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Chapter 1: Introduction

Bose-Einstein condensation, a macroscopic occupation of bosons into their ground

motional state, was first experimentally achieved in 1995 [1, 2] with ultracold neutral

alkali atoms. The field of degenerate quantum (ultracold) gases expanded further

to include degenerate fermions [3] and spinor gases [4].

Ultracold atoms are, in many ways, ideal platforms for quantum simulation.

The potentials of these systems are nearly defect free and extremely configurable:

allowing incredible agreement between theory and experiment, and the exploration

of various quantum models. Perhaps the most visible example of quantum simula-

tion after Bose-Einstein condensation itself was the realization of the Bose-Hubbard

model by ultracold atoms on a 3D lattice [5]. Here, the superfluid to Mott insula-

tor transition was driven (in part) by the play between lattice site-to-site tunneling

and weak repulsive on-site interactions between bosons in the lattice. Two-body

interactions can strongly modify material properties such as pressure within a Bose-

Einstein condensate (BEC). Using molecular Feshbach resonances the magnitude

and sign of interactions can be altered to realize the crossover between a Fermi gas

and a BEC of paired fermions [6].

When atoms move in a spatially varying spin-dependent optical field they

experience geometric vector and scalar potentials. These ideas allow for the engi-

neered addition of spatially homogeneous geometric gauge potentials [7, 8, 9]. Gauge

potentials in more conventional materials are characteristic of charged particles ex-

periencing a Lorentz force in the presence of an electromagnetic field. A particle

moving in the presence of a strong electric field experiences a boosted (momentum
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dependent) magnetic field which couples the atom’s internal degrees of freedom to

its motion. In many cases, the resulting atomic Hamiltonian is equivalent to iconic

models of spin-orbit coupling (SOC): Rashba, Dresselhaus and combinations thereof.

As a result, interesting phenomena such as the quantum spin Hall effect [10, 11] and

topological insulating-like states [12, 13] become accessible by ultracold atomic sys-

tems.

Relative to the two state electron (spin-1/2) dimensionality, the expanded

ground state spin-dimensionality available to most ultracold atoms enables SOC

that cannot be found elsewhere [14, 15]: for example, producing SOC with a ne-

matic spin ordering [16]. By contrast, Rashba SOC found in electron systems cannot

easily be produced for alkali atoms. SOC in ultracold gases is known to modify the

interactions of ultracold bosons [7, 17] but the non-abelian nature of its gauge po-

tential is expected to produce unconventional condensation or a composite Fermion

state in bosons [18, 19] and pairing in fermions [20]. We propose a mechanism to

realize this form of SOC in 87Rb.

1.1 Thesis Overview

Chapter 2 introduces the non-interacting theory of Bose-Einstein condensation of

dilute gases.

Chapter 3 introduces 2-body interactions in BECs. The Gross-Pitaeveskii equation

and the Bogoliubov derived excitation spectrum are introduced.

Chapter 4 includes a brief description of the glass cell and surrounding coils for

magnetic field control. This chapter also introduces the optical and magnetic

fields necessary to manipulate our atomic cloud of 87Rb. First, we describe

why Rb-Li mixtures were abandoned. Then we introduce the level structure

of 87Rb and the Zeeman Hamiltonian. The remainder of the chapter describes

the optical dipole trap and dc, ac and gradient magnetic field control.
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Chapter 5 introduces our lab’s first experiment. We initially prepare a uniform

mixture of immiscible spin states, which is maximally out of equilibrium in

spin, and the resulting instability exponentially gains the amplitude of spin

noise at a characteristic spatial frequency. We observe the resulting spin (do-

main) structure coarsen.

Chapter 6 discusses the practical aspects of producing SOC in 87Rb. Beginning

the chapter we introduce the theory for 2-photon optical state control (Raman

coupling) with light detuned far from the electronic excited states. We ini-

tially illustrate the relationship between the optical illumination and the SOC

Hamiltonian. The details of a system where adjacent pairs of spin states are

separately SO coupled (spin-1 SOC) follows at the end of the chapter.

Chapter 7 explores the full phase diagram of spin-1 SOC. We introduce an equiv-

alence between the equilibrium magnetization and the location/existence of

minima in the SOC momentum dispersion. Miscibility, a signature of many-

body physics and dynamics along the 1st order phase transition are also ex-

plored.

Chapter 8 describes an experimentally realistic method for obtaining Rashba SOC

fully in the spin-1 ground manifold of 87Rb.

Appendix A describes the entire ultra-high vacuum portion of the apparatus.

Appendix B describes the locking of our lasers to the Doppler-free spectrum

Appendix C introduces the laser trapping and cooling setup for our experiment.

Appendix D describes the magnetic trap stage and forced evaporation.

Appendix E describes the optical dipole trap load from the magnetic trap and

evaporative cooling.
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Appendix F contains the approximate sequence of fields necessary to produce a

BEC from a magneto-optical trap.
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Chapter 2: Bose-Einstein Condensation

2.1 Introduction

Fundamental particles fall into two classes: fermions, systems of which obey Fermi-

Dirac quantum statistics; and bosons, which obey Bose-Einstein statistics. These

distinctions arise when we consider the exchange of coordinate and angular mo-

mentum of two identical particles. The state vector of two identical fermions is

antisymmetric under exchange, a requirement that cannot be satisfied for two par-

ticles in exactly the same state. Meanwhile, the exchange of identical bosons is

symmetric: many identical bosons may coexist in the same quantum state. It is a

result of the spin-statistics theorem that particles with integer spin are bosons while

particles with half-integer spin are fermions.

Composite spin systems, such as atoms, obey the same statistics with respect

to their total angular momentum. At sufficiently low temperatures, bosons undergo

a quantum phase transition where a significant fraction of the atoms (macroscopi-

cally) occupy the motional ground state of the system: this phenomenon is called

Bose-Einstein condensation. In this chapter we consider the non-interacting prop-

erties of a condensed system (see also Ch. 2 of Ref. [21] and Ch. 5 of Ref. [22]).

2.2 Bose Distribution

Many aggregate thermodynamic properties such as the free energy and entropy

can be expressed in terms of a partition function. A partition function for an

ensemble of particles is constructed by summing over configurations of modes and
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their occupations. We define a mode as a discrete motional state in phase space,

i.e. a mode of the 3D quantum harmonic oscillator (HO) with energy εn1,n2,n3 =

~ω1(n1+1/2)+~ω2(n2+1/2)+~ω3(n3+1/2) is uniquely determined by l = (n1, n2, n3)

for ni ∈ N where ~ωi for i ∈ {1, 2, 3} are characteristic energies. The l’th mode

has Boltzmann weight exp [−εl/kBT ] which is a function of mode energy εl and

temperature T where kB is Boltzmann’s constant. When this mode is occupied by

N particles we simply exponentiate the Boltzmann weight by N . The l’th mode of

the grand canonical partition function Z can be occupied by a number of particles

that range from 0 to ∞ particles: we sum over these possibilities. By contrast,

the relative occupation of two different modes is independent: we multiply these

possibilities. The grand canonical partition function

Z =
∏

l

∞∑

nl

(z exp (−βεl))nl =
∏

l

1

1− ze−βεl (2.1)

includes a fugacity z = exp (−µ/kBT ) that sets the number of particles in the

system using a term with units of energy: the chemical potential µ. µ corresponds

to the additional cost of adding another particle to a mode. The average occupation

number per mode

fl = − 1

β

∂lnZ

∂εl
=

1

eβ(εl−µ) − 1
(2.2)

is the Bose distribution.

2.3 Density of modes

We consider a collection of 3D harmonically trapped bosons in a single spin state.

This system is described by a Hamiltonian H =
∑3

i p
2
i /2m + mω2

i x
2/2 where i in-

dexes the Cartesian vector components of the system: pi is the momentum operator,

xi is position operator, m is the mass, and ωi/2π is the characteristic trap frequency.

6



The l’th mode of the quantum HO has energy

εl =
3∑

i

~ωi(ni + 1/2) (2.3)

and the wavefunction expressed in terms of Hermite polynomials Hni is

ψl(x) =
3∏

i=1

(mωi
π~

)1/4 1√
2nini!

Hni

(√
mωi
~
x

)
exp (−mω2

i x
2)/2~. (2.4)

In the limit where ε =
∑3

i ~ωini � ~ωi, relevant for thermal modes, it is

convenient to define the number of modes below ε in energy. We take the continuum

limit and calculate the mode “volume”

G(ε) =
1

~3ω̄3

∫ ε

0

dε1

∫ ε−ε1

0

dε2

∫ ε−ε1−ε2

0

dε3 =
ε3

6~3ω̄3
(2.5)

where εi = ~ωini and ω̄3 = ω1ω2ω3. The “density” of modes (also called density of

states) is the number of modes at or near ε in energy and may be determined from

g(ε) = ∂εG(ε)

g(ε) =
ε2

2~2ω̄3
(2.6)

2.4 Properties of condensation

2.4.1 Transition temperature

We distinguish between “BEC” modes, which are macroscopically occupied, and

“thermal” modes which are all the other modes. Condensation may occur in any

local minimum of a potential but these tend to be short lived unless they are also

the ground state of the system. For the ensuing discussion we assume there is only

one macroscopically occupied mode. The number of particles Nth not in the BEC is

given by the sum with respect to energy ε over the product of the density of states
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g(ε) and the occupation of each state fε. We had cast Eq. 2.2 into the continuum

limit so that fl → f(ε) when the mode energy εl → ε

Nth =

∫ ∞

0

dεg(ε)f(ε) (2.7)

A necessary condition for condensation is that the µ be very near zero. At fixed

temperature and µ = 0 a particle added to the system is added (without cost)

directly to the ground mode, not the thermal modes. When µ = 0 we further

introduce a transition temperature Tc at which the total number of atoms in the

system N equals the number of atoms in the thermal distribution Nth.

N = Nth =

∫ ∞

0

dε
ε2

2~2ω̄3

1

eε/kBTc − 1
. (2.8)

We make a change of variables in Eq. 2.8: x = ε/kBTc. Using the identities for the

Gamma function and the Riemann zeta function we perform the integration and

obtain

∫ ∞

0

dx
xα−1

ex − 1
= Γ(α)ζ(α) (2.9)

N =
(kBTc)

3

~3ω̄3

∫ ∞

0

x2

ex − 1
=

(kBTc)
3Γ(3)ζ(3)

~3ω̄3
. (2.10)

We then solve for the critical temperature

Tc =
~ω̄N1/3

kB(Γ(3)ζ(3))1/3
. (2.11)

For the typical BEC experiment N ≈ 5× 105 atoms, ω̄ = h× 45 Hz, Tc = 127 nK.

In the case of an ideal gas, kBT has an interpretation as a thermal kinetic energy;

Boltzmann statistics for N indistinguishable “classical” particles would lead us to

expect substantial occupation of the ground state only when the temperature neared

~ω̄/kB ≈ 2 nK. The factor of 50 between kBTc and ~ω̄ highlights the degree to which
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Bose statistics establishes a preference for occupation of the ground state.

2.4.2 Condensate fraction

As the temperature decreases from Tc the fraction of atoms in the BEC increases very

rapidly. It is convenient to parameterize the BEC fraction in terms of a dimensionless

fraction T/Tc and fraction of atoms in the thermal states Nth(T )/Nth(Tc). For an

ensemble of atoms loaded into a 3D HO potential and for T < Tc the thermal

fraction is

Nth(T ) =
(kBT )3Γ(3)ζ(3)

~3ω̄3
. (2.12)

Putting everything together we find the fraction of atoms in the BEC N0/N where

N0 is the number of atoms in the BEC.

N0(T )/N = 1−Nth(T )/Nth(Tc) =

(
1−

(
T

Tc

)3
)
. (2.13)

The N0 rapidly approaches a significant fraction of N for temperatures modestly

below Tc, i.e. one out of every 8 atoms is in the BEC when T = Tc/2.

2.4.3 Number of particles per mode

The number of particles per unit volume (the density in the conventional sense)

outside of the BEC is

nth(r) =

∫
dp

(2π~)3

1

e[ε(r,p)−µ]/kBT − 1
(2.14)

where ε(r,p) =
∑

i p
2
i /2m + mω2

i x
2
i /2 and i indexes Cartesian coordinates. The

average number of particles per mode is the product of this conventional density

and the mode volume defined by the thermal de Broglie wavelength: D = λ3
Tnth(r),
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where

λT =
√

2π~2/mkBT (2.15)

is the thermal de Broglie wavelength. Evaluating the integral in Eq. 2.14, the number

of particles per mode is

D(r) = g3/2[z(r)], (2.16)

where where z(r) = (µ−∑imω
2
i x

2
i /2)/kBT and

gγ[z] =
∞∑

n=1

zn

nγ
(2.17)

is the polylog series. The fugacity z(0) = exp (µ− V (0))/kBT is related to the total

number of particles in thermal modes of the system by

Nth = g3[z(0)]

(
kBT

~ω̄

)3

. (2.18)

At the cusp of condensation (and beyond!) the particle number per mode of the

thermal part of the system is ζ3/2 ≈ 2.6 and ζ3 ≈ 1.2 = Nth(~ω̄/kBT ). As we

might expect, large atom numbers, strong confinement and low temperatures favor

condensation. The particle number per mode of the BEC D0 is equivalent to the

particle number in the BEC, D0 = N0: often, D0 ≈ 105 − 106.

Our computation of particle numbers per mode is modified somewhat when

the more physical summation over discrete modes is performed. The validity of the

continuum limit breaks down for the least energetic modes, whose spatial extents

are less than/comparable to the de Broglie wavelength.

10



2.5 Position and Momentum profile

2.5.1 Density profile of the ground state

This section should be viewed qualitatively since the BEC density profile and mo-

mentum profiles are heavily modified by interactions. Without interactions the

wavefunction of a BEC in position coordinates is the solution to the quantum HO

given by the ground state of Eq. 2.4

ψ(x) =
1

π3/4(
∏

i ai)
1/2

exp (−
∑

i

x2
i /2a

2
i ) (2.19)

where i indexes Cartesian coordinates. |ψ(x)|2 has a 1/e radius of

ai =

√
~
mωi

. (2.20)

In our potential V (x) =
∑

imω
2
i x

2
i /2, where the trap frequencies ωi/2π do not

equal one another, the BEC density n0(x) = N0|ψ(x)|2 is anisotropic. Similarly, the

Fourier transform of Eq. 2.19, which transforms the wavefunction into momentum

coordinates is

ψ(p)
1

π3/4(
∏

i ãi)
1/2

exp (−
∑

i

p2/2ã2
i ) (2.21)

where the 1/e extent in momentum is

ãi =
~
ai

=
√
m~ωi. (2.22)

We see that the anisotropy of the momentum density profile n0(p) = N0|ψ(p)|2 is the

inverse of the position profile: if ax > ay then ãx < ãy. In the presence of interactions

this relationship between position- and momentum-dependent anisotropies remains.
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2.5.2 Density profile of the thermal modes

Due to the large number and low phase space density of thermal states it is con-

ventional to describe this part of the system with an ensemble average. In addition,

the interactions play less of a role because of the low densities. We use Eq. 2.14 in

the classical limit where exp[−(p2/2m+ V (x))/kBT ]� 1

nth(x) =

∫
dp

(2π~)3
exp [−(p2/2m+ V (x))/kBT ] =

Nth

π3/2
∏

iRi

exp (−
∑

i

x2
i /R

2
i )

(2.23)

where the thermal width of the momentum distribution

Ri =

√
2kBT

mω2
i

(2.24)

which is typically much larger than the radius ai of the BEC wavefunction. The

momentum distribution, however, is isotropic in the classical limit:

nth(p) =

∫
dx

(2π~)3
exp [−(p2/2m+ V (x))/kBT ] =

1

(mλT ω̄)3
exp (−

∑

i

p2
i /2mkBT )

(2.25)

where the radius of the momentum distribution is R̃ =
√
mkBT .

2.5.3 Time of Flight

It is often desirable to release a cold gas of atoms from its confinement, allowing

time of flight (TOF) expansion. For t > min(ω−1
i ), where min(ω−1

i ) is the smallest

trap frequency in units of rad/s, the initial momentum space profile of both the

BEC and thermal fractions of the gas become proportional to the profile in position

coordinates of the expanding gas (we choose a frame of reference that accelerates

with gravity). The expansion of the BEC in TOF is strongly modified in the presence
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of interactions but we typically treat thermal clouds as if they are non-interacting.

When the potential is set to zero, the non-interacting BEC wavefunction, ψ(p),

undergoes time evolution for a free particle exp [−iE/~], where E = p2/2m. We

calculate the time evolution of the wave function in momentum coordinates, then

switch back to position coordinates

ψ(x, t) =

∫
dp

(2π~)3/2
ψ(p, t = 0) exp (−ip2t/2m~) exp (ip · x/~) (2.26)

=
1

π3/4
∏

i ai
√

1 + iωit
exp (−

∑

i

x2
i /(2ai + 2iaiωit))

when the TOF time becomes larger than min(ω−1
i ), the position profile of the BEC

becomes ãit/m =
√

~ωi/mt; this is proportional to the original momentum profile of

the BEC. For an anisotropic potential and for sufficiently long TOF the momentum

profile is always anisotropic.

When the thermal part of the gas is released into TOF the gas is no longer in

thermal equilibrium and each individual particle obeys the equations of motion

ṙ = p/m, ṗ = 0 (2.27)

for time evolution in the absence of an external force. Using these equations of

motion, we apply a change of variables p(t) = p and x(t) = x + pt/m to the

distribution of the gas:

f(r,p, t) = exp (−
∑

i

pi(t)
2/2m+mω2

i x
2
i (t)) (2.28)

= exp

(
−
[∑

i

p2
i /2m+mω2

i (xi + pit/m)2 − µ
]
/kBT

)

equivalent to Boltzmann’s classical distribution function at t = 0. We compute the
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time-evolving density

n(x, t) =

∫
dp

(2π~)3
f(r,p, t) (2.29)

=
1

λ3
T

∏
i

√
1 + ω2

i t
2

exp (−
∑

i

mω2
i x

2
i /2kBT (1 + ω2

i t
2)) exp (µ/kBT )

For t > min(ω−1
i ) the profile of the expanding thermal gas becomes isotropic and

proportional to the t = 0 momentum distribution: R̃t/m =
√

2kBT/mt.

As a result, even for a non-interacting BEC, the anisotropic expansion of the

BEC from an anisotropic trap serves as a signature of Bose-Einstein condensation.

Figure 2.1a illustrates the 1/e radii contour at both t = 0 sec and 0.1 sec TOF for

the BEC and thermal gases. Figure 2.1b illustrates the 1/e radii as a function of

time. These radii qualitatively describe BEC expansion but quantitatively fall far

short of the actual TOF expansion in the presence of strong interactions.
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Figure 2.1: Density profile widths for non-interacting (and somewhat
non-physical) BECs (a) Contour where amplitude of BEC (solid red)
and thermal (dotted black) falls to 1/e of peak value. Each component
of the gas (BEC or thermal) has an inner, in-situ (t = 0), contour and
an outer, TOF (t − 0.01 sec), contour. (b) 1/e amplitude for different
Cartesian directions, ex and ey, over 11 ms TOF. 1/e widths in both

panels are normalized to
√

~/mωx: the BEC 1/e radius in the orientation
of its tightest confinement. This plot was produced for the following
gas parameters: trap frequencies, 150 Hz along ex and 30 Hz along ey;
temperature of 50 nK; and mass given by 87Rb.
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Chapter 3: Interactions

So far we have neglected the impact of interactions on Bose-Einstein condensation.

Two-body interactions are an essential mechanism for thermalization during the

evaporative cooling stage of BEC production. As a result, the atomic isotopes that

are cooled to quantum degeneracy interact, oftentimes strongly. Interactions modify

the density profile of the condensed state and are necessary for the condensed state

to exhibit a phonon dispersion. Additionally, vortex production under rotation and

other phenomena associated with a superfluid excitation spectrum only occur in the

presence of interactions.

3.1 Low energy collisions

For neutral atoms the two-particle interaction potential results from an induced

dipole between colliding atoms, known as the van der Waals potential. During the

collision the particles may have multiple collision channels associated with the 2-

body orbital angular momentum. These collision channels are indexed with integer

values of ` and contribute to a centrifugal barrier term in the two-particle interaction

potential 1

U(R) = −C6

R6
+

~2`(`+ 1)

mR2
. (3.1)

where m is the mass of each boson, R is the atom-atom separation and the van der

Waals coefficients C6 generally increase with atom size and are tabulated in Ref. 3.1.

1(see Ch. 5 of Ref. [21]
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Element C6/e
2a2

0 [24] Tmax (mK)
H–H 6.5 442

7Li–7Li 1389 24
23Na–23Na 1556 4

39K–39K 3897 1.8
87Rb–87Rb 4691 0.5

133Cs–133Cs 6851 0.3

Table 3.1: Calculated van der Waals coefficients C6 for the attractive po-
tential −C6/r

6 characteristic of long range interactions between neutral
atoms. For identical bosons there exists a temperature Tmax below which
collisions with total orbital angular momentum ` ≥ 2 do not occur.

As the separation R increases, the attractive short range potential gives way to the

repulsive centrifugal term. In the case of identical bosons only even integer ` are

consistent with wavefunction symmetrization. When the relative kinetic energy of

colliding particles is smaller than the maximum height of the centrifugal barrier

term at ` = 2 identical bosons only interact with the ` = 0 potential and scatter

isotropically 2.

We may solve for when the thermal kinetic energy 3kBT/2 equals the local

maximum of the potential Umax in Eq. 3.1 at ` = 2

3kBT

2
= Umax → T =

4

3kB
C6

(
~2

C6Mr

)3/2

(3.2)

where Mr is the reduced mass. The result indicates the temperature Tmax at which

the ` = 2 collision channel begins to freeze out in an equilibrium trapped thermal

Bose gas 3.

3.1.1 Partial waves

When the de Broglie wavelength of colliding atoms is much larger than the range of

atom-atom separations where the 2-body interaction potential rapidly changes their

scattering cross section becomes insensitive to their relative kinetic energies. This

2` = 1 is forbidden by statistics, see Ch. 14 of ref. [23]
3see Ref. [23] for a vastly more general discussion of this topic
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phenomenon can be understood as an approximation of the partial wave scattering

formalism.

Partial wave scattering describes the wavefunction of two scattering particles

as the sum of a plane wave approaching a collision along ez and a plane wave

outgoing along er

ψ = eikz + f(θ)
eikr

r
(3.3)

The amplitude f(θ) describes probability of measuring a particle outgoing from a

scattering center at angle theta from ez. The wavefunction ψ has axial symmetry

and therefore may be expanded in terms of Legendre polynomials P`(cosθ)

ψ =
∞∑

`=0

A`P`(cosθ)Rk`(r) (3.4)

where ` = {0, 1, 2, ...} correspond to the s, p, d, ... partial wave terms in the summa-

tion of Eq. 3.4. The radial portion of the wavefunction ψ = Rk,`Θk,` satisfies the

Lipmann-Schwinger equation

[
∂2
r +

2

r
∂r + k2 − `(`+ 1)

r2
− mC6

~2r6

]
Rk,` = 0. (3.5)

We make the approximation that the de Broglie wavelength is large in comparison

to the radial extent of the two-body interaction potential and simplify the radial

wavefunction to

Rk` u
1

k`
sin (kr − `π/2 + δ`) (3.6)

where the phase shifts δ` depend in a complicated way upon the shape of the short

range 2-body interaction potential. Atoms with larger C6 coefficients have a larger

characteristic extent for their 2-body interaction potential and may therefore have
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a larger phase shifts. As the wavevector tends towards the low energy limit k → 0

we solve for the ` = 0 phase shift δ0 of the asymptotic wavefunction as a function

of k: δ0 = −ka, where a is called the s-wave scattering length.

For this treatment to be valid the typical spacing between particles must be

large in comparison to the spatial extent of the 2-body interaction potential so that

there is no cross coupling between multiple scattering events.

Using Eqs. 3.3, 3.4, and 3.6 it is possible to solve for f(θ) and obtain the

s-wave scattering cross-section

σscatt. =

∫
|f(θ)|2dΩ =

8π

k2

∑

`

(2`+ 1) sin2 δ` ≈ 8πa2 for ` = 0 (3.7)

which depends on the scattering length a alone. Here, dΩ is the differential solid

angle and
∫

dΩ = 4π.

Using the Born approximation, we link our s-wave scattering length to an

effective 2-body pseudo-potential, U(R)

a =
m

4π~2

∫
dRU(R) =

mL3

4π~2
U0 (3.8)

where R is the interparticle separation and L3 is the volume. In coordinate space,

the effective potential

U0 =
4π~2a

m
(3.9)

replaces the complicated interatomic potential U(r, r′) = U0δ(r− r′).

3.2 Interaction Hamiltonian

We consider N identical bosons, each is indexed with i or j with position ri and

momentum pi, trapped in a single-particle potential V (ri) that interact with an ef-

fective contact interaction, U0δ(ri−rj). The Hamiltonian describing this interacting
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Element Triplet scattering length a[a0] Source
7Li -27.6(0.5) [25]

23Na 65.3(0.9) [26]
41K 65(8) [27]

87Rb 103(5) [28]
133Cs 2400(100) [29]

Table 3.2: Triplet scattering length values for Alkali atoms.

system is

H =
N∑

i

[
p2
i

2m
+ V (ri)

]
+
U0

2

N∑

i,j

δ(ri − rj) (3.10)

3.2.1 Mean field approximation

We sum the wavefunction of each boson indexed by i with location ri to generate

the many-body wavefunction

Ψ(r) =
∑

i

φ(ri) (3.11)

whose dynamics are governed by the Schrödinger equation and the Hamiltonian in

Eq. 3.10. We adopt the mean field approximation and decompose this many-body

wavefunction

Ψ(r) = ψ(r) + Ψ′(r) (3.12)

in terms of the expectation value of many-body wavefunction in the ground state

ψ(r) = 〈Ψ(r)〉 and the typically small portion of the many-body wavefunction that

is not in the BEC, Ψ′(r). The complex function ψ(r) is known as the BEC wavefunc-

tion. In the absence of external perturbations the energy of the system is minimized

when the BEC wavefunction varies smoothly: this indicates that ψ(r) ≈ √N0φ(r).

This approach is valid in the limit where N0 � 1.

We compose a new Hamiltonian which governs the evolution of this BEC
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wavefunction

H =
p2

2m
+ V (r) + U0|ψ(r)|2 (3.13)

3.2.2 Energy

The expectation value of the Hamiltonian with respect to the condensed state ψ(r, t)

is

E =

∫
drψ†(r, t)

[
~2∇2

2m
+ V (r) + U0|ψ(r, t)|2

]
ψ(r, t). (3.14)

This energy functional E[ψ] evidently is modified by the sum over a density depen-

dent and non-linear term introduced by the interactions.

3.2.3 Gross-Pitaeveskii equation

The time dependent Schrödinger equation for the interacting Hamiltonian acting on

the BEC wavefunction acquires a density dependent term from the interactions

i~∂tψ(r, t) =

[(
p2

2m
+ V (r)

)
+ U0|ψ(r, t)|2

]
ψ(r, t) (3.15)

which is the Gross-Piteaveskii equation (GPE). In an equilibrium system the time

evolution of ψ(r, t) is simply ψ(r, t) = exp (−iµt/~)ψ(r). Schrödinger ’s equation

simplifies to

µψ(r) =

[(
p2

2m
+ V (r)

)
+ U0|ψ(r)|2

]
ψ(r) (3.16)

3.2.4 Density profile

The sign and magnitude of interactions plays a large role in the final density pro-

file. Attractive interactions can lead to runaway increases in density that eventually
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violate the condition that average interparticle spacing should be much larger than

the scattering length. Various loss mechanisms then rapidly deplete the BEC. An

exception occurs when the attraction is weak enough that the kinetic energy can

offset the tendency of the BEC to collapse [30]. The remainder of this section will

consider repulsive interactions. These BECs are stable in the presence of both weak

and strong interactions because the repulsive interactions compete with the attrac-

tive single-particle potential. In the case of strong interactions and sufficiently high

density the density profile is strongly modified from the non-interacting situation.

The equilibrium density distribution of the gas is determined by the com-

petition between both the kinetic energy and the repulsive interactions with the

trapping potential. In ultracold gases the energy scale of the repulsive interactions

typically dominates that of the kinetic energy. When such is the case, it is common

practice to apply the Thomas-Fermi (TF) approximation, which neglects the kinetic

energy, for the determination of the equilibrium density profile. We rearrange terms

in Eq. 3.16 to find the density

n(r) =
µ− V (r)

U0

, for n(r) > 0 (3.17)

where the minimum of the occupied portion of the potential V (r) is defined to be

zero, and µ = U0npeak ∝ E/N is the chemical potential (E is the total energy from

Eq. 3.14). The density profile of the bulk of the BEC therefore looks like an inverted

representation of the lowest portion of V (r), e.g. in a HO the density profile is an

inverted parabola, see Fig 3.1.

There exists for any potential a cusp where the density falls to zero. We define

a TF radius Ri, where i indexes Cartesian coordinates, inside which the density is

finite and outside of which the density is zero. The TF radius is simply related to
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the chemical potential for a HO potential

Ri =

√
2µ√
mωi

. (3.18)

Meanwhile, the chemical potential is a function of the characteristic trap frequency

ω̄, atom number N0, and scattering length a

µ =
1

2
~ω̄

(
15N0a

√
mω̄

~

)2/5

(3.19)

If the trap frequencies are known, it is possible to calculate the atom number by

comparing Eqs. 3.18 and 3.19.

We may compare the spatial extent of the cloud with and without interactions.

Then

Ri

ai
=

√
2µ√
~ωi
∼ 7 (3.20)

where ai is the non-interacting extent of a BEC. Motivated by the Heisenberg un-

certainty principle we claim that for an increase in the spatial extent of the BEC

by a factor of 7 there should be a corresponding decrease in the momentum extent,

retroactively justifying the TF approximation.

3.2.5 TOF

In the presence of interactions the removal of the trapping potential begins the

process of interaction-driven expansion. The density then falls until the gas becomes

non-interacting after which time the gas undergoes free expansion.

We introduce a set of dimensionless scaling factors λi
4 which rescale the TF

4See Castin and Dum Ref. [31]
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Figure 3.1: (a) Characteristic density profiles for non-interacting (solid
red) and interacting (dotted black) 3D gases trapped in an isotropic HO.
We normalize the BEC density to N/

√
~/mω, where ω = 2π × 30 Hz,

N = 104 and mass, m, is that of 87Rb. (b) Plot of the ratio of the TF
radius and the Gaussian width, a =

√
~/mω for various BEC numbers,

N0. In 87Rb, a typical BEC number is N0 = 5× 105.

radii during the interaction-driven and ballistic stages of TOF expansion.

Ri(t) = λi(t)Ri(0) (3.21)

where Ri(t) is the TF radius along ei during TOF, R(0) is the equilibrium TF

radius, λi(0) = 1, and i indexes cartesian coordinates. When the system is initially

in a HO potential, the scaling factors satisfy the differential equations λ̇ = 0 and

λ̈i =
ω2
i (0)

λiλ1λ2λ3

− ω2
i (t)λi, (3.22)

in the case of TOF ω2
i (t > 0) = 0. The initial size Ri(0) and the momentum

following TOF are much larger than the non-interacting equivalents.

There are some circumstances when it is desirable to physically separate dif-

ferent spin states in TOF. When a magnetic gradient is applied at the beginning of

TOF the density profiles of the different spin states become coupled in a non-trivial
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way to the interaction driven expansion. It is safe to separate the different spin

components when the time-scale over which the separation occurs is much shorter

than λ̄/ω̄ where l̄ambda = (λ1λ2λ3)1/3 and when the rate of separation is much

faster than the speed of sound for the BEC. With ω̄ ≈ 45 Hz and µ ≈ h× 2200 Hz

we found that approximately 8− 10 ms of interaction driven expansion followed by

10 ms for spatial separation would separate spin components without damaging the

density profile.

As with the non-interacting case, interaction driven expansion is anisotropic

when the initial density profile of the gas is anisotropic. This anisotropy is exagger-

ated with interactions: for a cylindrically symmetric cloud α(t→∞) ∼ α−1.8(t = 0)

where α is the aspect ratio between the radial and axial extents of the cloud.

3.3 Quantum excitations

Interaction-induced quantum excitations link the BEC with its next lowest lying

thermal states to produce a phonon-like dispersion of excitations. We apply a for-

malism attributed to Bogoliubov and de Gennes (BdG) to describe a uniform BEC

at zero temperature. This method assumes that the BEC is infinite in spatial ex-

tent, the density is homogeneous and the temperature is well below Tc. We should

expect this method to fail for very small spatial wavevectors or near the low density

periphery of the BEC.

