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Emergent gauge field and the 
Lifshitz transition of spin-orbit 
coupled bosons in one dimension
William S. Cole  1, Junhyun Lee1, Khan W. Mahmud1, Yahya Alavirad1, I. B. Spielman2 & 
Jay D. sau1

In the presence of strong spin-independent interactions and spin-orbit coupling, we show that the 
spinor Bose liquid confined to one spatial dimension undergoes an interaction- or density-tuned 
quantum phase transition similar to one theoretically proposed for itinerant magnetic solid-state 
systems. The order parameter describes broken Z2 inversion symmetry, with the ordered phase 
accompanied by non-vanishing momentum which is generated by fluctuations of an emergent 
dynamical gauge field at the phase transition. This quantum phase transition has dynamical critical 
exponent z ≃ 2, typical of a Lifshitz transition, but is described by a nontrivial interacting fixed point. 
From direct numerical simulation of the microscopic model, we extract previously unknown critical 
exponents for this fixed point. Our model describes a realistic situation of 1D ultracold atoms with 
Raman-induced spin-orbit coupling, establishing this system as a platform for studying exotic critical 
behavior of the Hertz-Millis type.

Perhaps the first example of a quantum phase transition (QPT) was Stoner’s identification of a zero-temperature 
critical point distinguishing between unpolarized and spin-imbalanced Fermi liquids, and magnetic transitions 
in Fermi liquids have remained a rich subject since. These transitions for gapless, itinerant magnets belong to a 
class that is qualitatively distinct from transitions between gapped phases of matter and still remain mysterious 
despite the seminal works by Hertz and Millis1–3. While quantum criticality in Fermi liquids is a pervasive phe-
nomenon in strongly correlated phases of matter, simple realizations of the ferromagnetic transition appear to be 
rare, especially in low-dimensional fermion systems where there is hope of a detailed theoretical understanding4,5. 
Nonetheless, a different paradigm for itinerant ferromagnetism appears if our initial degrees of freedom are bos-
ons. In fact, since the ground state of an interacting (weak or strong) spinor Bose gas is a spin-polarized superfluid 
(SF)6, ultracold bosons already provide a more natural realization of an itinerant ferromagnetic liquid compared 
to electrons in solid state systems requiring a Stoner instability. This work explores spin dynamics arising from 
the interplay of spin-charge separation, a concomitant emergent gauge field, and spin-momentum locking near 
the ferromagnetic QPT of a spin-orbit coupled interacting 1D Bose liquid7–12.

The strongly interacting Bose liquid without spin-orbit coupling can be well understood by separating the 
excitations into a quadratically dispersing (but gapless) spin degree of freedom and a massless acoustic mode. 
Spin-charge separation in itinerant fermion ferromagnets has been profitably formulated in terms of emergent 
gauge fields, for example in the context of solid-state spintronics13. Likewise, in the Bose liquid, fluctuations of the 
spin degree of freedom behave as an emergent dynamical gauge field for the SF sound mode, the former coupled 
to the latter by an emergent electric field, as we show in this work. However, without any spin-dependent pertur-
bations, the ferromagnetic ground state is also a fully-polarized spin eigenstate; therefore, in the absence of spin 
fluctuations the emergent field vanishes.

Spin fluctuations can be induced in the otherwise static spin-polarized gas by the addition of a helical 
Zeeman field. Qualitatively, a sufficiently strong field polarizes the local magnetization to be entirely parallel to it. 
However, the spin stiffness of the ferromagnetic liquid leads to an energy cost associated with the spatial variation 
of the magnetization, and this competes with the energy gain from precisely following the spatially rotating field. 
The result is that at intermediate values of the Zeeman field the system reduces its energy by developing an axial 
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component of magnetization either parallel or antiparallel to the axis of the helical Zeeman field. Because the 
axial component of the magnetization is spatially uniform it does not contribute to the energy cost associated 
with the spin stiffness. By transforming to the rotating frame of the helical Zeeman field (yielding a frame with 
uniform spin-orbit coupling and a uniform transverse Zeeman field), one can see that this transition breaks the 
same symmetries as observed in the mean-field treatment of the spin-orbit coupled Bose gas8,9,14,15. However, in 
the mean-field case this transition is tuned by the intensity of the Zeeman field and has been understood almost 
exclusively in terms of single-particle physics: for a weak Zeeman field, there are two degenerate single-particle 
minima related by a Z2 inversion symmetry, and weak repulsive interactions favor condensation in one of these 
states, breaking the symmetry. At a sufficiently strong Zeeman field, the single-particle band structure changes 
such that there is a unique lowest-energy state in which to condense. In contrast, in the strongly interacting limit 
of interest to us it is more natural to understand the transition in terms of the competition between Zeeman 
energy and spin stiffness, the generalized rigidity associated with the interacting ferromagnetic Bose liquid.

