
Artificial Gauge Fields for Ultracold Neutral Atoms

Karina Jiménez-Garćıa
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Resumen

Los átomos ultrafŕıos han demostrado ser sistemas versátiles para explorar la f́ısica de los sistemas

más fascinantes e interesantes en el mundo cuántico. Debido al alto grado de control experimental

ofrecido por estos sistemas, es posible diseñar y experimentalmente implementar en ellos Hamilto-

nianos efectivos. Esta carateŕıstica única hace que los átomos ultrafŕıos sean sistemas ideales para

la simulación cuántica de fenómenos complejos tan importantes como la superconductividad de alta

temperatura cŕıtica, y recientemente de novedosos campos de norma artificiales [1, 2, 3, 4].

Esta tesis presenta una variedad de experimentos de simulación cuántica con sistemas de átomos

ultrafŕıos, incluyendo la primera demostración experimental de campos de norma artificiales induci-

dos por luz en átomos neutros. Los campos de norma artificiales son un ingrediente necesario para

poder simular fenómenos electrónicos tales como el efecto Hall cuántico y el efecto spin-Hall cuántico

usando átomos neutros.

Nuestros experimentos utilizan condensados de Bose-Einstein iluminados por un par de lásers

“Raman” [5]; en este esquema los eigenestados resultantes son superposiciones de spin y momen-

tum. Al preparar los átomos en el eigenestado de mı́nima enerǵıa éstos adquieren una relación

de dispersión efectiva, la cual es experimentalmente controlable via la intensidad del acoplamiento

Raman y el detuning con respecto de la resonancia Raman. El resultado es la introducción de un

campo de norma artificial en el Hamiltoniano.

Nuestras técnicas experimentales para bosones ultrafŕıos han superado las aparentes limitaciones

impuestas por su neutralidad de carga eléctrica [6, 7, 8], su naturaleza bosónica [9, 10], y su baja

enerǵıa [11] y han permitido la observación de nuevos e interesantes fenómenos f́ısicos. Las proyec-

ciones de este trabajo incluyen la posible realización del efecto Hall cuántico en bosones, de aislantes

topológicos [12] y de sistemas que soporten fermiones de Majorana [13].

Este trabajo fue realizado en colaboración con el Departemento de F́ısica del Centro de Inves-

tigación y Estudios Avanzados del Instituto Politécnico Nacional, México DF, 07360, México.
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Abstract

Ultracold atoms have proven to be a versatile probe for physics at the core of the most intriguing

and fascinating systems in the quantum world. Due to the high degree of experimental control

o↵ered by such systems, e↵ective Hamiltonians can be designed and experimentally implemented on

them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex

phenomena as important as high-temperature superconductivity, and recently of novel artificial

gauge fields [1, 2, 3, 4].

This thesis presents a variety of experiments on quantum simulation with ultracold atom sys-

tems, including the first experimental demonstration of light induced artificial gauge fields for

ultracold neutral atoms. Artificial gauge fields are the required ingredient for ultracold atom sys-

tems to simulate electronic phenomena such as the quantum Hall e↵ect and the quantum spin Hall

e↵ect.

We optically dress our Bose-Einstein condensates with a pair of far detuned “Raman” lasers [5];

the resulting dressed states are spin and momentum superpositions, and we adiabatically load the

atoms into the lowest energy dressed state. The atoms acquire a new e↵ective dispersion relation

which is experimentally tunable via the strength of the Raman coupling and the detuning from

Raman resonance, thus introducing gauge terms into the Hamiltonian.

Our experimental techniques for ultracold bosons have surpassed the apparent limitations im-

posed by their neutral charge [6, 7, 8], bosonic nature [9, 10], and ultra-low energy [11] and have

allowed the observation of these new and exciting phenomena. Future work might allow the real-

ization of the bosonic quantum Hall e↵ect, of topological insulators [12] and of systems supporting

Majorana fermions [13] using cold atoms.

This work was done in collaboration with the Physics Department at Centro de Investigación y

Estudios Avanzados del Instituto Politécnico Nacional, México DF, 07360, México.
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Chapter 1

Introduction

Bose-Einstein condensation (BEC) was first experimentally realized in 1995 using dilute gases of

alkali metals: 87Rb was used in the experiments led by Eric Cornell and Carl Wieman at JILA [14];

and 23Na was used in the experiments led by Wolfgang Ketterle at MIT [15]. These achievements

were crowned with the Nobel prize in Physics in 2001.

Together with superconductivity [16] and superfluidity [17, 18], BEC is one of the few macro-

scopic manifestations of quantum phenomena. The study of BEC gives us a major opportunity to

discover new quantum phenomena, to probe the laws of quantum mechanics, and to better under-

stand the underlying mechanisms of various physical phenomena.

1.1 Artificial gauge fields for utlracold neutral atoms

A natural procedure to solve a complex problem is to explore a simplified version of it, which

retains its essential characteristics. For numerous applications, such a role is played by ultracold

atoms, due to their precise experimental control in real-time and their lack of impurities. Quantum

simulation with ultracold atoms allows one to address numerous questions in physics which in

principle cannot be treated analytically.

Ultracold atoms have proven to be a versatile probe for physics at the core of the most intriguing

and fascinating systems in the quantum world. Their characteristic versatility allows the realization

of tailor-made Hamiltonians, that reproduce interesting physical phenomena. As an example, ultra-

cold bosonic atoms in optical lattices have succeeded in simulating and revealing the physics of the

Bose-Hubbard model [19, 20], the bosonic version of a model which is believed to be important to

understand high-temperature superconductivity [21, 22].

However, ultracold atom systems are electrically neutral and in the presence of electromagnetic

fields they do not experience a Lorentz force. This restricts their use in the study of interesting

phenomena such as the quantum Hall e↵ect [23], the quantum spin Hall e↵ect [12, 24] and exotic

phenomena like topological insulators [25, 26]. The research on such phenomena not only has im-

portant consequences to quantum mechanics but also to quantum computation and information

theory [27].
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During the last years our group has succeeded in realizing the dynamical conditions exerted

by an electromagnetic field on charged particles, by realizing light-induced artificial gauge fields

for neutral atoms [1]. Furthermore due to extreme experimental control on the properties of cold

atom systems, artificial gauge fields beyond those appearing in condensed matter systems could in

principle be realized [28].

1.2 Thesis overview

This thesis describes both the experimental apparatus used to prepare samples of ultracold

atoms, and the measurements realized on various engineered Hamiltonians for quantum simulation

with artificial gauge fields.

Chapter 2 discusses the theory of Bose-Einstein condensation (BEC) in trapped gases. It focuses

both on the equilibrium properties of trapped BECs and on its dynamic behavior. We center the

attention on the study of collective modes, due to their relevance on our experiments.

Chapter 3 provides the theory of laser cooling and trapping as well as of the basic techniques

used to manipulate and probe ultracold atoms.

Chapter 4 gives a detailed description of the experimental apparatus. Our machine combines the

efficient capture of atoms from a magneto optical trap (MOT) into a magnetic trap with the rapid

evaporation on optical dipole traps to reliably produce 87Rb BECs in typical cycling times of 20 s.

Chapter 5 focuses on the e↵ects of Raman transitions on ultracold atoms. The e↵ective dispersion

relation imposed by the dressing fields on the atoms, gives rise to an experimentally tunable artificial

vector potential [5] for ultracold neutral atom systems. The e↵ects of an synthetic electric force

acting on neutral atoms [6] are discussed.

Chapter 6 describes experiments with synthetic magnetic fields for ultracold neutral atoms [7].

Our measurements of the transport properties of BECs under the influence of such fields [8] consti-

tute the cold-atom analog to Hall measurements in condensed matter (CM) systems.

Chapter 7 details the physics and experimental realization of ultracold atoms in optical lat-

tices. We focused on the superfluid to Mott insulator (MI) quantum phase transition; and measured

the critical lattice depth for the first appearance of MI in a two dimensional (2D) system as a

function of system size and trapping parameters [29]. The introduction of a characteristic density

revealed the universal behavior of the quantum phase transition and provided a test for the validity

of the local density approximation.

Chapter 8 describes a method with which we simultaneously implemented an e↵ective gauge

field and a lattice potential. We realized the Peierls substitution in this engineered lattice [30] and

demonstrated excellent experimental control over both the Peierls tunneling amplitude and phase.
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Chapter 9 introduces matrix valued artificial gauge fields and spin-orbit coupling in a CM sys-

tem. Using an e↵ective “spin-1/2” system under Raman dressing, we demonstrated spin-orbit cou-

pling in ultracold atoms [9], the strength of which can experimentally be adjusted in real time [31].

Chapter 10 addresses the e↵ect of Raman coupling on the interactions of the dressed sys-

tems. Working in di↵erent Raman coupling regimes we observed modified interactions between

the atoms of Raman dressed BECs. In the low Raman coupling regime we describe a new method

to control the strength of interatomic interactions between the dressed spins [9]; this technique is

robust against atom loss and could overcome the limitations existing in current techniques based on

Feshbach resonances. In the large Raman coupling regime, we detected evidence of modified inter-

actions from the scattering products of the ultra-low energy collisions of Raman dressed BECs [11].

The experimental realization of light-induced artificial gauge fields has opened new avenues for

the quantum simulation with ultracold atoms, since it allows the study of physical phenomena

previously exclusive to CM systems. Other important applications include the generalization of

these methods to realize non-abelian gauge fields and topological insulators, and their application

to fermionic systems [32, 33].
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Chapter 2

Basics of Bose-Einstein condensation theory

Bose-Einstein condensation (BEC) is a quantum state of matter, which was first predicted by Bose

for the statistics of photons and later generalized by Einstein to the context of bosons in 1924 [34].

BEC occurs when the temperature T of a sample of bosonic particles of mass m is reduced

to the point that their spatial extent, characterized by the thermal de Broglie wavelength λdB =p
2⇡~2/mkBT , is larger than the interatomic spacing; in this limit, the indistinguishable and the

quantum nature of their statistics become most evident. In a BEC, all particles occupy the same

quantum state.

Extensive reviews on the theory of BEC in trapped systems and experimental techniques to

make and probe BECs in dilute alkali gases are Refs. [35] and [36], respectively. In this chapter

I describe the basic properties of Bose-Einstein condensation of dilute atomic gases trapped in

a harmonic oscillator potential. Due to their importance to our experiments I will also discuss

dynamical properties of BEC, in particular, collective excitations.

2.1 The Bose-Einstein distribution

At low temperatures the statistical distribution of quantum particles in thermodynamical equi-

librium at temperature T depends on their spin degree of freedom. In the case of non-interacting

bosons (integer spin), the mean occupation number of particles occupying the state Ej (where j

labels the state’s energy) is given by the Bose-Einstein distribution

n(Ej) =
1

exp[(Ej − µ)/kBT ]− 1
; (2.1)

where µ is the chemical potential (the energy required to add or remove a particle from the system)

and kB is Boltzmann’s constant. The chemical potential µ is introduced to establish the condition

of conservation of the total number of particles N =
P

j n(Ej), and it is thus a function of N and

T . The energy levels Ej in Eq. (2.1) correspond to the eigenenergies of the particles in a potential

U .
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Figure 2.1: Bose-Einstein distribution. Occupation number of bosons as a function of energy at
di↵erent values of the fugacity: ⇣= 0.25, 0.5, 0.75 correspond to chemical potentials µ/kBT ⇡
−1.39,−0.69,−0.29, respectively; the condensate state corresponds to ⇣=1.

The Bose-Einstein distribution can also be expressed in terms of the fugacity ⇣ = exp(µ/kBT )

as

n(Ej) =
⇣

exp(Ej/kBT )− ⇣
. (2.2)

At high temperatures, the Bose-Einstein distribution tends to the Boltzmann distribution n(Ej) ⇡
exp[−(Ej − µ)/kBT ], where the mean occupation numbers are n(Ej) ⌧ 1. The condition that

n(Ej) ≥ 0 8Ej, in particular for the ground state which we define as E0, implies that the chemical

potential for a non-interacting Bose gas is µ < E0 (thus ⇣ < 1). Fig. 2.1 displays n(Ej) as a function

of energy, for di↵erent values of the fugacity.

When the temperature goes down, the chemical potential increases but as justified above, it

cannot go beyond E0; this imposes a limit on the occupation numbers of the excited states, given

by Eq. (2.1) evaluated at µ = E0. When the excited states have reached their occupation limit,

the remaining particles can accumulate in the limitless occupation ground state and Bose-Einstein

condensation (BEC) is achieved.

2.1.1 Conditions to reach BEC. There is a critical temperature Tc above which BEC no longer

occurs; for temperatures below Tc, the chemical potential is µ = E0 and the ground state can be

macroscopically occupied.

In the following I will assume that the energy kBT is larger than the energy di↵erence between

the energy levels of the system, thus we can express the number of particles in the excited states

as an integral of the form

Nex =
X
j 6=0

n(Ej) !
Z 1

0

g(E)n(E)dE (2.3)
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Table 2.1: Relevant values for determining the conditions for BEC in selected systems.

System and dimensionality ↵ Γ(↵) ⇣(↵)
Uniform Bose gas in 1D 1/2

p
⇡ ⇡ 1.77 -1.46

Uniform Bose gas in 2D 1 1 1
Uniform Bose gas in 3D 3/2

p
⇡/2⇡0.886 2.612

Bose gas in a harmonic trap 2D 2 1 ⇡2/6⇡1.645
Bose gas in a harmonic trap 3D 3 2 1.202

where g(E) is the density of states1. The above quantity Nex reaches its maximum value when the

chemical potential reaches the energy of the lowest state µ = E0; we can determine the transition to

BEC from the condition that at the critical temperature Tc the total of particles N fully populate

the excited states, thus:

N = Nex(Tc, µ = 0) =

Z 1

0

g(E)dE

exp(E/kBTc)− 1
. (2.4)

The density of states is given by g(E) = dG(E)/dE, where G(E) is the total number of energy

states of the system with energy smaller than E; and in general it can be expressed as g(E) =

C↵E
↵−1, where C↵ is a constant and relevant values for ↵ are given in Table 2.1. By defining the

dimensionless variable u=E/kBTc, Eq. (2.5) becomes

N = C↵(kBTc)
↵

Z 1

0

u↵−1 e−u

1− e−u
du.

Assuming that e−u is small, we use (1− e−u)−1 ⇡
P

l e
−lu with 0  l < 1 and obtain

N = C↵(kBTc)
↵

Z 1

0

1X
l=0

e−(l+1)uu↵−1du,

= C↵(kBTc)
↵

Z 1

0

1X
l=1

e−u0
✓
u0

l

◆↵−1
du0

l
,

= C↵(kBTc)
↵

1X
l=1

l−↵

Z 1

0

e−u0
u0↵−1du0,

where u0 = lu. We identify the Gamma function Γ(↵) =
R1
0

e−u0
u0↵−1du0 and the Riemann zeta

1The density of states is basically the number of available states of a system at a given energy; it depends on the
systems dispersion relation as well as on its dimensionality.
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Figure 2.2: Condensate fraction as a function of T/Tc for a non-interacting Bose gas in: a 3D
harmonic trap (solid, ↵=3); a 2D harmonic trap (dashed, ↵=2) and in a 3D box (dashed, ↵=3/2).

function ⇣(↵)=
P1

l=1 l
−↵ and rewrite N as

N = C↵(kBTc)
↵Γ(↵)⇣(↵); (2.5)

from which we obtain the critical temperature Tc

kBTc =

✓
N

C↵Γ(↵)⇣(↵)

◆1/↵

. (2.6)

The critical temperature Tc scales with N but also depends on the values of the special functions

Γ(x) and ⇣(x) at x = ↵. By calculating the density of states g(E) of a system, the coefficients ↵

and C↵ are obtained. Table 2.1 shows relevant values to determine Tc in selected systems, and it

is concluded that: (i.) BEC in a 2D system can only occur either at Tc=0 in a box, or at a finite

temperature when confined in a harmonic trap; and (ii.) BEC in a 3D system either in a box or in a

harmonic trap occurs at finite temperature. BEC cannot occur in 2D and 1D at finite temperature

because thermal fluctuations destabilize the condensate [35, 37].

In the following we introduce two quantities which are useful to determine in which limit do the

quantum statistics of the system matter. The de Broglie wavelength λdB=
p
2⇡~2/mkBT is a mea-

sure of the spatial extent of the wave function of a particle; when λdB becomes comparable with the

interparticle separation quantum e↵ects are relevant; this typically occurs at low temperatures. On

the other hand, we define the phase space density ⇢ = nλ3dB as the number of particles contained in

a volume λ3dB, where n is the density of particles. The conditions on ⇢ to observe quantum behavior

are better illustrated in the following example.

For a uniform gas of N non-interacting bosons in a 3D box of volume V (with density n=N/V )

the critical temperature to achieve BEC is obtained from Eq. (2.6) with ↵=3/2 and the coefficient
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C3/2 = V m3/2/21/2⇡2~3. The condition to reach BEC reduces to ⇢ = ⇣(3/2) ⇡ 2.612, thus low

temperatures and/or high densities are necessary to observe BEC.

2.1.2 Condensate fraction We now move our attention to compute the fraction of atoms in

the BEC state, namely the condensate fraction. The number of particles in the excited states is

given by Eq. (2.3); below the transition temperature where µ = 0

Nex =

Z 1

0

g(E)dE

exp(E/kBT )− 1
,

which reduces to Nex = C↵Γ(↵)⇣(↵)(kBT )
↵. Using Eq. (2.5) we obtain Nex/N = (T/Tc)

↵; thus the

fraction of atoms condensed in the lowest energy state is N0/N = (1−Nex/N), namely

N0

N
= 1−

✓
T

Tc

◆↵

. (2.7)

Figure 2.2 displays the condensate fraction as a function of T/Tc for selected systems.

2.2 Ideal Bose gas in a 3D harmonic trapping potential.

Due to its relevance in experiments with dilute BECs, this section summarizes the results on

BEC for a collection of non-interacting bosons in a 3D harmonic oscillator (HO) potential U(r). Con-

sidering

U(r) = −m(!2
xx

2 + !2
yy

2 + !2
zz

2); (2.8)

where !j = 2⇡fj is the angular frequency of the harmonic trap along ej; the transition temperature

of an ideal Bose gas in a 3D harmonic potential is obtained from Eq. (2.6) with ↵=3 and C3 =

(2~3!x!y!z)
−1, thus

kBTc ⇡ 0.941~!N1/3, (2.9)

where ! = (!x!y!z)
1/3 is the geometric mean of the harmonic oscillator frequencies. The condensate

faction is given by
N0

N
= 1−

✓
T

Tc

◆3

. (2.10)

This result assumes that kBT is larger than the energy di↵erence between the energy levels of the

system. Assuming a N = 1 ⇥ 106 atom system and using Eq. (2.9), the critical temperature is

kBTc ⇡ 94.1~!; i.e. at the BEC transition there is enough energy to occupy many excited energy

levels, but it is the bosonic quantum statistics which favor the population of the lowest energy

state. Once a few bosons occupy the ground state, more tend to accumulate in such state in a

phenomenon known as Bose stimulation [38].
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the ground state wave function of a HO is reduced when the trapping frequency increases. The
solid curves represent the HO potential and the shaded regions corresponds to the wave function,
both as a function of position. b. By adjusting the trap parameters, reduced dimensionality can be
achieved.

2.2.1 Dimensionality. We have discussed that dimensionality is an important factor to be con-

sidered when determining the conditions to reach BEC. In this section I discuss the conventions on

reduced dimensionality for trapped systems. In the above treatment for the ideal gas, we assumed

that the temperature energy scale was kBT � ~!j for j = x, y, z. By relaxing these conditions

along one or more directions, reduced dimensionality can be achieved.

Trapping potentials for ultracold atoms can be made extremely anisotropic, and this allows

experimentalist to work in quasi-2D and quasi-1D regimes. The conditions to reach reduced dimen-

sionally are defined by comparing the thermal and HO energy scales; e.g. to achieve 2D confinement

in the xy-plane, it is required that ~!xy ⌧ !z as is illustrated in Fig. 2.3, where the spatial extent

of the cloud, characterized by aj =
p

~/m!j along ej, is reduced due to the increased trapping

frequency to the point that the motion is frozen in that direction. Similarly for sufficiently large

trapping frequencies in two directions, the movement of the particles can be restricted to 1D.

2.2.2 Experimental signatures of BEC. Typically experiments probe the atomic distributions

either in-situ of after letting the atoms to freely expand in time of flight (TOF) using resonant

absorption imaging (see section 3.7). In-situ imaging gives us access to the spatial density profile

of the distribution; while imaging after TOF reveals the momentum distribution. In this section

I describe an important feature which distinguishes a BEC from a thermal distribution, namely

its anisotropic expansion in TOF and its narrow momentum distribution. This behavior provided

evidence for the existence of BEC in early experiments [14]. Table 2.2 summarizes this important

result. Additionally I briefly discuss on the long-range phase coherence of BECs.

2.2.2.1 Anisotropic expansion in TOF. Let us consider a collection of bosons in an anisotropic

HO potential of the form given in Eq. (2.8). The single particle wave function of the lowest energy
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Table 2.2: Characteristic widths of trapped non-interacting systems.

Width of density distribution at BEC Thermal

t = 0 (~/m!j)
1/2 (2kBT/m!

2
j )

1/2

t > !j (~!j/m)1/2t (2kBT/m)1/2t

state is given by

 0(r) =
e−x2/2a2

xe−y2/2a2
ye−z2/2a2

z

⇡3/4paxayaz
; (2.11)

where aj =
p

~/m!j are the characteristic HO lengths along ej; typical trapping frequencies in our

experiments range from 2⇡ ⇥ 120 Hz to 2⇡ ⇥ 5 Hz, and correspond to HO lengths from 1 to 5 µm,

respectively.

The free expansion of an atomic cloud is largely dictated by its velocity distribution in the trap

(although collisions may play an important role in the expansion of the atomic distribution for an

interacting system). The velocity distribution is described by the wave-function φ(p) in momentum

space, which in turn is obtained from the Fourier transform of  0(r)

φ0(p) =
e−p2

x

/2b2
xe−p2

y

/2b2
ye−p2

z

/2b2
z

⇡3/4
p
bxbybz

; (2.12)

where bi = ~/ai. The density in momentum space is n(p) = N |φ0(p)|2 and thus is given by

n0(p) = N
e−p2

x

/b2
xe−p2

y

/b2
ye−p2

z

/b2
z

⇡3/2bxbybz
. (2.13)

The density distribution has the form of an Maxwell-Boltzmann distribution and it inherits its

anisotropy from its spatial counterpart. When the atomic distribution is free to expand in TOF,

the single particle wave function follows the time evolution of a free-particle with energy p2/2m,

thus the time-dependent wave function in position space is

 0(r, t) =
1

(2⇡~)3/2

Z
eip·r/~φ0(p)e

−i(p2/2m)t/~dp,

=
1

⇡3/4(2⇡~)3/2
Y

j={x,y,z}

1p
bj

Z
exp


−
p2j
2

✓
it

~m
+

1

b2j

◆
+

i

~
pjj

�
.

Completing a perfect square trinomial in the argument of the exponential by adding and subtracting
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the term −x2/[2~2( 1
b2
x

+ it
~m)] and using the Gaussian integral

R1
0
e−u2

du =
p
⇡, we obtain

 0(r, t) =
1

⇡3/4

Y
j={x,y,z}

r
aj

1 + ij!jt
exp


−j2

2aj(1 + i!jt)

�
. (2.14)

The density distribution n(r, t) = N | 0(r, t)|2 becomes

n(r, t) =
N

⇡3/2

Y
j={x,y,z}

aj
1 + ij!jt

exp


−j2

a2j(1 + !2
j t

2)

�
. (2.15)

The above expression demonstrates that at time t = 0, the distribution is characterized by a width

along ej given by aj =
p

~/m!j; while at time t > !−1
j the width is given by aj!jt =

p
~!j/mt. This

means that a BEC in an anisotropic trap dramatically changes its aspect ratio upon expansion. In

contrast, the aspect ratio of a thermal cloud, initially confined in an anisotropic trap, tends to 1

for times t > !−1
j [39]. The above results are valid when interactions can be neglected compared to

the kinetic energy of the system.

2.2.2.2 Long-range phase coherence of a BEC. Long range coherence is an important character-

istic of BEC. The well defined phase in a BEC allowed the observation of interference fringes [40]

when overlapping with another BEC; this interference constitutes first order coherence of the matter

waves. Long-range phase-coherence of a BEC to second and third order has been experimentally

demonstrated via measurements of the mean-field energy of a BEC [41] and of three-body recom-

bination rates [42], respectively.

2.3 Bose-Einstein condensation of interacting gases

Even when the dilute trapped atom systems exhibit densities as low as 1013−1015 atoms/cm3

(5 to 6 orders of magnitude less dense than air) they are not ideal gases. Interactions play a crucial

role in the experimental realization of BEC, since they are the mechanism for re-thermalization

in forced evaporation processes. This section describes BEC in trapped systems in the presence of

interactions.

2.3.1 The interaction Hamiltonian. We consider a total of N interacting neutral atoms con-

fined in a trapping potential Vext(r). In the notation of second quantization, the Hamiltonian de-

scribing the interaction of such particles is given by

Ĥ =

Z
dr  ̂†(r)


− ~2

2m
r2 + Vext(r)

�
 ̂(r) +

1

2

Z
dr dr0  ̂†(r) ̂†(r0)V (r− r0) ̂(r0) ̂(r); (2.16)
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where  ̂†(r) is the second quantization field operator for the creation of a boson at position r and

V (r− r0) is the two-particle interaction potential.

The time evolution of the BEC’s field operator under the above interaction Hamiltonian is

obtained in the Heisenberg picture, where i~ @ ̂(r, t)/@t = [ ̂, Ĥ]. This gives

ih
@ ̂(r, t)

@t
=


− ~2

2m
r2 + Vext(r) +

Z
dr0 ̂†(r0, t)V (r0 − r) ̂(r0, t)

�
 ̂(r, t). (2.17)

To obtain a simpler version of the above equation we will assume in the following sections:

(i.) that the number of particles in the condensed state is N0 � 1; and (ii.) that the e↵ective

interaction potential between a pair of particles is that of hard-spheres, characterized by the s-wave

scattering length a (assumed to be much smaller than the interparticle separation).

2.3.2 Mean field approximation. In the limit when N0 � 1, we propose that the time-

dependent BEC field operator has the form

 ̂(r, t) = Φ(r, t) +  ̂0(r, t); (2.18)

where Φ(r, t) ⌘ h ̂(r, t)i is known as the wave function of the BEC, whose density distribution

is given by n0(r, t) = |Φ(r, t)|2. The term  ̂0(r, t) represents the non-condensed component of the

field operator, which can be treated as a small perturbation (N0 � 1) to calculate elementary

excitations. At zero temperature, where all the particles are in the condensed state,  ̂0(r, t) = 0.

The wave function of the BEC Φ(r, t) plays the role of the order parameter of the condensate;

it is a complex quantity, characterized by an amplitude and a phase:

Φ(r, t) = φ(r) exp(−iµt/~),
Z

drφ2(r) = N0, (2.19)

where µ is the chemical potential and φ is a real function, normalized to the total number of

particles.

2.3.3 E↵ective interaction potential. Figure 2.4a shows the molecular potential describing the

interaction between two atoms as a function of their separation distance r. This potential features

three main regimes of interaction: it has a local minimum at r = rmin, where bound states can

develop; for separations r<rmin interactions are strong and of repulsive nature; while for r>rmin,

attractive van der Waals interactions dominate.

Given that the interaction potential V (r) is central, angular momentum is conserved in the

collisional processes and the wave functions of the angular part of the Schrödinger equation are the

spherical harmonics. Low energy scattering is dominated by the l=0 (s-wave) term in the partial
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repulsive

atractive

bound statesV (r)

rmin r

Figure 2.4: Interaction potential V (r)/(1/r2−1/r6) between two neutral atoms as a function of
their separation r. The nature of the interaction has three main regimes: for large separations
r > rmin, van der Waals interactions dominate and the particles attract each other; around the
minimum of the potential r= rmin molecular bound states can exist; for small separations r<rmin

the electrostatic interaction between electronic distribution of the the atoms dominates, and the
nature of the potential is repulsive.

wave decomposition of the scattered wave function, and its angular dependence is proportional to

the lowest order spherical harmonic Y00=(4⇡)−1/2, s-wave scattering is isotropic.

A simplified model of the interaction potential, namely a hybridization between an asymptotic

van der Waals potential and that of hard-core spheres, is given by

V (r) =

(
−C6/r

6 if r > rc

1 if r  rc,
(2.20)

where the attractive van der Waals interaction with coefficient C6, describes the electric dipole-dipole

interactions between the distribution of charge in the atoms and is cut o↵ at a distance rc which

describes the radius of the spheres. By equating the kinetic energy of the relative motion of two

atoms of reduced mass M to their interaction energy we obtain the van der Waals length scale ac=

(2MC6/~2)1/4, which is on the order of some nm in the alkalis. The energy scale associated with ac is

on the order of 1 mK, and it imposes an upper bound below which s-wave scattering dominates. At

sub-mK temperatures, the interaction potential can be modeled as the pseudo potential V (r0−r) =

gδ(r0 − r), where g = 4⇡~2a/m is the coupling constant, a is the s-wave scattering length and m

is the mass of the particles. The van der Waals length ac sets the scale of the scattering length a,

the latter can have positive or negative values corresponding to an e↵ective repulsion or attraction

between the particles, respectively.
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2.3.3.1 Scattering length. The scattering length a is the length scale which characterizes low energy

(s-wave) interactions between a pair of particles. In BEC, attractive interactions (a<0) make the

condensate unstable if the number of particles in exceeds a critical value. In contrast, BECs with

repulsive interactions (a>0) are stable and robust to increasing number of particles. The scattering

length plays an important role in the achievement of BEC in dilute alkali gases, since it dictates

the rate at which thermalization processes occur in evaporative cooling. Typical scattering lengths

in the alkalis are larger than the size of the atom by about two orders of magnitude; Table 2.3

indicates approximate values of the scattering length for di↵erent alkali atoms.

At typical BEC densities (1013−1015 atoms/cm3), the separation between the atoms is on the

order of 100 nm, i.e. it is larger than the scattering length scale. While some atomic species exhibit

the favorable conditions for scattering (23Na,87Rb), others require their scattering length to be tuned

via Feshbach resonances [43] in order to optimally achieve BEC.

2.3.4 The Gross-Pitaevskii equation. Assuming N0 � 1 and contact interactions between

pairs of particles (section 2.3.3), the time-dependent wave function of the BEC satisfies

i~
@

@t
Φ(r, t) =


−~2

2m
r2 + Vext(r) + g|Φ(r, t)|2

�
Φ(r, t), (2.21)

where the particles are confined by the external potential Vext(r), and their interactions are char-

acterized by g=4⇡~2a/m, where a is the scattering length. This nonlinear di↵erential equation is

named after Gross and Pitaevskii, and it was first derived in the context of superfluid hydrody-

namics [44], with particular interest on the vorticity [45, 46] of such systems. Under the mean field

approximation (section 2.3.2) the Gross-Pitaevskii (GP) equation reduces to


−~2r2

2m
+ Vext(r) + gφ2(r)

�
φ(r) = µφ(r). (2.22)

There exists a length scale associated with the spatial variation of the solutions to the GP

Table 2.3: Scattering lengths of alkali atoms at zero magnetic field.

Atom Scattering length a[nm]
7Li -1.32
23Na 3.33
39K -1.53
85Rb -23.44
87Rb 5.29
133Cs 72.68
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b. Thomas-Fermi radius vs interaction strengtha. Numerical calculation of ⇢(r)

Figure 2.5: a. Normalized density distribution ⇢(r) = |φ(r)|2 of a Bose gas in a HO trap, for di↵er-
ent e↵ective interaction strengths; n(r) was numerically calculated using a time-splitting spectral
method to solve a dimensionless version of the GP equation, as described in [47]. In the absence
of interactions, the wave function corresponds to the ground state of the HO Hamiltonian and is
Gaussian. As the interactions increase, ⇢(r) acquires the functional form of the external potential
V (r) / r2; b. the Thomas-Fermi radius is determined from a fit to the density distributions, and
is plotted here as a function of the dimensionless interaction strength.

equation, it is derived from the balance of the interaction and the kinetic energy terms, considering

the boundary conditions imposed by the external potential and the continuity of the wave function

(or its derivatives). The healing length2 is the length within which the wave function rises from

zero to its uniform value and is given by ⇠ = (8⇡⇢a)−1/2, where ⇢(r) = |φ(r)|2 is the density of the

system.

2.3.5 The Thomas-Fermi approximation. In the absence of interactions the GP equation

becomes the time independent Schödinger equation; and for a 1D harmonically trapped system

the wave function is a Gaussian characterized by the HO width
p
~/m!, where ! is the oscillator

frequency.

In contrast, when the mean field interaction energy dominates over the kinetic energy, the GP

equation (2.22) is further simplified and we enter the regime of the Thomas-Fermi (TF) approxi-

mation, where the density distribution ⇢(r), reflects the shape of the trapping potential

⇢(r) = g−1[µ− Vext(r)], (2.23)

when µ − Vext(r) > 0, else φ2(r) = 0; this is illustrated in Fig. 2.5a for a Bose gas with repulsive

interactions, as is the case for 87Rb atoms.

2The healing length is crucial in the description of vortices, since it gives the length scale for the size of their
cores. Vortices are cylindrically symmetric solutions to the GP equation [44].
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The length scale characterizing this distribution is the Thomas-Fermi radius RTF, which is

obtained from the condition that the chemical potential µ is equal to the external potential evaluated

at RTF. For the 3D harmonic oscillator potential given in Eq. (2.8), the TF radii are given by

Rj =

s
2µ

m!2
j

, j = x, y, z. (2.24)

The normalization condition of the density distribution sets the relation between the total num-

ber of atoms N⇡N0 and the chemical potential µ

µ =
~!
2

✓
15Na

a

◆2/5

; (2.25)

where ! and a are the geometrical means of the frequencies of the HO and characteristic lengths. In

the case of an isotropic HO trap, the above equations lead to the result that the radius of the

condensate increases with the number of atoms N and the scattering length a

R = a

✓
15Na

a

◆1/5

. (2.26)

2.3.6 Dimensionless HO Hamiltonian for numerically solving the GP equation. We

numerically solve the dimensionless version of the GP equation for a system in the presence of

a HO potential using a time-splitting spectral method as described in [47]. We start with the

Hamiltonian for a single particle in an HO potential

H =
1

2
m!2x2 +

1

2m
p2; (2.27)

and define the dimensionless variables: x0 = x/x0, p
0 = p/p0, and t0 = t/t0; where x0 =

p
~/m!

is the characteristic HO length, p0 = ~/x0 and t0 = 2/!. The dimensionless Schödinger’s equation

becomes

i
d

dt0
 0 = (x02 + p02) 0. (2.28)

The interaction term g| |2 is included in the calculation by scaling the e↵ective interaction strength

g to the energy quantum ~! of the HO, as shown in Fig. 2.5b.

2.4 BEC dynamics in a harmonic trap

The experimental characterization of various phenomena reported in this thesis relies on the

dynamics of harmonically trapped BECs, in particular on their collective oscillation modes. In this

section I focus on the origin and nature of the lowest energy collective modes of a BEC.
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2.4.1 The hydrodynamic equations. The time-dependent GP equation

i~
@

@t
 =


−~2

2m
r2 + Vext(r) + g| |2

�
 , (2.29)

is the basis for the hydrodynamics of a trapped BEC, it leads to a continuity equation for the

particle density ⇢ = | |2
@⇢

@t
+r · (⇢v) = 0, (2.30)

where v = j/m⇢ is the velocity field of the condensate, the momentum density j is given by

j =
~
2i
( ⇤r −  r ⇤). (2.31)

If the order parameter is expressed as  =feiφ, then the density becomes ⇢=f 2 and the velocity

field is v= ~rφ/m. The latter is a particularly important result since it implies that the velocity

field of a BEC is irrotational, namely

r⇥ v =
~
m
r⇥rφ = 0, if φ 6= 0. (2.32)

This condition imposes constraints on the possible motions that the BEC can develop.

The equations of motion for the amplitude and the phase of the order parameter  = feiφ are

found from the GP equation, by separation of the real and imaginary parts

− ~
@φ

@t
= − ~2

2mf
r2f +

1

2
mv2 + Vext(r) + gf 2, (2.33)

@f 2

@t
= − ~

m
r · (f 2rφ). (2.34)

The latter equation corresponds to Eq. (2.30) expressed in the variables f and φ. To find the

equation of motion for the velocity field v=rφ, we take the gradient of Eq. (2.33) and get

m
@v

@t
= −r(µ̃+

1

2
mv2), where µ̃ = Vext + g⇢− ~2

2m
p
⇢
r2p⇢. (2.35)

At constant temperature we use the Gibbs-Duhem relation dp= ndµ, to associate changes in

the chemical potential with changes in the pressure p and obtain from the above equations

@v

@t
= − 1

mn
rp−r

✓
v2

2

◆
+

1

m
r
✓

~2

2m
p
⇢
r2p⇢

◆
− 1

m
rVext, (2.36)
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b. Dipole oscillation
sloshing mode

n = 0, l = 1

breathing mode
a. Monopole oscillation

n = 1, l = 0

c. Quadrupole oscillation

n = 0, l = 2,m = 2

quadrupole mode

Figure 2.6: Schematic of lowest energy elementary excitations in a BEC. a.-c. The breathing and
quadruple modes correspond to shape oscillations while b. the dipole mode corresponds to the center
of mass sloshing in the trap.

given µ= g⇢ and p= g⇢2/2. If we consider an ideal fluid of density ⇢ and velocity v, Eqs. (2.30)

and (2.36) almost exactly correspond to its hydrodynamic equations of motion. An ideal fluid is

described by the Euler equation

@v

@t
− v ⇥ (r⇥ v) = − 1

mn
rp−r

✓
v2

2

◆
− 1

m
rVext. (2.37)

Assuming that the fluid is irrotational, then the di↵erence between the Euler equation and Eq. (2.36)

is the term
1

m
r
✓

~2

2m
p
⇢
r2p⇢

◆
, (2.38)

known as the quantum pressure term; this term is associated with spatial variations of the density

of the condensate. The origin of the quantum pressure term, as well as of the term r(v2/2) in

Eq. (2.36), is the kinetic energy in the GP equation; while the latter term is related to the actual

motion of particles, the quantum pressure does not originate particle currents.

By comparing the pressure terms in Eq. (2.36), assuming that the order parameter varies over

a length scale ⌘, we get

1

mn
rp =

1

m
r(g⇢) ⇡ g⇢

m⌘
=

~2

2m2⇠2⌘
, and

1

m
r
✓

~2

2m
p
⇢
r2p⇢

◆
⇡ ~2

2m2⌘3
. (2.39)

Thus if ⌘ is much greater then the healing length ⇠, the quantum pressure term can be neglected;

this is the case in 87Rb BECs, whose typical healing lengths are on the order of hundreds of nm,

while the spatial extent of their wave functions is a few µm.
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2.4.2 Elementary excitations of the BEC. To determine the nature of the elementary exci-

tations of a BEC we will consider small deviations δ⇢ from the equilibrium state of the density ⇢0,

namely ⇢=⇢0 + δ⇢, in order to solve Eqs. (2.30) and (2.35).

2.4.2.1 The Thomas-Fermi limit. Whenever interactions dominate over the kinetic energy, the

quantum pressure can be neglected. This is associated with the fact that the spatial variation ⌘ of

the wave function is much greater than the healing length ⇠, as we learned above, and thus it is

reasonable to look for modes whose spatial variations (wavelength) are actually comparable to ⌘.

Substituting ⇢= ⇢0 + δ⇢ in Eqs. (2.30) and (2.35), and assuming that the velocity v and the

deviation δ⇢ are small quantities, we obtain

m
@2δ⇢

@t2
= r · (⇢0rδµ̃), (2.40)

where δµ̃ = gδ⇢. In the TF approximation, we assume that the equilibrium density is ⇢0=g−1[µ−
Vext(r)], and assume that the density variations have a time dependence of the form δ⇢/e−i!t, then

Eq. (2.40) becomes

!2δ⇢ =
1

m
{rVext ·rδ⇢− [µ− Vext(r)]r2δ⇢}. (2.41)

For trapped atoms under isotropic harmonic oscillator confinement Vext(r)=m!2
0r

2/2, with TF

radius RTF = 2µ/m!2, Eq. (2.41) reduces to [48]

!2δ⇢ = −!
2
0

2
r(R2

TF − r2)rδ⇢; (2.42)

which allows for solutions of the form δ⇢ = P 2n
l (r/RTF)r

lYlm(✓,φ), defined in the regime 0  r 
RTF; where the functions P

2n
l (r/RTF) are polynomials of degree 2n, which contain only even powers

of their argument r/RTF. The solutions’ angular momentum and their corresponding projection

along ez are labeled by l and m, respectively; n represents the radial quantum number. In the TF

approximation (interaction dominated limit), the natural frequencies for the collective oscillations

are given by

!(n, l) = !0

p
2n2 + 2nl + 3n+ l. (2.43)

The three n=0, l=1 dipole modes correspond to sloshing in the trap at the trap frequency !0,

these modes involve the spatial translation of the cloud, whose structure remains unperturbed in

the linear regime. The result can be generalized to an anisotropic trap, thus sloshing in each spatial

direction occurs at the corresponding trap frequency. This is the primary mechanism with which

we characterize the trapping frequencies of the confining potentials used in our experiments. Most

recently we studied a quadrupole-like shape-oscillation mode (n= 0, l = 2) to probe the transport
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properties of a BEC in an artificial gauge field [8].

It is important to highlight that in contrast with the monopole and quadrupole modes, the

dipole mode is independent of interactions [48, 49].

2.4.2.2 Non-interacting limit. The TF approximation breaks down in the limit of large n and

l, where the rapid variations of the density ⇢ can no longer be neglected. In this kinetic-energy

dominated limit (collisionless, non-interacting limit) the frequencies of the oscillation modes occur

at integer multiples of the trap frequencies [48, 50]. Table 2.4 summarizes basic properties of the

lowest energy collective oscillations present in a BEC, both in the interacting and in the non-

interacting limits.

2.5 Experimental realization of BEC

The experimental realization of BEC in dilute alkali gases is the result of a sequence of stages

in which the temperature of an atomic sample is reduced to the point of quantum degeneracy. The

process to reach BEC involves the combination of various experimental techniques (see Chapter 3);

in this section I give an overview of the process to reach BEC.

As seen at the beginning of this Chapter, I want to emphasize that achieving BEC is not only a

matter of decreasing temperature but also of increasing phase space density above a critical value

to reach the condition of quantum degeneracy.

Laser cooling allows one to decrease the thermal energy of an atomic sample down to the µK

regime, where the atoms move slowly enough to be held by magnetic or electric dipole forces in

a trap. Once in the magnetic trap, the atoms are evaporatively cooled via rf-induced transitions,

a process which e↵ectively decreases the trap depth and allows the most energetic atoms escape,

while the remaining ones are allowed to re-thermalize and reach lower temperatures, about tens of

µK.

The atoms are then transferred from the magnetic quadrupole trap into an optical dipole trap,

in a process that is optimized to preserve phase space density, and continue the path to quan-

tum degeneracy. Evaporatively cooling is achieved by reducing the power in the optical trap, and

temperatures down to tens to hundreds of nK are reached.

Table 2.4: Lowest energy collective oscillation modes in a homogeneous HO trap.

n l !/!0 Non-Interacting !/!0 Oscillation mode

1 0
p
5

p
5− Ekin/EHO Monopole (breathing)

0 1 1 1 Dipole (sloshing)

0 2
p
2

p
2(1 + Ekin/EHO) Quadrupole
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In order to achieve ultracold temperatures, the atoms need to be isolated form the environ-

ment. Even when magnetic and optical traps already succeed in breaking thermal contact between

the atoms and material surfaces, extreme isolation is required to the degree that the atoms are

prevented from colliding with surrounding energetic particles, since this might induce losses from

the trap.

Ultracold atom experiments require vacuum chambers, operated under ultrahigh vacuum (UHV)

to prevent collisions between the BEC and the background gas inside the chamber and to achieve

long lifetimes. Typical pressures in ultracold atom experiments are within 10−11 − 10−12 Torr3.

3As a reference for vacuum 1 bar⇡1atm and 1Torr=1.3 mbar; the UHV required ranges from 10−14−10−15 atm.
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Chapter 3

Laser cooling and trapping ultracold neutral atoms

In this chapter I will focus on the physics of laser cooling, magnetic trapping, optical trapping and

evaporative cooling of alkali atomic samples. These fundamental techniques are combined in our

experiments to reach the quantum degeneracy of atomic samples of 87Rb.

First I will discuss the particular atomic structure of 87Rb, then I will describe the laser cooling

of a thermal atomic beam, followed by the mechanism of magnetic trapping and the collection

of atoms in a magneto-optical-trap (MOT); next I will focus on the concepts of optical molasses,

optical pumping and on the evaporation schemes in both the magnetic and the optical traps used

in our experiments. Finally I will describe the absorption imaging detection scheme.