We now switch (we are no longer working solely working with the BEC wave-

function) to the notation of second quantization in our definition of the interaction

Hamiltonian so that we can explicitly work with the boson operators

H =

∫
dr

[
−Ψ†(r)

~2

2m
∇2Ψ(r) + V (r)Ψ†(r)Ψ(r) +

U0

2
Ψ†(r)Ψ†(r)Ψ(r)Ψ(r)

]

(3.23)

The idea is to establish a relationship between excitation energy and momentum.
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Therefore we expand the boson annihilation operator in terms of the annihilation

operators for plane wave states

Ψ(r) =
1

L3/2

∑

k

eik·rak (3.24)

where L3 is the volume and ak are bosonic operators. Plugging into Eq. 3.23 the

Hamiltonian takes the form

H =
∑

k

ε0ka
†
kak +

U0

2L3

∑

k,k′,q

a†k+qa
†
k′−qak′ak (3.25)

where ε0k = ~2k2/2m. The annihilation of a boson from the BEC is described by

ak=0; its contribution to the total energy within the interaction term is related to

the number of atoms in the BEC a0 |N0〉 =
√
N0 |N0〉. By contrast, the occupation

of each plane wave mode is not a large and relatively unchanging number: the

contribution of annihilation operators ak 6=0 to the interaction energy is ∼ 1/
√
N0

smaller. Because of this weighting, we neglect terms more than quadratic in k 6= 0.

We go further and eliminate terms whose plane wave creation and annihilation

operators do not conserve momentum within the term because they are energetically

penalized: they do not constitute the lowest energy excitations. Our objective is to

find the effective spectrum of quasiparticle excitations: these are the combinations of

plane wave excitations which conserve atom number. We write this vastly simplified

Hamiltonian

H =
N2

0U0

2L3 +
∑

k 6=0

(ε0k + n0U0)(a†kak + a†−ka−k) + n0U0

∑

k 6=0

(a†ka
†
−k + aka−k) (3.26)

=
N2

0U0

2L3 +
∑

k 6=0

φ†kMkφk

where n0 is the BEC density and φk = {a−k, a†k}T is a two component vector of
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operators. Mk is a matrix of coefficients

Mk =


 ε0k − ε00 + U0n0 U0n0

−U0n0 −ε0k + ε00 − U0n0


 (3.27)

The pair of operators φk = (a−k,σ, a
†
k,σ′) does not transform like a vector. In-

stead we require that the bosonic commutation relations [ak,i, a
†
k,j] = (−σz)i,j be

preserved during a transformation T where i and j now index the two elements of

(a−k,σ, a
†
k,σ′). It transpires that T †σzT must equal σz to preserve these commutation

relations. We want to diagonalize the term φ†kMkφk to find the excitation spec-

trum νk,σ: this is equivalent to determining T where T †MT = νk,σ. In practice,

T−1σzMT = σzνk,σ is easier to calculate because the eigenvalues of σzM may be

found using a simple non-Hermitian similarity transform [32].

The eigenvectors σzφ of this system are the quasiparticle excitations and cor-

respond to linear combinations of momentum modes with ±k momenta. The eigen-

values are the dispersion of quasiparticle excitations:

νk =
√
εk
√
εk + 2U0n0 (3.28)

We plot this dispersion in Fig. 3.2.

3.3.1 Coherence length/healing length

The momentum-energy dispersion for a homogeneous single spin component BEC

is given in Eq. 3.28. For a homogeneous BEC with infinite extent there exists a

linear (phonon) dispersion for wavevectors below a characteristic cutoff 1/ξ. This

dispersion is ungapped and hence the system supports quantum excitations of arbi-

trarily low energy. For wavelengths smaller than ξ dispersion mimics that of a free

particle. In the presence of a phase defect or when a hole is poked into the BEC,

the BEC mode can adjust to the presence of the defect over length scales less than
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Figure 3.2: Eigenvalues of quasiparticle excitations in single component
BEC. Wavevectors are in units of kξ = 1/ξ and energy is in units of
~2k2

ξ/2m = µ, where ξ is the healing length. The vertical dotted black
line denotes cutoff wavevector while the horizontal dotted black line de-
notes the corresponding energy scale. The diagonal dotted black line is
a guide to the eye.

the cutoff, ξ. Over shorter length scales and near a defect only thermal modes exist

and the density of the gas decreases to that typical of thermal modes. It is for this

reason that xi is called the healing length of the BEC.

The healing length may also be determined by solving for the length scale

where the kinetic energy and interaction terms equal one another

~2

2mξ2
= nU0 (3.29)

ξ =
~√

2mU0n
(3.30)

where U0n = µ.
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3.3.2 Speed of sound

The speed of sound is given by the slope of the linear part of the dispersion

E

p
=

~ω
~k

= c (3.31)

Using the cutoff kinetic energy and momentum we find the speed of sound for the

BEC system

c =
~

2mξ
=

√
µ

2m
(3.32)

which corresponds to the speed that density excitations propagate through the BEC.
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Chapter 4: Engineering optical potentials

4.1 Introduction to the apparatus

The apparatus is an extended glass cell 1.1 × 1.1 in. wide. As shown in Fig. 4.1

50 turn coils of hollow water cooled square copper tubing are mounted above and

below the glass cell. These coils are anti-aligned and form a quadrupole magnetic

field with a magnetic field zero at the center of the glass cell. The intersection of

two optical dipole beams was made to coincide with the magnetic field zero. These

beams serve to trap the atomic cloud when the quadrupole magnetic field is absent.

The efficient cooling of atoms trapped in the combined magnetic and optical fields

is the subject of Ref. [33].

The quadrupole coils and their stainless steel holders have a SM1 threaded

central bore that allow vertical optical access to the atomic cloud. Our primary

imaging light travels through the glass cell from top to bottom and illuminates a

CCD camera.

Three orthogonal pairs of coaxial coils, where each pair is connected in series,

provide dc magnetic field Bdc control. Gradient control may be accomplished with

three sets of coils in the presence of a > 1 G Bdc. The desired configuration of coils

can depend upon the orientation of the Bdc.

Spin states can be coupled to one another using ac magnetic fields. We print

one or two copper loops on a printed circuit board (PCB) to serve as an rf antenna.

We slide this PCB in the gap between the glass cell and the nearest surface of the

quadrupole coils.
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Figure 4.1: We have color coded several of the important features of this
apparatus. The glass cell is suspended between two coils used to produce
a quadrupole magnetic field. These are colored gold and comprise most of
the volume of cylindrical disks shown in the diagram. Wrapped around
the outside of these coils are Bdc field biasing coils oriented along ez.
Similarly, Bdc biasing coils are wrapped around the region colored blue
and red and produce fields along ey and ex respectively.

4.2 Abandoning Rb-Li mixtures

This machine was initially intended to produce a degenerate mixture of bosonic 87Rb

and fermionic 6Li. Unfortunately for our plans, the cross-species scattering length is

repulsive and small 20(6) aB [34], which is undesirable for cross species rethermaliza-

tion during evaporation. Since we began this project a group produced this mixture

and sympathetically cooled the fermionic isotope 6Li to quantum degeneracy using

a BEC of 87Rb [34]. They discovered that the nearest s-wave heteronuclear Fesh-

bach resonance between the ground states of Rb and Li occurs at an unexpectedly

high field 1066 G [35]. This resonance additionally turned out to be surprisingly

lossy and had a small but attractive background scattering length, −17 aB [36]. In

light of these results we expect that the mixture would be somewhat difficult to

bring to degeneracy, difficult to modify the interspecies scattering length once de-

generacy had been obtained and the system too lossy to maintain long-lived many
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body states near a Feshbach resonance. For now, Rb-Li mixtures are being left by

the wayside. However, just like 87Rb, a degenerate Fermi gas of 6Li (alone) is an

interesting system in its own right and could be in the works for the future.

4.3 87Rb level structure

4.3.1 Level structure

87Rb is the fourth alkali in the periodic table and its fifth electronic shell n = 5 has

one valence electron. In this sense the alkali atoms are like Hydrogen, but unlike

Hydrogen’s most abundant isotope many alkalis have a nuclear spin I = ~
√
i(i+ 1)

greater than i = 1/2. The ground and first electronic excited states have different

total orbital angular momenta L = ~l(l+1) which are labeled by quantum numbers,

l: the ground states have zero total angular momentum l = 0 while the excited

states have l = 1. In alkali atoms, the ground and lowest lying electronic states

are resonantly coupled in the visible part of the optical spectrum, making alkalis

relatively convenient and cheap to cool and trap with lasers.

The electronic excited states have a fine structure splitting that results from

the coupling between the orbital angular momentum L and the electron spin S: this

is spin-orbit coupling in the traditional sense. The eigenstates of this coupling, the

so-called fine structure (FS), have angular momentum J = L + S. Transitions from

the j = 1/2 ground electronic states to the j = 1/2 excited electronic states are the

so-called D1 line while transitions between the ground j = 1/2 and excited j = 3/2

states are the D2 line. The fine structure states are further split by coupling with

the nuclear spin angular momentum I to form the hyperfine structure (HFS). The

eigenstates of this hyperfine interaction are determined using the rules of angular

momentum addition, F = J + I. See Table 4.1 for a summary.

Just as l is the quantum number associated with the L operator we also define

the j and f quantum operators for J and F. The Hamiltonian has a FS coupling
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Name Operator Quantum number Ground states Excited states
energy NA n 5 5

orbital L̂ l l = 0 l = 1

electron Ŝ s s = 1/2 s = 1/2

total Ĵ j j = 1/2 j = 1/2, 3/2

nuclear Î i i = 3/2 i = 3/2

hyperfine F̂ f f = 1, 2
f = 1, 2 (j = 1/2)
f = 0, 1, 2, 3 (j = 3/2)

Table 4.1: Listing of angular momentum operators and their typical
values for the ground and excited electronic states of 87Rb

Name Symbol Term Value

D1 line 5S1/2 ↔ 5P1/2
`(`+1)
r

377 THz

D2 line 5S1/2 ↔ 5P3/2
`(`+1)
r

384 THz
excited fine structure AFS L · S h× 7 THz
ground hyperfine structure AHFS J · I h× 3.4 GHz
excited hyperfine structure (j=1/2) AHFS J · I h× 0.408 GHz
excited hyperfine structure (j=3/2) AHFS J · I h× 0.248 GHz

Table 4.2: Listing of typical splittings between manifolds of states [37].

AFS
l and HFS coupling AHFS

l,j which we use to write down the Hamiltonian for the

lowest electronic states of 87Rb

Hat = EeP̂e +
AFS
l

~2
L̂ · Ŝ +

AHFS
l,s

~2
Ĵ · Î (4.1)

where P̂g,e are the projectors onto the ground or excited electronic states. The

eigenvalues of the Hamiltonian Ee are approximately the values given by the D1

and D2 transitions in Table 4.2. The level structure illustrated in Fig. 4.2 are the

eigenstates of Eq. 4.1. Laser cooling and trapping is discussed in the appendixes.

4.3.2 Zeeman Hamiltonian

In the presence of magnetic fields the internal states of 87Rb acquire state dependent

shifts given by the Zeeman Hamiltonian

ĤZ =
µBB(x)

~
· (gJ Ĵ + gI Î) =

gFµBB(x)

~
· F̂ (4.2)
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Figure 4.2: We show the 87Rb hyperfine structure with frequency split-
tings between the hyperfine manifolds. The imaging transition (specifi-
cally the stretched spin states) maximizes the coupling matrix elements:
this is advantageous for imaging and applying optical forces to the atoms.
The ground f = 1 hyperfine manifold is not coupled by laser light to the
f = 2 hyperfine manifold and hence a second laser is required. Coupling
to excited hyperfine manifolds with reduced spin dimensionality is some-
times useful for optically transferring (optically pumping) atoms into a
particular ground spin projection.
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where µB is the Bohr magneton. In the context of a dot product the hyperfine

angular momentum spin operator is a vector of spin matrices F̂ = {F̂x, F̂y, F̂z}.
The F̂z spin matrix is traceless and diagonal 〈mF | F̂z |mF 〉 = ~mF δmF ,m′F , while

Fx = (F̂+ + F̂−)/2 and Fy = (F̂+ − F̂−)/2 are composed of raising and lowering

operators that link |mF 〉 states. The Landé g-factors are constants of proportionality

where the nuclear spin gI is a thousand times smaller than that of the electron spin

gJ . The hyperfine Landé g-factor is

gF = gJ
f(f + 1)− i(i+ 1) + j(j + 1)

2f(f + 1)
+ gI

f(f + 1) + i(i+ 1)− j(j + 1)

2f(f + 1)
(4.3)

where f , j, and i are the angular momentum quantum numbers for the hyperfine,

nuclear and fine structure respectively.

The Breit-Rabi formula exactly diagonalizes ĤZ when the ground state has

j = 1/2 (applicable to all alkali atoms)

E|j=1/2,mJ ;I,mI〉 = − ∆EHFS

2(2i+ 1)
+ gIµBmB ±

∆EHFS

2

(
1 +

4mx

2i+ 1
+ x2

)1/2

, (4.4)

where x = (gJ − gI)µBB/∆EHFS and m = mI ±mJ . More information concerning

the Breit-Rabi formula can be found in Ref. [38].

4.3.3 Optical illumination

We introduce the local electric field E(t) = Eiei cos (K · x− ωt− θi − γ) of a laser

impinging upon an atomic system, which induces a dipole moment with the associ-

ated potential

Hdip = −d · E(t) = diEi cos (K · x− ωt− θi − γ). (4.5)

Here, orthogonal Cartesian unit vectors ei are indexed by i ∈ {1, 2, 3} and therefore

θi accommodates circular polarization. K, ω, and φ are the laser wavevector, angular
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frequency, and phase. The electric dipole operator is d = −e∑α r̂α where r̂α labels

the location of each electron indexed by α.

It is convenient to transform the excited states into a rotating frame using a

unitary transformation of the state vector |ψ′〉 = U † |ψ〉 where

Û(t) = P̂g + P̂e exp (−iωLt). (4.6)

The rotating frame Hamiltonian contains an extra term ~ωLP̂e = −i~Û †(t)∂tÛ(t)

from the time-dependent Schrödinger equation, giving

Ĥat = ∆eP̂e +
AFS
l=1

~2
L̂ · Ŝ (4.7)

where ∆e = Ee − ~ωL. Because |Ee − ~ωL| � Ee we make the rotating wave

approximation (RWA) and discard the terms ∝ exp (±2ωLt), leaving a complex

electric field E ′i = Ei exp (i[K · x− φi − γ]). The dipole Hamiltonian from Eq. 4.5

takes the form

Ĥ ′dip ≈
1

2

[
E
′∗
i P̂gd̂iP̂e + E ′iP̂ed̂iP̂g

]
. (4.8)

4.4 Imaging

4.4.1 Atomic energy levels coupled

We image our atoms using collimated and circularly polarized imaging light that is

resonant with the stretched states 5S1/2 |f = 2,mF = 2〉 and 5P1/2 |f ′ = 3,mF ′ = 3〉.
The excited state |f ′ = 3,mF ′ = 3〉 can only decay through spontaneous emission to

the ground state |f = 2,mF = 2〉. Resonantly coupling states with this property is

called coupling to a cycling transition. Cycling transitions are advantageous because

relatively few atoms fall out of resonance with the laser, the dipole matrix elements

are maximized, and both the dipole matrix element and spontaneous emission rate
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Γ experienced by the majority of the atoms are well known.

Typically, the BEC components are the f = 1 electronic ground states. For

imaging, the atoms must be first excited to the f = 2 ground hyperfine level with

light that couples between the 5S1/2 f = 1 ground electronic states and the 5P3/2

f = 2 excited electronic states as shown in Fig. 4.2. Spontaneous emission then

populates the f = 2 ground electronic states.

4.4.2 Geometry

We image our atomic clouds after TOF. The imaging beam at ∼ 0.5 mm in diameter

is designed to be not too much larger than the TOF extent of the atomic cloud. With

an imaging intensity of I(x, y, z) the light absorbed is given by Beer’s law:

dI(x, y, z)

dz
= n(x, y, z)

3πc2I(x, y, z)

2ω2
0

Γ2

(ω − ω0)2 + Γ2/4
. (4.9)

where the density of the atomic cloud is n(x, y, z). The image of the scattering cen-

ter, a combination of the scattered light and the remaining probe light, is projected

onto a CCD camera: this is absorption imaging. We illustrate our imaging setup in

Fig. 4.3.

4.4.3 Spin-sensitive imaging

Interaction-driven expansion converts the state-independent momentum distribution

of a BEC into an expanding spatial distribution within 1/ω̄ ≈ 2 ms. In 87Rb the

state-dependent interactions are proportional to c1 ≈ −0.005c0. Since the spin

healing length is approximately 14 times larger than the spin-independent healing

length, the fidelity of the spatial structure of the state-dependence to begins to

fail around ≈ 28 ms of TOF. During interaction driven expansion, the presence of

moderate magnetic field gradients add state dependent dislocations to the overall

density profile. Hence, we allow 8 ms of interaction driven expansion in a small
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Figure 4.3: We illuminate the BEC or thermal cloud with imaging light
0.5 mm in diameter. (a) We show the path of imaging beam through the
glass cell and a (b) schematic diagram of absorption imaging. We image
the shadow cast by the BEC along with some of the scattered light onto
the CCD, some rays of which are represented by the dotted lines. The
lenses shown create a beam expander for the imaging light: producing a
magnification of 3.19. The resolution of our setup is 2 µm.

uniform magnetic field–the cloud becomes essentially non-interacting–and we then

apply a strong gradient to separate the states spatially during TOF. We call this

state dependent force applied during imaging a Stern-Gerlach pulse.

4.5 Optical dipole trapping potential

Optical dipole trapping decouples the internal magnetic moment of the atom from

the position dependence of the trap. This allows exploration of spinor physics,

which usually involves magnetically untrappable states, and Feshbach resonances

which require large uniform magnetic fields [39].

This trap is produced using an angular frequency ω of light detuned δ =

(ω − ω0) far to the red of the ground to excited electronic transitions ~ω0 of an

atom. This light induces a dipole moment in the illuminated atom. The atom

then experiences a force proportional to the gradient of the amplitude of the light’s
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electric field. The laser light has a Gaussian intensity distribution

I(r, z) =
2P

π(w2
x + w2

y)(1 + (z/zR)2)
e−2r2/(w2

x+w2
y)(1+(z/zR)2) (4.10)

with a 1/e waist wx and wy along the unit vectors ex and ey respectively. The power

is given by P while the Raleigh length is given by zR.

In the limit where δ ≈ ω, the RWA breaks down and counter rotating frequen-

cies −ω must be included. Nonetheless, the depth of the trapping potential remains

proportional to the intensity and inversely proportional to the detuning

Udipole =
~Γ

4

Γω0

ω2 − ω2
0

I(r, z)

Isat

=
~Ω2(r, z)

4δ
+

~Ω2(r, z

4(δ − 2ω)
. (4.11)

and may be cast in terms of co-rotating and counter-rotating ac Stark shifts. The

optical dipole beam produces a potential that has a Gaussian profile for radial

displacements from the center of the beam. Axially, along the beam, the potential

is greatly elongated zR � rx, ry. For slight tilts with respect to Earth’s surface the

gravitational potential can win out and cause atoms to leave the trap.

4.5.1 Trapping frequencies

For small radial deviations from the center of the trap a Gaussian potential looks

parabolic. By analogy, we define harmonic trap angular frequencies ωx and ωy for

an atom trapped at the waist of this beam

Udipole(r) =
~Γ

4

I(0, 0)Γω0

Isat(ω2 − ω2
0)

(
r2
x

2w2
x

+
r2
y

2w2
y

)
=
m

2
(ω2

xr
2
x + ω2

yr
2
y) (4.12)

where m is the mass of 87Rb.

39



4.5.1.1 Measuring the trapping frequencies

Atomic clouds with a non-zero mF spin projection can be displaced by the adiabatic

turn on of a magnetic field gradient. Suddenly turning off this gradient is equivalent

to loading a spin component of the atomic cloud with non-zero potential energy,

zero kinetic energy and displacement aligned or anti-aligned with the magnetic field

gradient. Subsequently, the atomic cloud center of mass experiences underdamped

oscillation in the HO trap with HO frequency. In TOF imaging the momentum of

the cloud is transformed into a displacement on the camera and the position of the

cloud can usually be ignored. Hence, peak displacement on the camera will occur a

quarter trap period after the release of the magnetic field gradient.

4.5.2 Crossed optical dipole trap

It is possible to make the trap nearly isotropic by adding a second optical dipole

beam that intersects the first. If the second beam propagates along ex the trap

potential and corresponding trap frequencies are modified

Udipole(r) =
~Γ

4

Γω0

Isat(ω2 − ω2
0)

(
I(0, 0)r2

x

2w2
x

+
(I(0, 0) + Ic(0, 0))r2

y

2w2
y

+
Ic(0, 0)r2

z

2w2
z

)

=
m

2
(ω2

xr
2
x + ω2

yr
2
y + ω2

zr
2
z). (4.13)

4.5.3 Trap lifetime

High intensity can lead to spontaneous emission although this type of heating can

be suppressed at a given trap depth by increasing the detuning and compensating

with increased intensity. The spontaneous emission scattering rate is

Γspon. =
Γ

8

Γ2

δ2

I

Isat

. (4.14)

40



The spontaneous emission scattering rate scales as I/δ2 while the depth of the dipole

potential scales as I/δ. Hence, for a particular trap depth it is always possible to

reduce the scattering rate by detuning farther from the electronic excited states.

At sufficiently large detunings (we use 98 THz) other sources of heating dom-

inate: Ref. [39] attributes much of this heating to beam jitter. For example, our

≈ 10 s trap lifetimes would then be attributed to dipole beam jitter. There is also a

vacuum limited lifetime associated with fast moving atoms intersecting the atomic

cloud after impacting the walls of the vacuum system. For our ultrahigh vacuum

system this lifetime exceeds 50 s.

4.6 Magnetic field control

4.6.1 Magnetic rf fields

In the presence of an rf magnetic field Brf(x) cos (ωrft+ γrf) the added contribution

to the Hamiltonian is

ĤB = gFµBF̂ ·Brf(x) cos (ωrft+ γrf) (4.15)

where F̂z is a diagonal spin matrix and a Bdc much larger than Brf(x) and oriented

along ez is present. When the angular frequency is resonant with the linear Zeeman

shift ωrf = |gFµBB(x)|/~ we apply the RWA to the rf coupling Hamiltonian

ĤB = ~Ωrf(x)
[
F̂x cos (ωrft+ γrf) + F̂y sin (ωrft+ γrf)

]
. (4.16)

The rf Rabi frequency is Ωrf(x) = gFµ0|B(x)|/2 and the spatial variation of Ωrf(x)

is typically small over the extent of the atomic cloud. It is convenient to transform

the both the rf coupling Hamiltonian and the Zeeman Hamiltonian into the rotating
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frame using the unitary transformation

Û(t) =




e−i(ωrf t+γrf) 0 0

0 1 0

0 0 ei(ωrf t+γrf)


 (4.17)

which acquire an extra term from the time dependent Schrödinger equation i~Û †(t)∂tÛ(t) =

−~ωrfF̂z. We make the changes of variables δ = ωrf − (E−1 − E+1)/2~ and

ε = −(2E0−E−1−E+1)/~ where Em are the eigenvalues of the Breit-Rabi equation.

The transformed Hamiltonian is

Ĥ =




~δ ~Ωrf/
√

2 0

~Ωrf/
√

2 −~ε ~Ωrf/
√

2

0 ~Ωrf/
√

2 −~δ


 (4.18)

which is equivalent up to an overall shift in energy to

Ĥ = δF̂z + εF̂ 2
z /~ + ΩrfF̂x. (4.19)

4.6.2 Adiabatic preparation of states

The quadratic shift ~ε breaks the symmetry of total spin while preserving that of

total magnetization within the ground hyperfine manifolds. This shift is absent

when the Bdc is zero and increases quadratically as the field increases. It is possible

to make the quadratic shift much larger than typical rf Rabi frequencies ∼ 10 kHz

and the break-even point is 8.4 G. The particular rf and Bdc fields used as an

example in Fig. 4.4 can be used to adiabatically load any spin state.

In most experimental setups the mF = −1 spin state will be initially loaded

because it can be magnetically trapped. In the presence of some Bdc we ramp on

an rf magnetic field with a coupling strength of Ωrf = 10 kHz and a frequency of
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ωrf/2π = 8.5 MHz. If Bdc = 8.4 G then slow changes of the Bdc (equivalent to

ramping δ) will follow the bottom eigenstate in Fig. 4.4(b). Likewise, if Bdc = 8.6 G

then slow changes will follow the top eigenstate. In either case, ramping through

resonance and then ramping Ωrf → 0 will adiabatically load mF = +1. Ramping

to resonance along the bottom eigenstate and then ramping Ωrf → 0 will load the

mF = 0 state.

Equal superpositions of any pair of spin states may also be produced by ramp-

ing to the appropriate Bdc along the appropriate eigenstate and snapping off Ωrf .

The spin composition using this method matches that of the rf eigenstate prior to

the snap off. Ωrf must be small enough prior to snap off that very little of the third

spin state is represented in the rf eigenstate. If the rf magnetic field amplitude is

stable in time, producing a 50 : 50 mixture of mF = −1, 0 can be a fairly sensitive

measure of Bdc stability. Stable populations of mF = ±1 are relatively more difficult

to produce using this method because the curvature of the uppermost rf eigenstate

as a function of Bdc at its avoided crossing is much greater than the others.

If Bdc stability is an issue then 50 : 50 mixtures may also be produced using

a diabatic ramp through an avoided crossing region. This is often an improvement

over the adiabatic method (especially for mF = ±1 production) because a system

that does not have precision Bdc control may still be able to control the ramp rate

with a high degree of reproducibility. The probability of diabatic transition from

the m’th eigenstate is given by the Landau-Zener formula [40]:

PD = e
− 2π|Ωrf |

2

~∂tEm (4.20)

4.6.3 Pulsing rf

Pulsing with rf magnetic fields is an effective way to produce arbitrary mixtures

of spin states, quickly. Magnetic dc field drift contributes approximately equally
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Figure 4.4: (a) Spin state energy as a function of magnetic field for the
f = 1 ground hyperfine manifold of 87Rb. (b) Spin states dressed by an
rf magnetic field with frequency ωrf/2π = 8.5 MHz and Ωrf = 10 kHz.
Black circles are a guide to the eye indicating coincident points in both
plots.

to fluctuations in spin population in both methods. However, if the spin states

are immiscible or if there are sizeable magnetic gradients present the faster pulse

preparation method may be advantageous. We define a three component state vector

|ψ〉 =




|mF = −1〉
|mF = 0〉
|mF = +1〉


 (4.21)

and solve the RWA Hamiltonian from Eq. 4.19 exactly

|ψ(t)〉 = e−i
Ĥt
~ |ψ〉 . (4.22)

4.6.4 Measuring the Bdc

4.6.4.1 Zeroing out the ambient magnetic fields

A practical method for measuring the Bdc present in an experiment is to measure

spin population using adiabatic rapid passage (ARP) with rf magnetic fields. The
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experimentalist adds a Bdc on top of the already present fields. After ramping up

the amplitude of the rf the Bdc is swept across resonance. The spin population of

the eigenstate is compared to that predicted by the eigenstates of Eq. 4.19 after the

ARP. For a given orientation of the applied Bdc we fit to the ARP at several different

applied field strengths. Plotting the rf magnetic field as a function of magnetic field

at resonance the resulting trace will be proportional to |B − B0| for large B. We

apply an offset −B0 in the magnetic field and repeat the scans with a different

orientation of the magnetic field. Eventually, the magnetic field will be zeroed along

every Cartesian direction.

4.6.4.2 Single pulse measurement of the magnetic fields

We adiabatically load into the mF = 0 state at ∼ 8.5 G before reducing our fields

to < 1 G. We assume Ωrf � ωrf . The objective is to pulse nearly all the atoms from

mF = 0 into a superposition of mF = ±1. The time evolution of this superposition

is

|ψ(t)〉 =
e−iE−1t/~ |mF = −1〉+ e−iE+1t/~ |mF = +1〉√

2
(4.23)

which starts from t = 0. A subsequent pulse may be performed many milliseconds

later and the following happens

|mF = −1〉+ |mF = +1〉√
2

→ |mF = 0〉 (4.24)

|mF = −1〉 − |mF = +1〉√
2

→ no change. (4.25)

which is an interferometric measurement of the integrated Bdc whose coherence is

not damaged by a noisy Bdc.

We consider the case of a two-level system where the states are pulsed into a

50 : 50 superposition. Then, a changing magnetic field decouples the evolving phase
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difference of the spins from the phase of the laser. In our system two-state Rabi

pulses decohere after ∼ 1 ms for this reason.

4.6.5 Gradients

The gradient ∇ = ∂xex + ∂yey + ∂zez of a Zeeman potential UB(x) is a force

Fgrad = ∇UB(x) = ∇(gFµBF̂ ·B(x)) (4.26)

= gFµBF̂ · (∇B(x)), (4.27)

while the gradient of a magnetic vector field∇B(x) is a dyadic product of vectors. In

the absence of a charge current the dyadic is symmetric ∇×B(x) = 0: ∂mBn(x) =

∂nBm(x). As always, the magnetic field gradient is traceless ∇ · B(x) = 0. The

remaining terms are the Cartesian elements of the rank-2 spherical tensor.

∇B(x) =
∑

m,n

[
∂mBn(x) + ∂nBm(x)

2
− ∇ ·B(x)

3

]
emen. (4.28)

Often, we know the overall orientation of B(x) over the entirety of the atomic

cloud, e.g. a strong Bdc with a perturbative gradient. If the component along ez

dominates the Bdc then we may infer that the spin components of F̂z are diagonal-

ized for spin projections along ez as well. Only those components of the magnetic

gradient dyadic that project onto ez then contribute to the force experienced by the

atoms

Fgrad = gFµBmF

[(
∂xBz −

1

3
∂zBz

)
ex +

(
∂yBz −

1

3
∂zBz

)
ey +

2

3
∂zBzez

]
(4.29)

where we found the product (F̂zez) ·∇B(x) and applied the identity ∂mBn(x) =

∂nBm(x). These are the gradient terms that we attempt to compensate.
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4.6.6 Gradient measurement

4.6.6.1 TOF method

When an atomic cloud is trapped in a spin-independent trap, e.g. an optical dipole

trap, the gradients may be roughly determined by preparing the cloud with different

magnetic moments and releasing each at separate times in TOF. The accuracy of

this method increases with the difference of the magnetic moments and time in

TOF before imaging. Assuming that the gradient is uniform over the TOF region

the displacement is a simple function of Fgrad

d =
Fgradt

2

2m
(4.30)

For a TOF time of 30 ms a gradient of 1 mG/cm produces a displacement of 29 µm

between mF = ±1.

4.6.6.2 Interference method

We adiabatically prepare our atoms in the mF = 0 state. Then pulse to an equal

superposition of mF = ±1 at low field. In an extended atomic cloud each portion

of the cloud experiences a local magnetic field

|ψ(t)〉 =
e−iE−1(x)t/~ |mF = −1〉+ e−iE+1(x)t/~ |mF = +1〉√

2
(4.31)

where the eigenvalues of the Breit-Rabi equation are Em(x) = gFµBm|B(x)|. When

the atomic cloud is pulsed again, some regions return to mF = 0 while others

remain in mF = ±1 as shown in Fig. 4.5. The resultant fringe pattern reveals the

projection of the gradient along the extended spatial axis ex of the cloud and whose

components have magnetic field orientation aligned with the Bdcez. This gradient

47



may be determined from the fringe pattern

∂xBz(x) =
2π~

2gFµBλgradt
(4.32)

where λgrad is the spatial wavelength of the stripe pattern. When the gradient is

nearly balanced the gradient can change throughout the atomic cloud. In that case

the fringe pattern can reveal the exact profile of the gradient.

We can test that this interpretation of the fringe pattern by allowing the system

to evolve under a gradient for time τ , pulsing to swap spin states mF = ±1→ mF =

∓1, and evolving for another time τ . Under this spin echo the fringe pattern should

reverse itself as shown in Fig. 4.6.

−200 −100 0 100 200

Position (µm−1)

−200

−100

0

100

200

P
os

it
io

n
(µ
m
−

1
)

2τ = 104ms

Figure 4.5: This is a density plot of the three f = 1 ground hyperfine
spin components separated horizontally using Stern-Gerlach in TOF. The
mF = −1 spin component appears on the far left while mF = +1 is on the
far left. We show the fringe pattern of a our gradient balanced system
after 104 ms of time evolution. We then used an rf pulse to partially
transfer atoms from the |mF = ±1〉 spin components into |mF = 0〉. The
optical dipole trap has a 22:1 aspect ratio with the long dimension aligned
with the vertical axis of this plot.
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Figure 4.6: (a) Power spectral density (PSD) as a function of spatial
frequency along a vertical slice of the |mF = 0〉 spin component. These
slices are arranged in descending order with increasing time. As time
increases the fringe pattern has a higher spatial frequency. (b) PSD as
a function of spatial frequency with spin echo halfway through the time
evolution. The PSD returns to its configuration at t = 0.

