

Si

(a)

(b) (c)

Figure 2.7: First successful test chip fabricated, ready for bench testing. (a) Full
top-down view of the 96 wires. There are three regions of parallel wires; each region
has di↵erent wire periodicity. (b) cross-section view of region ii, and (c) cross-section
view of region iii.

2.6.3 Raman-with-light vs. rf Raman

In general, the rf Raman coupling will take place at di↵erent length scales from

the Raman-with-light case (although the angle of intersection of optical beams can

be used to tune the length scale of the interactions much as in an optical lattice [24]).

The di↵erent wire spacings are inversely proportional to the momentum that the

chip-generated near-field magnetic field will be able to impart to the atoms. The

near field magnetic field from the wires is,

B(z) / Imexp(�2⇡z/�rf ) (2.12)
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for Raman wires, where �rf is the periodicity of the current in the Raman wires,

and z is the distance from the chip surface. The strength of B(z) (analogous to

the Raman laser intensity in the Raman-with-light case) determines the Raman

coupling strength. To overcome the exponential decay of the evanescent wave near

the chip surface, we must trap the atoms at a distance of order �rf from the chip

surface. Given the current design, a uniform coupling strength in the plane parallel

to the chip surface requires a distance of 3⇠5 µm from the surface. A plot of the

Raman coupling strength as a function of ex for the distance z = 2µm from the chip

surface is shown in Fig. 2.8(a). The dark blue curve represents the time-averaged

coupling strength, uniform over the dimensions of a typical BEC. For su�cient

coupling strengths, we would like to place the BEC as close as possible to the par-

allel wires producing the moving magnetic field. However, for distances z < a, the

time-averaged coupling oscillates at the wire periodicity. At distances z & a, the

coupling becomes uniform; therefore the optimal operating region for our experi-

ments is at small distances z that satisfy the uniformity condition. Additionally,

the Raman coupling strength as a function of the distance z from the chip surface

is shown in Fig. 2.8(b), for the three wire periodicities fabricated on the atom-chip:

�eff = 5.4µm, 10.8µm, and 16.2µm. Further, uniform coupling in the direction

perpendicular to the surface requires that the BEC be thin along this direction.

Although atom-chips are commonly purposed for BEC production (such as

magnetic trapping with wires on the chip), we will use our chip solely for the pur-

pose of creating the Raman coupling (degeneracy will be reached in an optical trap).

Moreover, due to the unusually close placement of the BEC to the chip surface,
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near-surface e↵ects such as spin-flips due to thermally induced currents in the room

temperature gold surface (Johnson noise), and perhaps even the distortion of the

trapping potential due to the Casimir-Polder potential [25], should be considered.

A shorter BEC lifetime would limit the duration of time we have to perform exper-

iments. However, since the BEC will be tightly confined along ez (2D BEC) and

the Casimir-Polder force falls o↵ quickly with distance z from the surface (/ 1/z4),

we expect the Casimir-Polder force to have negligible a↵ects. In addition, the spin-

flip rate due to Johnson noise from the gold wires is expected to be insignificant:

0.05 s�1 ⇠ 0.15 s�1 in the spatial region of interest to the BEC 3 µm to 5 µm.

For the Raman beams we use wavelength � ⇡ 800 nm, so the relevant energy

scale is EL = ~2k2

L/2m ⇡ h · 3 kHz ⇡ kB · 150 nK. A Raman transition is a

two-photon process, while RF Raman using a real moving magnetic field is a single-

photon process. Thus, it is appropriate to compare the RF length scales to half of

�, ⇡ 400 nm. The length scale for the chip �RF > 2a is limited by the wire spacing

2a ⇡ 2 µm. The minimum wire periodicity that could be fabricated on the chip was

constrained by the wire cross-section we expected to be necessary to avoid significant

heating of the wires. ERF = h · 20 Hz = kB · 3 nK, and �2kRF < eA
~ < +2kRF , the

vector potential bounds being a factor of ⇡ 8 smaller than the Raman-with-light

case. The benefits of the chip method include the relative ease with which complex

coupling schemes can be designed, including spatially varying coupling.

If a larger-magnitude artificial vector potential is desired, there are several

options to get an ERF comparable to EL. One option is to use the alkali fermions,

which are smaller in mass. For example, 6Li would result in a factor of 10 gain in
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Figure 2.8: A constant coupling over the dimensions of the BEC (as in the light-
induced coupling case) requires the time-averaged magnetic field value to be con-
stant. For small distances z < a, where a is the spacing between adjacent wires, the
coupling oscillates over space. The optimal value is z = 2a ⇠ 3a, the smallest value
of z for which the coupling is constant. The calculated time-averaged coupling is
shown as dark blue in (a) for �eff = 5.4µm at z = 2µm from the chip surface. We
desire the smallest z feasible because the coupling strength drops o↵ exponentially
along z. The calculated coupling strength as a function of the distance z away from
the chip surface for di↵erent wire periodicities is shown in (b) for I

0

= 1mA.

the recoil energy. Another option is to two-rf-photon couple the mf = 1 and mf =

�1 spin states instead of single-rf-photon coupling mf = �1, 0. The momentum

di↵erence between the two spin states is then increased by 2kr, so that Er has a

factor of 4 gain in energy scale.

As mentioned, the first atom-chip for RF-Raman-coupling induced artificial

gauge fields experiments is currently being bench tested. Empirically, we found

that we are able to run currents higher than anticipated [26] through the chip wires.

This means a larger range of Raman coupling strengths is at our disposal. While

the predicted breakdown current was ⇡ 50 mA, currents up to ⇡ 130 mA were

run through each wire with no noticeable heating of the wires, i.e. the resistance

across each wire stayed constant. A current of just ⇠ 1 mA will provide Raman

coupling strength ~⌦R ⇠ ERF at distance z ⇡ 5 µm from the chip surface. In
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addition, the less stringent constraint on the wire cross-section will allow future

chips to be designed with smaller than 900 nm wire periodicities, possibly closing

the gap between the length scales of RF Raman and light-induced Raman couplings.
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Chapter 3: Quantum degenerate gas production

In our experiment, we achieve Bose-Einstein condensation of 87Rb atoms start-

ing with standard laser cooling techniques followed by evaporation to degeneracy

in a hybrid optical dipole plus magnetic trap [7]. Here we provide an overview of

the laser cooling and trapping procedure we use on the Rubidium Chip (RbChip)

apparatus, which includes the hybrid trap technique developed on the Rubidium II

apparatus (now Rubidium Potassium (RbK)), as detailed in Ref. [7]. The steps to

degeneracy are summarized in Table 3.1 and Fig. 3.5.

We start by capturing atoms from room-temperature Rb vapor in a six-beam

magneto-optical trap (MOT) in the MOT cell with loading enhanced by light-

induced atomic desorption (LIAD) [27, 28]. The atoms are then trapped in a mag-

netic quadrupole trap and magnetically transported [29] from the MOT cell to the

science cell using a series of overlapping anti-Helmholtz coil pairs. The details of

the magnetic transport are discussed in Sec. 4.3. Upon completion of the transport,

we perform rf-forced evaporation in the magnetic trap. The magnetic field gradient

is then lowered, so that the magnetic trapping potential no longer exceeds that of

gravity, to transfer the cloud into a red-detuned crossed optical dipole trap (ODT).

Finally, we perform evaporation in a crossed ODT to reach quantum degeneracy.
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3.1 Introduction: Doppler cooling

Our task is to cool room-temperature atoms from vapor, ⇡ 300 K, until they

reach quantum degeneracy at ⇡ 100 nK. The first step is to collect atoms in a MOT

using Doppler cooling, which for example is commonly utilized in a Zeeman slower.

While the RbK experiment has a Zeeman slower, the RbChip experiment does not.

However, we give a brief description of it here for pedagogy. A Zeeman slower utilizes

one-dimensional (1D) Doppler cooling in combination with an external, spatially

varying magnetic field to cool and slow atoms before they are captured in a MOT.

The basic ideas of Doppler cooling can be understood with this 1D example. A beam

of atoms traveling along ex is slowed by a fixed frequency laser beam propagating

along �e

x

(Fig. 3.1). As the atoms slow due to preferential absorption of counter-

propagating near resonant radiation, the Doppler shift of their transition frequency

decreases. This issue is remedied with the application of a spatially varying magnetic

field that changes the Zeeman splitting of the internal spin states of the atoms as they

move and slow so that the atoms stay on resonance with the laser beam frequency.

A photon absorbed imparts momentum ~kL to an atom at resonance with its

laser frequency !L, where kL = 2⇡/�L is the wave number of the plane-wave laser

with free-space wavelength �L (Fig. 3.1). For an atom moving at speed v in the

direction opposite to the laser beam propagation, the atomic resonance frequency !
0

in the laboratory frame is Doppler shifted by kLv in the reference frame of the atom,

so that the atom is resonant with a laser which has angular frequency ! = !
0

�kLv.

The laser cooling beam must then have frequency !L that is red-detuned from !
0
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Figure 3.1: Doppler cooling. (a) An atom travels along e

x

with velocity v, opposite
the propagation direction of a laser beam with momentum ~k. (b) An atom absorbs
light resonant with its internal electronic states, including both Doppler and Zeeman
shifts. The atom is excited to its excited state, and the light imparts momentum ~k
on the atom. (c) The spontaneous emission decay of the atom back to its ground
electronic state produces a random momentum kick which averages to net zero over
many cycles.

to be absorbed by the atom: !L = !
0

+ �, where detuning � < 0. The absorbed

photon is then spontaneously emitted in a random direction (Fig. 3.1c). Over the

course of many absorption-emission cycles from an incident laser beam, the random

momentum kicks average to zero and the net momentum kick is directed opposite

to v (Fig. 3.1b): the atom is slowed.

To achieve significant cooling, many cycles of absorption and spontaneous

emission are necessary. The recoil velocity vr = ~kL/m ⇡ 6 mm/s for 87Rb, where

m the mass of a single rubidium atom, is the change in the atom’s velocity due to

absorption of a photon. At room temperature (300 K), the most probably velocity

of 87Rb atoms is ⇡ 240 m/s, so that tens of thousands of momentum kicks are
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necessary to significantly slow the atoms. To accomplish this task, we couple the

|5S
1/2;F = 2i ground to the |5P

3/2;F 0 = 3i excited state (the D
2

cycling transition)

using � ⇡ 780 nm laser light.

The internal electronic states used to Doppler cool neutral 87Rb atoms are

shown in Fig. 3.2. The atomic cooling transition used in laser cooling and trapping

is the cycling transition accessed using � (circularly) polarized cooling beams. This

D
2

transition is the optimal cooling transition because it has the largest transition

probability (i.e. largest Clebsch-Gordan coe�cient). In addition, angular momen-

tum selection rules require an atom in |5P
3/2;F 0 = 3,m0

F = 3i to spontaneously

decay back down to |5S
1/2;F = 2,mF = 2i, where the atom rejoins the cooling cy-

cle. In addition to the cooling transition, atoms have a small but finite probability of

making the o↵-resonant transition several linewidths away from the cooling transi-

tion, |5S
1/2;F = 2i ! |5P

3/2;F 0 = 2i. The atom may then spontaneously emit back

to |5S
1/2;F = 2i or to the dark |5S

1/2;F = 1i state. Atoms in the dark state are no

longer at resonance with the laser beam due to the large (� �) 6.8 GHz splitting be-

tween the two electronic ground states. We, therefore, apply an additional repump

laser beam resonant with the |5S
1/2;F = 1,mF = 1i ! |5P

3/2;F 0 = 2,m0
F = 2i

transition to pump the atoms out of the dark state (Fig. 3.2). Some of these atoms

will decay to |5S
1/2;F = 2i and rejoin the cooling cycle.
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Figure 3.2: 87Rb D2 line hyperfine structure level diagram. The primed states
represent the excited state hyperfine structure. The MOT cooling and repump laser
wavelengths are red-detuned from the F = 2 to F 0 = 3 and F = 1 to F 0 = 2
transitions, respectively. The detuning compensates for the Doppler shift seen by
the atom traveling in the direction opposite the laser beam propagation.

3.2 Limits of Doppler cooling

The maximum scattering force from the absorption process is limited by the

rate of spontaneous emission (an atom cannot absorb faster than it can emit a

photon). The steady-state excited state population for a two-level atom is

⇢
22

=
⌦2/4

�2 + ⌦2/2 + �2/4
. (3.1)

The laser intensity I and coupling strength ⌦ (the Rabi frequency, the rate at

which the atom oscillates between the ground and excited states) are related by

I/ISAT = 2⌦2/�2 where the saturation intensity for the cooling transition is ISAT =

~!3�/12⇡c2, where ! is the frequency of the transition, and c is the speed of light.