We analyze the two-component strongly interacting Bose liquid subjected to a helical Zeeman field described 
by the Hamiltonian density (in units with ℏ = 1)
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where b = (b↑, b↓) represents the two bosonic fields describing the physical microscopic degrees of freedom, σ→ is 
the vector of Pauli matrices, and α αΩ

→
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x x e x e( ) cos( ) sin( )x y0  is the Raman-induced helical magentic 
field7,8. From the wavevector α we can define a natural unit of energy 4ER = α2/2m, the recoil energy for the 
Raman laser8. We are interested here exclusively in the effect of spin-isotropic interactions gss′ = g.

In the following, we first start from the general low-energy effective action for a spinor Bose liquid16 and derive 
a low-energy effective action corresponding to Eq. (1) that describes the Bose liquid in terms of phase (i.e., num-
ber density) and magnetization degrees of freedom. We show that magnetization fluctuations are responsible for 
an emergent dynamical gauge field that influences the momentum of the superfluid through spin-orbit coupling. 
In the presence of a helical Zeeman field we find that there is a curve of quantum critical points of the system that 
can be reached by tuning interaction or density; in other words, sufficiently strong interactions can disorder the 
Z2 symmetry broken state at arbitrarily small Ω0, even though they cannot disorder the isotropic ferromagnet 
in the absence of the helical field. Finally we show that spin fluctuations become locked to density fluctuations, 
and as a result the latter are described by an effective field theory similar to the one-dimensional Lifshitz magnet 
proposed originally for ferromagnetic Fermi liquids4. The resulting critical fluctuations at the transition are quali-
tatively reminiscent of the non-Luttinger liquid predicted previously at the single-particle “flat band” transition in 
non- or weakly-interacting spin-orbit coupled bosons15. However, we uncover a previously unappreciated relev-
ent interaction that we find drives the system to the much less well-understood interacting fixed point suggested 
in ref.4. We also find, fortuitously, that large interaction strength decreases the length scale and increases the 
temperature where these critical fluctuations can be observed in experiment. Following these analytic results, 
we validate our field theory analysis with detailed density matrix renormalization group (DMRG) simulations of 
the microscopic model Eq. (1). We confirm the presence of the interaction-tuned critical point, and we find new 
critical exponents for the order parameter and correlation length which differ from all previously studied transi-
tions in this model, and from the zeroth- and the first-order ε-expansion predictions derived previously by Yang4 
and by Senthil and Sachdev17. We also obtain the dynamical exponent and find it consistent with the interacting 
Lifshitz transition value of z almost, but not exactly, 2.

Results
Effective Lagrangian approach for spinor bosons. Our goal is to analytically understand the properties 
of the strongly interacting Bose gas in a long-wavelength (compared to mean inter-particle spacing) helical mag-
netic field. Here, we restrict to this limit (analogous to Landau-Ginzburg theory) because the system is not integra-
ble, so only universal properties such as the long wave-length limit are amenable to analytic treatment. As an added 
bonus, these universal properties should be relevant to other systems such as ferromagnetic Luttinger liquids.