4.6.7 Gradient compensation

Since the force produced by the gradient (Eq. 4.29) is dominated by the subset of

terms aligned with Bdc we can use a set of coils with three independently controlled

currents to cancel the force on the atoms. We found that a set of clover leaf coils as

shown in Fig. 4.7 is always sufficient for this purpose.
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Figure 4.7: (a) These are the three sets of coils necessary for gradient
compensation when Bdc is aligned with ez. Coils with the same color
are connected in series. The dashed arrows indicate the direction of
current flow. (b) The same set of coils are mounted above and below the
glass cell. (c) We depict four coils in a clover leaf configuration that are
connected in series. The magnetic field is shown in green. (d) We also
depict the two coils in a quadrupole configuration that are connected in
series.
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Chapter 5: Domain Coarsening

5.1 Introduction

Out of equilibrium domains often form when a system is quenched through a phase

transition: the system diabatically changes from having one kind of symmetry to

having another. The range of applicable phenomena are incredibly diverse: includ-

ing grain formation in minerals [41], domain nucleation in magnetic systems [42],

Kibble-Zurek phenomena such as structure growth in the early universe [43], and

spontaneous vortex formation in quenched BEC’s [44]. In our experiment the 100 µs

interaction equilibration timescale is well separated from the 20 ms spin interac-

tion equilibration timescale. Using the approximately 20 µs population transfer

timescale associated with a state changing rf magnetic field we diabatically pre-

pared a uniformly mixed and transversely magnetized two-component spinor BEC

of 87Rb from a single component condensate, leaving the spin-independent interac-

tions largely unchanged. We prepared this immiscible binary condensate in a cigar

shaped trap, encouraging spin domains to form along the weakly confined axis. Our

binary condensates then observed the full range of timescales from the initial domain

growth to the long timescale increase in domain lengthscale (coarsening). Once a

spin domain reaches full contrast in a region there is an energy cost for an atom

with opposite spin to “hop” over the domain.

Other studies of miscible [45, 46] and immiscible [47, 48] binary condensates

did not explore condensate dynamics over timescales necessary to see coarsening.

One three component and surfboard shaped (2D in spin) system [49] did observe
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coarsening but this and other three component systems [50, 51, 52, 53, 49, 54, 55]

do not have the relative simplicity of our binary and essentially 1D system.

5.2 2-state Hamiltonian

5.2.1 Interactions

We explore the evolution of the |f = 1,mF = ±1〉 ground electronic spin projections

of 87Rb. When the system is far away from any molecular (Feshbach) resonances–

the nearest is predicted to appear at more than 200 G [56]– the scattering lengths of

these two states must be identical by spin symmetry. Absent stray trapping fields,

this symmetry eliminates the tendency of immiscible and repulsively interacting

spin states forming a shell, one around the other, because they have disparate den-

sities [45, 46, 47, 48]: in the Thomas-Fermi approximation the density for a single

mF = ±1 component is ∝ 1/a2. The singlet a0 and triplet a2 scattering lengths

are subscripted according to the total angular momentum collision channels of a

pair of colliding f = 1 atoms where bosonic statistics eliminate the total angular

momentum of 1 collision channel. Interactions between atoms with the same spin

have a scattering length of a2 while interactions between atoms with opposite spin

are (2a0 + a2)/3. We separate the interaction coefficient for interactions between

identical spins c0 + c1 and interactions between different spins c0 − c2, which have

units of energy over density, into a spin-independent

c0 =
π~2

m
(a0 + 2a2)/3 (5.1)

and spin dependent

c2 =
4π~2

m
(a2 − a0)/3 (5.2)
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coefficients [57, 58]. In 87Rb’s f = 1 manifold, c0 = (100.86)×4π~2aB/m vastly

exceeds c2≈−4.7×10−3c0, where aB is the Bohr radius [59].

5.2.2 The Hamiltonian

Our BEC’s are described in terms of a spinor wave-function

ψ(r)=(ψ↑(r), ψ↓(r)) (5.3)

where N |ψ(r)|2 describes the overall density profile and the |↑, ↓〉 pseudo-spins label

the |f=1,mF =±1〉 atomic spin states. It’s dynamics are governed by a spinor GPE

(sGPE) with 2-state dimensionality

i~∂tψ↑,↓(r) =

[
− ~2∇2

2m
+ V (r) + µ↑,↓B(x) + (c0 − c2)N |ψ(r)|2 (5.4)

+ 2c2N |ψ↑,↓|2
]
ψ↑,↓(r)

where N |ψ(r)|2 is the total density, m is the atomic mass and V (r) is a spin-

independent external potential. µ↑,↓ = ±gFµB. The dynamics of each spin state

in this Hamiltonian are symmetric under exchange of ↑, ↓ indices so long as the

magnetic field Bdc is uniform. We often neglect uniform Bdc from our equations.

5.2.3 Attractive condensate analogy

Because the spin-independent interaction coefficient is much larger than the spin-

dependent coefficient the overall density N |ψ(r)|2 is relatively insensitive to the

position-dependent spin population. Hence, it is appropriate to use either the ↑
or ↓ spin component to track the dynamics of Eq. (5.4) with the knowledge that
∫

dr|ψ(r)|2 = 1: essentially, if we know the distribution of one spin population we

can infer the distribution of the other.

Since c2 is negative, the dynamics described by a single component of this
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sGPE are manifestly similar to that of a single component attractive BEC as it

collapses [60, 61, 62, 63]. 1D condensates quenched from repulsive to attractive

interactions have a modulational instability with gain at k = 1/ξ that produces

a “chain of pearls” pattern. However, the density of this conventional attractive

BEC can quickly reach a regime where 3-body losses are large [62]. For our spinor

system the analogy to a condensate with attractive interactions breaks down when

a spin state becomes fully polarized |ψ↑,↓(r)|2 = 1 (for some values of r) because

the fraction of spin population in an individual spinor wavefunction cannot exceed

unity.

5.3 Determining the reduced dimensionality of our Hamiltonian

5.3.1 Separating spin and density degrees of freedom

Motivated by the factor of 200 difference between the magnitude of the spin-independent

and spin-dependent interactions we make the substitution ψ↑,↓(r) = φ(r)χ↑,↓(r) into

Eq. 5.4

i~[χ↑,↓(r)∂tφ(r) + φ(r)∂tχ↑,↓(r)] =χ↑,↓(r)

[
− ~2∇2

2m
+ V (r) + c0N |φ(r)|2

]
φ(r)

(5.5)

+φ(r)

[
− ~2∇2

2m
+ c1N |φ(r)|2 (−1 + 2 |χ↑,↓(r))|2

]
χ↑,↓(r)

+
−2~2∇φ(r)∇χ↑,↓(r)

2m
.

The right hand side (RHS) and Line 1 of Eq. (eq:DomainSep) disappear along with

the ∇φ(r) term when the TF approximation |φ|2 = (µ−V (r))/c0 is valid. In the TF

approximation ∇φ(r)∇χ↑,↓(r) must be small in the bulk of the condensate where

the density profile |φ(r)| changes slowly but can become large in the low density

region at the periphery of the BEC. Our analysis neglects this term nevertheless.
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The remaining LHS term and Line 2 of the RHS describe the dynamics of χ(r)

i~φ(r)∂tχ↑,↓(x) uφ(r)

[
− ~2∇2

2m
+ c2N |φ(r)|2 (−1 + 2 |χ↑,↓(x))|2

]
χ↑,↓(x). (5.6)

In our system the anisotropy of our trap eliminated the spin dynamics along all but

the axial direction, ez. Since the BEC is very much a 3D system we cannot reduce

the dimensionality of the sGPE but we can integrate over the spatial directions

that have a energetic penalty to domain formation. Integrating along ex and ey in

Eq. 5.6, and assuming an initial density profile φ(r) = (µ − V (r))/c0 for φ(r) > 0,

we obtain an effective sGPE along ez. Note that it is important to retain the φ(r)’s

on both sides of the equation during the integration. Following the integration we

remove overall factors ∝ φ(x) so that the effective sGPE is dimensionless

i~∂tχ↑,↓(x) u
[
− ~2∇2

2m
− 3c2

5c0

(µ− V (x)) + 2
3c1

5c0

(µ− V (x)) |χ↑,↓(x)|2
]
χ↑,↓(x)

(5.7)

where V (x) = mω2
xx

2/2, ωx is the trap frequency along ex and m is the mass of

87Rb.

5.3.2 Energy density

The 1D energy density for a BEC at coordinate x, where c0n1D(x) = µ− V (x) and

n1D(x) = N |φ(x)|2 is approximately

E(x) = n1D(x)

↑∑

σ=↓
χ†σ(x)

[
εk +

2c1

3
n1D(x)(−1 + 2 |χσ(x)|2)

]
χσ(x) (5.8)

Our preparation of a uniform mixture of immiscible spin components |χσ(x)|2 = 0.5

is maximally out of equilibrium in the spin degree of freedom, this is most apparent

when we consider the contribution of the interactions to the energy
∑↑

σ=↓
(
|χσ(x)|2 − 2 |χσ(x)|4

)
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which is zero when |χσ(x)|2 = 0.5 and negative otherwise.

5.3.3 Determination of the 1D spin healing length

Following the treatment of section 3.3 we consider a local region of the condensate

and treat the density profile as if it were essentially flat. This is the local density

approximation (LDA) in which it is appropriate to expand our combined spinor

wavefunction for the condensed and uncondensed regions χ′σ=↑,↓ in terms of plane

waves with boson modes:

χ′σ(x) =
1

L1/2

∑

k

ck,σe
ikxâk,σ. (5.9)

â† and â are the raising and lowering operators, and k=0 corresponds to the (spa-

tially uniform) condensate state. The macroscopically occupied condensate mode

have weight c0 = χσ(x) (note the absence of a prime) while the excited modes have

weight ck = 1/
√
N .

We substitute the full spinor wavefunction χ′σ(x) into the energy density

Eq. 5.8 and the resulting sum over interaction terms is indexed by four different

wavevectors, k. Following the Bogoliubov approximation we neglect terms with a

combined weight that is more than quadratic in 1/
√
N . This requires that we re-

place â0 or â†0 with χ′σ(x) at least twice in each interaction term. We focus on the

restrictive case where both momentum and spin are conserved within each product

of the expansion over wavevectors in χ′σ(x). The objective is to find momentum

and number conserving quasiparticles [32]; the spectrum of these quasiparticles is

the excitation spectrum for the equilibrium or quasi-equilibrium condensate. Using

Einstein summation convention the energy density E(k) for excitations takes the
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form

E(k) =
∑

σ,σ′,σ′′,σ′′′

χ†k,σεkχk,σ′δσ,σ′ (5.10)

+

[
2c2

3
n1D(x)â†k,σχ

†
0,σ′χ0,σ′′ âk,σ′′′

+
2c2

3
n1D(x)χ†0,σâ

†
−k,σ′ â−k,σ′′χ0,σ′′′

+
2c2

3
n1D(x)â†k,σâ

†
−k,σ′χ0,σ′′χ0,σ′′′

+
2c2

3
n1D(x)χ†0,σχ

†
0,σ′ âk,σ′′ â−k,σ′′′

]
δσ−σ′,σ′′+σ′′′

We may reorganize terms in Eq. 5.10 into the form of a matrix. Adopting the

uniform and equal spin population that is the initial condition for our experiment

the spin population is χ0,σ = 1/
√

2 (for both σ =↑, ↓). Simplifying, the Hamiltonian

is

Ĥ = (other terms) +
∑

k 6=0,σ,σ′,σ′′,σ′′′

(â†−k,σ, âk,σ′)M̂(â−k,σ′′ , â
†
k,σ′′′)

T (5.11)

where M̂ is a matrix with four 2× 2 blocks of spin. (â−k,σ, â
†
k,σ′) does not transform

like a vector. In fact the bosonic commutation relations [âk,i, â
†
k,j] = (−σz)i,j must

be preserved during a transformation T where i and j indexes the two elements

of (â−k,σ, â
†
k,σ′), not the spin. T †σzT must equal σz to preserve these commutation

relations. We need to find a transformation T †M̂T = νk,σ that diagonalizes the

Hamiltonian. In practice, T−1σzM̂T = σzνk,σ is easier to calculate because the

eigenvalues of σzM̂ may be found with a simple non-Hermitian similarity trans-

form [32].

M̂ = (5.12)

 (ε−k − ε0)1̂ + c1

3
n1D(x)(1̂ + σ̂x)

c1
3
n1D(x)(1̂ + σ̂x)

c1
3
n1D(x)(1̂ + σ̂x) (εk − ε0)1̂ + c1

3
n1D(x)(1̂ + σ̂x)



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where σ̂x and the identity 1̂ act on the 2× 2 spin basis andε±k = ~2k2/2m+ Eσ.

The eigenvalues νk,σ are typically identical under exchange of ±k,±σ. There

are some cases where this exchange symmetry breaks down i.e. in the presence

of spin-orbit coupling. We neglected several terms that typically contribute to the

excitation Hamiltonian Eq. 5.11 including the quantum depletion and the BEC

energy. See page 285 of Ref. [64] for a more general treatment of BEC excitations.

The energy dispersion for excitations, shown in Fig. 5.1, has the form νk,σ =
√
εk(εk − 4c2n1D(x)/3 [55]. We nicely showcase the relationship between the healing

length ξ1D and the wavevector of excitations k by rewriting the energy dispersion

~ω
µ1D

= (kξ1D)2[(kξ1D)− 2] (5.13)

where the 1D spin healing length is ξ1D = ~/
√

2m(2c2n1D(x)/3) and the chemical

potential µ1D = ~2/2mξ1D is the typical 1D spin interaction energy. The 1D spin

healing length is substantially larger than the fully 3D spin healing length ξ1D =
√

3/2ξs and the chemical potential is correspondingly smaller: µ1D = 2µs/3.

When the νk,σ =
√
εk(εk − 4c2n1D(x)/3 is imaginary, this occurs over the

range kξ1D ∈ (0,
√

2), It is energetically favorable for quasiparticles to form with

non-zero wavevector k. The associated modes grow exponentially with peak gain at

k = 1/ξ1D, amplifying any existing spin fluctuations, classical or quantum.

5.4 sBEC preparation

5.4.1 Trap geometry

As we depict in Fig. 5.2, our 87Rb BEC’s are prepared in an extremely anisotropic

crossed dipole trap that nevertheless produces a cigar-shaped BEC whose wave-

function is governed by the 3D sGPE. Because the typical c0n(r) spin-independent

energy vastly exceeds the c2n(r) spin-dependent energy scale, we make the conven-
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Figure 5.1: Dispersion of spin excitations for Eq. 5.13. The dotted line
is the magnitude of the imaginary component of the spectrum and while
the solid line is the magnitude of the real component. For wavevectors
where the dispersion is imaginary the system experiences exponential
gain: peak gain is ξs.

Description Symbol Value
Atom number N 7.0(5)×105

Magnetic field B 107.0(2) µTez
Axial TF* radius Rz 170(7) µm
Radial TF radius Rr 3.9(1) µm

Initial spin population χ {1/
√

2, 0, 1/
√

2 exp (−iφ)}
Magnetization along ez Mz |ψ↑(r)|2 − |ψ↓(r)|2
Magnetization along ex Mx {2Re[ψ∗↑(r)ψ↓]

Density n(r) [µ− V (r)]/(c0 + c2Mz(r)

Condensate wavefunction ψ(r) n(r)χ(r)/
√
N

Healing length** ξ ~/
√

2mµ ≈ 0.2 µm

Spin healing length ξs ~/
√

2mc2µ/c0 = 3.20(4) µm

1D Spin healing ξ1D

√
3/2ξs

Axial trap freq ωz/2π 3.1(2) Hz
Radial trap freq ωr/2π 135(3) Hz

Axial Dipole waist 1/e2 radius ≈300 µm
Radial Dipole waist 1/e2 radius ≈67 µm

Temperature T 90(8) nK

Table 5.1: Coarsening experimental parameters. *TF refers to the
Thomas-Fermi approximation wherein the contribution of the kinetic en-
ergy to the density profile is neglected. **Healing lengths, ξ, are shortest
at peak density, µ ≈ c0npeak, and longer at the BEC periphery. All un-
certainties herein reflect the uncorrelated combination of single-sigma
statistical and systematic uncertainties.
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Figure 5.2: Magnetization Mz(r). (a) Schematic, illustrating a spinor
BEC with domains in an anisotropic crossed-dipole trap. (b) Images
showing the progression from a uniformly magnetized condensate (short
times) in which domains appear (intermediate times), and then grow
spatially (long times); during this process the condensate slowly decays
away. (c) Color scale indicating the degree of magnetization (colors from
blue to red), and the density (intensity from black to colored).
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tional Thomas-Fermi approximation for the overall density distribution n(r). This

apparatus is characterized by a chemical potential µ, and a minimum healing length

ξ = ~/
√

2mµ. This gives n(r) = [µ− V (r)] / [c0 + c2M
2
z (r)], which depends very

weakly on the z component of local magnetization vector,

M(r)={Mx(r),My(r),Mz(r)} (5.14)

=
{

2Re[ψ∗↑(r)ψ↓(r)], 2Im[ψ∗↑(r)ψ↓(r)], |ψ↑(r)|2 − |ψ↓(r)|2
}
.

The BECs’ 170 µm axial radius is not small compared to dipole laser’s 300 µm

Gaussian beam waist along the axial direction and as a result we expect small

deviations from the conventional inverted parabola density profile.

5.4.2 Initializing the experiment with rf

We prepare a uniform 50:50 mixture of mF = ±1 with high fidelity by first loading

into the mF = 0 component of 87Rb’s f = 1 ground hyperfine manifold, reducing

Bdc = 0.7 G, and then applying a fixed duration 34 µs square pulse of rf magnetic

field oriented perpendicular to Bdcez. At this Bdc the power broadened width of

the rf pulse is much larger than the quadratic Zeeman shift. Population transfer

using this rf magnetic pulse occurred on a timescale much shorter than typical spin

equilibration timescale τ(z) = 2mξ2
1D(z)/~ ≈ 42 ms: quenching the system into a

uniform but immiscible two-component spin configuration.

5.4.3 Confining spin dynamics to 1D

The quenched binary mixture was held for a variable duration thold, up to 17.6 s,

during which spin structure formed and subsequently evolved. Spin mixing collisions

are suppressed because the relatively large 82 Hz quadratic Zeeman shift greatly ex-

ceeds the c2n(r)≈6 Hz spin dependent energy [50]. As a result, we observe no pop-

ulation in mF =0 for the entire duration of our experiment. Because our extremely
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anisotropic condensate’s ≈ 3.9 µm radial extent is comparable to the minimum spin

healing length ξs = 3.20(4) µm there is a cost associated with modulation of spin

density along the radius of the trap [54]. Evaporation and thermalization eventually

align spin density modulations to the long axis of the trap and with precise control

of gradients we were able to eliminate radial spin modulations. We summarize the

physical properties of these BECs in Table 5.1.

5.4.4 Imaging

After thold, we removed the confining potential and allowed the atomic ensemble

to expand (largely transverse to the alignment of our domains) for 19.3 ms, during

which time we Stern-Gerlach [65] separated the spin components. We detected

the resulting density distribution by absorption imaging, and reconstructed both

Mx(x, z) and Mz(x, z), which were projected onto the ez−ex imaging plane. A

brief rf pulse just before TOF could partially re-populate |mF =0〉; following TOF

expansion and Stern-Gerlach separation, the distribution of all three spin states

contained sufficient information to obtain Mx and Mz simultaneously. We depict

representative reconstructions of Mz(x, y) at six hold times in Fig. 5.2.

The transverse magnetization, Mx(z) may be measured using a t= 1/4Ωrf rf

pulse that transfers some (but not all) the population |ψ↑,↓|2 back into the ψ0 state.

We may then process the image of all three spin states mF =0, ↑, ↓ to extract Mz(z)

and Mx(z)

Mx(z) =
|ψ′0(r, t)|2
sin2 (tΩrf)

(5.15)

Mz(z) =
ψ†
′
(r, t)F̂zψ

′(r, t)

cos (tΩrf)
(5.16)
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Figure 5.3: (a) We pulse from |mF = 0〉 into an evenly mixed superposi-
tion of |↑, ↓〉 with equal population. Bogoliubov spin excitations quickly
produce domains in our system. These relax to a longer length scale
when they reach full contrast. With the green trace we show the evolu-
tion of the spin dependent mean field energy. (b) Following this initial
coarsening which ends ∼ 500 ms domain spatial extent increases very
gradually. (b) Our initial |mF = 0〉 spin population is transferred to
|↑, ↓〉 with a single rf pulse. (c) Our system is prepared in a crossed-
dipole trap whose waists differ by a factor of 6. The greater anisotropy
of our trap frequencies is produced with relative beam intensities.
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5.4.5 Gradient compensation

When the magnetic field is position dependent, i.e. gradients are present, the Mx(z)

is not only time but position dependent. For all times before Mz(z) rises above the

background noise the measurement of the spatial periodicity in Mx(z) is sufficient

to determine the axial gradient ∇zB = γz2, where γ = 0.092(4) G/cm2. Although

small, we saw some preference for |mF =+1〉, |↑〉, to migrate axially to the edges

of the cloud. We were able to mitigate this using a spin echo π-pulse: flipping

|↓〉 and |↑〉 midway between the quench and the beginning of TOF. The spin echo

removed the large-scale spin structure from the inhomogeneous magnetic fields, but

left the spin dynamics – which were associated with much shorter length scales –

otherwise unaffected. Furthermore, well above our ambient gradients, a counterflow

instability [46] seeds spin-structure growth.

5.4.6 Symmetry

Our spinor experiment is initialized by a rf-pulse that puts each atom into a equal-

amplitude superposition of the |↑, ↓〉 = |mF = ±1〉 spin states; the system then

evolves according to Eq. (5.4) when the rf is off. While a single component BEC

breaks just a single U(1) symmetry associated with a wave function’s overall phase

(generated by the identity)

|ψ〉 = e−iφtotal |mF =0〉 , (5.17)

our spinor Hamiltonian adds a U(1) symmetry associated with the relative phase

of the spin (generated by the Pauli matrix σ̌z), as well as a discrete Z2 symmetry

associated with equal population of the spin components

|ψ〉 = e−i[φtotal+φrel] |↓〉+ e−i[φtotal−φrel] |↑〉 . (5.18)
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Post quench, the formation of spin domains corresponds to breaking the Z2 symme-

try, while within a specific domain, a new U(1) symmetry is broken. This phase is

generated by a combination of the overall and relative phases: each spin domain has

a broken generator (1̌− σ̌z)/2, leaving behind a “sneaky” unbroken U(1) symmetry

generated by (1̌ + σ̌z)/2: essentially,

φbroken = φtotal + φrel|χ↓|2 − φrel|χ↑|2 (5.19)

φunbroken = φtotal + φrel|χ↓|2 + φrel|χ↑|2. (5.20)

5.5 Domain growth

5.5.1 Initial times

The quench prepared a uniform and transversely magnetized χ(z) = (|↑〉+ |↓〉)/
√

2

spin superposition. Exponential gain increases the magnetization Mz(z), the dif-

ference in spin populations, for wavevectors in the range kξ1D = (0,
√

2) with peak

gain at k = 1/ξ1D. Figure 5.4a depicts the time evolving magnetization Mz(z) of

the condensate. After the quench, spin structure amplitude (red and blue) above

and below Mz(z) = 0 (white) grew with a minimum exponential time constant

τ(z)=2mξ2
1D(z)/~≈42 ms but only became visible after thold≈200 ms.

In Fig. 5.4b, we compare our experimental result with those of a stochastic-

projective GPE (SP-GPE) simulation [66] which has parameters nearly matched

to our experiment. The SP-GPE’s stochastic noise term was chosen to match the

experimentally observed temperature, and was not tuned to match the onset-time

for domain formation.

Although our simulations predict that spin structure began to grow immedi-

ately, the structure remained undetected until its amplitude exceeded the technical

noise (primarily due to shot noise in density fluctuations across the BEC) in the

system. When counting the number of spin domains in our system, we found the
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Figure 5.4: Time evolution of magnetization Mz(z) found by taking slices
along the axial dimension of BEC spin components that had been sep-
arated in TOF. (a) Experimental data and (b) finite temperature simu-
lation using the SP-GPE method. In both simulation and experiment,
the spatial structure of Mz(z) coarsens after an initial growth period as
domains coalesce. The overall spatial extent and brightness of the clouds
decrease as atoms leave our trap.
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number of modulations in Mz(z) that were larger in amplitude than the measured

noise in Mz(z). The threshold amplitude above which we counted a domain was flat

in |ψ↑,↓|2. We chose not to compensate for the density of the condensate because

more tailored thresholds produced a number of false positives. We show the rapid

increase in domain number following a short delay after the quench in Fig. 5.5. In

Fig. 5.5 we compare the domain count of our experiment and the SP-GPE simulation

to the domain count predicted by summing over the πξ1D(x) periodicity expected

from our analytics

ND =

∫ Rz

−Rz
dx

1

πξ1D(x)
=

Rz

2ξ1D

(5.21)

where ξ1D(x) = n1D(x)ξ1D/n1D(0). The abrupt increase in domain count at short

timescales is primarily a consequence of the growing domain contrast surpassing the

threshold for detection. This increase occurs over a finite time because the domains

grow in amplitude faster at the high density regions of the condensate than the low

density periphery. The bulge in domain amplitude at the center of the atomic cloud

can be seen for a brief window in time in Figure 5.4. Potentially as a consequence

of poor domain counting near the periphery of the condensate neither experiment

nor simulation reach the domain count predicted by the analytics.

It is difficult to obtain a quantitative measure of domain size from domain

counting because a number of ancillary factors come into play: threshold amplitudes

for domains, atom loss. Moreover, while measurements at neighboring times have

similar domain sizes as seen in Fig. 5.4 the exact domain pattern is subject to subtle

differences in the initial conditions and has a significant element of randomness –

primarily in the form of phase shifts. We address these concerns by applying the

power spectral density (PSD)

PSDx,z(k)=

∣∣∣∣
∫
Mx,z(z) exp(ikz)dz

∣∣∣∣
2

(5.22)
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Figure 5.5: Number of domains as a function of thold. The red symbols
depict the experimentally observed number of domains (typical uncer-
tainty plotted on the leftmost point) and the blue curve plots the results
of our SP-GPE simulation (uncertainties denoted by the blue band). In
both cases, the uncertainties reflect the standard deviation over many
realizations. In addition, the red curve fits the data to a model assuming
exponential growth along with a non-zero observation threshold, in the
LDA. The grey symbols correspond to the ratio Rz/2ξ1D: an estimate of
domain number, assuming a condensate with radius 2Rz is partitioned
into domains of local size πξ1D(z) (the size at which domains initially
form); the weighted average of this over our system is about 4ξ1D.

to the measured magnetization which entirely removes phase information. The PSD

largely decouples domain amplitude and overall atom number from their spatial

wavevector. Hence, the PSD is a direct measure of domain size that is valid for

short times when domain amplitude is small and long times when the condensate

number and spatial extent shrinks.

Figure 5.6a shows PSDz(k) derived from Mz(z) shown in Fig. 5.4. For short

times (thold . 300 ms), a narrow peak associated with the growing spin modula-

tions develops. Figure 5.6b compares this peak location for both experiment and

theory against 1/ξ1D. These domains have a wavevector set by the dynamic growth

process (Bogoliubov excitations) and not by the system’s equilibrium thermody-

namics. Hence, we analytically predict and saw in our SP-GPE simulation that the

wavevector at the center of the cloud, and at peak amplitude in the PSD(k), should

be 1/ξ1D. By contrast, the peak in PSDz(k) for the experiment is at slightly smaller

k. Fig. 5.6 plots experimental data with red symbols and SP-GPE simulation with
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the blue curve.

5.5.2 Intermediate times

Once the spin domains reach unity polarization, the magnetization’s magnitude sat-

urates and the boundaries between domains – domain walls – sharpen, broadening

PSDz(k) in Fig. 5.6ab starting at thold≈250 ms. Starting around 350 ms the broad-

ened peak moves to smaller k over 150 ms corresponding to an observable increase

in domain size. In the simulation, the exact start time and slope of this reequilibra-

tion depended strongly on temperature; most (but not all) experimental data runs

showed this feature. More subtly, peak PSDz(k) for domains between 500 ms and

2 seconds appears to be constant: the ratio between peak PSDz(k) and 1/ξ1D(z)–a

measure of the kinetic energy penalty for domain structure–reached a minimum in

this range.

5.5.3 Long times

Our BEC has a τ = 10(1) s lifetime which causes the spatial extent of the BEC to

shrink even as the healing length ξ1D increases: both effects reduce the maximum

expected domain countND. Once a domain becomes smaller than the ever increasing

≈2ξ1D(z), it is no longer reaches full spin-polarization at its center, and it ceases to

be a barrier for the hydrodynamic flow of the other spin state. As a result, small

domains can move freely and coalesce with another domain of the same spin. Hence,

experiment and simulation domain count should shrink no slower than ND which is

largely borne out in Fig. 5.5.

Unlike PSDz(k), PSDx(k) is peaked about zero; this is because Mx(z) is only

appreciable in the domain walls where the gas is not fully polarized: it consists

of a series of narrow peaks. By showing that the width of the peak in PSDx(k)

tracks the inverse spin-healing length, i.e. domain walls are broadening, Fig. 5.6c

demonstrates that the domain walls are sized in proportion to ξ1D (grey symbols).
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Figure 5.6: Power spectral density. (a) PSDz(k) as a function of thold

showing the formation of a peak at finite wave-vector k, followed by the
gradual movement of that peak to smaller k as the spin domains expand.
Each vertical slice represents a single experimental realization, i.e., no
averaging. The color scale depicts increasing spectral power with darker
color. (b) Wave-vector of PSDz(k)’s peak. (c) Width of PSDx(k), which
always peaked around zero. In (b) and (c), the red symbols depict the
experimentally observed peak location (typical uncertainty plotted on
the leftmost point) and the blue curve plots the results of our SP-GPE
simulation (uncertainties denoted by the blue band). In these three cases,
the uncertainties reflect the standard deviation over eleven realizations,
i.e., (b) and (c) are averaged data. The grey symbols mark 1/ξ1D, the
homogenous-system wave-vector of maximum gain (the uncertainties are
comparable to the symbol size).
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It is plausible that the dominant mechanism for domain growth results from

this increasing cutoff in the minimum domain size≈2ξ1D(z). For this case we might

anticipate that the dynamic energy cost ~2k2/2m of having structure at the peak

wavevector k in PSDz(k) would be a constant fraction of the peak spin interaction

energy −~2/2mξ2
1D. We see in Figure 5.6b for times thold > 2 sec that k tracks 1/ξ1D

as this model would predict. To highlight this possible relationship, we display the

ratio between PSDz(k) and 1/ξ1D(z) – essentially constant – on a linear time scale

in Figure 5.7 (the uncertainties reflect the standard deviation of the mean at each

thold).

18161412108642

1.0
0.8
0.6
0.4
0.2
0.0

Figure 5.7: Ratio of peak in PSDz(k) over 1/ξ1D plotted on a linear time
scale. We use only the seven data runs that include thold > 6 sec. Un-
like the rest of the paper the uncertainties given here represent standard
deviation of the mean. The red symbols depict the experimentally ob-
served peak location and the blue curve plots the results of our SP-GPE
simulation (uncertainties denoted by the blue band).

5.6 Concluding remarks

We observe the dynamic formation of spin-domains from an initially uniform, but

immiscible, 2-component spinor system. A modulational instability gains spin noise

with wavevector k=1/ξ1D(z), setting the initial domain wavevector. These domains

subsequently relax to smaller wavevectors and larger domains, i.e. coarsening. For

times > 2 sec the peak wavevector remains a constant fraction of the spin healing

length ξ1D(0) as the system coarsens.
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Chapter 6: Spin-orbit coupling ultracold atoms, the basics

6.1 Introduction

Because ultracold gases are neutral, the class of effects experienced by charged

particles moving in an electric and/or magnetic field would appear to be inaccessible

to quantum simulation in ultracold systems. However, a two photon Raman process

can mimic the coupling between spin and momentum in conventional materials. In

materials, the link between momentum and spin is given by a boosted magnetic

field produced by the motion of a charged particle in a strong electric field. Using

a two photon Raman process the atom absorbs a photon from one Raman beam

and emits into the other by stimulated emission. Then, the momentum difference

between the photons must be transferred to the atom. In most materials this photon

recoil kR = 2π/λ (where λ = 790.024 nm is the laser wavelength) is negligibly small

but in ultracold gases the recoil energy ER = ~2kR
2/2m = h× 3678 Hz exceeds the

characteristic energy scale of the interactions µ = c0n(0) ∼ h × 2200 Hz and the

recoil momentum kR greatly exceeds the in-situ momentum extent ∼ kR/300 of the

BEC (see section 3.2.4).