For large laser intensities I ! 1, ⌦ � �,�, so that ⇢ ! 1/2. Then the scattering
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force F = ~k�⇢
22

has a maximum Fmax = ~k�/2. The maximum acceleration is

then amax = Fmax/m = ~k�/2m = vr/2⌧ , where ⌧ is the lifetime of the 5P
3/2 ex-

cited state. For 87Rb, amax ⇡ 2 ⇥ 105m/s2, vr ⇡ 6 mm/s, and ⌧ ⇡ 26 ns. For two

counter-propagating laser beams, the net cooling scattering force slows the atoms so

that they can only slowly di↵use out of the beams: an optical molasses. This force

is a damping force Fmolasses,cool = �↵v, for small velocities kv ⌧ �, and negative

(red) detuning � < 0. The damping coe�cient ↵ is a function of �, and ↵ > 0 only

when the laser is red-detuned from atomic resonance. This damping force competes

with momentum di↵usion from spontaneous scattering to a lowest Doppler limited

temperature TD, limited by the natural line-width � of the excited state by the

relation kBTD = ~�/2. For 87Rb, the Doppler temperature is TD ⇡ 146µK.

Figure 3.3: Magneto-optical trap. Three
properly polarized counter-propagating
pairs of orthogonal laser beams along with
an external anti-Helmholtz magnetic field
make a magneto-optical trap (MOT).

Figure 3.4: MOT energy level separation
as a function of position. Note that the
�+(��) beams couple to opposite mf =
1(�1) Zeeman states.
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3.3 Magneto-optical trap

Our procedures for Bose-Einstein condensate (BEC) production all start by

loading atoms into a magneto-optical trap (MOT), as shown in Fig. 3.5 stages (i) to

(ii). The MOT is typically used as a first step toward BEC because of its large

capture volume, reasonable capture velocity, and the fairly long lifetime of the

trapped atoms. The MOT combines three orthogonal pairs of counter-propagating

laser beams with a weak magnetic field gradient (weak compared to the grav-

ity gradient, such that the atoms are not magnetically trapped) of ⇡ 10 G/cm

to form a trapping region [30]. The field gradient is created by a pair of anti-

Helmholtz coils that run currents in opposite directions with a field minimum

of zero at the trap center (Fig. 3.3). The polarizations of the laser beams play

a crucial role in a MOT (Fig. 3.4). Near the quadrupole trap center, the field

varies linearly as B = B0(x, y,�2z). Since the magnetic field is symmetric along

ex and ey, the gradients along ex and ey are equal, and because r · B = 0,

(@Bx/@x) + (@By/@y) � (@Bz/@z) = 0. The weak fields provide a Zeeman split-

ting �E = gFµBmFB of the atom’s internal energy levels near the trap minimum.

Each counter-propagating laser beam pair has opposite circular polarizations—right-

handed circular (�+) and left-handed circular (��) that allow angular momentum

transitions �mF = +1, and �mF = �1, respectively (Fig. 3.4). As an atom travels

away from the MOT trap center, its internal hyperfine level splitting increases with

the field. An atom that sees a red-detuned beam will feel a restoring force when

its internal energy reaches a point in space where it is at resonance with the laser
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frequency. The laser is detuned of order the natural linewidth (�/2⇡ ⇡ 6 MHz) of

the transition.
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Figure 3.5: Quadrupole trap current as a function of time. The anti-Helmholtz coil
pair used for the first stages of laser cooling and magnetic trapping is sequenced as
follows: (i) Vaporous 87Rb atoms are captured and cooled in the magneto-optical
trap (MOT) for ⇠1 sec. The loading of the MOT happens in the first ⇠0.5 sec
using light-induced atomic desorption (LIAD). (ii) CMOT. (iii) The magnetic field
is turned-o↵ for the molasses stage. (iv) Magnetic trap is on to recapture the atoms
(MOT laser o↵). (v) Adiabatic increase in the trap depth for a compressed trap to
get ready for magnetic transport. (vi) Magnetic transport starts, to be discussed in
detail in Sec. 4.3.

Typically, the number of atoms captured in a MOT is N ⇡ 109, with tem-

perature T ⇡ 100µK. We typically load the MOT for 0.5 s to 3.0 s depending on

background vapor pressure and desired number of atoms into the science cell.

3.4 Optical molasses

After the atoms are trapped and cooled in the MOT, we perform polarization

gradient cooling by suddenly turning the quadrupole field to zero, while keeping

the laser beam pairs used for the MOT on. The three orthogonal pairs of counter-

propagating laser beams provide the damping forces necessary to cool atoms in a sub-
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Doppler optical molasses [31]. Molasses is performed for a short period (step (iii) in

Fig. 3.5) immediately after the MOT stage. Since atoms move in three-dimensions,

the optical molasses laser beams must propagate along all three axes for capture.

It is important to note that the molasses itself is not a trap, and does not spatially

confine the atoms.

Optical molasses uses the polarizations associated with laser beams to sub-

Doppler cool atoms. While Doppler cooling is limited by the excited state line

width of the atom ⇡ 6MHz for 87Rb, the Sisyphus cooling mechanism of molasses is

limited by the recoil energy Er/h ⇡ 4 kHz of the atom, meaning that the change in

energy per a Doppler cooling process is larger than that in the Sisyphus e↵ect. Each

set of counter-propagating beams create a spatially varying light-shift. An atom

that repeatedly climbs up this gradient, absorbs a photon, then spontaneously de-

cays to the bottom of the hill, experiences a decrease in energy related to the height

of the hill for each occurrence. The process is ultimately limited by the recoil energy

gained from spontaneous emission. In the alkali atoms, Sisyphus cooling operates

at energies below the Doppler cooling limit, and can further cool atoms below the

Doppler limit. Our apparatus utilizes a 19 ms molasses stage (Fig. 3.5 (iii)).

3.5 Magnetic trap

After laser cooling atoms in a MOT, then molasses, the atoms are transferred

to a magnetic trap [32] for transport and evaporative cooling [33]. In the magnetic
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Table 3.1:

MOT quadrupole coil current sequence
time current ramp type frequency

(A) (�/2)
1 LIAD MOT 0.5 s to 3 s 8.5 constant 2.6
2–3 MOT /CMOT 1.0 s 8.5, 20 half Gaussian 2.5, 2.7
4 molasses 19 ms to I = 0 exponential 23.2
5 optical pumping 681 µs 10.6
6 magnetic trap 0.1 s 34 constant
7 magnetic trap compress 0.1 s 34,90 half Gaussian
8 magnetic transport 2.2 s Sec. 4
9 rf evaporation 5 s linear 20-4 MHz
10 decompression i 4 s 70, 50 linear
11 decompression ii 3 s 50, 22 linear

capture stage shown in Fig. 3.5(iv), the quadrupole current is suddenly turned back

on. Magnetic traps have large trap volumes that allow good spatial mode-matching

to the size of the laser cooled atomic cloud. This, in addition to the simplicity in

design (the same pair of quadrupole coils used for the MOT are used for magnetic

trapping in an experiment) and the tight confinement the trap can provide (much

larger than gravity gradient), explains its wide usage.

The magnetic trap provides a state-dependent conservative potential using

gradient forces to keep the atoms near the quadrupole center. These forces arise

from the interaction between the atomic magnetic dipole moment and the external

magnetic field B. The potential energy experienced by an atom is U = �µ · B =

gFµBmFB. The field from the quadrupole trap is linear near the trap center. For

circular coils it has the form;

U(r) = µB0
p
x2 + y2 + 4z2, (3.2)
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where B0 is the magnetic field gradient in the e
x

� e

y

plane; half the gradient along

e

z

. Then the force experienced by an atom due to U(r) is

F = �rU = �gFµBmF

✓
@B

@x
,
@B

@y
,
@B

@z

◆
, (3.3)

so that the linear potential is trapping when the force points in the weak field

direction, towards the center of the trap. This requires gFmF > 0, and the atoms

that satisfy this condition are called low-field seekers—|F = 1,mF = �1i, |F =

2,mF = +1i, |F = 2,mF = 2i states for 87Rb—while high-field seekers |F =

1,mF = +1i, |F = 2,mF = �1i, |F = 2,mF = �2i get expelled from the trapping

region. Spin-projectionless atoms in the |F = 1,mF = 0i and |F = 2,mF = 0i

states do not experience any magnetic force at linear order in B.

3.5.1 RF evaporation

After the atoms have been recaptured using the magnetic trap, they are ready

to be cooled further via evaporation. The field gradients in a magnetic trap provide

a spatially dependent resonance that can be driven by radio-frequency (RF) to

spatially select out the most energetic atoms. These atoms are found furthest away

from the center of the trap, and are forced to spin-flip from a low-field seeking

state to a high-field seeking state by application of RF with frequency !rf such that

~!rf = gFµBmFB (Fig. 3.6) drives resonant transitions from the mF = �1 state

to the untrappable mF = 0,+1 states. The most energetic atoms, i.e., atoms with

energies larger than the average energy are selected out, and the remaining atoms

elastically scatter and re-thermalize to a lower average temperature.
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However, there is one inherent limitation to the quadrupole magnetic trap: the

magnetic field zero at the center of the trap causes unwanted Majorana spin-flips

and heating, which limits evaporative cooling to temperatures above those required

for quantum degeneracy. Evaporation works well as long as the re-thermalization

from elastic collisions happens at a rate faster than the non-adiabatic spin-flip rate.

As evaporation cools the atoms and the cloud size decreases, the atoms eventually

heat and spin-flip faster than they can re-thermalize. Thermalization from elastic

collisions happens at a rate faster than the non-adiabatic spin-flip rate.

Two conventional methods commonly used to overcome this disadvantage in

quadrupole traps are the time orbiting potential (TOP) trap, and an optical plug.

The TOP trap uses a time orbiting bias field to shift the magnetic field zero away

from the trap center, while the optical plug method uses a repulsive (blue-detuned)

optical potential to push the atoms away from the center. In Ref. [34], we developed

a new hybrid technique which combines the magnetic trap with a red-detuned optical

dipole trap to achieve degeneracy of 87Rb atoms. This technique does not require

an oscillating field or a plug beam. This method is discussed in Sec. 3.6.

In practice, we apply an RF sweep to continuously eject the most energetic

atoms out of the trap until the desired equilibrium temperature is reached (Fig. 3.6).

In terms of the RF dressed state energy bands of the coupled magnetic sublevels of

the F = 1 ground hyperfine state shown in Fig. 3.7, a linear RF sweep follows the

lowest energy band (shown in solid red). At the end of a sweep, we typically have

N ⇡ 108, and T ⇡ 30µK.
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Figure 3.6: Atoms in the magnetic trap are evaporatively cooled with a radio-
frequency (RF) sweep (indicated by the gray arrow) from 20 MHz to 4 MHz. The
atoms with the highest energies become resonant with the RF transition frequency
during the sweep. When resonant, the RF flips the internal state of an atom from the
magnetically trappable mF = -1 state to the untrappable mF =0,1 states. The spin-
flipped atoms are evacuated from the trap, and the remaining atoms re-thermalize
to a lower temperature.
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Figure 3.7: The RF dressed energy levels for the ground F = 2 manifold are depicted
by the solid curves, with the lowest energy band shown in red. The energies of the
magnetic sublevels sans dressing are shown as dashed gray lines.

3.6 Quadrupole plus optical dipole: the hybrid trap

As atoms cool and collect in the middle of the magnetic trap during RF evap-

oration, spin-flips may occur near the Zeeman level crossings (Fig. 3.6). This draw-
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Figure 3.8: Spin populations of the RF dressed spin states in the F = 2 ground
hyperfine state manifold as a function of the detuning, �, from RF resonance.

back of the quadrupole magnetic trap must be mitigated. In our hybrid scheme,

we minimize spin-flip loss by overlapping an optical dipole trap with the magnetic

trap. The initially magnetically trapped atoms are collected in a red-detuned optical

dipole trap centered ⇡ one beam waist below the magnetic quadrupole zero (The

alignment below the quadrupole zero is such that the magnetic field gradient sup-

ports the atoms against gravity). After RF evaporation, when Majorana loss is

significant, atoms remain in the all optical trap.

The hybrid trap works well because it limits Majorana loss in the magnetic

trap, and the transfer of the atomic cloud from linear quadrupole to harmonic

dipole happens at approximately constant entropy; i.e. the transfer is adiabatic.

The transfer process both decreases the temperature and increases the phase space

density. For a cloud in thermal equilibrium in a quadratic trap, the Majorana loss

rate �m / ~/ml2, where m is the mass of the atom, and l is the half width half

maximum of the cloud [7,35]. This assumption is valid for high density clouds with
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high rates of elastic collision [36].

For a two-level system, the single beam ODT potential is

U(r) = ��3⇡c2�

2!3

12

✓
1

!
12

+ !
+

1

!
12

� !