3.1 Alkali atoms and the electronic structure of 87Rb

Alkali metals (Li, Na, K, Rb, Cs and Fr) compose Group I of the periodic table of elements. They

are characterized by possessing a single valence electron, a feature that simplifies their comprehen-

sion and manipulation. The valence electron is described by its orbital angular momentum L and

spin s; these vectors couple via the spin-orbit interaction and give rise to the total angular momen-

tum of the electron, J = L+ s. In the Ls-coupling scheme, the electronic configuration of an atom

can be determined as n2s+1LJ , where n is the principal quantum number, and s, L, J stand for the

electron’s spin, orbital and total angular momentum quantum numbers. By convention we label the

values of orbital angular momentum with letters: L = S, P,D, F, ... which stand for L = 0, 1, 2, 3, ...,

respectively. In its lowest energy configuration the electron has L = 0, its total angular momentum

is J = 1/2. Due to the hyperfine interaction Hhfs = AhfsI · J, the nuclear spin I and the total an-

gular momentum J of the electron couple to produce the total angular momentum F = I+ J. The

magnetic dipole constant Ahfs corresponds to the ground state manifold.

The experiments described in this thesis were realized with 87Rb, the longest-lived metastable1

isotope2 of rubidium. The coupling between orbital and spin angular momenta is responsible for

1Given that the half-life of 87Rb is 4.88⇥ 1010 years, it can be considered stable for practical purposes.
2A total of 50 neutrons and 37 protons live in the nucleus of 87Rb. In combination with its 37 electrons, a total

of 124 fermions compose a 87Rb atom.
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Figure 3.1: Hyperfine structure of 87Rb. a. The lowest energy electronic configurations of 87Rb
correspond to L= S, P . b. In the Ls-coupling scheme fine structure emerges, lifting the degener-
acy between states with di↵erent total angular momentum J = L + s. Indicated are the allowed
∆L=1 electric dipole transitions D1: 5

2P1/2 ! 52S1/2 (light arrow) and D2: 5
2P3/2 ! 52S1/2 (dark

arrow). c. The interaction with the nuclear spin further splits the fine levels and gives rise to the
hyperfine structure (not shown for 52P1/2). The atom’s total angular momentum is F= I + J. The
magnetic dipole constant associated with the ground state manifold Ahfs=h⇥3.417 GHz, leads to
the ∆E21 splitting between F =2 and F =1.

the fine structure, and gives rise to the lowest energy electronic configurations 52S1/2, 5
2P1/2 and

52P3/2. In turn, the interaction with the nuclear spin I = 3/2 further splits the energy levels and

reveals the hyperfine structure, as shown in Figure 3.1. Each hyperfine state F contains 2F + 1

spin energetically degenerate states mF = −F,−F + 1, ..., F . The Zeeman interaction between an

external magnetic field and the magnetic moment of the atom lifts the degeneracy of the hyperfine

mF sub-states as described in Sec. 3.8.

3.2 Interaction of electromagnetic radiation and matter

The next section describes the interaction between electromagnetic radiation and matter and

the physics of laser cooling and trapping.

In these experiments we deal with the interaction between electromagnetic radiation and atoms. In

particular we focus on traveling plane waves of electromagnetic radiation3 whose electric and mag-

3A solution to Maxwell’s equations in a medium free of electric charge and current is a traveling plane wave of
electromagnetic radiation [51].
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netic fields are given by

E(r) = ✏E exp(ik · r− i!t) (3.1)

B(r) =
n

c

k⇥ E

k
(3.2)

where n is the index of refraction of the medium, c is the speed of light, k = 2⇡/λ is the wavenumber,

λ is the wavelength, and the wave vector k defines the direction of propagation. In the laboratory,

the sources of such fields are lasers and oscillating electrical currents.

The oscillating electric field of electromagnetic radiation induces an e↵ective dipole moment

d = −er, where e is the electronic charge and r its spatial coordinate with respect to the center of

mass of the atom, via which the electric field can drive electronic transitions in the atom described by

the interaction Hamiltonian HE = −d ·E. Correspondingly, the oscillating magnetic field interacts

with the magnetic moment µ of the atom, a quantity proportional to its total angular momentum

F, and is responsible for driving hyperfine transitions described by the interaction Hamiltonian

HB = −µ · B. Even when both the electric and the magnetic field coexist together, each can

only drive certain transitions in accordance to their angular momentum selection rules; e.g. E(r)

drives parity-changing transitions, while B(r) can induce transitions between states of the same

parity. This will be discussed in more detail in Sec. 3.3.

Optical dipole transitions are of relevance to laser cooling and trapping, while rf-magnetic transi-

tions are useful to perform rf-induced evaporation in a magnetic trap as well as for the manipulation

of the hyperfine sub-levels. The electric dipole and the magnetic dipole interactions are described

in Sec. 3.4 and Sec. 3.8, respectively.

3.2.1 The quantization axis and the polarization of electromagnetic fields. In the pres-

ence of a uniform magnetic field, the magnetic moment µ of an atom tends to align with the

field. This phenomenon defines an axis along which the projection of the angular momentum is

quantized. A uniform magnetic field establishes a quantization axis for the atoms, and the standard

choice for the direction of the quantization axis is along ez, since the formalism of the quantization

of angular momentum is already well stablished in such notation.

The polarization of an electromagnetic field is defined by the way in which the fields oscillate,

and it can be specified in a meaningful way in reference to the quantization axis4. A convenient

basis of vectors to express the polarization is the one given by the irreducible spherical vectors:

e−1 =
ex − ieyp

2
, e0 = ez, e+1 = −ex + ieyp

2
. (3.3)

4The direction of propagation of the radiation is also to be considered when determining the direction of polar-
ization.
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Figure 3.2: The quantization axis and the polarization of the electromagnetic field. a. In the presence
of a uniform magnetic field B0, the magnetic moment of an atom tends to align with the field and
a quantization axis is defined (here along z). In terms of the irreducible spherical vectors, the
polarization of light can be decomposed as: left-circularly polarized (σ−), linearly polarized along
the quantization axis (⇡) and right-circularly polarized (σ+). b. Linearly polarized light orthogonal
to the quantization axis can be decomposed as an equal superposition of right- and left-circularly
polarized light, e.g. ey= i(e−1 + e+1)/

p
2.

In such basis, the radiation can be categorized as: σ−-polarized, when the field is left-circularly

polarized with respect to the quantization axis, ⇡-polarized, when the field is linearly polarized

along the quantization axis; and σ+-polarized, when the field is right-circularly polarized with

respect to the quantization axis, as indicated in Fig. 3.2. Due to the selection rules arising from

angular momentum considerations (see Sec. 3.3) , it becomes clear that σ±-transitions change the

magnetic quantum number by ∆m = ±1 and that ⇡-transitions imply ∆m = 0. These concepts

are useful when designing actual experiments and for the understanding of more complex processes

such as two-photon Raman transitions. Finally, denoting the polarization of light by q = −1, 0,+1,

the following identities are satisfied by the polarization vectors

ie⇤q ⇥ eq=−qe0, ie⇤0 ⇥ eq=qeq, ie⇤q ⇥ e0=−qe−q. (3.4)
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3.3 Angular momentum selection rules

Angular momentum selection rules can be used to determine whether two states are coupled by

the laser light without extensive calculations. In this section we discuss the selection rules for the

electric dipole interaction5.

Under the central field approximation, the wavefunction of an hydrogen-like (single valence

electron) atom can be separated as the product of a radial part and an angular part

|nlmi = Rn,l(r)Ylm(✓,φ), (3.5)

where (r, ✓,φ) are the spherical coordinates and Ylm(✓,φ) are the spherical harmonics. In this sec-

tion we use such hydrogen-like wavefunctions to establish the selection rules for dipole transitions

between di↵erent electronic states.

As discussed above, the interaction between an atom and an external electric field occurs via

the induced electric dipole moment on the atom, and is described by the perturbative Hamiltonian

H 0 = −d · E, where d = −er is the induced electric dipole moment. The dipole matrix element

between the ground state |gi = |nlmi and an excited state |ei = |n0l0m0i is given by

deg = −e

Z
Rn0l0(r)Yl0m0(✓,φ) r · ✏̂ Rnl(r)Ylm(✓,φ)d

3r. (3.6)

In the basis of irreducible spherical vectors defined in Eq. (3.3), the argument of the dipole matrix

element reduces to r · ✏̂= r · eq = rY1,q(✓,φ)
p

4⇡/3, where q = −1, 0,+1 indicates the polarization

of the electric field. The above equation becomes

deg = −e

Z
Rn0l0(r) r Rnl(r)r

2dr

Z
Yl0m0(✓,φ)

r
4⇡

3
Y1,q(✓,φ)Ylm(✓,φ) sin ✓d✓dφ; (3.7)

or in short notation deg = Rn0l0,nlAl0m0,lm. In most cases, the radial part Rn0l0,nl, contributes a

numerical factor which determines the coupling strength of a transition. The angular part Al0m0,lm

is interesting for it provides the angular momentum selection rules, and has important implications

with regards to parity which we shall discuss first.

3.3.1 Parity. The parity operation inverts the spatial coordinates, under the parity operator,

P̂r = −r. If a system is not modified under the parity operation, it is said to be symmetric with

respect to parity. The eigenfunctions of the parity operator satisfy P̂ =λp , where λp = ±1. The

spherical harmonics are eigenfunctions of the parity operator satisfying P̂ Ylm = (−1)lYlm; electronic

states whose orbital angular momentum quantum number l is even (odd) have even (odd) parity.

5The selection rules for magnetic transitions can be determined by a very similar treatment.
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Relative strength of electric dipole D2 transitions.

Figure 3.3: Relative strength of electric dipole D2 transitions. The above relative strengths were
calculated from the angular part of Eq. (3.9), considering alkali atoms with nuclear momentum
I = 3/2 and both a. linear (q = 0) and b. right-circular (q = +1) polarized light. From a symmetry
argument, the relative strengths for left-circularly polarized light are obtained by replacing mF by
−mF in b. The strengths were normalized with respect to the smallest allowed transition.
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Since the angular integral of the dipole matrix element Al0m0,lm is invariant under parity, we

obtain Al0m0,lm=(−1)l
0+l+1Al0m0,lm, meaning that the integral will vanish unless l0 + l+1 is even, or

equivalently, if the initial and final states have opposite parity. To be concrete, the allowed electric

dipole transitions are those for which ∆l = ±1, e.g. 52S ! 52P where ∆l= l0 − l=1.

3.3.2 Angular momentum. The theory of angular momentum has been well developed [52], so

that the insights from the angular integral can be explored. The angular integral Al0m0,lm can be

reduced to

Al0m0,lm =

Z
Yl0m0(✓,φ)

r
4⇡

3
Y1,q(✓,φ)Ylm(✓,φ) sin ✓d✓dφ,

=
p

(2l0 + 1)(2l + 1)

 
l0 1 l

0 0 0

! 
l0 1 l

m0 q m

!
,

where both the arrays of quantum numbers displayed in parentheses are known as Wigner’s 3j-

symbols. The first 3j-symbol is zero unless l0+ l+1 is even, giving the parity selection rule: ∆l 6= 0,

as discussed above; specifically, the triangle inequality |l−1|  l0  l+1 must be satisfied. Further

simplification of the above equation leads to

Al0m0,lm=(−1)l
0−m0p

max(l, l0)

 
l0 1 l

−m0 q m

!
. (3.8)

The angular integral vanishes unless m0=q+m; this is now related to the polarization of light. Cir-

cularly polarized light q = ±1 is able to drive transitions which change the magnetic quantum

number by ∆m=m0 −m=±1, while ⇡-polarized light (q = 0) leaves it unchanged.

For the laser cooling of alkali atoms, we are interested in the transitions between hyperfine levels

|gi= |F,mF i and |di = |F 0,m0
F i, where F= I + J is the total angular momentum of the atom and

J = L + S is the total angular momentum of the valence electron as discussed in Sec. 3.1. Gen-

eralizing the dipole matrix element to consider the hyperfine structure involves the expression of

the eigenfunctions in the F -basis in terms of the uncoupled (I, J)-basis, which introduces angular

momentum coefficients6 involving I, J and F . In turn, when expressing the J-basis in terms of the

6When coupling two or more angular momenta, Clebsch-Gordan coefficients and their generalization into 3j-
symbols and 6j-symbols arise.
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uncoupled (L, S)-basis, coefficients emerge now related to L, S and J . The final result is

deg = e(−1)1+L0+S+J+J 0+1−m
F h↵0L0|| r ||↵Li (3.9)

⇥
p

(2J + 1)(2J 0 + 1)(2F + 1)(2F 0 + 1)

⇥
(

L0 J 0 S

J L 1

)(
J 0 F 0 I

F J 1

) 
F 1 F 0

mF q −mF 0

!
;

where h↵0L0|| r ||↵Li is the reduced matrix element that comes from the radial part of the wave

function and ↵ represents all other properties of the wave function besides its angular momentum

L; the arrays of quantum numbers in braces are known as 6j-symbols, and provide the rules for

electric dipole transitions within hyperfine sub-levels. From the 3j-symbol we get the triangular

condition |F − 1|  F 0  F + 1, indicating ∆F = F 0 − F = 0,±1; similarly we get the condition

for the polarization of light ∆mF =mF 0 −mF =q.

The relative strength of a specific electric dipole transition between the hyperfine levels can

be calculated from the magnitude square of the angular part of Eq. (3.9). Figure 3.3 shows the

calculated relative strengths of D2 (52S1/2 ! 52P3/2) dipole transitions between hyperfine sub-

levels, for alkali atoms with nuclear momentum I = 3/2 (7Li, 23Na, 39K, 41K and 87Rb).

3.3.3 Angular momentum selection rules and laser cooling. Laser cooling relies on the

efficient transfer of momentum from radiation to matter, via the absorption and emission of pho-

tons. Given the typical velocities of the atoms at the beginning of the cooling process7, and

the magnitude of the momentum from a single photon on resonance with the atomic transition

(vrec ⇡ 6 mm/s), it requires thousands of such interactions between the laser field and an atom to

bring a single 87Rb atom to rest.

The selection rules for angular momentum play an important role in laser cooling since they

allow the identification of suitable transitions (c=ooling transitions) to achieve the required large

number of scattering events. The strength of the transition has to be sufficiently high, and since the

atoms have to undergo a large number of absorption and spontaneous emission cycles, the decay

from the excited state to the ground state must be only to the sublevel coupled by the light. This

restricts the number of possible cooling transitions.

The selection rule ∆F = 0,±1, when applied to alkali metal atoms, allows the decay of one

excited state to any allowed hyperfine ground state, which might not be coupled by the laser light

back to an excited state, since the spectral width of the laser is generally much smaller than the

7The initial temperature of the atomic vapor of 87Rb as it emerges from the oven in our experiment is about
T = 400K, which corresponds to a mean velocity v =

p
2k

B

T/m=276 m/s; here k

B

is Boltzmann constant and m

is the atomic mass.
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Figure 3.4: Optical pumping and cooling transitions. Standard hyperfine states F, F 0 and sublevels
mF ,mF 0 relevant for laser cooling. For atoms in the F = 1 ground state a σ+ polarized laser, on
resonance with the F =1!F 0=2 transition, is required to pump and maintain the system in the
|F =2,mF =2i hyperfine sub-level in preparation for laser cooling. The open symbol represents the
initial state, and the closed symbol indicates the final state after optical pumping. The dashed lines
indicate all allowed decays.

ground state hyperfine splitting8. However, for states with J=L+ 1/2, the decay from the highest

F 0-state can only occur to the largest F -state, since the other ground state has F =F 0−2 (i.e. is a

forbidden transition). The states of maximum total angular momentum form an e↵ective two level

system suitable for laser cooling. Figure 3.3 shows that the dipole transitions between the ground

and excited states whose total angular momentum is the highest form an e↵ective two level system

(when the polarization is σ+) and are associated with the largest transition strengths. Laser cooling

is typically carried out on the highest F and F 0 states, in our case this is F =2!F 0=3.

3.3.4 Optical pumping. Often it is the case that a cooling laser can induce o↵ resonant

transitions to the F 0 = 2 state, from which the atoms can decay to either of the two ground

states F =1, 2. Since the ground state hyperfine splitting is larger than the typical spectral width of

a laser (100 kHz to 1 MHz), atoms that decay to the F = 1 state are no longer coupled by the laser

field; as a consequence all atoms will be out of the cooling transition in the long term. For laser

cooling to be successful, the atoms need to be pumped back into |F =2,mF =2i; the mechanism

to achieve this is known as optical pumping. Optical pumping is the process by which multiple

absorption and emission events transfer the atoms into a particular hyperfine sub-level. Figure 3.3.4

illustrates a particular optical pumping scheme of great relevance for our experiments. Atoms in

the |F = 1,mF = −1i hyperfine state are illuminated by a circularly-polarized σ+ laser field. In

accordance with selection rules and the relative strengths of dipole transitions, the atoms un-

dergo a sequence of absorption and spontaneous emission events which favor the population of the

8Optical pumping (see Sec. 3.3.4) is a mechanism via which this can be overcome.
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|F = 2,mF = 2i hyperfine sub-level. Once the atoms are optically pumped into |F = 2,mF = 2i, a
laser in resonance with the F =2!F 0=3 transition is used to slow down the atoms, or to perform

resonant absorption imaging (see Sec. 3.7).

3.4 Interaction between atoms and electric fields

In this section we study the perturbative e↵ect of the interaction between an atom and an

external electric field E = E0✏̂. The electric field induces an electric dipole moment d=−er on the

atom and leads to the interaction Hamiltonian H 0 = −d · E [53, 39, 54, 55]. This expression relies

on the dipole approximation, and it assumes that electric field varies very little within the spatial

extent of the atom, i.e. that λ� r, where λ is the wavelength of the electric field.

In the limit of small magnetic field, where the atomic states are described in terms of the total

angular momentum |nFmF i, the interaction Hamiltonian H 0 can be expressed as

HnF =−
✓
E0
2

◆2
"
↵s
nF + ↵v

nF (i✏̂
⇤ ⇥ ✏̂) · F̂+ ↵t

nF

 
3|✏̂ · F̂|2 − F̂2|✏̂|2

F (2F − 1)

!#
(3.10)

where ↵s
nF , ↵

v
nF and ↵t

nF are the scalar, vector and tensor polarizabilities; ✏̂ represents the polar-

ization of the field; and F̂ is the total angular momentum operator. Equation (3.10) illustrates an

important concept for the manipulation of atoms with light, namely that the potential energy of

an atom changes in proportion to the intensity of the electric field I=2✏0cE2
0 . We also observe that

the vector light-shift vanishes for linearly polarized light, as shown in Eq.(3.4).

Laser cooling and trapping can be explained in terms of the scalar component of the interaction

Hamiltonian; however Raman transitions and higher order processes require the vector and tensor

components to be properly described.

3.4.1 Frequency dependent scalar polarizability. The interaction between an atom and the

oscillating electric field from electromagnetic radiation, e.g. from a laser, is described by means of

the electric dipole moment induced on the atom, and can be treated as a perturbation to the bare

atomic system H0|ni=~!n|ni. Using second order perturbation theory, we obtain the time-averaged

energy shift for a two level atom due to an oscillating electric field E(r, t) = E0✏̂ cos(!t)

U = −↵(!)hE2
0 cos

2(!t)it/2, (3.11)

where h...it indicates the time average, the frequency-dependent atomic polarizability is given by

↵(!)=
1

~
|he|d · ✏̂|gi|2

✓
1

!eg + !
+

1

!eg − !

◆
, (3.12)
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and !eg=!e−!g (see Appendix A). In general ↵(!) is a complex quantity9 whose real part accounts

for the dispersive properties of the interaction, while its imaginary part is related to absorption

(and subsequent spontaneous emission). While the light-shift is associated to the real part of the

polarizability U(r)=−Re(↵)I(r)/2✏0c; absorption is expressed in terms of photon scattering via the

scattering rate Γsc, which is related to the complex part of the polarizability Γsc=Im(↵)I(r)/~✏0c.
The scattering rate or spontaneous decay rate, also referred to as the line width [see Eq. (3.31)],

can be calculated from Fermi’s golden rule, which states that the transition rate to go from state |ei
to state |gi is Γ=2⇡|he|H 0|gi|2⇢(!eg)/~, where ⇢(!eg) is the density of states of the electromagnetic

field with frequencies !eg [56].

By introducing the intensity of the electric field I(r) = 2✏0c|E0(r)|2, the above expressions can

be rewritten in terms of the spontaneous decay rate (scattering rate) of the excited level Γ =

!3
eg|he|d · ✏̂|gi|2/3⇡✏0~c3 as

U(r) = −3⇡c2Γ

2!3
eg

✓
1

!eg + !
+

1

!eg − !

◆
I(r), (3.13)

Γsc(r) =
3⇡c2

2~!3
eg

✓
!

!eg

◆3✓
Γ

!eg + !
+

Γ

!eg − !

◆2

I(r). (3.14)

Equations (3.13) and (3.14) correspond to the conservative and the dissipative interactions between

light and matter [57].

3.4.2 The rotating wave approximation. Typically in experiments the oscillating electric

field is that of a laser, and its frequency ! is set very close to the atomic resonance !eg, such

that the detuning ∆=! − !eg is small and !/!eg⇡1. Neglecting the terms rotating at the higher

frequency !eg+! constitutes the rotating wave approximation (RWA), under which equations (3.13)

and (3.14) reduce to

U(r) =
3⇡c2

2!3
eg

Γ

∆
I(r), (3.15)

Γsc(r) =
3⇡c2

2~!3
eg

✓
Γ

∆

◆2

I(r). (3.16)

The dipole trapping potential scales as I(r)/∆, while the scattering rate scales as I(r)/∆2. The

spatial dependence of the intensity I(r) adds versatility to the dipole trapping potential U(r); it

can be as simple as that of a single Gaussian laser beam, or arise from the interference of two or

more lasers, realizing more complicated geometries, such as periodic potentials and beyond (see

9A straightforward calculation of the complex polarizability consists of solving the classical equations of motion
of an electron in an oscillating electric field under the e↵ects of damping due to energy loss by spontaneous emission
of radiation (see Appendix A).
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Figure 3.5: Measured scalar light-shift as a function of wavelength for 87Rb. The calculated light-
shift (band) considers a Gaussian beam with waist w0 = 150 µm whose power ranges from 100 mW
to 300 mW. The inset displays the light-shift for a larger range of frequencies.

Sec. 3.5). The sign of the detuning ∆ determines the attractive or repulsive nature of the trapping

potential U(r) with respect to the intensity pattern; if ∆ < 0, the atom minimizes its energy by

going to the location(s) of maximum intensity, conventionally this is known as a red detuned trap;

while in the opposite case ∆ > 0 (blue detuned trap) the atom tends to go away from the intensity

maximum (maxima). In addition, the detuning sets the strength of both the trapping potential and

the scattering rate; e.g. to minimize dissipation (heating) it is useful to work at large detuning;

although it is important to mention that in the large detuning limit, the RWA is no longer a good

approximation since both terms in eqns. (3.13) and (3.14) should be considered10.

3.4.3 Multiple-level atoms. The hyperfine interaction, described in Sec. 3.1, is responsible for

the richness in the electronic structure of an atom. We begin this section by introducing the light-

shift U(r) of a multiple level atom due to the presence of an oscillating electric field E(r, t) =

E0✏̂ cos(!t)

U(r)=−E2
0

4~
X
n 6=g

|hn|d · ✏̂|gi|2( 1

!ng + !
+

1

!ng − !
). (3.17)

Figure 3.5 shows the scalar light-shift for the ground state of 87Rb, as a function of the frequency

(wavelength) of the oscillating field, both measured11 and calculated considering the contribution

form the hyperfine sub-structure. These data demonstrate the scalar light-shift on 87Rb atoms,

which is strongest at the resonance transitions D1 and D2 and is minimized at around 790 nm. In

10For our 1064 nm optical dipole trap for 87Rb atoms, the terms 1/(!
eg

± !) are of comparable magnitude.
11The experimental procedure to perform this measurement is described in Sec. 7.5.3.1.
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some of the experiments described in this thesis, some lasers were set near this wavelength to reduce

their scalar light-shift on the atoms.

Optical trapping arises from the conservative part of light-matter interactions. It originates in

the o↵-resonant, almost non-dissipative interaction between an oscillating electric field and the

corresponding induced electric dipole moment of an atom. In contrast, laser cooling of neutral

atoms uses the dissipative interaction of light and matter, and relies on the exchange of momentum

between the electromagnetic field and the atoms; by conservation of momentum, an atom that has

absorbed radiation has consequently acquired momentum. After a sufficiently large number of such

scattering events, the momentum distribution of an atomic sample is modified, in such a way that

its energy is reduced, thus the sample is cooled. These phenomena will be discussed in the following

sections.

3.5 Optical trapping

The optical trapping potential can be written in a convenient form starting from Eq. (3.17) by

expressing the dipole matrix element in terms of its reduced matrix element ||d·✏̂|| and corresponding

Clebsh-Gordan coefficients cng, i.e. |hn|d·✏̂|gi|=cng||d·✏̂||. The potential is understood as constituted

from the contributions of all excited states coupled by the light field, weighted by c2ng/(!ng ± !).

A description of the weight provided by the Clebsh-Gordan coefficients on the D2 line is sum-

marized in Fig. 3.3 and a similar analysis can be done for the D1 line. To determine which terms in

the above sum are more relevant, we also consider the weight with respect to the detuning from res-

onance ∆ng=!−!ng and compare it to the fine and hyperfine splittings. The fine splitting between

the D1 and D2 lines is about 15 nm; while the hyperfine splitting between the 52S1/2 ground states is

6.8 GHz. Our experiments are realized with 87Rb atoms, which interact with optical fields with: (a)

780 < λ < 820 nm (laser cooling, optical lattices, Raman transitions) and (b) λ=1064 nm (optical

dipole trap). While the hyperfine structure is unresolved for those transitions whose detuning ∆ng

is larger than the fine splitting (i.e. λ > 795 nm), the fine structure is still to be considered; these

considerations lead to simplified expressions for the light-shift and the scattering rate [57]

U(r)=
⇡c2I(r)

2

✓
ΓD2

∆D2

− ΓD2

! + !D2

◆
2 + qgFmF

!3
D2

+

✓
ΓD1

∆D1

− ΓD1

! + !D1

◆
1− qgFmF

!3
D1

�
; (3.18)

Γscatt(r)=
⇡c2I(r)

2

"✓
ΓD2

∆D2

− ΓD2

! + !D2

◆2
2 + qgFmF

!3
D2

+

✓
ΓD1

∆D1

− ΓD1

! + !D1

◆2
1− qgFmF

!3
D1

#
; (3.19)

where gF is the Landé g factor and q = −1, 0,+1 characterizes the polarization of the light.

The spatial geometry of an optical trap is dictated by the intensity pattern I(r) of the field that

creates it. In this thesis we focus on optical dipole traps arising from the superposition of two or
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Figure 3.6: Gaussian beam characterization. a. Here we show the schematic of the lens system to
give an average beam waist of w0 = 77(4) µm. b. Using the equations for the spatial propagation of
a Gaussian beam, we estimated the distance from the final lens at which to install an f2 = 12.5 cm
lens in order to achieve an enlarged dipole beam. After the f1 ! f2 replacement, we measured an
average waist of w0 = 695(30) µm. Closed (open) symbols represent the 1/e2 radius along x (y).

more Gaussian laser beams.

3.5.1 Gaussian beam propagation and single focussed beam dipole trap. For a Gaussian

laser beam propagating along the z direction, the spatial-dependence of the intensity is given by

I(r)=
2P

⇡w2(z)
e−2(x2+y2)/w2(z), (3.20)

where P is the total power in the beam; w(z) = w0

p
1 + z2/z2R; the minimum radius w0 is called

the beam waist, and zR = ⇡w2
0/λ is the distance over which the beam radius spreads by a factor ofp

2, known as the Raleigh range.

Figure 3.6 shows the measured 1/e2 radii of a Gaussian beam, along its direction of propagation

z for a 1064 nm laser beam. We use a CCD camera to image the intensity distribution of the beam

at normal incidence I(x, y), from which we obtain 1D profiles along x and y. We fit each profile

to a 1D Gaussian distribution to obtain the 1/e2 radii. The continuous curves fit the data to the

spatial propagation of a Gaussian beam with waist w0. Figure 3.6a corresponds to a Gaussian beam

of waist w0=77(4) µm, whose Raleigh range is zR = 1.75 cm. The size of the beam can be readily

modified by using a lens or an array of lenses as shown in Fig. 3.6b, where w0 = 695(30) µm and

zR = 1.28 m. (The typical value for the reduced χ2 from each fit is about 95).
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The trapping potential from a single Gaussian beam can be approximated by a harmonic oscil-

lator potential by means of a Taylor series expansion around r = 0

U ⇡ −U0


1− 2

x2 + y2

w2
0

− z2

z2R

�
; (3.21)

where U0 is the potential depth calculated from Eq. (3.17) or (3.18), and is directly proportional

to the intensity of the laser. The oscillator frequencies fj = !j/2⇡, where j = x, y, z, are inversely

proportional to the dimensions of the beam

!j =

s
4U0

m!2
0

, for j = x, y and !z =

s
2U0

mz2R
. (3.22)

Since the beams waists w0j are typically larger than λ, the Raleigh range is zR � w0; this means

that a single focused laser beam provides a trapping potential mostly in its radial direction, or

equivalently it provides quasi-1D confinement. In some applications it is convenient to align the laser

beam perpendicular to the gravitational field, to maximally counteract to the e↵ects of gravity.

Designing a harmonic optical dipole trap by focusing a Gaussian beam to a suitable size, can

be done with an appropriate choice of lenses. In our experiments we use the combined trapping

potential from a pair of laser beams to create our optical dipole trap.

3.5.2 Crossed-beam dipole trap. Our optical dipole trap forms at the intersection of a pair

of λ = 1064 nm laser beams, propagating along ex ± ey with orthogonal-linear polarizations. Their

overall and relative intensities can be experimentally controlled (see Sec. 4.6). The crossed-beam

trapping potential corresponds to the linear superposition of the single beam trapping potentials,

given by Eq. (3.21).

3.6 Laser cooling

Laser cooling is a process where a laser field interacting with an atomic sample, via multiple

absorption and spontaneous emission events, imparts momentum to the atoms modifying their

initial velocity distribution.

Being almost monochromatic and well collimated, a laser is the ideal candidate to slow down

an atomic beam. As discussed in Sec. 3.3, to maximize the number of scattering events, this laser

(the MOT laser, see Sec. 4.4.4) has to be frequency locked very close to resonance with respect to

cooling transition in 87Rb, this is the D2 transition from F = 2 ! F 0 = 3.

I will consider, for simplicity, a two level atom whose energy levels |gi and |ei are separated in

energy by h!0, and will assume that this system is interacting with the electric field E from a laser
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Figure 3.7: Single photon recoil energy ER=~2k2
R/2m and recoil velocity vR=~kR/m as a function

of wavelength for 87Rb atoms.

characterized by the frequency !. A two level atom scatters photons at a rate

γscatt=
Γ

2

⌦2/2

δ2 + ⌦2/2 + Γ2/4
; (3.23)

where Γ is the spontaneous decay rate, δ = ! − !0 is the detuning from resonance, and ⌦ =

hg|er·E|ei/~ is the Rabi frequency associated with the amplitude of the laser field E. The scattering

rate on-resonance is optimal for laser cooling; however, the resonance is velocity dependent (due to

the Doppler shift) and optimal conditions for scattering are no longer satisfied as atoms slow down

(this is discussed in Sec. 3.6.1).

For these processes, the natural units of momentum and energy are the single-photon recoil

momentum ~kR=h/λ and the single-photon recoil energy ER=~2k2
R/2m, which correspond to the

amount of momentum transferred to an atom, and to the kinetic energy change in an atom of mass

m after the absorption or emission of a single-photon. Figure 3.7 shows typical values of ER/h for

wavelengths relevant to our system.

The scattering force determines the rate at which the photons transfer momentum in units of

~kR to the atoms; in terms of the saturation intensity12 I/Isat=2⌦2/Γ2 the force is

Fscatt=
~kRΓ
2

I/Isat
1 + I/Isat + 4δ2/Γ2

, (3.24)

whose limiting value for increasing intensity Fmax=~kRΓ/2, sets the maximum acceleration amax=

Fmax/m=~kRΓ/2m. In the case of 87Rb the maximum acceleration is amax=11.16 cm/ms2, this is

12The saturation intensity Isat corresponds to the electric field strength at which a two level system in the presence
of radiative damping reaches equilibrium, and both states have balanced populations (see Sec. 3.7.1).
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⇠ 104 times larger than the standard acceleration of the Earth’s gravity gn=9.806 µm/ms2 [58].

The stopping distance ∆x of an atom moving under uniform linear acceleration −a along ex, is

given by ∆x= v20/2a. In our experiments, metallic Rb is vaporized in vacuum by heating it13 up

to T = 400 K. The vapor is then collimated to form an atomic beam with initial speed given by

v0 =
p

3kBT/m⇡340 m/s. Decelerating at amax gives a stopping distance ∆x=0.52 m. Our slower

is 0.69 m in length and runs at approximately 0.7⇥ amax.

3.6.1 The Doppler e↵ect and the Zeeman slower. Moving atoms experience the Doppler

e↵ect, they observe a shift in the frequency of the laser in proportion to their velocity. If an atom

has a velocity v, the observed frequency is !0 = ! ± kv, where k is the wavenumber and the plus

(minus) sign corresponds to an atom traveling toward (away from) the laser source. If the atom is

moving in the opposite direction to the propagation of a laser beam, the detuning from resonance

can be restated as δ = ! − !0 + kv.

For atoms emerging from the source, v0=340 m/s at the output of the oven, and the Doppler

shift on the cooling transition is kv0 = 2⇡ ⇥ 436.76 MHz. To efficiently bring the atoms to rest

we need to correct for a frequency shift ranging from kv0 to zero. A technique to account for and

exploit the Doppler e↵ect is to apply an inhomogeneous magnetic field B along the path of the

atomic beam to Zeeman split the atomic levels, and continually achieve resonance as the atoms

13The vacuum at the oven is on the order of 10−11 to 10−12 bar, well below the vapor pressure of 87Rb at 400 K
(⇡9⇥ 10−7 bar).
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slow down14. The slowing of an atomic beam of Na atoms was first observed in 1982 by Prodan, et

al. [59].

Figure 3.8 shows the field generated by a solenoid with an inhomogeneous linear density of

coils; and constitutes the essence of the Zeeman slower. At the entrance of the slower where the

Doppler shift is maximum, the density of coils is the largest and the corresponding field is maximum

(Fig. 3.8a,c). The combined Doppler and Zeeman e↵ects together with the choice of the slower laser

frequency gives a nearly resonant condition for laser cooling. Our Zeeman slower is a zero-crossing

field design (see Sec. ??), and close to the exit of the slower solenoid (Fig. 3.8b) the cooling scheme is

significantly di↵erent. Due to the redefinition of the quantization axis the slower laser is σ− polarized

for x < 0.2 m. At x⇡ 0 the laser cooled atoms have a significantly reduced Doppler shift, and the

Zeeman shift is enough for the slower to be on resonance with the cooling transition associated with

the lowest angular momentum.

3.6.2 Repumping. In multiple level atoms such as 87Rb, due to the the relatively small hyper-

fine splitting of the 5P3/2 (∆ < 270 MHz), the MOT laser (see Sec. ??) might drive o↵-resonant

transitions to other allowed states such as F = 2 ! F 0 = 1, 2, 3; in turn some atoms could de-

cay into F = 1, i.e. the ground state uncoupled by the light, and eventually suppress the cooling

mechanism. As discussed in Sec. 3.3.4 a second laser beam (the repump laser, see Sec. 4.4.3) locked

to the F = 1 ! F 0 = 2 transition is useful to optically pump the atoms and reactivate the cool-

ing process. As the speed of the atoms is modified, the repumping mechanism is also a↵ected but

corrections can be achieved by means of an inhomogeneous Zeeman as described above.

3.6.3 Cooling and repumping lasers. We use two main lasers as the source of cooling and

repumping light. These are frequency locked with respect to a reference laser, the Master, via a beat-

note lock mechanism. Both the slower MOT and the slower Repump lasers are significantly below

resonance (by⇠ 150 MHz) from the cooling (F = 2 ! F 0 = 3) and repumping (F = 1 ! F 0 = 2)

transitions, respectively; resonance is achieved when the Doppler and Zeeman shifts experienced by

the atoms traveling along the Zeeman slower are taken into account (Fig. 3.8).

3.6.4 Optical molasses. Cooled atoms exiting the slower still have three spatial degrees of free-

dom; thus cooling along the remaining dimensions is needed to further reduce their energy. Optical

molasses is an optical mechanism which opposes the motion of the atoms in proportion to their

velocity.

14Figure 3.12 shows the splitting of the hyperfine structure of 87Rb ground states as a function of the magnitude
of an external magnetic field B.
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Optical molasses (OM) uses three orthogonally counter-propagating lasers (all originated from

the MOT laser, see Sec. 4.4.4) at about 90 MHz below the cooling transition in our experiment15

F = 2 ! F 0 = 3. A simplified scheme for OM is displayed in Fig. 3.9a,b.

For simplicity I will discuss the cooling mechanism from a single pair of counter-propagating

beams incident on a two-level atom in the absence of the magnetic field. An atom moving with

velocity v is subject to the Doppler e↵ect and observes the laser beams with detunings δleft/right=

δ ⌥ kRv, where δ = ! − !0. The scattering force from both beams is Fscatt =Fleft − Fright, and by

means of Eq. (3.24) acquires the form F = −↵v , where

↵=
2~k2

R

Γ

I

Isat

−4δ

[1 + (2δleft/Γ)2][1 + (2δright/Γ)2]
(3.25)

is the damping coefficient and we have assumed laser intensities below saturation I ⌧ Isat. Since

the scattering force F = −↵v opposes the motion of the atom in proportion to its velocity (a phe-

nomenon associated with viscous media) the laser medium described above is denominated optical

molasses. Figure 3.9c,d shows the scattering force as a function of velocity for δ = Γ/2 and Γ. The

velocity capture range is on the order of Γ/kR⇡4.73 m/s for the cooling transition of 87Rb; and the

cooling rate Fv at which the kinetic energy of the atoms decreases is associated with the damping

time ⌧=m/2↵, which for 87Rb at δ=Γ/2 and v = 0 this is ⇠ 11 µs.

3.6.5 The Doppler cooling limit. One might think that optical molasses cooling could be

applied for a sufficiently long time to arbitrarily decrease the temperature of the atomic sample,

but this is not the case since spontaneous emission acts as a heating mechanism which at best only

balances the e↵ects of optical molasses.

In each scattering event, the atom absorbs and emits a single photon from each beam and

e↵ectively modifies its energy by 2ER; this occurs at the scattering rate γscatt. Assuming that in the

steady state the heating rate from both beams (4ERγscatt) balances the cooling rate (Fv), the

equipartition theorem leads to

kBT =−~Γ
4

1 + (2δ/Γ)2

2δ/Γ
; (3.26)

whose minimum value, occurring at δ = −Γ/2, gives the minimum temperature TD = ~Γ/2kB, which
is known as the Doppler cooling limit.

3.6.6 Sub-Doppler polarization gradient cooling. The hyperfine structure of the alkalis not

only complicates the cooling mechanism of optical molasses, but also allows cooling below the sub-

15Optical pumping to maintain the cooling process is implied. In our experimental setup repumping is performed
by a single pair of counter-propagating beams originated from the repump laser (see Sec. 4.4.3).
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Doppler temperature TD. This phenomena can be understood by generalizing the simple two-level

model illustrated above to a multiple level system interacting with suitable polarized laser fields.

Consider a pair of lasers traveling traveling along ±ez and with opposite circular polarizations16;

the superposition of their electric fields gives E=2E0 cos(!t)✏̂, where the polarization vector is

✏̂=cos(kz) ex − sin(kz) ey; (3.27)

this corresponds to an electric field whose local polarization is linear and which realizes a rotation

by 2⇡ around ez with spatial periodicity λ. The rotating electric field defines a local quantization

axis, the light-shifts are independent of position and only ⇡-transitions are allowed.

Cooling in such scheme relies on the damping forces arising from the population imbalance

between Zeeman sub-levels induced by the atomic motion and generated due to the optical pumping

processes the atoms undergo as they travel in such a polarization gradient. Under these conditions,

the most populated state is the one that absorbs light most efficiently from the σ polarized wave

opposing its motion. The unequal absorption of σ+ and σ− photons by a moving atom, leads to the

disequilibrium between the scattering force arising from each laser and to the subsequent damping

of atomic motion [60]. Polarization gradient cooling allows sub-Doppler temperatures [61] down to

the recoil limit TR ⇠ ER/kB to be reached.

3.6.7 The Magneto Optical Trap. The magneto optical trap (MOT) di↵ers from OM, primar-

ily by the addition of a magnetic field gradient (Fig. 3.9a), although detuning and beam intensity

also play an important role. In contrast with OM, the MOT is a trapping potential that arises

when the scattering force is modified by spatial changes in the detuning using the magnetic field

gradient17. The spatial dependence introduced by the magnetic field gradient is makes the MOT a

trap.

A quadrupole magnetic field can be readily implemented as discussed in Sec. 3.9.1; in particular,

we align the zero of the field at the intersection of the MOT beams, i.e. at the origin of the coordinate

system (Fig. 3.9a). The magnitude of the quadrupole field varies linearly with position and it

introduces a uniform detuning gradient on the atomic sample.

To simply understand the way in which the MOT captures the atoms, I will describe the 1D case

illustrated in Fig. 3.9b. Assume that two counter-propagating beams, with orthogonal polarizations

(σ± propagating along ⌥ex as shown in Fig. 3.9a), illuminate an atom; and that the frequency of

the lasers ! is tuned below atomic resonance !0.

16In the absence of a magnetic field, here we define the polarization with respect to the propagation axis e
z

, see
Sec. 3.2.1. The electric field of a σ⌥ polarized laser traveling along ±e

z

is: E±z

=E0 cos(!t⌥ kz)e
x

± sin(!t⌥ kz)e
y

.
17The interaction between an atom and an external magnetic field B is discussed in detail in Sec. 3.8; however, for

the present discussion of the MOT it is enough to acknowledge that in the presence of a small external magnetic field,
compared to the internal field that gives rise to the hyperfine splitting, they experience the linear Zeeman e↵ect.
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Let us assume that the atom has a single ground state and a three-fold degenerate excited state,

with sub-levels m = −1, 0,+1. The internal sub-levels of a moving atom, are subject both to a

spatially dependent Zeeman shift and to the Doppler e↵ect; in particular an atom moving toward

+x observes the frequency of the counter-propagating laser closer to resonance with the excited

m = −1 level. Given our careful choice of polarization (σ− in this case), optimal conditions for

scattering events are achieved and the atom is pushed back to x = 0. An equivalent process occurs

for an atom traveling toward −ex, i.e. it is eventually pushed to the trap center x = 0 by the σ+

polarized laser beam.

Decelerated atoms exiting the Zeeman slower are further cooled and collected by a MOT during a

total time of ⇠ 3 s, after which polarization gradient cooling (achieved by turning o↵ the quadrupole

magnetic field for the MOT) takes place. In our experiment we prepare optical molasses and let

them act for typically 20 ms, with which we achieve cooling down to T ⇠ 30 µK.

3.7 Resonant Absorption Imaging

Most probing mechanisms for ultracold atomic samples rely on optical imaging, and they either

focus on the amplitude or the phase of the atomic distribution. Resonant absorption imaging is

a widely used destructive technique, in which the measurement of the optical density gives the

atomic density of the sample. From this image we can obtain all the system parameters including

atom number, temperature, condensate fraction, momentum distribution (TOF imaging). It is also

possible to extract the equation of state and all the thermodynamical properties of the system [62].

We start by defining the resonant absorption cross-section σ as the e↵ective absorptive area

associated with each atom; however, it does not represent the physical size of the atom. Consider a

system of atoms with density n(x, y, z), in a volume Adx as shown in Fig. 3.10. A laser beam with

initial intensity I(x, y, z) propagating along ex, passes thought the atomic media and is absorbed

by an amount INσdx. The di↵erential decrease in the intensity is dI/I = −n(x, y, z)σdx; the

attenuation of the laser is exponential when the cross-section is independent of the intensity and

I⌧Isat

I(x, y, z)=I(0, y, z)e−OD; (3.28)

where OD =
R
n(x, y, z)σdx is the optical depth. This result is known as Beer’s law, and from it

we can infer the density of a medium. This formula works well in the case of low-intensity imaging,

where most atoms remain in the ground state.

3.7.1 The saturation intensity and the frequency dependent absorption cross section.

In the presence of monochromatic radiation, a two level system undergoes Rabi oscillations between

its levels; however in the presence of damping, i.e. when spontaneous emission occurs, the system

evolves into a steady state, characterized by the balance of the populations of both energy levels; this
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Figure 3.10: Resonant absorption cross-section. The density of a medium can be determined by
measuring the intensity attenuation of a laser after passing through it. The resonant absorption
cross section has a Lorentzian dependence on the detuning from resonance given by Eq. (3.31), and
has a full width at half maximum equal to Γ.

behavior can be described in terms of a saturation e↵ect characterized by the saturation intensity. In

this section we discuss the frequency dependence of the absorption cross-section and introduce the

saturation intensity.