To derive the low-energy long-wavelength properties we follow the effective field theory approach, which 
allows one to determine correlation functions from an effective Lagrangian that is determined solely by the sym-
metry of the system. The traditional classification of effective field theories based on symmetry was restricted 
to relativistic systems, where the symmetry group includes the Lorentz group18,19. Recent work by Watanabe 
and Murayama16 has extended the classification of effective Lagrangians based on symmetry breaking to 
non-relativistic systems, including systems which are in the symmetry class of the spinor Bose liquid. In Methods, 
we translate their results for spinor bosons, first without spin-orbit coupling, to an effective Lagrangian (up to sec-
ond order in derivatives) described by a phase and a spin degree of freedom which contains only four parameters,
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where ρ0, vC, and κS are the average charge density, charge velocity, and spin-stiffness, respectively. Although νS has 
dimensions of velocity, it should not be interpreted as the spin velocity, as the spin excitations in the ferromagnetic 
Bose liquid disperse quadratically20. The charge density and spin-stiffness together determine the 
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interaction-renormalized magnon mass m* = ρ0/κS. The degrees of freedom are a normalized vector field →s x t( , ) 
that represents the space-time texture of the spin and a phase φ whose space-time gradient (∂tφ, ∂xφ) is proportional 
to the fluctuations around the average density (ρ0) and to the momentum density respectively. The fields (at, ax) are 
emergent gauge potentials satisfying the equation ∂ − ∂ =a at x x t  , where21

 = ∂ → × ∂ → ⋅ →.s s s( ) (4)x t

Since a gauge transformation → → → + ∇
→

Λa a  may be off-set by a redefinition of the phase φ → φ + Λ, any 
choice of the vector potential (at, ax) that has a gauge-invariant flux given by   is sufficient.

The rather formal rigorous results (i.e. Eqs (2) and (3)) derived in Watanabe et al.16 can also be understood 
intuitively on symmetry grounds. For example, the appearance of →s  and φ as the appropriate degrees of freedom 
is expected from the symmetry of the ferromagnetic SF ground state6 of spinor bosons, which forms a quasi Bose 
condensate (hence φ) and reduces the rotation symmetry from SU(2) (hence →s ) to O(2). If we ignore the vector 
potential terms ax,t, then Eq. (2) is the usual Lagrangian for the phase degree of freedom for a Bose condensate 
while Eq. (3) is the gradient part of the field theory description (i.e. non-linear sigma model22) of a ferromagnet. 
The gauge potential (at, ax), which is essential to obtain the correct dispersion for the ferromagnetic spin waves, 
arises from a complication that a local rotation of the condensate about the magnetization direction →s x t( , ) by 
δφ(x, t) advances the phase φ(x, t) → φ(x, t) + δφ(x, t). This is similar to how the application of a potential leads to 
a winding of the phase according to the Josephson relation. Thus, the winding of the phase in time is a combina-
tion of the applied external potential as well as the rotation of the condensate about the magnetization direction. 
To predict the effect of an external potential on the phase, we must therefore keep track of how much the conden-
sate rotates along the condensate direction.

The simplest solution to this problem would be to avoid rotating the condensate around the magnetization 
direction →s . This could be accomplished by defining a vector →r  orthogonal to →s  (i.e. → ⋅ → =r s 0) and ensuring 
that →r  remains parallel as position is varied. Since → ⋅ → =r s 0 we can think of →r x t( , ) as lying on a surface (par-
ametrized by (x, t)) which is normal (locally) to the vector field →s x t( , ). The problem of choosing →r x t( , ) to be 
locally parallel at nearby points is exactly that of parallel transport of the vector →r . This turns out not to be possi-
ble because of the holonomy associated with the curvature of the surface defined by the magnetization →s x t( , ). 
Attempting to parallel transport →r x t( , ) in a small rectangle of size (δx, δt) leads to a rotation of the vector →r  by 
an angle proportional to the Gaussian curvature δφ δ δ→ ⋅ ∂ → × ∂ →

 s s s x t( )x t . This suggests that attempting to 
avoid rotating the condensate when position is changed first along t and then along x leads to a net rotation about 
the magnetization direction compared to when the position is changed in the other order. This ambiguity in the 
net rotation leads to an ambiguity in the Berry phase that must be accounted for by a gauge potential whose cur-
vature is given by Eq. (4).