6.2 The atomic physics

In this section we use the atomic Hamiltonian from Eq. 4.1, which describes the

ground (` = 0) and first (` = 1) electronic excited states of an atom, and then

apply an optical illumination described by the dipole Hamiltonian Eq. 4.5. We

specify to the case where the hyperfine structure (HFS) splitting AHFS ∼ 200 MHz−
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6.8 GHz for both the ground and excited electronic states is unresolved by the optical

coupling. At the same time we keep our light detuned less than the fine structure

(FS) splitting AFS ∼ 7.2 THz.

The electron spin and orbit angular momentum are coupled with AFSL̂ · Ŝ and

for the eigenstates of this coupling J |j,mJ〉 = ~
√
j(j + 1) |j,mJ〉 where J = L + S.

We redefine our projection operators which were initially defined in section 4.3.1

to act upon this basis. The eigenenergies for this system are then Ĥat |j,mJ〉 =

Ee |j,mJ〉 where we defined Eg = 0. The Clebsh-Gordan coefficients and level

diagram for the coupling in this basis are given in Fig. 6.1.
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j=3/2
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(5)S

(a) level diagram (b) Clebsh-Gordan π-pol. (c) Clebsh-Gordan σ-pol.
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Figure 6.1: Coupling far off-resonant with the hyperfine splittings re-
solves states with reduced dimensionality |j,mF 〉. (a) Level diagram for
coupling between ground j = 1/2 and excited j = 1/2, 3/2 states. The
sign and magnitude of the coupling may be determined using the re-
duced matrix element between the ground and excited electronic states〈
` = 0

∣∣∣
∣∣∣d̂
∣∣∣
∣∣∣ ` = 1

〉
and Clebsh-Gordan coefficients for (b) π and (c) σ

polarized light.

Using the dipole Hamiltonian in Eq. 4.8 we compose an effective Hamiltonian

that encapsulates two-photon coupling within the j = 1/2 electronic ground states

Ĥeff = −P̂gĤ ′dipP̂eĤ
−1
at P̂eĤ

′
dipP̂g. (6.1)
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Expanding Eq. (

refeq:Heff1 in terms of Eq. 4.8

Ĥeff = −1

4
E∗
′

i P̂gd̂iP̂eĤ
−1
at P̂ed̂lP̂gE

′
l = E∗

′

i α̂i,lE
′
l. (6.2)

The eigenenergies ∆1/2 = ∆e − AFS
`,j and ∆3/2 = ∆e + AFS

`,j/2, which are defined in

relation to Ĥat |j,mJ〉 = ∆j |j,mJ〉, are the two-photon detunings from the j = 1/2

and j = 3/2 excited electronic FS, respectively. The polarizability tensor operator

α̂i,j acts within the ground electronic states. All alkali atoms have ground electronic

j = 1/2: in this special case, the polarizability tensor can be decomposed into scalar

δi,j and vector εi,l,mσm terms. The coefficients in Eq. 6.3 may be calculated using

the Clebsh-Gordan coefficients

Ĥeff = −E
∗′
i E

′
l |〈||d||〉|2

4

[
(2δi,l + iεi,l,mσm)

3∆3/2

+
(δi,l − iεi,l,mσm)

3∆1/2

]
(6.3)

where εi,l,m is the Levi-Cevita symbol; and 〈||d||〉 ≡ 〈l = 0 ||d|| l = 1〉 is the far-off

resonant Wigner-Eckert reduced matrix element. In our experiment, we choose ∆e

such that ∆1/2 = −2∆3/2, thereby removing the scalar (but not vector) terms from

Eq. 6.3. This simplifies the Hamiltonian

Ĥeff =
iu(E∗

′ × E′)

~
· ĴP̂g (6.4)

where u = |〈||d||〉|2 /8∆1/2. Using Landé’s projection theorem we stretch Eq. 6.4 to

act on the hyperfine ground states:

Ĥeff =
f(f + 1)− i(i+ 1) + j(j + 1)

2f(f + 1)

iu(E∗
′ × E′)

~
· F̂ ≈ gF

gJ

iu(E∗
′ × E′)

~
· F̂. (6.5)

The approximate equality in Eq. 6.5 neglects the contribution to gF from gI , which

modifies gF at the 0.1% level.
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The physical interpetation of Ĥeff is similar to that of the formally identical

Zeeman Hamiltonian

ĤZ =
gFµB
~

B · F̂ (6.6)

where µB is the Bohr magneton and B is the magnetic field. By analogy, we use

Beff = Ĥeff/µBgJ to define an effective time and position dependent magnetic field

Beff u
−iu

[
E∗
′
(x, t)× E′(x, t)

]

µBgJ
(6.7)

which is exact for f = 1 and j = 1/2 when gJ is replaced with −4gF . Combined,

the Zeeman and Raman coupling terms of the Hamiltonian are

ĤZ + Ĥeff =
gFµB
~

(B + Beff) · F̂. (6.8)

Because Bdc or Beff interacts with the spin basis in the form of the angular mo-

mentum spin matrices |f,mF 〉 states separated by more than ±1 units of angular

momentum cannot be coupled. Using spin-1 as an example, |f = 1,mF = ±1〉 can-

not be directly coupled with Raman.

The full electric field measured at an atom illuminated by multiple linearly

polarized lasers, which we index with β, is

E(t) =
∑

β

Eβeβ cos [Kβ · x− ωβt− γβ] (6.9)

where Kβ, ωβ/2π, and γβ are each laser’s wavevector, frequency, and phase, respec-

tively. Because the lasers are linearly polarized, we neglect the Cartesian coordinate-

dependent phase θi from Eq. 4.5 and treat the electric field Eβeβ from each laser as

a real vector. Using Eq. 4.6, we enter the frame rotating with angular frequency ωL
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and neglect terms of order exp (±2ωLt)

E′(x, t) =
∑

β

E ′eβ exp (i[Kβ · x− (ωβ − ωL)t− γβ])/2. (6.10)

Because |ωβ−ωL| � Ee, all of the approximations up through Eq. 6.7 remain valid.

The pairwise product of terms in Eq. 6.10 produced by the operation in Eq. 6.7

contain the terms exp (±iΦβ,β′), which do not cancel in the RWA. We define Φβ,β′

to be

Φβ,β′ = Kβ,β′ · x− ωβ,β′t− γβ,β′ (6.11)

where kβ,β′ = Kβ−Kβ′ is the difference between laser wavevectors; −ωβ,β′ = ωβ−ωβ′

is the difference between laser angular frequencies; and γβ,β′ = γβ − γβ′ is the

difference between laser phases. Both Φβ,β′ and εβ × εβ′ switch sign under the

exchange of indices, allowing the rearranging of terms

Ĥeff =
∑

β 6=β′

−gFuEβEβ′
2~gJ

sin [Φβ,β′ ](eβ × eβ′) · F̂, (6.12)

which are valid only when laser polarizations are linear. When the Raman frequency

differences are detuned near to resonance with the linear Zeeman splitting of the

ground hyperfine manifold, essentially |ωβ,β′ − δZ | � δZ where δZ = gFµBBdc, we

apply a RWA to eliminate terms proportional to exp (i2|ωβ,β′|t). For example, under

the RWA

−F̂x,y sin [Φβ,β′ ]→ [F̂x,y cos [Φβ,β′ ]∓ F̂y,x sin [Φβ,β′ ]]θ(ωβ,β′) (6.13)

F̂z sin [Φβ,β′ ]→ F̂z sin [Φβ,β′ ] (6.14)

where θ is the Heaviside function and the upper sign choice corresponds initial Fx on

the LHS. Notice that the term containing Fz remained unchanged under the RWA.
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For an atom illuminated by a single pair of Raman lasers (and no other fields) the

sign choice in Eq. 6.13 is not of physical importance.

When there are multiple Raman couplings the relative orientation of different

eβ × eβ′ (even in the absence of other fields) can have physical consequences. When

we take the RWA (eβ × eβ′) · F the polarization geometry of the lasers can be

expressed using a phase ξβ,β′ and sign ηβ,β′

−(eβ × eβ′) · F̂ sin [Φβ,β′ ]→F̂x cos [Φβ,β′ + ξβ,β′ ]− F̂y sin [Φβ,β′ + ξβ,β′ ]
)
θ(ωβ,β′)

(6.15)

−ηβ,β′F̂z sin [Φβ,β′ ].

The phase is the orientation of the Beff in the plane orthogonal to Bdcez

ξβ,β′ = atan[(eβ × eβ′)y/(eβ × eβ′)x], (6.16)

and the sign measures the case where the Beff is either aligned or antialigned with

ez

ηβ,β′ = sign[(eβ × eβ′) · ez]. (6.17)

What will prove to be of physical consequence is the sum of the differences between

ξβ,β′ for different Raman pairings and the value of ηβ,β′ = ±1. For simple tripod

schemes (three lasers coupling three states with no additional couplings) there are

three different in-plane projections of Beff that couple states from the three different

Raman pairings. In this case, the sum of the differences between ξβ,β′ always sum

perfectly to 2π. Meanwhile, the appearance of ηβ,β′ in the Hamiltonian will be tied

to axial coupling (Beff along ez) and does not contribute to the tripod Hamiltonian.

In the RWA, the amplitudes of the couplings are split between an in-plane
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Ω⊥β,β′ projection of the Beff and an axial Ω
||
β,β′ projection of the Beff along ez. Then,

A⊥β,β′ = |(eβ × eβ′)| (6.18)

A
||
β,β′ = |(eβ × eβ′) · ez| (6.19)

Ω⊥β,β′ = gFuEβEβ′A
⊥
β,β′

√
1− A||2β,β′/4~gJ (6.20)

Ω
||
β,β′ = gFuEβEβ′A

||
β,β′/2~gJ . (6.21)

The Hamiltonian in the RWA is

Ĥeff =
∑

β 6=β′

[
Ω⊥β,β′

(
F̂x cos [Φβ,β′ + ξβ,β′ ]− F̂y sin [Φβ,β′ + ξβ,β′ ]

)
θ(ωβ,β′) (6.22)

−ηβ,β′Ω||β,β′F̂z sin [Φβ,β′ ]

]
.

It is often safe to neglect the coupling diagonal with Bdc since it does not

couple |mF 〉 states. The phase of the couplings in Eq. 6.22 can also be neglected in

most circumstances without issue. The simplified Hamiltonian

Ĥeff =
∑

β 6=β′

[
Ω⊥β,β′

(
F̂x cos [Kβ,β′ · x− ωβ,β′t]− F̂y sin [Kβ,β′ · x− ωβ,β′t]

)
θ(ωβ,β′)

(6.23)

usually suffices to describe Raman coupling.

6.2.1 The light shift terminology

Equation 6.22 describes couplings within the j = 1/2 ground electronic states.

In this two state subspace terms proportional to E∗
′
i E

′
jδi,j (i and j index Carte-

sian coordinates) describe a state-independent AC Stark shift: these are scalar

light shifts. The strength of the electric field for the β’th laser follows the in-

tensity E∗
′
i E

′
i = I(x, y, z)/cε′0 which typically has a Gaussian cross section. When

2/3∆3/2 + 1/3∆1/2 is negative the scalar light shift of the β’th laser produces a
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trapping potential and when it is positive it anti-traps.

For a circularly polarized lasers E ′ is complex and E∗
′
i E

′
jεi,j,k has a non-zero

component along the propagation direction of the laser eL which dots with the

vector of Pauli matrices σ̂. Using Landé’s projection theorem we stretch the spin-

1/2 vector of operators ~σ̂ to the spin-1 vector of angular momentum operators

F̂

Ĥeff u
gF
gJ

iuE∗
′
(x, t)E ′(x, t)

µBgJ
eL · F̂ (6.24)

The resulting state-dependent potential is reminiscent of a Bdc along eL: this is

the vector light shift. Bdc that scale with laser intensity are generally undesirable,

positioning a real and large Bdc field orthogonal to eL can minimize the impact of

the vector light shift and adopting perfect linear polarization for the laser entirely

eliminates it.

By contrast, our 2-photon coupling is equivalent to that of a position depen-

dent ac magnetic field. A representation of the level diagrams that produce scalar,

vector and 2-photon vector light shifts is given in Fig. 6.2.

6.3 Geometry of Raman coupling

Here we consider two Raman geometries as an example implementation of the theory

introduced in the previous section of this chapter.

We first consider a geometry of two counterpropagating lasers as shown in

Fig. 6.3a. Here, the momentum recoil associated within the Raman coupling is

coaligned with the axis of laser propagation. The linear laser polarizations are per-

pendicular to the laser propagation, of course, but the amplitude of Beff is maximized

when the laser polarizations are mutually perpendicular. For all polarizations Beff

is coaligned with the axis of laser propagation and the desired Bdc is any orientation

perpendicular to the axis of laser propagation.
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Figure 6.2: Level diagram for various light shifts. (a) Scalar light shifts
vanish for coupling on the dotted line: where ∆3/2 = −2∆1/2. Depicted,
is coupling to 2∆3/2 = −∆1/2. (b) Circularly polarized light produces a
state dependent ac Stark shift. The vector light shift is merely an scalar
shift at the dotted line. (c) π − σ coupling between states. When both
beams are linear, the dotted red coupling may also exist. For resonant
coupling of states split by a Bdc the RWA eliminates some of the couplings
e.g. the dotted red coupling.

Next we consider a geometry of two lasers whose propagation directions are

mutually orthogonal. In this case, the amplitude of Beff is maximized when the

polarization of laser one is aligned with the propagation direction of the laser two,

laser two must have a polarization perpendicular to the propagation of laser one.

Beff is aligned with laser one in this case and the desired Bdc is any orientation

perpendicular to laser one.

6.4 Gauge and rotating frame transformations

In this section, we derive the Raman coupled atomic Hamiltonian in the RWA in

several steps. When Bdc is applied along ez the atomic Hamiltonian describing the
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(c) Beff parallel with Bdc (d) Beff perpendicular to Bdc 

Figure 6.3: The Raman lasers (in red) illuminate cold atoms (grey circle)
with linearly polarized light. The polarization in the plane of the diagram
is shown with a double sided arrow while polarization in and out of the
diagram is given by the circle-dot. (a) Counterpropagating Raman beams
produce a Beff that is parallel to both beams. (b) Perpendicular Raman
beams can produce a variety of Beff orientations but we show an in-
plane configuration. (c) When the states are split by a field Bdc which is
parallel to Beff the Raman coupling (∝ F̂z) cannot drive transitions. (d)
When Beff is perpendicular to Bdc Raman coupling links spins exactly
like a position dependent rf magnetic field.
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ground hyperfine states

Ĥ0 =




~2k2

2m
+ E−1 0 0

0 ~2k2

2m
+ E0 0

0 0 ~2k2

2m
+ E+1


 (6.25)

may be coupled (this is one of a number of ways) with a counterpropagating laser

configuration that produces Beff along ex. Then the Raman coupling amplitude is

Ω = gFµBBeff/gJ . This laser configuration maps a 2kR wavevector (λ/2 periodic-

ity) into the coupling Hamiltonian ĤR = Ω(F̂x cos [2kRx− ωt]− F̂y sin [2kRx− ωt])
which we cast into matrix form

ĤR =
Ω√
2




0 ei[2kRx−ωt] 0

e−i[2kRx−ωt] 0 ei[2kRx−ωt]

0 e−i[2kRx−ωt] 0


 . (6.26)

where the wavevector is kR = 2π/λ. The time and position dependence of this

off-diagonal Raman coupling can be removed with a unitary transformation that is

a combination of rotating frame transformation (the time part) and gauge transfor-

mation (the position part)

Û =




e−i[2kRx−ωt] 0 0

0 1 0

0 0 ei[2kRx−ωt]


 . (6.27)

Because the position dependent part of the transformation does not commute with

the momentum operator in the kinetic energy of Ĥ0, Û acts like a momentum-

displacement operator

exp (∓i[2kRx− ωt])k2 exp (±i[2kRx− ωt]) = (q± 2kRex)
2
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where we have made a convenient change of variables to quasimomentum ~q. We

apply this transformation to the Hamiltonian Ĥ ′0 = ÛĤ0Û
† and obtain a form of

the Hamiltonian that has a state-dependent Gauge potential.

Ĥ0 also acquires a state dependent offset from the time dependent Schrödinger

equation i~Û †∂tÛ in the rotating frame of the transformed state vector |ψ′〉 =

Û |ψ〉. The transformed Hamiltonian, which is free of off-diagonal position and time

dependence, is particularly easy to conceptualize in this form

Ĥ ′ = Ĥ ′0 + Ĥ ′R =




~2(q−2kRex)2

2m
+ δ Ω/

√
2 0

Ω/
√

2 ~2q2

2m
+ ε Ω/

√
2

0 Ω/
√

2 ~2(q+2kRex)2

2m
− δ


 (6.28)

where Ĥ ′R = ÛĤRÛ
† = ΩF̂x. The detuning is δ = (E−1 − E+1)/~ − 2ωR and the

quadratic Zeeman shift is ε = (2E0 − E−1 − E+1)/~ (ε is always negative). The

Hamiltonian Ĥ ′ is the spin-1 equivalent to an equal combination of Rashba and

Dresselhaus SOC (1D SOC) in a spin-1/2 . There are a number of theoretical and

experimental works that use SOC of this form [67, 7, 17, 68, 8, 9, 69].

6.5 Quasimomentum, spin population and center of mass momentum

SOC establishes a discrete momentum difference (2kR for counterpropagating laser

configurations) between the free energy dispersions of |mF 〉 BEC spin components

as shown in Fig. 6.4. The characteristic energy scale ER = 4~2kR
2/2m is the gap

in energy from the minima of the ground eigenband to the next least energetic

eigenband. During evaporative cooling, condensates form at the eigenminima of the

quasimomentum dispersion shown in Fig. 6.4.

The ground eigenstate at the minima of the dispersion has a mixture of spin

states with a fixed momentum difference between them. In the limit of the Raman

coupling tending to zero the eigenminima map continuously to a pure spin state.
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The condensate wavefunction is strongly peaked in momentum, so much so

that we often substitute a population weighted dirac delta function instead

ψ(q) = φ(q)
[√

Nq1δ(q− q1) +
√
Nq2δ(q− q2) +

√
Nq3δ(q− q3)

]
(6.29)

where φ(q) is the three-component ground eigenstate given by the single particle

dispersion. Three is the maximum number of eigenminima in the ground eigenstate,

however it is possible to have fewer.

We may reconcile the quasimomentum basis with a zero center of mass mo-

mentum for the atomic cloud KCM (usually KCM = 0 is set by the dipole trap) using

the equation:

ψ†(q)(q1̂− kF̂z)ψ(q)/~ = KCM|ψ(q)|2 (6.30)

where the momentum dependence between spin states is |k| = 2kR for a counter-

propagating Raman configuration. We may solve for the relationship between spin

fractional population and quasimomentum when KCM = 0

q =
−k|ψ−1|2 + k|ψ+1|2

|ψ(x)|2 = |k|Mz (6.31)

where Mz = 〈F̂z〉 is the magnetization.

6.5.1 Loading into the spin-orbit coupling ground state

The turn on time of the Raman coupling is limited by the propensity for the equilib-

rium q to change as Ω redistributes the spin populations, see Fig. reffig:Ramandispersion.

Empirically, we found that q should arrive at its new value on a timescale long in

comparison to τ = 1/ωtrap which is inversely proportional to the dipole trap fre-

quency ωtrap projected along the Raman momentum difference k.

For an initial load into |mF = −1〉 at Ω = 0 the quasimomentum of the en-
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Figure 6.4: Dispersion of Raman eigenstates for δ = 0, ε = −0.01
and various coupling strengths Ω. The solid and dashed dispersions are
closest to one another for the smallest Ω. The red circles starting on the
left of the diagram correspond to initially loading from |mF = −1〉 while
the blue circles starting at the center correspond to initially loading from
|mF = 0〉.

semble starts at q = −k but follows a shift in the local minimum in the dispersion

towards q = 0 as Ω is increased. In most circumstances (no cleverly applied detun-

ings, extra frequencies or rf coupling) there exists an Ω where the local minimum of

the dispersion vanishes at finite q, leaving the atoms to evolve diabatically and rec-

ollect in the global minimum of the dispersion at q = 0. Hence, it can be challenging

to load the spin-orbit coupled state in the large coupling limit from |mF = ±1〉. By

contrast, |mF = 0〉 remains at q = 0 for all Ω when the detuning δ = 0. Therefore,

Ω can be ramped quickly compared to τ (we use 1 ms turn on times).

In our apparatus, evaporative cooling in the magnetic trap requires that all

of the atoms be in the low magnetic field seeking |mF = −1〉 state. Therefore

transferring the atomic population to the mF = 0 state can be a concern. This may

be accomplished using ARP at several G Bdc or with smaller magnetic fields using

the technique outlined below. We applied a rf magnetic field with ~Ωrf = h× 1 kHz

Rabi frequency that is resonant with the Raman using the following procedure:
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1. Start with the rf detuned, δ < 0. In this case the rf eigenstate is very similar

to |mF = −1〉.

2. Ramp on the rf coupling Ωrf → 1, with the rf frequency identical to the Raman

frequency ωrf = ω.

3. Ramp the detuning to zero δ → 0, preparing an rf eigenstate that is a balanced

mixture of all three spin states.

4. Ramp on the Raman Ω→ 1.

5. Ramp off the rf Ωrf → 0.

Thus we adiabatically load the ground eigenminimum of the Raman dispersion.

The overlap of the eigenstate of the coupling |ψ〉 (rf and Raman) with the ground

eigenminimum of the spin-orbit coupling |Raman〉 is plotted in Fig. 6.5.
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Ω and Ωrf are both non-zero only when δ = 0.
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6.6 Spin-1 spin-orbit coupling

In this chapter we discuss the laser arrangement, production of the coherent Raman

light, and the generation of the spin-1 spin-orbit coupled Hamiltonian. The laser

geometry used in this experiment is generally useful and is something of a “default”

setup for 1D spin orbit coupling.

6.6.1 Raman laser board

The two Raman beams need to be temporally coherent. As illustrated in Fig. 6.6

we produce both Raman beams from the same laser diode, the “master” and gain

the intensity using a pass through first a 500mW tapered amplifier (TA) and sub-

sequently a 2W TA. For such this setup, the requirement of temporal coherence

is satisfied when the coherence length of the light is much longer than the actual

path length from the output of the master laser to the atoms. Our DL pro toptica

40mW 790 nm master laser has a Lorentzian width ∆ν in frequency of 200 kHz

which translates to a coherence length of c/π∆ν u 0.5 km.

We use a 500 mW Eagleyard tapered amplifier diode on board 1 and a 2 W

diode from m2k on board 2. These are mounted and temperature controlled with

components machined and assembled in the lab. These diodes add a broad shoulder

of amplified spontaneous emission (ASE) to the laser light and, as a result, we

needed to add in-line 808 nm Semrock laser-line filters to remove the ASE. These

filters made the difference between 200 µs lifetimes and 1 s lifetimes in the presence

of Raman coupling.

The amplified light on board 1 is frequency shifted 107.5 MHz (and amplitude

controlled) using an AOM and then sent over fiber to serve as the Raman 1 beam on

the experiment table. A fraction of this light is diverted to a second fiber which is

sent to board 2 for further amplification. Because the maximum allowable power into

the input of this second TA is 30 mW the downside of this daisy-chain configuration
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is that it is easily possible to accidentally send vastly more than the maximum power

to the input of the second TA. This necessitates a PD-based interlock at the output of

the fiber using a pickoff oriented so that the reflection is minimized for the expected

polarization of the light.

On board 2 the amplified light is split into two beams, one is frequency shifted

by 82.5 MHz while the other is frequency shifted by 82.680 MHz by different AOMs.

The frequency difference between the AOMs on board 2 corresponds to twice the

quadratic Zeeman shift when the linear Zeeman splitting is h× 25 MHz. The AOM

frequencies for this experiment are summarized here:

f− =107.5 MHz (6.32)

f+
−1 =82.5 MHz + Ω2 (6.33)

f+
−1 =82.680 MHz− Ω2. (6.34)

(6.35)

6.6.2 Raman beam geometry

Light is injected into polarization maintaining fibers at the Raman board 1 and 2

and sent to the experiment. There, we collimate the light in free space. Because

most beam samplers are polarization sensitive (and you should never trust a fiber

to perfectly preserve the polarization) we place Glan-Taylor polarizors (PBS with

10000:1 extinction of the other polarization) immediately before a beam sampler and

also as close to the output of the fiber as possible. Light from the beam sampler is

sent to a pickoff to measure for relative Raman beam intensity. We then use λ/2 and

λ/4 waveplates to produce the desired polarization. When working with dielectric

mirrors it is helpful to maintain strict vertical or horizontal polarization, keeping

the beam paths as level as possible, because the mirrors tend to act as birefringent

optical elements.
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We prepare the Raman 1 beam with horizontal linear polarization and the Ra-

man II beam with vertical linear polarization. For our counterpropagating geometry

shown in Fig. 6.7 the Raman beams couple to the atoms like a position dependent

ac magnetic field ∝ Ω1(x, t) oriented along ex.

We included PBS cubes so that we can pass the Raman light that on route

to the atoms and reflect Raman light that have already interacted with the atoms.

These cubes proved to be an effective method for removing cross-talk between our

PDs which measure the power in the Raman beams.

Our Raman beams nearly copropagate with one of our optical dipole trapping

beams. The addition of a second optical dipole trapping beam allows confinement of

the atomic cloud in a flat disk. The disk is symmetric under rotation in the ex and

ey plane while in the ez direction the dipole trap is 4 times more tightly confined.

In the event of domain formation or other component dynamics it is energetically

favorable for these to spatially occur in the ex and ey plane. This is desirable because

it is perpendicular to our imaging axis along ez.

6.6.2.1 Calculating coupling strengths

The laser field corresponding to Ω+ produces a time dependent sine wave when

it impinges upon its PD detector. This sine wave is only full contrast when both

Raman 2 frequencies components, produced by two different AOMs, have the same

amplitude; the relative amplitude needed to be set using a waveplate on Raman

board 2 at the beginning of each day. Each time the Raman beams illuminated the

BEC we captured the beat of these two frequencies on an oscilloscope and saved

to file. The average voltage measured by the PD illuminated by Raman 1 is VPD1

while the voltage measured by the PD illuminated by Raman 2 is a peak to peak

sinusoidal oscillation that is four times VPD2.

At the end of an experimental data run we would prepare our BEC en-

tirely in |mF = 0〉 and pulse on our Raman beams with Ω2 = −4ER. This corre-
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sponds to a special case where |mF = 0〉 is made degenerate with (|mF = −1, 2kR〉+
|mF = +1,−2kR〉)/

√
2 by our Raman illumination, causing resonant (full contrast)

Rabi oscillations. For sufficiently low powers or sufficiently large ε (the quadratic

Zeeman shift) the coupling strength may be determined by fitting the Rabi oscilla-

tions to the time evolution of the 3× 3 interaction Hamiltonian

Ĥ =




(0− 2kR)2 − 4ER Ω1/
√

2 0

Ω1/
√

2 0 Ω1/
√

2

0 Ω1/
√

2 (0 + 2kR)2 − 4ER


 (6.36)

ψ(t) =e−iĤt/~ψ(0). (6.37)

We then found a constant of proportionality Ω1/
√
VPD1VPD2 that would apply for

all of the previous data run.

There was a small, but persistent drift in the coupling throughout the day.

Initially, this was not appreciated and we would see changes in Ω1/
√
VPD1VPD2 on

the order of 15%. Once we switched to finding Ω1/
√
VPD1VPD2 immediately after a

data run the consistency between theory and experiment dramatically improved to

less than 2.5% variation.

6.6.3 Aligning the Raman beams

It is much easier to overlap one Raman beam with our cloud of atoms than have the

intersection of two Raman beams overlap with the cloud of atoms. The first step

of our favored procedure is to tune the frequency midway between 790.024 nm and

780 nm. A non-zero single beam ac stark shift forms a trapping potential between

these frequencies (this is strongest close to 780 nm). Our laser waists ∼ 150 µm

are much larger than the extent of the BEC and hence when the Raman beams

are misaligned (but not too far misaligned) the atoms experience a force towards

the center of the Raman beam. This is equivalent to suddenly displacing the trap

92



potential for the atomic cloud. If we know the trap frequencies of our optical dipole

trap, we can quickly ramp on ∼ 1 ms our Raman beams, wait for a quarter optical

dipole trap period (the time necessary for the atoms to roll down the new potential),

and image the clouds after TOF. We then calibrate the position of each Raman

beam by attempting to eliminate the deflection of the condensate on the camera by

steering the laser.

6.6.4 Level diagram and Hamiltonian

Following the treatment of Raman coupling from the beginning of this section we

find that adding a second frequency component to the Raman II beam produces two

terms in Beff

Ω1(x, t) =Ω1ex[cos (2kRx− (ω− − ω+
−1)t) + cos (2kRx− (ω− − ω+

+1)t)] (6.38)

Ĥeff =Ω1(x, t) · F̂. (6.39)

The couplings shown in the resonant level diagram of Fig. 6.8 are actually only a

subset of couplings that are near resonant with respect to the linear Zeeman splitting

of ∼ h × 25 MHz. We eliminate the fast frequency ωfast = ω− − (ω+
+1 + ω+

−1)/2 ≈
2π24.91 MHz in the RWA. We apply the rotating frame and gauge transformations

Û(x) =




ei[2kRx−ωfastt] 0 0

0 1 0

0 0 e−i[2kRx−ωfastt]


 (6.40)

the latter of which does not commute with the momentum operator of the kinetic

energy term in the Hamiltonian. Altogether the Hamiltonian

Ĥ =
(k1̂ + 2kRF̂z)

2

2m
+

~∆ω

2
F̂z + V (r)1̂/~ + Ω1F̂x cos (∆ωt/2) (6.41)
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where 1̂~ is the identity and ∆ω = ω+
−1 − ω+

+1 = 2ε + 2Ω2 is a frequency difference

tuned to the sum of our real and effective quadratic Zeeman shifts.

6.6.4.1 Spin-1 Floquet

Because our Hamiltonian is time periodic H(t) = H(t + 4π/∆ω) the Schrödinger

equation has the form of a Floquet differential equation

i~∂tψ(t) = Ĥ(t)ψ(t) (6.42)

for which the well known solution is to expand ψ in terms of Floquet bands

ψ(t) =
∑

n

ein∆ωt/2φ(t) (6.43)

where n is the set of integers and φ(t) is defined on any interval [t, t + 4π/∆ω].

Because our Hamiltonian can be exactly decomposed into complex exponentials φ

is time independent and is equivalent to an eigenvector in the Floquet Hamiltonian.

We write out the Floquet Hamiltonian

Ĥ =
∑

n,n′

([
Ĥ0 +

~∆ωn

2~
1̂

]
δn,n′ + ΩF̂xδn−1,n′ + h.c.

)
|n〉 〈n′| (6.44)

where a 3× 3 block of spin states is defined for each repeating unit in the Floquet

Hamiltonian (Floquet band) |n〉 〈n′|. The diagonal blocks are quasienergy states

that repeat with the characteristic periodicity of the Hamiltonian ~∆ω

Ĥ0 =
(k1̂ + 2kRF̂z)

2

2m
+

~∆ω

2
F̂z + V (r)1̂/~. (6.45)

At zero coupling the Floquet Hamiltonian looks like the effective 3× 3 Hamiltonian

Ĥ3×3 =
(k1̂ + 2kRF̂z)

2

2m
+ V (r)1̂/~ + Ω1F̂x (6.46)
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that is tiled in energy with spacing ~∆ω/2 + Ω2 as shown in Fig. 6.9.

For sufficiently large ε the spacing between Floquet bands, collections of eigen-

states that when tiled produce the Floquet spectrum, becomes large enough that the

coupling between bands is small. In our system ε = h× 90 kHz and for parameters

(Ω1,Ω2) that mark changes in the phase diagram the Floquet bands predict slightly

higher Ω1 than does Ĥ3×3 (holding Ω2 constant).

−3 −2 −1 0 1 2 3
k, in units of kR

−30

−20

−10

0

10

20

30

40

50
q
u

as
i-

E
n

er
gy

,
in

u
n

it
s

of
E

R
Floquet bands

Figure 6.9: Three of infinite tiled Floquet bands. Plotted are Floquet
quasi-energy dispersions. Solid traces correspond to 3x3 ground eigen-
values, dashed traces are the 1st excited eigenvalues and dashed dotted
traces are the most excited eigenvalues.
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Chapter 7: Spin-1 spin orbit coupling

7.1 Introduction

The spin-1 SOC Hamiltonian, which we introduce at the end of the previous chapter,

allows effective modulation of the quadratic Zeeman shift. At low Raman coupling

this degree of freedom allows the central eigenminima of the SOC to move up and

down through a three-way degeneracy: this is reminiscent of the spinor physics

that turns on and off spin-changing collisions in a spin-1 atomic cloud. ”Standard”

SOC within the spin-1 hyperfine manifold of alkali atoms allow at most pairs of

eigenminima to become degenerate [7, 8, 9], although the addition of microwave or

rf couplings might be able to mimic our spin-1 version. The addition of a second

Raman frequency produces non trivial time periodicities in the Hamiltonian which

require a Floquet technique. In light of the complications introduced by adding

just one additional frequency we may consider this spin-1 SOC technique an impor-

tant stepping stone to more complicated SOC proposals which generalize SOC in

ultracold gases to higher dimensions [70, 71, 72, 14, 15].