When the intensity I(!) of the laser is large enough such as to induce stimulated emission

processes, we need to modify the above model for intensity, to account for this contribution. If Ng

and Ne denote the population of atoms in the ground and excited states, respectively we get

dI

dx
=−(Ng −Ne)σ(!)I(!); (3.29)

where we see that the atoms in the ground (excited) state contribute to decrease (increase) the

intensity, and N = Ne +Ng. Once the light is absorbed, it can either be emitted spontaneously or

by a stimulated process; conservation of energy requires that these processes balance

(Ng −Ne)σ(!)I(!) = NeAeg~!; (3.30)

where Aeg is Einstein’s coefficient associated with spontaneous emission18 and ~! is the energy

contained in the emitted photon. For a driven two level system, the fractional population of the

excited state is given by19 Ne/N=(⌦2/4)[δ2+⌦2/2+Γ2/4]−1; which leads to the frequency dependent

18Einstein’s coefficients B
ge

, A

eg

and B

eg

are properties of the atom and are related to the rate at which absorption,
spontaneous emission and stimulated emission occur, respectively. For a two level atom the coefficient A

eg

describing
the decay rate from the excited level |ei to the ground state |gi corresponds to the spontaneous emission rate Γ.

19This is a consequence of solving the optical Bloch equations, which describe the excitation of a two level atom
driven by an almost resonant field and including spontaneous emission [63].
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cross-section for absorption

σ(!) = 3⇥ Aeg⇡
2c2

!2
0

Γ/2

⇡[δ2 + (Γ/2)2]
. (3.31)

The cross-section for absorption has a Lorentzian dependence on the detuning δ (Fig. 3.10),

and its full width at half maximum is Γ; its maximum value, coincides with the cross section of

a classical dipole, σ0 = (3λ20/2⇡), where λ = 2⇡c/!, occurs on resonance. The pre-factor of 3 can

actually be any value in the range 0 to 3, depending on the polarization of the light; to maximize

the cross-section, a quantization axis is chosen with respect to which the light is circularly polarized

(see Sec. 3.2.1).

The equilibrium condition stated in Eq. (3.30) allows one to express the population di↵erence

as

Ng −Ne=
N

1 + I/Is(!)
; (3.32)

where the frequency dependent saturation intensity is defined by Is = ~!Aeg/2σ(!); its value on

resonance Isat=⇡hcΓ/3λ
3
0 is referred to as the saturation intensity. When the laser intensity reaches

Isat, it is expected that the population fractions in the ground and excited levels are equal. An

equivalent expression for the saturation intensity20 is I/Isat=2⌦2/Γ2.

For the particular case of 87Rb the saturation intensity associated with the |F = 2,mF = ±2i !
|F = 3,mF 0 = ±3i cooling transition under σ± polarized light is Isat = 1.662 mW/cm2; and the

resonant absorption cross-section is σ0 = 2.907⇥ 10−9 cm2.

3.7.2 Experimental implementation of absorption imaging The ingredients for optimal

resonant absorption imaging are: atoms in |F = 2,mF = 2i, circularly polarized cooling light, and

a well defined quantization axis along which the probe beam propagates. As can intuitively be seen

from Fig. 3.3b, the pair of states |F = 2,mF = 2i and |F 0 = 3,mF 0 = 3i form an e↵ective two

level system, isolated from the rest of the hyperfine sub-levels given the selection rules for circularly

polarized light, so the above treatment for a two level atom is appropriate.

The quantization axis is provided by the direction of an external uniform magnetic field generated

by three pairs of Helmholtz coils oriented in mutually orthogonal directions. The field is set along

the direction of propagation of the imaging beam to achieve maximum circular-polarization and

maximize the cross-section for absorption. Given the saturation intensity for 87Rb, it suffices to

have a probe beam with very low power. A w0 = 400 µm Gaussian beam, would need a power

P = 4.2 µW to achieve an intensity I = Isat.

20An intensity of Isat corresponds to providing the energy of one photon every two lifetimes over the radiative
cross-section σ0 of the two-level transition [64].
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Figure 3.11: Resonant absorption imaging. a. An image of the resonantly absorbed probe beam by
the atoms is recorded on a CCD chip. The size of the beam is large enough so as to guarantee nearly
uniform illumination over the atomic sample. Two reference beams, containing b. the unabsorbed
probe beam’s intensity profile and c. the background, are also recorded in order to reconstruct the
atomic distribution’s optical density.

Our experiments are typically carried out with atoms in the F = 1 ground state manifold. Prior

to imaging, the atoms are optically pumped into the F = 2 ground state. Once there, a pulse of

cooling light illuminates the atoms, and they resonantly absorb a fraction of the beam (whose waist is

large enough w0 & 300 µm so as to achieve nearly uniform illumination of the atomic sample). Both

the light and the shadow of the atoms are recorded on a CCD21, from which we obtain an intensity

profile Iatoms (Fig. 3.11a). Two more images are required to characterize the atomic distribution:

an image of the unaltered beam giving the original intensity distribution Ilight and a background

image which provides a zero reference level Ibackground (Fig. 3.11b,c). Using Eq. (3.28), the measured

optical density

ODexp=ln

✓
Ilight − Ibackground
Iatoms − Ibackground

◆
, (3.33)

gives the integrated density distribution n(y, z) =
R
n(x, y, z)dx along the imaging direction ex,

namely n(y, z) = ODexp/σ0, where we use the on-resonance value of the scattering cross-section

σ0=3λ20/2⇡.

21A charge-coupled device (CCD), is a high-speed semiconductor device suitable to digitally record images.
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Figure 3.12: Hyperfine structure of the ground state manifold 52S1/2 of 87Rb vs magnetic
field. a. Calculated hyperfine structure as a function of magnetic field. b. Zeeman splitting of
the F = 1 states for small magnetic fields, these include the typical values used in our experi-
ments. c. The relative shift of the mF = 0 state is defined as ✏/h=E0− (E−1+E+1)/2; it presents a
quadratic dependence on the magnetic field and occurs on a smaller energy scale than the Zeeman
splitting of the mF = ±1 states.

3.8 Interaction between atoms and magnetic fields

The Zeeman interaction between an external magnetic field B and both the magnetic moment

µJ = gJµBJ and the nuclear magnetic moment µN = gIµNI of the electron, shifts the energy of the

total angular momentum states |F,mF i (Fig. 3.12). In the limit of weak magnetic field, where the

Zeeman splitting is small compared to the hyperfine splitting, it is suitable to describe the system

in terms of the total angular momentum states. In the limit of strong field, the Zeeman interaction

term dominates over the hyperfine interaction, which can be considered as a perturbation to the

strong-field eigenstates |JmJImIi.
An alkali atom can e↵ectively be modeled as having a magnetic moment µ = µBgFF, where µB

is the Bohr magneton and gF is the Landé g-factor of the atomic state. The Zeeman interaction

between the atom and an external field is then U = −µ ·B.

3.9 Magnetic trapping

Assuming that the atoms are moving slowly enough across the magnetic field, their magnetic

moments align with the field. The magnetic trapping potential U = µBgFmFB, depends on the

magnitude of the field B and the atom’s hyperfine levels.
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Figure 3.13: Magnetic quadrupole trap. a. We generate a magnetic quadrupole field using a
pair of parallel coils with electrical currents circulating in opposite directions (anti-Helmholtz
coils). b. Magnetic trapping potential along ez for a gradient B

0=3.06mG/µm and for the trappable
states of 87Rb: |F =1,mF =−1i, |F =2,mF =+1i (continuous) |F =2,mF =+2i (dashed). When
z < 0, such gradient exactly cancels the gravitational potential experienced by the mF =1 atoms,
corresponding to B0

g/h = mg/h = 2.14 kHz/µm (dot-dashed). c. Once the atoms are collected in
the magnetic trap, an rf-field of variable frequency frf is applied to selectively transfer the most
energetic atoms into untrappable states.

In principle, we would have two choices: (i) to locally maximize the magnitude of the field to

trap states where gFmF < 0 or (ii) to design a field with a local minimum to trap states where

gFmF > 0. Since it can be proven that in a region free from current and charge distributions, the

strength of a quasi static electric or magnetic field can have local minima but not local maxima [65],

the scheme proposed in (i) is impossible to achieve. The magnetic trappable states are the low-field

seeking states, for which gFmF > 0; in the case of the ground state manifolds of 87Rb the trappable

states are: |F =1,mF =−1i and |F =2,mF =1, 2i.
A magnetic trap consists of a magnetic field which provides a local energy minimum for the atoms

to be attracted an collected. One of the simplest magnetic traps is the one arising from a quadrupole

magnetic field, such as the one obtained from a pair of anti-Helmholtz coils (Fig. 3.13a). This is the

scheme used in our experimental apparatus.

3.9.1 The quadrupole magnetic field. To understand the nature of the quadrupole field gen-

erated by a pair of anti-Helmholtz coils, let us focus on its spatial gradients. Given the symmetry

of the field @Bx/@x=@By/@y; and from Maxwell’s equations we know that r ·B = 0,

@Bz

@z
=−2

@Bx

@x
= B0, (3.34)
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where B0 is the magnetic field gradient along z. The magnetic field near the center has the general

form

B=B0(−x

2
ex −

y

2
ey + zez) +B0, (3.35)

where B0 is a spatially uniform magnetic field. A uniform magnetic field B0 displaces the zero of

the magnetic trap such that the field can be expressed as B = B0[−(x− x0)/2,−(y− y0)/2, z− z0],

where (−x0/2,−y0/2, z0) = −B0/B
0. Our experimental apparatus includes three pairs of Helmholtz

coils along the orthogonal directions: ex+ey, ex−ey and ez; to generate uniform magnetic fields in

the central region of the magnetic quadrupole trap22. For simplicity I focus on the particular case

where B0 = B0ez and the magnetic trapping potential becomes

U(r)=µBgFmFB
0

r
x2

4
+

y2

4
+ (z − z0)2, (3.36)

where z0 = −B0/B
0. Very close to the center of the trap, where the field is zero, the quadrupole

potential is linear along all directions U(r)⇡ µBgFmFB
0(⇢/2 + |z − z0|), here ⇢ is the cylindrical

radial coordinate ⇢=
p

x2 + y2.

Figure 3.13b shows the magnetic trapping potential as a function of position along ez. To

appreciate the energy scales involved in magnetic trapping, it is useful to compare the magnetic

trapping potential to the gravitational potential energy Ug=mgz. The gravitational field gradient

is mg/h = 2.14 kHz/µm, where m is the mass of an atom and g = 9.806 µm/ms2 is the standard

acceleration of gravity [58]. Levitation of magnetically trappable spin states is thus achievable by

selecting the appropriate field strength and position with respect to the magnetic trap center. For

|F = 1,mF = −1i 87Rb atoms, a magnetic field gradient of B0=3.06 mG/µm makes it possible to

levitate the atoms against gravity for z < 0.

In the experimental setup, the strength of the magnetic trapping potential is directly propor-

tional to the current in the anti-Helmholtz coils, the trap can be easily compressed or relaxed. In

the experimental sequence to prepare an ultracold gas, the magnetic trap is suddenly turned on

after optical pumping and optical molasses, when the atoms have mostly been transferred into

|F = 1,mF = −1i.
Once the F = 1 atoms are stored in the magnetic trap, we apply a tunable rf-field to remove

the most energetic atoms from the trap. High magnetic gradients (B0 ⇡ 7 kHz/µm) are used at

the initial stages of rf-induced evaporation from the magnetic trap, since compression enhances

the elastic collisional rate and promotes faster thermalization23. To understand the mechanism of

22Atom loss due to non-adiabatic spin-flips at the zero of quadrupole field [66] are overcome in our experiment by
this uniform bias field [67].

23Close to the end of the evaporation process in the magnetic trap, decompression is required to minimize the
inelastic collisions that occur at the final high densities.
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Figure 3.14: rf dressed system. a. Calculated eigenenergies of the rf-dressing Hamiltonian H 0, with
⌦rf=2⇡⇥ 11.2 kHz and ✏=−2⇡⇥1.7kHz. b. An rf-dressing field in combination with a mechanism
to control the detuning constitute a useful technique to manipulate spin states in an optical dipole
trap. Shown are measured fractional populations in each spin state from an adiabatic rapid passage
sequence (see Sec. 3.9.4): mF = −1 (closed symbols), mF = 0 (crosses), and mF = +1 (open
symbols). The continuous curves correspond to the expected behavior for a dressing field using the
above parameters.

rf-induced evaporation, it is useful to solve the problem of a multiple level atom in the presence of

an oscillating magnetic field. In the following I will focus on the case of the mF states of the F = 1

manifold of 87Rb, interacting with a variable field Brf=B0 cos(!rft)ex.

3.9.2 Three level system in the presence of an oscillating magnetic field. In the presence

of a small uniform magnetic field, the F = 1 manifold can be considered as a 3-level system with

unperturbed eigenenergies E−1, E0 and E+1, where E−1 − E+1 = 2~!Z .

The interaction with the rf-field is described by the perturbative Hamiltonian H 0=µB0 cos(!t),

whose matrix representation in the basis of spin states {|− 1i, |0i, |+ 1i} is

H 0=~

0
B@

−δ ⌦rf cos(!rft) 0

⌦rf cos(!rft) ✏ ⌦rf cos(!rft)

0 ⌦rf cos(!rft) +δ

1
CA , (3.37)

where ~⌦rf = hmi|µB0|mji is the associated Rabi frequency and mi 6= mj; δ = ! − !Z is the

detuning from rf resonance; and ✏/h=E0 − (E−1 + E+1)/2 is the quadratic Zeeman shift24. Given

that cos(!rft)=(ei!rf t−e−i!rf t)/2, a transformation to the frame rotating at !Z in combination with

24Given that the wavelength of the rf field ranges from a few cm to tens of km, the single photon recoil momentum
is 5 to 11 orders of magnitude smaller than that associated with an optical transition (e.g. 790 nm for 87Rb). An rf
transition modifies the spin state of an atom while leaving its momentum unchanged.
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the rotating-wave approximation25 gives

H 0=~

0
B@

−δ ⌦rf/2 0

⌦rf/2 ✏ ⌦rf/2

0 ⌦rf/2 +δ

1
CA . (3.38)

The eigenstates of the system are obtained from the diagonalization of H 0; the eigenenergies

Ej = ~!j (j = −1, 0,+1) are the solutions to the characteristic equation

!3
j − ✏!2

j − (δ2 +
⌦2

rf

2
)!j + ✏δ2=0. (3.39)

Figure 3.14 shows the eigenenergies, and the spin composition of the of the lowest energy eigenstate

of H 0 as a function of δ. Exactly on resonance δ = 0, the normalized lowest energy eigenstate is

| rfi=(a−1|− 1i+ a0|0i+ a+1|+ 1i)/
p
N , with coefficients: a−1 = a+1 = ⌦rf/2E−1, a0 = 1, where

E−1=−(✏ +
p
✏2 + 2⌦2

rf)/2 is the energy of the lowest rf-dressed state and N = 1 + (⌦rf/E−1)
2/2

is a normalization constant.

3.9.3 rf-induced evaporation in a magnetic trap. rf-induced evaporation uses an rf magnetic

field with tunable frequency frf (Fig. 3.13c.) to selectively transfer the most energetic atoms into

untrappable states, forcing evaporation and cooling the system. When the dressed system is close to

resonance with the rf-field, an avoided crossing develops, introducing a bend in the potential energy

seen by the atoms (Fig. 3.14a.); this is the escape mechanism of the atoms in rf-induced evaporation;

at this point, the initial (trappable) spin undergoes transitions to the other (untrappable) spin states

(Fig. 3.14b.).

The frequency of the rf-field at the beginning of the evaporation sequence is chosen based upon

the initial kinetic energy (temperature) of the atomic sample captured in the magnetic trap. An

upper limit to this energy is given by the Doppler cooling limit from the preceding optical molasses

stage kBTD = ~Γ/2. For 87Rb this is kBTD = h⇥38 MHz, or equivalently TD = 146 µK. We typically

perform forced evaporation in the magnetic trap by scanning the frequency frf of an external rf-field

from 22 MHz down to 2 MHz, corresponding to a final trap depth of U = kB48 µK.

3.9.4 Adiabatic rapid passage. The manipulation of spin states with rf-fields is efficient and

reliable. Adiabatic rapid26 passage (ARP), achieved by sweeping the detuning across resonance to

efficiently transfer the system from a spin state to another state, is routinely used in our experiments

to prepare spin-superposition states in an optical trap.

25In the rotating-wave approximation we neglect the rapidly variating terms rotating at ! + !

Z

.
26In case that the transitions are induced by optical fields, “rapid” is relative to the spontaneous emission rate.
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We start with a BEC in mF = −1 and ramp a magnetic bias field, which Zeeman splits the

spin states in the F = 1 ground state manifold of 87Rb by ~!Z. An rf-dressing field of frequency

!rf/2⇡ couples these states with strength ⌦rf . The amplitude of the bias field sets the detuning from

rf-resonance δ. We perform ARP by ramping the bias field adiabatically with respect to the e↵ective

change of the dressed state energy, to avoid transitions to higher energy eigenstates. The system

follows the lowest dressed energy (Fig. 3.14a, bottom continuous curve) and its spin superposition

is modified to the point that it can completely be transferred into mF = +1 for sufficiently large

δ. We achieve adiabaticity by ramping the detuning in a time t > 15 ms, well above the⇡ 20 µs

estimated adiabatic time-scale set by the initial detuning δ⇡−50 kHz. The adiabaticity criterion

1/∆t ⌧ !Z links the rate 1/∆t at which the internal energy splittings change as the atom moves,

compared with the actual Zeeman splitting !Z .
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Chapter 4

Experimental Setup

The first part of this chapter describes the experimental sequence to produce 87Rb BECs in our

apparatus; succeeding sections detail the main parts of the apparatus and discuss relevant experi-

mental methods.

4.1 Experimental sequence to achieve BEC

Figure 4.1 provides an overview of the experimental setup and sets the laboratory coordinate

system. Our experiments start with a sample of natural 87Rb, whose temperature in increased up to

400 K in the Rb-oven to generate a collimated atomic beam propagating along −ex. When exiting

the oven, the atoms interact with a pair of laser beams propagating along +ex (the slower and the

slower repump) all along the Zeeman slower. The non-homogeneous magnetic field generated by the

Zeeman slower compensates for the Doppler shift experienced by the moving atoms and sets the

appropriate conditions for laser cooling.

A magneto-optical trap (MOT) collects slowly moving atoms at the center of the main experi-

mental vacuum chamber. Three intersecting and mutually orthogonal pairs of counter-propagating

laser beams, and a quadrupolar magnetic field create the MOT. The quadrupolar magnetic field

provides a uniform magnetic field gradient B0
z ⇡ 12 G/cm along ez, and it is generated by a set of

anti-Helmholtz coils running a current of Iquad = 25 A (coils not shown in Fig. 4.1). We typically

load the MOT from 0.5 to 3 s; we stop loading by closing the oven shutter1 in 12 ms, and turning

o↵ the Zeeman slower fields as well as the slower cooling beams (MOT and repump).

Prior to optical molasses we turn o↵ the quadrupole field from the experiment, and set the

laser detuning for the MOT beams 13 MHz above the cooling transition in 10 µs; additionally the

MOT repump laser intensity is decreased. During the 19 ms of optical molasses, we sweep the MOT

detuning from 104 to 34.42 MHz below F = 2! F 0 = 3; this allows addressing atoms in a large

velocity range.

1Closing the oven shutter prevents collisions between energetic atoms and the laser cooled atoms.
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Figure 4.1: Schematic of Rb-II BEC machine (BEC level). An atomic beam emerging from the
Rb-K oven is laser cooled along the Zeeman slower and trapped in a MOT at the center of the
main experimental chamber. Motorized flipper mirrors (M1-M4, Mtop and Mbottom not shown) send
the 8 mW MOT beams toward the chamber center, and are moved out of the way to allow optical
access for dipole trap beams and probing lasers (LA, LB, LC and xy imaging). Indicated are two
independent imaging systems whose probe beams propagate along −ey and −ez. The xy imaging
optics and camera are located on a lower level (see Fig. 4.2). This figure is to scale. Also see Fig. 4.17.
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With a reduced MOT repump intensity the atoms decay into the F =1 ground state. Prior to

capturing the atoms into a magnetic trap, we perform optical pumping during 1 ms to increase the

population of the magnetically trappable state |F =1,mF =−1i. Optical pumping is performed by

illuminating the atoms with the slower repump beam (F =1!F 0=1). We set up the quantization

axis (adjusting the bias fields) such that the atoms see the slower repump as a σ−-polarized radiation

field. We choose the bias fields experimentally, by sending the optical pumping beam to the atoms

and scanning the direction of the bias fields to maximize the number of atoms in |F =1,mF =−1i;
Table 4.1 shows optimum values.

We proceed to fully turn o↵ the repump and slower repump beams, and to suddenly turn on

(in 1 ms) the quadrupole field with current Iquad ⇡ 130 A such that the |F = 1,mF =−1i atoms

are trapped. All cooling beams are later turned o↵ and the bias fields are jumped to their optimal

values for magnetic trapping (Table 4.1); the result is that the atoms are purely levitated with the

quadrupole trap. With a 1 ms pulse of the xz probe beam (F =2!F 0=3) we blow away the atoms

that are not in the |F =1,mF =−1i state.
After holding the atoms during 20 ms in the magnetic trap, we start the compression process

in the magnetic trap, by ramping the quadrupole current to Iquad=240 A, in order to increase the

collisional rate for thermalization of the system.

We selectively remove the most energetic atoms from the trap by illuminating the atoms with rf-

radiation to induce transitions into non-trappable states. We sweep the frequency of the rf-field from

22 to 4 MHz in 2 s, using a Novatech 409A programmable frequency synthesizer. In preparation

for the final transfer to the 1064 nm optical crossed dipole trap, we send the dipole beams through

the chamber at this point; but their optical trapping potential does not overlap with that of the

magnetic trap which is displaced vertically with a large bias field along ez.

As the atomic sample becomes more dense, we decompress the quadrupole (ramping the current

from 300 A to 70 A with a ⌧ = 1.5 s decaying exponential ramp during 3 s) to prevent atom loss

due to three body recombination. During the 3 s decompression the 4 MHz rf-knife is still on and

we simultaneously load the optical dipole trap from the magnetic quadrupole trap by ramping the

bias field along ez from 10 A to 5.6 A to move the magnetically trapped atoms to the optical trap

location.

Table 4.1: Bias fields to cancel stray fields, magnetic trapping and optical pumping.

Field direction Nulling [A] Magnetic Trapping [A] Optical Pumping [A]
ex − ey -1.08 -6 1.368
ex + ey 0.03 0 0.8

ez 3.65 10 2
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Figure 4.2: Schematic of Rb-II BEC machine (lowest level), continued from Figure 4.1. This figure
shows the optical fiber launch of the up-going MOT beam. A tiny right angle prism mirror, sitting
at a motorized flipper mount Mbottom and located just below the main chamber, sends the MOT
beam along ez. Also shown are some of the optics of the xy imaging system; the xy probe beam
originates at the top of the experimental setup and propagates along −ez across the main chamber
and through the atoms to finally reach the camera. This figure is to scale.
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After the atoms are in the combined magnetic and optical trapping potential, we modify the

optical trapping potentials to allow the most energetic atoms to leave. In our early experiments

both beams were similar in size and geometry, and evaporation was performed by keeping their

relative powers balanced while reducing their overall power [5]. In our latest experiments, the 1st

order beam is significantly smaller than the 0th order beam and evaporation is done by keeping

the overall power constant while redistributing the relative power in the beams. Once the final

distribution of powers is reached, we decrease the overall power in the dipole beams to reach

BEC. At this point the quadrupole field still contributes, with a decreased strength of 10 A, to the

trapping potential. Typical time scales for the evaporation in the optical trap range from 1.5 to 3 s.

We finally ramp down the quadrupole current from 10 A to 0 A with a ⌧=0.5 s exponential ramp

during 3.5 s; the time duration for this step is set by the lowest trapping frequency. Care should

be taken to cancel stray magnetic fields since their presence, during the removal of the quadrupole

potential, can excite the breathing as well as sloshing modes [39]. We allow the quadrupole field to

settle to zero for 100 ms. Our BEC sits now in a purely optical trapping potential.

After preparing a BEC we dedicate the subsequent lines in the program to the system preparation

(illuminate with rf-fields, Raman lasers, optical lattices, ...) and the realization of experiments with

ultracold atoms; typical time scales for experiments range from 1 µs to 10 s.

Once the preparation is over we change the system to detection, which can be a combination of:

expansion in time of flight (TOF), mapping of the occupied momentum states into free momentum

states, spatial separation of spins by a magnetic field gradient (Stern-Gerlach experiment), and

others.

Finally we perform resonant absorption imaging in two primary planes xy and xz. First we

pump the atoms into the F =2 state using the slower repump beam (F =1!F 0=1), then we pulse

the probe beam and image the absorption of this light by the atoms. The imaging pulse typically

ranges from 50 to 100 µs. We also take reference images of the probe beam only, and a background

image with no light.

4.2 Computer control and Data acquisition

A fundamental characteristic of ultracold atom experiments is the high degree of control of most

experimental variables; this feature relies to a great extent on the computer control of various instru-

ments in the experiment. Additionally, the amount of and rate at which data is collected requires an

optimum scheme for data acquisition. We dedicate two separate computers for control (Rubidium-

C) and data acquisition (Rubidium-D); both computers use LabVIEW based software. This section

describes both, the basic setup for operating our experimental apparatus and the data acquisition

scheme.
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Table 4.2: List of AOs and devices to control the experiment.

Channel Name Analog variable Min [V] Max [V]
Dev1-AO0 Quadrupole Coil 0 800
Dev1-AO1 Slower Coil -10 100
Dev1-AO2 Reverse Coil -10 100
Dev1-AO3 MOT Detuning 40 250
Dev1-AO4 Repump Detuning 0 10
Dev1-AO5 MOT Intensity 0 2
Dev1-AO6 Slower Intensity 0 2
Dev1-AO7 Probe Intensity 0 2
Dev2-AO0 Repump Intensity -0.5 2
Dev2-AO1 - - -
Dev2-AO2 - - -
Dev2-AO3 - - -
Dev2-AO4 - - -
Dev2-AO5 Evaporation Mixer 0 10
Dev2-AO6 - - -
Dev2-AO7 - - -
Dev3-AO0 Finebias Z -20 20
Dev3-AO1 Finebias X-Y -20 20
Dev3-AO2 Finebias X+Y -20 20
Dev3-AO3 - - -
Dev4-AO0 1064 Intensity -1 2
Dev4-AO1 1064 Split -0.5 2.3
Dev4-AO2 - - -
Dev4-AO3 - - -

4.2.1 Control computer. Rubidium-C is connected to two NI BNC-2110 connector blocks (Dev1

and Dev2) operating as a total of 16 analog out (AO) channels; as well as to two NI USB-6229 data

acquisition (DAQ) devices (Dev3 and Dev4) with a total of four AO channels, 32 analog in (AI)

channels and 48 (digital out) DO, each. A pair of Icron Ranger 442 high-speed USB extenders

is used to independently connect Dev3 and Dev4 to Rubidium-C. Table 4.2 shows all the analog

variables controlled in our experiment. Most AOs are sent through a 50 ⌦ bu↵er to amplify the

current required to drive various instruments.

We generate digital signals with two SpinCore PB24-512 pulse blasters (PB) with a total of 24

DO channels each, as well as with some DOs of Dev4 as indicated in Table 4.3.

All of these devices are programmed using LabVIEW-based control software. In our control scheme,

the PB and other devices are programmed in advance and are triggered from the PB card. A

matrix of the experimental hardware timing sequence is stored as a global variable or “hardware
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Table 4.3: List of DOs and devices to control the experiment.

Channel name Digital variable
PB0-0 MOT AOM rf-switch
PB0-1 MOT Shutter
PB0-2 MOT Rep./slower Rep. AOM rf-switch
PB0-3 MOT repump Shutter
PB0-4 Slower AOM rf-switch
PB0-5 Slower/slower repump Shutter
PB0-6 -
PB0-7 Oven Shutter
PB0-8 Probe xy/xz AOM rf-switch
PB0-9 xy Probe Shutter
PB0-10 xz Probe Shutter
PB0-11 xy Camera Shutter
PB0-12 Camera Trigger
PB0-13 rf-Evaporation switch
PB0-14 to 17 -
PB0-18 rf-Evaporation Trigger
PB0-19 to 20 -
PB0-21 Oscilloscope Trigger
PB0-22 Raman AOMs rf-switch
PB0-23 AO Staging list “clock in” bit
Dev4-DO0 1064 AOM rf-switch
Dev4-DO1 1064 Shutter
Dev4-DO2 -
Dev4-DO3 -
Dev4-DO4 -
Dev4-DO5 MOT Flippers
Dev4-DO6 Raman Shutters

image”. The basic structure of the control software relies on two programs: SetList.vi modifies

and generates the hardware configurations/timing of a given “hardware image”, and allows the user

to modify the experimental control sequence; while CycleX.vi physically programs the hardware

reading the “hardware image”.

A synchronization scheme between SetList.vi and CycleX.vi allows the programming of

scans of various experimental parameters. LabVIEW talks to the DAQ computer (Rubidium-D) over

the network; both computers can see the “hardware image”. A third control program, namely

ManualControls.vi, allows to control the experiment in non-cycling mode; e.g. this is ideal to

diagnose the MOT.
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4.2.2 Data Acquisition computer. Rubidium-D talks to the control computer over the net-

work through LabVIEW. It is also connected to the xy-imaging camera via an Icron Ranger 442

high-speed USB extender; and to the xz-imaging camera through an IEEE 1394 FireWire inter-

face. Both cameras are triggered by the same PB channel.

We use Wavemetrics Igor Pro to visualize and analyze data. The software for DAQ is LabVIEW-

based; it processes the acquired images into an Igor Pro binary wave. We exploit the built-in

programming environment of Igor Pro to automate data processing and analysis.

Finally, the vital signs of our BEC-machine (i.e. MOT fluorescence levels, voltage ramps, rf-

fields, intensity in various laser beams, ...) are recorded by two Tektronix TDS 2014B oscilloscopes,

connected via USB to Rubidium-D.

4.3 Vacuum system

Our BEC machine has two independent ultra-high vacuum (UHV) regions corresponding to the

Rb-K oven and the main experimental chamber. They join at the input of the Zeeman slower and

can be isolated form each other by means of a pneumatic gate valve; this is a nice feature that

allows renewal of the alkali sources without the needing to vent the main chamber.

4.3.1 Rb-K oven. Figure 4.3 shows the schematic configuration of the oven. The Rb and K

reservoirs are independently wrapped with an Ari Industries BXX06B24-4T flexible heating rod,

and each is connected to an Omega CN77333-PV temperature controller. The whole system is covered

by heat reflective wrap. The relative temperatures of the reservoirs are modified to control the flux of

each atomic species; typical temperatures for experiments with Rb are T1=125 ◦C and T2=100 ◦C.

The oven is pumped by two 55 Ls−1 Varian StarCell ion pumps, and its pressure is maintained

around 2⇥10−8 mbar as measured from the current of an ion gauge. The ion pump, installed in the

chamber containing the cold cup, is permanently kept at 70 ◦C to prevent alkali poisoning of the

ion pumps.

The cold cup is kept at -40 ◦C by a Custom Thermoelectric 19012-5L31-06CQQ two stage

TEC, whose dissipated power is pumped by a Swiftech heat exchanger in combination with a liquid

recirculating chiller ThermoCube 10-400-1C-1-SWVD. The cold cup is a very important element to

keep our vacuum in shape; so we take care that it is always kept below -30 ◦C. On August 2010, a

severe storm triggered the reboot of various instruments in the laboratory as well as a pump failure

of the TEC chiller; this in turn caused the melting of the water hoses close to the overheated TEC

and the increase of the cold cup temperature to 50 ◦C, which increased the pressure by a factor of

500 from its standard overnight ion current level 10−7 A. A one-week bake of the oven region helped

to recover the standard operating pressure. To prevent ice formation and the potential failure of

the TEC, we let dry nitrogen flow into the TEC region, which is isolated from air by plastic stretch
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Figure 4.3: Schematic of Rb-K oven. The Rb an K reservoirs are heated up to T1,2 ⇡ 400 K to
generate an atomic beam of each species. The nozzles are kept at T2,4 ⇡ 430 − 490 K to avoid
condensation of atoms in the nozzle and subsequent reduction of the atomic flux. The collimation
of the atomic beam is achieved as the atoms travel through the pipeline. A copper cold cup, kept
at ⇡−40 ◦C by a water chilled thermoelectric cooler (TEC) collects the excess of atoms that do
not reach the 6-way cross region are collected in . A thermal brake isolates the chamber from the
hight temperature reservoirs. An in-vacuum shutter prevents the atomic beam to reach the main
experimental chamber during and after BEC preparation.

wrapping and thermal insulation tape. We also pay attention to the formation of plugs inside the

cooling water system; in particular, the heat exchanger can accumulate an important amount of

whitish sediments in its interior, but it is relatively easy to open it and clean it.

4.3.2 Main experimental chamber. The main chamber is made of stainless steel and has a

total of 24 viewports: two 14 cm diameter recessed windows located at the top and bottom of

the chamber; six viewports with diameter d=7 cm located around the chamber, normal to the

xy plane; and 16 mini-conflat windows d=3.8 cm distributed around the chamber. Two of the

smallest viewports are dedicated to diagnostics of the MOT. This chamber is pumped by a 55 Ls−1

Varian StarCell ion pump; its ion gauge reads zero current (µA scale), which corresponds to a

significantly reduced pressure from that at the oven.

4.3.3 General advice when working with alkalis and UHV. Metallic K and Rb come in

partially full glass ampules. Due to their reactive properties, it is highly recommended to minimize

their handling outside their containers. To load the metals in our apparatus, we carefully break one

ampule at a time using a pair of pliers; then we get rid of most of the glass and throw the (now

open and broken) residual glass with the metal into each reservoir; finally we closed the reservoirs.

It is important to note that K comes embedded in an Ar atmosphere. Ar is a noble gas that

can potentially damage an ion pump (it degrades the performance of the pump by erosion of the
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Figure 4.4: Temperature, pressure and time scales for baking. a. Temperatures as monitored with a
thermocouple reader using K-type thermocouples at the ion pump that is closest to the cold cup and
at the gate valve. b. The pressures were measured with both an ion gauge and an RGA. The typical
ion current when the BEC machine is not cycling (ovens o↵, oven shutter closed) is⇡ 2⇥10−7 A
(dashed line) and rises by an order of magnitude when BECs are produced.

chemical layers which cover the cathode) and we want to have as little as possible of it in the

system. By opening the glass cell containing K most of the Ar has been released, but it is important

not to turn on any ion pumps for a long period of time until high vacuum (where the presence of

Ar is minimum and it is safe for the pumps to operate) has been reached.

4.3.4 Baking. Raising the temperature of the whole system (baking) is a standard procedure to

allow the release of additional vapors (H, and maybe CO and CO2) residing on and in its interior

walls, i.e. outgassing [68]. Outgassing, and not volume gas removal, determines the final pressure of

the high vacuum region.

Prior to and during the bake we pump the system with a Pfeiffer Vacuum HiCube 80 Eco

turbo pump (TP). The driving power of the TP typically starts around 20 W, and should decrease

to 15 W in the absence of leaks, when high vacuum is reached. The use of a residual gas analyzer

(RGA) is recommended to obtain the mass spectrum of the substances pumped out from the system

as well as an estimate of the pressure.

4.3.4.1 Standard baking procedure in our apparatus. Below I describe a standard procedure for

the baking of the oven region in our apparatus. Depending on the starting pressure (if we are just

baking for maintenance or if the system was recently vented), the baking time ranges from a couple

of days to several weeks.

1. Prior to baking get: (i.) as many type-K thermocouples2 as temperatures you want to monitor;

2Type-K thermocouples (chromel-alumel) are the standard type used in our laboratory.
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(ii.) enough heating elements (heat tapes, heat bars, ...); (iii.) enough variacs; (iv.) aluminum foil;

(v.) copper wire. It is also important to check the maximum allowable baking temperature of the

di↵erent parts of the experiment (chamber windows, bellows, magnets of the ion pumps3,...).

2. Install the thermocouples and firmly secure their position with the copper wire if needed.

3. Install the heating elements and fully wrap the system with aluminum foil. Avoid crossing

the heat tape on itself, since this would create an extremely hot spot and can cause damage not

only to the heat tape but also to other vulnerable parts in the experiment. The hose connected to

the TP should also be wrapped in aluminum foil; use the copper wire to secure the wrapping if

needed. Connect each heating element to a variac.

4. Gradually heat the system by turning ON the variacs to 20-30%; take care that the ion pumps

are heated at a rate less that 40 ◦C/hr.

5. Remove the TEC from the copper connector to the cold-plate. Install a heating element to

the cold-plate connector and wrap it in aluminum foil, then heat the cold-plate. When copper is

heated it oxidizes and this a↵ects its thermal conductance later on. Once we are done with baking,

we polish the surface of the copper connector to the cold-plate to optimize its performance.

6. Continue increasing the amount of power into the heating elements, using the variacs. In the

Oct-2010 Rb-K oven bake, the ion pumps were heated up to 200 ◦C and the gate valve up to 100 ◦C.

Due to the increased temperature of the surroundings, the connection from the slower to the oven

region reached 35 ◦C; while the oven shutter almost matched the temperature of the intentionally

heated cold cup (115 ◦C). Even when there is a large temperature gradient across the system during

baking, we have not observed any obvious adverse e↵ects.

7. Monitor the pressure using the ion gauges and a RGA as shown in Fig. 4.4b. When the

pressure has reached a sufficiently reduced steady value as a result of pumping with the TP, turn

on the ion pumps and start the cool-down by turning o↵ the variacs.

4.4 Cooling Lasers

The laser cooling mechanism in our laboratory relies on a pair of laser systems, the MOT laser

and the repump laser, beat-note locked to a primary master laser, which in turn is directly locked

to a specific frequency in the atomic spectrum of Rb using a lock-in amplifier and Doppler-free

saturated absorption spectroscopy [54].

4.4.1 Overview of cooling and repumping frequencies. Figure 4.5 shows the energy levels,

including the hyperfine structure for the 52S1/2!52P3/2 transition in 87Rb; the relevant transitions

3The maximum baking temperature for our ion pump is 350 ◦C with their magnets installed. It is possible to
induce the demagnetization of the permanent magnets of the pumps if we exceed their temperature limits.
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Schematic of cooling and repumping frequencies with respect to the D2 line
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Figure 4.5: 87Rb D2-line energy levels with the relative frequencies of the cooling lasers. The MOT,
the slower and the Imaging lasers come from the same source, a Toptica TA-100; this laser is
typically beat-note locked above the master frequency within the interval 50 MHz  ⌫MOT beat−note 
147 MHz. The repump and the slower repump lasers both come from a Toptica DL-100, whose
locking frequency is typically 64 ⇥102 MHz  ⌫repump beat−note  64⇥106 MHz below the master
frequency. This diagram is not to scale.
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Table 4.4: Frequencies of the cooling lasers during MOT capture.

Laser Frequency shift ⌫ 0 [MHz] Reference transition Detuning [MHz]
Master -80.567 F =2!F 0=3 -213.892
MOT 59.321 F =2!F 0=3 -7.571
Slower -81.577 F =2!F 0=3 -148.469
Imaging 67.568 F =2!F 0=3 0.676
Repump 82.361 F =1!F 0=2 -1.321
Slower repump -81.46 F =1!F 0=1 -8.195

for laser cooling are the cooling transition F =2!F 0 =3 and the repumping transition F =1!
F 0 =2.

Most laser beams in our apparatus are frequency shifted by ⌫ 0, using acoustic-optic modulators

(AOM), with 60 ⌫ 0  110 MHz. The relative frequencies of the MOT and the repump lasers are

given by the linear combination of various frequency shifts, i.e.

⌫Laser = ⌫master + ⌫ 0 + ⌫beat−note. (4.1)

where ⌫ 0 is the frequency shift from an AOM; Table 4.4 indicates the cooling and repumping

frequencies for typical operating beat-note frequencies:

⌫MOT beat−note=147 MHz and ⌫repump beat−note=64⇥104.66 MHz=6.698 GHz. (4.2)

Most of the lasers in the laboratory operate free of intensity stabilization; we rely on the stability

provided by the AOMs, which are allowed to warm up previous to our experiments, and are kept

on during most of the experimental cycle to prevent temperature drifts. We maximize the time the

AOMs are on at a constant rf-level with the aid of shutters (see Figs. 4.6, 4.8 and 4.13); we turn

o↵ the AOMs for some ms (the time scale is set by the shutter dynamics) while the shutters open

to prevent light leaking on the atoms.

4.4.2 The master laser. The master laser beam comes from a New Focus VORTEX 6013 diode

laser (Fig. 4.6a), with tunable wavelength (frequency ⌫) ranging from 710 to 800 nm. It is frequency

locked 80.567 MHz below the F = 2! F 0 = 20 − 30 crossover of the D2 line in 87Rb by means of

saturated absorption spectroscopy. The repump and cooling lasers are frequency locked with respect

to the frequency of the master laser, via beat-note lock mechanisms described below.

The main master laser beam is split into two beams, the pump and the probe (Fig. 4.6a). The

pump is double passed through an ISOMET 1205C-2 acousto optic modulator (AOM) driven at
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f0=80.567 MHz using an IntraAction DE-820MT deflector driver4. Both beams counter-propagate

along a cell containing Rb vapor, and their frequency di↵erence ∆f =2f0 allows velocity-selective

two-photon interactions with a group of moving atoms whose Doppler shift corresponds to the AOM

driving frequency ⌫Doppler=f0.

4.4.2.1 Frequency locking mechanism for the master laser. Figure 4.7 shows the locking schematic

connections of the master laser. We measure the absorption of probe light by Rb atoms using a

photodiode (PD). In order to observe the atomic spectrum, we modulate the frequency ⌫ of the

master laser in a wide range (∆λ⇡ 10 nm) by slowly modulating the voltage of its piezo-actuator

with a sawtooth signal (fslow = 1 Hz, Vslow = 2Vpp). We also introduce a fast error signal via the

modulation of the frequency of the probe beam at a reference rate fref within the values

⌫ + 2f0 −∆⌫  ⌫probe  ⌫ + 2f0 +∆⌫,

where ∆⌫ < 20 MHz. We use the built in reference of the lock-in amplifier to generate an fref =

100.63 kHz signal with amplitude Vref=2 V. We extract the error by analyzing the probe signal

as read from the PD with an SRS SR810-DSP lock-in amplifier. We send the extracted error to

our home-built PID controller to get a correction, which is fed-back into the current modulation

input of the laser. We focus on the absorption spectrum and the error signal for locking recorded

in a Tektronix TDS 220 oscilloscope. The features shown in the error signal correspond to the

F = 2 ! F 0 set of absorption lines and crossover lines of 87Rb. We lock the master laser at a

frequency f0 above the F =2!F 0=2−3 crossover of 87Rb (labeled b. in Fig. 4.7).

The typical amplitude of the error signal at the line of interest (Fig. 4.7b.) is 2 V peak-peak,

which can be modified by changing the relative powers in the probe and the pump beams using

the λ/2 wave plate behind the prism pair. The time scale to resolve the absorption features in the

oscilloscope (Fig. 4.7) is around 25 ms/div, given the time constants of the system. When locked,

the error signal remains close to its zero crossing value (25.8 mV) and the spectrum stays at the

value corresponding to the absorption at the locking point 161 mV. A sample of the master laser

is sent via optical fiber through a fiber network to be combined with repump and MOT light for

frequency locking as described below.

4.4.3 The repump laser. The repump laser is a Toptica DL-100 operated at ⇠ 780.231 nm

whose 60 mW output power is divided, as shown in Figure 4.6b, into the slower repump, used both

at the initial cooling stage and prior to imaging, and the repump used at the MOT stage. Our MOT

4Double passing guarantees preserving the alignment when we modulate the probe frequency, as required in our
locking scheme.



68

Lock-In amplifier

In
Out

Sine out

Function generator

FM In

Probe AOM driver

Err.In
Err.Mod.FastSlow

IN

Current
MOD

Frequency
MOD

Out

Pr
ob

e 
in

te
ns

ity

Frequency [a.u.]

Error M
od.

a. b.

c. d. e.

Trigger

Laser
controller

PID controller

To Master

Oscilloscope

Sat. spec. PD signal

fref

fslow

fslow

Figure 4.7: Master laser locking scheme. We sample the spectrum of natural Rb by slowly sweeping
the piezo-actuator of the master laser at fslow with a saw-tooth signal. A photodiode detects the
saturation spectroscopy signal, and sends it to a lock-in amplifier and an oscilloscope. We introduce
a fast error signal via the modulation of the frequency of the probe beam at rate fref . We extract the
induced error using the lock-in amplifier and a home-built PID controller, and obtain the correction
signal to be fed-back into the laser controller. The features in the error signal, detected in the
oscilloscope, correspond to: (a.) 2!30 transition; (b.) 2!20−30 crossover; (c.) 2!10−30 crossover;
(d.) 2!20 transition and (e.) 2!10−20 crossover.

is repumped by two beams counter-propagating along ex+ey; they are sent to the atoms by mirrors

M2 and M4, and their typical powers are 7-13 mW.

4.4.3.1 Frequency locking mechanism for the repump laser. Figure 4.6c describes the frequency

locking scheme for the repump laser. A small sample of light from the master laser is combined in

a fiber network with a sample of repump light to create a beat-note5. The combined light is sent to

the optical input of a Lab-Buddy DSC-R402 optical receiver, whose output rf-signal is amplified by

two consecutive MiniCircuits ZJL-7G (A1, A2) and sent to an AD EVAL-ADF4007EBZ1 evaluation

board (EB).