Phase diagram in a helical Zeeman field. Given our understanding of the effective Lagrangians Eqs (2) and (3) 
of the fully symmetric spinor Bose gas, we now investigate the effects of the helical Zeeman field. This enters into 
the Lagrangian as the Zeeman potential induced by coupling the external field to the spin density, which is here 
the product of the normalized spin field and the number density ρ− = −δ

δ φ
φ
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2 . This helical Zeeman field can be unwound using a position-dependent rota-

tion of the spin vector →s x t( , ) around →ez .  This also therefore modifies the spin gradient as 
α∂ → → ∂ → + → × →s s s e( )x x z  and thus also the gauge potential as ax → ax − αs3. Finally the effective Lagrangian 

with the helical field, in the rotating frame, becomes

 ρ φ
ρ

φ α φ= −





+
Ω 



∂ − ∂ − + − ∂ −−s

mv m
a s v a1

2 2
[( ) ( ) ]

(5)
C

C
t x x C t teff 0

0 1
2

0
3
2 2 2

 ρ
ρ κ

α α ν= +
Ω

− ∂ → − → × ∂ → ⋅ → + − − ∂ → .−a s s s s e s s
2 8

[( ) 2 ( ) (1 ) ( ) ] (6)
S

t
S

x x z S teff 0
0 0

1
2 2

3
2 2 2

The spin part of the Lagrangian (S
eff) is now spatially uniform, and includes an isotropic ferromagnetic 

exchange, a Dzyaloshinskii-Moriya term, and an easy-axis anisotropy along →ez , along with a uniform Zeeman 
field along →ex. Similar 1D spin models have been studied previously in this context, though typically in the 
Mott-insulating limit on a lattice, where there is no back-action on the spin from charge fluctuations23–28. The 
charge part of the Lagrangian (C

eff) now depends explicitly on spin from a dynamical vector potential αs3.
We now study the ground state of the system within the saddle point approximation in the limit of small α or 

large Ω, where the spin aligns along →ex up to long-wavelength fluctuations. Neglecting these fluctuations, a 
zeroth-order saddle point approximation to the effective spin Lagrangian is
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This is essentially the (real time) Landau-Ginzburg action for an Ising transition, favoring a nonzero s3 when 
the applied helical field satisfies Ω0 < α2/2m*, whether tuned by field strength, pitch angle, density, or effective 
spin stiffness. The magnon mass m* (or correspondingly, the spin stiffness) can be related to the dimensionless 
interaction strength γ as m* = m/f(γ) for a known function f29, such that the ferromagnetic phase in Fig. 1(a) is 
given by the condition

ζ γ≡
Ω

<
E

f
4

( ),
(8)R

0

which recovers the mean-field result in the limit m* = m.
The collective excitations of these phases are determined by the derivatives in Eqs (5) and (6). To understand 

these excitations we fix a gauge for the vector potential using the Wess-Zumino method22 of extending the 
spin-texture field →s x t( , ) into an extra fictitious dimension parametrized by λ ∈ [0, 1], so that the field 

λ→ = = →s x t s x t( , , 1) ( , ) is the microscopic spin field and λ→ = = →s x t e( , , 0) x. Given this extension, the vector 
potential is

∫ λ= ∂ → ⋅ → × ∂→ .λa d s s s( ) (9)j j

Using the fact  that  for  a  normalized f ie ld  →s ,  ∂ → ⋅ ∂ → × ∂ → =λ s s s( ) 0t x ,  we can recover 
∂ − ∂ = → ⋅ ∂ → × ∂ → =a a s s s( )t x x t x t . We use the fact that the vector potential at x,  for small fluctuations 

λδ→ = → + →s e sx  simplifies from the full Wess-Zumino form (Eq. 9) to δ δ≈ − → ⋅ → × ∂ →a e s s( )j x j
1
2

. The Zeeman 
field gaps out the magnon modes, however the mass of the s3 term vanishes near the transition and one can inte-
grate out the massive s2 degree of freedom (with mass ρ Ω /40 0 ). The dynamical term ρ0s2∂ts3 leads to the massive 
phase with s2 ≃ ∂ts3. After these manipulations, we obtain a simplified effective Lagrangian (exact as usual at suf-
ficiently low energies) near the phase transition,
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0. The term from Eq. (5) that was linear in ∂tφ 
has been eliminated for convenience by a constant shift φ(t) → φ(t) − At. We can now interpret the effective 
model as an Ising field theory gauge-coupled to a scalar boson. The remaining discrete symmetry of our model, 
however, is crucially not the usual Ising s3 → −s3, instead it is (s3, ∂x) → (−s3, −∂x) because of the coupling term.