As SOC is increased, all three eigenminima experience an effective 2-photon ac

stark shift but the central eigenminimum is shifted ∼
√

2 more than the other two:

exaggerating the quadratic Zeeman shift already present. By adding an additional

Raman coupling frequency we are able to bring all three eigenminima into degen-

eracy. Triple degeneracy of the eigenminima allows spin changing 2-body collisions,
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e.g.

2φq2 ↔ φq1 + φq3 , (7.1)

which can be likened to the spin-mixing interaction active in spin-1 condensates at

small magnetic fields [52].

We manually set the parameters for our system so that energy is conserved

under exchange of φ(q1) ↔ φ(q3): this is a degree of freedom that Ref. [7] explores

in an effective 2-state system but we do not. Instead, we modify the spin-orbit

coupling strength Ω1 and (with frequencies) modify the single particle energy ε(q2)

of the eigenminimum located at q2 relative to (ε(q1)+ ε(q3))/2. ε(q2) is ramped from

to above to below triple degeneracy 2ε(q2) = ε(q1) + ε(q3) a nematic [74] symmetry

in the energies is tunably restored and then broken again. The fractional population

condensed in the central eigenminima is

Mzz =

∫
dr
ψ†(r)Ŝ2

zψ(r)

~|ψ(r)|2 , (7.2)

where Ŝz is the diagonal and traceless spin-1 spin operator, is a nematic order

parameter for a three state system, for which there is no corollary in a two-state

system.

7.2 Magnetic connection

There is a 1-1 mapping between spin composition of an eigenstate and quasimo-

mentum q as discussed in section 6.5. Therefore, our spin-orbit coupled BECs

constitute a magnetically ordered system where a combination of the atoms’ kinetic

energy, the spin-orbit coupling and collisions drive a transition between two dif-

ferent ordered phases; this is analogous to the ferromagnetic and polar phases in

spin-1 spinor BECs [75]. Most magnetic systems are composed of localized magnetic
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particles such as electrons [76], atomic nuclei [77], and ultracold atoms in optical

lattices [78, 79, 80, 81], each with moment µ. By contrast, the magnetic atoms

produced by our SOC are free to move about and hence are part of a magnetic

system that is itinerant. Our system produces magnetism through a very different

mechanism than Stoner itinerant ferromagnetism [82]. For both fermionic [83] and

bosonic [84, 85] ultracold systems our spin-orbit coupling provides a new mechanism

for stabilizing ferromagnetism in itinerant systems.

We introduce a free energyG(Mz) which includes both the total internal energy

and thermodynamic contributions to describe the phase transitions of our system.

It depends upon the magnetization

Mz =

∫
dr
ψ(r)†Ŝzψ(r)

~|ψ(r)|2 (7.3)

which tracks the imbalance in spin composition. This construction for the magne-

tization manifestly resembles the definition for a spin-1/2 system: in that case, Ŝz

simply operates on states with a reduced spin dimensionality. However, there is no

equivalent for Mzz (defined in section 7.1) in a spin-1/2 system.

For our near T = 0 system and near equilibrium system all of the atoms in the

ensemble are close to a ground or metastable minimum in the free energy G(Mz).

Both Mz and Mzz (defined in section 7.1) are sufficient to determine the free energy

when the single particle spectrum is known. At long times all the atoms fall into

the ground eigenminimum, which is accelerated by Bose stimulation. For all other

timescales we initially prepare the system with Mz = 0 and measure the population

for times short enough that the ensemble average 0.2 > Mz > −0.2. The ensemble

average of Mzz changes over nearly its full range when we cross a phase transition.
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7.3 The Hamiltonian

7.3.1 Equivalence with spatially periodic effective magnetic field

Atomic gases with equal contributions of Rashba and Dresselhaus SOC are described

by the Hamiltonian

Ĥ =
~2(q− kF̂z)

2

2m
+ δF̂z +

ε

~
F̂ 2
z + ΩF̂x (7.4)

which can equivalently be described with by a spatially periodic effective magnetic

field-like coupling term [86, 87] Ω1(x)/Ω1 = cos(2kRx)ex − sin(2kRx)ey

Ĥ =
p2

2m
+ δF̂z +

Ω2

~
F̂ 2
z + Ω1(x)·F̂, (7.5)

where ~kR is the photon recoil momentum. The “strength” of the SOC is equivalent

to the magnitude of the two photon recoil velocity ~|k|/m while the gaps opened at

avoided crossing in the dispersion are Ω1F̂x.

Diagonalizing Eq. 7.5, we find the eigenvalues ε(x) and eigenvectors ψ(x). We

may obtain the entire free energy spectrum as a function of Mz(x) over the domain

x = [0, λ/2] where λ is the wavelength of our counterpropagating lasers. Selections

of the free energy dispersion are depicted in Fig. (7.1)c. Alternatively, we may map

the quasimomentum dispersion, see section 6.5, to Mz and the free energy using a

conservation of momentum argument (or by calculating 〈Mz(q)〉 over the domain

q = [−∞,∞]).

In Eq. (7.5) the three components of the hyperfine momentum operator F̂

transform vectorially under rotations, like Ŝ. Fully representing the possible cou-

plings in a spin-1 system requires an additional five-component rank-2 tensor oper-

ator, the quadrupole tensor, which is not simply associated with any spatial direc-

tion [50, 88, 55]. Our Hamiltonian includes one such tensor coupling F
(2)
zz = F̂ 2

z −2/3
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which has strength Ω2 and is controlled by our Raman frequencies.
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Figure 7.1: Experimental system a Schematic and level diagram. The
|−1〉 ↔ |0〉 and |0〉 ↔ |+1〉 transitions of the f = 1 ground state manifold
of 87Rb were independently Raman coupled, giving experimental control
of Ω1 and Ω2. b Phase diagram. The ferromagnetic order parameter
|Mz| is plotted against Ω2 and Ω1. The solid (dashed) red curve denotes
the first-order (second-order) transition from the magnetized phase. c
Free energies. Top: near the first-order phase transition at Ω1/ER = 1
for Ω2/ER = −0.35,−0.1 and 0.15 for the black, blue and red traces
respectively, as marked by the red flags in b. Bottom: near the second-
order phase transition at Ω2/ER = −2.5 for Ω1/ER = 4.5, 5.5, and 6.5
for the black, blue and red traces respectively.

7.4 Phase transitions

In this section we describe the single particle phase diagram which is qualitatively

identical but quantitatively very slightly modified in the presence of 2-body inter-

actions. We set ε(q1) = ε(q3) equal to one another and modified the energy of the

ε(q2) relative to ε(q1,3) using ~Ω2. We also change the magnitude Ω1 of the helically

precessing transverse magnetic field. The set of points in parameter space (Ω1,Ω2)

is divided into two regions by the line of critical points {(ΩC
1 ,Ω

C
2 )} which mark an

abrupt change in the value of the order parameter Mzz as illustrated in Fig. (7.1).

For a single particle, the upper region corresponds to Mzz = 0, is unmagnetized,

while the lower-left region corresponds to Mzz > 0, and is ferromagnetic.

The line of critical points {(ΩC
1 ,Ω

C
2 )} are a line of phase transitions that mark

a change in our thermodynamic order parameter Mzz. For Ω1 small relative to 4ER
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our spin-orbit coupled BECs are analogous to spinor condensates and crossing from

the Mzz = 0 region to Mzz > 0 is very similar to a transition from a polar spinor

BEC to a ferromagnetic spinor BEC [52]. As shown in the top panel of Fig. (7.1)c

there is very much a single-particle barrier present between minima in the free energy

throughout the transition, light green to dark green traces, from the unmagnetized

phase to the magnetized phase: this is a 1st order phase transition. Population is

transferred from one set of minima to another by collisional processes. By contrast,

for Ω1 large relative to 4ER the minima in the free energy merge smoothly: this is a

2nd order phase transition. The line of 1st and 2nd order phase transitions connect

at a triple point (Ω∗1,Ω
∗
2) which is starred in Fig. (7.1)b.

7.4.1 Vertical scans

To perform vertical scans of the phase transition we first initialized the system

in the unmagnetized phase. This is most easily accomplished in our system by

transferring atoms to |mF = 0〉 using an adiabatic transfer from |mF = −1〉 using

rf in the absence of Raman coupling. We then applied a short ≈ 10 ms linear

ramp of Ω1 to the desired value and subsequently ramped Ω2 to its final value,

which may or may not be on the magnetized side of the phase diagram. The BEC

was then held between 10 ms and 2 seconds; always the longest time short of the

time necessary for population imbalances described by Mz to enter the system.

The Raman illumination and trapping potential were then released simultaneously,

the BEC expanded in TOF for 8 ms, we applied a magnetic field gradient for an

additional 10 ms and allowed another 10 ms of expansion before absorption imaging.

In this way we can extract the spin populations, the eigenminima populations (not

the same thing) and their spatial distribution. The BEC was then reinstantiated to

take another data point.

The rate of population transfer at 1st order phase transitions is maximal when

all the eigenminima are degenerate (triple degenerate) and declines as Ω2 is instan-
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tiated further and further away from degeneracy. The rate of transfer and the

measured width of the 1st order phase transitions scales as (ΩC
1 )2: we were able

to consistently measure the width to an accuracy of ~Ω2/50 (ΩC
2 ∝ (ΩC

1 )2) which

was limited by the timescale for substantial asymmetries in Mz to build up in our

system. We measured the width of a transition at Ω1 = 0.41(1)ER as shown in

Fig. (7.2) to be 0.0011(3)ER = h×4(1) Hz. The narrowness of this transition is the

result of an energetic penalty associated with condensation into multiple modes for

repulsively interacting bosons.

(ΩC
1 ,Ω

C
2 ) measured by experiment using the method described in this sec-

tion agreed well to those points predicted by the Floquet theory described in sec-

tion (6.6.4.1); our Floquet theory has no adjustable parameters. Our determination

of the coupling strength, described in section (6.6.2.1), was our greatest source of

error. By contrast, we compared our frequency sources to a Rubidium clock and as

a result we claim that we know ~Ω2 on the h× 1 Hz level.

7.4.2 2nd order phase transition

Horizontal scans were most useful crossing through the second-order phase transi-

tion. Since the angle of incidence to the line of phase transitions is very shallow for

the low Ω1 this measure is naturally less accurate for the 1st order phase transition

measurements. The same does not apply for the vertical scans of the second order

phase transition because the critical line becomes fairly linear at large Ω1 and has a

slope near −1. We used the horizontal scans to provide a qualitative understanding

of how the eigenminima split as Ω1 is ramped to smaller values across the phase

transition line. In addition, we are able to change Ω1 more smoothly than Ω2, 10 µs

verses 200 µs step rates, which results in less heating during relatively fast ramps.

We transferred atoms from |mF = −1〉 to |mF = 0〉 using rf to perform the

adiabatic transfer. Ω1 was then ramped for 10 ms to 8ER and was followed by an

additional 10 ms ramp of Ω2 from its initial value of 1ER to its final value (Ω2 < Ω∗2).
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a b

c

d

e

Figure 7.2: The measured phase transition. a Tensor magnetization
Mzz measured as a function of Ω1, showing both second-order [Ω2(Ω1 =
0) = −3.7500(3)ER] and first-order [Ω2(Ω1 = 0) = −1.0ER] phase tran-
sitions in comparison with theory. These curves followed the nominally
horizontal trajectories (see Methods Summary) marked by red dashed
curves in c. b Tensor magnetization measured as a function of Ω2 at
Ω1/ER = 1.86(6), 1.48(4), 1.01(3), 0.74(2), and 0.41(1), plotted along
with the predicted critical Ω2. In a and b the light-colored region reflects
the uncertainty in theory resulting from our ≈ 5% systematic uncertainty
in Ω1. c, d Phase transition. Black (red) symbols depict data obtained
using vertical (nominally horizontal) cuts through the phase diagram.
c, measured phase transitions plotted along with theory: solid (phase
transition), and green vertical line (tricritical point, Ω∗1). d, 20% to 50%
transition width showing the clear shift from first to second-order with
increasing Ω1. e Domain formation for Ω1 = 0.41(1) showing interaction-
driven spin structure near the first-order phase transition. In all images,
red corresponds to spatial regions with local Mz ≈ −1, the green regions
correspond to Mz ≈ 0 and the blue regions correspond to Mz ≈ +1. In
the polar regime at Mzz = 0.12 only the mF = 0 cloud is visible; near
the first-order phase transition at Mzz = 0.75 all three mF = 0 clouds
are visible and have partially phase separated; and in the ferromagnetic
regime at Mzz = 0.95 only mF ± 1 clouds are visible and they have
completely phase separated.
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We finally ramped Ω1 linearly to its final value, keeping the ramp rate fixed so that

a ramp from 8ER to 0ER takes 1 second. The BEC was held for an additional 50 ms

before performing the TOF steps outlined in section 7.4.1.

As shown in Fig. 7.2a Mzz increases suddenly but continuously from 0 for the

second order phase transition, only reaching 1 at Ω1 = 0. As we expect, the same

scan across the 1st order phase transition shows a relatively discontinuous change in

Mzz. Our horizontal scans were plotted in red in Fig. 7.2c. The widths in Fig. 7.2d

correspond to the range in Ω1 necessary for Mzz to fall from 0.5 to 0.2 of its full

value. This metric avoids measuring the shallow slope of Mzz vs Ω1 shown in panel

a but also avoids much of the noise near Mzz = 0, also shown in panel a for the

1st order phase transition. These widths quantitatively show the expected behavior

that as we cross over from 1st order phase transitions (with discontinuous jumps

in Mzz) to 2nd order phase transitions (where Mzz changes gradually away from

Mzz = 0) the apparent width in Ω1 dramatically increases.

7.4.3 Metastable

Systems ramped through a 1st order phase transition can remain in long-lived

metastable states. We showed that with differing ramp rates, 0.5 to 0.2ER/s, from

the unmagnetized to the magnetized portion of the phase diagram the transition

width continuously decreases with decreasing ramp rate as shown in Fig. (7.3).

This is consistent with slow relaxation from a metastable initial state.

We explored the full regime of metastability by counting the number of eigen-

minima that exist at each (Ω1,Ω2) in the phase diagram. For points near the first-

order phase transition three eigenminima exist (Fig. 7.4); near the second-order

transition this count decreases, giving two local minima which merge to a single

minimum beyond the second-order transition. We identified the case of one eigen-

minima when |Mz| = 0 and its variance was small. For two states, |Mz| > 0 and

its variance was also small. For three states, which might include populations at
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Figure 7.3: Quenching dynamics. The system was prepared in the un-
magnetized phase with Ω1 = 0.74(8)ER and Ω2 was ramped through the
phase transition at ramp-rates dΩ2/dt = −0.2,−0.3,−0.4, and −0.5ER/s
(blue, black, red, and green symbols, respectively). The curves are guides
to the eye. The inset shows the decreasing width, defined as the required
interval for the curve to fall from 50% to 20% of its full range, of the
first-order transition as the ramp-rate decreases.

Mz = 0 and Mz > 0 simultaneously, we would measure |Mz| > 0 with large vari-

ance. In this way we fully mapped the system’s metastable states in agreement with

theory, as shown in Fig. (7.4).

In many cases, population transfer from these metastable states was quite fast

and neared the optical dipole trap period aligned with the SOC ∼ 2π/ωtrap. This re-

quired us to prepare the metastable state quickly relative to this relaxation time and

yet ramp Ω1 slowly enough that the metastable state remained near its local equi-

librium. We found that the rate . 200ER/s was a good compromise between these

two requirements for evolution through most of parameter space. However, unlike

the 1st order phase transition–which we can diabatically ramp through–we cannot

rapidly ramp through the 2nd order phase transition because the quasimomenta

associated with each eigenminimum rapidly changes. Although a local metastable

minimum might exist there would be sloshing and heating as if it did not. For this

reason, we ramp very slowly through the 2nd order phase transition and rapidly

elsewhere.
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Figure 7.4: Metastable states. Top, Measured magnetization plotted
along with theory. The system was prepared at the desired Ω2 = −2ER;
Ω1(t) was then increased to its displayed final value; during this ramp Ω2

also changed, and the system followed the curved trajectory in the bot-
tom panel. Each displayed data point is an average of up to 10 measure-
ments, and the colored region reflects the uncertainty in theory resulting
from our ≈ 5% systematic uncertainty in Ω1. Circles/crosses/stars rep-
resent data starting in mF = +1, 0, and −1 respectively. Bottom, state
diagram: theory and experiment. Blue: two states; black: three states;
white: one state. Colored areas denote calculated regions where the
color-coded number of stable/metastable states are expected. Symbols
are the outcome of experiment. Each displayed data point is an average
of up to 20 measurements.
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7.5 Many-body physics

Collisional processes (2-body interactions) are necessary for the evaporative and

damping processes that allow Bose-Einstein condensation in the eigenminima of our

coupling. In addition, these processes enable population transfer from metastable

eigenminima to the ground eigenminimum. Hence, interactions are critical for un-

derstanding the magnetic-like phase transitions in our system.

7.5.1 Spin-orbit coupled Gross-Pitaeveskii Equation

Our quadratic Zeeman shift is much larger than the spin interaction energy ≈
h × 90 kHz � h × 6 Hz and as such the spin interaction terms which exchange

|mF = 0〉 ↔ |mF = ±1〉 are energetically forbidden. We organize the remaining

interaction coefficients into a three component matrix

g =




c0 + c2 c0 + c2 c0 − c2

c0 + c2 c0 c0 + c2

c0 − c2 c0 + c2 c0 + c2


 (7.6)

where c0 =(100.86)×4π~2aB/m and c2≈−4.7×10−3c0. The spin-orbit coupled GPE

is then described by a system of three coupled equations

i~∂tψσ(x) =
∑

σ′

[
~2∇2

2m
δσ,σ′ + V (x)δσ,σ′ + (Ω1(x)·F̂)σ,σ′ + (Ω2F̂

(2)
zz )σ,σ′

]
ψσ′(x)

(7.7)

+
∑

σ′

Ngσ,σ′|ψσ′(x)|2ψσ(x)

which computes the time evolution of the spinor wavefunction ψσ(x), normalized

to
∫

dx
∑

σ |ψσ(x)|2 = 1. It is more correct to add normal ordering to the bosonic

operators in the interaction term but the correction is very small for our typically
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N = 500000 condensate occupation of the ground-state mode.

In simulation, the wavefuction is time evolved on a 3D or 3D projected onto

2D (via integration of a spatial axis) set of sites. Since these computations can be

time consuming, it is desirable to transform out as much of the time dependence as

possible. Hence, we perform the rotating frame and gauge transformations Û(x, t)

in section 6.4 and diagonalize the single particle Hamiltonian

ψσ(x) = Ûσ,σ′(x, t)F−1[Ûσ′,n(q)ψn(q)]; (7.8)

where Ûσ,n(q)†Û †σ′,σ(q, t)HÛσ′,σ′′(x, t)Ûσ′′,n′(q) diagonalizes the Hamiltonian. One

approach to evolving a GPE with time is to use a split time propagation method [89]

where we Fourier transform the wavefunction and Hamiltonian to compute the cou-

pling kinetic energy parts of the Hamiltonian. In the case of spin-orbit coupling

it is necessary to fourier transform from the spin states with gauge and rotating

frame transformations applied, then transform to single particle eigenstates of the

spin-orbit coupling. In this case, the potential and interaction terms are calculated

in the transformed spin basis while the kinetic energy and optical coupling terms

are computed in the Fourier and eigenstate basis. The same wavefunction is time

evolved by two GPEs, one after the other

i~∂tψ′σ(x) =V (x)ψ′σ(x) +
∑

σ′

Ngσ,σ′|ψσ′(x)|2ψ′σ(x) (7.9)

i~∂tψn(q) =εn(q)ψn(q) (7.10)

where ψ′σ(x) = Uσ′,σ(x, t)ψσ(x) is the gauge transformed wavefunction in the rotat-

ing frame, ψn(q) = U †σ,n(q)F [ψ′σ(x)]. The transformation in Eq. (7.8) can be ex-

tremely computationally expensive but we still win because now our stepsize must

be small in comparison to c2n/h and 1/ωtrap rather than 1/Ω1.
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7.5.2 Free energy with interactions

The contribution to the free energy from interactions is given by

Gint =

∫
dxNgσ,σ′ |ψ′σ(x)|2|ψ′σ′(x)|2. (7.11)

We want to know how the free energy is modified as a function of Mz and Mzz. Since

the condensate wavefunctions are strongly peaked in k it is convenient to write an

approximate and local overall condensate wavefunction for the ground eigenstate

n = 0 in momentum coordinates

ψ′(q) =
[
η1e
−iγ1δ(q − q1) + η2e

−iωtδ(q − q2) + η3δ(q − q3)
]
φ(q) (7.12)

where η2
1, η2

2, and η2
3 are the fraction of the total population collected in each eigen-

minima, q1,2,3 are the quasimomenta at each local minimum in the free energy, ~ω

is the energy difference between the central and outer eigenminima, and φ(q) is the

eigenstate of the spin-orbit coupling at quasimomentum q. If we were to define

phases (other than 0) for the components at q2 and q3 the free energy would be a

function of 2γ2 − γ1 − γ3.

Plugging ψ(q) back into Eq. (7.11), we find the free energy in position space

ψ(x, t) = ei[q1x−γ1]φq1(x) + ei[q2x−ωt]φq2(x) + eiq3xφq3(x). (7.13)

We were are able to treat the overall density profile as a delta function in quasi-

momentum because its ≈ 10 µm extent dramatically exceeds the periodicity of the

plane waves λ/2. |ψ(x)|2 corresponds to a spin vector with small sinusoidal modu-

lations in each spin component. The amplitude of these modulations is Ω1/3. Since

these modulations are squared in Eq. (7.11) the interaction energy increases with

the square of the modulation amplitude (∝ Ω2
1). The phase γ1–only relevant when
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condensates occupy three eigenminima and spatially overlap–allows some terms in

the free energy to destructively interfere: reducing the increase in the free energy

from what might be expected of a two state spin-orbit coupled system system [7].

7.5.3 Miscibility

The spin-orbit coupling modification of the interactions depends upon the exact

distribution of η2
1, η2

2, and η2
3 as well as ~ω. We find an effective interaction strength

by integrating over one period of the spin-orbit coupling modulation

geff =

∫ 4π/(q1−q3)

0

dxgσ,σ′|φσ(x, t)|2|φσ′(x, t)|2 (7.14)

where ψ(x, t) = Nφ(x, t); and

φ(x, t) = η1e
i[q1·x−γ1]φ(q1) + η2e

i[q2·x−ωt]φ(q2) + η3e
iq3·xφ(q3). (7.15)

It is the spatial modulation of the density that occurs when more than one eigen-

minimum in the spin-orbit coupling dispersion is occupied that modifies the effective

interaction strength. We want to compare the effective interaction strength for a

mixed system to gsep of a BEC where the eigenminima components are spatially

separated

gsep = g
η2

1
1 g

η2
2

2 g
η2

3
3 (7.16)

Unlike geff , gsep is simply a reflection of the spin-composition of the eigenstate at the

eigenminima and therefore varies on the order of c2. By analogy with the miscibility

condition geff ≤ g
1/2
1 g

1/2
2 where η2

1,2 = 1/2 we might expect to be able to define an

equivalent miscibility condition for the three state system using gsep. The utility

of such an expression for the two component case can be seen in Fig. 7.5 where as

the effective 2-state interactions (red squares) cross g
1/2
1 g

1/2
2 (red dotted line) with
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increasing Ω1 the immiscibility shown in panel b sharply increases.

Using the same intuition, 3-state interactions (blue circles) should undergo an

increase in immiscibility as η2
2 sweeps from above 0.5 to below when η2

1 = η2
3 and

Ω1 > 1.7ER: this was not observed (nor was it plotted in Fig. 7.5) in experiment.

Instead, we plotted the immiscibility of our condensates when the η2
2 ≈ 0.5, η1,3 ≈

0.25. The relatively smaller immiscibility of the three state vs two state SOC BEC

components suggests that γ1 is closer to π (filled blue circles) than 0 (open blue

circles).
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Figure 7.5: (a) Effective interaction coefficient as a function of Ω1.
Three state miscibility depends strongly on relative spin population,
here: η2

2 = 0.75 and η2
1,3 = 0.075; and a phase γ1 = 0 (empty cir-

cles) and γ1 = π (filled circles). The solid trace is g
η2

1
1 g

η2
2

2 g
η2

3
3 which is

proportional to the free energy when the BEC components are spatially
separated. Red squares show the interaction coefficient when a mixture
η2

1,2 = 0.5 is present. The red dotted line shows g
1/2
1 g

1/2
2 (b) Using the

measured condensate component densities the immiscibility was calcu-

lated using the metric 1 − n1,3(x)n2(x)/
√
n1,3(x)2 + n2(x)2. We plot-

ted the immiscibility of n2 = |φq2(x)|2 with n1,3 = |φq3(x)|2 + |φq1(x)|2.
2-state spin-orbit coupled immiscibility (red circles) determined using

1− n1(x) ∗ n2(x)/

√
n1(x)2 + n2(x)2 has a much clearer turn on with re-

spect to Ω1 and quickly reaches higher immiscibility than the fully three
state version.

We might hypothesize that the measured miscibility should vary substantially
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as we detune in Ω2 from triple degeneracy because the increasing time evolution in

γ1 would spoil the destructive interference in geff . The experimental results were

inconclusive since the rate of population transfer from an initial preparation in

φq2 slowed down, making this a less desirable mechanism for tripartite mixture

preparation (usually the population of only one of the three states would dominate).

We attempted to initialize the system with a tripartite mixture and domains already

present, but this resulted in substantial thermalization for quick initializations ≈
10 − 20 ms and substantial population transfer with some thermalization for long

initializations ≈ 30 − 50 ms (the boundary between short and long turn-on times

was defined by our ≈ 30 Hz trap frequencies along the Raman coupling).

7.5.4 Free energy with interactions

Unlike the two-state spin-orbit coupling a portion of the three state coupling may be

turned on and off by tuning Ω2 relative to the single particle triple degeneracy Ω∗2:

Ω∗2 depends upon the exact value of Ω1. This is physically similar to the introduction

of a time modulation of γ1 whose frequency increases with detuning. In addition,

because our Raman coupling breaks spin symmetry, the system may relax to a lower

energy configuration of eigenminima through two mechanisms of which we are aware:

1. a purely collisional process which is sensitive to the single particle spectrum at

the h× Hz level and changes Mzz. The maximum rate of population transfer

should be 2(Ω/3ER)2c0n0/h.

2. a slower process that allows Mz population imbalances and whose relaxation

rate is strongly tied to our optical dipole trap frequencies (it is possible that

the only dipole frequency that matters is the one aligned with the Raman

coupling).
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The per particle free energy of our system may be determined variationally

with respect to η1, η2, η3, and γ1

G(Mz) = ε1|φq1|2 + ε2|φq2|2 + ε3|φq3|2 + n(0)geff(η1, η2, η3, γ1) (7.17)

and computed for all Ω1 and Ω2; where N |φq1|2 = n1(x), the density for the eigen-

minimum located at q1.

In practice, the free energy is always minimized for γ1 = π and the fractional

populations are not independent, leaving just two variational parameters. The free

energy plotted in Fig. 7.6 is generally minimized when the BEC is almost entirely

in φq2 or φq1 or φq3 ; domains are metastable, hence when domains are present the

free energy is not minimized. Near the triple degenerate line which exists along the

first order phase transition it is energetically favorable for small amounts of other

eigenminima components to be uniformly mixed in with the dominant spin-state:

this is emphasized in the color scales of Fig. 7.6bc which focus on a very small range

near |Mz| = 1 and 0, respectively.
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Figure 7.6: These plots use a variational method, essentially adjusting
spin populations to minimize the free energy with the single-particle en-
ergies and interactions at peak density n(0): there are density dependent
shifts not visible in these plots. (a) Plot of |Mz| that minimizes free en-
ergy for every point (Ω1,Ω2): colored is |Mz| > 0. For Ω1 < Ω∗, |Mz|
changes discontinuously while for Ω1 > Ω∗ the transition is abrupt but
continuous. (b) We subtract the line of critical points (ΩC

1 ,Ω
C
2 )–the red

line–from the free energy. Interactions shift the location of triple degen-
eracy very slightly from the single particle spectrum. (c) The same plot
for 1− |Mz|.
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There is a small shift due to the spin and density dependent interactions, this

is of order c2n(0) = h × 6 Hz. In the case where the condensate is prepared at Ω2

between the single-particle triple degenerate line (the red line) and the interaction

shifted triple-degeneracy at peak density n(0) (the border between the blue and the

white in Fig. 7.6) different density regions of the condensate are minimized with

vastly different eigenminima composition. Figure 7.7a shows the eigenminima de-

pendent shift ≈ c2n(r) in the free energy as a function of position. When the cloud

is offset from the single particle triple degeneracy, the white dot in panel b, the

eigenminima dependent shift can cause the high density regions of the condensate

to cross triple degeneracy: the condensate has a position dependent eigenminima

composition as shown in panels c and d. Alternatively, we may consider the equiv-

alent scenario in Fig. 7.6b where the interaction dependent shift (highlighted with

the white double sided arrow) shrinks and expands proportional to density. For a

system initially prepared in φq2 , the highest density regions of the condensate pop-

ulate φq3 +φq1 which then experience a modulational instability that drives them to

spatially separate, Fig. 7.7cd.

We might claim that the ≈ c2n(r) shift is very small and hence we should

be able to test our interpretation for cloud structures like those in Fig. (7.6)cd by

observing the donut shape within a several Hz band in Ω2 and not elsewhere. Exper-

imentally, this donut pattern occurs over a much wider band in Ω2, essentially the

width of our 1st order phase transitions ≈ ΩC
2 /50, which might not be unexpected

considering the non-zero immiscibility shown in Fig. (7.5). This would imply that

some other physics is at play here than simple ground state minimization.

7.5.5 Hysteresis

Preparing our system in φq2 then ramping across the 1st order phase transition

causes population transfer to φq3 +φq1 which subsequently phase separate. Ramping

back across the phase transition uses the same collisional process in reverse, φq3 +φq1
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Figure 7.7: The differential shift between spin-state interactions are
responsible for the displacement of the 1st order phase transition from
single-particle triple degeneracy. (a) We show a condensate in the q2

eigenminima near single particle triple degeneracy. The eigenminimum
dependent shift causes the high density region of a condensate to cross
the overall triple degeneracy (red line). (b) Equivalently, the interaction
shift is denoted by the double-sided white arrow. This region shrinks
and expands as a function of density past the white dot, which repre-
sents the location of our condensate. (c) Pictures of eigenminima spatial
distribution at a snapshot in time. Note the donut shape in φq2 . (d)
Cross-sections through the center of the condensate density distribution
(see panel (c)) which descend as time increases. Note that population
forms in φq3 +φq1 and then spatial separation of the components occurs.
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becomes φq2 . Because φq3 and φq1 have phase separated, population transfer to φq2

only occurs along the φq3 +φq1 boundary and hence the reverse ramp is much slower

than the forward ramp. Data for the reverse ramp is also extremely variable, hence

we took data almost exclusively using the forward ramp.
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Chapter 8: Rashba

We theoretically explore a Rashba spin-orbit coupling scheme which operates en-

tirely in the absolute ground state manifold (5S1/2 electronic, f = 1 hyperfine) of

87Rb, thereby minimizing all inelastic processes. Our technique uses far-detuned

“Raman” laser coupling to create the Rashba Hamiltonian. For a given coupling,

intense illumination and large detuning suppress spontaneous emission. At the same

time, coupling that changes mF magnetic sublevel quantum number by two is also

suppressed: this coupling is necessary to produce the Rashba Hamiltonian within

a single total angular momentum f manifold. However, the same optical couplings

can link the three XYZ states familiar to quantum chemistry. We show that the

XYZ states are essentially the eigenstates of 87Rb in the presence of a quadratic

Zeeman shift coupled by a strong radio-frequency magnetic field. We perform a full

Floquet analysis on the required laser coupling scheme.

8.1 introduction

Geometric gauge potentials are encountered in many areas of physics [90, 91, 92, 93,

94, 95, 96, 97, 98]. In atomic gases, the geometric vector and scalar potentials were

first considered in the late 90’s to fully describe atoms “dressed” by laser beams [99,

100, 101]. Atoms that move in a spatially varying internal state dependent dressed

optical field experience geometric vector and scalar potentials in addition to the

energies associated with the local eigenenergies. These ideas have since been refined,

and now allow for the engineered addition of spatially homogeneous geometric gauge

potentials [7, 8, 9]. In many cases, the resulting atomic Hamiltonian is equivalent to
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iconic models of spin-orbit coupling: Rashba, Dresselhaus and combinations thereof.