◆
I(r), (3.4)

where c is the speed of light, � is the spontaneous decay rate of the excited state, !
12

is the resonant frequency, and !, I(r) are the frequency and intensity of the dipole

laser beam, respectively. We define detuning � = !�!
12

. For a near-detuned beam

|�| = |! � !
12

| ⌧ !
12

, the trapping potential simplifies to

U(r) = �3⇡c2

2!3

12

�

�
I(r). (3.5)

For a red-detuned beam � < 0, U(r) is an attractive potential with a potential

minimum at maximum intensity. This remains true for a far-red detuned trap, for

which both terms in Eqn. 3.4 must be considered. In the laboratory we use a far-

red detuned trap at high intensities to decrease the scattering rate. The trapping

potential for such a trap using a Gaussian laser beam is

U(r) = �U
0

exp{�2r2/!
0

2} (3.6)

where r is the radial distance from the center of the beam, and !
0

is the beam

waist (1/e2 radius).

The combined optical and magnetic potential of the hybrid trap is

U(r) = µB0

r
x2

4
+

y2

4
+ z2 � U

0

exp{�2[x2 + (z � z
0

)2]/w2

0

}+mgz + E
0

, (3.7)

where the first term originates from the magnetic trap as discussed, and the second

term comes from the Gaussian dipole beam with width w
0

and trap depth U
0

. The
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third term is the gravitational potential energy of the atom with mass m, and E
0

is

an o↵set added to make the potential energy minimum U
min

= 0.

We use three pairs of quadrupole coils to provide bias magnetic fields in the

ex, ey, and ez directions. The bias coils serve several functions. These include

the cancellation of stray background magnetic fields; defining the quantization axis;

and inducing the Zeeman shift on the hyperfine energy levels of the atoms necessary

for microwave or RF internal state control. Figure 3.9 shows the magnetic field

calibration of the three coils. The coils were designed to provide a field larger than

or equal to 1 G/A. The intercept is the calibrated current required by a bias coil

pair to cancel out the background magnetic field (i.e. the condition under which the

atoms experience zero magnetic field).

Optical forces arising from scalar light-shift in the optical trap confine atoms

to the highest intensity region for a far red-detuned laser beam. After complete

transfer into the crossed ODT, atoms typically have N ⇡ 107, and T ⇡ 5µK. The

dipole trap is approximately harmonic at low energies, and is state-independent (due

to large detuning).

In the hybrid trap, we use the strengths of both the magnetic trap (large trap

volume and tight confinement) and ODT (e�cient all-optical evaporation without

magnetic fields), while overcoming their weaknesses by using the two traps together.

At low energy, U(r) may be approximated as harmonic:

U(r) ⇡ 1

2
[U 00

xx
2 + U 00

y y
2 + U 00

z (z � zmin)
2], (3.8)

where U 00
i with i = x, y, z are the trap curvatures, and !x,z ⇡ 2

p
U/m!2

0

.
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Figure 3.9: Calibration of the bias coils in the science cell along (a) ex, (b) ey, and
(c) ez.

After a final adiabatic relaxation of the magnetic trap, the atoms are confined

solely in a crossed optical dipole trap. The crossed-dipole trap frequencies along

ex,ey, and ez as a function of the total laser output intensity, as measured by a

pick-o↵ photodiode, is shown in Fig. 3.10(a). The trap frequencies were measured

by exciting dipole modes of oscillation in the trap and observing the resulting os-

cillation in the center of mass motion. The measurements were taken by using a
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magnetic field gradient to apply a force Fi = gFµBmF (@B/@xi) on the atoms. The

gradient force displaces the |F = 2,mf = 2i atoms from the center of the harmonic

trap; thereby initiating oscillation about the trap minimum. The post time-of-flight

position of the atomic cloud as a function of time was measured to determine the

trap frequency along each axis. An example measurement is shown in Fig. 3.10(b).

After transfer, we perform an all-optical evaporation in the dipole trap by lowering

the laser intensity and therefore the depth of the trap. At the end of evaporation,

degeneracy is reached.

3.7 A dimensional argument for Bose-Einstein Condensation

Classically, a particle may occupy any point in the phase-space continuum

(px, py, pz, x, y, z). When considering quantum statistics, however, the three-dimensional

phase-space is discrete. The requirement for discreteness arises from the Heisenberg

uncertainty principal �p�x � ~/2, so that the smallest allowed volume unit in

three-dimensional phase-space is h3. Up to a constant, the critical number density

Nc/V for Bose-Einstein Condensation (BEC) can be derived as follows: consider

a bosonic gas with volume V and temperature T , and assume that all states with

energies kBT and below are occupied. The equipartition theorem, kBT = p2max/2m

(where kB is the Boltzmann constant) relates T to the maximum momentum pmax.

Then the total phase-space volume V = V · 4⇡p3max/3, and the total number of

quantum states N = V/h3. Degeneracy occurs as the number of quantum states
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Figure 3.10: Calibration of the crossed-dipole trap frequencies as a function of the
total laser intensity. (a) An example trap frequency measurement along ez, shown as
point “a” in (b). (b) The trap frequencies as a function of intensity (trap depth) have
a square root dependence, characteristic of a harmonic oscillator. Measurements
were taken while keeping the power ratio between the two beams constant.

approaches the total number of particles N . Then for critical number NcN , we find

Nc

V
/
✓
mkBTc

2⇡~2

◆ 3
2

, (3.9)

where Tc is the critical temperature. We have found the relation between Nc and

Tc, up to a constant, using dimensional analysis. Next we apply quantum statistics

to derive the proportionality constant.
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3.8 Quantum Statistics

To refine our previous estimate, we first introduce the di↵erences between

Boltzmann statistics and quantum statistics for bosons and fermions. To begin, the

probability of finding a system in state i with energy Ei and number of particles

Ni when the system is in contact with a reservoir with fixed temperature T and

chemical potential µ is

Pi =
e�[Ei�µNi]/kBT

Z
, (3.10)

where Z =
P

i e
�[Ei�µNi]/kBT is the grand partition function which sums over all

possible Gibbs factors e�[Ei�µNi]/kBT so that
P

i Pi = 1 is satisfied.

The Pauli exclusion principle states that no two fermionic particles may occupy

the same single-particle state. This means that for a single-state system, the state

may either be occupied (N = 1) with energy ✏, or unoccupied (N = 0) with energy

0. The partition function for such a system is Z = 1 + e�(✏�µ)/kBT , and the average

number of particles in the single-particle state hni =
P

i Nie
�[Ei�µNi]/kBT/Z is given

by the Fermi-Dirac distribution

hniFD =
1

e(✏�µ)/kBT + 1
. (3.11)

With bosons, the single-particle state can be occupied by any number of n particles,

so that the sum is a geometric series Z =
P

i e
�(✏�µNi)/kBT = 1/(1 � e�(✏�µ)/kBT ),

where µ < ✏ so that the sum converges, and insures that the Bose-Einstein distri-
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bution for the average number of particles

hniBE =
1

e(✏�µ)/kBT � 1
, (3.12)

is always positive. We would like to compare the number distributions of bosons

and fermions with that of an ideal gas in which all particles occupy di↵erent single-

particle states. Such a system is described by the Boltzmann number distribution

hniBoltzmann = e�(✏�µ)/kBT . (3.13)
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Figure 3.11: Fermi (red), thermal (black), and Bose (blue) number distributions.
The energy axis is in units of kBT , and is o↵set by the chemical potential µ. The
Bose distribution diverges at ✏ = µ

For ✏� µ, both quantum distributions approach the classical limit, hniFD, hniBE !

hniBoltzmann, as shown in Fig. 3.11.

The Fermi-Dirac distribution is a step-function when T = 0, and all states with

energies below µ are occupied, and those above unoccupied. This describes de-

generacy for fermions, and ✏F = µ is the Fermi energy, the energy of the highest
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occupied single-particle state. Since degeneracy is reached when every available en-

ergy level is filled, starting with the ground state, the total number of atoms present

determines the Fermi energy. For a Fermi-gas confined in a box with volume V ,

✏F = h2/8m(3N/⇡V )2/3, and TF = ✏F/kB is the Fermi temperature.

3.9 Density of states

The critical number of atoms for BEC with the correct pre-factor for an uncon-

fined extended system can be computed using the previously derived Bose-Einstein

number distribution and the density of states. We follow the derivation in Pethick

and Smith [37] to derive the critical phase-space density required for condensa-

tion. A bosonic gas will condense to degeneracy at critical temperature Tc as dis-

cussed, and an appreciable number of atoms will occupy the same single-particle

ground state. We first re-write the total number of quantum states N in terms of

the energy associated with the free particle momentum ✏ = p2max/2m for a parti-

cle confined in a box (note: in the laboratory particles are harmonically trapped).

The total number of states up to energy ✏ is G(✏) = V 21/2(m✏)3/2/3⇡2~3. Then

the density of states g(✏) = dG(✏)/d✏ = V m3/2✏1/2/21/2⇡2~3, which has the form

g(✏) = C↵✏
↵�1, with ↵ = 3/2 and C

3/2 = V m3/2/21/2⇡2~3 for a particle in a three-

dimensional box. We integrate the density of states weighted by the Bose-Einstein

distribution over all energies to find the total number of particles in excited states

Nexcited =
R
0

1
d✏g(✏)hniBE, where the contribution from the ground state is negligi-
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ble for large N .

At the critical point before an appreciable number of particles occupy the ground

state for condensation, virtually all particles occupy excited states, so that N =

Nexcited. The maximum number of particles is in the excited states when µ = 0

(energy required to add a particle to the system is zero):

Nc =

Z

0

1
d✏g(✏)

1

e✏/kBTc � 1
. (3.14)

Change of variables x = ✏/kBTc gives

Nc = C↵(kBTc)
↵

Z

0

1
dx

x↵�1

ex � 1
. (3.15)

This integral can be evaluated using special functions as

Nc = C↵(kBTc)
↵�(↵)⇣(↵), (3.16)

where the gamma function �(↵) and Riemann zeta function ⇣(↵) have analytical

solutions. For the three-dimensional particle in a box with ↵ = 3/2, we find

Nc

V
= 2.612

✓
2⇡mkTc

h2

◆ 3
2

, (3.17)

and 2.612 is the dimensionless phase-space density.
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Figure 3.12: Absorption images taken in the chip laboratory after 25 ms time-of-
flight. Purple represents zero atom density while red represents the highest atom
density. (a) A thermal cloud, (b) a bimodal distribution (coexisting condensed and
thermal phases), and (c) a nearly pure Bose-Einstein Condensate
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Chapter 4: Apparatus Design and Construction

4.1 Design Motivation and Overview

For the physical design of the atom-chip apparatus, we aimed for a compact,

simple system. Instead of a Zeeman slower, we use a vapor-fed 3D MOT cell, and

load the MOT using light-induced atomic desorption (LIAD) [28]. The main vacuum

components are the MOT and science cells, separated by a di↵erential pumping

tube located inside a vacuum chamber, as indicated in Fig. 4.1(b). Attached to this

chamber is a gate valve that allows the MOT region to remain under vacuum when

the science region is vented, for example, for atom-chip placement. Both vacuum

regions have a dedicated ion pump (IP). Additionally, the science region contains a

titanium sublimation pump (TSP) which has a connection for a turbo pump during

bake out.

The two-celled vacuum system physically separates the MOT optics from the

science cell region, leaving increased optical access to the science cell. In order to

move atoms from the MOT cell to the science cell, we use magnetic transport [29].

The physical extent and plumbing complexity of the magnetic transport system was

minimized by transporting in only one direction and having water-cooled towers to

which the coils are mounted, instead of individually water cooled coils. Each tower
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Figure 4.1: (a) The vertical atom-chip apparatus. The atom-chip will enter the
vacuum system from the top. The magnetic transport system is used to move the
atoms from the MOT cell to the science cell. (b) Cross-section of the apparatus. Of
the vacuum components, the “oven” containing solid rubidium is mounted closest
to the optical table. The oven connects to the MOT cell, where a vapor-fed MOT
is produced using LIAD. Magnetically trapped atoms are then transported through
the MOT cell, up through the di↵erential pumping tube, into the science cell where
a BEC is achieved in a dipole trap. The gate valve is used when we require venting
one of the vacuum regions (while keeping the other under vacuum). The innermost
transport coils are visible. With respect to the rest of the transport coils, the MOT
and last pair of coils have larger inner diameters.

functions as both a cold plate and a mechanical mount for the coils (Fig. 4.1). The

vertical apparatus design was chosen so that the long-armed chip holder could be

inserted in the direction of gravity. Further, to simplify coil mounting and to avoid

higher currents that would be required if coils wrapped around the vacuum system

(coils would require much larger inner diameters), we oriented the axial direction ez

of the transport coils orthogonal to the gravity direction ey.
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4.2 Vacuum Design

4.2.1 Rubidium Source

The oven houses solid rubidium in a 1.33” CFF nipple connected directly

below the MOT cell. At this connection, the bellows located in the glass-to-metal

adapter provides flexibility in mounting the oven to the table. The oven is fixed to

the optical table with a custom designed adapter that houses a thermoelectric cooler

(ThorLabs controller TED4015) used to temperature control the vapor pressure in

the MOT cell. We typically maintain this “oven” at 1 C to keep the vapor pressure

low (⇡ 108 Pa). A constant flow of gaseous nitrogen out of 1/4” OD tubing keeps

condensation from building on the temperature sensor. During experiment, LIAD

is used to non-thermally increase the vapor pressure during MOT loading. We shine

two ⇡395-410 nm, 350 mW LED sources onto the MOT cell to accomplish this task

(Mightex part SLS-0309-B, with driver SLA-1200-2). To maintain su�cient coating

on the inner wall surfaces of the MOT cell, the oven temperature is periodically held

at a warmer temperature of ⇡ 10 �C overnight.