Quantum critical point. While the phase diagram clearly suggests a Z2-breaking transition where the magnetiza-
tion s3 orders, the itinerant nature of the magnet is expected to modify the critical properties of the transition. To 
understand the critical properties, we shift s3 as s3 → s3 − ∂xφ/α (reflecting the symmetry above) and notice that 
this shifted field is gapped in the ordered phase, and so the charge and spin are locked as s3 = α−1∂xφ. Substituting 
in this locking (and scaling length by α−1 and time by (vCα)−1), the effective Lagrangian for φ alone is

ρ
φ φ φ ζ φ ζ φ= ∂ − ∂ +











∂ ∂ − − ∂ − ∂
E

f f v
v

f( ) ( ) ( ) ( )( )
4
( )

(12)R
t x

C

S
t x x x

0

2 2 2
2

2 2 4

Figure 1. (a) Phase diagram as derived from our effective Lagrangian approach. The critical Zeeman coupling 
Ω0 separating the Z2 ordered phase from the disordered phase depends strongly on the dimensionless 
interaction strength. (b) Evolution of a localized spin fluctuation. The time evolution was computed using the 
semiclassical equations of motion Eq. (13) on the critical curve. The initially localized fluctuation spreads as 

∝x t1/2 (red dashed lines), consistent with an expected dynamical critical exponent z ≃ 2.
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The third term scales to zero in the long-wavelength limit compared to the first term, so in the long-wavelength 
limit near the critical point we neglect it in writing down the semiclassical equations of motion

φ ζ ζ φ φ φ∂ −


 − + ∂



∂ + ∂ =f f3

2
( ) 0

(13)t x x x
2 2 2 4

We solve this numerically at the critical point and plot the resulting magnetization dynamics in Fig. 1(b). 
The simulation domain is a line of length 80/α with periodic boundary conditions, and our initial condition is 
a gaussian magnetization excess of height 0.02 and width α−1. We observe that the initial defect spreads with an 
envelope x ∝ t1/z with z ≃ 2.

Finally, we estimate the length and temperature scales where we expect this treatment to be valid. The 
length-scale cutoff for this phase-only action near the critical point comes from the Ising model, so both x, t must 
be larger than the inverse-gap in the spin sector, i.e. α κ ρ αΛ =− − −~ m f/S

1 1
0

1 . Since f decreases with increas-
ing interaction, the length and inverse-temperature scales required to observe critical behavior correspondingly 
decrease, a boon for experimental realization.

As suggested by the estimate z ≃ 2 for the dynamical critical exponent, this low energy effective model we 
obtained is actually a “Lifshitz” field theory and, including the relevent (∂xφ)4 interaction, is identical to the effec-
tive action derived by Yang for itinerant Fermi liquid ferromagnets4. The upper critical dimension of this interac-
tion is d = 2, and the low-order epsilon expansion (ε = 2 − d) predictions for critical exponents4,17 are reproduced 
in Table 1, along with a summary of our numerical estimates presented in the following. It was also established 
in previous analysis that this novel critical point has a temperature dependence for the correlation length in the 
quantum critical regime of ξ ∝ T−2 and spin susceptibility χ ∝ T−1. Since the spin and density degrees of freedom 
are locked, the density susceptibility and correlation length also obey “non-Luttinger liquid” scaling at nonzero 
temperature15.