As made evident by the observation of the superfluid to Mott insulator tran-

sition [102, 103], with quantative agreement with theory [104, 105], quantum gas

systems bring atomic physics’s hallmark precision to many-body systems. Often,

systems with spin-orbit coupling will have multiply degenerate single particle eigen-

states with topological character: this combination suggests that strongly correlated

phases will exist in the presence of interactions for both Bose and Fermi systems.

Topological insulating states and the spin-Hall effect are often present in spin-orbit

coupled systems [11, 12]. Rashba spin-orbit coupling (present for 2D free electrons

in the presence of a uniform perpendicular electric field, such as in asymmetric semi-

conductor heterostructures) [106, 107], is perhaps the simplest of these 2D spin-orbit

couplings. Indeed, interesting many-body phases [108, 68, 109] predicted for atomic

systems with Rashba SOC include unconventional and fragmented Bose-Einstein

condensation [18], composite fermion phases of bosons [19] and anisotropic or topo-

logical superfluids in fermionic systems [110].

8.1.1 Rashba SOC

The simplest model of Rashba spin-orbit coupling describes a 2D free electron system

in terms of electron momentum ~k and gyromagnetic ratio g in the presence of an

out-of-plane electric field E(t) = Eez. We consider the electrons relativistically: in

the electron’s moving frame an in-plane magnetic field BSOC = ~k/m×E/c2 appears

in proportion to momentum, as shown in Fig. (8.1). The additional contribution to

the spin-1/2 electron’s Hamiltonian from BSOC is

ĤSOC =
2α

m
(k× ez) · F̂ (8.1)

where α = gµB|E|/2c2; F̂ = ~σ̂/2 is the spin operator for spin-1/2; and σ̂ =

(σ̂x, σ̂y, σ̂z) is the vector of Pauli matrices. As shown in Fig. (8.1)ab, this Hamilto-
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Figure 8.1: Rashba dispersion. (a) Dispersion cross-section through
the origin. Electron energies are minimized for |p| 6= 0. (b) Contour
plot of dispersion demonstrating cylindrical symmetry. (c) Vector plot
of BSOC = ~k/m × E/c2: the ground state electron spin is antialigned
with B. A spin following an adiabatic path about the dispersion origin
traces out a loop about the equator of the Bloch sphere, producing a π
phase winding.

nian has a highly degenerate ground state manifold comprising a ring of momentum

states with magnitude k2
x+k2

y = α2. Centered in this ring, where k = 0, there exists

a Dirac point which connects the eigenstates of the Rashba Hamiltonian.

Ignoring overall energy shifts, the Hamiltonian including ĤSOC and the kinetic

energy can be reexpressed as Ĥ = (~k − Â)2/2m, in terms of an effective vector

potential Â = α(σ̂yex − σ̂xey). The Cartesian components of the vector potential

manifestly fail to commute: the vector potential is non-abelian.

In this context, Berry’s connection describes the phase accumulated by a par-

ticle moving adiabatically within one of two eigenstates |Q,±〉 along a closed trajec-

tory Q in the plane defined by the momentum vector ~k = ~(kx, ky). The acquired

Berry’s phase

γ± =

∮

Q
dQ〈Q,±|∇Q |Q,±〉 (8.2)

is ±π for paths Q that encircle k = 0 and zero otherwise. This Berry’s phase

can introduce non-trivial interference effects for wavefunctions or trajectories that

encircle k = 0.
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Figure 8.2: Schematic view of laser geometry giving spin-orbit coupling
of three spin states. (a) 3D sketch of three lasers illuminating cold atoms.
Dotted red lines correspond to the wavevector differences between beams
|kβ,β′| where β = {1, 2, 3} indexes lasers. Small grey lines show relation-
ship of |Kβ| magnitude with 3D geometry. (b) 2D view of a pair of
Raman lasers. For a geometry that has 90 degrees between all Raman
lasers the magnitude of |kβ,β′| =

√
2kr. (c) There are a range of ac-

ceptable example for Kβ, e.g. Kβ = kreβ, the parameterization in this
panel has the benefit of not displacing the dispersion along a momen-
tum axis that is not Raman coupled and giving the minimum possible
magnitude for |Kβ|. The minimum magnitude is |Kβ| =

√
2/3kr given

|kβ,β′| =
√

2kr.

8.2 Rashba SOC in cold atoms

8.2.1 Overview

In ultracold neutral atoms, SOC is produced using laser fields, for example with

two-photon Raman transitions that couple internal spin states such as the hyperfine

|f,mF 〉 states in alkali atoms. We consider several lasers, each labeled by an index

β, illuminating an atom with ground electronic states |j〉. The wavevectors of all the

lasers share the same magnitude kR, but propagate along different unit vectors eβ.

The Raman coupling, with strength Ωj,j′,β,β′ , from any pair of those lasers imparts

a two-photon recoil momentum, ~kβ,β′ = ~kR(eβ − eβ′). Figure (8.2) illustrates the

relationship between laser recoil ~kreβ, and Raman recoil ~kβ,β′ . The Hamiltonian

121



describing Raman coupling in this general form is

Ĥ(k) =
∑

j,j′

{[
~2k2

2m
+ Ej

]
δj,j′ (8.3)

+
∑

β 6=β′
~Ωj,j′,β,β′ exp (i[kβ,β′ · x− ωβ,β′t− γβ,β′ ])(1− δj,j′)

}
|j〉 〈j′|

where Ej is the energy of state |j〉 prior to laser-coupling, −ωβ,β′ = ωβ − ωβ′ is the

difference between the positive and real angular frequency of each laser ωβ/2π, and

γβ,β′ = γβ − γβ′ is the difference between each laser’s phase γβ.

We consider the case where the Raman coupling resonantly links states in a

ring: each pair of states resonantly coupled with a unique Raman pair of lasers and

each state is Raman resonantly coupled to exactly two other states. We adopt a

cyclic labelling so that |j ±N〉 = |j〉 and require that coupled states are adjacent

in j.

Often, transitions are forbidden, which dramatically reduces the number of

atomic states coupled to one another. Ignoring the consideration that some of

these transitions might be forbidden, when there are N atomic states N lasers can

resonantly couple each atomic state to N −1 other atomic states. For N > 3 states,

more than N lasers is required to reduce the number of resonant couplings. In the

case where the number of lasers exceeds the number of resonantly coupled atomic

states it is convenient to define the resonance conditions

−~ωj,j′ = Ej − Ej′ (8.4)

(8.5)

where ωj and ωj,j′ are now indexed with respect to the atomic states. When the

number of lasers exceeds the number of resonantly coupled states there is more than
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one ωj for at least one j. We compensate by defining multiple offset frequencies, ωL

~(ωL − ωj) = −Ej (8.6)

If we follow the chain (loop) of resonant couplings we require that

kj,j′ = Kj −Kj′ (8.7)

N−1∑

j=0

kj,j−1 = 0. (8.8)

While there is some leeway in the definition of Kj, it is always possible to define it

as the wavevector of the laser that has a frequency of ωj.

We apply a unitary transformation

Û(x, t) =
∑

j

exp (i[Kj · x− (ωL − ωj)t]) |j〉 〈j| , (8.9)

which is both a rotating frame and a gauge transformation, that transfers the time

and position dependence from the Hamiltonian to the states. In the rotating frame,

the Hamiltonian gains an extra term

∑

j

~(ωL − ωj) |j〉 〈j| = −i~Û †(t)∂tÛ(t) (8.10)

from the time-dependent Schrödinger equation. The position dependence of the uni-

tary transformation does not commute with the kinetic energy term of the Hamil-

tonian Ĥ(q) = Û(x, t)Ĥ(k)(k)Û †(x, t), and instead U acts as a spin-dependent

momentum-displacement operator:

e−iKj ·xk2eiKj ·x = (q−Kj)
2 (8.11)

where q is the momentum operator in the momentum-displaced basis.
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Altogether, the modified Hamiltonian has the form

Ĥ(q) =
∑

j,j′

{[−~2(q−Kj)
2

2m
+ (Ej − ~(ωL − ωj))

]
δj,j′ (8.12)

+ ~Ωj,j′ exp (−iγj,j′)δj−1,j′ + h.c.

}
|j〉 〈j′|

where Ωj,j′ is an ac Stark shift-like term which is a positive or negative real number

whose value depends upon details of both the lasers and the states they couple. The

value of ωL is made evident here because it allows us to set the scalar energy for

each uncoupled atomic state to zero after the rotating frame transformation.

The resonance conditions in Eqs. (8.4, 8.6) require that
∑N

i=1 ωi,i−1 = 0 in

a system of N coupled states. The same is not the case for the phase, instead
∑N

i=1 γi,i∓1 = ±Nγ̄. γ̄ strongly modifies the eigenstates of the Hamiltonian in

Eq. (8.12) and tuning it can bring two eigenstates into degeneracy. It is in the

subspace of two degenerate eigenstates that the Rashba Hamiltonian may be realized

in a cold atom system.

8.2.2 Rashba subspace

We obtain the Rashba subspace from Eq. (8.12) by applying a discrete Fourier

transform to the N cyclically defined states |j〉 where j indexes spin states from 1

to N and n indexes Fourier eigenstates from 0 to N − 1

|n〉 =
1√
N

N∑

j=1

exp (−i2πjn/N) |j〉 (8.13)

This transformation maps the off-diagonal terms onto the diagonal of the Hamil-

tonian and the differences between diagonal terms to the off diagonal. When

Kj = keff [cos (2πj/N)ex + sin (2πj/N)ey] are the vertices of an equilateral trian-

gle and when all the resonant coupling amplitudes are both negative (red detuned)
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and equal Ωj,j′ = −Ω(δj,j′+1 + δj,j′−1) the Hamiltonian in the Fourier basis becomes

Ĥ =
N−1∑

n=0

[
~2q2

2m
− Ω cos (2πn/N + γ̄)

]
|n〉 〈n| (8.14)

+
~2keff

m
[(iqx + qy) |n〉 〈n− 1|+ h.c.] .

Each laser wavevector can have an identical component along ez in momentum

space, kr sin (θ)ez: then keff = kr cos θ.

The energies of Fourier basis states, Ĥ |n〉 = En |n〉, at q = 0 are En =

−Ω cos (2πn/N + γ̄). When the laser phase accumulated over a loop of coupling

Nγ̄ is π two Fourier basis states are degenerate and the ground state of the system.

This degeneracy requirement implicitly includes the sign of Ωj,j′ where −1→ exp iπ

which sums to Nπ over a loop of coupling. Hence, for odd N and positive Ωj,j′ the

accumulated laser phase degeneracy requirement changes to γ̄ = 0. The sign of Ωj,j′

is tied to the Raman detuning from the excited electronic states: we call detunings

that produce negative Ωj,j′ red detuned; the positive case is blue detuned.

With two nearly degenerate Fourier basis states as the ground states we neglect

the most energetic state and recover the two-state Rashba Hamiltonian in the large

coupling limit Ω� |kj,j′|2/2m ≡ ER

Ĥsub =
~2q2

2m
1̂ +

2~kr
m

(σ̂xqy − σ̂yqx) (8.15)

where 1̂ is the identity for a two state system.

8.2.3 Physical implementation and limitations

It is not always easy to see how γ̄ may be engineered into the electronic ground

states of an alkali atom with Raman coupling. The laser phase accumulated over a

loop of coupling Nγ̄ = 0 when three lasers resonantly couple three states. In this

case, a unitary transformation of the form given by Eq. (8.9) can always transfer
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Figure 8.3: Schematic view of spin-orbit coupling in the spin-1 ground
state of 87Rb. (a) In current experiments, the same Raman lasers simul-
taneously couple pairs of adjacent spin states. Momentum transfers in
the quasimomentum basis are arranged in a line. (b) For Rashba spin-
orbit coupling, all pairs of spin states are independently coupled and
momentum transfers in the quasimomentum basis are the vertices of an
equilateral triangle.

the laser phase differences from the Hamiltonian into the definition of the states.

This consideration is very compelling from an experimental perspective since small

variations in the pathlength of each laser cannot produce dramatic changes in the

potential. The Rashba subspace are the ground states of the system when γ̄ = 0

so long as the Raman coupling is blue detuned (positive and real). Three-state

laser schemes that produce the Rashba Hamiltonian with the geometry shown in

Fig. (8.3)b, without laser phase sensitivity, are blue-detuned ‘tripod’ schemes [71]

and a special case of ring coupling [111].

Direct Raman coupling of the hyperfine ground states of alkali atoms with

off-resonant coupling of the electronic excited states cannot couple differences be-

yond ±1 units of angular momentum: ΩmF=−1,mF=+1 = 0: coupling as shown in

Fig. (8.3)a is possible, while coupling as shown in Fig. (8.3)b is not. Detuning near

the excited electronic hyperfine states lifts the angular momentum restriction suffi-

ciently to realize the a coupling scheme similar to Fig. (8.3)b but spontaneous emis-
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sion events also sharply increase as a fraction of coupling: atomic ensemble lifetimes

become much shorter than typical equilibration times. Consequently, we consider

Raman lasers many thousands of linewidths detuned from the hyperfine resonances:

reducing spontaneous emission to levels that allow ≈ 1 s of equilibration. Recent

proposals circumvent the 0,±1 angular momentum transfers by including states

from both f manifolds (ground and metastable) within the ground electronic states

of alkali atoms [14] and a blue-detuned tripod scheme was experimentally realized

in this context []. Although feasible, hyperfine (f) changing collisions are expected

to lead to rapid atom-loss and heating, potentially decohering fragile many-body

phases. Here, we detail a scheme that produces the Rashba Hamiltonian entirely

in the f = 1 ground state manifold of 87Rb and hence minimizes known forms of

heating.

8.3 Physical Implementation

8.3.1 Construction of a fully coupled set of basis states

In the previous section we found that Raman coupling is proportional to F̂, which

limits coupling to the first off-diagonal within or between the ground hyperfine

manifolds. In this section, we show that rf coupling applied in the presence of

a quadratic Zeeman term produces a set of initial eigenstates where every pair

of states may be Raman coupled. The energies EmF for bare spin states |f,mF 〉
may be calculated with precision better than h × 1 Hz using the Breit-Rabi (BR)

equation. For the remainder of this manuscript we narrow our discussion to the

f = 1 ground hyperfine manifold of 87Rb and adopt the simplified notation |mF 〉
with mF ∈ {−1, 0,+1} to label spin states. The quadratic Zeeman splitting is

ε = (2E0 − E−1 − E+1) while the linear Zeeman splitting is ~∆Z = (E−1 − E+1)/2.

We introduce the |X, Y, Z〉 = |X〉 , |Y 〉 and |Z〉 eigenstates, familiar from quan-

tum chemistry, which consist of linear combinations of |mF 〉 states in the f = 1
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hyperfine manifold

|X〉 =
− |−1〉+ |+1〉√

2
, |Y 〉 = i

|−1〉+ |+1〉√
2

, , and |Z〉 = |0〉 (8.16)

These |X, Y, Z〉 states have the property that

εjlmF̂j |l〉 = i |m〉 (8.17)

for indices j, l,m in {x, y, z}.
XYZ-like states can be eigenstates of an alkali atom in a dc magnetic field

subject to a suitable oscillating magnetic field Brferf cos (ωrf + γrf) that resonantly

links the mF = ±1 projections of the spin-1 basis states in the presence of quantizing

magnetic field, Bdcez. The rf coupling is described by

Ĥrf = gFµ0(F̂ · erf)Brf cos [ωrft+ γrf ]/~ (8.18)

where erf is orthogonal to Bdcez and the frequency is set equal to the two rf photon

resonance ~ωrf = ~∆Z = (E−1 − E+1)/2. We transform the spin states into the

rotating frame of the rf using the transformation

Ûrf(t) = exp (−iωrfmF t) |mF 〉 〈mF | (8.19)

The rotating frame Hamiltonian gains a term ~ωrf = −i~Û †rf(t)∂tÛrf(t) from the time

dependent Schrödinger equation. In the rotating frame and after making the RWA,

the Hamiltonian that describes the dc and rf magnetic fields is

ĤB =(∆Z − ωrf)F̂z + ε(1̂− F̂ 2
z ) (8.20)

+Ωrf

[
F̂x cos (γrf + ξrf) + F̂y sin (γrf + ξrf)

]

where ~Ωrf = gFµBB/2. The phase ξrf = atan(erf · ey/erf · ex) is defined in exactly

128



the same spirit as in the previous section, however we will ultimately choose a set

up where there are canceling contributions from ξrf . The rf eigenenergies Ej of the

Hamiltonian in the presence of the rf magnetic field are plotted verses dc magnetic

field in Fig. (8.4)b. We represent our rf eigenstates |x, y, z〉 in terms of the |X, Y, Z〉
states: these are adiabatically connected as ε/Ω→ −∞

|x〉 = |X〉 ε/Ω→−∞−−−−−→ |X〉

|y〉 =
−i2Ωrf |Y 〉+ ε+ Ω∗ |Z〉
√

2Ω∗

√
1 + |ε|

Ω∗

ε/Ω→−∞−−−−−→ |Y 〉

|z〉 =
−i2Ωrf |Y 〉+ ε− Ω∗ |Z〉
√

2Ω∗

√
1− |ε|

Ω∗

ε/Ω→−∞−−−−−→ |Z〉 .

Here we defined Ω∗ =
√
ε2 + 4Ω2

rf.

We couple these eigenstates with weak and resonant additional couplings, rf

or Raman, i.e. couplings much smaller than Ωrf . We define a rf eigenstate coupling

operator

D̂l
j,j′ = |j〉 〈j| F̂l |j′〉 〈j′| , D̂l =

∑

j,j′

Dl
j,j′ (8.21)

which gives the representation of F̂ in the rf eigenbasis. The D̂x and D̂y terms may

be transformed into one another by changing the rf phase in Eq. (8.20): we choose

the phases γrf + ξrf = 0 while defining the matrix elements, and we incorporate the

rf phases into the definition of the total coupling in the next section.

We tabulate some of the complex-valued matrix elements 〈j| D̂l |j′〉 of the
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Figure 8.4: (a) Breit-Rabi calculation of the energy dependence of the
magnetically sensitive spin-1 states. A rf magnetic field with ampli-
tude 1 Gauss (G) applied within the ex − ey plane links |mF 〉 states
split by a dc field Bdc = 36 G. (b) In the frame rotating with the os-
cillating magnetic field the coupling opens gaps between the rf eigen-
states, |x〉 , |y〉 , and |z〉. These eigenstates are linked with resonant
Ωy,x, Ωz,y, and Ωx,z+h.c. Raman coupling.

operator D̂l which link pairs of rf eigenstates

〈x| D̂y |z〉 =i~
√

1− (ε/Ω∗) (8.22)

〈y| D̂z |x〉 =
2~(Ωrf/Ω∗)√

1 + (ε/Ω∗)
(8.23)

〈z| D̂x |y〉 =
√

2~(ε/Ω∗) (8.24)

where we see that Ω∗ sets a scale of energy. The matrix elements in Eq’s (8.24) and

(8.22) replace instances of Fx and Fy while Eq (8.23) replaces instances of Fz.

8.3.2 Raman coupling rf eigenstates

In the previous section, we defined a relationship between the rf eigenstates |x, y, z〉,
the |X, Y, Z〉 states of quantum chemistry and the spin states. This section finds the

Hamiltonian for rf eigenstates that are linked by weak Raman coupling. With the

rf rotating frame transformation, Ûrf , from Eq. (8.19), the Raman optical coupling
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from Eq. (6.3), and the Raman eigenstate coupling operator from Eq. (8.21) the

effective coupling in the rf eigenbasis is

Ĥeff =
∑

β 6=β′
Ω⊥β,β′

(
D̂x cos [Φβ,β′ + ωrft+ γrf + ξrf − ξβ,β′ ] (8.25)

−D̂y sin [Φβ,β′ + ωrft+ γrf + ξrf − ξβ,β′ ]
)
θ(ωβ,β′)

−ηβ,β′Ω||β,β′D̂z sin [Φβ,β′ ]

We apply the RWA to discard the terms that do not satisfy

−~(ωj,j′ ± ~ωrf(δj,z − δj′,z)) = Ej − Ej′ (8.26)

~(ωL − ωj) = Ej ± ~ωrfδj,z (8.27)

where Ej are the rf eigenenergies. The upper (lower) sign choice corresponds to red

(blue) detuning of the Raman relative to the rf. The term δj,y can be substituted for

δj,z in Eq. (8.26): this yields smaller matrix elements. Substituting δj,x meanwhile,

yields a matrix element of zero between |y〉 and |z〉, which is undesirable. This RWA

is justified in the limit that Ωj,j′ � ωj,j′ . In practice this is set by Ωrf .

Using the laser polarizations recommended in the previous section, essentially

choosing axial Beff for coupling between |y〉 and |x〉 and azimuthal for all other cou-

plings, we may maximize the matrix elements. The resonant terms that correspond

to these choices (polarization and red/blue detuning) yield an effective Hamiltonian

Ĥeff =
Ω⊥z,y

2
D̂x
z,ye

∓i[Φz,y+ωrf t+γrf+ξrf−ξz,y ] + h.c. (8.28)

−iηy,x
Ω
||
y,x

2
D̂z
y,xe

iΦy,x + h.c.

∓iΩ
⊥
x,z

2
D̂y
x,ze

±i[Φx,z+ωrf t+γrf+ξrf−ξx,z ] + h.c..

The laser phases are physically unimportant γ̄ = 0 in this scheme but many
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other quantities can contribute to bringing two eigenstates of the Hamiltonian in

Eq. (8.28) to degeneracy. The overall phase (not limited to laser phase) must sum

to zero for a three state system. These contributions include:

Excited state detuning The sign of u and by extension Ωβ,β′ given in the exact form

of the coupling section depends upon the detuning of the Raman lasers from

the excited electronic states. For our chosen detuning u has a negative value

whereas u can easily be positive for other detuning choices. In the case of

negative u, the negative sign of the coupling amplitude can equivalently be

represented as a π shift in the phase of each Raman coupling. Our three

resonant Raman couplings give an overall 3π contribution to the total phase

accumulated over a loop of coupling.

Orientation and phase of the rf coupling In Eqs. (8.26, 8.27) we required all of our

Raman coupling frequency differences to be greater than (blue detuned from)

or smaller than (red detuned from) ωrf . When some Raman coupling frequency

differences are red detuned and others blue detuned the rf phase γrf and the

orientation of the rf magnetic field relative to the Raman Beff are physically

relevant. Otherwise, γrf and ξrf cancel.

Detuning of the Raman relative to the rf For red detuned Raman π/2 is contributed

to the phase; for blue detuned, −π/2.

Orientation of the Raman Beff Beff aligned axial or perpendicular to Bdcez con-

tribute phases differently. We proposed a situation where we have two per-

pendicular and one axially aligned Beff . Because ξj,j′ and ηj,j′ are derived in

Eqs. (6.16) from pseudovectors there is an equivalence when we change the

sign of the polarization of each laser ej ↔ −ej. This change in sign alters the

phase of the j’th laser which we have already established has no physical con-

sequences. The contribution to the phase sum is −ξx,z +ξz,y−π/2+ηy,xπ/2 =

−| − ξx,z + ξz,y| − π. In our geometry this contribution is −3π/2 but it can
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be continuously increased or decreased by changing the polarizations of the

lasers.

The RWA Two of the Raman couplings may be expressed in terms of sin (Φj,j′) while

between |y〉 and |z〉 the coupling is expressed in terms of cos (Φj,j′). The RWA

decomposes each function and keeps only one of its complex exponentials. For

our implementation the phase contributed is π.

Matrix elements of rf eigenstates As with the sign of u the complex matrix elements

of Raman coupled rf eigenstates contribute to the total phase. In our specific

scheme the normalized product of the matrix elements is 〈z|D⊥z,y |y〉 〈y|D||y,x |x〉 〈x|D⊥x,z |z〉 →
i and the phase contributed is π/2.

Altogether, the phase winding for a loop of coupling must be

±π
2

+−ξz,y + ξx,z −
π

2
+
π

2
ηy,x = 0. (8.29)

where the upper (lower) sign choice corresponds to red (blue) Raman detuning

relative to ωrf . Equation. (8.29) assumes that Raman detuning from the excited

electronic states is red: otherwise there is an extra π. The phase winding can always

be set to zero using one laser parallel with Bdcez and two perpendicular lasers. The

latter set of lasers should be perpendicular to one another as well. The desired

Raman detuning relative to ωrf is blue detuned whenever the Raman detuning from

the excited electronic states is red, and blue detuned otherwise.

We may also determine the ratio Rj,j′ of additional power required to produce

coupling in Eq. (8.28) between |j〉 and |j′〉 equivalent to

Ωj,j′ = gFuEjEj′/2~gJ . (8.30)
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These ratios are

Rz,y =
4~

A⊥z,y

√
1− A||2z,y| 〈z| D̂⊥ |y〉 |

(8.31)

Ry,x =
2~

A
||
y,x| 〈y| D̂|| |x〉 |

(8.32)

Rx,z =
4~

A⊥x,z

√
1− A||2x,z| 〈x| D̂⊥ |z〉 |

. (8.33)

Adjusting the relative intensities of our beams we define a coupling strength Ω which

equally couples each pair of rf eigenstates.

We obtain a simplified form for the Hamiltonian, equivalent to Eq. (8.3):

Ĥ =
∑

j,j′

{[−~2k2

2m
+ Ej

]
δj,j′ + ~Ω exp (i[Φrf

j,j′ − γ̄/3])δj−1,j′ + h.c.

}
|j〉 〈j′| (8.34)

where Φrf
j,j′ = kj,j′ · x− (ωj,j′ ∓ ωrf(δj,z − δj′,z))t.

8.4 Floquet

It is a result of Floquet theory that differential equations with the form of the

Schrödinger equation i~∂t |ψ(t)〉 = Ĥeff(t) |ψ〉 have solutions of the form

|ψ(t)〉 =
∑

α

cα |ψ(t)〉α =
∑

α

cα exp (−iεαt/~) |φ(t)〉α (8.35)

when the Hamiltonian is periodic with time Heff(t) = Heff(t + T ). For constant

wave (CW) optical illumination the Floquet states are |ψ(t)〉α = exp (−inαωt) |φ〉α
where n is the set of integers and each |φ〉α (t) = |φ〉α (t + T ) map to the vector

of rf eigenstates. Because our Hamiltonian can be exactly decomposed into terms

proportional to complex exponentials |φ〉α is time independent. We decompose our

Hamiltonian into an infinite sum of Floquet states and apply a rotating frame trans-

formation to each Floquet state: this makes the Floquet Hamiltonian stationary in
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time while also contributing an extra term nα~ωα |ψ〉α 〈ψ|α.

Our Hamiltonian in Eq. (8.25) has two time periodicities, there are three Ra-

man frequencies but using Eqs. (8.26, 8.27) we may always determine the third

frequency difference given the two others. In the rotating frame the Floquet Hamil-

tonian becomes

ĤFl. =
∑

l,m

{[
Ĥ0 + (nl~ωx,z + nm~ωy,x1̂

]
δl,l′δm,m′ (8.36)

+
Ω⊥x,z

2
D̂⊥δl−1,l′δm,m′e

i[−γx,z+γrf−ξx,z+ξrf ] (8.37)

+
Ω
||
y,x

2
D̂||δl,l′δm−1,m′e

i[−γy,x−π2 +π
2
ηy,x] (8.38)

+
Ω⊥y,z

2
D̂⊥δl−1,l′δm−1,m′e

i[−γy,z+γrf−ξy,z+ξrf ] + h.c.

}
|ψ〉l,m 〈ψ|l′,m′ (8.39)

where 1̂ is the identity in the rf eigenbasis and the operators Ĥ0, D̂⊥ and D̂|| are

3× 3 matrices of spin that operate on |φ〉l,m. These are

Ĥ0 =




(
~2(q−Ky)2

2m
+ Ey

)
0 0

0
(

~2(q−Kx)2

2m
+ Ex

)
0

0 0
(

~2(q−Kz)2

2m
+ Ez

)




(8.40)

D̂⊥ =




4(Ωrf/Ω∗) i
√

1 + (ε/Ω∗)
√

2(ε/Ω∗)

−i
√

1 + (ε/Ω∗) 0 i
√

1− (ε/Ω∗)
√

2(ε/Ω∗) −i
√

1− (ε/Ω∗) −4(Ωrf/Ω∗)


 (8.41)

D̂|| =




0 2(Ωrf/Ω∗)√
1+(ε/Ω∗)

0

2(Ωrf/Ω∗)√
1+(ε/Ω∗)

0 1√
2

√
1− (ε/Ω∗)

0 1√
2

√
1− (ε/Ω∗) 0



. (8.42)
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Figure 8.5: Cross-sections along qx for Floquet bands calculated using
rf basis states. Ωrf = 65ER, ε = −54ER, δ = 0ER, γ̄ = 0, Ω = 2ER,
single-photon recoil is kR and all Raman beams are perpendicular. These
quantities are defined in the preceding sections. The least (solid) and
next least (dashed) energetic states are closely spaced while the most
energetic (dashed dotted) state is separated by 3Ω when γ̄ = 0. The
Dirac point is slightly displaced from the qx axis at these laser powers
due to inter Floquet band coupling but adjusting the balance of laser
intensities can return the Dirac point to the origin.

Figure (8.5) depicts a set of three dispersions that are tiled in quasienergy (not

shown). The Raman laser phases γy,z = γx,z + γy,x and the rf phase γrf cancel in

the closed loop picture, but have reappeared here in the Floquet picture. There is

a Dirac point where the solid and dashed dispersions meet when γ̄ = 0. When Ω⊥j,j′

and Ω
||
j,j′ exceed 2ER the location of the Dirac point becomes mobile, indicating that

band dependent coupling modifies the effective power balance. Although mobile, the

Dirac point remains closed so long as the phase condition in the previous section is

met.
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8.5 Proposed preparation of experiment

8.5.1 Coupling with rf

We apply Bdc along ez with an amplitude necessary to produce a h×30 MHz linear

Zeeman splitting between the ground hyperfine states of 87Rb. In the presence of

this magnetic field the quadratic Zeeman shift is ≈ h× 250 kHz. We subsequently

apply a 30 MHz rf field magnetic field polarized perpendicular to the biasing field.

The matrix elements in Eqs. (8.22, 8.24, 8.23) grow with |ε|/Ωrf. Simultane-

ously, the gap between |x〉 and |y〉 asymptotically approaches zero, which limits the

total Raman coupling.

We compose a simple quantity that multiplies our rf eigenstate matrix elements

with the ratio of the gap between the |x〉 and |y〉 and Ωrf

|∆rf
y,x|

Ωrf

| 〈x| D̂⊥ |z〉 〈z| D̂⊥ |y〉 〈y| D̂|| |x〉 |1/3/~ (8.43)

where ∆rf
y,x = 1

2
(ε +

√
ε2 + 4Ω2

rf). Maximizing this metric we find that −0.6 <

ε/Ωrf < −1.1 strikes the best balance between Raman coupling and rf coupling.

A coupling dependent shift in the location of the Dirac point (see the Floquet

section) occurs when the Raman coupling is not ~Ω � ∆y,x or when 2ER � ∆y,x.

2ER is the typical energy spacing between the ground and first excited eigenenergies

at the ground state minima.

8.5.2 Laser frequencies

We suggest a single source for the Raman light whose coherence length exceeds

the path-length stretching from the laser head to the atoms. This experiment can

benefit from up to ≈ 1 W of total laser power. It is suggested that the ‘magic’

frequency of fL = 390 THz be used with 87Rb so that the scalar light shift can be

eliminated. Then, the Raman lasers do not act as a trapping potentials. In this
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Figure 8.6: Level diagram for Raman coupling rf eigenstates. (a) Here,
|ωx,z|, |ωy,z| > ωrf and hence the Raman is blue detuned relative to the
rf. (b) It is possible to red detune the Raman relative to the rf and add
π phase to γ̄.

case, Ωj,j′ is always negative. Strict linear polarization for all the Raman beams

eliminates single-beam vector light shifts (though large Ωrf also reduces the impact

of these).

We propose the use of a single 110 MHz and two 80 MHz center frequency

AOMs to control the intensity and frequency of each Raman laser. The correspond-

ing Raman frequencies are

ωj = 2π (fL ± 80 MHz)± ωrfδj,z ∓ Ej/~ (8.44)

As shown in Fig. (8.6), the upper branch of Eq. (8.44) corresponds to Raman fre-

quency differences ωj,j′ < ωrf for all j, j′ ∈ {x, y, z} while the lower branch switches

the inequality, these correspond to red and blue detuning respectively. Switching

from blue to red detuning engineers a π phase difference in Eq. (8.29). This is

achievable by switching from using the +1 order of all the AOMs to using the -1 or-

der. In practice, the desired Raman detuning is blue relative to ωrf and red relative

to the excited electronic states.
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Figure 8.7: (a) All three lasers are linearly polarized. The orientation
of the wavevectors for all lasers are mutually perpendicular. The po-
larizations for all the lasers are also mutually perpendicular. The laser
labeled Ωz couples both |y〉 and |x〉 to |z〉 and is the only laser that is π
polarized. The rf coupling is a 30 MHz oscillating magnetic field applied
transverse to the quantizing dc magnetic field Bez. (b) The frequency of
Ωz is offset by 30 MHz (nearly the rf frequency) from that of Ωx and Ωy.