4.2.2 Vacuum Cell Design

The MOT cell is composed of two commercial glass-to-metal-seal adapters

from Larson Electronic Glass (both with 1.33” CFF, one with a bellows (BP1-075-

F1-L1), and the other without (SP-075-F1)), and a custom Pyrex glass rectangular

cell fabricated by the NIST optical shop in Gaithersburg, MD. The geometry of
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the cell was determined by the anticipated size of the MOT beams (1/e2 diameter

at the atoms is ⇡ 40 mm), and is 1.75” x 1.75” in inner cross-sectional area, 5.5”

in length, with thickness 0.125”. The science cell is designed similarly, also made

from 0.125” thick Pyrex, with rectangular dimensions 4.5” x 1.75” x 1.75”, with a

short custom length 1.33” rotatable CFF to bellows adapter from Larson (BP1-075-

F1(R)-L1-SPCL) attached to the bottom end, and a 4.5” rotatable CFF to bellows

glass adapter on the top end (BP1-250-F4(R)-L1). The cross-section of the science

cell was kept large in anticipation of a typically-sized chip-carrier with dimensions

1.32” ⇥ 1.32”. The chip carrier is a 120-pin, ceramic, pin-grid-array, purchased from

Spectrum Semiconductor Materials, Inc. (part CPG12009).

The science cell was designed to extend beyond the cooling towers in height so

that the glass-to-metal adapter, which is too wide to fit between the towers, would

be out of the way as shown in Fig. 4.1(a). The safe glass-working distance required

for the process of attaching the glass-to-metal-seal adapters to the rectangular cell

added additional unplanned length to the realized apparatus. The final flange-to-

flange length of the MOT cell is ⇡ 38 cm, and the science cell has length ⇡ 46 cm.

4.2.3 Di↵erential Pumping and Mounting

On the Kimball Physics chamber (part MCF275-SphHex-C2A6), located in

between the two cells, are mounted two faced-o↵ 2.75” CFFs. The total chamber

plus conflats width along ez (coordinates as defined in Fig. 4.1) had to be narrowed

because the total width extends beyond the widths of all other vacuum parts (i.e.
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Figure 4.2: Lifetime measurements of (a) magnetically trapped |F = 2,mF = 2i
atoms (blue circles), and (b) a BEC in the same spin polarized state (green circles).
The exponential fits are shown in solid red.

it was the limiting factor in how close together we could mount the transport coil

pairs). The narrowing allowed the transport coil pairs to be closer together and thus

provide a more optimal geometry (to minimize currents required for the desired trap

gradient). The chamber houses a di↵erential pumping tube (Duniway CA-133). The

di↵erential pumping tube and the two Varian StarCell 20 L/s IPs allow the science

cell to be kept at a lower vacuum pressure (compared to the MOT cell) suitable

for BEC production and experiment: typically, the lifetime of magnetically trapped

atoms in the |F = 2,mF = 2i state is ⇡ 5 s in the MOT cell, and ⇡ 60 s in the

science cell (Fig. 4.2(a)). The lifetime of a BEC in the same spin polarized state

was measured to be ⇡ 7 s in the dipole trap, as shown in Fig. 4.2(b).

The experiment is largely supported and attached to the optical table with

commercial 80/20 Inc. extruded aluminum frames and fixtures. Additionally, cus-

tom supports fix the two cells vertically in place (Fig. 4.4, and V-clamps support

the IPs).
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Above the science cell, a “cross”, a “T”, and an elbow make up the connections

to the science region IP, angle valve, TSP, and Turbo pump. The elbow keeps the

valve out of the TSP’s line-of-sight (Fig. 4.1(a)).

4.2.4 Chip Holder

The dimensions of the in-vacuum atom-chip holder was constrained by the

vacuum components located along its path to the science cell. The chip will be placed

inside the vacuum because we will require the BEC to be ⇡ 5µm away from the

chip surface. The atom-chips are custom fabricated by NIST Center for Nanoscale

Science and Technology (CNST) in Gaithersburg.

Figure 4.3: The chip will be mounted from the top of the experiment. Stainless
steel extends from the uppermost conflat on the apparatus, designed to place the
chip near the center of the final quadrupole trap.

4.2.5 Vacuum Bakes

Before assembling the vacuum system, most components were cleaned in an

ultrasonic bath. This was a two- or three- step process: first, a bath with soap
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a)

b)

Figure 4.4: First part of vacuum assembly (MOT region). a) The MOT cell is
mounted vertically using a custom holder, so that the cell “sits” on the holder. b)
The MOT region fully assembled. Screws inserted from underneath the holder seals
the cell and octagonal chamber together. Depicted here is the initial “pump” out
stage using a turbo pump (Pfei↵er HiCube 80 eco), attached to the chamber at the
top, after the gate valve. A 1.33” CFF bellows connects the left side of the chamber
to the MOT region IP.

and water if the part was particularly dirty (e.g. oily), then an acetone bath, then

lastly a methanol bath. Once the parts were assembled, the entire system was

baked (heated) to remove water and hydrogen. The vacuum system was covered

in aluminum (Al) foil, then wrapped in heat tape, then wrapped again in several

layers of Al foil. We used the Dukal Corp. “survival wrap” as the outermost

layer of our oven. Each heat tape temperature was controlled by a Variac. Our

apparatus is primarily made up of metal and glass: because these two materials have

di↵erent thermal expansion coe�cients, it is particularly important to avoid rapid

temperature changes when baking any of the metal-to-glass joints. We generally

increased the temperature at a rate of ⇡ 20 C/hour. Fig. 4.5 shows the pressure
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change over time of a bake performed on the MOT region of the apparatus.
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Figure 4.5: MOT region vacuum bake-out performed, while the science cell was being
manufactured by the NIST Optical Shop. The vacuum pressure is proportional to
ion pump current. The fit to the data from time ⇡ 2.7⇥ 105 s to ⇡ 2.25⇥ 106 s is
of the form IP current = y

0

+A*tp.

4.3 Magnetic Transport

4.3.1 Transport Design

We magnetically trap and transport atoms in the |F = 2,mF = 2i state, tak-

ing advantage of the factor of two we gain in the energy gradient (Zeeman split-

ting ⇡ 1.4 MHz/G) compared to |f = 1,mF = �1i atoms. The atoms are mi-

crowave transferred after magnetic transport (during dipole evaporation) to the

lower-loss [36] |f = 1,mF = +1i state.

Magnetic transport is achieved using a series of overlapping coils in an anti-

Helmholtz type configuration. The general idea is to keep the magnetic trap geom-

etry constant while the atoms are spatially moved from the starting location (MOT
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cell), to the final position (science cell). This ensures minimal heating of the atoms,

and is accomplished by invoking three constraints:

�B

�z
= 120G/cm, (4.1)

�B

�y
= 47G/cm, and (4.2)

A =
(�B/�x)

(�B/�y)
= 1.28, (4.3)

where �B/�z, �B/�y, and �B/�x are the magnetic field gradients along the strong

axis, transport axis, and the non-elongated weak axis, respectively and A is the

resulting aspect ratio in the x � y plane. We solve for three unknown variables I
1

,

I
2

, and I
3

, the currents in three adjacent sets of coil pairs at any given time. We

solve for the currents numerically, starting from the center of the MOT coils to the

center of the final coil pair (which is used in the hybrid trap [7]). Except for the very

first and last transport segments, three coil-pairs are energized at any given time

during transport. During transport, the e↵ective magnetic trap is elongated along

the transport direction e

y

. The calculated transport sequence is shown in Fig. 4.6.

Eleven anti-Helmholtz coil pairs transport magnetically trapped atoms from

the MOT cell to the science cell in 2.2 seconds, at an average speed of 200mm/sec.

The transport sequence requires constant trap gradient to minimize heating of the

atoms. Further, all currents are positive (the power supplies are uni-polar).

We empirically touched-up the calculated transport sequence. We found that

the transport velocity preferred to be slowest in the middle of transport, close to

the gate valve, as shown in Fig. 4.7. We suspect that the necessity for slow speeds
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in this region may be due to a magnetized component inside the valve. The trans-

port e�ciency was measured to be ⇡ 85%, with most of the loss occurring at the
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beginning of transport from collisions with background Rb atoms.

4.3.2 Characterization of the Transport System

The transport system (coils, coil holders, and cooling tower) was designed to

fit around the vacuum components, and to provide cooling to the transport coils.

For simplicity, we designed all coils to be as similar as possible in geometry. Each

transport coil was wound with “ribbon” magnet-wire laminated on one side with

Kapton insulation from Alpha-Core. Three types of wire were used to construct the

transport coils: wire with copper cross-section 12.7mm⇥ 0.254mm (0.5”⇥ 0.01”)

for all “top” quadrupole pairs (coils further away from the vacuum system) and push

coil, cross-section 6.35mm⇥ 0.254mm (0.25”⇥ 0.01”) for all “bottom” pairs (coils

closest to the vacuum system), and the MOT and final quadrupole pairs were made

with custom-sized 0.3”⇥ 0.02” wire. Coil specifications are listed in Table 4.1. We

list the specifications from the manufacturer in the second column, and the actual

dimensions measured using a caliper, in the third column.

Table 4.1: Wire dimensions

Wire type Specifications Measured
A (for “bottom” coils) 0.25”⇥0.01” 0.350”⇥0.013”
B (for “top” coils) 0.50”⇥0.01” 0.625”⇥0.013”
C (for “MOT” and “final” coils) 0.30”⇥0.02” 0.425”⇥0.023”

After the coils were wound and assembled onto the transport tower, we mea-

sured the resistance of each coil, as shown in Table. 4.2. The test lead resistance

62



of 62 m⌦ has been taken into account (the resistance listed is for the coil only).

Table 4.2: Characterization of each coil

Coil#

Tower 1

Current
(A)

Voltage
(V)

Resistance
(m⌦)

Coil#

Tower2

Current
(A)

Voltage
(V)

Resistance
(m⌦)

1 4.99 0.509 40 1 4.99 0.527 44
2 4.99 0.603 59 2 5.02 0.615 61
3 4.99 0.904 119 3 4.99 0.904 119
4 4.99 0.597 58 4 4.99 0.609 60
5 4.99 0.892 117 5 4.99 0.904 119
6 4.99 0.597 58 6 4.99 0.609 60
7 4.99 0.904 119 7 4.99 0.904 119
8 4.99 0.603 59 8 4.99 0.609 60
9 4.99 0.915 121 9 4.99 0.921 123
10 10 1.204 58 10 4.99 0.621 62
11 4.99 0.527 44 11 4.99 0.539 46

Next, a Hall probe was used to measure the magnetic field of three representative

coils at di↵erent distances Z from the coil surface. The measurements agreed well

with the predicted (calculated) values (Table 4.3). The Hall probe was also used to

double check the chirality of each coil.

Table 4.3: Gradient measurements

Magnetic Field Measured/Calculated (Gauss)
Coil Z = 0 Z = 12.7mm Z = 25.4mm
6 42/44 23/24 12/13
7 61/62 38/41 21/22
11 20/21 18/18 13/13

Once we could transport the atoms from the MOT cell to the science cell,

we calibrated the magnetic field gradient of each coil pair by measuring the gravity

gradient. The results are shown in Table 4.4. The computed gravity currents were
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21.3 A for the “MOT” trap (coil pair # 1), 19.9 A for the “final” trap (# 11), 7.4 A

for “bottom” coils (all other odd numbered pairs), and 13.4 A for “top” coils (all

even numbered pairs).

Table 4.4: Calibration of gradients

Coil pair # Gravity current (A) Coil pair # Gravity current (A)
1 19.7 7 6.0
2 17.1 8 16.8
3 8.7 9 8.1
4 16.3 10 18.8
5 10.3 11 21.0
6 16.6 – –

Except for the very first and last portion of the transport sequence, all coils of

the same geometry run the same spatial current profiles; though we allow variations

in the transport velocity. We used genetic optimization [38] to optimize each stage

of our experiment, up to BEC production. The example optimization run shown in

Fig. 4.8 included 14 transport sequence variables to optimize transport currents as

a function of the distance traveled by the atoms (transport velocities were fixed).

We found that the algorithm results were comparable to the results obtained with

time-consuming manual optimizations. We typically ran the algorithm overnight.