The reference signal for the EB comes from a Novatech 409A synthesizer at 104.66 MHz; it is

pre-amplified by a MiniCircuits ZX60-4016E-S+ (A3); frequency doubled by MiniCircuits FD-2

(FD); and finally filtered by MiniCircuits BHP-150 (HP). The reference frequency is later multi-

plied by 64 in the EB, to get the desired ⇡ 6.8 GHz; for monitoring purposes, a small sample of the

reference signal is probed using a Startek ATH-15 rf-counter. The output of the EB goes through

a pair of low pass filters (RC=1 ms) to the PID regulator panel (Toptica PID-110) of the repump

laser.

5Two beat-notes are actually generated, one at the sum and one at the di↵erence of the optical frequencies of the
lasers in question. We focus on the signal at the frequency di↵erence.
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Table 4.5: Typical operating values for the cooling lasers.

Characteristic Master Repump MOT
Make New Focus Toptica Toptica

Model Vortex 6013 DL-100 TA-100

Wavelength 780.2 nm 780.231 nm 780.245 nm
Diode current 90.2 mA 123 mA 79 mA
Diode temperature - 17.9 ◦C 17.9 ◦C
Amplifier current - - 151 mA
Amplifier temperature - - 20.1 ◦C
Measured power 2.7 mW 60 mW 264 mW
PD signal 0.412 V 0.126 V 0.492 V
Amplitude of mode in cavity 7 mV 15 mV 17.6 mV

4.4.4 The MOT laser. The MOT laser is a Toptica TA-100 operated at ⇠780.245 nm. Major

surgery to the MOT laser has involved three replacements of its diode (a Toptica LD-0780-0200-1

has been operating from July 2008); a replacement of the circuit board in the back of the laser control

rack and the replacement of its original piezoelectric actuator by a Thorlabs AE0203D08F (both in

May 2010). The symptoms for the last failure were the small resistance across the piezo as well as

multi-moding and severe noise in the laser; the piezo probably died because we drove it close to its

maximum voltage of 140V.

The output of the TA peaks at 500 mW under typical operating conditions, but probably due to

age and non-optimum injection of the TA it can be as low as 250 mW and still produce an acceptable

MOT. The output of the TA is distributed into four main laser beams (MOT, slower, xy Imaging

and xz Imaging), which are sent to the main experimental apparatus through polarization main-

taining optical fibers as shown in Fig. 4.8. In particular, the MOT optical fiber is connected to a

Canadian Instrumentation & Research Ltd. fiber splitter, where the beam is divided into ten

optical fibers. Six of them are the MOT beams with 10 mW per beam; another is used for intensity

monitoring purposes.

To minimize light leakages into the experiment, we use Uniblitz mechanical shutters to block

the laser beams; these shutters are mechanically isolated from the MOT laser setup by means of

vibration damping mounts.

4.4.4.1 Frequency locking mechanism for the MOT laser. In contrast with the optical-fiber-based

locking-scheme for the repump laser; the frequency locking mechanism for the MOT laser is setup

in free space. A sample of the master laser is spatially overlapped to the optical path of the test

beam coming from the back of the MOT laser. The interference of the linearly polarized laser beams

creates a beat-note which is detected by a Thorlabs DET-110 ultrafast photodiode (Fig. 4.8a).
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Table 4.6: Measured power in cooling beams at MOT stage.

Laser beam Power into fiber [mW] PD signal [V]
Master 1.9 0.412
Repump 20.6 0.123
Slower repump 11 0.059
MOT 133 0.403
Slower 45 0.862
xy Imaging 2.14 -
xz Imaging 1.5 -

An schematic of the frequency locking electronics is shown in Figure 4.8b. The beat-note is

filtered by a MiniCircuits SHP-25 high pass filter, and amplified using a MiniCircuits ZKL-1R5

coaxial amplifier. For monitoring purposes, a small sample (< 5%) of the signal is probed in a

Startek ATH-15 rf-counter; the signal is further processed into a home-built frequency to voltage

converter and sent into a Precision photonics LB-1005 servo controller. The reference voltage

comes from the computer control command MOT detuning (Dev1-AO3). The error signal from the

servo controller is fed-back into the FET current control in the back of the MOT laser.

4.4.5 Monitoring the mode of the cooling lasers. We monitor the mode of the cooling lasers

with a Coherent 33-6255-001 Fabry-Perot cavity in combination with a Leoni M-1100623 eight-

channel optical fiber switch, to which optical fibers carrying a sample of the laser of interest are

connected. The master and repump combined signal, from the fiber network generating the beat-

note for the repump locking, are connected to CH-0 and the MOT diagnostic fiber is connected

to CH-7. An advantage of the fiber switch is that it suppresses the fiber plugging/unplugging

process associated with monitoring various lasers at the input of our Fabry-Perot setup (which is

both time consuming and potentially harmful for the fibers). The output of the cavity is sent into

a Tektronix TDS 220 oscilloscope to visualize the mode of the laser. Table 4.5 indicates typical

values for the amplitude of the signal in the cavity when the lasers are single mode.

4.4.6 Warm-up process and daily diagnostics. The warm-up time in our experiment depends

largely on the time it takes for the ovens to reach their final temperature (⇡ 100 ◦C from room

temperature) and for the cooling lasers to warm up.

Our cooling lasers have been operating without interruption over the course of about 5 years;

every night we only turn o↵ the current to the amplifier in the MOT laser. Only on exceptional

occasions, e.g. when a power outage or an air conditioning outage is announced, do we fully turn

o↵ the diode lasers. The MOT laser takes a considerably amount of time to warm up (⇡2 hr) and

output its highest power. We have observed that the transition from transient to fully warmed up
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is sharp, i.e. the laser will output low power (about 50% of the optimum power) and suddenly jump

close to its final power after ⇡1.5 hr from turning on the amplifier current.

We monitor the power of various laser beams using home-built low noise photodetectors (PD)

and several readout boxes. A diagnostic to ensure a good performance of the BEC machine consists

on preparing a MOT (using ManualControls.vi in Rubidium-C) and making sure the PD readouts

are similar or better than with those given in Table 4.6.

Another important diagnostic is the MOT fluorescence, we measure it by focusing the MOT

fluorescence light on a Thorlabs SM1PD1A PD using a 75 mm lens attached to one of the 16 mini-

conflat ports of the vacuum chamber. The PD signal is sent to a SR570 low noise current preamplifier

with a sensitivity of 1 µA/V. At the settings indicated on Table 4.6, the MOT fluorescence is around

1.7 V. The calibration of our PD gives ⇡ 8.9⇥107 atoms/V.

4.4.7 The MOT and the motorized flipper mirrors. Optical access in our experiment is

achieved by having dynamic elements which get out of the way to leave the vacuum chamber

viewports unobstructed for the dipole trap and other probe beams to interact with the atoms. This

is particularly the case for the six mirror mounts holding the protected gold mirrors that send

the MOT beams into the chamber. Five of the six MOT mirrors are Edmund Optics NT32-086

elliptical mirrors and one is a Thorlabs MRA05-M01 right angle prism mirror (located below the

chamber). All of them are installed on New Focus 8892-K motorized flipper mounts as indicated

in Fig. 4.1 and Fig. 4.2; and are labeled M1-M4 (xy plane mirrors), Mtop and Mbottom.

The MOT flippers realize about 1200 cycles/day for a typical experimental cycle time of about

30 s, and a ⇡ 10 hr/day operation of the BEC-machine. When optimally operating, the flipper

mirrors o↵er excellent repeatability of the MOT settings. Stable and precise performance of the

flippers means that the MOT alignment, and the MOT fluorescence signal, is preserved after the

flippers are periodically operated. A flipper failure is typically diagnosed by looking at the MOT

alignment; the beam reflected by a damaged flipper, when inspected at its exiting port deviates

with respect to its counter-propagating beam from a few mm up to 1.5 cm. Another diagnostic for

a failure is a low MOT fluorescence level; each flipper can individually be tested by looking at the

maximum achieved fluorescence value after a single flipper cycle. We have observed an up to 50%

loss in MOT fluorescence associated with a single damaged flipper mirror.

The most probable cause of failure of the flippers, and consequent MOT instability, is the

wearing-out of their springs; this might be associated to the fact that they carry relatively big

optics. We have learned that it is an almost painless experience to replace their springs in-situ vs

replacing the whole flipper by a new one and spending more time on aligning the a↵ected MOT

beam. In other occasions, we have observed the rupture of the flipping arm, which does require the

full flipper mount to be replaced. To be specific: Mbottom has not reported any unstable behavior over
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2 years; Mtop holds a MOT mirror from the top, this makes it a potential source of instability to be

considered (this was the case a couple of years ago until the flipper was replaced); M4 has exhibited

unstable behavior within months, a problem that was fixed with minor surgery by replacing its

spring in-situ; all other mirrors have rarely failed. An improved approach to having dynamical

elements is the use of non-rotating, pneumatic mounts as implemented in the Rb-BEC laboratory

of Trey Porto at NIST.

4.4.7.1 MOT alignment. The alignment the MOT beams relies on cage systems built up from the

Thorlabs 30mm cage system line of products, and anchored to the main experimental chamber. Prior

to aligning the beams we install Thorlabs CPA1 alignment plates, next to the final lenses along the

path of the MOT beams to the chamber, to set the size of the beams across the chamber at 1 mm

(the diameter of the MOT beams at the atoms is about 1 cm). MOT alignment is achieved by

adjusting the orientation of the flipper mirrors using the set screws located below them; this is a

task that requires lots of care and patience in particular when fastening the set screws. Preserving

the achieved alignment is easier if the lock nuts of the flipper are first finger-tightened, while

monitoring the overlapping beams, and then a nutdriver is used to firmly set them. It is hard but

not impossible to reach some setting screws, e.g. in the case of M1 they are easily reached if the

flipper is in its open position.

4.5 Magnetic fields

Static magnetic fields are versatile tools which allow the control not only of the energy splitting

of the hyperfine sub-levels of the atom (Zeeman e↵ect), but also of their dynamics (magnetic forces

and trapping). On the other hand, time varying fields o↵er control on the atomic internal degrees

of freedom such as spin (rf-induced magnetic transitions).

4.5.1 Zeeman slower. The Zeeman slower [69] uses a single layer, zero-field crossing design [70]

where two copper solenoids –with an inhomogeneous linear density of coils– generate the positive

and negative contributions to the total magnetic field. We refer to these coils as the slower and the

Reverse slower. An extra compensating coil, located in the opposite port of the main vacuum cham-

ber, guarantees that the magnetic field is cancelled at the atoms. The Zeeman solenoids wind around

a d=7.6 cm aluminum enclosure surrounding the 69 cm conflat vacuum tube of the slower. Its zero-

field design helps minimize the dissipation of Joule heating, which is further mitigated by flowing

cooled water inside through the coils. Two independent Kepco ATE 6-100M unipolar power supplies

generate the Zeeman slower currents. During the MOT capture the typical operating currents in

the slower and Reverse slower are 72 A and 42 A, respectively.

Two laser beams with mutually orthogonal circular polarization, the slower and the slower

repump, propagate along ex inside the slower tube. As discussed in section 3.6.1 the Zeeman slower
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provides a suitable field amplitude to compensate the Doppler e↵ect experienced by moving atoms

traveling toward the main chamber; as well as it defines the quantization axis to achieve laser

cooling.

4.5.2 Bias coils. Uniform bias fields are generated with three pairs of mutually orthogonal

Helmholtz-coils oriented along ex ± ey (see Fig. 4.1 for the orientation of the laboratory coordi-

nate system) and ez. All coils are wound from 14 AWG copper wire. The coils in the xy-plane have

30 turns each and a diameter of 7 cm; they surround the Thorlabs 30mm cage system anchored to

the main experimental chamber. The z-coils have 2 turns each; they are located on the surface of

the top and bottom chamber windows, and their ⇡ 14 cm diameter prevents them from blocking

the path for the MOT and xy imaging.

Three independent Kepco BOP 20-20M bipolar power supplies provide the currents to generate

the bias fields. The currents are stabilized by a PI feedback circuit described below and their time

response is about 1 ms; the generated magnetic field is calibrated as a function of current via

rf-spectroscopy6, see Table 4.7.

4.5.2.1 Feshbach coils. The Feshbach coils have 36 turns each and an inner diameter of⇡30 cm. They

are located above and below the main experimental chamber. Their current is provided by a

Kepco BOP 20-20M bipolar power supply, PI locked as the other bias fields. Their time response is

on the order of 200 ms, so we rely on these supplies to set large background fields along ez, while we

fine control the field with the faster bias coils. Their rf-spectroscopy calibration gives 2.26 MHz/A.

Table 4.7: Calibration of bias coils.

Field direction Calibration [MHz/A]
ex − ey 0.179
ex + ey 0.189

ez 0.116

4.5.3 Quadrupole coils. The quadrupole coils are mounted in the recessed windows of the

main chamber, and they have 24 turns each. The current for the quadruple trap is generated by

an Agilent 6690A power supply, which is operated at 25 A when loading the MOT, and up to

320 A at the compression stage in the experimental sequence for BEC production. The magnetic

field gradient generated by the quadrupole coils is about 4.8 mT m−1A−1 along ez.

On February 2012 we moved on from a non-feedback/IGBT-switch based control, to a combina-

tion of MOSFETs and PI feedback control of the quadruple current. This improvement has allowed

6rf-spectroscopy consists on tracking the resonance condition of an rf-dressed state at various fixed frequencies ⌫rf
with current-controled adiabatic rapid passage. We explore both the positive and the negative current regimes.
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Figure 4.9: Schematic of rf-amplifier and antennae. A programmable synthesizer generates an rf-
signal, whose amplitude is further controlled by an AO when both signals are combined in a mixer;
a DO channel controls an rf-switch to allow or prevent the signal to pass to the experiment. The
signal is amplified and then sent to either of the available antennae (a-b).

the faster switching of the fields (from 100 ms to a few µs), which is of particular importance for the

recent experiments with K. The PI feedback circuit has some additions to the one used to control

the bias fields, described below.

4.5.4 rf-antennae. We broadcast linearly polarized rf-fields along ex or ez using the antennae

depicted in Figure 4.9a,b. A Novatech 409A programmable frequency synthesizer serves as the

frequency source, and an AO is used to adjust the amplitude of the rf-field when combined the signal

from the synthesizer in a MiniCircuits ZAD-6 mixer. A MiniCircuits ZYSWA-2-50DR coaxial

switch controls the flow of rf into the experiment; the switch is driven with a DO from the computer

controls. When the switch is closed, the rf-signal passes through a Delta RF 4415 LA10-1-525-40

amplifier7. To sample the rf-field we send the returning signal through a total of three high power

attenuators (two JFW 50FHC-020-20, and a MiniCircuits BW-S5W5-5W) and monitor the signal in

a Tektronix TDS 2014B oscilloscope.

The z-antenna is made of a pair of single-loop coils, located on the top and bottom recessed

windows of the main chamber. The x-antenna was installed on February 2009, with the purpose to

create a linearly polarized rf-field along ex; it is made of a pair of three-loop 1 inch coils (bypassed

with 50 pF capacitors) located on the top window of the chamber and aligned along ex with their

centers 5 cm apart from each other; the coils were slightly modified from circular to elliptical

to prevent them from blocking the MOT and imaging beams. Both antennae are schematically

7This amplifier requires a 25 V power supply and a 75 W heat sink. We additionally set up a fan to provide airflow
and maintain the amplifier under normal operating conditions.
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Table 4.8: x-antenna calibration.

Evaporation Mixer [V] Coupling stregth [kHz]
0.6 11.4504
0.105 2.0185
0.055 1.08265

displayed in Fig. 4.9a,b; and we have successfully performed rf-evaporation in the magnetic trap

with similar results using either of them.

We typically characterize the rf-coupling strength by measuring Rabi flopping of the three-level

system constituted by the F =1 hyperfine sub-states of 87Rb. In such measurements, a uniform

bias field is set to define an appropriate quantization axis, as well as to Zeeman split the spin sub-

levels. A resonant pulse of rf-radiation illuminates the atoms for variable amounts of time; typically

ranging from 1 µs to 2 ms depending on the coupling strength. Due to saturation in the rf-amplifier,

the coupling strength has a non-linear behavior as a function of the rf-amplitude (controlled by the

Evaporation Mixer channel Dev2-AO5), see Table 4.8.

4.5.5 Stabilization of electrical currents. The bias current and the quadrupole current are

stabilized by independent PI feedback circuits, based on the schematic shown on Fig. 4.10. The

electrical current is sampled by a FW BELL CLSM-100LA current sensor and sent to the Feedback

input, where it is processed. An independent but identical sensor monitors the current in the ex-

periment; this signal is amplified by a BB INA103KP instrumentation amplifier, then sent through

a BB BUF634P high speed bu↵er to finally be detected on one of the Tektronix TDS 2014B oscillo-

scopes.

The control input corresponds to the AO driving the current (see Table 4.2); this is sent through

a resistor chosen to match the maximum output of the Hall sensor. An extra input is dedicated

for Fine control (its input resistance sets the resolution), in our experiments this is associated with

Dev3-AO3.

All inputs (Feedback, Control and Fine control) are sent to the inverting input of the operational

amplifier of the PI. The single diode and the diode bridge are not present in the PI feedback circuits

for the bias coils; although they are an important ingredient for the MOSFET-based control of the

quadrupole current, since they impose limits on the upper and lower voltages sent into the gates of

the MOSFETs. The o↵set voltage is also only used in the quadrupole current feedback.

The control signal is transferred through a bu↵er to either the computer control connection on

the front panel of the Kepco BOP 20-20M power supplies, or to the gate terminal in the MOSFET

bank (a total of 23 MOSFETs connected in parallel are used to control the quadrupole current). The
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Figure 4.10: Schematic of current stabilization circuit. Shown are the essential ingredients for the
PI feedback circuit used to stabilize the currents generating the bias and the quadrupole fields. The
single diode, the diode bridge and the o↵set voltage features are only present in the quadrupole
current control.
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Figure 4.11: Water cooling system. Water is pumped, from the source into the experiment and from
the experiment into the drain, by a pair of pumps located in the service corridor. We distribute
the cooling water to di↵erent sources of Joule heating: 1&7 slower and reverse slower solenoids;
2&8, 3&10 Feshbach coils; 4&9 quadrupole coils; and 5&6 bypass. Flowmeters labeled as 7, 9, 3
&10 form part of a water-flow based interlock which prevents some power supplies from operating,
unless a minimum water flow is reached.

drain of the MOSFETs is connected to the quadrupole coils and the other end of the coils is attached

to the positive output of the Agilent 6690A power supply; the source is connected to ground.

4.5.6 Water cooling system. All the major electrical components in our experiment (quadrupole

coils, slower solenoids and Feshbach coils) are made of insulated hollow copper tube. To dissipate

Joule heating we flow water from a circulating chilled water system through these elements; in the

case of the MOSFET bank, water cooled plates are in contact with the MOSFETs to dissipate

heat. Figure 4.11 shows part of the water cooling system8, which consists of a well designed network

in which water is distributed into each electrical component. Each branch in the network has an

independent valve which simplifies the task of repairing or modifying the system, since just local

draining is needed. Water is pumped from the source into the experiment and then back to the

drain by a pair of pumps. The di↵erential pressure between the source and the drain is about 14 bar

(200 psi) when the bypass valve is closed. A water-flow based interlock for the quadrupole trap and

the Zeeman slower current supplies prevents them from operating unless a minimum water flow

circulates through the experiment.

8The booster and return pumps, as well as the MOSFET bank, are located in the service corridor in the back of
the laboratory.
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Figure 4.12: Tunable aspect ratio of the optical dipole trap. Our crossed-beam optical dipole trap
o↵ers a dynamically tunable variety of geometries, here quantified as the aspect ratio of the trap. The
data set was measured from in-situ imaged BECs in the dipole trap described in Table 4.9.

4.6 Optical Dipole Trap

Optical dipole traps for neutral atoms are generated by the dipole interaction between the

electromagnetic radiation of a laser and the induced dipole moment in the atom. To minimize

scattering and achieve a conservative trapping potential, the laser detuning is maximized, as the

scattering losses scale inversely with the square of the detuning. Due to the linear scaling of the

trapping potentials with the intensity of the laser and inversely with the detuning from resonance

(see Sec. 3.5); far-detuned optical traps required significant power to operate.

The dipole trap is created at the intersection of two 1064 nm laser beams propagating along

ex±ey as indicated in Fig. 4.1. The lasers originate from the same IPG YDL-10-LP 10 W, multimode,

linearly polarized, fiber laser operated at 8W (typical current 2.3 A and temperature 27 ◦C).

The output of the fiber laser is passed trough a Thorlabs IO-5-1064-VHP optical isolator to

prevent back reflections and subsequently through a Crystal Technologies 3080-125 AOM. The

non-di↵racted order is dumped into a Thorlabs BT600 high power beam trap; while the first

di↵racted order is sent through a Crystal Technologies 3080-197 AOM. A Thorlabs BSF10-B

picks-o↵ a small sample of the di↵racted order entering the second AOM; this sample is sent into a

PDA10CS detector and subsequently into a Precision photonics LB-1005 servo controller to sta-

bilize the dipole trap overall power; the first AOM is referred to as the “power AOM”. The second

AOM splits the input beam to generate the dipole trap beams from its zeroth and first di↵racted

orders, it is referred to as the “split AOM” and it controls the relative power between the dipole

beams. At the stage of capture from the quadrupole trap we command full power to the 0th order

beam (⇡ 7 W), and later we redistribute the power in both beams when the quadrupole trap is

relaxed; at the BEC stage, each beam has about a few tens of mW.

We dedicate two AO channels to control the overall power and split of the dipole trap beams
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Table 4.9: Dimensions and trapping frequencies along dipole beams.

Laser beam w0V [µm] w0H [µm] Trap frequency along beam at
split = 0.2 V split = 0.4 V

0th order 98 150 26 Hz 37 Hz
1st order 34 118 47 Hz 32 Hz

(see Table 4.2). One of the AO channels amplitude modulates the split AOM, while the output of

the servo controller (referenced to the other AO channel) amplitude modulates the power AOM;

both AOMs are driven with 80 MHz IntraAction deflector drivers.

Table 4.9 gives the dimensions of the dipole beam at the atoms in the current configuration,

where w0V,H is the 1/e2 radius along the vertically or horizontally orthogonal direction to that of

propagation. As a measure of the versatility of our crossed dipole configuration, Figure 4.12 shows

the aspect ratio as a function of the split command; these were measured from in-situ imaged

BECs. The dipole beams can readily be resized to achieve a di↵erent trap geometry by assuming

Gaussian beam propagation and selecting the appropriate lenses.

A small value of the split command means that low power goes into the 1st order dipole beam;

thus stronger confinement is realized by the 0th order beam. This behavior is reflected in the

measured trapping frequencies indicated in Table 4.9; typical trapping frequencies along ez range

from 90 Hz to 120 Hz.

Due to its high power the 1064 nm laser is interlocked to the laser safety system in the laboratory;

also when the beams are not in use, they are reflected by a Thorlabs BB05-E03 dielectric mirror

attached to the lever arm of a hard-drive shutter; the dipole shutter requires hundreds of ms to

open due to the massive mirror it holds.

4.7 Raman and optical lattice lasers

Once a BEC is prepared, a series of experiments begin. We can probe the properties of the

BEC as well as engineer di↵erent Hamiltonians for the atoms in a BEC, by illuminating them with

lasers. This section describes the experimental setup dedicated to generate the laser beams to be

used in Raman processes and optical lattices in our experiments.

We operate a Coherent Verdi V-10 at 10 W to pump a Coherent MBR-110 Ti:Sapphire tunable

laser. The Ti:Sapph crystal is cooled to 18 ◦C using a recirculating water chiller, whose coolant is

a mixture of 80% distilled water and 20% ethylene glycol (300 mL is enough to fill the chiller

reservoir). The output power of the Ti:Sapph peaked at 1.13W, when operating at 810 nm during

2008 and 2009. We have observed decreased power (650 mW at 790 nm) in the past year. Both

values are below 50% of Coherent specifications for pumping at 10 W. Minimal maintenance based
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Figure 4.13: Schematic of the optical setup and power map of the Ti:Sapph laser. This configuration
corresponds to the optimal operation with LA and LB only. The power balance between LA + LB

and LC is adjusted using λ/2 wave plate after the optical isolator. Furhtermore, the power balance
between the LA and LB beams is controlled by the λ/2 before the AB shutter. Also see Fig. 4.22.
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Figure 4.14: AOM driver for Raman beams. A synthesizer sets the frequency to drive the AOM;
this signal is mixed with an AO to control its amplitude, and later sent to an rf-switch controlled
by a DO. The non-terminated output of the switch is amplified and directly drives the AOM.

on the alignment of the pump and the MBR cavity, as well as the cleaning of the optical elements of

the MBR has conserved but not improved the Ti:Sapph output power.

The Ti:Sapph is the source of three laser beams (LA, LB and LC) which are either used in

Raman processes or optical lattices. Figure 4.13 shows a schematic of the optical setup and a

typical distribution of power for optimal operation with LA and LB only. All three AOMs in this

setup are IntraAction ATM-801A2. In most of our experiments it suffices to use only a pair of

beams for which we have two identical rf-amplifiers to drive either pair of AOMs; if required the

additional AOM is driven by an 80 MHz IntraAction deflector driver.

Table 4.10: Typical power at the output of the Raman fibers vs AO command.

AOM command [V] RamanA [mW] RamanB [mW] PDA [mV] PDB [mV]
0 0.073 0.35 - 1.71

0.02 11.5 11.5 9.4 19
0.03 26.7 22.5 23.5 36.9
0.04 - 36.1 39.5 58.7
0.05 66.3 50.4 57 83.6
0.06 84.6 64.2 72.7 106
0.07 96.6 76.4 81.7 123
0.08 102 84 83.4 133
0.09 103 88.3 82.5 138
0.1 102 89.5 80.7 143

Figure. 4.14 shows an schematic of the amplifier. We generate an rf-signal in a frequency synthe-

sizer and combine it with DC signal from an AO channel using a MiniCircuits ZAD-3+ frequency

mixer to control its amplitude. The combined signal goes through a MiniCircuits ZYSWA-200-500R

switch (which is controlled by a DO) and subsequently through a MiniCircuits ZHL-1-2W ampli-

fier; the amplified signal directly drives the AOM. An Agilent 33250A frequency synthesizer sets

the driving frequency of AOM-A, while one of the programmable channels of the rf-evaporation

Novatech 409A synthesizer sets the driving frequency of AOM-B (both synthesizers are synchro-
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Table 4.11: Dimensions of Ti:Sapph beams.

Laser beam w0 [µm]
LA 195
LB 180
LC 188

nized using their 10 MHz external reference input/output ports). It is a standard practice to set

the Agilent 33250A frequency to 80 MHz, and modify the Novatech 409A frequency according to

our interests (optical lattice or Raman processes).

Table 4.10 gives a calibration of the power at the output of the fibers (on the experiment side) as

a function of the command AO voltage to the AOMs, for driving frequencies fA=72.5 MHz and fB=

87.5 MHz. Most powers in the experiment are measured using a Coherent Fieldmaster 33-0506

power-meter and its 1000 :1 attenuator. Additionally, the beams are permanently sampled at

the output ports (see Fig. 4.1) and monitored with independent photodiodes PDA and PDB (a

Thorlabs VT1 variable terminator set at 1 k⌦ was used at the input of the monitoring oscillo-

scope).

The first di↵racted orders from each AOM are injected into PMJ-3A3A-850-5/125 polarization

maintaining optical fibers with typical fiber coupling efficiency of 64%. The fiber for LB is slightly

di↵erent (PMJ-3A3A-633-4/125-3-6H) but we have not observed any negative side e↵ects due to it.

At their output port, each laser beam (LA, LB and LC) goes through a Thorlabs GL10-B po-

larizer (not shown in Fig. 4.1) to avoid undesired polarization components; and the polarization

can be rotated using a λ/2 wave plate after the polarizer. Finally, the dimensions of the Ti:Sapph

beams at the atoms are indicated in Table 4.11.

4.8 Imaging systems

Resonant absorption imaging is the fundamental method by which we probe the outcome of

our experiments on the atoms; it is also our primary source of data and is discussed in detail

in section 3.7. In this section I focus on the description of the two imaging systems used in our

experiment to probe the atoms in the orthogonal planes are xy and xz; Fig. 4.1 sets the coordinate

system of the laboratory.

The imaging beams originate from the MOT laser and have a 1/e2 radius of about 300 µm;

they are sent through polarization maintaining optical fibers to the BEC machine. Both probe

beam intensities are controlled by the same AO channel in Rubidium-C (see Table 4.2), switching

imaging directions might require an adjustment on the commands, due to e↵ects such as di↵erent
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fiber coupling efficiency or the use of di↵erent CCD sensors; also both cameras are triggered by the

same DO channel (see Table 4.3).

4.8.1 xy Imaging. The output of the fiber carrying the xy imaging beam sits at the top of the

main experiment, about 60 cm above the center of the main experimental chamber, and the xy-

probe beam propagates along −ez. Various modifications have occurred to the xy-imaging system: it

evolved from being a simple two-lens telescope, to be an e↵ective telescope composed of a pair of

two-lens assemblies, and finally to the current configuration: a combined telescope consisting of a

two-lens assembly in combination with a single lens. All these changes have been made in favor of

better resolution and increased magnification.

In the current configuration, the two-lens assembly sits immediately below the main experimental

chamber and has an e↵ective focal length of fe↵=83 mm. The xy-imaging beam passes through the

lens-assembly and hits a Thorlabs PFE20-M01 protected gold mirror at 45◦, which reflects it toward

ex, 8 cm above the optical table. A single lens f =500 mm is located at fe↵+f from the two-lens

assembly (see Fig. 4.2, the two-lens system along ez is not shown); the calculated magnification of

the system is in excellent agreement with the measured value of 6.02.

We image the atoms with a Princeton Instruments PIXIS 1024 camera operating in Kinetics

readout mode; this means that only a portion of the CCD is exposed and acquires data while the

rest stores it; this way the camera can acquire multiple subframes which are separated by a short

amount of time. Ideally we could set up a procedure (probably involving partial repumping) to

image the same BEC multiple times, since the time scales associated with the Kinetics readout

mode are on the order of µs. We use half of the available 1024⇥1024 camera pixels, preventing the

exposure of the other half by covering it with a razor blade; we are restricted to acquire frames

separated in time by about 40 ms, in order to avoid an undesired ‘scar-structure’ present in the

frames. In addition, we work in the “slow” readout mode (100 kHz) which results in a total readout

time of about 10.5 s.

Due to the long time involved in xy-imaging, we only acquire a background image at the be-

ginning of the day, and acquire an absorption image and an probe image during each experimental

cycle. The PIXIS camera is extremely sensitive to background light; we installed an absorptive

OD=1 filter at the input of the xy-imaging fiber in the MOT setup (Fig. 4.8) to minimize leakage

from the probe when pre-opening the probe shutter; additionally, the main experimental apparatus

is surrounded by black curtains (made of Thorlabs BK5) to minimize background leakage.

4.8.2 xz Imaging. The xz-imaging system consists of a pair of two-lens systems as indicated in

Fig. 4.1. The output port of the xz-probe beam sends the beam along −ez on the dipole trap side,

and a dichroic mirror directs it along −ey through the center of the chamber. The probe beam goes
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Figure 4.15: xz Imaging magnification. We measure the magnification of the xz−imaging system
by characterizing the center of mass motion of a BEC under free fall.

through a pair of two-lens systems9 which give an e↵ective magnification of 1.94, within 5% of its

expected value.

The atoms are imaged in the xz plane by a Thorlabs DC210 CCD camera (now discontinued)

with a total of 640⇥ 480 pixels. In the xz-imaging mode we take a background image in each

experimental cycle.

4.8.3 Measuring the magnification of an imaging system. To determine the magnification

of an imaging system, it is ideal to focus tiny objects and have a very good measure of their

separating distance. Depending on the imaging direction we measure the magnification either by

pulsing an optical lattice on a BEC and measuring the di↵racted orders, or by characterizing the

center of mass motion of a BEC in free fall.

4.8.3.1 Optical lattice pulsing. This method is useful to calibrate the magnification of both the xy

and the xz imaging directions. We prepare a dilute BEC, with an optical depth below 1, and set

up a pair of lasers from the Ti:Sapph (wavelength λ) to constructively interfere at the atoms and

create an optical lattice. By suddenly turning on the lattice on the atoms (in a few µs), we observe

matter wave di↵raction and measure the location of the di↵racted orders after a time of flight tTOF.

Using the orthogonal beams LA and LB, the natural units of momentum and energy are kL=p
2⇡/λ and EL = ~2k2

L/2m, where m is the atomic mass. The expected separation between the

di↵racted orders is ∆l = 2~kLtTOF/m.

We pulsed a 57EL-deep lattice for tpulse = 15 µs and observed the population of up to the

4th order of di↵raction. After a tTOF = 18.1 ms TOF and working at λ = 804.1 nm, we expect

9The first lens system is composed of an f1 = 200 mm and an f2 = 1000 mm lens, separated by 1.5 cm (fe↵ =
168.776 mm), and has an f -number of 3.32. The second lens system consists of an f3=750 mm and an f4=500 mm
lens, separated by 10.5 cm (fe↵ =327.511 mm). The probe beam goes from f1 to f4 as it exits the chamber.
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∆l = 148.48 µm. By comparing the measured the coordinates of the di↵raction orders to their

expected locations, we determined a magnification of 4.17; larger than expected by 4%.

4.8.3.2 BEC in free fall. This method is more suitable for characterizing the xz-imaging sys-

tem. We prepare a BEC and suddenly release it, to take an absorption image after a variable

time-of-flight (TOF). From a fit of its coordinates vs TOF, we get the acceleration of the BEC in

free fall, and compare it to the standard acceleration of gravity gn=9.806 m/s2 [58].

Under ideal conditions, when the vertical direction of the CCD is perfectly aligned with the

gravitational axis, the magnification is given by Mxz=M 0
xz(gz/gn), where M 0

xz=2.05 is the orig-

inal estimated magnification of the imaging system. If the camera is at an angle from verti-

cal, the movement is projected along ex, and the components of the acceleration are given by

gx = gn sin ✓ and gx=gn cos ✓ as seen in Fig. 4.15. From our measurements: gx=1.48(3)µm/ms2

and gz=9.15(9)µm/ms2, we obtain ✓ = 9.19◦ to be the angle from vertical; the magnification is

Mxz=M 0
xz(gz/gn cos ✓)=1.94.

4.9 Magnetic field cancellation

Due to the spinor nature of most of our experiments, magnetic field noise is an issue. In particular,

the 60 Hz oscillating field from the laboratory power-line represents the primary source of magnetic

field noise. This section describes standard techniques to diagnose and minimize 60 Hz magnetic

field noise in the laboratory, as well as to eliminate stray magnetic field gradients [stray uniform

magnetic fields can readily be cancelled by the bias coils (see section 4.5)].

4.9.1 Characterization of ambient noise. As a first approximation we characterize the ambi-

ent noise using a single axis MagneticSciences MC910 magnetic field sensor with peak sensitivity

of about 90 mV/mG at 60 Hz. The case of the sensor is a small cylindrical enclosure whose flat

base is normal to the sensor axis.

We install the detector as close as possible to the atoms. In particular, for measuring the field

noise along the vertical direction, we locate the sensor very close to the surface of the top window of

the vacuum chamber. A standard procedure is to turn o↵ most of the equipment in the laboratory

and gradually turn items on, while monitoring the measured signal. Typical measurements are

summarized in Table 4.12; the 6 mV level corresponds to 0.067 mG or to a Zeeman shift of about

47 Hz for 87Rb in F =1.

We have found that not only do the spatial location but also the spatial orientation matters for

noisy instruments; we optimize their orientation to minimize noise and keep them as far away as

possible from the main experiment.
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Table 4.12: Contribution of various instruments to ambient field noise at 60 Hz.

Instrument Signal [mV] Instrument Signal [mV]
Background 8.4 1064 AOM drivers
Ovens OFF 8.4 Verdi AOM driver 6
Room lights OFF 7.04 MOT drivers 6
Room lights back ON (central) 7.68 Supplies above experiment ON 6.48
Room lights back ON (all lab) 7.92 Hallway instruments:
Verdi Chiller OFF 7.92 KEPCOs OFF 7.92
IPG-1064 OFF 7.6 KEPCOs ON 6.5
ThermoCube (90 deg rotation) 6.16 Slower OFF (bias ON) 6.88
Computer monitors OFF 6 Booster pump OFF 6.88
CRT Monitors 6 Return pump OFF 4.4
PIXIS camera OFF 6 Bias OFF 5.28
Ti:Sapph OFF 6 Thermocouple reader OFF 5.28
Oscilloscopes OFF 6 rf-amplifier 5.28

4.9.2 Field noised cancellation. A second order approximation to tackle the issue of 60 Hz

noise is to measure the e↵ects on the atoms by monitoring the variations in the spin populations

of rf-dressed BECs, prepared nominally on resonance (to create a magnetic field dependent su-

perposition state of the three mF sublevels). We start with an mF =−1 BEC in the presence of

a uniform magnetic bias field providing a Zeeman splitting ⌫Z. We set an rf-dressing field with

strength ~⌦rf⇡2⇡⇥11 kHz and frequency ⌫rf=1.92 MHz; and define the detuning from rf-resonance

as ~δ= h(⌫rf−⌫Z). We perform adiabatic rapid passage to resonance, by ramping the bias field in

15 ms, subsequently trigger the remaining lines in the program in phase with the power-line signal,

and ramp the coupling strength to ~⌦rf⇡0.5EL in order to increase the sensitivity of the measure-

ment. Figure 4.16a illustrates that in the strong coupling regime (top), the spin populations are less

sensitive to changes in the magnetic field near resonance than they are in the weak coupling limit

(bottom).

We suddenly switch o↵ the rf-field and release the atoms from the optical trap. The atomic distri-

bution expands in TOF, during which a Stern-Gerlach field is briefly turned on to spatially separate

the spin components. Finally we absorption image the resulting spin distributions to measure the

fraction of atoms in mF =±1. We repeat this process for various hold times in the rf-dressed state

and obtain a measure of the noise signal (Fig. 4.16c.1). To correct for the power-line noise, we used

a function generator to synthesize a correction signal at the measured frequency fline=57.953 Hz,

which we introduced in a feed-forward configuration to the power supply generating the bias field.

The magnetic field noise is calculated as a detuning from the population imbalance between the

spin states |−1i and |+1i. From the statistics we find a standard deviation on the detuning ranging
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Figure 4.16: a. Spin populations in an rf-dressed state as a function of detuning. b. Experimental
sequence. c. Number of atoms in mF=+1 as a function of time: b1-c1. noise signal; b2-c2. trial
correction. We adjust the phase (b3-c3) and amplitude (b4-c4) of the correction to minimize noise.

from 110 to 590 Hz, depending on the direction of the magnetic field, as shown in Table 4.13.

The noise levels decrease for reduced coupling strengths ⌦rf , as expected since we prevent satu-

ration of the rf-amplifier. Under similar experimental conditions and similar background fields, The

field noise along ex − ey is smaller by a factor of ⇡ 5 than that along ez. The major di↵erence

between these configurations are the coils used to generate the magnetic fields.

Finally, we observe abrupt changes in the ambient fields any time the door leading to the service

corridor is open. This is due to the architecture of the laboratory: the two walls separating the

laboratory from its nearest neighboring laboratories consists of prefabricated gypsum core steel

wall panels; while the walls separating the laboratory from the service10 and pedestrian corridors

are made of gypsum wallboard and a special panel for rf-electromagnetic interference shielding [71].

4.9.3 Cancellation of stray gradients. In the absence of magnetic field gradients, a mixture

of F =1 spin states of 87Rb is spatially miscible [72], with spin mixing time is below 600 ms [73].

We prepared a balanced superposition of the spin states |mF=−1i in the large quadratic Zeeman

regime, using an rf-field as described in section 9.5.1 (no Raman). We characterized the spinor

dynamics by removing the rf and holding the atoms in our optical trap for a variable delay of up

10The equipment that generates most of acoustic and electric noise, such as power supplies and water pumps,
locates at the service corridor in the back of the laboratory.
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Table 4.13: Measured magnetic field noise in di↵erent directions.

Field direction ~⌦rf [EL] ∆δ [Hz] Vpp [mV]
z 2.49 590 < 3
z 1.56 150 < 3
y 2.46 120 5

x− y 1.76 110 -

to 600 ms. After a 30.1 ms TOF, during part of which a gradient along ex was applied, we imaged

the atoms and determined that the system is phase separated along the ey direction. We quantify

phase separation as the di↵erence between the spatial density distributions of each spin state [if the

spins were spatially mixed, their distributions would be identical (see Sec. 10.3.1)].

We use two pairs of “shim coils” located around an xy MOT viewport (identified by M1 to M4 in

Fig. 4.1) and wrapped around the main experimental chamber to set up the canceling gradient. The

pairs of coils M1-M3 and M2-M4 are set up in the anti-Hemlholtz configuration to generate a

quadrupole magnetic fields of the form

B13 = B0
13(−xrotx̂rot + 2yrotŷrot), (4.3)

and

B24 = B0
24(−2xrotx̂rot + yrotŷrot), (4.4)

in the rotated system defined by x̂rot = (ex − ey)/
p
2 and ŷrot = (ex + ey)/

p
2. We use two

Agilent E3611A power supplies to adjust the magnetic field gradients B0
13 and B0

24 to cancel the

stray gradients along ey, by looking at the shape of the density distributions of each spin state and

minimizing their di↵erences. Typical currents were set to I13 = −0.28 A and I24 = 0.35 A in each

supply.
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Figure 4.17: Picture of the optical setup for the dipole trap. a. Fiber laser; b. power AOM; c. split
AOM; d. dipole shutter; e-f. final lenses prior to vacuum chamber; g-h. retro-reflecting mirrors;
i. sample beam for intensity locking; j. beam dump; k. fiber launch for xz imaging. Also see Fig. 4.1.
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Figure 4.18: Picture of the optical setup for the master laser. a. Anamorphic prism pair; b. optical
isolator; c. master shutter; d. beam sample for beat-note lock; e. pump beam; f. rubidium cell;
g. saturation spectroscopy photodiode; h. double passing AOM; i. probe beam; j. master laser. Also
see Fig. 4.6a.
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Figure 4.19: Picture of the optical setup for the repump laser. a-c. Repump AOM, shutter and
optical fiber; d-f. slower repump AOM, shutter and optical fiber; h. beam splitter; i. beam sample
for beat-note lock; j. repump laser. Also see Fig. 4.6b.
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Figure 4.20: Picture of the optical setup for the MOT laser. a. MOT AOM; b. slower AOM;
c. imaging AOM; d-e. xy and xz imaging shutters; f-g. slower and MOT shutters; h. MOT laser.
Also see Fig. 4.8.
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Figure 4.21: Picture of the optical setup for the MOT beat-note lock. a. Test beam; b. master
beam for locking; c. photodiode for beat-note locking; d. sample beam for mode diagnostic. Also
see Fig. 4.8.
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Figure 4.22: Picture of the optical setup for the Raman lasers. a. Optical isolator; b. beams
splitter; c. periscope; d. Raman A and B shutter; e-f. Raman A AOM and optical fiber; g-h.
Raman B AOM and optical fiber; i-k. Raman C AOM, shutter and optical fiber; l. Fabry-Perot
cavity; m. sample beam to wavemeter; n. Ti:Sapph laser. Also see Fig. 4.13.
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Chapter 5

Artificial gauge fields for ultracold neutral atoms

Given the high degree of experimental control on ultracold atom systems, which makes them ideal

to realize quantum simulation of more complex systems, why do we need artificial gauge fields for

ultracold neutral atoms?

Current interesting research topics include: quantum Hall systems [23], the spin-Hall e↵ect [74,

75], topological insulators [12], p-wave superconductors [76] and Majorana fermions [13]. One appar-

ent limitation associated with atomic systems is its electrical-charge neutrality; the lack of a Lorentz

force prevents the observation of important quantum e↵ects. Phenomena such as the quantum Hall

e↵ect, the spin Hall e↵ect and exotic phenomena like topological insulators, would in principle be

inaccessible to cold atoms.

There are two ways to overcome this limitation: (a.) by inducing rotation of the cold gases [77]

and exploiting the mechanical equivalence between the Coriolis force and the Lorentz force; or

(b.) by designing suitable laser fields to induced artificial gauge potentials for cold atom systems [1].

There are distinct approximations to create light-induced artificial gauge fields, namely: (i.)

by designing suitable optical fields in which the center of mass motion of and slowly moving atom

reproduces that of a charged particle in an electromagnetic field [1]; (ii.) by directly imprinting a

Peierls phase on the atoms moving in a lattice potential, using laser assisted tunneling [78, 79]; and

(iii.) by modifying the bandstructure of atoms in driven optical potentials [80, 81].

This chapter gives an overview of the pioneering experiments with light-induced artificial gauge

fields realized at our group at NIST; with particular emphasis on the experimental techniques not

highlighted in the original publications (Table 5.1).

5.1 Basic review of gauge fields for charged particles

The goal of our experiments with neutral atoms is to engineer the Hamiltonian of a charged

particle in an electromagnetic field. We briefly review classical electrodynamics to establish the form

of the Hamiltonian to be implemented on neutral atoms.