8.5.3 Geometry

While the rf must be transverse to Bdcez the phase and orientation of this field is

physically unimportant to this laser scheme.

Three lasers produce all the Raman couplings as shown in Fig. (8.7)a. The

polarization geometry is primarily limited by the requirement of Eq. (8.29). Two

pairs of Raman lasers have Beff that are essentially perpendicular to ez, the other

pair is aligned or anti-aligned with ez. The azimuthal projections of each Raman

pair’s Beff on the plane orthogonal to ez should themselves be perpendicular. This is

most easily accomplished by having one laser co-aligned or anti-aligned with Bdcez

and two other lasers perpendicular to both ez and each other. Similarly, one of the

two lasers that is perpendicular to ez should be π polarized while the polarizations of

the other two lasers are orthogonal to the first laser and each other. The π polarized

laser couples to |z〉. It does not matter to which state each of the other two lasers

couple.
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8.5.4 Power balance

We may determine the ratio of additional intensity necessary to couple all of the

rf eigenstates with equal coupling, Ω = gFuI0/cε0~gJ . The coupling between rf

eigenstates is alternatively given by Ω = gFu
√
IjIj′/Rj,j′cε0~gJ where ε0 is the

permittivity of free space, and c is the speed of light in vacuum. Using Eqs. (8.32,

8.31, 8.33) the ratio of additional intensity is

Ix
I0

=
Rx,yRz,x

Ry,z

(8.45)

Iy
I0

=
Ry,zRx,y

Rz,x

(8.46)

Iz
I0

=
Rz,xRy,z

Rx,y

(8.47)

For ε/Ωrf = −0.8 these ratios of additional intensity are Ix/I0 = 1.1, Iy/I0 = 5.4

and Iz/I0 = 21.5.

8.5.5 Sources of noise

In alkali atoms, dc magnetic field fluctuations often limit the long-term stability of

an experiment. Environmental noise in a lab tends to scale as 1/frequency and the

energy splittings of alkali ground states depend upon the dc magnetic field present at

the atoms. The rf eigenstates are largely insensitive to magnetic field fluctuations:

∆Ej ≈ (gFµB∆B)2/2~Ωrf. With ~Ωrf = h × 200 kHz rf coupling amplitude the

h × 1 kHz Zeeman splitting amplitude fluctuations of a lab without active field

control corresponds to ∆Ej ≈ 5 Hz. Hence, the rf eigenstates become engineered

clock states.

The proposed experiment is linearly sensitive to changes in rf coupling am-

plitude Ωrf and Raman coupling amplitude Ωβ,β′ . In general, laser and rf intensity

may be kept stable to one part per thousand. The parameters of this experiment

were deliberately chosen so that phase noise from the lasers and rf are irrelevant.
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8.6 conclusion

This proposal produces Rashba SOC with the ground atomic states of 87Rb. This

system is less susceptible to collisional deexcitation of many-body states and expands

the lifetime of atoms in the spin-orbit coupled system from several milliseconds

to hundreds of milliseconds as compared to techniques that appreciably populate

the f = 2 manifold. Furthermore we have exchanged technical challenges and

expense associated with producing phase locked lasers separated by many GHz in

frequency with the challenge of producing hundreds of kHz of rf coupling with part

per thousand amplitude control.
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Chapter A: Vacuum management

A.1 Introduction

This appendix introduces our Bose-Einstein condensate machine. We proceed to

introduce the vacuum system and name the component processes and systems nec-

essary to produce Bose-Einstein condensation; for each of these, we describe the

theory behind its function followed by its specific implementation in our experi-

ment.

A.2 Summary of the vacuum apparatus

Figure A.1 illustrates the underlying vacuum framework of the experiment. In the

text of the figure we describe the ancillary devices such as ion pumps that interface

with this framework.

Our apparatus stores two different alkali metals in separate reservoirs. These

reservoirs are wrapped in woven copper and fiberglass strips that heat to several

hundred degrees Celsius when connected to 60 Hz AC current from the wall.

Dual species oven. 5 grams of Rubidium-87 (Rb87) and 2 grams of Lithium-6

(6Li) are placed in separate stainless steel (SS) reservoirs. These produce a

steady state atomic beam along the length of Fig. A.1.

Oven chamber. In this chamber the in-vacuum shutter prevents or allows the

atomic beam to reach the glass cell (where we do our science). Uncollimated

or blocked Rb vapor is also pumped.
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8-way flange. This chamber is separated from the oven chamber by a narrow tube.

Additional pumps are attached to this flange to ensure better vacuum than in

the vacuum chamber. This chamber is separated from the rest of the experi-

ment by a valve.

Zeeman slower. This is a magnetic coil arrangement surrounding a vacuum tube

70 cm in length which provides a position dependent shift of the magnetically

sensitive internal magnetic states. This shift compensates for the evolving

doppler shift of the laser light relative to the atoms as the atoms are optically

slowed over the length of the slower.

Transverse cooling. Spontaneous emission events induce a random walk in mo-

mentum which accumulate over the length of the slower. The resulting trans-

verse extent of the atomic beam appears to bloom at the end of the slower.

An optical molasses at the end of the slower can be used to refocus the slowed

atoms towards the center of the glass cell. We have the viewports necessary

to transverse cool but we have yet not found it necessary.

Glass cell. The glass cell is outfitted with a metal bellows to reduce shear induced

by clamping the apparatus on either side of the cell. In our experiment the

quadrupole coils, with the option of switching to a Helmholtz configuration, are

placed much closer to the atoms than would be possible in a typical chamber.

Quadrupole coils Each coil is composed of 25 turns, five layers of five turns, of

square copper tubing with an inner channel for water for cooling. The top

surface of each coil is approximately 0.57 in. from the center of the glass cell.

These magnetically trap our atoms during one of the stages of the cooling

process.

Vacuum after the glass cell. Here there are additional pumps and pressure gauges.
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Figure A.1
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A.3 Production of the atomic beam and vacuum management

A.3.1 The ovens

5 grams of Rubidium-87 (Rb87) and 2 grams of Lithium-6 (6Li) are placed in separate

stainless steel (SS) reservoirs. These reservoirs are wrapped with strips of woven

copper in fiberglass, commonly called heater tape, that heat to several hundred

degrees Celsius when connected to the wall. The reservoirs are connected to one

another as shown in Fig. A.2. We wrapped the Rb reservoir, Rb nozzle, Li reservoir

and Li nozzle with electrically independent lengths of heater tape. Because SS is a

poor thermal conductor we wrap this region with aluminum foil to better distribute

the heat. Feedback on the temperature is accomplished using an Omega CNi3233

temperature controller which periodically interrupts current flow to the heater tape.

A variable ac transformer (variac) adjusts the voltage drop across each length of

heater tape, allowing us to tune the gain of the temperature feedback.

For our reservoir temperature of 110 C the vapor pressure of 87Rb is ∼ 4 ×
10−4 torr. [112]. Meanwhile, at 125 C the vapor pressure of 6Li is negligible [112];

no Lithium is present in any of the experiments described in this thesis. The tem-

perature of the Rb nozzle is maintained at 400 C to prevent the narrow tube from

clogging. This nozzle is a bottleneck for mass transport of 87Rb in our system. The

Li nozzle is kept at a substantially lower temperature ∼ 140 C. This 1/4” outer

diameter (OD), 0.186” inner diameter (ID) and 2” long copper collimation tube

serves as the primary collimation mechanism of our atomic beam.

A.3.2 The oven chamber

The copper collimation tube intrudes into the volume enclosed by a cup-shaped

copper surface maintained anywhere between−15 C and−40 C (cold cup). The cold

cup is connected with an insulated copper feedthrough to a water-cooled thermo-
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Figure A.2: This diagram shows the alkali reservoirs and the low vacuum
oven chamber.

electric cooler (TEC). The hot side of the TEC is water cooled. The cold cup is an

added pumping surface for our 87Rb which is known to damage ion pumps. This

oven configuration was the subject of Ref. [113].

A Toshiba hard drive shutter was repurposed to act as an in-vacuum (oven)

shutter and placed at the end of a 1 in. long 3/8 in. OD copper feedthrough. Kapton

wires soldered to an electrical feedthrough allowed actuation of the shutter from out-

side of vacuum. This shutter and the copper feedthrough serve as one of two breaks

between the low vacuum and high vacuum portion of the experiment. The closing

of the oven shutter terminates loading of the magneto-optical trap. During sub-

Doppler cooling and evaporation to quantum degeneracy the presence of a thermal

atomic beam causes heating. This shutter eliminates that problem.

The oven chamber also connects to an all-metal valve and an ion gauge. This

valve is the only location where a roughing pump/turbopump can be attached to

the apparatus.

Into the diagram in Fig. A.2 is a 50 l/s ion pump. Ion pumps effectively

pump most atomic species at high vacuum. They are also low maintenance, have

no moving parts and can draw as little as 1 µA at 10 kV. Out of the diagram is a
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simple 6 in. diameter viewport.

A.4 Transition to high vacuum

Immediately above the oven chamber in Fig. A.1 is a custom 8-way flange (shown

is a six-way cross with the same dimension along ez) to which we attached an ion

pump in the ex side of the flange and a Titanium-sublimation (Ti-sub) pump in the

−ex side of the flange. The Ti-sub pump coats nearby surfaces with a getter that

absorbs hydrogen. Hydrogen is one of the few molecules that is poorly pumped by

ion pumps.

The remaining four ports are capped with viewports and are oriented 90 de-

grees from one another.

In the ez direction the 8-way flange is connected to a Viton o-ring valve. This

valve allows us to break vacuum in all of the vacuum elements discussed thus far

without impacting the vacuum of the rest of the apparatus.

A.5 Zeeman slower and vacuum

The 0.71 cm length of the Zeeman slower acts as an additional differential pumping

tube. An additional ion pump and Ti-sub pump after the glass cell is necessary to

ensure good vacuum at the glass cell.
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Chapter B: Frequency control

Although it is possible to build or purchase lasers with narrow linewidths < 200 kHz

in the lab environment, with day to day variation in the temperature and humidity,

it is impractical to expect the center frequency of a laser to remain tuned to an

atomic transition within the typical 6 MHz atomic linewidth. Our lab uses saturated

absorption spectroscopy on a magnetically shielded room temperature vapor cell of

85Rb to provide a signal with which we apply electrical feedback on the frequency

of the laser.

With standard absorption spectroscopy of a room temperature vapor cell laser

weak resonant laser light is passed through the vapor cell and captured by a photo-

diode (PD). As the frequency of the laser light is scanned, dips in intensity (relative

to a portion of the laser light which does not pass through the PD) occur when the

light is resonant with an allowed transition of some of the atoms in the atomic vapor.

For 85Rb at room temperature 1/e fraction of the atoms have a speed > 170 m/s.

For a 85Rb atom moving counter or with the propagation of the laser at v = 200 m/s

the doppler shift kv/2π ≈ 200 MHz vastly exceeds the typical ∼ 6 MHz linewidth

and blurs together the excited electronic (5P3/2) hyperfine manifolds. For this rea-

son, simple absorption spectroscopy does not provide the necessary accuracy to lock

our lasers for velocity selective optical manipulation of atoms or for imaging at low

temperatures.

Instead, let us consider a “pump” laser with an intensity not too much greater

than 2 mW/cm2 where resonant illumination with at least 2 mW/cm3 results in

nearly equal populations of atoms in both their ground and excited electronic states.

148



In this case, the transition is considered to be “saturated” because further increases

in optical intensity only modestly increase the population of atoms that are in their

excited states. In a room temperature vapor cell the pump laser saturates the frac-

tion of atoms which have a transition that is Doppler shifted into resonance with

the laser. The velocities which produce the necessary Doppler shift are called a ve-

locity class. Several atomic transitions corresponding to different excited electronic

hyperfine manifolds, each with a distinct resonant velocity class, may be present

simultaneously in the vapor.

Now, we add a “probe” � 2 mW/cm2 laser that copropagates with respect

to the pump laser. In a range of frequencies within the atomic natural linewidth

about the pump laser’s center frequency very little of the probe laser light is ab-

sorbed: the pump laser burned a hole in the atomic vapor for the probe laser. The

resonance conditions for a pump and probe lasers with both frequencies ωp and ω

and wavevectors kp and k are

ωp − ω = (kp − k) · v (B.1)

2ω0 = (ωp + ω) + (kp + k) · v (B.2)

where ω0 is the frequency at an atomic resonance. When ω 6= ωp, the atomic vapor

absorbs the light just as it would with standard absorption spectroscopy.

When k = −kp, the probe and pump lasers resonantly illuminate the same

velocity class of atoms when ω0 = (ωp+ω)/2. There are also “crossover resonances”

corresponding to a velocity class where the pump resonantly couples to one excited

hyperfine manifold while the probe resonantly couples to a different excited hyper-

fine manifold. This “V” type coherent coupling enhances the transparency of the

vapor to the probe light. We label the distinct atomic transitions ω0 and ω′0. Like-

wise, a crossover resonance couples to two velocity classes which correspond to an
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interchange of ω0 and ω′0:

ω0 + ω′0 = ωp + ω (B.3)

2(ω − ωp) = (kp − k) · (v + v′) (B.4)

2(ω0 − ω′0) = (k− kp) · (v − v′). (B.5)

When the center frequency is scanned there are also “crossover” resonances

corresponding to the overlap of two resonant velocity classes of the probe laser

with the saturated velocity classes of the pump laser. We lock our lasers to the
∣∣5S1/2, f = 3

〉
↔
∣∣5P3/2, f = 2

〉
to
∣∣5S1/2, f = 3

〉
↔
∣∣5P3/2, f = 4

〉
crossover reso-

nance of 85Rb.

B.1 Doppler-free spectrum

Figure B.1 depicts the transition energies for all the 5S1/2 to 5P3/2 transitions in

87Rb and 85Rb. Four groupings of absorption features are observed corresponding

to differences in isotope and the ground electronic hyperfine level. We lock to a

feature in the second least energetic grouping corresponding to transitions in 85Rb

from the f = 3 ground electronic hyperfine manifold. Within this grouping the

f ′ = 3 to f ′ = 4 crossover resonance is the sharpest feature: we lock to this.

B.2 The saturation absorption optical setup

A New Focus Vortex II series laser outputs 40 mW of light at 780.24 nm. We

call this laser the “master” laser. In Fig. B.2 we show both a schematic and picture

of the saturation absorption setup for locking to 87Rb. Light reflected off a 4% pickoff

immediately following the optical isolator becomes the probe light. About 60% of the

remaining light is deflected by a polarizing beam cube (PBS) into a double passed

AOM configuration; the light frequency shifted a total of 160 MHz by the AOM
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becomes the pump light. The pump and the probe are made to counterpropagate

and subsequently the probe light is measured by a PD. The light that is undeflected

by the PBS continues through another optical isolator and is injected into a fiber

mixer that equally redistributes the light from each of four inputs into four outputs.

Using a function generator we apply a sinusoidal dither to the frequency of the rf

(a) (b)

Figure B.2: a) Optical schematic of saturation absorption setup of mas-
ter laser. b) Picture of saturation absorption setup. Reproduced from
Rb-Li manual. Original author: Subhadeep De.

drive of the double passed AOM. The resulting frequency modulation of the probe

light produces an oscillation in the probe intensity from which a lock-in amplifier

can produce an error signal that is a function of the derivative of the saturation

absorption spectrum. Zeros in the error signal correspond to peaks and troughs in

the absorption spectrum. PID feedback on the piezo and current of the master laser

may then be used to lock the center frequency of the laser to the desired trough in the

saturation absorption spectrum. As shown in Fig. B.3 the dither, lock-in amplifier

and PID feedback were accomplished using a home-built FPGA-based module (see

the appropriate chapter of the thesis of Ryan Price).

B.3 Beatnote lock

Our cooling and trapping optical system is comprised of two lasers additional to

the master laser. The “cooling” laser couples from the f = 2 electronic ground
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FPGA lockbox

Figure B.3: Schematic of FPGA control of laser center frequency based
on a PD absorption signal. Diagram adapted from the Rb-Li lab manual
with permission from Ryan Price.

state of 87Rb to its 5P3/2 electronic excited states. Meanwhile, the “repump” laser

couples from the f = 1 electronic ground state to the 5P3/2 electronic excited states

of 87Rb. Using separate lasers for the 6.8 GHz separated optical frequencies is

considered economical because frequency shifters (AOMs or EOMs) at microwave

frequencies have low efficiencies. Some light from each of these lasers is coupled

to a 4 × 4 fiber optic coupler: the each of the four outputs of the coupler evenly

mixes all of the inputs. The light from one of these outputs is measured by a high

speed PD. The PD signal is split in two: one signal passes through a series of high

pass filters while the other signal passes through a series of low pass filters. An

error signal is generated using a phase locked loop by comparing by comparing the

beatnote frequency difference between a sinusoidal signal generated by a computer

programmable Novatech Instruments model 409B direct digital synthesizer and

the filtered signal of the PD. The error signal generated by the high pass filter is
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Name Frequency
Master frequency 384.229101 THz
Master wavelength 780.24402 nm
Master AOM 80 MHz(160 MHz)
Master-cooling Beatnote 0.9162 GHz
Cooling frequency 384.2281848 THz
Cooling wavelength 780.24588 nm
Cooling MOT AOM −40 MHz(−80 MHz)
Cooling slower AOM 80 MHz(160 MHz)
Repump-master Beatnote 5.4130 GHz
Repump frequency 384.234514 THz
Repump wavelength 780.23303 nm
Repump MOT AOM 80 MHz(160 MHz)
Repump slower AOM 40 MHz(80 MHz)

Table B.1: Listing of beatnote frequencies and AOM rf drive frequencies
(double passed frequency shift). A negative sign on the AOM frequency
corresponds to a downshift in the frequency of the light. Errors on AOM
frequencies are ∼ 10 Hz. Errors on the desired laser wavelength is ap-
proximately ∼ 100 kHz.

used to lock the repump laser while the error signal generated by the low pass filter

is used to lock the cooling laser. Refer to Table B.1 for the beatnote frequency

differences between the master and the cooling lasers and also the master and the

repump lasers.

B.4 Cooling laser setup

The cooling laser is a Toptica DL Pro diode laser that outputs 40 mW. Approxi-

mately 10 mW of this light is reflected by a PBS for the purpose of imaging and the

beatnote lock. The remaining 30 mW of light is injected into a Toptica BoosTA ta-

pered amplifier system that amplifies the light to 0.7 W. We split 60 mW from the

rest of the amplified light using a PBS, double pass it through the slower AOM and

inject into fiber. This fiber (the 2× 2 slower fiber) has two polarization maintaining

(PM) input channels and two PM output channels separated by a beam cube, we

treat one of these output channels as a pickoff. We expect 15 mW to emit from one

output fiber as the cooling slower light at the experiment, the polarization rejected
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portion of the light emits from the other output fiber. The zeroth order of the first

pass through the slower AOM is deflected into another double passed AOM and fiber

injection. This light is used for transverse cooling. The light that passes undeflected

through the PBS is double passed through the MOT AOM and injected into a fiber.

This fiber (the 2 × 6 MOT fiber) has two PM input channels (one of which has

been discussed so far), and the light input into each of these is distributed evenly

between six PM output channels. Typically we have 20 to 25 mW of MOT cooling

light output from each fiber. Two pickoff channels contain approximately 1% of the

MOT cooling and repump light respectively. Figure B.4 depicts the cooling laser

breakout breadboard.

B.5 Repump laser setup

The repump laser is a Toptica DL Pro diode laser that outputs 80 mW. PBS cubes

separate the light into four beams, three of which are used. Two of these beams

are double passed through AOMs, the slower and repump AOMs, and subsequently

injected into the other input channel of the 2 × 2 slower and 2 × 6 MOT fibers

respectively. We input approximately 15 mW into the slower double passed AOM

and 25 mW into the MOT double passed AOM. 1 mW is output from the slower

fiber and 2 mW is output from each of the MOT output fibers. Approximately

1 mW is sent to the beatnote lock. Figure B.5 depicts the repump laser breakout

breadboard.
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Chapter C: Cooling and Trapping

C.1 Introduction

The atomic electronic internal structure allows coherent as well as dissipative forces

to be optically applied to ions and atoms. Crucially, optically applied forces are

selective over a narrow range of atomic velocities and can be used to narrow the

velocity distribution of a gas of atoms, cooling them. These cold atoms can be

efficiently trapped (at very low densities) with a hybrid of optical and magnetic

fields in the center of a vacuum chamber. Since these trapped gases are decoupled

from the room temperature walls of the vacuum apparatus the gas may be further

cooled to quantum degeneracy. These accomplishments were recognized by the 1997

Nobel Prize given to Steven Chu, Claude Cohen-Tannoudji, and William Phillips

and by the 2001 Nobel Prize given to Eric Cornell, Wolfgang Ketterle and Carl

Wiemann.

C.2 Cooling an atomic beam

C.2.1 The scattering force

We consider a collimated beam of atoms illuminated with a counterpropagating

laser as shown in Fig. C.2a. The frequency and polarization of the incident light

as well as the magnetic environment of the atom is chosen so that each atom is

effectively a two-level system (we prepare the atom in a cycling transition). In

the absence of spontaneous emission, a 2π pulse transfers the photon recoil mo-
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mentum ~kR = 2π~/λ to the atom when the valence electron is excited and but

it is removed when the electron returns to the ground state because the photon is

coherently emitted into the modes of the laser illumination. When there is any elec-

tronic excited state population there exists a spontaneous emission process which

returns some atoms to the ground state. The distribution of photons emitted dur-

ing spontaneous emission is nominally isotropic. Averaged over many coherent ab-

sorption followed by spontaneous emission processes there is a net scattering force

Fscatt = (photon momentum)× (spontaneous emission rate) where the spontaneous

emission rate is proportional to the excited state population. In the presence of a

continuous wave (CW) illumination, the population of atoms in their excited state

Nex averages to no more than 1/2. This may be quantified in terms of the Rabi

frequency Ω/2π, the detuning from resonance ~δ, and the scattering rate Γ

Nex =
1

2

Ω2/2

δ2 + Ω2 + Γ2/4
. (C.1)

These quantities may be connected to the laser intensity at the atoms I/Isat =

2Ω2/Γ2 where

Isat =
cε0Γ2~2

4|eL · d|2
(C.2)

is the optical intensity necessary to “saturate” the excited state population, a some-

what arbitrarily defined intensity above which additional light asymptotically in-

creases the excited state population [37]. We introduced the speed of light c, the

permittivity of free space ε0, and the unit vector of laser polarization eL (this can

be complex). Isat and Γ depends upon exactly which spin manifolds are coupled

and with what polarization. Here, we define Isat and Γ with respect to the cou-

pling between the ground electronic |f = 2,mF = ±2〉 and the excited electronic

|f = 3,mF = ±3〉. The scattering force is simply the rate of momentum transfer
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name symbol 87Rb value
Saturation intensity, Nex = 1/2 Isat 1.669(2) mW/cm2

Decay rate Γ 2π × 6.065(9) MHz
Recoil velocity vr = ~k/M 5.8845 mm/s

Acceleration, Nex = 1/2 amax = ~kΓ/2M 1.12× 105 m/s
Wavevector k = 2π/λ 8.055 µm−1

Wavelength λ 780 nm

Most probable velocity in beam v0 =
√

3kBT/m 336 m/s
Minimum stopping distance L0 = v2

0/amax 0.5 m
Actual stopping distance 0 0.7 m

Table C.1: List of quantities for slowing 87Rb. Both Γ and Isat are
defined with respect to the ground electronic |f = 2,mF = ±2〉 and the
excited electronic |f = 3,mF = ±3〉 states.

which is limited by the scattering rate Γ

Fscatt = ~kΓNex = ~k
Γ

2

I/Isat

1 + I/Isat + 4δ2/Γ2
(C.3)

where ~k is a photon’s momentum. Table C.1 lists Doppler cooling parameters

typical of our experiment.

C.2.2 Atom beam velocity distribution

The intensity of an atomic beam I0 =
∫
dvI(v) as a function of velocity I(v) when

effusing from a long collimation tube is

I(v) =
2I0

α4
v3 exp−v2/α2 (C.4)

as given by Ref. [114]; α =
√

2kBT/m is the most probable velocity in a equilibrium

thermal gas. In a collimated beam of atoms the most probable velocity becomes

v0 =
√

3/2α.

C.2.3 Zeeman slower

Our BEC machine slows atoms with velocities ranging between ≈ 320 m/s and

≈ 40 m/s that are illuminated by a counterpropagating source of light (slower light)
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as shown in Fig. C.1. Slowed atoms are distributed in a narrow range around 40 m/s

at the terminus of the slower.

The slower light with wavevector k is Doppler shifted ∆f = k ·v with respect

to the reference frame of an atom within the atomic beam moving with velocity

v. When the linewidth of the laser is much smaller than ∆f the laser resonantly

interacts with a narrow band of atomic velocities within the atomic beam. Atoms

resonant with the light experience the scattering force detailed in Eq. C.3 and ac-

celerate parallel to k. As the velocity of these atoms changes the slower light is

Doppler shifted to smaller frequencies and the atoms fall out of resonance with the

light.

From an engineering standpoint it is desirable that the fastest slowed atoms

experience constant acceleration for the entire length of the slower. This may be

accomplished by chirping (changing) the frequency of the laser in time or by altering

the atomic resonance spatially. Our machine implements the latter of these options.

Our scattering process can provide a nearly constant acceleration: we choose

this to be around amax/2 which slows atoms somewhat below the peak atomic beam

velocity: 0.84v0. As a function of displacement the velocity of slowed atoms is

v(z) = 0.84v0

(
1− z

L0

)1/2

. (C.5)

We compensated the position-dependent Doppler shift of the atoms k · v(z) with a

state- and position-dependent detuning produced by the Zeeman effect. Following

the treatment of Ref. [115] the resonance condition is a function of the slower light

frequency ω, atomic velocity v, and a position-dependent magnetic field −B(z)ez

µB|B|
~

(g
(e)
F Me − g(g)

F Mg) = ~δ + k · v(z). (C.6)

where Me and Mg are the magnetizations of atoms in the f = 3 spin manifold of

the 5P3/2 electronic excited states and the f = 2 spin manifold of the 5S1/2 ground
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electronic states, respectively.

We choose right circularly polarized light that couples between the ground

f = 2 and the excited f = 3 manifold and align the magnetic field along the

axis of laser propagation. In this case, circularly polarized light couple ground F̂

spin projections mF to an excited F̂ projection mF ′ = mF ± 1, where the sign

choice is made by choosing right or left circular polarization for the light. Because

the coherent excitation process is sensitive to the polarization of the light while

spontaneous emission is not, the ensemble of atoms are “pumped” to Mg = +2 and

Me = +3 in the case of right circularly polarized light over many excitation and

spontaneous emission events: see Fig. C.1. In this case the level diagram becomes

effectively two level since the states in the single channel allowed for spontaneous

emission |f = 3→ 2,mF = 3→ 2〉 are the same states that are optically coupled:

the atoms are in a cycling transition.

The cycling transition maximizes the Clebsh-Gordan coefficients and by ex-

tension the spontaneous emission rate and Fscatt. Moreover, atoms in the cycling

transition are unlikely to spontaneously emit into states that are weakly coupled or

entirely uncoupled from the light. Impurities in the polarization and off-resonant

coupling to the other hyperfine states in the 5P3/2 fine structure inevitably do allow

atoms to decay into the f = 1 ground states, however. A second (repump) laser

is required to return these atoms to the excited states and, eventually, the cycling

transition. For an overall biasing Zeeman slower, like ours, very little repump light

is needed and its polarization is unimportant.

C.2.4 Slower physiology

Our Zeeman slower consists of several layers. The innermost layer is a stainless

steel (SS) tube with CF ends that has 1 in. diameter near the oven and 1.5 in.

diameter near the atoms. This SS tube was wrapped in heater tape then covered

with a thin SS tube with a uniform diameter. On this outer tube we wrapped
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Figure C.1: (a) Slower magnetic field profile in Gauss as a function
of position referenced to location of atoms. (b) We show the slower
axial magnetic field profile with the propagation direction of our lasers.
These lasers are right and left circularly polarized. As shown in (c) the
87Rb level diagram our copropagating lasers couple different hyperfine
states between the ground (S) and excited (P) electronic levels. Atoms
are pumped into the states connected by the solid red line: the cycling
transition. Atoms in the cycling states have selection rules that greatly
reduce the probability of decay into the f = 1 ground electronic states,
which are uncoupled by our light depicted in solid red. The light in dotted
red repumps atoms that do end up in these states. The Landé gF factors
are constants of proportionality in the Zeeman term ĤZ = gFµBB · F̂/~.
Ideally, a Zeeman slower solves kv(z) = µBB(z) so that the magnetically
induced shift between cycling states corrects for the evolving Doppler
shift as atoms slow.
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Slower parameters typical values
Length 0.71 m
Biasing current 20 A
Biasing resistance 0.175 Ω
Tapered current 140 A
Tapered resistance 0.075 Ω
Biasing field 8/3 G/A
Max tapered field 9/5 G/A
Min tapered field 8/15 G/A
Cooling slower laser power 10 mW
Cooling slower laser polarization σ+

Repump slower laser power 2 mW
Repump slower laser polarization σ−

Table C.2: Typical slower parameters

1/8 in. outer diameter copper tubing with no space between the windings. The

first layer of windings produces an overall biasing magnetic field. Over this layer of

windings we added a second layer with windings that taper from densely spaced to

sparsely spaced. The locations of these windings are precisely calculated to keep our

atoms near resonant with the spacings necessary to produce uniform acceleration

at amax/2 Fig. C.1a. To aid in heat dissipation we added a third winding of coils

on top of and where possible between the tapered coils. During normal operation

the temperature of the tapered coil rises to about 45 C. We summarize the typical

operating conditions of the Zeeman slower in Table C.2.

C.2.5 Transverse heating

The atomic beam expands linearly from its collimation tube and also experiences a

random walk due to many isotropic spontaneous emission events. The rms velocity

and associated heating from the spontaneous emission increases with the square root

of the number of spontaneous emission events. The maximum rate of transverse

expansion of the beam occurs in the 21 cm between the end of the Zeeman slower

and the atom trap. We focus our slowing light so that it is approximately the same

extent as the 1 in. diameter magneto optical trap (MOT), which is centered in the

glass cell, and the 1 cm diameter of the collimating tube at the aperture of the oven.
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This may have the additional benefit of reducing the transverse expansion of the

atomic beam to a small degree. With this configuration, the power requirements

for cooling 87Rb are undemanding, requiring merely 10 mW in our apparatus for

cooling and less than 2 mW of repump.

C.2.6 Slower schematic

The cooling and repump light are separated by 6.8 GHz in frequency, which is most

economically sourced by different lasers. The light is combined commercially using

a 2 × 2 splitting/combining PM fiber that has an in-fiber PBS cube. We collect

the light rejected by the PBS on a silicon PD. The cooling and repump light have

opposite linear polarizations coming out of the fiber: a λ/4 waveplate converts the

cooling light into σ+ and the repump light into σ− polarized light. See Fig. C.2 for

a schematic representation.

C.3 Optical molasses and magneto-optical trap

The low velocity portion of the atomic beam, which is greatly enhanced by the

slowing and cooling process described in the previous section, is captured directly

by a MOT. A rough estimate for absolute maximum capture velocity of a MOT is

given by the cooling force from the previous section Fmax = ~kΓ/2 applied over the

physical extent of the optical beams 2 cm. This optimistic estimate of the MOT

capture velocity v =
√

2~kΓd/m is about 100 m/s for 87Rb whereas we usually

assume a capture velocity of ≤ 50 m/s.
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C.3.1 Trapping forces

C.3.1.1 The optical molasses

We consider 87Rb atoms illuminated by two counterpropagating laser beams along

±ex. The lasers are detuned by δ = ωL − ωatom from the Doppler-free atomic

resonance; when in motion vex the detuning of the light relative to the atomic

transition becomes δ±kv where the sign choice corresponds to the detuning relative

to the lasers propagating along ±ex. When the lasers are red detuned δ < 0 an

atom with motion vex is closer to resonance with the laser propagating along −ex

and further from resonance with the laser propagating along ex. Hence, the atom

experiences a restoring force as a function of momentum: the atom experiences

viscous damping. More formally, the force on an atom is

F± = ±~kΓ

2

I/Isat

1 + I/Isat + (2δ/Γ∓ 2k · v/Γ)2
(C.7)

Ftot. = F+ + F−. (C.8)

As shown in Fig. C.3a, Ftot. is nearly linear for a range of velocities: we write down

the force in the linear regime

Flin = ~kΓ
8δkvI/Isat

Γ(1 + I/Isat + (2δ/Γ)2)2
= −βv (C.9)

The velocity at maximum Ftot. is |v| ≈ δ/k when δ � Γ and may be much greater

than the power broadened linewidth Γ
√

1 + I/Isat/k which roughly corresponds to

the maximum velocity of the linear regime (see Fig. C.3). For a given δ we may

extend the range of velocities for valid Flin and at the same time maximize β by

setting the detuning equal to the power broadened linewidth Γ
√

1 + I/Isat = δ. The

response of β to the power broadened linewidth is very asymmetric: Γ
√

1 + I/Isat >

δ reduces β very little while Γ
√

1 + I/Isat < δ can dramatically reduce both β and
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the range of velocities over which viscous damping is linear.
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Figure C.3: (a) schematic of two counterpropagating lasers with
wavevector k± illuminating an atom or ensemble of atoms traveling with
velocity v. (b-c) The force F+ + F− experienced by atoms with velocity
v and I/Isat = 2.