Further, because of the high stability of our apparatus, we also ran scans over entire

weekends. We also used the algorithm as a multi-tasking tool while working on

projects o↵-line.
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Figure 4.8: Example genetic optimization [38] of the experimental sequence of our
apparatus. In this optimization run, we optimized 14 variables in the transport cur-
rent functions. In this figure we measure atom number as a function of the variables
that determine the shape of the commanded current profiles during magnetic trans-
port. These include the variables which determine the maximum current amplitude,
the width, and curvature.

4.3.3 Fabrication of Transport Coils

Each coil was wound on an aluminum form machined with the desired coil

inner diameter. The design requires removal of excess Kapton to achieve desired

coil height and good thermal contact requirements. Each winding form could adapt

onto a lathing form with four screws, as shown in Fig. 4.9a. The lathing form fit

into a standard 1/2” collet for machining (Fig. 4.9b). To prepare wound coils for

machining, the gaps between Kapton layers were filled with a fluid and machinable

epoxy (Stycast 1266). To minimize air bubbles and gaps within the epoxy, each coil

was placed inside an evacuated bell jar immediately after application of the epoxy

for ⇡ 30 minutes, then left to cure overnight at room temperature.

Each coil was lathed up to the copper surface and was checked for shorts under

a microscope (Fig. 4.10). When a short was identified, the copper was etched with
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a) b)

Figure 4.9: a) Transport coil mounted on lathing form. The cable tie was attached
to keep the coil from unwinding while the machinable epoxy (Stycast 1266) cured.
Each winding form is designed to adapt onto the lathing form for machining. b)
We lathed o↵ the excess Kapton on both the front and back surfaces to achieve a
smooth finish for better thermal contact between surfaces.

a 1:1.4 mixture of nitric acid and water until no short remained.

Figure 4.10: A transport coil under a microscope. Each closely lathed-down coil
was inspected under a microscope to check for shorts. If a short was discovered, the
coil was etched with a nitric acid solution.

4.3.4 Design of coil holders and cooling towers

Coils were fixed to mounting forms with thermally conductive epoxy (Omegabond 200).

The epoxy extends over the coil surface to eliminate height discrepancies between
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the mounting form and coil, and provides increased thermal conductivity between

coil layers. The coils were then assembled onto two monolithic cold plates contain-

ing multiple slits to minimize eddy currents. In addition, thermal compound was

applied between each layer. Most of the machined parts are made of aluminum,

which is an economical thermal conductor that is relatively easy to machine. The

cooling tube clamps are made of stainless steel, which has electrical conductivity an

order of magnitude lower than that of aluminum, to prevent shorting the cold plate

slits.

a) b)

Figure 4.11: Coil mounting procedure. a) A coil has been glued with a thermally
conductive epoxy to its holder, and the second side is ready to be glued. The
entire assembly is then baked to cure the epoxy. b) Several mounted coils ready for
installation.

4.3.5 Current control

Four Agilent 6672A 20V/100A power supplies provide currents to the coils, and

three coils run current at any given time of transport. Having a fourth supply allows

every Agilent to have a “rest” segment (to completely turn o↵) before rejoining the
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Figure 4.12: Two transport towers (one shown) with eleven transport coil pairs make
up the magnetic transport system. The narrow aluminum panels on the right and
left sides of the coils provide extra mechanical support to the vertically mounted
coils.

cycle. We use MOSFETs (part IXFN520N075T2, 75 V, 480 A from IXYS), which are

mounted on water cooled cold plates, to control the currents through the transport

coils.

4.4 Microwaves for internal state control

The general set-up of the microwave source used for internal state control was

adapted from those used in the lattice and gauge fields labs in the Laser Cooling

group [39]. A microwave horn placed several inches from the experiment is used

to transfer atoms between the F = 1 and F = 2 ground hyperfine states. As
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1

2

Figure 4.13: The majority of the MOT optics were assembled using Thorlabs 30 mm
“cage systems”. The MOT region is pictured here, with “1”, and “2” indicating
transport-tower-to-cage adapter parts. The adapters also serve as clamps: “1”
clamps down on the two copper water cooling tubes, and “2” connects the two
towers together.

the microwave source, we use Stanford Research Systems SG 384, and send the

microwave signal through the set-up shown in Fig. 4.14. The microwave power

measured after the various components is listed in Table 4.5.

4.5 Laser systems

We have three laser systems in the laboratory: the master/repump, cooling,

and dipole boards, shown in Figs. 4.15, 4.16, and 4.17, respectively [40]. Together,

these laser beams provide all of the laser light required for BEC production.

We use a Toptica DL Pro diode laser for the master/repumper, and a Toptica
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Figure 4.14: Microwave set-up.

TA Pro diode-laser-and-tapered-amplifier integrated system for the cooling board.

Toptica’s DigiLock 110 provides PID feedback for locking to the saturation absorp-

tion signal. We perform saturation absorption spectroscopy with a Triad Technology

rubidium reference cell heated to 50 C using ThorLabs’ cell heater GCH25-75.

The light to the dipole board is provided by an IPG Photonics 30 W fiber laser.

All mirrors are mounted on ThorLabs 1” mirror mounts (POLARIS-K1). We use a

metal jacketed high power fiber from NKT Photonics (LMA-PM-15) with custom

SMA905 8� angle polished ends.

70



Table 4.5: Main microwave setup

Label Element Output Power (dBm) Manufacturer (part number)
a Source -10.7 Stanford Research Systems (SG384)
b Cable -12 company name (part number)
c Amplifier 14.7 Minicircuits (ZX60-183-S+)
d Directional Coupler 14.0 Narda (4014C-30)
e Mixer -6.7 Marki (IRW-0618MXW-1)
f Band-Pass Filter -10.6 Minicircuits (VBFZ-6260-S+)
g Attenuator (0V) -11.3 General Microwaves (Herley) (D1956)
h Amplifier Microwave Amplifiers (AM53)
i Circulator-Isolator MCLI (CS-57)
j Power Detector Minicircuits (ZX47-40-S+)
k Stub Tuner Maury Microwave 1819C
l Antenna/Horn (part number)

4.6 Atom-chip fabrication

In this section, we will give an overview of the main steps used to fabricate

our atom-chips (all chips are fabricated by CNST at NIST, Gaithersburg). Fig. 4.18

shows a pictorial summary of these steps. A technique was developed which mixed

and matched two lithography techniques. The two techniques used are optical pro-

jection lithography (good for features sized greater than 0.4 µm), and electron beam

(e-beam) lithography (for features less than 0.4 µm). Due to the fine-resolution of

the e-beam technique, imaging the entire RF “Raman” design using this technique

would require long write-times and is cost-prohibitive. However, the small wire

spacing required for the 100 parallel wires requires the e-beam resolution.

For a cost-e↵ective, time-e�cient fabrication, the chip is created using a two-

step lithography process: the wire “pads” which branch out from the parallel wires
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DL PRO

HWP

AOM

AOM

pickoff

repump 1

repump 2

Rb
vapor
cell

Figure 4.15: The repump/master laser system. The DL Pro is locked to the 87Rb
F = 1 ! F 0 = 2 repumping transition using saturation absorption spectroscopy.
We use a pick-o↵ at the laser output (before any AOMs) to beatnote lock the cooling
laser.

to where electrical connections are made (via wirebonding) are predominantly drawn

with the photo-lithography technique, pictured in Fig. 4.18(d). The resolution R of

this technique is di↵raction limited, i.e. is dependent on the wavelength �l of the

light used, and the numerical aperture (NA) of the imaging system, R / �l/NA. In

the second step, the fine-scaled parallel wires which will create the moving magnetic

fields described in Sec. 2.6.2 are drawn with e-beam lithography, Fig. 4.18(g). The

e-beam technique may draw features down to 2 nm.

Finally, the image of the wire patterns is etched onto the gold layer using the

ion milling technique: Ar+ forms a compound with Au, physically separating Au

72



TA PRO

cooling
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optical
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pickoff
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HWP
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Figure 4.16: The cooling laser board. The Toptica TA Pro provides power to
the MOT and probe beams. The laser is beatnote locked to the repump laser
(Fig. 4.15), and locks red detuned from the |f = 2,mF = 2i to |f = 3,mF = 3i
cooling transition.

from the layer. After the gold etching is complete, the resist is stripped o↵, leaving

the gold wire patterns exposed and ready for wiring (Fig. 4.18(g)-(i)).

The cross-section of our first physical test-chip is shown in Fig. 2.7. Bench

testing is underway.

4.7 Conclusion

Techniques used to achieve Bose-Einstein condensation were reviewed as the

necessary first step in simulating solid-state systems using cold atoms in engineered
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dipole A

dipole B

fiber laser

Figure 4.17: The 1064 nm dipole board. The laser is injected into one high power
fiber. At the fiber output (located on the experiment board), the beam is split into
two using an AOM. The two beams are used as a crossed-dipole trap, an all-optical
trap in which Bose-Einstein condensation is achieved.

vector potentials. The atom-chip experiment will replace Raman light-coupling

with RF coupling to eliminate scatter and may pave the way for next-generation

experiments that simulate condensed matter systems. The first test chip for light-

less “Raman”artificial gauge fields is currently under development.
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(a) Evaporate 150nm Au/Ti

(c) Second resist

(f) Top layer resist strip

(h) Ion mill

(i) Resist strip

(b) Photoresist

(d) Photolithography

(e) Image transfer to second resist layer

(g) E-beam exposure and development

Figure 4.18: Two-layer lithography. The patterning technique developed at CNST
uses both electron lithography and optical projection lithography. In the preliminary
steps, (a) Au is evaporated onto a sapphire substrate, (b) the Au is covered with
photoresist used for photo-lithography imaging, and (c) a layer of resist appropriate
for electron beam lithography is laid on top of the photoresist. Now the chip design
pattern is ready to be imaged on to the resists: (d) photo-lithography for structures
2 µm - 0.4 µm, (e) image transfer onto the second resist layer, (f) removal of the
photoresist exposes the surface of the second resist, which is now ready for e-beam
lithography: (g) E-beam process for the fine features of the chip (i.e. the parallel
wires). This step (g) completes the drawing process, and finally (h) the ion mill is
used to etch the image on to the Au layer. Finally, (i) The resist is removed and
the patterned Au remain.
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Chapter 5: Multiple-camera o↵-resonance defocused imaging of ul-

tracold atomic gases

5.1 Introduction

Ultracold atoms exist in isolation, enshrouded in ultrahigh vacuum, so that

nearly every measurement on them relies on their interaction with electromagnetic

fields. The most common measurements use a probe laser beam that is attenuated

and phase shifted by the atoms to recover two-dimensional images of the integrated

density–the column density–of the atoms. Whether the technique be absorption

imaging, or phase-contrast imaging (PCI), the spatially resolved column density of

the atomic cloud is recovered to retrieve information about the experiment.

In this chapter, we extend the method of o↵-resonance defocused (ORD) imag-

ing pioneered in Refs. [41–43]. In ORD imaging, a probe laser propagates through

a thin atomic cloud and is both absorbed and phase-shifted, in contrast to on-

resonant-absorption or phase-contrast imaging in which the probe is dominantly

absorbed or phase-shifted, respectively. Both the absorption and phase-shift are

proportional to the quantity of interest, the column density. For small detunings

�, the absorption / 1/�2, while the phase-shift / 1/�: the phase-shift dominates
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quickly as � is increased. Typically, absorption imaging [44] is used for clouds of low

to medium OD using a on-resonance probe beam (no phase-shift), and PCI [45] is

used to image clouds of high OD using a far-detuned probe beam (negligible absorp-

tion). In absorption imaging and PCI, images are recorded by a detector at the focus

of the imaging system. In ORD imaging, a defocused image is taken by a detector

positioned away from the focus: remarkably, Ref. [42] showed that it is possible to

digitally refocus intensity images of atoms without knowing the phase of the under-

lying electric field. Still, ORD was beset with unavoidable imaging artifacts; here

we demonstrate a technique to reconstruct defocused images of ultracold atoms ab-

sent artifacts. In this technique, multiple-camera o↵-resonance defocused (MORD)

imaging, we simulateously use three cameras placed at di↵erent defocused distances

and show that suitably placed cameras allow for artifact-free reconstruction of the

atomic column density. We then compare this technique to conventional imaging

techniques and show that its signal to noise ratio (SNR) is comparable to absorption

imaging near atomic resonance and comparable to phase contrast imaging far from

resonance.

This chapter is organized as follows; in Sec. 5.1 we discuss the solution to the

vector wave equation under the paraxial approximation for a thin, dilute cloud. In

Sec. 5.2, we describe absorption and phase-contrast imaging. We then make addi-

tional approximations to the electric field which has propagated through the cloud,

and derive the ORD and MORD solutions to the wave equation. In Sec. 5.3, we

describe the experimental implementation of the MORD method, and the procedure

we used to prepare condensates of low OD. In Sec. 5.4, we present our experimental
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MORD results and theoretically compare this method to absorption and phase-

contrast imaging.