Electromagnetism (EM) is a gauge theory where the electromagnetic field can be described

by vector and scalar potentials, A and φ, which are defined only up to a gauge choice. Spatial
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variations of the scalar potential contribute to the electric field; while the vector potential generates

both electric and magnetic fields varying in time and space, respectively

E = −rφ− @A

@t
, B = −r⇥A. (5.1)

The Hamiltonian for an electrically charged particle, of charge q and massm, under the influence

of an electromagnetic field can be expressed in terms of the gauge potentials φ and A as [51]

H =
1

2m
(pcan −

qA

c
)2 + qφ, (5.2)

where c is the speed of light in vacuum; and Hamilton’s equations lead to the equation of motion

of the charged particle, namely to the expression for the Lorentz force F=q(E+ v ⇥B).

The Hamiltonian from Eq. (5.2) is that of a free particle under the substitution pcan!pcan−qA,

where it is important to emphasize that in this replacement pcan is the canonical momentum, i.e.

the variable that is canonically conjugated to the position; in the presence of a vector potential,

the dispersion relation of a free particle changes from p2
can/2m to (pcan−qA)2/2m; this is the basic

idea to introduce the e↵ects of an electromagnetic field in the motion of a charge particle.

5.2 Artificial gauge fields for ultracold neutral atoms

I describe next the experimental method to implement a gauge term in the Hamiltonian of

trapped ultracold neutral atoms, which gives rise to e↵ective electric and magnetic fields. Our

approach is based on optically dressing an atomic sample with a pair of Raman beams to induce

an experimentally tunable dispersion relation of the form (pcan−A)2/2m⇤, where A represents an

artificial gauge field for ultracold neutral atoms and m⇤ is an e↵ective mass.

The induced potential A=(Ax,Ay,Az) is a vectorial quantity whose components, can be scalar

or even have a matrix form. In particular, the commutation relations between the components

Aj, j 2 {x, y, z} determine if the gauge field is Abelian or not, opening the possibility to other

realizations beyond EM.

We work with 87Rb BECs typically in the F =1 ground state manifold. The atoms are confined

in a spin-independent optical trap potential V (r), such that their Hamiltonian is given by Ĥ=

[~2k2/2m+ V (r)]⌦ 1̂, where p=~k is the momentum of the atoms, and 1̂ is the 3⇥3 unit matrix

acting on the F=1 spin space. It is clear that in order to implement an artificial gauge potential,

we have to modify the kinetic energy term in this Hamiltonian, and that this must be trough

a process by which we exchange momentum with the atoms such as to induce a shift of their

momentum dispersion relation. Raman transitions within the F =1 manifold are suitable to achieve

such Hamiltonian [4].
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Figure 5.1: Standard experimental setup and level diagram setup for implementing light-induced
artificial gauge fields on neutral atoms. a. A uniform bias field B0ey Zeeman splits the energy levels
in 87Rb’s F =1 manifold, while a pair of counter propagating Raman beams illuminates an mF =−1
BEC. c. The natural units for momentum and energy are set by the single photon recoil momentum
~kL=h/λ and the associated energy EL=~2k2

L/2m, acquired by a single atom due to its interaction
with a Raman laser.

5.2.1 Raman coupling scheme for an F=1 BEC. I now describe the Raman coupling scheme

used in our experiments to create artificial gauge fields for ultracold neutral atoms. I focus on the

origin of the coupling Hamiltonian both in real and in momentum space, relevant energy scales,

and the emergence of an artificial vector potential A.

5.2.1.1 The experimental setup, Zeeman energies and natural units. Figure 5.1 illustrates the basic

ingredients for the realization light-induced artificial gauge fields in our lab. An F=1 87Rb BEC

is prepared in an optical trap, and a uniform magnetic field B0ey breaks the degeneracy of the

hyperfine magnetic sublevels |mF =0,±1i. The energy splittings between these levels correspond to

the linear and quadratic Zeeman shifts1

~!Z=gFµBB0 ⇡ ±E⌥1, and ~|✏|=E0 − (E−1−E+1)/2; (5.3)

where gFµB =0.7 MHz/G for 87Rb in F =1, and typically |E−1|⇡ |E+1|� |E0|. A pair of Raman

lasers with wavelength λ illuminates the BEC, and couples the mF states with strength ⌦R. These

Raman lasers di↵er in frequency by ∆!L ⇡ !Z and we define the detuning from Raman resonance

as δ=!L−!Z .

A Raman transition involves a two-photon process where the atoms and the light exchange

momentum and energy, and is governed by energy-, momentum-, and angular-momentum- conser-

vation laws. The natural units to quantize momentum and energy are the ones associated with the

1The quadratic Zeeman shift is negative and, when expressed as a frequency in kHz, its amplitude for 87Rb in
the F =1 manifold is given by ✏/h= ✏

B

B

2, where: ✏

B

⇡ 7.1772⇥10−2 kHz/G2; B=!

Z

/(2⇡⇥0.7) is the magnetic
field in G; and !

Z

is expressed in MHz (see Sec. 3.8). In Chapters 5, 9 and 8 we adopt the convention to express the
quadratic as explicitly negative, i.e. as −~✏.
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Figure 5.2: Eigenenergies of the Raman dressed states as a function of quasimomentum kx. a. The
dotted curves correspond to free-particle dispersion relations of the bare spin-momentum states. The
solid, dashed and dot-dashed curves represent the eigenenergies of Ĥx at ~⌦R=10.5EL, ~✏=0.44EL
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where A is the vector potential. b. The spin-momentum composition of the lowest dressed state, at
~⌦R=10.5EL and ~✏=0.44EL, is shown as a function of detuning δ.

e↵ective amount of momentum ~kL acquired by an atom in a single photon absorption process,

these are determined as follows. Assume that the Raman beams propagate in arbitrary directions

defined by the unit vectors eA and eB; an atom that absorbs a photon from the beam A at !L

acquires momentum kL along its eA, and emits a photon into beam B at !L+∆!L thus recoiling

toward eB with momentum kL, the direction of momentum transfer is along2 eA−eB. The e↵ective

momentum transferred to the atom by a single beam, is its projection along the eA−eB direc-

tion. For Raman lasers intersecting at an angle ✓=arccos(eA · eB), the e↵ective recoil momentum

from a single-photon is kL = ⇡[λ cos(✓/2)]−1; and the corresponding scaled recoil energy acquired

by the atom of mass m in the absorption process is EL=~2k2
L/2m. Both quantities, kL and EL, set

the natural momentum and energy scales in the problem.

5.2.1.2 The Raman coupling Hamiltonian. Without loss of generality we establish our coordinate

system to make the direction of the Raman momentum transfer eA−eB to coincide with the ex

2The reverse process is also true, i.e. an atom that absorbs a photon from the beam B emits a photon in beam
A and recoils in direction of −(e

A

−e
B

). In Fig. 5.1a the total momentum transfer is ±2k
L

e
x

.
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axis, this way the Hamiltonian of the system can be written in the form:

Ĥ =
⇥
~2(k2

y + k2
z)/2m+ V (r)

⇤
⌦ 1̂ + Ĥx, (5.4)

where Ĥx is a 3⇥3 matrix that contains the kinetic energy term associated with the x-component of

the momentum kx=k ·ex, the interaction with the Raman field and the Zeeman energies defined in

Eq. (5.3). The origin of the Raman coupling Hamiltonian relies on the vector light-shift introduced

by the Raman beams. The electric field from each beam in Fig. 5.1a is

EA(r, t) = EA exp[ikLx− i!Lt]ey, and EB(r, t) = EB exp[−ikLx− i(!L +∆!L)t]ez; (5.5)

and the total field at the atoms is

E(x, t)=E0{exp[i(kLx− !Lt−∆!Lt)]ez + exp[i(−kLx− !Lt)]ey}, (5.6)

where I have assumed that both Raman fields have the same amplitude EA=EB=E0.

The vector light shift from the Raman beams, which is proportional to E⇤ ⇥ E, generates an

e↵ective Zeeman magnetic field along ex of the form

Be↵ / −E2
0 cos(2kLx+∆!t)ex, (5.7)

whose interaction with the e↵ective magnetic moment of the atoms, µ=gFmF F̂ [where F̂ is the F=1

angular momentum operator, (see Appendix A)], gives the interaction Hamiltonian ĤR=−µ ·Be↵ .

In the frame rotating at ∆!L, making the rotating wave approximation (RWA), and expressing

the coupling Hamiltonian in the basis of bare spin states {|− 1i, |0i, |+ 1i}, we obtain

ĤR/~ =

0
B@

0 (⌦R/2)e
i2k

L

x 0

(⌦R/2)e
−i2k

L

x 0 (⌦R/2)e
i2k

L

x

0 (⌦R/2)e
−i2k

L

x 0

1
CA , (5.8)

where ⌦R is the Rabi frequency that characterizes the strength of the coupling field and δ=∆!L−!Z

is the detuning from Raman resonance.

5.2.1.3 The Raman coupling Hamiltonian in momentum space. Energy and angular momentum

selection rules dictate that spin-momentum states coupled by the Raman beams involve those states

di↵ering in spin by ∆mF =±1 which also di↵er in momentum by ~∆kx=±2~kL.
The set of Raman coupled states {|−1, kx+2kLi, |0, kxi, |+1, kx−2kLi}, where ~kx is referred to

as the quasimomentum, constitutes a basis in which the Ĥx term of the overall Hamiltonian given
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Figure 5.3: Panels a. to e. show the calculated energy bands of the Raman coupling Hamiltonian
at ~⌦R=10EL for selected values of the detuning; circles indicate the location of the minimum of
the dispersion relation E(kx). In the central panel at the bottom we plot the measured (circles) and
calculated (dashed curve) location kmin =A/~ as a function of detuning at ~⌦R = 10.5EL. (Data
from Ref. [6].)

in Eq. (5.4) is given by

Ĥx=

0
B@

~2(kx + 2kL)
2/2m− ~δ ~⌦R/2 0

~⌦R/2 ~2k2
x/2m− ~✏ ~⌦R/2

0 ~⌦R/2 ~2(kx − 2kL)
2/2m+ ~δ

1
CA . (5.9)

Due to the separability of the overall Hamiltonian, in our experiments we mainly focus on the e↵ects

introduced by Ĥx; since this Hamiltonian captures the physics of the whole Raman coupling scheme

described in Fig. 5.1 we simply refer to it as the Raman coupling Hamiltonian. It should be also

noted that our engineered vector potential has a single non-zero component A = (Ax, 0, 0); from

here on we simply refer to it as Ax=A.

We see from Eq. (5.9) that Ĥx is reminiscent of the bandstructure in a periodic potential as

studied in Sec. 7.2. The key features in the Raman coupling scheme are that we only have three

energy bands, as well as two extra tuning parameters (namely the Zeeman energies δ and ✏); the

latter play an important role in defying the nature of the eigenstates.
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5.2.2 Energy-momentum dispersion relation E(kx). We now focus on the Raman coupling

Hamiltonian of Eq. (5.9) and the origin of an experimentally tunable vector potential A.

Under no dressing (no illumination from the Raman beams), the Hamiltonian is diagonal and the

energy of the spin-momentum states of the basis {|−1, kx+2kLi, |0, kxi, |+1, kx−2kLi} corresponds

to the entries along the main diagonal, i.e. their dispersion is that of free-particles; this is illustrated

in Fig. 5.2 as dotted parabolae (light grey).

When the Raman coupling is turned on, the crossings of the bare spectrum become gaps as

shown in Fig. 5.2. The solid, dashed and dot-dashed curves correspond to the lowest, first excited

and second excited energy bands, respectively; these were obtained by numerically diagonalizing Ĥx

as a function of the quasimomentum kx. When the Raman beams are adiabatically turned on and

illuminate the atoms in a BEC, the atoms adiabatically follow the ground state of the system and

the lowest energy band E(kx) becomes their new dispersion relation. For sufficiently strong Raman

coupling ~⌦R � 4EL the new dispersion is free-particle like, namely E(kx) ⇡ ~2(kx − kmin)
2/2m⇤ or

equivalently E(kx) ⇡ (~kx −A)2/2m⇤,where A=~kmin corresponds to an experimentally artificial

vector potential, and m⇤ is an e↵ective mass which accounts for the fact that the curvature of E(kx)

is not the same as that of the dispersion of the bare spin-momentum states. (The physics of the

small Raman coupling limit ~⌦R < 4EL are discussed in Chapter 9, while a deeper study of e↵ective

mass is presented in Chapter 8.)

The most important feature of the Raman coupling scheme is that the dispersion relation E(kx)

is tunable via the Raman coupling strength ⌦R and via the detuning δ; and that both parameters

are experimentally adjustable: via the Raman lasers intensity and through small changes to the

amplitude B0 of the external bias field, respectively. Figure 5.3 shows the calculated energy bands

at ~⌦R=10EL at di↵erent values of the detuning, together with a measurement demonstrating the

experimental control on a light-induced vector potential A [6].

Not only does the lowest band, but also the second excited band experiences a vector potential

in the large Raman coupling limit [4]; this is most evident from Fig. 5.3. We observe the minima

Table 5.1: Physical e↵ects of light-induced artificial gauge fields.

Nature of A Physical e↵ect on ultracold neutral atom systems

Uniform A=~kmin Shift of the dispersion relation [5]

Spatially varying B=r⇥A Synthetic magnetic field [7], Hall physics [8]

Time varying E⇤=@A/@t Artificial electric field [6]

Matrix valued Ax=−~kLσy Spin-orbit coupling [9]

Uniform in 1D lattice A=(φ/⇡)~kL Complex tunneling matrix element [30]
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of both bands shift in opposite directions, this constitutes a feature of interest in experiments

considering oppositely-charged particles in artificial gauge fields; however the measured 1/e lifetime

for decay from such excited state [⌧=12(1) ms [11]] limits its use.

5.3 Physical manifestation of an artificial vector potential

Having discussed the origin of a light-induced vector potential A, I will briefly give an overview

of its physical e↵ects. As with conventional gauge fields, we study the e↵ects of not only uniform

light-induced vector potentials, but also focus on their temporal and spatial variations. This chapter

focuses on spatially uniform artificial vector potentials in the large Raman coupling regime ~⌦R �
4EL, and their time dependence; Chapter 6 discusses the case of spatially varying artificial gauge

fields and the generation of synthetic magnetic fields; Chapter 9 describes matrix valued artificial

gauge fields and the experimental realization of spin-orbit coupled BECs. Table 5.1 summarizes the

topics to be covered in the rest of this thesis.

5.3.1 Uniform light-induced vector potential. Figure 5.3 illustrates the most obvious e↵ect

of a uniform light-induced artificial vector potential A, this is the shift of the energy-momentum

dispersion relation E(k). This light induced vector potential is the basis for our experiments with

artificial gauge fields; and can be directly measured from absorption images of atomic distributions

as shown in Fig. 5.4a.

5.3.2 Time-dependent artificial vector potential. Temporal changes in a vector potential

A generate electric fields, which ultimately exert forces on charged particles; when expressed in

the form of Newton’s second law we obtain that the rate of change of the mechanical momentum

∆p=mv, for a particle of mass m and velocity v, is directly proportional to the rate of change of

the vector potential.

For our F =1 Raman-dressed system the mechanical momentum corresponds to the population-

weighted average of the momentum in the three mF states; and the canonical momentum pcan is the

variable canonically conjugated to position. The mechanical and canonical momenta are related by

mv=pcan−A, where A is an artificial vector potential. Atoms in a BEC have a narrow momentum

distribution centered at zero; meaning that in equilibrium, their mechanical momentum is zero

(Fig. 5.4a).

An artificial vector potential A is expected to have the same e↵ect on neutral atoms as a

real vector potential has on charged particles; namely to change their mechanical momentum by

−∆p=Af−Ai, where Ai(f) is the initial (final) value of the artificial vector potential. By imposing

a temporal dependence on a light-induced vector potential we generated a synthetic electric field

force for ultracold neutral atoms, whose e↵ects are directly measured from the atomic momentum

distributions as shown in Fig. 5.4b,c.
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Figure 5.4: Detection of Raman dressed states after TOF. a. A Raman dressed state in equilibrium
showing the canonical momentum pcan=A, the experimental parameters are ~δ=−1.7EL. This is a
measurement example of those in the lower central panel of Fig. 5.3. b. Starting in the configuration
shown in a., where Ai=0.56~kL, we apply a synthetic electric field E⇤ by changing the vector
potential to the final value Af=−2~kL; the mechanical momentum of the atoms changes by ∆p=
2.56~kL. c. A synthetic electric field is generated by changing the vector potential from Ai=0.75~kL
to Af =0, this is a picture of an out of equilibrium condition where the atoms oscillate in the trap
after the application of E⇤.

5.4 Experimental characterization

5.4.1 System preparation. All artificial gauge field experiments described in this thesis share

similar experimental setups. Minor changes such as the direction, wavelength and polarization of

the Raman lasers; the direction and amplitude of the bias fields; the geometry of the dipole trap;

and other extensions are summarized in Fig. 5.8.

All our experiments in artificial gauge fields have a common starting point, namely they start

with 87Rb BECs in the |F =1,mF =−1i, and are loaded into the lowest Raman dressed state using

an auxiliary rf-field.

5.4.1.1 rf-assisted loading into the lowest energy dressed state. The procedure to adiabatically

load a BEC into the lowest Raman dressed state is described in Ref. [5], and we have adopted it as

the standard method in all subsequent experiments; its experimental setup coincides with that of

Fig. 5.1.

All experiments start with 87Rb BECs in the |F = 1,mF = −1i state in a crossed optical

dipole trap with frequencies (fx, fy, fz). A uniform bias field B0ey sets the quantization axis and

Zeeman splits the spin states by ~!Z . We prepare spin mixtures using an auxiliary rf field Brfex,

characterized by an oscillating frequency !rf = !Z and a Rabi frequency ~⌦rf , to realize a partial
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rapid passage to δ = 0 by ramping the magnitude of B0ey in 9 to 15 ms. The auxiliary rf field is

useful to set initial energy gaps between the dressed states, which support faster adiabatic loading

into the Raman dressed state [5].

A pair of λ Raman laser beams, counter-propagating along ex and di↵ering in frequency by

∆!L, are turned on from zero to their final coupling strength ⌦R in 20-100 ms; and couple the

internal degrees of freedom of the BEC with strength ⌦R. During the turn-on ramp of the Raman

beams, the rf-field is removed, and the atoms are loaded into the lowest Raman dressed state with

quasimomentum ~kx=0.

We load the system into lowest energy band at non-zero quasimomentum ~kx=A, by ramping

the detuning from Raman resonance (the experimental control parameter being the electrical current

generating the bias field); we keep the frequency di↵erence of the Raman beams ∆!L constant. The

time scale for adiabaticity, such that the BEC always sits at the minimum of the new dispersion

curve, is set by the e↵ective trapping frequency along the direction of the Raman beams [5].

5.4.2 The Raman laser beams. A full characterization of the Raman laser properties is neces-

sary to understand and properly engineer artificial gauge fields for cold atoms. We care about most

properties of these beams: intensity, wavelength (frequency), mode, polarization.

5.4.2.1 The quantization axis and the polarization of the Raman beams. Once a quantization axis

has been set by the external bias field B0, the polarization of the laser beams has to be carefully

chosen to allow Raman processes. Due to their origin as a vector light-shift (/E⇤⇥ E) a rule to

optimize the coupling strength is to make the cross product of their (linear) polarizations to be

orthogonal to the quantization axis; this ensures optimal conditions for both ⇡- and σ±-transitions

to occur.

It suffices to use a suitable polarizing beam splitter to determine the polarization of each Raman

beam; by changing the angle of the λ/2-waveplate, located at the output port of the optical fiber

sending the laser to the main experiment, the polarization can be adjusted.

5.4.3 Resonance conditions and the Raman coupling strength. Our experiments on arti-

ficial gauge fields are based on the internal structure of 87Rb, particularly on the F =1 ground state

manifold; and an external bias field B0ey sets the linear !Z and quadratic ✏ Zeeman shifts among

the mF sublevels.

5.4.3.1 Determining the resonance condition for the Raman coupling scheme. After setting up the

experimental scheme for Raman coupling (having chosen the Zeeman splitting ~!Z), we prepare

nearly pure 87Rb BECs in the |F =1,mF =−1i state. We determine the amplitude of the magnetic

field which produces such Zeeman splitting, by illuminating the atoms with an rf-field oscillating at

⌫rf=!Z/2⇡ to perform a partial adiabatic rapid passage; partial here means that the atoms do not



106

50403020100 12080400

Po
pu

la
tio

n
fra

ct
io

n

200150100500
Raman pulsing time, t [µs]

~⌦
R

=9.18(3)E
L

~⌦
R

=35.4(1)E
L

~⌦
R

=8.82(3) E
L

~✏=17.96E
L

~✏=1.98E
L

1

0

Small quadratic Zeeman regime Large quadratic Zeeman regime

Raman pulsing time, t [µs] Raman pulsing time, t [µs]

a. b. c.

Figure 5.5: Calibration of Raman coupling strength by pulsing. We show the time evolution of
an initially pure |mF = −1i BEC in the presence of both Raman beams. To optimize the con-
trast in this measurement, the detuning was set to: a. ~δ⇡−2EL, and b.-c. ~δ⇡14EL. The curves
are simultaneous fits to the fractional populations in each data set: |mF = −1, kxi (closed sym-
bols), |mF = 0, kx−2kLi (open symbols), |mF = +1, kx−4kLi (crosses), calculated from the uni-
tary evolution of the Raman Hamiltonian. Three of the four fitting parameters were kept constant
(λ=791.1 nm, δ, ✏), only the Raman coupling strength ⌦R was varied.

entirely end up in |F =1,mF =+1i, instead we put them in a spin superposition which on resonance

exhibits balanced populations of mF =±1. Rapid passage is performed in 15 ms [5], starting below

resonance by tens of kHz (see Sec. 6.2.1 for more details on time scales).

We monitor the individual spin populations after expansion in TOF: we suddenly turn o↵ the

confining potentials and the rf-field, thus projecting the rf-dressed state into it bare spin compo-

nents; then we apply a Stern-Gerlach (SG) field during part of TOF to spatially separate the spin

components and measure the population in each state; the resolution on the bias fields allows to de-

termine resonance to within tens of kHz; this condition is subject to ambient field noise as described

in Sec. 4.9.

5.4.3.2 Calibration of ⌦R from unitary evolution of the Raman coupled system. We measure the

coupling strength of the Raman field by studying the unitary time evolution of an initially pure

|mF =−1i BEC in the presence of both Raman beams. Raman processes populate states of increas-

ing spin and momentum which constitute a basis of the form {|mF =−1, kxi, |mF =0, kx−2kLi, |mF =

+1, kx−4kLi}; the eigenstate of the system at any given time can be expressed as a superposition

of these states.

Efficient transfer between the initial and the first Raman coupled state (here |mF =0, kx−2kLi)
occurs when their energies di↵er by 4EL, this is readily achieved by adjusting the detuning to

~δ=~✏−4EL; and can be understood in terms of energy conservation: the intermediate state has

extra kinetic energy on the amount of Ekinetic = (2~kL)2/2m = 4EL, acquired by the two photon
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200 mW. b. An exponential fit (curve) to the decaying number of atoms (circles) in a λ=790.22 nm
Raman dressed state as a function of time gives a lifetime ⌧=0.44(4) s.

Raman process. In the large quadratic Zeeman regime (~✏�4EL) not only do we have to overcome

the 4EL units of extra kinetic energy, but also the quadratic shift itself; efficient transfer is achieved

at large detuning values, comparable to ✏.

Having determined resonance at !Z as described in Sec. 5.4.3.1, our pulsing experiments are as

follows: we prepare nearly pure 87Rb BECs in the |F =1,mF =−1i state and ramp the external bias

field to the efficient transfer condition ~δ=~✏−4EL. A pair of Raman beams with nearly balanced

intensities, wavelength λ and frequency di↵erence ∆!L=!Z is suddenly switched on for a variable

time t ranging from a few to hundreds of µs depending on the laser intensity.

Figure 5.5 shows typical data for the calibration of the Raman coupling strength; these data was

measured with the Raman beams propagating along orthogonal directions ex±ey, for λ=791.1 nm,

where 1EL⇡h⇥1.835 kHz. In the large quadratic Zeeman measurements, the power in each of the

beams was about: (b) 95 mW and (c) 24 mW. Fig. 5.5c experimentally demonstrates that in the

large quadratic Zeeman regime, at low coupling, the third spin state is e↵ectively decoupled and

our bosonic system can be described as an e↵ective “spin-1/2” system (see Chapter 9).

5.4.3.3 The vector light-shift as a function of wavelength and the lifetime of Raman dressed states.

The Raman beams produce both scalar and vector light-shifts whose strength depends on the

resonance from the atomic transitions D1 and D2. By measuring the Raman coupling strength ⌦R

as a function of wavelength, keeping the overall laser power constant at about 200 mW for each
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laser, we obtained a measure of the amplitude of the vector light-shift giving rise to our Raman

processes; Fig. 5.6a shows the experimental data and their excellent agreement with calculations.

Previous experiments were realized around 803 nm, well above resonance to minimize heating

from spontaneous emissions, but with a significant scalar light-shift which ultimately contributes to

the overall trapping potential. This is undesirable since the alignment of the Raman beams acquires

significant importance, in particular for experiments which require extreme control on the detuning

as a function of the location in the trap [7]. The resonance conditions for non-zero light-shift schemes,

as described in Sec. 5.4.3.1, were actually determined in the presence of the Raman beams (whose

frequency di↵erence was set at ∆!L=2 MHz to prevent Raman transitions) to include their scalar

light-shift.

To overcome this issue, we opted to work at the magic wavelength 790 nm, where the scalar light-

shift is mostly suppressed [82], while the coupling strength is increased by a factor of 5 (Fig. 5.6a).

Being closer to resonance with respect to the D1 transition, spontaneous emissions reduced the

lifetime of our Raman dressed states to ⌧ = 0.44(4) s (Fig. 5.6b), i.e. by 68% with respect to the

reported value at 804 nm [7]; such reduced lifetime is still suitable for experiments with gauge fields.

5.4.4 Detection of dressed states after TOF. Raman dressed states are spin-momentum

superpositions of the bare states of the basis

{|− 1, kx+2kLi, |0, kxi, |+ 1, kx−2kLi}; (5.10)

whose relative composition is a function of the coupling strength ⌦R and the detuning from Raman

resonance δ, as shown in Fig. 5.2b for typical experimental parameters: ~(⌦R, ✏)=(10.5, 0.44)EL.

We experimentally measure the bare spin-momentum composition of a Raman dressed state

(via absorption imaging after TOF) by either of two methods, detailed below: (i.) by suddenly

turning o↵ the dressing fields, projecting the dressed state into its free-particle bare spin-momentum

components; or (ii.) by adiabatically turning o↵ the dressing fields on resonance, and subsequently

ramping the detuning, thus deloading the Raman dressed state into a single spin state.

5.4.4.1 Projecting to the bare spin-momentum basis. Figure 5.4 shows images the spin-momentum

composition of Raman dressed states obtained by this technique; the atoms imaged in Fig. 5.4a,

were adiabatically loaded in the lowest Raman dressed state and the bias field was adiabatically

ramped to generate a detuning ~δ =−1.7EL and an artificial vector potential A= 0.56~kL; then
the dressing and confining potentials were suddenly turned o↵, and a 20.1 ms TOF immediately

followed. Had we allowed the atoms to freely expand, the bare spin-momentum components would

have separate along ex due to the acquired momentum in the Raman processes; instead we applied
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Figure 5.7: Testing the Lorentz force from a synthetic electric field E⇤ acting on neutral
atoms. a. Mechanical momentum imparted as a consequence of a sudden change in the vector
potential ∆A. The circles indicate the data from “free” neutral atoms, where the external trap was
removed right before A was changed, and where Af = ±2~kL (“-” for red, “+” for blue). b. In
trap oscillations induced by ∆A, where Af = 0; the closed symbols correspond to the canonical
momentum, while the open squares represent the mechanical momentum; the dispersion at the
extreme right illustrates the conditions for momentum oscillations.

an SG field during part of TOF to separate the spin-momentum distributions along ey based on

their spin; which helps with the analysis of data.

Projecting into the spin-momentum components also provides a direct measurement of both:

the canonical momentum pcan, defined as the relative momentum of the |mF =0i state with respect

to kx = 0; and the mechanical momentum mv, which is the population-weighted average of the

momentum in the three mF states.

5.4.4.2 Adiabatic deloading. Band deloading is very similar to band mapping in optical lattices as

described in Chapter 8. The deloading procedure depends on the particular experiment and involves

a combination of changes in both δ and ⌦R to map the momentum of dressed atoms into the free-

particle momentum. Chapter 8 describes a generalized example of band deloading in an engineered

lattice with an artificial vector potential.

5.4.5 A uniform vector potential for ultracold neutral atoms. A uniform vector potential

A for ultracold neutral atoms is observable from the shift of the momentum distribution [5, 6] of

Raman dressed states as shown in Fig. 5.3.

5.4.6 A synthetic electric force acting on neutral atoms. We studied the mechanical mo-

mentum imparted to a neutral atom system as a function of the change in an artificial vector

potential ∆A=Af −Ai. The measurements are summarized in Fig. 5.7a; and the data shows that
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the imparted momentum ∆p is proportional to ∆A with proportionality constant −0.996(8), where

the expected value is -1 [6]; this demonstrates a synthetic electric force acting on neutral atoms.

Figure 5.7 illustrates two important facts: (a, circles) untrapped neutral atoms respond to an

e↵ective electric field E⇤ as charged particles do; (b) when the atoms are confined, the electric

field induces oscillatory motion in the trap, and the mechanical momentum sloshes around the

equilibrium value of zero; however, its amplitude (a, crosses) is proportional to ∆A as expected.

Furthermore, data in (b) highlights the contrasting di↵erence between the mechanical and

canonical momenta of a trapped BEC, namely the latter is allowed to oscillate around a non-

zero value. This technique, based on an e↵ective Lorentz force, is used in subsequent experiments

to initiate sloshing and characterize e↵ective mass (see Chapter 8).

5.5 Conclusions

Using 87Rb BECs we have demonstrated light-induced artificial gauge field for ultracold neutral

atoms; and have succeeded in simulating synthetic electric fields.

I have focused in this chapter on detailing relevant experimental techniques for the full character-

ization of the Raman interaction Hamiltonian, the core of all our experiments current experiments

with artificial gauge fields.

The success on the experimental demonstration of such fields has triggered both theoretical and

experimental e↵orts to find the best schemes to not only simulate challenging regimes like that of

strong uniform magnetic fields (to gain a better understanding of the quantum Hall e↵ect using

ultracold atoms) but also to demonstrate phenomena beyond condensed matter models.

Experiments have already succeeded in realizing artificial gauge fields using fermions, the ulti-

mate simulators of electronic systems [32, 33].
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Chapter 6

Synthetic magnetic fields for ultracold neutral atoms

This chapter discusses the experimental demonstration of a spatially dependent artificial vector

potential A giving rise to a synthetic magnetic field B=r ⇥ A for ultracold neutral atoms. With

the realization of such synthetic magnetic fields, an ever wider range of experiments can be explored

with ultracold atoms; here we turn our attention to the physics of the Hall e↵ect [83].

In the classical Hall e↵ect an electric current flows perpendicular to a magnetic field; a voltage

which is transverse to both the magnetic field and the current, develops as a consequence of the

Lorentz force. The characterization of such Hall voltage unveils internal properties of the material

in which it was prepared, in particular the properties of the current carriers (density and charge).

With this motivation, we designed an experiment to induce an atomic current in the presence

of an synthetic magnetic field B, to probe internal properties of a BEC. Our experiment is based

on the study of quadrupole-like collective modes, discussed in Chapter 2, and their response to B.

6.1 Signature of a synthetic magnetic field

We first describe the physical e↵ects of a synthetic magnetic field acting on ultracold neutral

atoms. As discussed in Chapter 2, the local velocity v of an interacting BEC is equal to the gradient

of the phase of its wavefunction  =feiφ; as a consequence, there exist irrotational flow (r⇥v=0)

whenever the phase is not singular.

The circulation of a fluid is defined as the line integral =
H
C dl · v around a closed path C; by

means of Stokes’ theorem we deduce that the circulation is =0, when φ is not singular. On the

other hand regions of zero density can exhibit non-zero circulation, such regions constitute vortices

in the system. The circulation around a vortex acquires quantized values, = lh/m with l 2 Z, as
a consequence of the single-valued nature of the BEC wavefunction.

Quantized vortices are distinguished as regions of zero density in the BEC and can be generated

for a sufficiently strong synthetic magnetic field. Quantized vorticity was first proposed to exist in

superfluid liquid He II [84, 85], and it is a signature not only of superfluids but also of superconduc-

tors in a magnetic field. In the field of ultracold atoms, quantized vortices were first demonstrated
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Figure 6.1: Signature of an e↵ective magnetic field B⇤ acting on neutral atoms. Comparison between
Raman dressed states imaged after a 25.1 ms TOF with and without a detuning gradient δ0. A
Stern-Gerlach fields separates the spin components along ey.

in experiments with rotating ultracold atom systems [86, 87, 88, 89], and here with light-induced

gauge fields [7].

Figure 6.1 shows a comparison between a BEC in the presence of a uniform light-induced artificial

vector potential A=0 (a Raman dressed state on resonance) and a BEC in a spatially dependent

artificial vector potential A(y); the latter exhibits quantized vortices, the signature of a non-zero

synthetic magnetic field B=r⇥A. The length scale of these vortices is given by the healing length

⇠ of the condensate, as discussed in Chapter 2; they are typically imaged after TOF, when their

expanded size can be resolved by standard imaging methods, in particular via resonant absorption

imaging.

6.1.1 Superfluid Hall e↵ect in an ultracold atom system Below a critical value of the syn-

thetic magnetic field, quantized vorticity is not energetically favored. The GP equation (Sec. 2.3.4)

was developed to study superfluid hydrodynamics [44] with focus on quantized vorticity [45, 46]; it

is a suitable equation for predicting the critical conditions for vorticity in trapped atom systems.

A cylindrically symmetric system in a synthetic magnetic field B allows vortices to enter when

B > Bc, where Bc is a critical value given by [90]

Bc =
5h

2⇡R2
TF

ln

✓
0.67

RTF

⇠

◆
;

RTF is the TF radius of the system and ⇠ is the healing length. We take advantage of the fact

that even when the system remains irrotational at B < Bc, it still experiences an e↵ective Lorentz

force [8].
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Figure 6.2 illustrates the concept of the quantum simulation of the Hall e↵ect with ultracold

neutral atoms. We prepare BECs in an elongated optical trapping potential, resembling the typical

geometry in condensed matter Hall experiments (Fig. 6.2a), and create a light-induced synthetic

magnetic field B (Fig. 6.2b) in the Raman scheme [4, 7]. We investigate mass transport, generated

by driving quadrupole-like oscillations with the optical trap, in the presence the B field (Fig. 6.2c).

6.2 Experimental characterization

Our experiments with light-induced synthetic magnetic fields B have two primary goals: (i.) to

demonstrate the realization of B from a spatially varying artificial gauge field; and (ii.) to realize

the ultracold atom analog of the classical Hall e↵ect.

All experiments start with 87Rb BECs under uniform light-induced artificial gauge fields A for

ultracold neutral atoms, prepared by following the procedures described in Sec. 5.4.1. We create

synthetic magnetic fields by imposing a spatial dependence on A using our bias and quadrupole

magnetic field sources (Sections 4.5.2 and 4.5.3, respectively), and firstly describe the characteri-

zation of such fields in Sec. 6.2.1. The demonstration of synthetic magnetic fields is addressed in

Sec. 6.2.2, while the measurements for the SF Hall e↵ect are discussed in Sec. 6.2.3.

6.2.1 Magnetic fields and the detuning from Raman resonance. The bias fields are at the

core of our experiments with artificial gauge fields since they provide the main control the detuning

from Raman resonance; additionally the quadrupole magnetic field is of particular importance

since it allowed to impose the spatial dependence on the detuning and thus to realize an synthetic

magnetic field. I describe here the methods for calibrating the resolution of the magnetic bias fields

and the quadrupole magnetic field gradient.
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values of ⌫rf , both for positive (open symbols) and negative (closed symbols) values of the bias
current. b.-c. Field gradient calibration from TOF measured momentum.

6.2.1.1 Determining the frequency resolution of the bias fields via rf-spectroscopy. Our experimen-

tal apparatus has three nominally orthogonal pairs of Helmholtz coils as described in Chapter 4. We

perform rf-spectroscopy on each independent pair of coils to calibrate the Zeeman splitting ~!Z as

a function of the electrical current in the coils. Here I describe the calibration of the bias field along

ez, the calibration method for the other pairs of coils is almost identical.

We prepare a 87Rb BEC in the |mF =−1i and illuminate it with an rf-field, whose frequency

is set at ⌫rf . To achieve adiabatic rapid passage to |mF =+1i, we ramp a uniform bias field B0ez

in two steps: (i.) from zero to an initial value Bz − δB (chosen to be below resonance); and (ii.)

from Bz−δB to a final value Bz. The first ramp is realized in a few ms, while the time scale for the

second ramp (where the actual rapid passage takes place) is determined by the coupling strength

of the rf-field; for a coupling strength ⌦rf=15 kHz, we use a 15 ms ramp.

Care should be taken when selecting the detuning range in the adiabatic passage ramp, if the

window of detuning (set by Bz − δB) is too small we could observe confusing contributions to the

spin populations. It is also important to take into account the e↵ect of the quadratic Zeeman shift

specially at large fields: when ~⌦rf � ~✏ the population of the |mF = 0i atoms is maximized on

resonance; in contrast, when ~⌦rf ⌧ ~✏ avoided crossings develop away from resonance where two

of the three spin states are primarily coupled.

Keeping the initial detuning δB fixed, we scan the base value Bz and monitor the spin pop-

ulations. Figure 6.3a shows typical measurements for the calibration of the bias field along ez at
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six di↵erent values of ⌫rf . We fit each trace with a Lorentzian distribution to determine the res-

onant current and from a line fit to the data we obtain that the Zeeman splitting is !Z/2⇡ =

|Iz−3.65 A|⇥0.116 MHz/A, where Iz is the current in the bias coils along ez. Similar measurements

were performed in the other directions and are reported in Table 4.7.

6.2.1.2 The quadrupole magnetic field gradient. We calibrate the magnetic field gradient from

TOF measurements of the momentum imparted to the atoms of |F = 1,mF = ±1i 87Rb BECs

by a SG force. The magnetic field gradient B0
y is typically along the direction orthogonal to the

Raman momentum transfer, thus the SG force has a non-zero component along ey of the form

Fy=gFµBmFB
0
y. An schematic of the experimental sequence for calibration is shown in Fig. 6.3b.

At t=0 we release the atoms for expansion in TOF, and align the bias field along ey; then at

t= t0=2 ms we apply an SG pulse by turning on the quadrupole gradient. We turn o↵ the gradient

at t= tSG and the atoms freely expand in the remaining TOF. We realize such measurements with a

spin species at a time, and monitor the final position of the atoms along ey via absorption imaging

at t= tTOF.

Under the e↵ects of a uniform field gradient, the acceleration a of the atoms is constant and

their velocity v along ey increases linearly as shown in Fig. 6.3c. After removing the gradient, the

atoms continue to expand with a constant velocity. The total displacement of the atoms is given by

y=a
(tSG − t0)

2

2
+ a(tSG − t0)(tTOF − tSG). (6.1)

We get B0
y = ma/gFµBmF from above, and by repeating the measurement as a function of

current IQ in the quadruple coils we obtain B0
y/IQ=0.0172 kHz µm−1A−1.
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6.2.2 A synthetic magnetic field for ultracold neutral atoms. We demonstrated the gen-

eration of a synthetic magnetic field by the observation of quantized vorticity on the wavefunciton

of 87Rb BECs [7]. The synthetic magnetic field B = r ⇥ A is a consequence of the spatial de-

pendence of the detuning from Raman resonance δ, which leads to a spatially dependent vector

potential A(y). The spatial dependence was achieved by imposing a real magnetic field gradient

(thus a detuning gradient δ0) to our Raman dressing scheme (see Sec. 6.2.1.2).

6.2.2.1 Introducing the detuning gradient δ0. The experimental setup for the first experiments with

synthetic magnetic fields is shown in Fig. 6.4a. We start with a Raman dressed state at resonance

δ=0 in a uniform magnetic bias field B=B0ey, providing a Zeeman splitting of !Z/2⇡=2.71 MHz.

We create a synthetic magnetic field B by applying a magnetic field gradient b0, giving a total

field B= (B0 − b0y)ey. The magnetic field gradient is generated from the quadrupole coils and is

introduced to the system in a 0.3 s ramp from b0=0 to a final variable value up to 0.55 mG/µm.

In the presence of the magnetic field gradient the detuning from Raman resonance is δ0=gµBb
0/~;

this imposes a spatial dependence on the artificial vector potential1

@A
@y

=
@A
@δ

@δ

@y
=
@A
@δ

δ0. (6.2)

Given the spatial extent of the BEC and the range of magnetic field gradients used in this exper-

1It is important to keep in mind that our artificial vector potential only has a non-zero component A = (A
x

, 0, 0)
as discussed in Sec. 5.2.1.3.
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Figure 6.6: Superfluid Hall e↵ect in ultracold atomic systems.

iment, the quantity @A/@δ is nearly uniform (cf. the linear dependence of A with δ in Fig. 5.3),

resulting in an approximately uniform synthetic magnetic field

B = r⇥A =

✓
0, 0,−@A

@y

◆
=
@A
@δ

δ0ez. (6.3)

6.2.2.2 Detection by resonant absorption imagining after TOF. Figure 6.1 shows resonant absorp-

tion images of Raman dressed systems with δ0 = 0 and δ0 = 0.34 kHz/µm, at a coupling strength

~⌦R = 8.20EL. Our detection scheme consists of suddenly releasing the system from all dressing and

confining potentials in to↵<1 µs, projecting the dressed state into its bare spin-momentum compo-

nents. We subsequently let the system expand in TOF (lasting from 10.1 to 30.1 ms), during part

of which a magnetic field gradient separates the spin components along ey due to the Stern-Gerlach

e↵ect.

In the presence of a detuning gradient the atomic distribution of the unconfined atoms present

a skew (Fig. 6.1b); this is the result of the synthetic electric forces arising from the sudden turn o↵

of the Raman dressing fields (see Sec. 5.4.6).

6.2.2.3 Dependence of vortex number on the amplitude of B. The vortices are allowed in the

system for a critical value of B, we studied their dependence on the detuning gradient δ0. For

synthetic magnetic field greater that a critical value vortices enter the condensate as shown in

Fig. 6.5.

6.2.3 Observation of a superfluid Hall e↵ect in an ultracold atom system. Even when

quantized vorticity is an striking signature of a non-zero synthetic magnetic field B=r⇥A, is not
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a necessary condition for the existence B. By working at small amplitudes of the synthetic field we

studied Hall physics in a BEC [8].

In analogy to the Hall e↵ect [83], we induced an atomic current and studied its response to a

synthetic magnetic field. The atomic current was generated by modulating the optical trap confining

a BEC along ex. Figure 6.6 compares the behavior of the density distribution of driven BECs without

(a-c) and with (d-f) an applied synthetic field B (each panel corresponds to a di↵erent time in the

modulation process). The time response is quantified via the second order moments of the density

distribution, this give a measure of how the shape of the atomic cloud responds to the drive and

in particular how it responds to a synthetic magnet field. Panel (h) shows the most distinctive

signature of the e↵ects of B, namely a transverse signal both to the synthetic field and to the

atomic current, thus demonstrating a superfluid Hall e↵ect [8].

6.3 Conclusions

We introduced spatial dependence to an artificial vector potential A for ultra cold atoms via

the detuning parameter, using a magnetic field gradient, to demonstrate an artificial magnetic field

B=r ⇥ A. We characterized B as a function of the detuning gradient in terms of the number of

quantized vortices that entered the system.

We measured the e↵ects of such synthetic magnetic field B on an atomic current, generated

by driving quadrupole-like collective modes, to probe internal properties of BECs. This experiment

constitutes the cold-atom analog to the Hall e↵ect.
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Chapter 7

Ultracold Bose gases in optical lattices

Optical lattices share a strong bond with condensed matter physics, since atoms in optical lattices

resemble the electrons in the ionic lattice of a crystal. Optical lattices are a vast field of research on

their own, and they have allowed the realization of an important number of experiments including:

the observation of matter wave di↵raction [91, 92, 93]; the control of the bandstructutre using

moving lattices [94] and driven lattices [95]; the realization of e↵ects not previously observable in

ordinary crystals such as Bloch oscillations [96]; the fermionization of a bosonic system in a deep

1D optical lattice, namely the Tonks-Girardeau gas [97]; the realization of the Bose-Hubbard model

and the superfluid to Mott-insulator (SF-MI) quantum phase transition [20] together with the study

of their quantum correlations [98, 99]; and the realization of optical lattice clocks [100, 82].

We focus in this chapter on the realization of the 2D Bose-Hubbard model using a harmonically

trapped BEC. Previous e↵orts to reduce the uncertainty in the determination of the SF-MI transi-

tion, due to inhomogeneity of the system and the persistence of the phase coherence even beyond

the transition point to MI [101], have been realized by characterizing the transport properties as

a function of both lattice depth and quasimomentum in moving optical lattices [102]. Here, we

investigate the transition from a SF to a MI with a magnetic resonance imaging (MRI) approach

to eliminate the non-uniform ensemble averaging due to the harmonic confinement in an optical

trap. Based on the work of Rigol et al. [103] we introduce a scaled dimensionless variable, the char-

acteristic density, containing relevant information of the trapped system which leads to a universal

diagram of the phases of a harmonically trapped 2D Bose gas.