C.3.1.2 Optical forces with magnetic fields

In the presence of a quadrupole magnetic field, the detuning gains a state and

position dependence. The quadrupole is produced by an anti-Helmholtz coil con-

figuration with cylindrical symmetry about ex. The magnetic field along the x axis

and within the y − z plane is

B(ρ) =
∂B

∂ρ
ρeρ (C.10)

B(x) =
∂B

∂x
xex (C.11)

2∂B

∂ρ
=− ∂B

∂x
(C.12)
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where ρ = y2 + z2 and the gradients along ex and eρ are constants near the field

minimum at x = 0 and ρ = 0. At all field orientations except ex and eρ the

orientation of the magnetic field is not radially inward or outward with respect to the

field minimum. The light propagation direction and the magnetic field orientation

must be parallel or antiparallel to optically couple the cycling states, placing some

restrictions on the geometry of the lasers. The cycling states are desirable because

the atoms then have a well defined relationship between the atomic detuning from

resonance and the magnetic field (distance from the center of the trap). We show the

geometry of our lasers used to produce a magneto-optical trap (MOT) in Fig. C.4.

In 87Rb the detuning from resonance varies as a function of atomic motion v

and the magnetic field

δ = ωL −
(
ω0 ±

7

6
µ|B(x, ρ)|/~ + k · v

)
. (C.13)

We engineer the system so that the magnitude of the detuning shrinks as the mag-

netic field increases and as the component of the velocity antiparallel to the wavevec-

tor of the optical illumination increases. Here the laser angular frequency is set below

the natural frequency of the f=2 to f=3 atomic transition ωL < ω0 at v = 0 and

B = 0. The sign choice corresponds to the choice of two cycling transitions. The

|f ′ = 3, m′F = −3〉 ↔ |f = 2, mF = −2〉 cycling transition is desirable in this case

(the minus sign choice) because the laser light shifts closer to resonance with the

atomic transition when the atom is displaced from the center of the trap. In a

quadrupole field if the magnetic field orients away from the center of the trap in the

plane defined by x = 0 the magnetic field orients towards the center of the trap for

the line defined by ρ = 0: this necessitates changing the laser polarization between

these two cases.

For two counterpropagating beams with wavevector ±k and when the majority

of scattering events are in the cycling transition the total force from each beam as
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Figure C.4: Glass cell with quadrupole coils. Main portion illustrates
MOT beam path and polarizations. Inset shows a level diagram with
desired relationship between beam polarization and magnetization: the
left-most states have negative magnetization. In the MOT the repump
is particularly important because there are regions in the trap where the
atomic spin cannot adiabatically follow the magnetic field, atoms leave
the cycling transition and may end up in the f = 1 ground state.
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a function of position and velocity is

F±(x,v) = ±~kΓ

2

I/Isat

1 + I/Isat + (2δ/Γ∓ 2k · v/Γ± 2µB(x)/Γ~)2
. (C.14)

Setting v = 0 and adding the forces from the counterpropagating beams F+(x,v =

0) + F−(x,v = 0) there is a regime near x = 0 where there is a linear dependence

of force on position. When k is parallel with ex

F (x) =
4kδµBB(x)I/Isat

Γ(1 + I/Isat + (2δ/Γ)2)2
≡ −κx. (C.15)

This force is maximized at a displacement d = ±~δ/µB∂xB(x). It is our practice to

set the gradient of the magnetic field ∂xB(x) so that d is just inside the boundaries

of the MOT beams, in this case a typical value for the gradient is 10 G/cm. For

position in units of ~Γ/µB∂xB(x) and when v = 0 the traces in Fig. C.3 are exactly

duplicated for force vs position. As with the viscous damping force for a given δ

both the range of positions over which the force is linear with position and the slope

of κ are maximized when the power broadened linewidth is equal to the detuning.

We may generalize to three orthogonal pairs of counterpropagating lasers illu-

minating atoms situated at the zero field of a quadrupole magnetic field. The MOT

equations of motion

FMOT = −β · v − κ · x (C.16)

are those of an overdamped harmonic oscillator. We list the typical parameters for

our MOT in Table C.3.

C.3.2 The Doppler limit in temperature

The viscous damping which cools atoms in the MOT and the molasses is proportional

to the number of photons absorption from each laser. In the absence of damping,
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MOT parameters typical values
All cooling MOT laser intensities 5.6 mW
All repump MOT laser intensities 0.56 mW
In-plane beam waist 1 in.
Axial beam waist, ±ex 0.5 in.
In-plane power 23 mW
Axial power 7 mW
In-plane polarization σ+

Axial polarization σ−
Detuning δ 16 MHz
Quad gradient 13 G

Table C.3: Typical MOT parameters.

an equal number of spontaneous emission events increases the average rms velocity

v̄ as a function of time. The rms velocity produced by these processes is given by,

v̄2 =
ErRscatt

β
(C.17)

hence the rms velocity of a gas scales with the increase of the kinetic energy during

a recoil process Er = ~2k2/2m, the scattering rate Γscatt, and in inverse proportion

to the slope of the viscous damping β as a function of velocity. The thermal energy

at the Doppler temperature TD is related to the rms velocity kBTD/2 = mv̄2/2;

meanwhile, the Doppler temperature

TD =
~Γ

4kB

1 + I/Isat + (2δ/Γ)2

−2δ/Γ
. (C.18)

TD = ~Γ
√

1 + I/Isat/2kB is minimized when δ = −Γ
√

1 + I/Isat/2. Figure C.5

plots the Doppler temperature as a function of the detuning and the intensity.

Hence, while we may expand the capture velocity of the MOT by increasing the

intensity to well above Isat and correspondingly increase the detuning, the Doppler

temperature also rises.
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Figure C.5: Plot of Doppler temperature TD as a function of (a) detuning
at fixed I/Isat = 3 and (b) intensity at fixed δ = −Γ in a molasses or
MOT.

C.4 Polarization gradient cooling

It is a famous result that the temperatures found in 3D optical molasses can be

much lower than the Doppler temperature. This is usually attributed to Sisyphus

cooling where a well detuned |δ| � Γ coupling between ground and excited states

form a periodic and state-dependent potential for the atoms. As the atoms move

they crest a potential in one eigenstate and radiatively decay to the lower eigenstate

only to repeat. Sisyphus cooling is a property of counterpropagating beams with

orthogonal linear polarizations. In our apparatus our beams are counterpropagating

where each beam has the same handedness of circular polarization. For two beams

this geometry produces a net linear polarization which precesses helically in space.

Atoms which move in this polarization experience polarization gradient cooling. The

mechanisms of sub-Doppler cooling for both these geometries are discussed in detail

in Ref. [116].
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cooling parameters typical values
Beam intensity all equal
in-plane powers 23 mW
axial powers 7 mW
in-plane polarization σ+

axial polarization σ−
initial detuning δ −3Γ
final detuning δ −18Γ
total time 10− 21 ms

Table C.4: Typical polarization gradient cooling parameters. All the
beam intensities are set as equal as possible. Since the diameter of the
axial beams are half that of the in-plane beams the power of the in-plane
beams is larger.

The equilibrium temperature for polarization gradient cooling is

kBT ∝
~Ω2

|δ| . (C.19)

Hence, the temperature is proportional to laser intensity and inversely proportional

to detuning (although there is a detuning below which there is no additional im-

provement). Both polarization gradient cooling and Sisyphus cooling require nearly

degenerate states and nearly equal counterpropagating beam intensities. As a result,

the absolute value of any magnetic fields needs to be small ≤ 10 mG; this necessi-

tates the removal of the MOT magnetic field as well as ambient field compensation

e.g. for Earth’s magnetic field. We summarize the experimental conditions during

our polarization gradient cooling (molasses) stage in Table C.4.

C.5 Procedure

Once we have collected and cooled ∼ 109 atoms in the MOT to several times the

Doppler temperature we snap off the quad and reduce our beam intensity to below

Isat and the detuning to 0Γ. Then, with the ambient magnetic fields cancelled, we

sweep the detuning over 14 ms from −3Γ to −18Γ. The theoretical lower limit for

the temperature after this stage is the recoil temperature TR = ER/kB = 180 nK
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which is substantially lower than the Doppler temperature for 87Rb, TD = 146 µK.

In practice, the temperature of our MOT is > 100 µK and after polarization gradient

cooling in a molasses our temperature falls further to around 30 µK.
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Chapter D: Magnetic cooling and trapping

Magnetic traps can have trap depths of kB × 100’s mK but do not have the large

capture velocities characteristic of a MOT. These have an absolute minimum in the

magnetic field centered in the glass cell or vacuum chamber. In conjunction with a

low-magnetic field seeking magnetic moment of the atom, these magnetic fields can

trap atoms. The center of a magnetic trap may be shifted with application of dc

magnetic fields. Therefore, ambient magnetic field noise is a source of heating that

becomes important around 1 µK. This heating source is typically orders of mag-

nitude smaller than heating due to spontaneous emission in near resonant MOTs.

Therefore magnetic traps are usually capable of storing atoms at temperatures well

below the Doppler temperature.

Unlike MOTs, magnetic traps have no intrinsic cooling mechanism. Hence,

they are typically loaded after sub-Doppler cooling in an optical molasses so that

atoms reach the coldest temperature possible before entering the trap. The magnetic

trap has the advantage of long trap lifetimes and insensitivity to changes in optical

polarization and alignment: the magnetic trap decouples the MOT stage from the

later cooling stages.

The Zeeman Hamiltonian describes the potential of an atom in a magnetic

field

ĤZ = gFmFµB|B(x, ρ)| (D.1)

where the Landé gF = −1/2 factor is the gyromagnetic ratio for the occupied
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ground hyperfine state of 87Rb and B(x, ρ) is the quadrupole magnetic field given

in section C.3.1.2. In the f = 1 hyperfine manifold atoms with mF = −1 gain

energy as the magnetic field increases and are trapped, atoms with mF = 0 are

untrapped and atoms with mF = +1 are anti-trapped: see Fig. D.1. When atoms

pass near the center of a quadrupole field the magnetic field precesses rapidly. When

this precession speed exceeds the Larmor frequency gF |B| the atom can diabatically

change spin projection and therefore become untrapped.
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Figure D.1: Shows the quadrupole potential energy with gradient
∂B/∂y = 25 G/cm and ∂B/∂y = 50 G/cm as a function of position
(a) orthogonal to gravity, (b) parallel to gravity and (c) with the corre-
sponding state dependence.

D.1 Optical pumping into a dark state

Following the molasses, atoms randomly occupy spin projections in the f = 1 and

f = 2 ground hyperfine states and therefore, more than half of the atoms cannot be

loaded into the magnetic trap. The load into the magnetic trap can be dramatically

improved by a combination of deloading and optically pumping into a state dark

to the optical pumping (dark state). The deload corresponds to leaving the cooling

light on very weakly with a polarization that does not load a cycling transition.

Atoms then have an opportunity to occupy the f = 1 ground state by spontaneous

emission from the excited states. As shown in Fig. D.2 we change the excited
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electronic hyperfine manifolds to which the repump light couples from f = 2 to

f = 1. With left circularly polarized light, the mF = −1 projection of the ground

hyperfine manifold does not couple to the excited hyperfine manifold. Eventually

all the atoms in the optically coupled mF = 0, 1 spin projections of the ground

hyperfine manifold pool in the uncoupled“dark” state: this state can be trapped by

the quadrupole field.

D.2 Forced evaporation

Since the magnetic trap has no intrinsic cooling mechanism we selectively remove

atoms that are spatially farthest from the trap center (forced evaporation): these are

the most energetic atoms. Atom-atom collisions thermalize the remaining atomic

ensemble to an overall lower temperature. Selective removal may be accomplished

by resonantly linking the hyperfine states with rf coupling at spatial locations in

the quad where µB(x) = ~ωrf . As shown in Fig. D.3 a gap opens in the potential

that connects |mF = −1〉 to |mF = +1〉, which is anti-trapped; some atoms have

sufficient energy to enter this anti-trapped portion of the potential and are ejected

from the trap. By ramping ωrf to lower values the overall temperature of the atomic

ensemble may be reduced. Evaporation efficiency is limited by the thermalization

rate which, in turn, depends upon density; hence, evaporation may be done faster

with greater trap densities. Forced evaporation becomes technically difficult at

low temperatures because of gravitational sag [117] and, in a quadrupole magnetic

field, atoms near the magnetic field zero can undergo a spin flip into an untrapped

state [39]

D.3 Forced evaporation procedure

Immediately after the molasses we optically pump into the |mF = −1〉 for 1 ms.

Then we apply cooling light without any repump to remove any remaining atoms
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Figure D.2: Illustrates the excitation (a & c) and spontaneous emission
(b & d) processes that pump atoms into the ground |f = 1,mF = −1〉.
Weak cooling light (a & b) removes atoms from the ground f = 2 states
and redistributes them between the ground f = 1 and f = 2 states:
in the absence of repump light and after many excitation and emission
processes all the atoms eventually end up in the f = 1 states. Repump
light (c & d) with left circular polarization does not excite atoms loaded
in the mF = −1 state (green circle). Spontaneous emission from the
other states that are repumped have a chance of loading the mF = −1
state. With both cooling and repump, the atoms end up ”stuck” in the
mF = −1 state (green circle).

179



−0.3−0.2−0.1 0.0 0.1 0.2 0.3

x position (cm)

−20

−15

−10

−5

0

5

10

15

20

E
n

er
gy

/µ
B

(G
)

(a) potential with rf

−0.3−0.2−0.1 0.0 0.1 0.2 0.3

x position (cm)

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

p
ro

fi
le

(a
rb

.)

(b) kBT/µB = 4 G

Figure D.3: (a) The magnetic quadrupole trap is dressed with 16 MHz
of rf magnetic field. The trap depth µB × 12 G is defined by the avoided
crossing. (b) Shows the density profile with cut along y = 0 and z = 0
at T = 35 µK without rf.

in the ground electronic f = 2 states. At this point we snap on a magnetic field

(in 2 ms) whose potential would produce the distribution of atoms that would cor-

respond as closely as possible to the distribution of the post molasses cloud. In our

system we needed the quadrupole to have a gradient approximately 1.5 times that

necessary to trap against gravity, which is a reflection of the spatial extent of our

post-molasses cloud. The magnetic trap is now loaded with cold atoms.

To begin our evaporative process we start our rf at a frequency of 20 MHz

and over 0.3 seconds we ramp to 13.5 MHz while adiabatically compressing the

atomic ensemble by increasing the gradient of the quadrupole by a factor of three:

four times the gradient necessary to trap against gravity. The compressed trap

improves the effectiveness of forced evaporation because it is dense. Over 2 seconds

we ramp the rf frequency to 4.5 MHz, then we turn off the rf. As the ensemble

cools the density increases and evaporation may be done more quickly. Finally,

we adiabatically decompress the quad over 1.5 s. Table D.1 summarizes typical

magnetic trap parameters.
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parameter value
gradient equivalent to gravity 30.52 G/cm
gradient snap on 47 G/cm
compress time 0.3 seconds
compressed trap gradient 122 G/cm
initial rf frequency 16 MHz
final rf frequency 4.5 MHz
forced evaporation time 3.3 seconds

Table D.1: Typical parameters in the magnetic trap.

Chapter E: Optical dipole trap

Optical dipole traps induce a dipole moment with far off resonant light. The trap

depth and spatial extent can always be increased by using more light and by detuning

more from resonance. Practically speaking, the trap depth and spatial extent of

these traps are limited by the budget of a lab. It is entirely possible to load an

optical Dipole trap directly from an ensemble of atoms sub-Doppler cooled in a

molasses. The molasses, and to a lesser extent, the MOT can fluctuate in position

spatially in response to polarization and intensity variability of the lasers. The load

into the optical dipole trap is very sensitive to such position fluctuations whereas

the magnetic trap is much less sensitive. The location of the magnetic trap is fixed

by the coil arrangement and current: the latter of which can be experimentally

controlled with high precision. Therefore, the load into the optical dipole trap from

the magnetic trap can be extremely consistent.
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E.1 Loading the optical dipole trap

We slowly ramp our magnetic trap from 120 G/cm to 20 G/cm and at the same time

lower the trap from 100 µm along ex to 0: 0ex defines the center of the quadrupole

trap center in the absence of additional uniform magnetic fields. An optical dipole

beam with a waist r0 = 67 µm is on during the magnetic field ramp down at 11 W of

power and aligned at the quadrupole trap center. Atoms are efficiently loaded from

the magnetic trap into the dipole trap when the atomic ensemble in the magnetic

trap is the same spatial extent as the dipole trap. Typically, all of the atoms may

be loaded into the optical dipole trap when the kBT is 1/10 the optical trap depth

Udipole(x = 0) = ~Γ
4

Γω0

ω2−ω2
0

P
πr2

0Isat
. As shown in Fig. F.1a the optical dipole trap now

provides confinement transverse to its direction of propagation while the magnetic

trap provides the majority of confinement parallel to the direction of propagation.

E.2 Density limitations

Narrow beam waists increase the depth of the trapping potential but tend to pro-

duce losses in interacting gases; density dependent losses are often attributed to

three-body recombination. The three body recombination rate Γ3−body in 87Rb is a

function of the density n cubed

Γ3−body = K3n
3 (E.1)

where K3 == 2.2×10−23 cm6/s [118, 119]. Since these losses primarily occur where

density is maximized and typically the coldest atoms in a Boltzmann distribution

are at the center of the trap 3-body losses perform a sort of anti-evaporation that

heats the cloud [120].
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Figure E.1: (a) schematic of hybrid optical dipole trap and quadrupole
magnetic trap. The optical dipole trap provides confinement in the planes
transverse to the beam propagation while the magnetic trap–with gradi-
ents weak compared to those necessary to trap against gravity–provides
axial confinement. (b) profile of optical dipole trap. (c) The intersection
of two optical dipole beams provides full confinement of the atomic en-
semble. (d) level diagram showing the coupling of 87Rb with 1064 nm
optical illumination.
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E.3 Evaporative cooling

In optical dipole traps lowering the intensity of the beam allows the most energetic

atoms to enter the continuum of untrapped states. As a rule of thumb the temper-

ature of atoms in an optical dipole trap approximately equal 1/10th the trap depth

which may be calculated using Eqs. 4.10 and 4.12: we find that the trap depth is

∝ mω2
HO [39]. Hence, the number of uncondensed atoms Nth ∝ ω3

HO ∝ P 3/2 can

always be reduced below 1.

E.4 Loading the crossed-dipole trap

Typically, we load the hybrid optical and magnetic trap at temperatures much

greater than the optical trap depth. Keeping the overall optical power constant we

perform evaporation over the course of 1 s by increasing the intensity in a second

optical beam that intersects the first at a right angle: both are perpendicular to

the axis along gravity as shown in Fig. F.1c. Over 1 s the combined optical power

is lowered from 11 W to something just above the threshold for condensation; the

magnetic gradient is simultaneously lowered from 20 G/cm to 10 G/cm. It is benefi-

cial to do this evaporation quickly, especially at the beginning of the ramp, to reduce

the density and the corresponding three-body recombination. We then turn off the

magnetic field gradient in 1 s. Final evaporation to condensation is done by reduc-

ing the overall optical power over 1.5 s. This evaporation is typically done slowly

so that we minimize the number of excitations introduced during the formation of

the condensate.

E.5 Typical optical crossed-dipole setup

A 30 W IPG fiber laser provides 11 W of 1064 nm to the experiment. There are

no fibers in this setup. A 4:1 telescope reduces the initial 2 mm radial extent of the
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beam to 0.5 mm. The intensity of the light is controlled by the first AOM and the

remainder of the power is removed to a 30 W beam dump. We sample light from

−1st order of the AOM with the uncoated glass surface of a pickoff oriented at 45

degrees and measure with an InGaAs photodiode. We found that Si photodiodes

are temperature sensitive at 1064 nm. The Glan laser polarizer removed a long

timescale coupling between polarization and the overall intensity that resulted from

the polarization sensitivity of our pickoff. The second AOM splits the light into each

of the crossed optical dipole beams. Each beam is focused with a 300 mm achromatic

doublet on the quadrupole trap center. The waist of the dipole beam was adjusted

between experiments using cylindrical and regular beam expanders: doubling the

size of the collimated beam that precedes the final focusing lens halves the waist of

the beam at the atoms. In the domain dynamics experiment a nearly cylindrically

symmetric crossed dipole trap was produced with the intersection of a 67 µm beam

and a 300 µm beam. We balanced the power between the beams with the second

AOM to produce a 22 : 1 aspect ratio for ez − ey relative to ex. For the spin-1

ferromagnetism experiment we investigated the three component miscibility of our

system. We prepared a disc-like trap so that the spin-components could separate

like pieces of a pie. In this case the collimated waist of each beam perpendicular

to gravity was left around 0.5 mm but the waist of beam A in Fig. E.2 parallel to

gravity was expanded by a factor of three using cylindrical optics. We summarize

typical parameters of the optical dipole setup in Table E.1.
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Figure E.2: Schematic of crossed optical dipole beams intersecting to
produce a 3D trap for cold atoms. Our setup changes between the domain
dynamics experiment and the spin-1 ferromagnetism experiment. In the
first experiment beam A has a waist at the atoms that is four times
smaller than that of waist B. In the spin-1 experiment the waists of
beams A and B are the same in the plane of the schematic but cylindrical
lenses reduce the vertical extent of beam A by a factor of 3.
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parameter value
power to trap against gravity 3.5× 1015r3

0 mW

far detuned saturation intensity 2.50 mW/cm2

r0 for beam A domains exp. 67 µm
r0 for beam B domains exp. 300 µm

r0 for beam A spin-1 exp. 150(ez − ey)/
√

2 µm, 55ex µm
r0 for beam B spin-1 exp. 150 µm isotropic
power at fiber laser head 11 W
power in A during domain exp.
power in B during domain exp.
power in A during spin-1 exp. 250 mW
power in B during spin-1 exp. 250 mW

Table E.1: Typical parameters of the optical dipole setup.

Chapter F: Cooling and control sequence overview

F.0.1 From MOT to sub-Doppler cooling

Once we have collected and cooled ∼ 109 atoms in the MOT to several times the

Doppler temperature we snap off the quad and reduce our beam intensity to below

Isat and the detuning to −3Γ. Then, with the ambient magnetic fields cancelled, we

sweep the detuning over 14 ms from−2Γ to−24Γ. The theoretical lower limit for the

temperature after this stage is the recoil temperature Tr = Er/kB = 180 nK which

is substantially lower than the Doppler temperature for 87Rb, TD = 146 µK. In

practice, our MOT temperature ∼ 100 µK and our molasses temperature ∼ 30 µK.

A summary of the experimental sequence that transitions from the MOT to the

molasses is included in Table F.1.
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Stage Duration (ms) MOT c. (mW) MOT r. (mW) MOT c. δ (Γ)
MOT load 3000-7000 22 2 -2
Equilibrate 50 22 2 -2
Decompress 50 22→ 15 2→ 1.5 -2
Molasses 14 1 1 −2→ −24

Stage Duration (ms) Slower c. (mW) Slower r. (mW) Quad. B (G/cm3)
MOT load 3000-7000 15 2 15
Equilibrate 50 0 0 15
Decompress 50 0 0 15→ 7
Molasses 14 0 0 0

Stage Duration (ms) Slower B. (A)
MOT load 3000-7000 140
Equilibrate 50 140→ 0
Decompress 50 0
Molasses 14 0

Table F.1: This is the MOT to molasses sequence. There are many
abbreviations in this table: cooling (c.), repump (r.), detuning (δ), mag-
netic field (B.) and quadrupole (quad.). The natural linewidth is 6 MHz
(Γ).

F.1 Load into magnetic trap

Immediately after the molasses we optically pump into the |mF = −1〉 for 1 ms.

Then we apply cooling light without any repump to remove any remaining atoms

in the ground electronic f = 2 states. At this point we snap on a magnetic field

(in 2 ms) whose potential would produce the distribution of atoms that would cor-

respond as closely as possible to the distribution of the post molasses cloud. In our

system we needed the quadrupole to have a gradient approximately 1.5 times that

necessary to trap against gravity, which is a reflection of the spatial extent of our

post-molasses cloud. A summary of the experimental sequence that loads a molasses

into the magnetic trap can be found in Table F.2.

F.2 Forced evaporation procedure

To begin our evaporation we start our rf at a frequency of 20 MHz and over 0.3

seconds we ramp to 13.5 MHz. We simultaneously compressing the atomic ensem-
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Stage Duration (ms) Probe c. (mW) MOT c. (mW) MOT c. δ (Γ)
Optical pump 6 0 2 -4
Deload 1 0 2 -4
Blow away 1 1.6 0 -4
Load mag. trap 14 0 0 NA

Stage Duration (ms) Slower r. (mW) Slower r. δ (Γ) Quad B. (G/cm3)
Optical pump 6 4 -26 0
Deload 1 0 0 0
Blow away 1 0 0 0
Load quad B. trap 14 0 0 48

Table F.2: This is the molasses to the magnetic trap load. There are
many abbreviations in this table: cooling (c.), repump (r.), detuning (δ),
magnetic field (B.), and quadrupole (quad.). The natural linewidth is
6 MHz (Γ).

Stage Duration (ms) Quad. B. (G/cm3) rf B. (G) rf freq. (MHz)
Compress quad. 300 48→ 120 0.015 20→ 13.5
Forced evap. 2000 120 0.015 13.5→ 4.5

Stage Duration (ms) Opt. dip. (W) ex B. bias (G)
Compress quad. 300 11 0→ 1
Forced evap. 2000 11 1

Table F.3: The compression and forced evaporation experiment sequenc-
ing is described here. There are many abbreviations in this table: dc
magnetic biasing field (B. bias), optical (opt.), dipole (dip.), evaporation
(evap.), frequency (freq.), magnetic field (B.), and quadrupole (quad.).

ble adiabatically by increasing the gradient of the quadrupole magnetic trap by a

factor of three: four times the gradient necessary to trap against gravity. The com-

pressed trap improves the rate of reequilibration during forced evaporation because

it increases the density of the atomic ensemble. Over 2 seconds we ramp the rf

frequency to 4.5 MHz, then we turn off the rf. As the ensemble cools the density

increases and evaporation may be done more quickly. Table F.3 summarizes typical

magnetic trap parameters.

F.3 Loading the optical dipole trap

We slowly ramp our magnetic trap from 120 G/cm to 20 G/cm and at the same time

lower the trap from 100 µm along ex to 0: 0ex defines the center of the quadrupole

trap center in the absence of additional uniform magnetic fields. An optical dipole
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Stage Duration (ms) Quad. B. (G/cm3) dip. (W) cross dip. (W)
Decomp. quad. 1500 120→ 30 11 0
Load cross 1000 30→ 20 11→ 5.5 0→ 5.5
Dip. evap. 1000 20 5.5→ 2 5.5→ 2
Quad. off 1000 20→ 0 2 2

Stage Duration (ms) ex B. bias (G)
Decomp. quad. 1500 1→ 0.1
Load cross 1000 0.1
dip. evap. 1000 0.1
Quad. off 1000 0.1

Table F.4: This is the experimental loading sequence from the magnetic
trap to optical dipole trap. There are many abbreviations in this table:
decompress (decomp.), dc magnetic biasing field (B. bias), optical dipole
(dip.), evaporation (evap.), magnetic field (B.), and quadrupole (quad.).

beam with a waist r0 = 67 µm is on during the magnetic field ramp down at 11 W of

power and aligned at the quadrupole trap center. Atoms are efficiently loaded from

the magnetic trap into the dipole trap when the atomic ensemble in the magnetic

trap is the same spatial extent as the dipole trap. Typically, all of the atoms may

be loaded into the optical dipole trap when the kBT is 1/10 the optical trap depth

Udipole(x = 0) =
~Γ

4

Γω0

ω2 − ω2
0

P

πr2
0Isat

(F.1)

As shown in Fig. F.1a the optical dipole trap now provides confinement transverse

to its direction of propagation while the magnetic trap provides the majority of

confinement parallel to the direction of propagation.

F.3.1 Evaporation in the dipole trap

In optical dipole traps lowering the intensity of the beam allows the most energetic

atoms to enter the continuum of untrapped states. As a rule of thumb the temper-

ature of atoms in an optical dipole trap approximately equal 1/10th the trap depth

which may be calculated using Eqs. 4.10 and 4.12: we find that the trap depth is

∝ mω2
HO [39]. Hence, the number of uncondensed atoms Nth ∝ ω3

HO ∝ P 3/2 can

always be reduced below 1.
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Figure F.1: (a) This is a schematic of the hybrid optical dipole trap and
quadrupole magnetic trap. The optical dipole trap provides confinement
in the planes transverse to the beam propagation while the magnetic
trap–with gradients weak compared to those necessary to trap against
gravity–provides axial confinement. (b) profile of optical dipole trap. (c)
The intersection of two optical dipole beams provides full confinement
of the atomic ensemble. (d) level diagram showing the coupling of 87Rb
with 1064 nm optical illumination.
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Typically, we load the hybrid optical dipole and magnetic trap at a kBT greater

than the optical dipole trap depth alone. Once atoms are partially loaded into the

dimple produced by the optical dipole trap we lower the overall magnetic field to

approximately 20 G/cm. Simultaneously, while keeping the overall optical power

constant, we perform evaporation over the course of 1 s by shunting light into a

second optical beam that intersects the first at a right angle. Both optical dipole

beams are perpendicular to the axis along gravity as shown in Fig. F.1c. Over

another 1 s the combined optical power is lowered from 11 W to something just

above the threshold for condensation. The magnetic gradient is simultaneously

lowered from 20 G/cm to 10 G/cm.

It is beneficial to do this initial evaporation quickly to reduce the density

and the corresponding three-body recombination. We then turn off the magnetic

field gradient in 1 s. Final evaporation to condensation is done by reducing the

overall optical power over 1.5 s. This final evaporation is typically done slowly so

that we minimize the number of excitations introduced during the formation of the

condensate.
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Spielman. Synthetic 3D spin-orbit coupling. Phys. Rev. Lett., 108:235301, Jun

2012.

[16] D. L. Campbell, R. M. Price, A. Putra, A. Valdes-Curiel, D. Trypogeorgos,

and I. B. Spielman. Itinerant magnetism in spin-orbit coupled Bose gases.

arXiv:1501.05984, 2015.

194



[17] Tin-Lun Ho and Shizhong Zhang. Bose-Einstein condensates with spin-orbit

interaction. Phys. Rev. Lett., 107:150403, Oct 2011.

[18] T. D. Stanescu, B. Anderson, and V. Galitski. Spin-orbit coupled Bose-

Einstein condensates. Phys. Rev. A, 78(2):023616, 2008.

[19] Tigran A. Sedrakyan, Alex Kamenev, and Leonid I. Glazman. Composite

fermion state of spin-orbit-coupled bosons. Phys. Rev. A, 86:063639, Dec

2012.

[20] Lei Jiang, Xia-Ji Liu, Hui Hu, and Han Pu. Rashba spin-orbit-coupled atomic

Fermi gases. Phys. Rev. A, 84:063618, Dec 2011.

[21] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases.

Cambridge University Press, 2nd edition, 2008.

[22] M Le Bellac, F. Mortessagne, and G. G. Batrouni. Equilibrium and Non-

Equilibrium Satistical Thermodynamics. Cambridge University Press, 2006.

[23] H. Metcalf and P. van der Straten. Laser Cooling and Trapping. Springer,

1999.

[24] A. Derevianko, J. F. Babb, and A. Dalgarno. High-precision calculations of

van der Waals coefficients for heteronuclear alkali-metal dimers. Phys. Rev.

A, 63:052704, Apr 2001.

[25] ERI Abraham, WI McAlexander, JM Gerton, RG Hulet, R Côté, and A Dal-
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