5.1.1 Propagation of an electromagnetic wave

First we introduce the theoretical problem, starting with the propagation of an

electromagnetic wave. For our neutral atomic systems interrogated by a monochro-

matic probe laser beam with wavelength � and wave number k
0

=2⇡/�, the evolution

of the electric field of the beam in the presence of atoms with complex susceptibility

�, is described by the scalar wave equation:

r2Ei(r) + k2

0

[1 + �(r)]Ei(r) = 0, (5.1)

also known as the Helmholtz equation, for each polarization component i, provided

that the susceptibility � changes slowly with respect to � (i.e. the cloud is not too

dense) [46]. In the next section we derive the solution to eqn. (5.1) for a thin, dilute

medium.

5.1.2 Solving the Helmholtz equation

The Helmholtz equation, valid for monochromatic light traveling through a

homogeneous isotropic medium, has the formal solution

E(r+�zez) = exp
h
±i�z

�
r2

? + k2

0

+ �(r)k2

0

�
1/2
i
E(r) (5.2)

for light traveling along ez, where r2

?= @2/@2x + @2/@2y, and E(r + �zez) is the

field which has propagated a distance �z through the medium, and E(r) is the field
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before propagation. From here forward, we consider the complex susceptibility of a

two-level atom:

�(r) =
�
0

k
0


i� 2(�/�)

1 + I(r)/I
sat

+ 4(�/�)2

�
⇢(r), (5.3)

where �
0

=3�2/2⇡ is the resonant cross-section, I
sat

is the saturation intensity, � is

the probe detuning from atomic resonance, and � is the linewidth of the transition.

Here we define � = �/� as the detuning in linewidth units.

For the problem at hand, we take the paraxial approximation and consider a

cloud with finite thickness �z under the condition �z ⌧ (�l)2/⇡�, where (�l)2/⇡� is

the depth of field, and �l is the minimum resolvable length determined by the imag-

ing system resolution [46]. In the paraxial approximation, E(r+�zez) is negligibly

di↵racted from its original path along ez so that r2

? ⌧ k2

0

. This approximation can

be made for a dilute cloud with density ⇢(r) ⌧ k3

0

. For such a thin, dilute system,

|�(r)| ⌧ 1.

The electric field after propagation through the cloud, is found by repeatedly

applying a step-wise propagator to the initial electric field. Such a propagator under

the paraxial approximation is found by taking the small susceptibility limit of the

argument in eqn. (5.2): {1 + [�(r) + (r2

?/k
2

0

)]}1/2⇡ {1 + (1/2) [�(r) + (r2

?/k
2

0

)]}.

Then we find the separable solution E(r + �zez)= exp(i�zk
0

)E 0(r) for a wave

propagating along ez. Inserting this field into the scalar wave equation, we find the

paraxial wave equation

�2ik
0

@E 0(r)

@z
= r2

?E
0(r) + k2

0

�(r)E 0(r). (5.4)

The electric field E 0(r) described above depends weakly on z, allowing the sus-
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ceptibility integral to be solved numerically for any probe intensity I(r) using the

split-step Fourier method (SSFM, Sec. 5.6).

Under the paraxial approximation, the step-wise propagation operator through

a dilute medium is

Q

0(�z) = exp


i
k
0

2

Z z+�z

z

�(r) dz

�
. (5.5)

5.2 Imaging techniques

5.2.1 Introduction

We now derive an invertible relation between the observed intensity and the

atomic column density that recovers all but a small range of spatial frequencies: the

basis of the ORD imaging technique. The electric field propagating through the

cloud using eqn. (5.5) is

E(r+�zez) = E
0

exp [(ik
0

/2)(�R + i�I)⇢(x)] , (5.6)

where �I = Im[�(r)], �R = Re[�(r)], and ⇢(x)=
R z+�z

z
⇢(r)dz is the two-dimensional

column density. Thus the electric field just after interacting with the atoms is

E(x, z = 0+) = E(x, z = 0�)e�↵(x)ei�(x), (5.7)

where ↵(x)= k
0

�I⇢(x)/2 and �(x)= k
0

�R⇢(x)/2, are the absorption and phase-

shift, respectively. The intensity I = c
0

✏
0

|E|2/2 of the light recorded by a detector

is proportional to the square of the electric field amplitude.

For the imaging techniques discussed here, there are generally three images

recorded by any given camera: I1j is an image with the atoms present, and I2j is an
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image of the probe laser absent the atoms. Then the fraction of the light absorbed

by the atoms is

fj =
I1j
I2j

, (5.8)

where the “j” subscripts indicate that the images are in real space.

Next we describe the absorption and PCI techniques that will be compared to

the ORD and MORD methods in Sec. 5.4.3. Following the descriptions of the two

frequently used imaging techniques, we will derive the exact solution to the scalar

Helmholtz equation for the defocused techniques in Secs. 5.2.3 and 5.2.4.

5.2.2 Absorption and PCI techniques

In a typical imaging system, as depicted in Fig. 5.1, two lenses might be used

to focus the image of an object onto a detector. In the Keplerian imaging system

in Fig. 5.1, the first lens is positioned a distance f
1

from the object (a BEC), the

second lens is placed a distance f
1

+ f
2

from the first lens, and finally, the detector

is placed at the focus of the second lens. The image magnification M = f
2

/f
1

,

where f
1

, f
2

are the focal lengths of the first and second lens, respectively. This

system describes the basis of absorption and phase-contrast imaging described in

this manuscript. Next we discuss these two techniques in detail.

The electric field E after propagation through an object modeled under the

thin-object approximation may be separated into its unscattered and scattered parts

E
0

and �E, respectively, so that the total field E=E
0

+ �E [44]. In absorption

imaging the intensity recorded on the camera I / |E|2 / exp(�2↵) so that the
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Figure 5.1: A simplified schematic of a two-lens Keplerian imaging system with
magnification M ⇡ 3. In absorption and PCI, the detector plane is placed at the
focal plane. In MORD, the three detector planes z(i) are located away from the
focus. This is equivalent to having three detectors next to BEC, as shown. The
imaging resolution is limited by the aperture diameter.

phase information is lost. Using Beer’s law, dI/dz = �⇢(x, y, z)�I, where � is the

e↵ective scattering cross-section for a two-level atom, the optical depth corrected

for the probe detuning and non-negligible intensity, is

OD = �(1 + 4�2) ln


I
1

� I
3

I
2

� I
3

�
+

I
2

� I
1

I
sat

. (5.9)

For an infinitely thin cloud, OD = �
0

⇢(x), so that the OD is proportional to the

atoms’ column density. The second term on the rhs of eqn. (5.9) is negligible in the

low intensity limit [47].

Next we discuss PCI. Unlike on-resonance absorption imaging, the recorded

intensity of a phase-contrast image contains phase information from which the col-

umn density is extracted. PCI is typically implemented by creating a ✓ phase

shift (with optimal signal at ✓ = ⇡/2) to the unscattered probe laser light so that

E
0

! E
0

exp(±i⇡/2). In this way, the phase-shifted light interferes with the light

refracted by the atoms, giving an intensity pattern again proportional to the column

density [45]. The phase-shift is created by placing a plate with a phase retarding spot

slightly larger than the focused beam spot-size into the imaging system (Fig. 5.1).
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The spot is placed in the Fourier plane, the plane located a distance f
1

from the

first lens, in between the two lenses, where the unscattered probe laser beam comes

to a focus. Then the PCI intensity signal is

Ipc = I
0

[2 + e�2↵ � 2e�↵cos(�) + 2e�↵cos(�⌥ ✓)� 2cos(±✓)], (5.10)

where ✓ is the phase shift from the phase plate. Next, we choose ✓=⇡/2 and make

the assumption �⌧ 1 (appropriate for thin dilute clouds). In this case,

Ipc = I
0

(2 + e�2↵ � 2e�↵ ± 2e�↵�), (5.11)

and the intensity is linear in �. The ⇡/2 phase shift is chosen to maximize this phase

signal (for example, for ✓=⇡, the Taylor expansion is dominated by nearly all even

functions, so that I / �2. For a far-detuned beam, exp(�↵) ! 1, eqn. (5.11)

reduces to Ipc/I0 = [1± 2 exp(�↵)�], and the theoretical model works well for any

optical depth. Next we discuss the ORD and MORD methods.

5.2.3 ORD single image reconstruction

We made the paraxial approximation to the electric field which has propagated

through an atomic cloud in Sec. 5.1.2. Then, we assumed that the electric field did

not di↵ract as it traveled through the cloud (i.e., that it was thin compared to the

depth of field). We introduce additional assumptions about the interaction between

the light and atomic, allowing us to derive the ORD imaging technique. Going

forward we introduce the Fourier transform of a two-dimensional function f(x) as

f̃(u)=
R1
�1 f(x)exp(�2⇡iu ·x)dx, where spatial frequency u= |u| with u2=u2

x+u2

y

is related to the wave number k
0

by u = 2⇡k
0

, where k2

0

= k2

x+k2

y +k2

z is a constant.
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Figure 5.2: (a) The location of the first singularity determines the smallest spa-
tial frequency for which the reconstruction requires regularization. (b) Divergences
present in reconstructing the 2D column density.

Re-expressed in terms of u, the paraxial transfer function in free-space (derived

in Sec. 5.6) is

h̃parax = exp(ikz)exp
⇥
�i⇡�z(u2

x + u2

y)
⇤
. (5.12)

Using the convolution theorem, we readily obtain the Fresnel di↵raction integral:

E(x, y, z) =
i

�z
exp(ikz)

Z 1

�1
E(x0, y0, z = 0) (5.13)

⇥ exp

⇢
i⇡

�z

⇥
(x� x0)2 + (y � y0)2

⇤�
dx0dy0.

Now using eqn. (5.13) and the electric field just after it traversed the cloud in

eqn. (5.7), we find the normalized Fourier transform of the intensity detected at the

camera

Ĩ(u; z)

I
0

=

Z 1

�1
exp(�↵(x+ �zu/2)� ↵(x� �zu/2) (5.14)

+ i�(x� �zu/2)� i�(x+ �zu/2))⇥ exp(�2⇡ix · u)dx.

Next we add extra assumptions on � and ↵. We approximate that the phase is

slowly-varying: |�(x + �zu/2) � �(x � �zu/2)| ⌧ 1, and that absorption is small:

2↵(x) ⌧ 1. At lowest order in � and ↵, the intensity is:
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Ĩ(u; z)

I
0

⇡
Z 1

�1
[1� ↵(x+ �zu/2)� ↵(x� �zu/2) (5.15)

+ i�(x� �zu/2)� i�(x+ �zu/2)]⇥ exp(�2⇡ix · u)dx ,

which is just a Fourier integral for � and ↵. Defining the Fourier transforms of �

and ↵ as e� and e↵, respectively, we find

Ĩ(u; z)

I
0

= �(u)� 2e↵(x) cos(⇡�zu2) + 2e�(x) sin(⇡�zu2). (5.16)

Explicitly for the atomic dielectric function, this is

Ĩ(u; z)

I
0

=
��

0

1 + I
0

/I
sat

+ 4�2

[2� sin(⇡�zu2) + cos(⇡�zu2)]⇢̃(u) (5.17)

= h̃(u)⇢̃(u), (5.18)

where h̃(u) is the contrast transfer function (CTF) defining a linear relationship

between Ĩ/I
0

and the Fourier transformed calculated column density ⇢̃(u). The

example CTF and its inverse, plotted in Fig. 5.2, shows that singularities exist at

certain values of the spatial frequencies u, the locations of which are dependent upon

the camera postion z and the detuning �. The ratio �I/�R =�1/2� determines

the quality of information at low spatial frequencies. If �I/�R > 0, the phase and

absorption terms compete and the inverse CTF diverges. Therefore information is

lost in this region. There are two mathematically equivalent cases to achieve the

“good” �I/�R < 0 condition: � < 0 (red detuning) with z < 0 (negative defocus),

and � > 0 (blue detuning) with z > 0 (positive defocus). Measurement noise is

amplified near the divergences, so that no useful information can be extracted from

these frequencies.
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Here we qualitatively describe the process of regularization used to mitigate

the amplification of noise (or loss of signal) near divergences in the inverse CTF.

Regularization limits the extent to which the inverse CTF can diverge in Fourier

space. We may also consider the problem in real space. In addition to the image

of interest, we assume an image that is spatially uniform (its Fourier components

are zero), and take the weighted average of the two images in Fourier space. The

spatially uniform image is included only when the signal-to-noise ratio of the recon-

structed image in real space would otherwise fall below one. In our MORD method

to be discussed in Sec. 5.2.4, we retrieve information at all spatial frequencies rel-

evant to the system (the minimum resolvable frequency is bound by the detector

size, and the maximum by the resolution of the imaging system). We do so by using

multiple cameras simultaneously to eliminate divergences introduced by any single

camera.

5.2.4 Three image reconstruction

We showed in Sec. 5.2.3 that in the single camera (ORD) method, spatial fre-

quencies exist for which we retrieve no information, where h̃ ! 0. These spatial

frequencies are dependent on z, the displacement of the camera from focus (Fig. 5.3).