First we introduce the optical lattice and discuss general properties of particles in a periodic po-

tential. Later we focus on the physics of the Bose-Hubbard model and the SF-MI transition. Finally

I present the experimental characterization of the system and relevant results.

7.1 Optical lattice potentials

An optical lattice is a periodic potential created from the coherent combination of optical fields,

whose origin is the interference between two or more traveling waves. The spatial intensity distri-
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bution I(r) of a superposition of laser beams provides a trapping potential V / ↵(λ)I(r), where

↵(λ) is the atomic polarizability at the laser wavelength λ [57].

One of the major advantages of optical lattices is the experimental control of the lattice prop-

erties: the strength of the lattice potential is directly tunable through the intensity of the laser

beams, the lattice geometry can be tuned with the spatial configuration of the lasers, the frequency

of the lasers can be detuned in order to modify the attractive or repulsive nature of the lattice with

respect to the intensity maxima. In our experiments the lasers are red detuned enough to minimize

heating by spontaneous emissions and provide conservative trapping potentials for our 87Rb BECs.

A pair of laser beams with wave-vectors k1 and k2 and wavelength λ, both with linear polariza-

tion vector ✏̂, create a 1D trapping potential

Vlatt(x) = V0 sin
2
⇣⇡x

d

⌘
, (7.1)

where V0 is the lattice depth, d = λ/[2 sin(✓/2)] is the lattice period and ✓ is the angle between the

wave-vectors1. A single laser beam retro-reflected on itself suffices to create a 1D optical lattice with

spatial period λ/2. The addition of more laser beams allows the realization of 2D and 3D lattices,

but care has to be taken with the polarizations and phases. Deep optical lattices are typically used

to decrease the dimensionality of a 3D atomic sample: a 1D standing wave can slice a BEC into a

collection of 2D systems; while a square lattice (created by two orthogonal standing waves) creates

a collection of tubes which can be considered 1D systems. An important feature of optical lattices

is that they can be turned on and o↵ any time, allowing access to the momentum distribution of

Bloch states.

7.2 Single particle in a 1D periodic potential

The wavefunction  (x) of a particle in a periodic potential V (x) = V0 sin
2(kx), where k = 2⇡/λ,

satisfies the Schrödinger equation

− ~2

2m

d2

dx2
 n(x) + V (x) n(x) = En n(x). (7.2)

Bloch’s theorem [104] states that the eigenfunction of a particle in a periodic potential can be

written as  nq(x) = eiqxunq(x), where q is a quantity with units of momentum called the quasi-

momemtum and unq(x) is a periodic function whose periodicity is that of V (x). After substituting

1Long period lattices can the be implemented by interfering laser beams at shallow angles, i.e. with the lasers
almost co-propagating.
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the Bloch wave  nq(x) into Eq. (7.2) we obtain

− ~2

2m

✓
d2

dx2
+ 2iq

d

dx
− q2

◆
unq(x) + V (x)unq(x) = Enunq(x).

We can express it as a Fourier series in the form unq(x) =
P

l ale
2iklx where al are constant coefficients

and −1 < l < 1; substitution in the above equation yields

~2

2m

X
l

(q + 2kl)2ale
i2klx +

X
l

V (x)ale
2iklx = En

X
l

ale
2iklx. (7.3)

The lattice potential only contains three Fourier components V (x) = −V0(e
−2ikx − 2 + e2ikx)/4. We

discard the constant term since it is just an energy o↵set, and upon insertion into Eq. (7.3) we get

~2

2m

X
l

(q + 2kl)2ale
i2klx − V0

4

X
l

al[e
2ik(l−1)x + e2ik(l+1)x] = En

X
l

ale
2iklx; (7.4)

forcing the arguments of the exponentials to be degenerate we arrive to a system of equations for

the Fourier coefficients
~2

2m
(q + 2kl)2al −

V0

4
(al+1 + al−1) = Enal, (7.5)

which can be expressed in the form of an infinite square matrix, whose eigenvalues En(q) are the

eigenenergies of the particle as a function of quasimomentum q.
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For practical calculations this matrix is truncated to get a 2l + 1 square matrix of the form

0
BBBBBBBBBBBB@

~2
2m

(q − 2kl)2 −V0/4 0 0 0 0 0

−V0/4
. . . −V0/4 0 0 0 0

0 −V0/4
~2
2m

(q − 2k)2 −V0/4 0 0 0

0 0 −V0/4
~2
2m

q2 −V0/4 0 0

0 0 0 −V0/4
~2
2m

(q + 2k)2 −V0/4 0

0 0 0 0 −V0/4
. . . −V0/4

0 0 0 0 0 −V0/4
~2
2m

(q + 2kl)2

1
CCCCCCCCCCCCA

. (7.6)

Figure 7.1 shows the calculated bandstructure En(q) for various lattice depths, where I have used

the energy and momentum scales given by the single photon recoil momentum ~k = 2⇡/λ and the

single photon recoil energy EL = ~2k2/2m.

When atoms are tightly confined in the lattice sites [tight binding limit (V0 > 5EL)], the energy

of the lowest band becomes sinusoidal as shown in Fig. 7.2a, and its amplitude ∆E = E0(q =

kL) − E0(q = 0) decreases with V0. Figure 7.2b displays three approximations for the bandwidth

∆E as a function of V0, namely: numerical, based on the diagonalization of Eq. (7.6); tight-binding,

where the lattice potential is approximated as a harmonic-oscillator potential near its minima and

the lowest energy bandwidth is [39, 105]

∆E/EL ⇡ 16p
⇡

✓
V0

EL

◆3/4

exp

"
−2

✓
V0

EL

◆1/2
#
; (7.7)

and analytic, where the tunneling matrix element t ⇡ ∆E/4 is derived from a fit to calculated

values from an analytic expression in terms of Matthieu functions [106]

t/EL = ↵

✓
V0

EL

◆β

exp

"
−γ
✓
V0

EL

◆1/2
#

(7.8)

with fitting parameters ↵ = 1.39666, β = 1.051 and γ = 2.12104. The above expressions are

consistent with each other to within 12% for depths V0 > 20EL, and we find agreement within

3% between our numerical calculation of ∆E and ∆E ⇡ 4t from Eq.(7.8) for V0 > 2EL. In our

experiments, we rely on our numerical calculation to determine ∆E from measurements of V0.

7.2.1 The e↵ective mass. The flattening of the energy bands can be interpreted in terms of

an e↵ective mass m⇤ associated with the particles in the lattice. If we consider a single parti-

cle occupying the lowest energy band of a lattice potential and make a Taylor expansion of the

bandstructure around one of its minima (e.g. around q = 0 and for small displacements in q), we
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obtain the dispersion relation of a free-particle E0(q)⇡~2q2/2m⇤ whose e↵ective mass is defined as

m⇤ = ~2[d2E0(q)/dq
2]−1. The e↵ective mass geometrically represents the inverse of the curvature

of the bandstructure; its physical interpretation is straightforward: in the shallow lattice regime

V0/EL⌧ 1 the dispersion relation is very close to that of a free particle, the e↵ective mass tends

to the actual mass m, and the particle is free to move all over the lattice. On the other hand, in

the deep lattice limit V0/EL�1 the energy bands are almost flat which corresponds to an increased

e↵ective mass; the particle is tightly confined to a lattice site since it is harder to make a massive

object move. Depending on the quasimomentum around which the e↵ective mass is calculated, it

can acquire even negative values; this is physically related to dynamical instabilities [107, 108] in

the system as discussed in Chapter 8.

7.3 The Bose-Hubbard Hamiltonian

The Bose-Hubbard model describes a collection of atoms in a lattice potential, which can move

in the lattice by tunneling to their nearest neighboring sites with tunneling matrix element t,

and which repulsively interact with other atoms with an on-site interaction strength U . In the

formalism of second-quatization and in the presence of an external potential, the Bose-Hubbard

(BH) Hamiltonian is

Ĥ = − t

2

X
hj,j0i

b̂†i b̂j0 +
X
j

(✏j − µ)b̂†j b̂j +
U

2

X
j

b̂†j b̂
†
j b̂j b̂j, (7.9)



125

0

1

2

3
µ/U

t/U(t/U)c

D
en

si
ty
,
n

0

a. MF phase diagram for SFMI transition b. LDA chemical potential in HO trap

c. Spatial density n in HO trap

n = 3

n = 2

n = 1

n = 0

MI

MI

MI

SF

1

0
-40 -20 0 20 40

1

0

position in units of j

µ

j

/
U

-40 -20 0 20 40
position in units of j

SFMI

Figure 7.3: MF calculation of SF-MI transition. a. Mean number of atoms per site n as a function
of t/U and µ/U in the ground state of a uniform system under the BH Hamiltonian. The ground
state exhibits either of two phases: a Mott insulating (MI) phase where an integer number of atoms
per lattice site; and a superfluid (SF) phase with non-integer fillings per site. The transition from
SF to a n = 1 MI (cross symbol) occurs at the critical value of (t/U)c. b.-c. In the local density
approximation (LDA), we use the local chemical potential µj = µ − ✏j to compute the density
profile in a HO trap. For a sufficiently large local chemical potential (closed symbols, continuous
curves) the trapped system corresponds to alternating shells of SF and MI. For sufficiently large
(t/U) (open symbols, dotted curves) the system is SF.

where b̂†j is the creation operator of a boson at site j, and hj, j0i constrains the first sum to nearest-

neighboring tunneling. The external trapping potential is described by ✏j, and µ is the chemical

potential at the center of the trap.

The bosonic creation and annihilation operators satisfy the commutation relations given by

[b̂j, b̂
†
j0 ] = δj,j0 ; [b̂j, b̂j0 ] = 0 and [b̂†j, b̂

†
j0 ] = 0; they are defined such that

b̂†j|nji =
p
nj + 1|nj + 1i and b̂j|nji =

p
nj|nj − 1i, (7.10)

where nj are the eigenvalues of the of the number operator n̂j = b̂†j b̂j, for the occupation number

on each lattice site, and |nji represents a state in the occupation number basis. With the above

definitions the BH Hamiltonian of Eq. (7.9) reduces to

Ĥ = − t

2

X
hj,j0i

b̂†i b̂j0 +
X
j

(✏j − µ)n̂j +
U

2

X
j

n̂j(n̂j − 1). (7.11)
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7.3.1 The tight-binding limit. An important result from the BH Hamiltonian [Eq. (7.11)] is

obtained in the absence of interactions (U=0) and for sufficiently deep lattices. Ultracold atoms in

deep optical lattices typically occupy the lowest vibrational energy level of the harmonic-oscillator

potential provided by the lattice site to which they are tightly confined.

If only the lattice potential is present, then we can assume that ✏j−µ is a uniform energy o↵set

which we define as zero. By working in the Heisenberg picture, we obtain the Heisenberg equation

for the time dependence of the annihilation operator b̂j, namely i~ db̂j/dt = [b̂j, Ĥ]. Assuming

periodic boundary conditions, the commutation relations between b̂j and b̂†j, and traveling wave

solutions, we obtain

i~
db̂j
dt

⇡ −2t cos(qd)b̂j. (7.12)

The energy of a single particle state in the lattice is E(q) = −2t cos(qd) [39], where d is the

lattice period. The tight binding model is characterized by a single band whose width is ∆E=4t;

1D lattices as deep as V0=5 EL already satisfy the above criteria for tight binding.

7.3.2 Ground state of the BH Hamiltonian. For a uniform system (✏j=0) the ground state of

the Hamiltonian is entirely dictated by the dimensionless coefficients t/U and µ/U . The competition

between the kinetic and interaction energies, characterized by t/U , defines the nature of the ground

state. In the limit when t/U⌧1, tunneling is suppressed and interactions dominate; the system is

in a state known as the Mott insulator (MI) phase. In contrast, when t/U�1, the kinetic energy

dominates over interactions and the system minimizes energy by delocalizing over the lattice; in

this regime, the system exhibits superfluid (SF) behavior.

We performed a mean-field (MF) calculation based on the approach presented by Sheshadri et

al. [109] and calculated the SF-MI phase diagram for a uniform 2D system under the BH Hamilto-

nian, as discussed below. Figure 7.3a presents the number of atoms per lattice site as a function of

t/U and µ/U ; the system can be driven between a SF phase at non-integer fillings, and a MI phase

with integer fillings. Furthermore, we assume the local density approximation (LDA) and define a

local chemical potential µj=µ−✏j to compute the density profile in a HO trap.

7.3.3 MF site decoupled calculation of SF-MI phase diagram. We consider a uniform

system ✏j=0 and work with the dimensionless BH Hamiltonian Ĥ 0 = Ĥ/U

Ĥ 0 = −tnz

2U

X
hj,j0i

b̂†i b̂j0 −
µ

U

X
j

n̂j +
1

2

X
j

n̂j(n̂j − 1), (7.13)



127

where I have introduced the number of nearest neighbors nz (for a 2D square lattice nz =4, while

for a cubic lattice nz=6) [39]. We consider the mean field approximation

b̂†j b̂j0 = hb̂†jibj0 + hb̂j0ib†j − hb̂†jihb̂j0i; (7.14)

where the order parameter is given by  =hb̂†ji=hb̂j0i. The above approximation decouples the sites

in the tunneling term of the BH Hamiltonian, which acquires the form Ĥ 0 =
P

j Ĥ
0
j, where

Ĥ 0
j = −tnz

2U
[(b̂†j + b̂j) −  2]− µ

U
n̂j +

1

2
n̂j(n̂j − 1). (7.15)

We work in the occupation number basis {|nji} and set an upper bound in the maximum number

of atoms nmax. We diagonalize Ĥ 0
j( ) to get the ground state  0, and compute bj = h 0|b̂j| 0i. We

execute an iterative process to find  by defining as  0 = 0.9  + 0.1 bj, and repeating the above

process for Ĥ 0
j( 

0).

It takes about 50 iterative steps for  to converge, for nmax=5, and an initial value of  =

1. Figure 7.3a shows the mean occupation number per lattice site n=h 0|n̂j| 0i, where  0 denotes

the ground state of Ĥ 0
j( ) at the convergence value of  . We find that the critical value for the

transition from SF to a n= 1 MI occurs at (t/U)c ⇡ 0.0796, or equivalently (U/t)c ⇡ 12.56, while

homogeneous system quantum Monte Carlo (QMC) calculations [110] predict (U/t)c⇡16.5.

We use the local density approximation (LDA) to calculate the spatial profile of the mean

occupation number n for a harmonically trapped system. We introduce the external potential as

✏j = ✏j2, where ✏=m!2d2/2, d is the lattice spacing, and j is the lattice site label. By defining a

local chemical potential µj=µ−✏j2 (Fig. 7.3b) we obtain the spatial profile shown in Fig. 7.3c; we

conclude that both phases can coexist in a trapped system forming a shell structure of alternating

SF and MI domains.

7.4 Universal phase diagram for trapped bosons in a 2D lattice

Ultracold atoms in optical lattices can experimentally realize the 2D Bose-Hubbard model but

they require external trapping potentials, thus spatial inhomogeneity is guaranteed. This system

can be driven through a transition from SF to MI by tuning the dimensionless interaction strength

U/t [19] or the chemical potential µ, both quantities representing experimentally tunable param-

eters. For U/t larger than a critical value (U/t)c the system can enter a MI domain as seen in

Figure 7.3a and for U/t � (U/t)c, the phases alternate between SF and MI, increasing in density as

µ increases [111]. Due to the presence of a harmonic trap, both the SF and MI phases can coexist

forming a shell structure of alternating phases (see Fig. 7.3c).
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Figure 7.4: State diagram for a harmonically trapped 2D Bose gas. The blue line shows the QMC
prediction [103] of the first appearance of MI. The transition was measured at various N2D from
f(U/t) data (see Fig. 7.13). The ovals denote the measured transition boundary; their sizes represent
the uncertainties in ⇢̃ and (U/t)c. The small circles indicate individual measurements, and are
colored according to the side of the transition on which they are. The yellow dashed line is a fit to
the measured boundary for ⇢̃>20; that it is non-vertical [✓exp=85.5(27)◦ from horizontal] suggests
a breakdown of the LDA close to the transition.

It is possible to introduce a universal state diagram for harmonically confined atoms in spite of

the inhomogeneity of cold atom systems [103], by identifying the phases of the system (distinguishing

between pure SF and coexisting SF and MI phases) and making use of a scaled dimensionless

variable, the characteristic density.

The characteristic density is ⇢̃=Nδd
δ(V/t)δ/2, where Nδ is the total number of atoms, d is the

lattice period, δ is the dimensionality, V the trap-curvature and t the tunneling matrix element. For

systems with di↵erent trap-curvatures and di↵erent numbers of atoms, a plot of the identified

phases (SF or coexisting SF and MI) as a function of dimensionless interaction U/t strength and ⇢̃

reproduces the same transition boundary, giving a universal character to the SF-MI phase diagram

in the context of trapped systems [103]. The solid curve shown in Fig. 7.4 corresponds to the QMC

predicted boundary [103] between pure SF and coexisting SF and MI phases in a harmonically

trapped system.
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and M2 are protected silver mirrors. b. Our 3D BEC is divided into nearly 60 2D systems by a
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B0 along ez.

7.5 Experimental characterization

I describe next the experimental methods followed to measure the SF-MI universal phase diagram

of harmonically trapped 2D bosonic systems [29], here I have separated each of the techniques

involved in the experiment for clarity.

7.5.1 System preparation. We realize the BH Hamiltonian in 2D systems of a single spin

species of 87Rb F = 1 ground state. Our atoms are prepared in an optical trap in the presence of

magnetic field gradient along ez, with the spin state most appropriate for its response to magnetic

trapping.

If working with the magnetically trappable state, thermal atoms generated either due to heating

or from further evaporating in the optical trap, remained trapped due to the magnetic potential

and represented an undesired background in our measurements. In contrast, the high-field seeking

state experiences an anti-trapping potential in the xy-plane, which allows undesired thermal atoms

to leave the trap, thus overcoming the background. Based on these considerations, we work in the

|F =1,mF =+1i spin state.

Our experiments begin with a 87Rb BEC prepared in the |F = 1,mF = −1i spin state in an

optical dipole trap located at the intersection of a pair of 1064 nm dipole beams with waists (1/e2

radii) of 55 µm, propagating along ex ± ey in the laboratory frame. The BEC is in the presence

of a uniform bias field B0ez generating a tunable Zeeman splitting2 !Z/2⇡. We realize adiabatic

2The tunable bias field sets an initial Zeeman splitting !

Z

/2⇡ about 20 kHz below rf-resonance for the adiabatic
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rapid passage (ARP) from |mF =−1i to |mF = +1i by illuminating the BEC with an rf-field at

⌫rf=1.35 MHz, and ramping the bias field through rf-resonance in 500 ms.

Once all atoms are in |mF =+1i, we invert the bias field direction from ez to −ez by ramping

the current that generates this field in 2 ms, and suddenly turn on the quadrupole trap. The zero of

the quadrupole magnetic field is located at 620 µm below the BEC. Evaporation continues during

3.6 s in the combined magnetic plus optical trap to reach a nearly pure BEC in the |F =1,mF =+1i
spin state, with measured trap frequencies {fx−y, fx+y, fz} = {23.2(5), 27.4(3), 42.8(9)} Hz.

We calibrate our magnetic field gradient by removing the optical trap and magnetically levitating

the atoms against gravity; we infer a gradient of 2.180(4) kHz/µm along ez at a quadrupole current

of 61.5 A. The gradient is nearly linear along ez, but it adds a quadratic anti-trapping potential in

the xy-plane for the |mF =+1i atoms, as desired.

7.5.2 Alignment of the laser beams with respect to the atoms. The initial step toward

the realization of the BH Hamiltonian is to set up the laser beams that will generate the optical

lattice potentials. In this section I review some methods to align the lattice beams to the BEC,

which are general methods suitable for the alignment of any laser beam in our experiment. Also in

this section I describe the procedure for the calibration of the lattice depth.

7.5.2.1 Geometrical alignment. The initial alignment of a laser beam is based purely on the ge-

ometry of the main experimental chamber, and on the assumption that the atoms are located at its

center. Alignment can be particularly challenging if the input and output ports of the chamber have

limited access, as is the case for the vertical ports. Figure 7.5a shows an schematic of the vertical

lattice beams; these beams do not counter-propagate since that would require blocking the field of

view of the xy-imaging system.

In general, it is worth spending a reasonable amount of time in making sure the beams go exactly

through the center of the chamber to within a millimeter. I recommend using suitable targets made

of milli-metric paper to better quantify the propagation of the beam; these targets would (ideally)

be located at equidistant planes from the center of the chamber, which are parallel to the input and

output ports. If available, it is useful to draw marks on the targets corresponding to laser beams

already aligned to the atoms, e.g. the probe beams or the dipole trap beams.

7.5.2.2 Alignment with respect to a compressed MOT. If the geometrical alignment cannot be

realized with the required accuracy, we can try a rough approach: to make the beams go through

a MOT, whose typical diameter is about 1 cm. For any beam with tunable wavelength, we prepare

a standard MOT (see Chapter 4) and independently aim each beam at it. The cooling mechanism

is a↵ected if the atoms are illuminated by light at λ=794.986 nm (near the 87Rb D1 transition),

rapid passage sequence.
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Figure 7.6: Dipole force for alignment of laser beams to atoms. a. Trapping potential U(x) for a
Gaussian beam propagating along ey, with waist (1/e2 radii) of w0 = 100 µm. b. The dipole force
along x is −dU/dx; it presents a linear dependence around the point of intensity maxima x=0. In
our alignment procedure, x represents the relative position between the laser and the BEC; optimum
alignment is thus achieved at x=0.

and the MOT is almost completely extinguished. We optimize the e↵ect with a compressed MOT,

achieved by increasing the quadrupole current, to improve alignment with an smaller target.

7.5.2.3 Optimizing alignment with magnetically trapped atoms. When properly done, the initial

alignment should be close enough such that we can see an e↵ect on cold atoms in a magnetic trap. An

easy test of alignment is to prepare a thermal cloud in a weak magnetic trap, such that the atoms

are barely confined in it. The presence of a nearby laser beam can be diagnosed by absorption

imaging the atomic distribution and looking for a signature of laser trapping (dense regions of

atoms along the beam of interest). In our experiment this approach works best by imaging in the

xz-plane. Ramping the magnetic bias fields to move the quadrupole trap is a non-invasive approach

to look for an increase in atom density.

7.5.2.4 Dipole force alignment. The dipole force alignment allows the independent alignment of

each laser beam, and is primarily used in our experiments to align the lattice beams and the dipole

trap, when required.

Dipole force alignment is achieved by measuring the e↵ects of the dipole force from each beam

on a BEC. Most of our laser beams are red detuned, exerting an attractive force and imparting

momentum to the atomic distribution. Figure 7.6 shows the dipole potential and the dipole force

generated by a red detuned Gaussian beam propagating along ey, as a function of the position along

ex. Optimal alignment is achieved when the BEC and the laser beam overlap, and the dipole force

is approximately linear with position.

We prepare a BEC and suddenly illuminate it with a single beam for a 1/4 period of the relevant

trapping frequency (from 40 ms to 0.3 s). Then we release the BEC from all its confining potentials

and absorption image it after TOF to amplify the e↵ect of the force. We measure the final position



132

a. Di↵raction from 1D lattices with balanced populations in 0th and 1st orders.

O
pt

ica
l d

ep
th

Optical depth
+2

+2

0

0

-2

-2

e
x

 e
y

lattice e
x

+ e
y

lattice

0

0
0

0

0.2

0.2

0.4

0.4
k

xy

/k

L

k

x
+
y

/
k

L

k

xy

/k

L

k

x
+
y

/
k

L

Figure 7.7: Lattice depth calibration. We calibrate the depth of 1D lattices by studying atomic
di↵raction. The time duration (tpulse) of the lattice interaction with the atoms required to bal-
ance the populations of the 0th and 1st di↵racted orders gives the lattice depth V0 = 2γ0~/tpulse,
where γ0 = 1.4346. The absorption images correspond to the isolated |mF = 0i atomic distribu-
tion extracted from the ensemble using a 400 µs resonant rf-pulse; the atoms are imaged after a
18.1 ms TOF. The accompanying continuous curves represent the integrated optical depth along
the direction orthogonal to the lattice. The pulse time tpulse=11 µs gives V0=11.9(2)EL.

of the atoms as a function of the laser alignment and observe a dependence such as that of Fig. 7.6b;

the laser intensity can empirically be adjusted to scale the e↵ect of the force. When the beam is

properly aligned, it overlaps with the BEC and the dipole forces due to the spatial variation at the

center of the Gaussian profile cause no net force; the final position of the BEC should be within

5 µm from the BEC’s unperturbed position.

7.5.3 Calibration of the lattice depth. We use a total of three optical lattices, generated

from the same Ti:Sapphire laser operated at λ=810 nm. The vertical lattice is created using nearly

counter-propagating beams as illustrated in Fig. 7.5a. We denote the xy-lattices as A and B, they

propagate along ex + ey (yrot axis) and ex − ey (xrot axis), respectively.

We use the di↵raction of atoms from the optical lattice in the Kapitza-Dirac regime [91] to

calibrate the lattice depth to within 2%. Given that the population in each di↵racted order is

Pn=J
2
n(γ); where Jn(γ) are the Bessel functions of the first kind [93], n is the index of the di↵racted

order, and γ = tpulseV0/2~; we adjust the time duration of the lattice interaction with the atoms

tpulse until the populations of the 0th and 1st di↵racted orders balance. From the condition for

balanced populations J2
0 (γ)=J2

1 (γ), whose smallest root is γ0=1.4346, we obtain the lattice depth

V0=2γ0~/tpulse. Figure 7.7 shows absorption images of atomic di↵raction by independent 1D optical

lattices illustrating the conditions for calibrating lattice depth.
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7.5.3.1 Measurement of the scalar light-shift for the ground state of 87Rb vs λ. The lattice beams

produce both scalar and vector light-shifts whose strength depends on the resonance from the atomic

transitions D1 and D2. By measuring the lattice depth V0 as a function of wavelength λ, keeping

the overall laser power constant at about 200 mW for each laser in lattice A, we obtained a measure

of the amplitude of the scalar light-shift; Fig. 3.5 shows the experimental data and their excellent

agreement with calculations.

7.5.4 Contribution of lattices to overall trapping potential. The characteristic density for

our 2D systems is given by ⇢̃=N2D✏/t, where ✏=m!2d2/2 is the overall curvature of the trap.

The presence of the optical lattice modifies the trapping potential due to their non-zero light-

shift. It is important to quantify their contribution to the overall trap, since all trapping potentials

shall be included in the trapping parameter ✏ defining the characteristic density ⇢̃.

Since we are dealing with a 2D system we focus on the characterization of the contribution

to the xy trapping frequencies. In this section I will describe how to include the e↵ect of the lat-

tice beams on ✏.

A single Gaussian beam of waist w0 propagating along ez produces a harmonic trapping potential

of the form

Udipole = −Utrap


1− 2(x2 + y2)

w2
0

− z2

z2R

�
; (7.16)

where the trap depth Utrap is proportional to the laser intensity I, zR=⇡w
2
0/λ is the Rayleigh range,

λ is the laser wavelength and the trapping frequencies are

2⇡fx,y =

s
4Utrap

mw2
0

and 2⇡fz =

s
2Utrap

mz2R
. (7.17)

If we add a second Gaussian laser beam with associated trapping frequencies f 0
j, where j labels

the direction in the trap, the overall trapping frequencies f 00
j are the result of their independent

values combined in quadrature

f 00
j
2
= f 2

j + f 0
j
2
. (7.18)

Extending this logic to the case of an optical dipole trap in the presence of a pair of lattice

beams, we determine the contribution from a the lattice beams to the dipole trap frequency as

fj(both beams)2 = ↵[fj(dipole trap + both beams)2 − fj(dipole trap)
2]; (7.19)

where ↵ = Vlattice/V0 is a scaling factor to account for the dependence on the lasers intensity, V0 is

the lattice depth at which the measurement was done and Vlattice is the actual lattice depth. One
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initiate sloshing. b. Typical measurements of the BEC coordinates from absorption images after
TOF as a function of hold time t, closed (open) symbols represent the rotated coordinate xrot (yrot).

should keep in mind that the lattices will mainly contribute to the trapping frequency along the

direction orthogonal to their axis of propagation.

We infer the contributions from the each lattice (both beams) to the overall trap by measuring

the frequency shift of the sloshing mode in the trap. Figure 7.8a shows the experimental sequence

to measure the sloshing frequency. For a BEC in a pure optical trap, the sloshing motion is induced

by suddenly turning on and o↵ (2 ms) a magnetic field gradient along the desired direction. This

exerts a sudden force on the atoms and initiates the motion; we absorption-image the atoms after

TOF and measure their final location as a function of hold time t. To measure the e↵ect of each

lattice on the trapping potential, we adiabatically load the lattice in 200 ms from 0 to its final depth

V0; then we apply the 2 ms directional “quadrupole kick”, hold for a variable time t and measure

the position as before; our measurements are summarized in Table 7.1. With this calibration we

can properly account for the overall trap curvature in the definition of the characteristic density ⇢̃.

Table 7.1: Contribution of optical lattices to overall trap frequency.

Configuration V0/EL fx+y [Hz] fx−y [Hz]

dipole trap + lattice A(ex + ey) 16 - 29.4(5)
dipole trap + lattice B(ex − ey) 16 33.0(3) -
dipole trap + Vertical(ez) 22 34.6(3) 35.9(2)
dipole trap - 26.2(3) 23.0(3)
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Figure 7.9: Restoring coherence. a. Time sequence for system preparation. After reaching the MI
phase by ramping the xy-lattice to a depth of 22EL, we ramp the depth in a variable time t down
to 9EL to recover the SF phase. We apply a 400 µs rf-pulse to transfer a few 2D systems into
|mF =0i. We suddenly release all 2D systems and apply a magnetic field gradient during part of the
18.1 ms TOF, to separate non |mF =0i atoms from our sample. b. We perform 1D Gaussian fits to
the central peak of the sampled distribution along ex±ey, shown is the average width as a function
of ramp down time t. The exponential decay has a time constant ⌧ = 0.94(7) ms. c. Absorption
images showing the |mF =0i atomic distribution for di↵erent ramp down times t.

7.5.5 Implementing the Bose-Hubbard Hamiltonian. The xy lattice beams nearly co-

propagate with the dipole trap beams; each lattice beam is retro-reflected on itself to create an

independent λ/2 lattice. To avoid cross talking between the xy-lattice beams they have linearly or-

thogonal polarization at the atoms and di↵er in frequency by 2.824 MHz; the vertical lattice beam

is frequency shifted by about 160 MHz with respect to the xy beams.

We loaded the BEC into a 24 EL deep 1D optical lattice along ez to produce an ensemble of

2D systems as illustrated in Fig. 7.5; additionally, two weaker 1D optical lattices in the xy- plane

realized the Bose-Hubbard Hamiltonian in each 2D system. All lattices were adiabatically ramped

from zero intensity to their final power in 100 ms with half-Gaussian intensity ramps. We control

the interaction strength U/t by adjusting the laser intensity of the xy-lattice beams; the depth of

the xy-lattice ranges 0 to 20 EL.

7.5.6 Restoring coherence We study the time it takes a MI configuration to restore coherence

after returning the system to a SF. Figure 7.9a shows the system preparation. We ramp the vertical
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lattice to a final depth of 20.3 EL, with a half-Gaussian intensity ramp in 200 ms; the vertical lattice

depth remains unchanged until the release of the atoms at the end of the experiment. Within the

last 100 ms of vertical lattice ramp, we ramp the xy-lattice to a final depth of 22 EL to bring the

2D systems into the MI regime, and hold for 20 ms. We then ramp the xy-lattice depth down to

9 EL (SF regime) where the systems recover their phase coherence, in a variable time t.

We apply a 400 µs rf-pulse on resonance with the largest 2D systems (⌫rf=1.33 MHz) to transfer

a small fraction of the atoms into the |mF =0i state, after which the atoms are released from all

confinement potentials.

The 2D systems are projected into their spin components, which separate in the presence of

a magnetic field gradient within 18.1 ms TOF. We focus on the atomic distribution of |mF = 0i
atoms and measure the width of the central peak as a function of time t; the average width along

the ex ± ey directions is shown in Fig. 7.9b. These results are in excellent agreement with those

reported by Greiner et al. [20].

7.5.7 MRI approach to control the size of the 2D systems. Experiments have been realized

in the context of quantum microscopy of single 2D systems [112, 113] to overcome the issue of spatial

inhomogeneity in trapped gases. Here, we implement a technique analogous to MRI to eliminate

the ensemble averaging present in previous experiments and to control the system size N2D.

We prepare a BEC in an optical trap and in the presence of a magnetic field gradient generated

by our quadrupole trap to implement our MRI approach. Being in the presence of a magnetic

field gradient B0zez, the Zeeman splitting between the hyperfine sub-levels becomes a function of

z position; this allows the selective coupling of small subsets of neighboring 2D systems via the

illumination with a locally resonant rf-field as indicated in Fig. 7.5b. The rf-field is briefly pulsed

to transfer two nearly identical 2D-systems from |mF =+1i to |mF =0i.
We select 2D systems of a particular size N2D by adjusting the center frequency ⌫rf of the rf-

pulse. To minimize accidental addressing from neighboring 2D systems, we avoided using a simple
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Figure 7.11: Density profile n(z) for: a. a 3D BEC and b. an ensemble of 2D systems. The atom
number calculated from the in situ Thomas-Fermi radius Rz=8.2(2) µm is NTF=1.8(4)⇥ 105. The
vertical dashed lines indicate the Thomas-Fermi radius from our fit. Continuous lines show a fit to
the in situ 1D density profile n(z). The temperature of the selected 2D systems (squares in b.) is
displayed on the right axis, as a function of position along ez; on average T =15(3) nK.

square pulse; instead we implemented a pulse whose profile is given by the Blackman function

A(t) =
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. (7.20)

An rf-pulse with a Blackman envelope has a reduced number of frequency components compared

to a square pulse, as illustrated in Fig. 7.10.

A linearly polarized rf-field Brfex transfers atoms from |mF =+1i to |mF =0i and |mF =−1i. We

fixed the pulse duration at 400 µs and adjusted the amplitude Brf to maximize the transfer into

|mF =0i. The Blackman envelope was generated by a programmable SRS DS345 function generator,

whose output was combined with that of the rf-synthesizer prior to being amplified and sent to the

experiment (see Sec. 4.5.4). The 2 kHz rms spectral width of this pulse, combined with the magnetic

field gradient along ex gives a 0.9 µm rms spatial resolution (⇡2 lattice sites).

7.5.8 Number calibration. We carefully calibrated the atom number by measuring the in situ

1D density profile n(z), of our 3D BEC using the MRI technique (see Fig. 7.11a). The Thomas-

Fermi (TF) radius Rz=8.2(2) µm gives an atom number NTF=1.8(4)⇥105; direct integration of n(z)

gives Nint=1.89(5)⇥ 105; measurement of absorption by all atoms after TOF gives Nabs=1.90(5)⇥
105. These measurements are consistent with a combination of shot-to-shot number fluctuations

and number measurement uncertainty of ⇠3%. We confirm this by loading the BEC into the 1D

optical lattice along ẑ, and again measuring n(z). We find that the density profile expands along ez

(Fig. 7.11b, circles) but the integrated atom number Nint=1.84(5)⇥ 105 remains constant. Figure
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7.11b also shows the measured temperature T in a 1D optical lattice as a function of z (squares). T =

15(3) nK is nearly uniform over all significantly occupied lattice sites, indicating that the 2D systems

taken together are e↵ectively in thermal equilibrium.

7.5.9 Band mapping and extraction of addressed 2D systems in TOF. The dynamic

control o↵ered by optical lattices allows the implementation of band mapping [105, 114], i.e. the

adiabatic removal of the lattice potential in which quasimomentum is mapped to free particle

momentum. The time scales for adiabaticity are dictated by the single particle energy scales in the

optical lattice, specifically the process has to be slow compared to the associated band gap [115].

At the edges of the Brillouin zone the band gap is reduced during band mapping and the

adiabaticity condition cannot be reached, band mapping approximately maps the occupied crystal

momentum states in the lowest Brillouin zone (BZ) to free momentum states [115]. This is an issue

only if the lowest band is fully occupied, i.e. up to the edge of the BZ.

We performed band mapping after the rf-pulse to improve the signal to noise ratio in our

measurements. The lattice potentials were turned o↵ with exponentially decreasing ramps (400 µs

time constant), and at the same time we removed the optical dipole trap in <1 µs; the atoms then

expanded for 18.1 ms TOF.

During part of TOF, we switch the direction of the bias field to get a magnetic field gradient

approximately along ex + ey to separate the three |mF i components. We detect the final spatial

distribution of all three components using resonant absorption imaging, which gives the approxi-

mate momentum distribution of each spin component separately. The |mF =0i distribution directly

measures the momentum composition of the nearly identical 2D systems selected by the rf pulse, vir-

tually eliminating the inhomogeneous averaging that is present in the |mF =+1i distribution. Since
|mF =0i atoms are insensitive to gradients in magnetic fields, the momentum distribution experi-

ences no distortions due to field gradients.

7.5.10 Matter wave focusing We used a matter-wave focusing technique –a temporal atom

lens– that “focuses” the in situ momentum distribution at a finite TOF [116, 117]; this technique

helps to better distinguish the sharp features in the momentum distribution.

The sudden increase on the dipole trap depth exerts a force on the atoms proportional to their

distance to the trap center as illustrated in Fig. 7.12a, in analogy with an optical lens in the paraxial

approximation [118]. The atoms that are further away from the center will be more strongly pushed

inwards, while those atoms already at the center will remain unperturbed by the trap. As the

strength of the trapping pulse increases, the system size will be reduced up to the point when

interatomic interactions overcome the inward kick and the system starts expanding again as shown

in Fig. 7.12c. This phenomenon is referred to as matter wave focusing [119, 116] and we use it to

better distinguish between SF and non SF components in our experiments with 2D Bose gases.
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Figure 7.12: a. When the trap depth is suddenly increased, trapped atoms experience an inward
force proportional to their location in the trap; this is analogously to an optical lens focusing a light
beam. b. After loading a 1D optical lattice to create a set of 2D systems, along ez, we suddenly
ramp the trap depth and hold it for 400µs. In parallel, a 400µs rf-pulse at ⌫rf = 1.33 MHz transfers
a small fraction of the largest 2D systems into the mF = 0 state. We then suddenly remove all
dressing and confining potentials and let the atoms expand during a 18.1 ms TOF. c. We monitor
the TF radii of the |mF=0i atomic distribution as a function of the pulse depth and identify the
focus at the minimum of this curve.

Figure 7.12b shows the experimental sequence we followed to characterize our matter wave

focusing pulse our experiment begins with a |mF =+1i BEC in a pure optical trap, in the presence

of a magnetic field gradient. We prepare a collection of 2D systems by adiabatically turning on the

vertical lattice up to a depth of 22 EL. We ramp the dipole trap intensity to a final variable value

in 200µs, and hold it for 400µs.

We additionally apply an rf-pulse on resonance with the largest 2D systems (⌫rf = 1.33 MHz) to

transfer a small fraction of the atoms into the |mF =0i state, in those last 400µs. We then suddenly

release the 2D systems from all confining potentials, and a magnetic field gradient separates the

spin components within a 18.1 ms TOF. We measure the size of the |mF =0i atomic distribution

to characterize the e↵ect of the focusing-pulse. Figure 7.12c shows that as the strength of the

pulse increases, the size of the atomic distribution is reduced; when interactions overcome the

inward focusing pulse, we observe an increase [119] on the final size of the system. The optimum

configuration for focusing used in our experiments required to tighten the dipole trap to increase

the trapping frequency by a factor of about 3.

7.5.11 Location of the phase transition and universal phase diagram. We measure the

condensate fraction f as an indicator of the SF component in the system. We experimentally define

f as the fraction of atoms in the sharp, focused feature in the momentum distribution (insets in

Fig. 7.13). We fit the broad background, present due to thermal e↵ects and quantum depletion,

including atoms in the MI phase, to the thermal distribution of non-interacting classical particles
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Figure 7.13: Condensate fraction of a 2D N2D ⇡ 3500 atom Bose gas measured through the SF
to MI transition. We identify the formation of the first MI region at U/t=21(2), where the slope
of f changes markedly; we associate the subsequent decay in f with the spatial growth of the MI
domains. For U/t>60, f is indistinguishable from zero. The red dashed curves are fits described in
the text. The insets (a.-c.) display the averaged momentum distribution n(k)= [nA(k)+nB(k)]/2
at di↵erent U/t, where nA,B(k) are the momentum distributions integrated over direction of the
optical lattices.

in a 2D sinusoidal band; in the shallow lattice limit the width of this distribution is interpreted as

temperature: T = 0.9(2)t/kB [120]. We smoothed the fit function in a region within 0.1 kR of the

edge of the Brillouin zone to account for non-adiabaticities in the lattice turn o↵ near the band

edge [115]. We exclude a disk with 0.16 kR radius around the condensate feature from the fit and

identify the condensate as the atoms that remain within the disk after subtracting the background

fit. (We associate f > 0 with existence of SF regions as is conventional.)

Figure 7.13 shows f as a function of U/t for 2D systems with N2D ⇡ 3500 and an initial tem-

perature T =0.9(2)t/kB, a factor of two lower than that reported in Ref. [120] where f . 0.4 and

T ⇡2t. We identify (U/t)c from the behavior of the condensate fraction: it decreases rapidly in the

shallow lattice regime down to f⇡0.12 and (U/t)c=21(2) (Fig. 7.13, fit to a line); when it suddenly

changes its decaying slope (Fig. 7.13, fit to a parabola) to finally be indistinguishable from zero in

the deep lattice regime U/t> 60. We associate the value of (U/t)c=21(2) as the onset of MI, and

the subsequent decay in f for (U/t)c>21 with the spatial growth of the MI domains.

Our MRI approach allows the measurement of f for systems of di↵erent size N2D, i.e. di↵erent

characteristic densities ⇢̃. We sampled about 1300 images with ⇢̃ up to 100 and U/t up to 100 and
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Table 7.2: Measured and QMC values of (U/t)c.

⇢̃ (U/t)c ⇢̃QMC (U/t)c QMC

64(5) 22(2) - -
55(2) 21(2) 56 21
53(2) 23(2) 53 21
44(2) 20(2) 44 20
37(2) 19(1) 38 19
36(2) 21(2) 36 19
30(2) 19(2) 30 18
27(2) 20(2) 27 18
22(2) 19(2) 22 18
19(2) 20(2) 19 23
10(6) 22(4) - -

for each image extracted f . Table 7.2 shows the measured values3 of (U/t)c at di↵erent values of ⇢̃

and compares them with QMC calculated values from Ref. [103].

The data from Table 7.2 (shown in Fig. 7.4 as red ovals) constitute the measured boundary for

the onset of MI; the width and height of each oval represent the associated uncertainties in the

measurement. The green dashed line corresponds to a constant atom number (N2D ⇡ 3500) path

in the U/t − ⇢̃ plane. The circles in Fig 7.4 are colored according to the side of the transition on

which they are: light grey (dark grey) corresponds to SF (coexisting SF and MI).

Figure 7.4 also displays the QMC state diagram [103]; the deviation from vertical of the upper

portion of this curve, reproduced by the data, di↵ers from the LDA prediction. Linear fits for

the measured (yellow dashed line in Fig. 7.4) and predicted transition boundaries, for ⇢̃ > 20,

intersect the horizontal axis at angles ✓exp=85.5(27)◦ and ✓QMC=83.7(3)◦ respectively, suggesting

the breakdown of LDA near the transition. Under the LDA, for µ/U > 0.5 the first appearance of

(n=1) MI is independent of ⇢̃ as seen from Fig. 7.3a. The universal character of the state diagram is

revealed when it is expressed in the U/t− ⇢̃ plane: it is independent of N2D or ✏ and of the validity

of the LDA [103]. The discrepancy for ⇢̃ < 15 is expected due to increased sensitivity to thermal

e↵ects at low density where the SF transition temperature is extremely low.

7.6 Conclusions

Optical lattices have become a thriving field both for theoretical and experimental physics. They

constitute a basic tool in ultracold atom experiments due to their ability to be dynamically mod-

3As a reference, a previous experiment reported (U/t)
c

=15.8(20) [120], whereas homogeneous system QMC
calculations [110, 121] give (U/t)

c

=16.5.
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ified. In particular, they provide suitable conditions to study the Bose-Hubbard model and the

SF-MI quantum phase transition.

With the use of optical lattice potentials, we created an ensemble of 2D harmonically trapped

2D Bose-Hubbard systems from a 87Rb BEC and used an MRI approach to select a few 2D systems

for study, eliminating ensemble averaging. Our identification of the transition from SF to MI, as a

function of both atom density and lattice depth, is in excellent agreement with a QMC universal

state diagram suitable for our trapped system [103]. Our measurements suggests a breakdown of

the LDA near the transition region.
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Chapter 8

Uniform artificial gauge field in a 1D lattice potential

This chapter describes a method to synthesize both a lattice potential together with a uniform

tunable vector potential, realizing the Peierls substitution in ultracold atomic gas. The Peierls

substitution is the introduction of the e↵ects of a vector potential A on charged particles, to the

Hamiltonian describing the physics of such particles in a lattice potential. As we will show below, an

rf-Raman coupling scheme realizes a 1D lattice coexisting with a uniform artificial vector potential

with which the Peierls phase φ is experimentally tunable by adjusting the detuning from Raman

resonance.