Numerical results. We next verify and extend the conclusions of the last section by direct numerical simu-
lation of the ground state properties of the Hamiltonian in Eq. (1) using DMRG30. Specifically, we show that the 
continuous quantum phase transition shown in the phase diagram Fig. 1(a) indeed can be accessed by varying the 
interaction strength at a density where the mean interparticle distance is longer than the pitch of the helical mag-
netic field. We extract several critical exponents and substantiate our expectation of a Lifshitz-like critical point. 
As a practical limit in simulating Eq. (1), we discretize the Hamiltonian on a lattice and restrict our Hilbert space 
to states with at most two bosons per site. This should not affect our results significantly since we consider low 
density (1/5 boson per site) and relatively strong interactions, described by an isotropic Hubbard interaction U. 
We emphasize that the lattice discretization is for numerical convenience only; we are not introducing a physical 
optical lattice potential. For most of the calculations we kept up to 800 states to keep the truncation error per step 
around 10−12. However, when the interaction is very close to its critical value, we need to include more states (up 
to 2000) to achieve similar truncation error.

Phase diagram. The predicted Z2 phase transition is identified from the magnetization expectation value 〈s3〉 
(In any finite system, the exact ground state is a “cat state” superposition of symmetry broken states with 
〈 〉 =s 03  identically. However, the DMRG truncation procedure favors low entanglement, and since the energy 
difference compared to the exact ground state is exponentially small in system size, the DMRG converges on 
one of the symmetry broken quasi-ground states with nonzero 〈 〉s3 ) and correlation function 〈s3(x)s3(x′)〉 on 
open chains while tuning the interaction strength U. Figure 2(a) shows the ground state spin-density expecta-
tion value for 300, 450, and 600-site chain systems with boson density of 1/5. The system undergoes a phase 
transition from a ferromagnetic (〈s3〉≠0) to a paramagnetic (〈s3〉 = 0) phase with increasing interaction 
strength; this is the same phase transition as a horizontal cut of Fig. 1(a). The weak dependence of the magnet-
ization on the system size suggests that the interaction-tuned quantum phase transition is indeed 
continuous.

In the numerical calculations, we observe a slightly density-modulated excited state in the paramagnetic 
region. Such states are an unavoidable artifact of the lattice discretization we employed, and cause convergence 
difficulty in the calculation. We checked that running an extensive number of sweeps decreases the amplitude 
of the modulation and the system eventually does converge to the expected paramagnetic state with uniform 
density. However, in the vicinity of the critical point, where the convergence is slowest, the wave functions we 
obtained were not converged enough to completely eliminate the density modulation; this less-converged region 
gives an overestimated value of 〈s3〉 and is shaded gray in Fig. 2(a,b).
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Table 1. Scaling exponents for Eq. (12) near the critical point from epsilon expansion4,17 compared to our 
numerical results.
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Spin-momentum locking as signature of gauge coupling. The role of the magnetization generated by dynam-
ical gauge fluctuations becomes clear from the spin-momentum locking property of the ground state. To see 
the spin-momentum locking notice that the canonical momentum operator derived from the microscopic 
Hamiltonian is given by

∑Π = ∂ − ∂
σ

σ σ σ σ
† †i b b b b( )

(14)x x

while the number current operator derived from that same Hamiltonian is given by

α= Π − .j s (15)3

A general theorem31 rules out nonzero current density in the ground state (so 〈j〉 = 0). Given this constraint, 
the momentum and spin-density must be related by

α〈Π〉 = 〈 〉s (16)3

Thus, the gauge coupling results in all Ising-symmetry-broken ground states having finite canonical momen-
tum. The change in momentum as one crosses the phase transition from paramagnetic to the ferromagnetic must 
be attributed to the effective electric field Eq. (4) generated from gauge field fluctuations.

To observe the spin-momentum locking numerically, we also calculated the momentum expectation value 
〈Π〉. The result, normalized by the factor α, is plotted in the inset of Fig. 2(a). The perfect agreement of the mag-
netization and normalized momentum explicitly shows the spin-momentum locking, Eq. (16), of the system.

Magnetization exponent. Next we demonstrate that the transition is not characterized by mean-field (i.e, ε = 0) 
critical exponents. For this purpose, an in-depth finite-size scaling is not necessary; instead, we estimate the crit-
ical point and exponents for a sufficiently large system.