Thus by adding cameras to the system at di↵erent displacements z, we recover in-

formation at all spatial frequencies and eliminate the need for regularization. It is

appropriate to model shot-noise as additive white noise (i.e. noise that is uncorre-

lated and uniform over all spatial frequencies). Then the total mean square error

86



(due to shot-noise) is
P

(i) |h̃(i)(u)⇢̃(u) � f̃
(i)
k (u)|2 + |↵⇢̃(u)|2, where i = 1...3 is the

camera number, and the second term is the Tikhonov regularization [48] term with

regularization constant ↵. The mean square error is minimized when
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Figure 5.3: contrast transfer functions (CTFs) for three di↵erent detector positions.
By picking appropriate z values, contrast information may be retrieved for all spatial
frequencies u. In (b), the individual inverse CTFs are plotted, along with the
combined CTF.

⇢̃(u) =

P
(i) h̃

(i)(u)f̃ (i)
k (u)

P
(i) |h̃(i)(u)|2 + ↵2

. (5.19)

If singularities have no overlap, ↵ may be set to zero, and the calculted column

density is e↵ectively minimized by the weighted average of the three images in

Fourier space. Eqn. (5.19) models shot-noise as additive white-noise, and assumes

⇢̃(u) and the shot-noise are uncorrelated. The above equation is an exact solution

to the scalar wave equation without singularities (as long as the displacements z(i)

of the cameras are chosen without overlapping divergences.) Next we discuss the

physical implementation of this method.
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5.3 Experimental techniques

5.3.1 Physical set-up

We implemented the MORD technique using a two-lens imaging system with

magnification M ⇡ 3 (as shown in Fig. 5.1), and placed three detectors at di↵erent

distances from the focal plane. The system consisted of a pair of 25.4 mm diameter

lenses with focal lengths f
1

= 75 mm and f
2

= 250 mm separated by 325(10) mm.

Then the magnification along the beam propagation direction was M�2, and the

e↵ective distance away of a camera from focus was �zeff =�z/M2. An aperature

with a 18(1) mm diameter in the Fourier plane blocked image distortions arising

from the 25 mm dichroic mirror used in the imaging system periscope. The imaging

system had an e↵ective numerical aperture NA ⇡ 0.12, and an e↵ective resolution

of ⇡ 8 µm. After the final lens, the light was directed to our three detectors using

non-polarizing beam splitters (BSs) with reflection to transmission (R:T) ratios

70:30 and 50:50 to split the probe into three beams with nominally equal powers

(Fig. 5.4). We detected each probe light on a charge-coupled device (CCD) camera

with detector size 648⇥488 square pixels with pixel width 5.6 µm. Each camera was

on a translation stage, so that the set-up could be used for both the defocused and

standard absorption imaging methods. The three cameras shared a triggering pulse

for simultaneous image capture.
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Figure 5.4: Schematic of our MORD setup. The two-lens imaging system described
by Fig. 5.1 is implemented with two non-polarizing beam splitters that nominally
split the probe laser beam into three equal intensities. Each image is then recorded
by its designated camera. Each camera takes a defocused image at position z(i) from
focus.

5.3.2 Experimental procedure

Here we describe the experimental procedure used to acquire the images for the

MORD technique. We collected about 1⇥ 109 87Rb atoms in a vapor-fed six-beam

magneto-optical trap, performed sub-Doppler cooling, and then trapped the atoms

in the |f = 2,mF = 2i state in a spherical quadrupole trap. We then used magnetic

transport [49] to move the resulting cloud about 42 cm vertically in 2.2 s, giving

an ensemble at ⇡ 120 µK with about 1 ⇥ 108 atoms. We then evaporated to de-

generacy in the combined magnetic/optical technique described in Ref. [34]. During
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evaporation, we performed a microwave transfer between the ground hyperfine states

|f = 2,mF = 2i to |f = 1,mF = �1i, giving 100⇥ 103 atom Bose-Einstein conden-

sates (BECs) in a cross-optical dipole trap every 15 s in the |f = 1,mF = �1i state.

The BEC was trapped in a crossed-dipole trap with frequencies ⇡ 110Hz, 75Hz,

and 50Hz along ex,ey, and ez respectively. To achieve the desired optical depth to

test our imaging technique, we then performed a partial ⇡ 10 % transfer to the

|f = 2,mF = 1i state with a short (⌧ ⇡/2) microwave pulse [50]. We then used

a probe beam detuned � = 2� from the f =2 to f 0=3 cycling transition without

repump to image the transferred N ⇡ 1 ⇥ 104 atoms after a 6 ms TOF with the

three cameras simultaneously. The probe intensity I ⇡ 2.5I
sat

, where the saturation

intensity I
sat

⇡ 3.5mW/cm2 [51] for a circularly polarized probe beam.

In the defocused technique, the intensity I1j in eqn. (5.8) is the o↵-resonant, de-

focused absorption image of the atoms. Additionally, a third image I3j is taken with

neither the atoms nor the probe laser light. This background image is subtracted

from I1j and I2j to remove any dark counts from the detector.

5.4 Measurement and analysis

5.4.1 Experimental data

Fig. 5.5(a) shows the raw data recorded by each camera using the experimental

techniques described in Sec. 5.3. We prepare the raw data by applying a Fermi

mask to get rid of probe artifacts present at the detector edges (Fig. 5.5(b)). To

compare the ORD and MORD imaging techniques, we show the single-camera ORD
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results in Fig. 5.5(c), and the two- and three-camera MORD reconstructed results

in Fig. 5.5(d). The background of the MORD method has visibly fewer artifacts

than the ORD reconstructed images.

(a) (b) (c) (d)

Figure 5.5: Set of images taken by the three cameras: (a) the raw data, after apply-
ing a Fermi mask to get rid of artifacts at the edges which do not contain density
information but contributes to noise, (b) individual single-image ORD reconstruc-
tions for each camera, (c) a two-camera reconstruction, and (d) the three-camera
MORD reconstruction. The “rings” present in the ORD method are less prevalent
in the MORD technique.
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5.4.2 Systematics in the MORD method

Next we consider the following sources of systematic uncertainties in the cal-

culated column density of the MORD method: the theoretical model eqn. (5.19)

as shown in Fig. 5.6, the uncertainties in camera positions z(i) (Fig. 5.7), and the

quality of the ex � ey registration of the three images during reconstruction. We

then compare the statistical uncertainties of the three-camera method to those of

absorption imaging and PCI. We show that except for the on-resonance case, the

MORD imaging technique gives smaller uncertainties than absorption imaging at

the same detuning. Further, the MORD method has slightly larger but compa-

rable uncertainties to PCI for large detunings, and smaller uncertainties for small

detunings where PCI uncertainty diverges.

In our simulations, the SSFM (see Sec. 5.6) was used to propagate the electric

field through the atomic cloud. Fig. 5.6(a),(b) show the systematic fractional uncer-

tainties in the reconstructed OD for di↵erent probe detunings. Fig. 5.6(c) gives the

uncertainty for di↵erent probe intensities, plotted for a range of OD values. Further,

in Fig. 5.7, we vary the z(i) values from the actual, forward propagated distances:

by adding an o↵set to the z(i) used in the reconstruction, we find �⇢/⇢
0

associated

with the uncertainties in the z(i) positions of the three cameras that we measured

in experiment. The uncertainties stay small for any single camera that is o↵set by

up to several millimeters. Next we discuss the statistical uncertainties of MORD,

absorption, and phase-contrast imaging techniques.
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5.4.3 Uncertainties and comparisons to other imaging techniques

We take detector shot noise to be the only source of statistical uncertainty, and

neglect the read noise of the camera. The shot-noise of an image is given by
p
N ,

where N = |E|2(�x)2dt/~! is the number of incident photons on the detector, with

the intensity recorded |E|2, pixel width �x, laser beam frequency !, and imaging

pulse-length dt. The statistical uncertainty in the calculated column density is found

by propagating the noise in the fractional uncertainty of f 0

j (eqn. (5.8)) through each

step of the density calculation. We start with the squared noise in real space

(�f 0

j )
2 =

X

n

✓
@f 0

j

@N n
j

◆
2

(�N n
j )

2,where shot noise �N n
j =

q
N n

j , (5.20)

and n=1...3 is the image number. In experiment, the intensity at the camera is

recorded as photoelectron counts by the camera, which is proportional to N . In

eqn. (5.20), N n
j represents the number of photons. For the background image,

�N
3

=0. As stated in Sec. 5.3.2, a uniform probe propagates through free space

to the atoms. After the probe interacts with the atoms, it propagates a distance

�z in free space. Since in experiment we use non-polarizing beamsplitters to split

the probe intensity into three beams, the intensity detected at each camera is one-

third the original intensity. Shot-noise was simulated at the detector under these

conditions. In the next step towards column-density retrieval, we take the Fourier

transform of the fractional intensity (eqn. (5.8)):

f̃k =
1p
N

X

j

e�ikjfj, whereN = the number of pixels. (5.21)
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Next, in the ORD method, the transformed image is multiplied to the single trans-

fer function h̃k associated with the detector: f̃ 0
k = f̃kh̃k. In the MORD method

considered here, we take the weighted average (as implemented in eqn. (5.19)) of all

the images with their corresponding transfer functions:

f̃ 0
k =

P
(i) h̃

(i)f̃
(i)
kP

(i) |h̃(i)|2
=
X

(i)

h̃0(i)f̃
(i)
k , where h̃0(i) =

h̃(i)

P
(i) |h̃(i)|2

(5.22)

and Ck ⌘
P

(i) |h̃(i)|2 is a constant. The column density of the atomic cloud is found

by taking the inverse Fourier transform of f̃ 0
k:

f̃ 0
j =

1p
N

X

k

eikj f̃ 0
k =

1p
N

X

k

eikj
X

(i)

h̃0(i)f̃
(i)
k (5.23)

=
1p
N

X

(i)

X

j0

"
1p
N

X

k

eik(j�j0)h̃0i
k

#
f
(i)
j0 =

1p
N

X

(i)

X

j0

H
(i)
j�j0f

(i)
j0 (5.24)

where H
(i)
j�j0 = (1/

p
N)
P

k exp[ik(j � j0)]h̃0i
k .

Then the final total squared uncertainty sums over all cameras i=1...3:

(�f 0
j)

2 =
1

n

nX

(i)=1

X

j0

 
@f 0

j

@f
(i)
j0

!
2

(�f (i)
j0 )

2 =
1

N

X

i

X

j0

(H(i)
j�j0)

2(�f (i)
j0 )

2, (5.25)

where n is the total number of cameras. We would like to compare this result to the

uncertainties in the absorption and PCI methods. Using the formalism described by

eqn. (5.20), we find the squared uncertainty for absorption imaging using eqn. (5.9):

(�OD)2 =


1 + 4�2

N
1

+
1

N
sat

�
2

N
1

+


1 + 4�2

N
2

+
1

N
sat

�
2

N
2

. (5.26)

Next, we find that the uncertainty in the OD for PCI using eqn. (5.11) to be

(�OD)2 =


1 +N

1

/N
sat

+ 4�2

2�

1

N
2

+
1

2�N
sat

✓
N

1

N
2

� 1

◆�
2

N
1

(5.27)

+


1 +N

1

/N
sat

+ 4�2

2�

�
2 N 2

1

N 3

2

.
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The statistical fractional uncertainties as a function of probe detuning is plot-

ted in Fig. 5.8 for MORD, absorption, and PCI methods, using eqns. (5.25), (5.26), and (5.27),

respectively.
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Figure 5.6: MORD systematic fractional uncertainties in the calculated OD and its
dependence on detuning using the low intensity approximation in the reconstruction
(a), using the intensity in our experiment (b), and the uncertainty dependence on
probe intensity (c).

5.5 Conclusion

We have demonstrated improvement in the single-camera ORD technique by

using three cameras simultaneously to eliminate the divergences that arise in the

contrast-transfer function. We studied the systematic uncertainties of the MORD

method, and theoretically compared multiple techniques using simulated data treated

in equal footing. We showed that the MORD method is comparable to PCI. There-

fore, in experiment, the easier to implement MORD set-up may be preferable to

PCI.
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5.6 Methods

A free space solution to eqn. (5.1) is a plane wave of the form

E(x, y, z)= exp[i(kxx+kyy+kzz)] for k2

0

= k2

x+k2

y+k2

z . For a probe beam propagating

along ez, we may re-express the electric field as

E(r) = exp
h
i
⇣
kxx+ kyy + z

q
k2

0

� k2

x � k2

y

⌘i
(5.28)

= E(r; z = 0) exp(iz
q

k2

0

� k2

2D

), (5.29)
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Figure 5.8: Systematic uncertainties of simulated data, for absorption imaging
(blue), phase-contrast imaging (red), and MORD (back). The simulated data and
analytical solutions are shown as circles and solid lines, respectively.

where E(r; z = 0)= exp(ik
2D

·r
2D

). The propagation behavior of the electric field has

two regions: when k2

0

> k2

x + k2

y, E(r) propagates sinusoidally, and for k2

0

< k2

x + k2

y,

the field decays exponentially (is an evanescent wave).