We use a combination of rf and Raman fields to couple the F =1 spins in the 5S1/2 ground state

manifold of 87Rb. This work constitutes a first step towards the realization of flux lattices [122],

novel lattice structures that would help to reach the quantum Hall regime in ultracold atomic

gases, by overcoming the limitations on magnetic field strength and restrictively low energy scales

associated with such states [80, 123].

First we describe the mechanism to synthesize the combined lattice and vector potential, and

introduce the Peierls substitution; then we discuss the experiments we performed to characterize

this rf-Raman lattice; and finally we propose how to generate a flux lattice which is gauge equivalent

to the 1/3 flux Hofstadter model.

8.1 rf-Raman lattice potential

Let us consider the experimental setup as shown in Fig. 8.1a. As is standard in our experiments,

a uniform bias field B0 = B0ez Zeeman splits the F = 1 internal states of 87Rb’s 52S1/2 ground

state manifold; the linear and quadratic Zeeman shifts are !Z/2⇡ = 3.25 MHz and ✏= 1.54 kHz,

respectively. We illuminate an mF =−1 BEC both with a linearly polarized rf-field Brf of frequency

!rf =!Z ; and with a pair of orthogonally polarized Raman beams, whose frequency di↵erence we

set to ∆!L=!rf .

As discussed in Chapter 5, in the rotating wave approximation for the frame rotating at∆!L, the

combined vector light shift from the Raman beams and the interaction with the rf-field Erfe
−i!rf tex
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Figure 8.1: Setup and level diagram for rf-Raman lattice experiments. a. A uniform bias field B0

Zeeman splits the energy levels in the F = 1 87Rb ground-state manifold (b.), while a pair of
counter propagating Raman beams and an rf field illuminate an mF =−1 BEC.

give the coupling Hamiltonian, expressed in the basis of spin states {|− 1i, |0i, |+ 1i}:

Ĥrf+R(x)/~ =

0
B@

−δ {⌦rf + ⌦Re
i2k

L

x}/2 0

{⌦rf + ⌦Re
−i2k

L

x}/2 −✏ {⌦rf + ⌦Re
i2k

L

x}/2
0 {⌦rf + ⌦Re

−i2k
L

x}/2 δ

1
CA (8.1)

where ⌦rf and ⌦R are the Rabi frequencies that characterize the strength of the coupling fields, and

δ=∆!L − !Z is the detuning from Raman resonance.

When expressed in terms of the components of the F =1 angular momentum operator, F̂ =

{Fx, Fy, Fz}, the rf-Raman coupling Hamiltonian becomes

Ĥrf+R(x) =
1p
2
[⌦rf + ⌦R cos(2kLx)]F̂x −

1p
2
⌦R sin(2kLx)F̂y + δF̂z − ✏(~21̂− F̂ 2

z )/~, (8.2)

where 1̂ is the 3⇥3 identity matrix. The structure of the coupling Hamiltonian of Eq. (8.2), namely

Ĥrf+R(x) = ⌦(x) · F̂ − ĤQ, is that of the interaction between the magnetic moment associated

with the total angular momentum operator F̂ with a spatially dependent e↵ective Zeeman field

Be↵(x)=~⌦(x)/gFµB, where µB is the Bohr magneton, gF is the Landé g-factor,

⌦(x) =
1p
2
[⌦rf + ⌦R cos(2kLx),−⌦R sin(2kLx),

p
2δ], (8.3)

and ĤQ=−✏(~21̂−F̂ 2
z )/~ describes the quadratic Zeeman shift.

The eigenenergies E(x) of the rf-Raman coupling Hamiltonian are solutions of the characteristic

polynomial

E3 + ✏E2 − {δ + [⌦2
rf + ⌦

2
R + 2⌦rf⌦R cos(2kLx)]}E − ✏δ2 = 0; (8.4)

these eigenenergies are spatially periodic along ex with period λ/2, and correspond to e↵ective
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Figure 8.2: E↵ective Zeeman lattice potential. This figure shows the e↵ective Zeeman shifts cal-
culated by diagonalizing Ĥrf+R(x) at di↵erent coupling strengths: a ~(⌦rf ,⌦R,⌦z) = (1, 10, 2)EL;
b ~(⌦rf ,⌦R,⌦z)=(3.5, 11.5, 2)EL; c ~(⌦rf ,⌦R,⌦z)=(3, 15, 2)EL (dashed). a. The e↵ective Zeeman
field Be↵ precesses in space within a lattice period (points 1-5) as shown in Fig. 8.3. Neutral particles
acquire a geometrical phase φ upon tunneling from site j (open symbol) to j + 1 (closed symbol).
c. Conveyor-belt transport of particles [124] can be implemented by introducing a relative phase
φrel between the rf and Raman coupling fields; the spatial displacement of the potential (solid) is
proportional to φrel. The closed and open circles indicate the displacement from zero to xmin.

Zeeman shifts produced by the spatially varying field Be↵(x) (Fig. 8.2). Our atoms are prepared in

the lowest energy eigenstate of the rf-Raman coupling Hamiltonian.

The most relevant characteristic of such engineered lattice arises from the spatial dependence

of the e↵ective Zeeman field; Be↵(x) precesses in space in proportion to the vector ⌦(x), as shown

in Figure 8.3. This precession is responsible for the acquisition of a geometrical Berry’s phase [125]

by a slowly moving atom tunneling from site j to site j +1. In the adiabatic approximation, where

the atom moves slowly enough such that the precession rate of the e↵ective field is small compared

to the hyperfine splitting !Z , Be↵ defines a local quantization axis; after a full precession cycle the

final state of the atom di↵ers from the initial state by a geometric phase factor φ, the Peierls phase,

proportional to the solid angle enclosed by Be↵ .

A closed expression can be determined for the Peierls phase in the limit of large Raman coupling

(⌦R � 4EL,⌦rf , ✏); it is given by φ=⇥B+2⇡, where ⇥B=2⇡mF (1−δ/⌦) is Berry’s phase, mF =−1,

and ⌦ = (⌦2
R/2 + δ2)

1/2
, independent of ⌦rf . In our experiment, ⌦R is not sufficiently large for

this approximation to be valid, so we instead compare our results to the numerically computed

bandstructure, as discussed below.

8.2 The Peierls substitution

Particles with charge q moving along a 1D lattice in the presence of a vector potential A acquire

a geometrical phase φj = (q/~)
R x

j+1

x
j

A ·exdx upon tunneling from site j to j + 1 (Fig. 8.2a). For
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a. Spatial precession of Beff(x) for comparable rf and Raman coupling strengths

b. Spatial precession of Beff(x) in the large Raman coupling limit

1 2 3 4 5
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x = xj x = xj+1

x = xj x = xj+1

Figure 8.3: Spatial precession of Be↵(x) (radial vector) and the solid angle it subtends when an atom
tunnels from site j to site j+1. Only when both dressing fields are illuminating the atoms does the
lattice potential exist; therefore, the e↵ective Zeeman field is in general not symmetric about ez. This
behavior is emphasized when the coupling strengths are comparable in magnitude, a. shows the case
for ~(⌦rf ,⌦R,⌦z)=(3, 3, 2)EL. In contrast, in the limit where ⌦R � ⌦rf , the e↵ective Zeeman field
spans the whole xy-plane; b. displays the case for ~(⌦rf ,⌦R,⌦z) = (10, 1, 2)EL. The geometrical
Berry’s phase ⇥B gives the Peierls phase φ.

sufficiently deep lattice potentials, where the atoms are tightly confined to the lattice sites, the

second quantization form of the Hamiltonian for a particle in a lattice potential is

Ĥ = −
X
j

[t exp(iφj)â
†
j+1âj + h.c.], (8.5)

where â†j describes the creation of a particle at site j, and t exp(iφj) is the complex matrix element

for tunneling between neighboring sites. Using the phases φj to represent the e↵ect of A is known

as the Peierls substitution [126], and for a uniform phase φ the energy of the lowest band is given

by E(kx) =−2t cos(⇡kx/kL−φ), where kx is the particle’s crystal momentum. A key signature of

the Peierls substitution is thus the shift of the structure of the lowest energy band (Fig. 8.4a). By

tuning the experimental parameters: ⌦rf ,⌦R and ⌦z we can vary not only the amplitude of the

tunneling matrix element t, but also the Peierls tunneling phase φ (Fig. 8.4b,c).

We numerically diagonalized the combined rf-Raman Hamiltonian Ĥrf+R given the experimental

parameters: ⌦rf ,⌦R and ⌦z, in order to compute the properties of our lattice potential. For simplicity

we work in the momentum space representation of Ĥrf+R, described below. This representation

o↵ers an alternative understanding of the e↵ective Zeeman lattice structure that arises from the
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Figure 8.4: The Peierls substitution in a lattice potential. a. Calculated lowest band with minimum
located at kmin/kL=φ/⇡, defined within the first Brillouin zone (gray region). The curves correspond
to: ~(⌦rf ,⌦R,⌦z)=(0.75, 10, 0)EL (dashed) and ~(⌦rf ,⌦R,⌦z)=(0.75, 10,−2)EL (continuous). b.-
c. Peierls phase and tunneling amplitude as a function of the e↵ective Zeeman shift ~⌦z for the
above coupling strengths. The open (closed) symbol corresponds to the shifted (unmodified) lowest
band. The vertical dashed lines indicate the limits of the first Brillouin zone.

combination of rf and Raman coupling fields.

8.3 Momentum representation of Ĥrf+R

Raman transitions couple together states with mF di↵ering by ±1, and momentum di↵er-

ing by ±2~kL, while rf-coupling processes only change mF by ±1, leaving the momentum un-

changed. The combination of both Raman and rf fields generates states with higher order momen-

tum transfer. The available states under rf-Raman coupling constitute a set of spin-momentum

states {| ni}= {|mF , ~(kx+2nkL)i} where n 2 Z;mF=0,±1. As expected, this basis is that of a

lattice. It is important to emphasize here as we did in previous chapters that given our experimen-

tal setup, with the Raman beams propagating along the x̂ direction, the momentum distribution is

modified exclusively along x̂ (Fig. 8.1), while it remains unchanged in the other directions.

The Hamiltonian Ĥrf+R is a Hermitian block matrix of size 3(2N+1) in the basis {| ni}, where
n is restricted to n  N . For our parameters, dimensions larger than 3(2N +1) = 81 provided

indistinguishable results. The dimension of this basis is appropriate for our calculations since we

observed the population of states with up to |n| = 4. For clarity, we construct the Hamiltonian

by arranging the spin-momentum states in the { n} basis with increasing momentum index n=

−N,−N+1, . . . , N . Along the principal diagonal, we have 3⇥ 3 blocks

Ak
x

(n)=
~2

2m
(kx+2nkL)

21̂ +
⌦rfp
2
Fx − [⌦zFz +

✏

~
(~21̂−F 2

z )];

these terms correspond to kinetic energy, rf coupling of spin states with equal momentum, and the
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Figure 8.5: E↵ective Zeeman lattice properties. a. Calculated width of the lowest energy band ∆E,
as a function of ⌦R, for 0.5 < ~⌦rf/EL < 3.5 and with ⌦z=0. b. E↵ective depth of the engineered
Zeeman lattice. c. E↵ective to bare mass ratio m⇤/m. The symbols indicate the experimental regime
in which we: (i) reported BEC di↵raction from the e↵ective Zeeman lattice (open symbols), and
(ii) measured the Peierls tunneling phase (closed symbols) [30].

real Zeeman interaction, respectively. Above and below the Ak
x

(n) blocks, we have 3⇥3 blocks B=p
2⌦R(Fx−iFy)/4 describing the Raman coupling of spin-momentum states di↵ering in momentum

by ∆kx=±2kL.

The diagonalization of Ĥrf+R(n) as a function of kx gives the bandstructure of the combined rf-

Raman lattice potential, E(kx)=E(kx,⌦rf ,⌦R,⌦z). The structure of E(kx) captures all the relevant

properties that characterize our lattice potential, i.e. the depth V0 of the lattice, the e↵ective mass

m⇤, the tunneling amplitude t and the Peierls tunneling phase φ. The next section describes how

each quantity is determined.

8.3.1 Calculation of lattice properties. We extract the Zeeman lattice properties by fully

characterizing the lowest energy band, which in the tight binding regime is of the form E(kx)=

−2t cos(⇡kx/kL−φ), see Fig. 8.4a.

We obtained the Peierls phase φ by computing the shift of the lowest band [with minimum at

kmin = (φ/⇡)kL] as a function of the experimental parameters (Fig. 8.4b). For ⌦R � 50EL, our

numerical calculation agrees with the exact result in the large Raman limit (⌦R � 4EL,⌦rf , ✏) to

better than 10%; however, in our experiment, ⌦R is not sufficiently large and we instead compare

our results to the numerically computed bandstructure.

The e↵ective mass is given by m⇤ = ~2[d2E(kx)/dk
2
x]

−1, where the derivative is evaluated at

the point of interest (this is at kx = kmin, unless otherwise indicated). In the tight-binding limit,

the tunneling matrix element is t=(m/m⇤)/⇡2 (Fig. 8.4,c). However, the general relation between

e↵ective mass and tunneling amplitude is m/m⇤(kx)=⇡
2 cos(⇡kx/kL − φ)t/EL.

Figure 8.5a presents the calculated width ∆E = E(kx = 1) − E(kx = 0) of the lowest energy
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Figure 8.6: E↵ective mass and Peierls phase in the engineered lattice potential. a. Comparison
between free-particle dispersion and the lowest band structure of a particle in an e↵ective lattice
potential where ~(⌦rf ,⌦R,⌦z) = (0.75, 10, 0)EL. For small displacements around the minimum,
the dispersion in the lattice can be expressed as E ⇡ ~2(kx − kmin)

2/2m⇤ (dashed curve), where
m⇤ is the e↵ective mass. b. Shift of the bandstructure to kmin/kL = φ/⇡ due the introduction a
Peierls phase φ. c. In the absence of the lattice (closed symbols), the oscillations were induced by
suddenly applying and removing a Stern-Gerlach field gradient; the measured sloshing frequency is
that of the optical trap fx = 17.3(8) Hz. When the lattice is on [open symbols, ~(⌦rf ,⌦R,⌦z) =
(0.75, 10,−1.6)EL], the particles behave as heavier objects and the sloshing frequency is f ⇤ =
9.9(7) Hz; the measured parameters are: φ/⇡=−0.57(1); m⇤/m=3.05(5), and t/EL=0.033(1).

band for the e↵ective lattice potential as a function of ⌦rf and ⌦R, with ⌦z=0. Using the relation

between the depth V0 of a lattice and the width of its lowest energy band ∆E (see Chap. 7), we

computed the e↵ective depth of the engineered Zeeman lattice, shown in Fig. 8.5b. Finally, we also

investigated the dependence of m⇤/m on the coupling strengths ⌦rf and ⌦R, at ⌦z =0. Figure 8.5

summarizes the fact that the deeper the lattice, the flatter the lowest band and the more massive

the particles behave.

8.4 Experimental characterization

We applied the engineered lattice to mF = −1 87Rb BECs, and designed our experiments to

measure: the e↵ective mass m⇤, the amplitude of their tunneling matrix element t, the acquired

Peierls phase φ, and the short time dynamics under such periodic potential. These experiments

can be categorized as follows: (a) we suddenly induce sloshing to extract m⇤, t and φ; (b) we

adiabatically change the bandstructure to directly measure φ; or (c) we abruptly turn-on the lattice

to investigate BEC dynamics.

8.4.1 System preparation. All experiments start with 87Rb BECs in the |F=1,mF =−1i state
in a crossed optical dipole trap with frequencies (fx, fy, fz)=(13, 45, 90) Hz 1. In the presence of a

1Both the trap frequencies and λ were slightly di↵erent in some of the experiments: (f
x

, f

y

, f

z

)=(17.3, 41.4, 90) Hz,
and λ=790.14 nm
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Figure 8.7: Measured e↵ective mass at ⌦z =0. a. Comparison of the oscillations of a BEC in the
|mF =−1i state to those in an rf-Raman dressed BEC [~⌦R=12.4(9) EL and ~⌦rf=2.04(6) EL]. The
curves are fits to a sinusoid from which we obtain fx=14.0(1) Hz and f ⇤=5.3(1) Hz, thus m⇤/m=
7.0(3) and t=0.015(1)EL. b. Measurements of m⇤/m as a function of ⌦R and ⌦rf . The curves depict
the expected m⇤/m ratio.

uniform bias field2 B0ey, we apply an rf magnetic field with frequency ∆!/2⇡= gFµBB0=3.25 MHz

and prepare the BEC in the lowest energy rf-dressed state [5]. Two λ = 790.33 nm Raman laser

beams, counter-propagating along ex and di↵ering in frequency by ∆!, couple the BEC’s internal

degrees of freedom with strength ⌦R (Fig. 8.1a,b). The combination of rf and Raman coupling

creates a 1D lattice potential along ex, the direction of momentum exchange defined by the Raman

beams.

8.4.2 Sloshing experiments. Starting with the rf-dressed state described in above, we ramped

the Raman beams from 0 to ⌦R > 4 EL/~ in 70 ms. Then we ramped the rf coupling strength to

an adjustable final value ⌦rf in 2 ms, such that an e↵ective Zeeman lattice was created. We induce

dipole oscillations [6, 127] by applying a synthetic electric field (see Sec. 5.4.6), achieved by ramping

the z-component of the Zeeman field to ~⌦z ⇡ 2EL and then jumping it back to some final value3 in

2The long term drift of the Zeeman field defining the splitting of the hyperfine levels was about 0.2kHz=0.05E
L

over a data acquisition period of 1.7 hr.
3To study rf-Raman dressed states with small ⌦R < 4 ER, where the band structure has sharp features near

the avoided crossings at k
x

=±2k
L

, we followed the previously described procedure to prepare a dressed state with
⌦R > 4 ER, kick the atoms with the synthetic electric force and then ramped ⌦R > 4 to its final small value in 200
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2 ms. The atoms experience a net force equal to the rate at which the minimum of quasimomentum

is changed (proportional to the rate at which their mechanical momentum changes), thus they

initiate oscillatory motion in the dipole trap.

8.4.2.1 Dynamical instabilities. Figure 8.6 summarizes the ideas for the sloshing experiments. The

energy-momentum dispersion relation of a free-particle is ~2k2
x/2m; in the presence of a lattice

we obtain bandstructure (Fig. 8.6a); the modification of the dispersion relation is characterized

by a new e↵ective mass m⇤, and around a minimum of the lowest energy band we obtain E ⇡
~2(kx)2/2m⇤. When ⌦z 6= 0 we introduce a Peierls phase φ and shift the bandstructure to kmin/kL=

φ/⇡; the rate of change in the minimum of quasimomentum is felt by the atoms as a force, thus they

begin oscillatory motion in the optical dipole trap (Fig. 8.6b). A comparison between free-particle

and lattice sloshing is shown in Fig. 8.6c. We realized sloshing experiments in two regimes: (i) at a

final ⌦z=0 to focus on m⇤/m; and (ii) at variable ⌦z to measure the Peierls phase φ.

i. Measurements at final ⌦z = 0. We obtain the e↵ective mass m⇤ by measuring shifts in the

oscillation frequency as a function of the coupling strengths ⌦R and ⌦rf . The atoms slosh in the

lattice for a variable time ⌧ , after which we remove all coupling and confining potentials (thus

projecting the final spin-momentum superposition into bare atomic states) and absorption image

after a 28.2 ms time-of-flight (TOF). Figure 8.7 shows that the measured e↵ective to bare mass ratio

m⇤/m=(fx/f
⇤)2, as a function of ⌦R and ⌦rf , is in good agreement with calculations. Those data

provide the tunneling matrix element amplitude t/EL=(m/m⇤)/⇡2 in the tight-binding regime.

ii. Measurements of the Peierls phase at variable ⌦z. We focus on the robustness of the Peierls

phase by first adiabatically loading to φ=±⇡ (the condensate sits at the edge of the Brillouin zone)

and then suddenly changing both ⌦z and ⌦rf to new values (changing both φ and t). We modulated

the rf coupling strength as ⌦rf = ⌦rf0+∆⌦rf cos(2⇡frf⌦z), where ~⌦rf0 = 0.75EL, ~∆⌦rf = 0.23EL

and frf/~=0.4E−1
L . The resulting momentum space oscillations are centered at kmin. After a time

⌧ we release the BEC, and subsequently deload all atoms into a single bare spin state to finally

absorption image them after 13.1 ms TOF (see Sec. 8.4.3).

There are two main sources of dynamical instability in a BEC in a combined harmonic and

periodic potential. The first one is related to the critical momentum (kx = |kL/2|) beyond which

the system can evolve into a lower energy one by means of the emission of energy and momentum

conserving phonon-excitations, depleting the original condensate. The second condition arises from

the combination of interactions and the periodicity of the trapping potential.

We observed the first type of dynamical instability, namely the one that results in the depletion

of the superfluid when its velocity is greater than a critical velocity, and in the strong damping

of the oscillatory motion of the center of mass. We fit three oscillation cycles, 50 ms after the

ms.



152

E↵ective Zeeman field along z, ~⌦
z

/E

L

Figure 8.8: Measured Peierls tunneling amplitude and phase. a. Peierls phase φ measured using
adiabatic (crosses) and sudden (circles) changes of ⌦z. Vertical lines denote the first Brillouin
zone. b. Sloshing amplitude after suddenly changing ⌦z. We observed strong damping of oscillations
in the region shaded in gray. c. Tunneling amplitude t measured from oscillation frequency. The
rf coupling was modulated as a function of ⌦z to test the robustness of the Peierls phase φ. The
Raman coupling was held at ~⌦R = 10.0(8)EL. The dashed curves correspond to the expected
behavior calculated from Ĥrf+R, and the pink bands arise from the experimental uncertainty in ⌦R.

oscillatory motion started, with kx(⌧) = kmin + ∆kx cos(2⇡⌧f
⇤+ γ), where ∆kx is the amplitude,

and γ is an overall phase-shift whose average value is 0.9(1)⇡. For the most strongly damped data

the damping was nearly instantaneous; the system rapidly approached the equilibrium momentum

(kmin/kL = φ/⇡) and then oscillated with extremely small (but non-zero) amplitude about this

value. The region of strong damping shown in Fig. 8.8 coincides with the expected range∆kx > 0.5kL

(shaded gray region) for this dynamical instability [107].

8.4.3 Deloading into a single spin state. The deloading process consists on rapidly ramping

⌦z to 0, and taking ~⌦R!0 to zero in 500 µs while increasing ~⌦rf!3EL; this maps the occupied

crystal momentum kx to free-particle momentum. We then ramped ~⌦z!−140EL transferring all

atoms into |mF =+1i (see Fig. 8.9).

8.4.4 Adiabatic measurement of the Peierls phase. In the adiabatic method, we load a

BEC at kx = 0 and adiabatically change ⌦z, such that the BEC always sits at the minimum of

E(kx) located at kmin. The time scale for adiabaticity is set by the modified trapping frequency f ⇤

along the direction of the Raman beams. Once ⌦z reaches its final value, we remove the trapping
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Figure 8.9: Adiabatic measurement of the Peierls phase. Shown is a collection of absorption images
(13.1 ms TOF) of the momentum distribution of rf-Raman dressed states, after adiabatically ramp-
ing ⌦z (the z component of the e↵ective Zeeman field), band-mapped the rf-Raman dressed state to
reveal the occupied momentum states, and deloaded it into the single spin state |+1i. The shift in
the momentum distribution is a direct measure of the Peierls phase (Fig. 8.8a, circles); the e↵ective
mass (or equivalently the tunneling amplitude in tight binding) changes as a function of detuning
(Fig. 8.8c, circles), this is observed as a change in the aspect ratio of the atomic distributions.

potential and deload as described above. We image the atomic distribution after a 13.1 ms TOF,

revealing kmin (Fig. 8.9).

Measurements from the adiabatic and sudden methods are in good agreement with each other

and their expected values [30], highlighting the precise experimental control o↵ered by our rf-Raman

induced e↵ective Zeeman lattice. This agreement also demonstrates the robustness of our engineered

Hamiltonian to deliberate variations in ⌦rf of up to 0.25EL, as was anticipated by the absence of

⌦rf in the large ⌦R expression for φ. We find that the hopping phase is unaltered by small changes

in ⌦rf even when t changes significantly.

8.4.5 Short time BEC dynamics. Having discussed the behavior of atoms in the lowest band

of the lattice, we now explore the full lattice by suddenly turning it on, diabatically projecting

a ground state BEC into higher bands. At the beginning of such a pulse, an ordinary periodic

potential would first spatially modulate the BEC’s phase before the atoms begin to move [93]; our

e↵ective Zeeman lattice induces such a modulation but in a spin-dependent manner. We focus on

the ⌦R�⌦rf and ⌦R⌧⌦rf tight-binding regimes and investigate the spin and spatial structure of

our lattice. Our data extends well beyond the short-time phase modulation regime.

There exists no lattice in the absence of either Raman or rf coupling. As indicated in Fig. 8.10a,

we use two di↵erent methods to introduce our lattice on an initial spatially uniform state: (i) start-

ing with an rf-dressed state (with kx = 0), we suddenly (ton < 1 µs) turn on the Raman beams;
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Figure 8.10: BEC di↵raction from the e↵ective Zeeman lattice. a. Starting with an rf-dressed
(Raman-dressed) state, we suddenly turn-on the Raman (rf) field for a variable time ⌧pulse. b. Using
TOF absorption images of the projected spin-momentum distributions, we count the number of
atoms in each di↵racted order and determine its fractional population. Panels c-f depict time evo-
lution of these fractions. The curves are fits to the data, calculated from Ĥrf+R. The fit parameters
indicated in the figure are all within 12% from our calibrated values.
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Figure 8.11: Generation of the 1/3 flux Hofstadter model. a. Atoms tunneling along our engineered
1D lattice acquire but do not accumulate phase. b. A 1D optical lattice along ez allows motion in
2D, still without accumulation of phase. c. When the Peierls phase is spatially dependent along
ez, atoms are able to acquire a net phase. d. Schematic showing e↵ective 1/3 flux per plaquette
modulo 1. The color scale indicates the e↵ective phase gradient induced by the vector lattice. Atoms
acquire phase as they hop along ex, in contrast, no phase is acquired by hopping along ez. In c.-d.
the phase φj

z

at sites with index jz is φ0=0,φ1=2/3 and φ2=−2/3.

or (ii) starting with a Raman-dressed state [5] (a superposition of |mF = 0, kx = 0i and |mF =

±1, kx ⌥ 2kLi), we suddenly turn on the rf-field.

After holding the lattice on for a time ⌧pulse, we suddenly turn o↵ the rf and Raman fields,

together with the confining potential. The atoms are projected onto the bare spin-momentum basis

and separate in TOF in the presence of a magnetic field gradient (along ez), allowing us to resolve

their spin and momentum components.

We observe detectable population in states with momenta up to |kx|  4kL (Fig. 8.10b). We

perform such experiments for ⌦R/⌦rf ⇡ 3 and 5. We minimize the e↵ects of interactions by working

with small BECs (⇡ 9⇥104 atoms). Figures 8.10c-f show the fraction of atoms in each di↵racted

order evolving with time. We observe multiple revivals of the initial spin-momentum state and

find symmetry in the population dynamics of spin-momentum states with opposite momentum and

opposite spin. The curves represent fits to the populations in all spin-momentum components. The

parameters from the fits are all within 10% for our calibrated values, demonstrates that the spin-

momentum dynamics are well described by the unitary evolution of the initial states under Ĥrf+R.
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8.4.6 Spontaneous emission limited lifetime. We measured a spontaneous emission limited

lifetime of 0.50(8) s for the dressed rf-Raman dressed system with ⌦rf=0.75EL and ⌦R=10EL. The

lifetime of the dressed systems can be simply increased by a factor of 4, by going to a configuration

where the Raman beams are orthogonal to each other, such that EL is decreased by a factor of 2,

and by working at a reduced Raman coupling strength (our technique works well down to about

⌦R=5EL) [7].

8.4.7 1/3-Flux gauge equivalent Hofstadter model. Having demonstrated the experimental

control on the the Peierls tunneling phase in a 1D lattice potential, we propose to extend our results

into 2D to create a flux lattice [1, 122] that is topologically equivalent to the Hofstadter model with

flux density nΦ=1/3 per plaquette.

Particles moving in our engineered 1D lattice cannot accumulate phase (Fig. 8.11a) as is required

to simulated the physics of materials in extreme magnetic fields. By adding a 1D optical lattice along

ez, we allow the atoms to move in the xy-plane, still with out accumulation of phase (Fig. 8.11b). It

is by associating a spatial dependence to the Peierls phase along ez [7], that atoms moving in the

lattice would acquire a non-zero phase. In particular we propose to modulate the Peierls phase (via

⌦z) using a spin dependent lattice with a period 3a/2 (e.g., from an additional 790 nm laser, nearly

counter-propagating). By exploiting the fact that the phase is defined modulo 2⇡, in a similar way

of the flux rectification mechanism proposed in Ref. [128], atoms in this lattice would realize the

physics of a 2D electron gas in a uniform strong magnetic field. It can be demonstrated that this

scheme has non-trivial Chern numbers [129] as those of the nΦ=1/3 Hofstadter model: (1,−2, 1).

8.5 Conclusions

We realized a 1D lattice potential for ultracold atoms using only rf and Raman transitions, in

which the tunneling matrix element is in general complex. This work constitutes a first step towards

realizing flux lattices [122], in which the physics of charged particles in strong magnetic fields can

be simulated. The tunability of the Peierls phase achieved with our rf-Raman lattice would allow

the observation of nonlinear e↵ects of ultracold atoms in 1D periodic potentials, such as atomic

density modulations with periodicity larger than the lattice spacing [130].
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Chapter 9

Matrix valued gauge fields: spin-orbit coupling in BECs

Light-induced artificial gauge fields allow experimentalists to overcome the limitations imposed by

the neutrality of charge in ultracold atom systems, and have succeeded in the realization of artificial

electric [6] and magnetic fields [7]. Taking advantage of the extraordinary control o↵ered by the

manipulation of both light fields and ultracold atom internal degrees of freedom our experiments

have now turned to the simulation of matrix valued artificial gauge fields, in particular of spin-orbit

coupling [9]. This chapter describes our experimental realization of spin-orbit coupling (SOC) not

only in ultracold atomic gases, but in a bosonic system of any kind.

Spin-orbit coupling is at the core of the spin-Hall e↵ect [74, 75]. The spin-Hall e↵ect refers to

the generation of a pure spin current transverse to an applied electric field in the absence of applied

magnetic fields, where spin accumulation is expected at the edges of the sample. The spin-Hall

e↵ect has important potential use in the field of spintronics where the control of the spin degree

of freedom, in this case in the form of spin currents, is essential. Evidence of the spin-Hall e↵ect

has been observed in thin films of semiconductors [24], metals [131] and other condensed matter

systems [132, 133, 134].

The quantum spin-Hall phase can be a macroscopic signature of time reversal invariant topo-

logical insulators [12], i.e. electronic materials that have a bulk band gap like an ordinary insulator

but allow protected charge and spin conducting states on their edge (2D) or surface (3D). Exciting

new states can occur at the surface of a topological insulator [25, 135]; in particular they would

lead to states supporting Majorana fermions [13] and are potential ingredients for the realization of

topological quantum computation [27].

Ultracold atom systems, with their extreme purity and tunable experimental control, are ideal

candidates to investigate spin-orbit coupling phenomena, including generalized s > 1/2 coupling

schemes [28] which do not have a condensed matter analog, as is the case for the “spin-1/2” bosonic-

SOC described here.



158

=

Figure 9.1: Spin-Orbit coupling as a momentum dependent vectorial Zeeman field. The thickness of
the vectors (arrows) indicates the strength of the SOC. a. Rashba SOC shows circulation. b. The
linear Dresselhaus type SOC resembles a quadrupole field. c. We engineered an equal sum of Rashba
and Dresselhaus SOC. It has a single non-zero vectorial component whose magnitude depends on
kx.

9.1 Spin-orbit coupling

SOC can most simply be understood for particles moving in the presence of a static electric field

E0. Under a Lorentz transformation to the moving frame of a particle with momentum ~k, the elec-
tric field gives rise to a momentum dependent magnetic field [51] B0(k) = (−ky, kx, 0)~E0/mc2. The

SO interaction is the Zeeman interaction of the spin of the particle and the magnetic field B0(k),

namely −µ ·B0(k) / kyσ̂x−kxσ̂y; this particular combination of spin-momentum terms is known as

the Rashba SO interaction and σ̂j stand for the Pauli matrices, where j 2 {x, y, z}. The breakdown
of inversion symmetry is responsible for the linear Dresselhaus type of spin-orbit coupling, which is

proportional to −σxky−σykx. These two types describe SOC in solids to linear order in 2D.

A general expression for linear spin-orbit coupling in 2D spin-1/2 systems is

H=
~2k2

2m
1̂ +

⌦

2
σ̂z − ↵(kyσ̂x − kxσ̂y)− β(−kyσ̂x − kxσ̂y), (9.1)

where ↵ and β correspond to the Rashba and Dresselhaus SOC strengths, respectively. Figure 9.1

displays the nature of the momentum-dependent Zeeman field associated with each of the above

SO interactions [(a) and (b)] and their equal sum (c), i.e. when ↵=β the spin-orbit coupling term

is 2↵kxσ̂y.
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Figure 9.2: Setup and level diagram for SO coupling experiments. a. A uniform bias field B0ey
Zeeman splits the hyperfine sublevels of an F = 1 87Rb BEC, and a pair of Raman beams illuminate
the atoms. b. The field strength B0 generates a large quadratic Zeeman shift ~✏/EL � 1 which
e↵ectively decouples the third spin state. By adjusting the detuning δ we select the states |−1i = | #i
and |0i = | "i to form an e↵ective two-level system.

9.2 The Raman coupling scheme for an effective spin-1/2 system

We work with a BEC of 87Rb atoms in the F = 1 ground state manifold, prepared in an

optical dipole trap with frequencies (fx, fy, fz) = (50, 50, 140) Hz formed at the intersection of

a pair of 1064 nm laser beams. A bias field B0ey Zeeman shifts the |mF = ±1i spin states by

!Z/2⇡ ⇡ 4.81 MHz, and introduces a quadratic Zeeman shift ✏/h ⇡ 3.39 kHz.

Figure 9.2 shows the schematic of the experimental setup with which we realize SOC [9]. We

optically dress a BEC with a pair of Raman lasers [5] with λ= 804.1 nm and propagating along

(ey ± ex)/
p
2, whose frequency di↵erence was kept constant at ∆!L/2⇡=4.81 MHz. The detuning

from Raman resonance is defined as δ=∆!L−!Z , and in experiment was controlled by small

changes to B0. The Raman field is characterized by a coupling strength ~⌦R, which is experimentally

controlled by the intensity of the lasers.

As discussed in Chapter 5, when expressed in the basis of states coupled by the Raman field

{| − 1, kx+2kLi, |0, kxi, | + 1, kx−2kLi}, in the frame rotating at ∆!L and making the RWA, the

combined kinetic energy and Raman interaction Hamiltonian becomes

ĤR=

0
B@

~2
2m

(kx + 2kL)
2 + ~δ ~⌦R/2 0

~⌦R/2
~2k2

x

2m
− ~✏ ~⌦R/2

0 ~⌦R/2
~2
2m

(kx − 2kL)
2 − ~δ

1
CA . (9.2)

Figure 9.3 shows the eigenenergies of ĤR as a function of the quasimomentum kx in di↵erent ex-

perimental regimes. The continuous, dashed and dot-dashed curves indicate the ground, first- and

second-excited dressed energy levels: E0(kx), E1(kx) and E2(kx) as a function of the quasimomen-
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tum kx. Absent the Raman dressing ⌦R = 0, the Hamiltonian is diagonal in the bare spin-momentum

states with eigenenergies lying on the principal diagonal of Eq. (9.2); these eigenenergies correspond

to free spin-mF particles with dispersions / (kx − 2mFkL)
2 shifted by the Zeeman e↵ect (dotted

curves in Fig. 9.3).

9.3 SOC in an effective two-level system

Under typical experimental conditions, where ✏ ⌧ ⌦R, the bare spin-momentum states are

almost degenerate as shown in Fig. 9.3a. As the bias field is increased and ✏ is comparable to ⌦R,

the energy of the bare state |0, kxi significantly decreases as indicated in Fig. 9.3b. By making

the detuning |δ| = ✏, we can achieve the degeneracy for a pair of bare states; Fig. 9.3c shows the

particular choice δ=−✏, where we create the degenerate pair {|− 1, kx + 2kLi, |0, kxi}. In contrast,

the spin-momentum state | + 1, kx − 2kLi becomes less energetically favorable, being away from

the degenerate system by ∆E=+2~✏. Figure 9.3d shows the small Raman coupling regime, where

✏�⌦R, for the degenerate pair at δ=−✏. [Note that as ⌦R increases one must tune δ to keep the

minima degenerate (Fig. 9.4a).]

We prepare the atoms in the ground Raman dressed state, where they experience an e↵ective

energy-momentum dispersion relation given by E0(kx). At the minima of the dispersion curves (open

symbols in Figure 9.3), the group velocity vg=@E/~@kx is zero; a wave packet would be static and

well behaved in such points. The dispersion relation E0(kx) exhibits a single minimum in the large

coupling limit, ~⌦R ≥ 4EL, but bifurcates in the small Raman coupling regime ~⌦R < 4EL. This

defines two important limits: the double well – or spin-orbit – limit in which the physics is best

understood in terms of an e↵ective “spin-1/2” system, where each dressed spin lives at a minimum

with zero group velocity; and the single minimum – or vector potential – limit where we have

“spinless bosons” with which have demonstrated artificial electric and magnetic fields for ultracold

neutral atoms (see Chapter 5).

Summing up, to achieve an e↵ective two-level system under SOC we require: a large quadratic

Zeeman shift ✏> 4EL; a detuning of comparable magnitude; and small Raman coupling strengths

⌦R < 4EL for the lowest band E0(kx) to exhibit double minima. I want to emphasize that we

are exploring the same experimental configuration as in Chapter 5, with the same lasers but in a

di↵erent Raman coupling regime, in a di↵erent basis of states.

Figure 9.4 shows the calculated eigenenergies of the coupling Hamiltonian, Eq. (9.2), in the

limit where ~✏ � 1EL. The lowest energy band E(kx) was calculated for various Raman coupling

strengths, at ✏ = 3.8 ER, and the detuning δ was adjusted for the dressed spins | #0i and | "0i to be

energetically degenerate.
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Figure 9.3: Dispersion relations in a Raman dressed system. Free particle spin-momentum states
(dotted parabolae), coupled under Raman dressing [Eq. (9.2)], become new dispersion relations for
dressed atoms. Our ultracold atomic sample is prepared at the energy minima (open symbols) of
the lowest dressed state E0(kx) (continuous curve), where the group velocity is vg = 0. Panels a.-
c. show the large coupling limit, ~⌦R ≥ 4EL, where E0(kx) has a single minimum and the physics
is described in terms of “spinless bosons”. Panel d. shows the regime where E0(kx) develops two
minima, which are populated by the spin states of an e↵ective “spin-1/2” system, and SOC is most
evident.
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strength ⌦R. b. Calculated eigenenergies of the SOC Hamiltonian Eq. (9.2) for the detuning indi-
cated in a, ~✏= 3.8 EL and ⌦R = 0 (grey) to 5EL (purple) in 0.5EL steps. c. Measured minima
locations as a function of ⌦R; the dashed curves indicate the expected behavior. For ⌦R>4 EL, the
single-minimum dispersions correspond to those of spinless particles.

9.3.1 Two-level spin-orbit coupling Hamiltonian Having intuitively justified the e↵ective

decoupling of the highest energy bare state, we can restate the Raman coupling Hamiltonian in the

reduced basis of pseudo-spin-1/2 states {|− 1, kx + kLi, |0, kx − kLi}. Notice that the bare states in
the reduced basis still di↵er in momentum by 2~kL but are centered symmetrically with respect to

kx = 0. I define an e↵ective detuning δ0=δ + ✏ such that

ĤR=

 
~2
2m

(kx + kL)
2 + ~δ0/2 ~⌦R/2

~⌦R/2
~2
2m

(kx − kL)
2 − ~δ0/2

!
. (9.3)

If expressed in terms of the 2⇥ 2 Pauli matrices (σ̂x, σ̂y, σ̂z) and the 2⇥ 2 identity matrix 1̂, the

e↵ective two-level coupling Hamiltonian is

ĤR=

✓
~2k2

x

2m
+ EL

◆
1̂ +

~⌦R

2
σ̂x +

~δ0

2
σ̂z + 2

EL

kL
kxσ̂z, (9.4)

where the last term corresponds to an equal mixture of Rashba and Dresselhaus SO coupling

terms. Two pseudo-spin rotations1 suffice to demonstrate the equivalence between the SOC term in

1The explicit transformation is σ̂0
j

= Û

z

(✓)Û
y

(✓)σ̂
j

Û

†
y

(✓)Û†
z

(✓); where Û
j

(✓) are the rotation operators for a spin-1/2
system, ✓=⇡/2 and j = x, y, z. These rotations give: σ̂0

x

= σ̂

z

, σ̂0
y

= σ̂

x

and σ̂

0
z

= σ̂

y

.
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Eq. (9.4) and that in Eq. (9.1) with ↵ = β. The rotated Hamiltonian is

Ĥ 0
R=

✓
~2k2

x

2m
+ EL

◆
1̂ +

~⌦R

2
σ̂z +

~δ0

2
σ̂y + 2

EL

kL
kxσ̂y. (9.5)

The spin-orbit coupling strength ↵=EL/kL / kL is independent of the experimental parameters

other than the geometry of the Raman beams, and reaches its maximum when the beams counter-

propagate. Another method for tuning the SOC strength is by means of the modulation of ⌦R via

intensity of the the lasers [31], and will be discussed in Sec. 9.4.

The full Hamiltonian Ĥ of the system includes the kinetic energy terms along the directions

una↵ected by the Raman beams, i.e. [~2(k2
y + k2

z)/2m]1̂; by adding this term and rearranging the

resulting expression, we find that the gauge field we created [Â = (−kLσ̂y, 0, 0)] is Abelian with

trivially commuting components and

Ĥ=
~2(k− Â)2

2m
+

~⌦R

2
σ̂z +

~δ0

2
σ̂y. (9.6)

9.4 Tunable Spin-Orbit coupling strength

Our experimental setup realizes SOC with uniform coupling strength ↵=EL/kL / kL, set by

the spatial orientation of the Raman beams; ↵ reaches its maximum value when the beams counter-

propagate. Another method for tuning ↵ is by temporally modulating ⌦R via the intensity of the

lasers [31].

The SOC Hamiltonian in an F = 1 system can be expressed in the unmodulated case as:

Ĥsoc=
⌦Rp
2
F̂x −

✓
δ − ~kL

m
kx

◆
F̂z +

✓
✏

~
+

4EL

~

◆
F̂ 2
z + E01̂; (9.7)

where F̂ = (F̂x, F̂y, F̂z) is the F = 1 angular momentum operator, whose entries are proportional

to the spin-1 Pauli matrices; E0 is a uniform energy o↵set and 1̂ is the 3⇥ 3 identity matrix.

Assuming that the Raman coupling strength is modulated in time as ⌦R=⌦0 + ⌦ cos(!t), the

above expression is approximately

Ĥsoc ⇡
⌦0p
2
F̂x−

✓
δ−~kL

m
kx

◆
J0(⌦/!)F̂z+

✓
✏

~
+
4EL

~

◆⇢
J0(2⌦/!)F̂

2
z + (F̂ 2

x − F̂2)


J0(2⌦/!)− 1

2

��
;

where we identify that the SOC strength varies as the zeroth order Bessel function2 J0(⌦/!). For

a fixed modulation frequency !, an increase in the Raman coupling strength ⌦ is reflected as a

2In this treatment it useful to keep in mind the Bessel identities: f [⌦ sin(!t)/!] =
P

n

J

n

(⌦/!)f(n!t); where f

is either of the circular functions f(x) = sin(x), cos(x); and the limits of the sum are −1 < n < +1.
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reduction of the SOC strength.

9.5 Experimental characterization

The experiments described below consist of the demonstration of spin-orbit coupling in an

e↵ective “spin-1/2” bosonic system in the presence of Raman dressing; and the demonstration of

the dynamical control on the SOC strength. All these projects share a common system preparation

(described below), and each will be described within this section.

9.5.1 System preparation Our experiments start with a nearly pure 87Rb BEC in the |F =

1,mF=−1i state in a crossed optical dipole trap3 with frequencies (fx, fy, fz)=(50, 50, 140) Hz. We

prepare spin mixtures using an auxiliary rf field Brfex, characterized by an oscillating frequency

!rf/2⇡ = 4.81 MHz and a Rabi frequency ~⌦rf ⇡ 5EL, to realize a partial rapid passage to δ0 = 0

by ramping the magnitude of B0ey in 15 ms [5]. On resonance, the Zeeman splitting is !Z/2⇡ =

4.81 MHz and the quadratic Zeeman shift is ~✏=1.91EL. We reduced ~⌦rf to about 0.085EL⌧~✏
in 6 ms and suddenly turned o↵ ⌦rf to project the system into a balanced spin superposition of

|"i and |#i. Finally, the Raman laser beams (Fig. 9.2a) were adiabatically turned on to their final

coupling strength ⌦R in 70 ms, and we let the system equilibrate by holding this configuration

during th=70 ms.