The general free space solution to eqn. (5.1) is given by the weighted sum over

all possible values of k
2D

:

E(r+�zez) =

Z 1

�1
exp

✓
i�z

q
k2

0

� k2

2D

◆
eE(k

2D

)exp(ik
2D

· r
2D

)dk
2D

, (5.30)

known as the angular spectrum representation, where the exact free space transfer

function

e
P(k

2D

,�z) = exp

✓
i�z

q
k2

0

� k2

2D

◆
(5.31)

propagates the original field E(r; z = 0) by distance �z. The free-space propagator

under the parxial approximation is

e
P

0(k
2D

,�z) = exp

✓
�i�z

k2

2D

2k2

0

◆
. (5.32)
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For propagation through an infinitely thin medium, the propagator

Q(�z) = exp


ik

0

Z z+�z

z

p
�(r) dz

�
. (5.33)

If the medium is a thin dilute cloud for which the paraxial approximation

applies (eqns.(5.32),(5.5)), there exists a numerical solution to the paraxial wave

equation (eqn. (5.4)) using the split-step Fourier method (SSFM):

E(r+�zez) = P 0(�z/2)Q0(�z)P 0(�z/2)E(r). (5.34)

where E(r+�zez) is the electric field that propagated a step �z. The SSFM given

by eqn. (5.34) is iterated through the thickness of the cloud. Correction to the

SSFM starts at third order in �z [52].

98



Chapter 6: Conclusion and Outlook

During my tenure at NIST, the light-induced gauge fields laboratory has made

stunning progress in the field. The lab has gone from the production of a BEC in

a new apparatus, to the first demonstration of an artificial gauge field, and most

recently, the current team members of this lab visualized skipping orbits in the

quantum Hall regime. Synthetic gauge fields are an appealing field because of their

applicability to a wide range of disciplines, from condensed matter experiments,

topological materials, theoretical proposals beyond real materials, to high energy

physics.

Going forward, there are crucial milestones that could be realized with gauge

fields, such as observing fractional quantum Hall states in real space, and the re-

alization of flux lattices, perhaps enabled by alkaline earth [53] or lanthanide [54]

quantum gases.

With our new atom-chip apparatus, we performed an o↵-resonance defocused

imaging experiment with multiple cameras to reconstruct the OD of BECs with

comparable results to PCI. While the results are comparable, the physical imple-

mentation of the MORD technique in the laboratory is relatively simple and o↵ers

potential advantages over PCI. While absorption imaging is a workhorse technique,

99



it is satisfying to demonstrate a technique with improved fundamental limits (rela-

tive to ORD), with the prospect of enabling new experiments. The MORD may have

applications in extended atomic systems that require both high resolution imaging

and wide field of view without spatial divergences, such as continuous atom lasers

and atomic ring gyroscopes. Going beyond MORD, it is possible to reconstruct the

phase and amplitude of the electromagnetic field using simultaneous multi-camera

images which may allow for holographic reconstruction of the 3D atomic density.

Our newly constructed atom-chip apparatus could realize the first demonstra-

tion of an artificial gauge field without spontaneous emission. FPGA programming

of individual nanofabricated wires will allow the creation of exotic arbitrary poten-

tials. Once rf “Raman” is successfully demonstrated with 87Rb, 6L can be introduced

into the system, setting up for even more exotic phenomena with Fermionic systems.
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Appendix A: Atom-light interaction

A.1 An Atom in the Presence of an External Magnetic Field

The Hamiltonian of an atom interacting with an external magnetic field is

Ĥ = AhfI · J� µ ·B. (A.1)

The nucleus has an intrinsic magnetic moment µI =�gIµBI. The I · J term arises

from the interaction between the dipolar electromagnetic field emanating from the

nucleus, and the electron’s intrinsic electric dipole moment µJ =�gJµBJ (where

J = L + S and we assume L = 0). This interaction gives rise to the hyperfine

structure, and at zero external magnetic field, the size of the hyperfine splitting is

proportional to the hyperfine constant Ahf . The Zeeman interaction term �µ · B

arises from the interaction between the atom’s total magnetic moment µ, and the

external magnetic field B=B
0

êz. The total magnetic moment µ comprises both µJ

and µI : µ=µJ +µI =�µB(gJS+ gII).

If the applied field is weak, the hyperfine interaction dominates and good

quantum numbers are F , and mF . However if the field is very strong, the hyperfine

interaction is negligible and I and J are e↵ectively uncoupled and separately con-

served. Then good quantum numbers become |J,mJ ; I,mIi. Next we consider in
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detail the Hamiltonian in the region between these two cases. In the medium-field

region, we must consider the combination of |F,mF i and |J,mJ ; I,mIi states.

A.2 Arbitrary field strength interaction

The Hamiltonian re-written in terms of raising and lowering operators is

Ĥ = AhfIzJz +
Ahf

2
(J

+

I� � J�I+) + µBB0

(gJSz + gIIz), (A.2)

where J±= Jx ± iJy, similarly for I±. The Hamiltonian can be solved exactly for

J = 1/2, applicable to the ground states of all alkalis (L = 0, S = 1/2). In this case,

mJ = ±1/2, so the interaction only couples two sets of states |mJ ,mI = mF �mJi:

|mJ = ±1/2,mI = mF ⌥ 1/2i,

where mF = mJ +mI is conserved for all magnetic fields. Since

J±|J,mJi =
p

(J ⌥mJ)(J ±mJ + 1)|J,mJ ± 1i, (A.3)

the terms in the Hamiltonian involving the ladder operators couple the two mJ

states. The matrix elements of the Hamiltonian is

hmJ = ±1/2|Ĥ|mJ = ±1/2i = �Ahf

✓
1

4
⌥mF

◆
+ µBB0

✓
gImF ± 1

2
(gJ � gI)

◆

hmJ = ±1/2|Ĥ|mJ = ⌥1/2i =
Ahf

2

s✓
I +

1

2

◆
2

�m2

F . (A.4)

Diagonalization of the Hamiltonian results in the eigenvalues given by the Breit-Rabi

formula [55]

E± = �Ahf

4
+ gIµBmFB0

± Ahf

2

✓
I +

1

2

◆s
1 +

2mF

I + 1

2

x+ x2, (A.5)
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where

x =
µBB0

Ahf

(gJ � gI)

(I + 1

2

)
. (A.6)

A.3 Time-Dependent Perturbation in the Weak-Field Limit

Next we consider the interaction with a time-varying magnetic field

B = B

0

+Brfcos(!rf t). (A.7)

The bias field B

0

=B
0

ez, the oscillating field Brfcos(!rf t)=Brfcos(!rf t)ex, and

|Brf |⌧ |B
0

|. Since µJ �µI , we neglect µI and re-express the Zeeman interaction

Hamiltonian as Ĥ = µJ ·B= gJµBS ·B= gJµBJ ·B for L=0. Since F is the good

quantum number in the region of small fields, we write the Hamiltonian in terms of

the projection of J on F. Both a classical vector model and a quantum mechanical

approach using the projection theorem (in which the theorem is applied to each

vector component of J) show that the Hamiltonian may be reexpressed as

Ĥ = gJµB
hJ · Fi

F (F + 1)
F ·B

= gFµBF ·B

= gFµBFzB0

+ gFµBFxBrf cos(!rf t)

= !Fz + ⌦Fx cos(!rf t)

= Ĥ
0

+ Ĥ 0, (A.8)

Where ! ⌘ gFµBB0

, ⌦ ⌘ gFµBBrf . Without Brf , to first-order the Zeeman shift is

the familiar E(1)= hĤi= gFµBmFB0

, and the energy splitting scales linearly with

the magnetic field.
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We want to eliminate the time dependence by going into the rotating frame

with the unitary time-evolution operator U(t)= ei!
0tFz/~, so that the state ket in

the rotating frame | 0i=U(t)| i. Then the Schrödinger equation for the state ket

rotating at frequency !0 about Fz is

i~@| 
0i

@t
= i~ @

@t
(U(t)| i)

= i~U(t)
@

@t
| i+ i~

✓
@U(t)

@t

◆
U(t)| i

= U(t)ĤU †(t)U(t)| i � !0Fz| 0i

= [U(t)Ĥ
0

U †(t) + U(t)Ĥ 0U †(t)� !0Fz]| 0i

= [(! � !0)Fz + U(t)Ĥ 0U †(t)]| 0i

= Ĥrot| 0i

where Ĥrot is the Hamiltonian in the rotating frame. Since in the | i .
= (mF =

1,mF = 0,mF = �1)basis,

U(t) = ei!
0tFz/~ =

0

@
ei!

0t 0 0
0 1 0
0 0 e�i!0t

1

A

we find that U(t)Ĥ 0U †(t)

=
1

2

0

@
0 ei(!rf+!0

)t + e�i(!rf�!0
)t 0

ei(!rf�!0
)t + e�i(!rf+!0

)t 0 ei(!rf+!0
)t + e�i(!rf�!0

)t

0 ei(!rf�!0
)t + e�i(!rf+!0

)t 0

1

A .

If we let !0=!rf , and make the RWA by dropping the terms that oscillate at

2!rf , U(t)Ĥ 0U †(t)=⌦Fx/2, so the Hamiltonian is time-independent in the rotating

frame. The full Hamiltonian is then
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U(t)Ĥ 0U †(t) =

0

@
� ⌦/2 0
⌦/2 0 ⌦/2
0 ⌦/2 ��

1

A (A.9)

where �=! � !rf .
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Appendix B: Machine drawings

Here we include the Science cell design in B.1. We then present the drawings for

the machined parts that make up the magnetic transport system. Figs. B.2, B.3, B.4,

and B.5 are coil holders designed to fit around the outer diameter of coils. Examples

of mounted coils are shown in Fig. 4.11. Fig. B.6 is the spacer placed in between

the final coil and the cold plate (Fig. B.10), and similarly, Fig. B.7 is the MOT

coil spacer. The cage adaptors referred to in Fig. 4.13 are shown as drawings in

Figs. B.8, B.9.

Further, Figs. B.11, B.12, and B.13 are coil winding forms. They also func-

tioned as coil holders when excess Kapton tape was faced o↵ the coils surfaces using

a lathe. Moreover, Fig. B.14 is the cooling tube clamp which fixes the copper cooling

tubes onto the cooling towers, and Fig. B.15 is the MOT cell holder design, as seen

in Fig. 4.4.
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Figure B.2: “Bottom” Coil, holder
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Figure B.3: “Top” Coil, holder
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Figure B.4: Final coil, holder
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Figure B.5: MOT coil, holder
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Figure B.6: Final coil spacer
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Figure B.7: MOT coil spacer
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Figure B.8: Cage adapter
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Figure B.9: MOT region cooling tube clamp. Adapts to Thorlabs cage.
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Figure B.10: Transport tower cold plate
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Figure B.11: Coil winding form: final coil

117



4
.8

5
0

1.4001.400

3
.1

9
0

1
/
4
-2

0
 T

h
re

a
d

e
d

00
.8

3
0

4
.0

2
0

4
.8

5
0

0

0.250

0.675

C
o

il
W

in
d

in
g

_
M

O
T
_
M

n
tS

id
e

M
a

te
ri
a

l 
: 

A
lu

m
in

u
m

Q
u

n
a

ti
ty

 :
 2

S
o

li
d

W
o

r
k
s
 S

tu
d

e
n

t 
E

d
it

io
n

.

 F
o

r
 A

c
a
d

e
m

ic
 U

s
e
 O

n
ly

.

Figure B.12: Coil winding form: MOT coil
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Figure B.13: Coil winding form: “Top” coil
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Figure B.14: Clamp for copper water cooling tube
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Figure B.15: MOT cell holder
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polder potential and johnson noise on bose-einstein condensate stability near

surfaces. Phys. Rev. Lett., 92:050404, Feb 2004.

125



[26] M. Trinker, S. Groth, S. Haslinger, S. Manz, T. Betz, S. Schneider, I. Bar-

Joseph, T. Schumm, and J. Schmiedmayer. Multilayer atom chips for versatile

atom micromanipulation. Applied Physics Letters, 92(25):–, 2008.

[27] B. P. Anderson and M. A. Kasevich. Loading a vapor-cell magneto-optic trap

using light-induced atom desorption. Phys. Rev. A, 63:023404, Jan 2001.

[28] Gustavo Telles, Tetsuya Ishikawa, Matthew Gibbs, and Chandra Raman. Light-

induced atomic desorption for loading a sodium magneto-optical trap. Phys.

Rev. A, 81:032710, Mar 2010.

[29] Markus Greiner, Immanuel Bloch, Theodor W. Hänsch, and Tilman Esslinger.
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