9.5.2 Spin-orbit coupled BECs To measure the quasimomentum of the dressed spins |"0i and
|#0i, we relied on the preparation of balanced spin superpositions and on the precise control of the

detuning δ to achieve double wells with degenerate energy minima.

We measured the location of the momentum minima as a function of the Raman coupling

strength. We start with a BEC with equal population in each of the bare spins, and then adiabat-

ically increased ⌦R. We ramped the detuning δ within the expected values (Fig. 9.4a) to achieve

balanced populations in each well and then we made various measurements in the nominally bal-

anced configuration. For detection we projected the dressed state into its bare spin-momentum

components by suddenly turning o↵ the Raman lasers and the dipole trap, then we absorption

imaged the atoms after 30.1 ms time of flight (TOF). For ~⌦R<4EL, we observed two momentum

components in each spin state, which correspond to the regime where the dispersion relation is a

double well in momentum space. In contrast, for ~⌦R≥4EL both spin states were part of the same

momentum family, i.e. they were located at the single minimum of the dispersion relation.

The data in Fig. 9.4c is the result of averaging over at least 10 realizations; the fact that

we observe a correlation between spin and momentum, demonstrates the existence of SOC in an

e↵ective “spin-1/2” system under Raman dressing; furthermore we observe good agreement with

3For these experiments the 0th order dipole beam had 1/e2-radii of w0 ⇡ 65 µm; while the 1st order dipole beam
had an elliptical profile with 1/e2 radii of w1 ⇡ 120 µm and w1z ⇡ 50 µm.
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the expected behavior (dashed curves). The deviation from the expected behavior is both due to

interactions between the e↵ective spins (Sec. 10.1.1) and magnetic field noise (Sec. 10.3.2).

A complementary approach to realize the above measurement is ramping the Raman coupling

strength from ~⌦R>4EL to zero by maintaining balanced populations once we reached the double

well regime. This method is particularly challenging since we need to guarantee that the detuning

δ at each point in the decreasing ramp of the Raman coupling is properly matched to achieve the

balanced condition. Similar results were measured, but the population balance was not maintained.

9.5.3 Tunable spin-orbit coupling strength The experimental setup for the tunable SOC

experiments is slightly di↵erent from the one shown in Fig. 9.2a. The Raman lasers still propagate

along ey ± ex, but their wavelength is set at λ = 790.1 nm (1EL/h = 1.835 kHz). Since the nature

of the coils generating the fields in the xy plane limited the amplitude of the field to B0 ⇡ 7.2 G,

we switched to a larger field this time along ez to reach a Zeeman splitting !Z = 2⇡ ⇥ 15 MHz

(B0 = 21.42 G), and a quadratic Zeeman shift h✏= 17.96EL. In this regime, the presence of the

third hyperfine state |mF = +1i is negligible. The frequency di↵erence between the Raman lasers

was kept constant at ∆!L/2⇡ = 15 MHz.

Our experimental procedure is very similar to that described in Sec. 9.5.1. We start with a

BEC in the F = 1 ground state manifold, prepared in a pure optical dipole trap with frequencies4

(fx, fy)=(31.6, 37) Hz formed at the intersection of a pair of 1064 nm laser beams. Prior to dressing

the atoms with the Raman field, our initial state was either a balanced spin mixture or a single

spin component:

Spin mixture: We prepare spin mixtures using an auxiliary rf field Brfex, with oscillating fre-

quency !rf/2⇡=15 MHz and a Rabi frequency5 ~⌦rf ⇡ 2.5 EL, to realize a adiabatic rapid passage

to δ0=0 by ramping the magnitude of B0ey in 15 ms [5]. We reduced ⌦rf to about 0.04EL⌧~✏ in
6 ms and suddenly turned o↵ the rf-field to project the system into a balanced spin superposition

of |"i and |#i.
Single spin state: Because our BEC starts in the | #i spin state, we ramp the Zeeman field

to 1 kHz below resonance (!Z/2⇡ = 15 MHz) and start the modulation. We observe unwanted

population of the |"i state, probably due to magnetic-field-noise-induced coupling to the |"i state,
since the double well’s barrier is so small. To start in |"i, a rapid passage with starting with the rf

frequency ⌫rf (0<δ<✏) should suffice.

4Our dipole trap was modified from (f
x

, f

y

) = (73.2, 28.4) Hz to (f
x

, f

y

) = (31.6, 37) Hz to avoid having trap
frequencies close to the 60 Hz frequency of the power line (under Raman dressing the e↵ective mass along e

x

is such
that the oscillating frequency in the trap is close to 60 Hz).

5The rf-coupling strength at this higher frequency was slightly attenuated due to the bandwidth of the rf-amplifier
and the antenna design.
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We label the Raman lasers as RamanA and RamanB; each was ramped from zero to its final

coupling strength as indicated in Fig. 9.5a. Only the intensity of RamanB is modulated, using a

sinusoidal ramp with zero o↵set, turned on under a linear ramp envelope in 100 ms. The atoms are

held in the Raman-dressed configuration for 50ms, after which all potentials are snapped-o↵ and the

atomic distributions are allowed to expand for 34.45 ms TOF, during part of which a Stern-Gerlach

field separates the spin components along ey (Fig. 9.5b).

Our cold atom systems were driven at !/2⇡ = 10 and 20 kHz. Fig. 9.5b shows the spin mo-

mentum distributions at ⌦R = 0 and ~⌦R ⇡ 10EL driven at 10 kHz. Figure 9.5c,d summarizes

our measurements and shows the excellent agreement among various data sets whose preparation

is either:

a. Initial state: | #i in isotropic trap (fx, fy) = (31.6, 37) Hz. We scanned the final intensities of

both Raman beams simultaneously to set ⌦ (red and blue circles). RamanA was ramped to a fixed

final value, and we scanned the final intensity of RamanB to vary ⌦ (yellow and gray circles);

b. Initial state: balanced spin mixture in isotropic trap. Both final intensities varied together (pur-

ple and green circles); and

c. Initial state: | #i in anisotropic trap (fx, fy) = (73.2, 28.4) Hz. Both final intensities varied

together (red and gray squares).

Figure 9.5c,d demonstrates tunable SOC as a function of ⌦R. For systems driven at 20 kHz, the

SOC strength is fully tunable within 0<~⌦R<20EL; we observed the scaled interval 0<~⌦R<10EL

when the system was driven at 10 kHz, as expected from the J0(⌦/!) dependence on the SOC term

of the Hamiltonian. As seen by the creation of a large thermal component (Fig. 9.5b-ii), a large

amount of heating was present in the driven system; this did not prevent the observation of tunable

SOC, but should be further investigated.

9.6 Conclusions

Being an essential ingredient of the spin Hall e↵ect and topological insulators, SOC is an im-

portant phenomenon to be investigated in ultracold atom systems; current experimental e↵orts in

our group have recently demonstrated the spin-Hall e↵ect [10] in a similar scheme as discussed in

this chapter. If experimentally controlled, SOC could trigger the development of spintronics de-

vices. Here we exploited extreme experimental control on ultracold atoms, and simulated spin-orbit

coupling in a “spin-1/2” bosonic system, a physical system with no analog in condensed matter.

Spin-orbit coupled Fermi gases have successfully being demonstrated [32, 33], and promise to

realize important physics phenomena such as topological insulators in fermionic neutral atom sys-

tems. The course of action of this experiment is not only to move on to fermionic systems, but

also to further investigate the possibility of engineering a lattice potential to study the physics of

spin-1/2 bosons in spin-orbit-coupled flat bands [136].
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Chapter 10

Control of interactions with artificial gauge fields

The control of interactions between atoms is an remarkable feature in ultracold quantum gases. The

interacting term in the Hamiltonian of ultracold atoms can be engineered either by the inclusion

of lattice potentials, or by the use of Feshbach resonances (both magnetic and optical) [43]. This

chapter describes the modification of interactions in 87Rb BECs as a consequence of Raman dressing.

Firstly, we focus on the SOC limit introduced in Chapter 9, with Raman coupling strengths

~⌦R < 4EL, and demonstrate that the SOC interaction drives a quantum phase transition in our

spinor system from a spatially miscible spin superposition to a spatially phase-separated state as a

function of the Raman coupling strength.

Secondly, we study colliding BECs under Raman dressing and characterize their scattering

products in the limit where ~⌦R > 4EL. We observe not only s- but also d- and g-wave contributions,

and study their dependence on ⌦R. The analogous e↵ect in fermionic systems would be to reach p-

wave contributions, essential to the observation of Majorana fermions as proposed in Refs. [76, 137].

10.1 A novel tool for tuning spinor interactions with light

Spinor condensates were first experimentally realized in a magnetic trap, by mixing two low-

field seeking spin states of 87Rb [138]. It was not until spin-independent optical traps were imple-

mented [139] that the spin degree of freedom could truly be considered a free parameter of the

system [140].

Here I consider low energy, spin preserving, contact interactions in a mixture of two spin com-

ponents of the F = 1 ground state manifold of 87Rb. The interaction potential between two spin-1

atoms is given by [140]

VS=c0 + c2 F1 · F2 ~−2; (10.1)

where c0 = (g0 + 2g2)/3 is the spin-independent term and c2 = (g2 − g0)/3 characterizes spin-spin

interactions; these coefficients are defined in terms of the interaction strengths gF = 4⇡~2aF/m,

which in turn depend on the s-wave scattering length aF . The nature of the spin mixture ground

state depends mostly on c2, the spin-spin interaction coefficient. If c2>0, the interaction energy is
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minimized by having the spins aligned anti-parallel to each other, which corresponds to the anti-

ferromagnetic or polar configuration. If c2<0, the energy is minimized when the spins are aligned

parallel and the system is in ferromagnetic state.

The interaction Hamiltonian Ĥint can be expressed in terms of the Clebsch-Gordan coefficients

as [140]

Ĥint=
1

2

Z
d3r

2fX
F=0

gF

FX
m

F

=−F

Ô†
F,m

F

ÔF,m
F

; (10.2)

where

ÔF,m
F

=
X

m1,m2

hF,mF |F1m1;F2m2i ̂m1 ̂m2 ; (10.3)

and  ̂m
F

(r) is the field operator for the annihilation of an atom in the state |F1,2 = 1,m1,2i at the
position r. Here we restrict ourselves not only to the F = 1 manifold1, but to the e↵ective two-level

system composed by the states | #i= |mF =−1i and | "i= |mF =0i (see Chapter 9); the e↵ective

Hamiltonian is reduced to

Ĥint =
1

2

Z
d3r
h
c0 ̂

†
" ̂

†
" ̂" ̂" + (c0 + c2) ̂

†
# ̂

†
# ̂# ̂# + 2(c0 + c2) ̂

†
# ̂

†
" ̂" ̂#

i
. (10.4)

Using normal order and introducing the density of each spinor component as  ̂†
m

F

 ̂m
F

= ⇢̂m
F

,

we obtain

Ĥint =
1

2
:

Z
d3r
⇥
c0⇢̂

2
" + (c0 + c2)⇢̂

2
# + 2(c0 + c2)⇢̂#⇢̂"

⇤
:,

Ĥint =
1

2
:

Z
d3r
h⇣

c0 +
c2
2

⌘
(⇢̂# + ⇢̂")

2 +
c2
2
(⇢̂2# − ⇢̂2") + c2⇢̂#⇢̂"

i
: . (10.5)

The first term indicates that the spin independent interaction described by (c0 + c2/2), depends

on the total density of the system. In contrast, the spin-dependent interaction described by c2

depends on which state the system is prepared, see e.g. the last term. For 87Rb atoms in F =1, the

interaction coefficients are c0/h=7.79 ⇥ 10−12 Hz cm3 and c2/~=−3.61 ⇥ 10−14 Hz cm3; thus for

the two-component mixture, the energy is minimized when both distributions spatially overlap: the

ground state is miscible [72].

10.1.1 Interaction between the optically dressed spins Under the SO interaction intro-

duced in Chapter 9, the e↵ective interaction between the dressed spin states | #0i and | "0i is

modified. When the interaction Hamiltonian is expressed in the basis of dressed states, a new spin-

dependent interaction term emerges whose strength is proportional to the Raman lasers intensity

1Refer to Appendix A for the specific values of the Clebsch-Gordan coefficients for the addition identical F = 1
angular momentum operators.
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squared. By adjusting the strength of the Raman induced interaction term, we drive a quantum

phase transition from a spatially mixed to a spatially separated state in a 87Rb spin mixture.

The eigenvalues and eigenvectors of the spin-orbit Hamiltonian ĤR given by Eq. (9.3) are2

E±(kx)=1 + k2
x ±

1

2

q
(δ0 + 4kx)2 + ⌦2

R; (10.6)

| ±(kx)i=
1p

2 [(4kx + δ0)2 + ⌦2
R]

1/4

 
±{[(4kx + δ0)2 + ⌦2

R]
1/2 ± (4kx + δ0)}1/2

⌦R{[(4kx + δ0)2 + ⌦2
R]

1/2 ± (4kx + δ0)}−1/2

!
. (10.7)

I will focus on the interaction between the particles occupying the minima of the lowest energy

dispersion relation E−(kx), shown in Fig. 10.1a. The eigenstates at these points are composed

mostly of a single spin species, but have a small admixture of their Raman coupled counterpart

(Fig. 10.1b). To obtain the minima locations of the lowest band, we compute @E−(kx)/@kx = 0,

which gives

kx=
δ0 + 4kxp

(δ0 + 4kx)2 + ⌦2
R

. (10.8)

For energetically degenerate double wells (δ0 = 0) the minima are located at k",#=⌥
p

42 − ⌦2
R/4,

this behavior is indicated in Fig. 10.1c. For Raman coupling strengths ⌦R  4 the dispersion

relation presents a single minimum, and the system is described in terms of spinless particles. We

are interested in studying the behavior in the small Raman coupling limit ⌦R < 4, where SOC is

the most suitable description.

2In this section, to obtain a simplified expression of the eigenenergies and eigenvalues, I have redefined all the
parameters in the Hamiltonian to be dimensionless; i.e. k

x

/k

L

! k

x

, ~δ0/E
L

! δ

0 and ~⌦
R

/E

L

! ⌦
R

.
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The eigenstates of the lowest band which occupy the minima of the e↵ective dispersion [located

at k",# = ⌥1, in the limit of weak Raman coupling (⌦R ⌧ 4)] are given by

|"0i ⇡
 

1− ⌦2
R/128

−⌦R/8

!
and | #0i ⇡

 
−⌦R/8

1− ⌦2
R/128

!
; (10.9)

this is, they have a large component from one bare spin, and a small contribution with amplitude

γ=⌦R/8. In the basis of bare spin-momentum states coupled by the Raman field, this mixture can

be expressed as

| "0, ki= | ", ki − γ| #, k + 2i and | #0, ki= | #, ki − γ| ", k − 2i. (10.10)

Inverting the unitary transformation between the dressed and the bare basis, allows to re-express

the eigenstates in second quantization form, with creation and annihilation operators including the

appropriate phases corresponding to the momentum transfer in real space

 ̂"(r)=  ̂"0(r) + γe2ikLx ̂#0(r) and  ̂#(r)=  ̂#0(r) + γe−2ik
L

x ̂"0(r). (10.11)
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Starting from the above field operators we obtain the modified interaction Hamiltonian

Hint =
1

2

Z
d3r
h⇣

c0 +
c2
2

⌘
(⇢̂0−1 + ⇢̂00)

2 +
c2
2
(⇢̂02−1 − ⇢̂020 ) + (c2 + c0−1,0)⇢̂

0
−1⇢̂

0
0

i
; (10.12)

where c0−1,0⇡8c0γ
2. In the presence of Raman coupling, the induced interaction term modifies the

nature of the ground state, and drives a phase transition from miscible (⌦R=0) to phase separated

for a Raman coupling strength above a critical value ⌦c =
p

−8c2/c0EL⇡0.19EL [9].

10.1.2 Mean-field phase diagram The phase diagram of the Raman coupled system (Fig. 10.2)

shows the configurations that minimize the energy of the system in di↵erent parameter regimes.

Single component phase. In the SOC limit (~⌦R < 4EL) the dispersion relation is a double-

well, whose energy minima are energetically degenerate when carefully balanced by the detuning

(Fig. 9.4). For non-zero detuning, the double well is unbalanced; the particles tend to condense in

the well with lowest energy unless there is a competing spin-dependent interaction energy which can

overcome δ, thus the system is mostly composed of a single dressed spin. This behavior is indicated

in the regions labeled as |#0i and |"0i in Fig. 10.2a,b.

Two component phase. Still considering the SOC regime (~⌦R < 4EL), the system can be a

mixture of the two dressed spins only for a small window of detuning (see Fig. 10.4). In the absence

of Raman dressing, the ground state is miscible; the interaction term characterized by c0−1,0 in

Eq. (10.12) modifies the state of minimun energy such that beyond the critical coupling strength ⌦c,

the mixture of spins avoids being spatially overlapping and the ground state is phase separated. In

the large Raman coupling limit (~⌦R ≥ 4EL), the atoms condense into the single minimum of the

lowest energy eigenstate and the system is a superposition of dressed spins whose dispersion relation

is that of a free particle with e↵ective mass m⇤=~2[d2E−(kx)/dk
2
x]

−1.

10.2 Synthetic partial waves in ultracold atomic collisions

An interesting signature of Raman dressing in the vector potential limit ~⌦R > 4EL, is the

modification of the e↵ective interaction between colliding BECs. The theory of scattering is well

understood by treating the wavefunction of the scattered particle in the formalism of partial waves;

in particular, ultracold collisions are characterized by the lowest energy and angular momentum

scattering partial wave, namely they experience short-range s-wave collisions (see Chapter 2).

Collisions between Raman dressed BECs can be understood in terms of higher order partial waves

when expressed in terms of the dressed basis (a similar treatment to the spinor case described in

Sec. 10.1.1); where part of the s-wave interactions redistributes in the form of higher order partial

waves. It is important to highlight that for the bosonic wavefunction to remain symmetric under
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particle exchange, only higher order partial waves with even parity are observed, namely d- and

g-wave scattering are expected.

The range of the e↵ective interaction is screened beyond that of van der Waals interactions (see

Chapter 2). The nature of the interactions in unchanged, but rather the structure of the collisional

products exhibits higher order partial waves.

10.3 Experimental characterization

The experiments described below consist of the observation of modified interactions between

Raman-dressed atoms in the F =1 ground state manifold of 87Rb as a function of the Raman cou-

pling strength. We measured a miscible-immiscible phase transition and characterized the scattering

products of colliding BECs under Raman dressing.

10.3.1 Phase transition from miscible to phase separated The preparation of BECs for

the miscible-immiscible phase transition phase transition experiments is identical to that described

in Sec. 9.5.1; the experimental setup and energy scales are indicated in Fig. 9.2.

We measured the location of the transition from spatially mixed to spatially separated as a

function of the Raman coupling strength ⌦, by quantifying the amount of spatial separation s of

the dressed-spin density distributions.

We prepared a balanced spin-momentum superposition as described above, and held the final

configuration for th up to 3 s. To determine the detuning window within which both spin states

coexisted, we ramped the final detuning and monitored the fraction of the condensed atoms in just
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|#i (Fig. 10.4a). These measurements define a metastable window where the transition from phase

mixed to phase separated is investigated (Fig. 10.4b).

For the longest hold time th = 3 s, we measured the miscibility of the dressed system from

their spatial density profiles n"0,#0 after TOF. The detuning was kept nominally on resonance by

maintaining an equal atom number in each well. We define the degree of phase separation to be

proportional to the product of the density distributions

s=1− hn"0n#0iq
hn2

"0ihn2
#0i

; (10.13)

where h· · · i indicates the spatial average over a single image. A miscible ground state corresponds

to n"0 = n#0 , i.e. s = 0; for a phase-separated state n"0n#0 = 0 and we obtain s = 1.

Figure 10.5 shows the measured phase separation s as a function of ⌦. The sudden increase in

the signal indicates a quantum phase transition at the critical coupling strength ⌦c = 0.02(2)EL,

driven by the Raman induced e↵ective interaction.

Due to finite size e↵ects, the transition is not sharp, as it would be in the case of an infinite

and homogeneous system. Our system can be considered as homogeneous as long as its size vastly

exceeds the spin-healing length3[141] ⇠s =
q
~2/2m|c2 + c0"0,#0 |n, where n is the local density. The

spin healing length sets the spatial extent of the boundary between the phase-separated spins; since

3The spin-healing length is the length scale of spatial variations in the density distribution by the spin-dependent
interactions.



176

a. Miscible to immiscible transition
Phase Separated Raman

Coupling
 0 0.19

Phase mixed

0.1E
L

0.3E
L

0.6E
L

| "i

| #i

Figure 10.6: Spatial density profiles across the phase transition. a. Spatial density profiles, mapped
from the dressed into the base spin states, indicating the degree of phase separation as a function
of the coupling strength. The spin populations in all images are nominally balanced within the
metastable region of detuning. The spatial overlapping of the spin distributions is colored white.

c0"0,#0 / ⌦2
R the spin healing length is reduced for increasing ⌦R>⌦c, and there is an enhancement

in the phase separation parameter s as shown in Figure 10.5a.

The time scale associated with the phase separation is determined by measuring s as a function

of hold time th above the phase transition, and fitting the data to an exponential as shown in

Fig. 10.5b. The fit’s time constant ⌧ =0.14(3) s indicates that the system had reached equilibrium

at th = 3 s hold time. (Although the domain pattern did change with time, the degree of separation

saturated).

10.3.2 Canceling magnetic field noise. To get a sense of the resolution and the tolerance on

magnetic field noise required for this task, let us revisit Fig. 9.4. The energy scale that imposes the

lower bound to magnetic field variations is the height of the barrier ∆E between the double wells,

whose dependence on ⌦R is approximatey ∆E=0.062(1)[(⌦R/EL)− 4]2 from a fit to the calculated

values. At a coupling strength 10% below the transition to single minimum, the barrier height is

only 0.1EL ⇡ h⇥17.7 Hz.

Our experiment is mostly sensitive to 60 Hz noise from the power line, but due to the small en-

ergy scales associated with our SOC experiments, stray magnetic field gradients are also an issue. We

characterize ambient noise as described in section 4.9, and mostly minimize it by identifying and

reducing (or if possible eliminating) the noise sources. Typical noise levels are observed as changes in

the detuning with standard deviation ~∆δ/2⇡⇡110 Hz; thus measuring the minima location of the

double well close to the transition to single minimum exhibits a larger uncertainty (Fig. 9.4c). Addi-

tionally, we cancelled stray gradients in the xy plane with two pairs of anti-Helmholtz coils, aligned

along ex + ey and ex − ey to 0.7 Hz/µm.



177

a. Experimental setup b. Level diagram c. Energy scales
ez

exey

B0

BEC ✏





!

Z

!

Z

!

L

+!

L

!

L

λ=791 nm

E

L

/h ⇡ 3.7 kHz

!

Z

/2⇡ = 3.25 MHz

~✏ = 0.42E
L

(f
x

, f

z

)=(13, 45) Hz

Figure 10.7: Setup and level diagram for collision experiments. a. A uniform bias field B0 Zeeman
splits the energy levels in 87Rb’s F =1 manifold, while a pair of counter propagating Raman beams
and illuminate an mF =−1 BEC.

10.3.3 Synthetic partial waves in ultracold atomic collisions. The experimental setup and

energy scales for the collision experiments are shown in Fig. 10.7.

The collision experiments started with a nearly pure 87Rb BEC of around 5⇥105 atoms in

a crossed optical-dipole trap with frequencies of (fx, fy, fz) = (13, 45, 90) Hz. The BEC was then

illuminated with a pair of Raman beams with wavelength λ=790.1 nm and coupling strength ⌦R;

the BEC was loaded in the lowest dressed band and split into two (initially spatially overlapping)

condensates with momenta ~kx =±2~kL per atom [11]. The dipole trap was immediately turned

o↵ (to↵ < 1 ms) after this preparation, allowing the collision between dressed condensates in the

absence of any confining potential.

The Raman coupling strength ⌦R was held constant during 2 ms while the scattering halos

formed, and the colliding BECs separated and expanded. After this initial 2 ms stage, we mapped

the occupied momentum states by transferring the atoms from the ground dressed state into the

bare |F =1,mF =+1i spin state [6, 11] and imaged the atomic distribution after a 36.2 ms TOF.

In the presence of the Raman dressing, we investigated scattering between identical BECs and

studied their collisional products. The main observable in this experiment are images of the scat-

tering halos formed as a consequence of the collisional process; the structure of these halos obeys

energy-momentum conservation laws, and is dictated by the shape of the lowest energy band of the

Raman dressed system. Figure 10.3 illustrates the scheme in which such BECs were set to interact.

The bottom panels in Fig. 10.3 show both: the scattering halos resulting from Ramman dressed

(c-f, bottom) and bare (g, bottom) colliding BECs; and their corresponding structure in cylindrical

coordinates (c-g, top) calculated using an inverse Abel transform.

Ultracold collisions are characterized by isotropic s-wave scattering halos as shown in Fig. 10.3g.

The distribution of the scattering products is uniform over the entire “shell” (g, top). In contrast, we

observe a significant inhomogeneity in the distribution of the scattering products (most noticeably

in c, top at ✓=⇡/2); and similar inhomogeneities can be quantified from the remaining images.
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An analysis considering higher order partial waves [11] of the scattering products, reveals the

presence of d− and g−wave components, typically energetically inaccessible in the regime of ultra-

cold atoms.

10.4 Conclusions

We observed modified interactions between ultracold atoms in the presence of Raman dressing

in two di↵erent regimes. In the limit when the Raman coupling strength is ~⌦R>4EL, we studied

ultralow-energy colliding BECs; we measured d- and g-wave contributions to the scattering products,

in addition to the expected s-wave. In the limit when ~⌦R < 4EL, we measured the e↵ective

interaction between the dressed spin states and determined a quantum phase transition from phase

mixed to phase separated.

The illumination of BECs with a pair of Raman beams has demonstrated to be a reliable

mechanism to control e↵ective interatomic interactions with light.
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Conclusions and Outlook

This thesis introduced experimental techniques to realize light-induced artificial gauge fields for

ultracold neutral atoms which allowed the demonstration of physical phenomena so far exclusive of

electronic systems. Taking advantage of the richness and the high degree of experimental control

of the atomic internal degrees of freedom, not only did we realize scalar valued but also matrix

valued artificial gauge fields. We also investigated the physics of ultracold bosonic systems in lattice

potentials without and with artificial gauge fields. Finally, we studied the e↵ects of Raman dressing

on the e↵ective interatomic interactions of ultracold atom systems.

The main results of this thesis and potential directions for further research are summarized

below.

Artificial gauge fields for ultracold neutral atoms. We discussed the “Raman” scheme to in-

troduce an experimentally controllable light-induced vector potential A for ultracold neutral

atoms; and independently studied the e↵ects of time- and spatially-dependent artificial vector

potentials A.

We generate an artificial electric field E⇤=−@A/@t and characterized the mechanical motion

it imparted on the atoms; our technique allows a direct and unambiguous identification of

the canonical and mechanical momenta, and has become a standard mechanism to excite

collective oscillations to characterize the dispersion relation of the atoms.

We use a spatially dependent vector potential to demonstrate an artificial magnetic field

B⇤=r⇥A, which we further use to probe internal properties of BEC via the observation of

a SF Hall e↵ect.

To reach very strong artificial gauge fields and enter the quantum Hall regime, theoretical

proposals [78, 80, 123] and experiments [79, 81, 30] are turning to the engineering of geometric

phases in lattice potentials.

Artificial gauge fields and lattice potentials. We studied the physics of ultracold bosons not

only in optical lattices but also in a lattice potential arising from the illumination of the atoms

using rf and Raman fields. Such engineered lattices o↵er dynamical and fully controllable

potential energy landscapes for ultracold atoms.



180

We first focused on the identification of the SF-MI transition in trapped 2D systems as a

function of both atom density and lattice depth, to map a universal state diagram for 2D

Bose gases in optical lattices. We developed an MRI technique to eliminate the ensemble

average of the trapped system and found excellent agreement with QMC predictions [103].

Our second project combined rf and Raman fields to simultaneously realize a uniform vector

potential in a 1D lattice, and to demonstrate the Peierls substitution. By extending our 1D

rf-Raman lattice into the 2D regime (using a spatially modulated artificial vector potential)

a uniform magnetic field gauge-equivalent to the Hofstadter model with a flux of 1/3 can be

simulated [30]. Furthermore such extended 2D rf-Raman lattice could be used to measure the

SF-MI phase transition in the presence of a synthetic magnetic field [142].

Matrix valued gauge fields and spin-orbit coupling. We generated bosonic spin-orbit cou-

pling in an e↵ective “spin-1/2” system, realizing a matrix valued artificial gauge field. We

also demonstrated SOC with tunable coupling strength, by time-modulating the intensity of

the Raman beams; a further study of this approach is required to understand and mitigate

undesired heating (see Fig. 9.5).

Matrix valued gauge fields can be engineered to display non-abelian properties, useful to re-

alize both quantum computation schemes [27] and generalized Hamiltonians which go beyond

condense matter systems.

An rf-Raman lattice can readily be implemented in an e↵ective “spin-1/2” system to realize

spin-orbit coupled lattice potentials [136], to investigate the stability of BECs in flat bands

and their potential use in engineering fractional topological insulators [25].

Modified interactions in Raman dressed systems. We observed modified interactions between

ultracold atoms in the presence of Raman dressing in two di↵erent regimes.

In the vector potential limit, where the Raman coupling strength is ~⌦R > 4EL, we studied

ultralow-energy colliding BECs; the partial wave composition of the scattering products not

only included s-wave, but also d- and g-wave contributions. In the SOC limit, ~⌦R<4EL we

measured the e↵ective interaction between the dressed spin states and determined a quantum

phase transition from phase mixed to phase separated.

The illumination of BECs with a pair of Raman beams has demonstrated to be a reliable

mechanism to control e↵ective interatomic interactions with light. Ultracold fermions might

be able to realize systems whose elementary excitations are Majorana fermions, by using

light-inudced p-wave interactions [76, 137].
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Ultracold neutral atoms are excellent systems to study the physics of a wealth of quantum

phenomena in their purest and most controllable way. We characterized ultracold bosonic systems

subject to di↵erent quantum simulation schemes using novel light-induced artificial gauge fields.

Artificial gauge fields for ultracold neutral atoms has become a thriving field of research both

theoretically and experimentally. We engineered such Hamiltonians for ultracold neutral bosons by

optically dressing these systems with suitable rf and laser fields.

A general direction for these experiments is to move on to fermionic systems. Our experimental

apparatus is already loaded with a potassium source, and progress is being done toward implement-

ing light-induced artificial gauge fields on fermionic 40K.
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Appendix A

Appendix A

A.1 Quantum mechanical model of the atomic polarizability

I will describe in this appendix the interaction between an atom and the oscillating electric field

from electromagnetic radiation, e.g. from a laser, and will directly derive the atomic polarizability;

for the purpose of this calculations I followed the treatment described in [39]. The Hamiltonian for

the system is given by

H = H0 +H 0 (A.1)

where H0 stands for the atomic Hamiltonian without perturbations, and H 0 is the time-dependent

dipole interaction with an oscillatory electric field. We look for the solutions to the time-dependent

Schrödinger equation

i~
@ (t)

@t
= H (t) = (H0 +H 0) (t). (A.2)

Given that the eigenfunctions of the time-independent atomic Hamiltonian H0 form a complete

basis { n}n and that they satisfy

i~
@ n

@t
= H0 n = En n, (A.3)

where En are the corresponding eigenenergies, any wavefunction associated with the atomic system

can be expressed as a linear superposition. The solutions to eqn. (A.2) have the form

 (t) =
X
n

cn ne
−iE

n

t/~, (A.4)
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where cn is a time-dependent coefficient. Substituting eqn. (A.4) in the left hand side of eqn. (A.2)

we get

i~
@ (t)

@t
= i~

X
n

(− i

~
Encn + ċn) ne

−iE
n

t/~,

=
X
n

cnEn ne
−iE

n

t/~ +
X
n

i~ċn ne
−iE

n

t/~;

while the evaluation of the right-hand side of eqn. (A.2) gives

(H0 +H 0) (t) =
X
n

cnH0 ne
−iE

n

t/~ +
X
n

cnH
0 ne

−iE
n

t/~,

=
X
n

cnEn ne
−iE

n

t/~ +
X
n

cnH
0 ne

−iE
n

t/~;

and Schrödinger’s equation reduces to

X
n

i~ċn ne
−iE

n

t/~ =
X
n

cnH
0 ne

−iE
n

t/~. (A.5)

The basis of stationary states { n}n, is orthogonal under the inner product defined by

hm|ni =
Z
 ⇤
m(r) n(r)d

3r = δmn; (A.6)

from eqn. (A.5) we obtain the di↵erential equation for the m-th time-dependent coefficient

ċm = − i

~
X
n

cnhm|H 0|niei!mn

t, (A.7)

where I have used the notation ~!mn = Em−En. We assume that at time t = 0 the atom is in state

 (t = 0) =  k,with cn(t = 0) = δnk in eqn. (A.4). Given this initial condition, we can compute the

time-dependent coefficients of the wavefunction for t > 0. To do this, we substitute cn(t = 0) = δnk

in eqn. (A.7)

ċm = − i

~
X
n

δnkhm|H 0|niei!mn

t,

= − i

~
hm|H 0|kiei!mk

t,

=
i

2~
hm|d · E|ki[ei(!mk

+!)t + ei(!mk

−!)t];
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then we integrate to obtain the time-dependent coefficients cm(t) =
R t

0
ċmdt

0:

cm(t) =
i

2~
hm|d · E|ki

Z t

0

[ei(!mk

+!)t0 + ei(!mk

−!)t0 ],

=
1

2~
hm|d · E|ki[e

i(!
mk

+!)t − 1

!mk + !
+

ei(!mk

−!)t − 1

!mk − !
].

We use eqn. (A.7) to fully determine the time-dependent wavefunction; we break the sum into

n = k and n 6= k terms, and substitute the above coefficients in the n 6= k term. In this approxi-

mation we use ck = δnk in the first term and get

ċk = − i

~
hk|H 0|ki − i

~
X
n 6=k

cnhk|H 0|niei!kn

t,

= − i

~
hk|d · E cos(!t)|ki+

− i

~
X
n 6=k

1

2~
hn|d · E|ki[e

i(!
nk

+!)t − 1

!nk + !
+

ei(!nk

−!)t − 1

!nk − !t
]hk|− d · E cos(!t)|niei!kn

t,

= − i

~
hk|d · E cos(!t)|ki+

− i

2~2
X
n 6=k

|hn|d · E|ki|2[e
i(!

nk

+!)t − 1

!nk + !
+

ei(!nk

−!)t − 1

!nk − !
]e−i!

nk

t cos(!t).

Here, we further assume that ck(t) = exp[iφk(t)], thus φ̇k = −iċk exp[−iφk(t)], and average over a

period of oscillation of the electric field T = 2⇡/!. The first term vanishes since cos(!t) averages

to zero; but if in addition  k is an eigenstate of the parity operator, hk|H 0|ki = 0 since a change in

parity is required for a electric dipole transition. The remaining non-zero term is

hφ̇kit =
1

T

Z T

0

φ̇k(t
0)dt0,

=
1

2~2
X
n 6=k

|hn|d · E|ki|2 1
T

Z T

0

[
ei(!nk

+!)t0 − 1

!nk + !
+

ei(!nk

−!)t0 − 1

!nk − !
]e−i!

nk

t0 cos(!t0)dt0,

=
1

2~2
X
n 6=k

|hn|d · E|ki|2 1
T

Z T

0

[
ei!t

0 − e−i!
nk

t0

!nk + !
+

e−i!t0 − e−i!
nk

t0

!nk − !
] cos(!t0)dt0.
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Expressing cos(!t0) in exponentials and continuing with the integration

hφ̇kit =
1

4~2
X
n 6=k

|hn|d · E|ki|2 1
T

Z T

0

[
ei!t

0 − e−i!
nk

t0

!nk + !
+

e−i!t0 − e−i!
nk

t0

!nk − !
][ei!t

0
+ e−i!t0 ]dt0,

=
1

4~2
X
n 6=k

|hn|d · E|ki|2 1
T

Z T

0

[
ei2!t

0
+ 1− ei(!−!

nk

)t0 − e−i(!+!
nk

)t0

!nk + !
+

+
1 + e−i2!t0 − ei(!−!

nk

)t0 − e−i(!+!
nk

)t0

!nk − !
]dt0.

Since the terms oscillating at twice the frequency of the electric field average to zero, the result is

hφ̇kit =
1

4~2
X
n 6=k

|hn|d · E|ki|2 1
T
[t0 + i

ei(!−!
nk

)t0

! − !nk

+ i
e−i(!+!

nk

)t0

! + !nk

]|T0 [
1

!nk + !
+

1

!nk − !
], (A.8)

=
1

4~2
X
n 6=k

|hn|d · E|ki|2 1
T
{t0 + i

e−i!
nk [2! cos(!t0) + 2i!nk sin(!t

0)]

!2 − !2
nk

}|T0 [
1

!nk + !
+

1

!nk − !
],

=
1

4~2
X
n 6=k

|hn|d · E|ki|2( 1

!nk + !
+

1

!nk − !
).

The above is a real valued expression which corresponds to an energy shift U = −~hφ̇kit for the

the state φk. In the following we consider the general case where the electric field has an arbitrary

polarization ✏̂, and by making the dipole approximation we can take its magnitude E0 out of the

spatial integral hn|d · E|ki.
A change in the electric field dE modifies the perturbation energy by dU = −hdi · dE, where

the expectation value of the induced electric dipole moment in the atom relates to the electric field

via the atomic polarizability ↵(!) by hdi = ↵(!)E; the integrated contribution to the change on

the interaction energy yields

U=

Z
dU =

Z
−↵E · dE = −1

2
↵|E|2, (A.9)

where the factor of 1/2 in the above equation is a consequence of the dipole moment being induced

as opposed to being permanent. Assuming that E(t) = E0✏̂ cos(!t), and expressing the energy shift

induced by a time-averaged electric field U = −↵(!)hE2
0 cos

2(!t)it/2, we identify from Eq. (A.8)

the frequency-dependent atomic polarizability for the k = 0 ground state as

↵(!) =
1

~
X
n 6=0

|hn|d · ✏̂|0i|2( 1

!n0 + !
+

1

!n0 − !
),
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or equivalently in terms of the eigenenergies

↵(!) =
X
n 6=0

2(En − E0)|hn|d · ✏̂|0i|2

(En − E0)2 − (~!)2
. (A.10)

A.2 Classical model to describe the atomic polarizability

The atomic polarizability is a frequency dependent quantity which can be classically modeled by

studying the dynamics of the electron (in a particular orbital, usually the valence one) of the atom

in the presence of an time-varying electric field E(t) = E0 cos(!t). We assume that the valence

electron is attached to the atom by a restoring force −me!
2
0r, and that its position r varies as ei!t.

Before setting up the equation of motion, let us recall that an accelerated charge loses energy by

emitting radiation and that the radiative power is given by P = e2ṙ2!2/6⇡✏0c
3 = meṙ

2Γ!, where

Γ! is the damping rate. Due to such energy loss, the motion will be damped in proportion to Γ!

and we obtain

mer̈+meΓ!ṙ+me!
2
0r = −eE0e

i!t,

r̈+ Γ!ṙ+ !2
0r = −eE0

me

ei!t.

The above equations lead to the frequency dependent atomic polarizability

↵ =
e2

me

1

!2
0 − !2 + i!Γ!

. (A.11)

A.3 Rotation operators

I will derive the explicit form of the rotation operators total angular momentum F = 1 and spin

s = 1/2. This serves as a reference specially for Chapter 9, where a couple rotation transformations

were indicated.

As the linear momentum operator is the generator of spatial translations, the angular momentum

operators are generators of spatial rotations. A rotation by an angle ✓ around the axis defined by

the unit vector n̂ is generated by the operator Û = exp(i✓n̂ ·L̂/~), where L̂ is an angular momentum

operator. It worthwhile noting that an operator Â under such unitary operation Û transforms as

Â0 = ÛÂÛ †.
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A.3.1 Rotation operators for total angular momentum F = 1. The matrix representation

of the components of the F = 1 total angular momentum operator F̂ are

F̂x/~ =
1p
2

0
B@

0 1 0

1 0 1

0 1 0

1
CA , F̂y/~ =

1p
2

0
B@

0 −i 0

i 0 −i

0 i 0

1
CA , F̂z/~ =

0
B@

1 0 0

0 0 0

0 0 −1

1
CA ; (A.12)

and satisfy (F̂j/~)2l+1 = (F̂j/~) and (F̂j/~)2l = (F̂j/~)2, where j = x, y, z. The operator associated

with a rotation by an angle ✓ around ej is given by

Ûj(✓) = 1̂ + (cos ✓ − 1)

 
F̂j

~

!2

+ i sin ✓

 
F̂j

~

!
; (A.13)

which for each of the orthogonal directions ej becomes:

Ûx(✓) =

0
B@

(cos✓+1)/2 i sin✓/
p
2 (cos✓−1)/2

i sin✓/
p
2 cos✓ i sin✓/

p
2

(cos✓−1)/2 i sin✓/
p
2 (cos✓+1)/2

1
CA ; (A.14)

Ûy(✓) =

0
B@

(1+cos✓)/2 sin✓/
p
2 (1−cos✓)/2

− sin✓/
p
2 cos✓ sin✓/

p
2

(1−cos✓)/2 − sin✓/
p
2 (1+cos✓)/2

1
CA ; (A.15)

Ûz(✓) =

0
B@

exp(i✓) 0 0

0 1 0

0 0 exp(−i✓)

1
CA . (A.16)

A.3.2 Rotation operators for spin angular momentum s = 1/2. In the case of spin s = 1/2,

the matrix representation of components of the spin operator Ŝ are the 2⇥ 2 Pauli matrices

σ̂x/~ =

 
0 1

1 0

!
, σ̂y/~ =

 
0 −i

i 0

!
, σ̂z/~ =

 
1 0

0 −1

!
; (A.17)

whose associated operators for rotation by an angle ✓ around ej are

Ûx =

 
cos(✓/2) i sin(✓/2)

i sin(✓/2) cos(✓/2)

!
, Ûy =

 
cos(✓/2) sin(✓/2)

− sin(✓/2) cos(✓/2)

!
, Ûz =

 
ei✓/2 0

0 e−i✓/2

!
. (A.18)
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A.4 Addition of angular momentum

The addition of two angular momenta j1 and j2, gives a total angular momentum j = j1 + j2

which acquires the values |j1− j2|  j  j1+ j2, and has spin projections m = −j,−j+1, ..., j. The

uncoupled basis |j1j2m1m2i can be related to the basis of eigenstates of the angular momentum

operator j2, the basis of coupled states |j,mi, by means of a unitary transformation of the form

|j,mi =
X

m1,m2

hj1j2;m1m2|j,mi|j1j2;m1m2i; (A.19)

where hj1j2;m1m2|j,mi are known as the Clebsch-Gordan coefficients for the addition of angular

momentum. By convention the Clebsch-Gordan coefficients are real and the one associated with the

coupled state of maximum angular momentum and maximum spin projection, i.e. |j1+j2, j1+j2i, is
taken to be 1.

The Clebsch-Gordan coefficients are readily obtained by the application of the ladder operators

J±|j,mi = ~
p

j(j + 1)−m(m± 1)|j1j2; j,m± 1i, (A.20)

particularly noting that J± = J1±+J2±, and that similar expressions hold for the uncoupled states:

J1±|j1,m1i|j2,m2i = ~
p

j1(j1 + 1)−m1(m1 ± 1)|j1,m1 ± 1i|j2,m2i,

J2±|j1,m1i|j2,m2i = ~
p

j2(j2 + 1)−m2(m2 ± 1)|j1,m1i|j2,m2 ± 1i.

A.4.1 Clebsch-Gordan coefficients for the addition of j1 = 1 and j2 = 1. The coupled

states obtained from the addition of two spin-1 systems correspond to states with j = 0, 1, 2. Ex-

pressed in matrix form, the transformation between the coupled and uncoupled bases is

0
BBBBBBBBBBBBBBBB@

|2,+2i
|2,+1i
|1,+1i
|2, 0i
|1, 0i
|0, 0i
|1− 1i
|2,−1i
|2,−2i

1
CCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

0 1/
p
2 0 1/

p
2 0 0 0 0 0

0 1/
p
2 0 −1/

p
2 0 0 0 0 0

0 0 1/
p
6 0

p
2/3 0 1/

p
6 0 0

0 0 1/
p
2 0 0 0 −1/

p
2 0 0

0 0 1/
p
3 0 −1/

p
3 0 1/

p
3 0 0

0 0 0 0 0 1/
p
2 0 −/

p
2 0

0 0 0 0 0 1/
p
2 0 1/

p
2 0

0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBB@

|1,+1i|1,+1i
|1,+1i|1, 0i
|1,+1i|1,−1i
|1, 0i|1,+1i
|1, 0i|1, 0i
|1, 0i|1,−1i
|1,−1i|1,+1i
|1,−1i|1, 0i
|1,−1i|1,−1i

1
CCCCCCCCCCCCCCCCA
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