From Fig. 2(a), one can see that finite size or boundary effects are already quite small for the N = 450 chain. 
Therefore we pinpoint the critical point Uc by finding the best linear fit (i.e., minimum residual) of 〈s3〉1/β(U) over 
all values of 1/β (representative lines are shown in Fig. 2(b)), and then Uc is the extrapolated intercept. We then 
confirm the magnetization critical exponent β from a log-log plot using that value of Uc in Fig. 2(c). The critical 
point and exponent we identified are Uc ≃ 2.25 and β ≃ 1/6. Note that β ≃ 1/6 is both different from both the 
Ising critical point (β = 1/8) and the first-order ε-expansion result for the Lifshitz critical point in ref.4 (β = 1/3). 
However, we do not take β ≠ 1/3 as an indication that this is not the interacting Lifshitz fixed point, but rather we 
suspect that the first-order ε-expansion is unreliable for such a large ε.

Dynamical critical exponent. Now we compute the dynamical critical exponent numerically to verify whether 
the transition remains essentially Lifshitz (i.e. z ≃ 2) as estimated from the semiclassical limit.

For this purpose, we compute the equal-time connected correlation function of s3. Near the critical point, i.e. 
when ξ~N, we expect the connected correlation function to decay as

〈 〉 − 〈 〉〈 〉 | − | η− − + −~s x s x s x s x x x( ) ( ) ( ) ( ) (17)d z
3 0 3 3 0 3 0

2

The log-log plot in Fig. 3(a) shows that our estimated value for d + z − 2 + η ≃ 1.1, and we obtain the dynam-
ical exponent to be z ≃ 2.1 − η.

A secondary check for the value of d + z − 2 + η makes use of the scaling relation

Figure 2. (a) Expectation value of magnetization as a function of interaction strength on open chains of 
different length. The boson density is fixed to 1/5. An interaction driven second-order phase transition is 
apparent. Data in the shaded region is less-converged due to a low energy charge modulated state. (Inset) 
Spin-momentum locking (Eq. (16)) is shown for N = 450. The appropriately scaled momentum tracks the 
magnetization exactly. (b) For N = 450, the critical interaction strength Uc is obtained by finding the exponent 
that gives the best linear fit for 〈s3〉1/β(U), with Uc the extrapolated intercept. We find Uc ≃ 2.25, indicated as a red 
dot. (c) Using the obtained Uc, we confirm the magnetization critical exponent to be β ≃ 1/6 by a linear fit on a 
log-log plot.
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η β
ν

+ − + =d z 2 2
(18)

The connected correlation function in Eq. (17) has a scaling form of ~F(x/ξ). We collapse the correlation 
function data at different values of U by scaling the distance (x), and from the scaling values we used we are able 
to extract the correlation lengths at different interaction strengths. The data collapse is shown in Fig. 3(b), and 
in Fig. 3(c) we plot the correlation lengths as a function of U. The correlation length decays as ξ ~ |U − Uc|−ν, and 
from the log-log plot in Fig. 3(c) we read off the correlation length exponent ν as ν ≃ 1/3. Plugging ν into Eq. (18),  
together with β ≃ 1/6 from the previous section, again gives d + z − 2 + η ≃ 1 which is close to the result we 
obtained from the s3 correlation function directly.

To first order in ε-expansion, η was predicted to be zero, but at second order the correction z = 2 − η/2 was 
derived in ref.17 for this critical theory. From our estimate z ≃ 2 − η (using our estimates of β and ν) or z ≃ 2.1 − η 
(using the critical correlation function directly), we therefore infer a value η between 0 and 0.2, and correspond-
ing z between 2 to 1.9. The small but non-zero anomalous dimension, along with the other estimated critical 
exponents that differ from their predicted values above the upper critical dimension, indicate that this is a distinct 
interacting fixed point of the one-dimensional model.

Discussion
In this work we analyzed universal properties of a strongly interacting spinor Bose gas in a helical magnetic field. 
We found that the rigorous description of the low-energy dynamics of the spinor Bose liquid16 in terms of a scalar 
SF that interacts with the fluctuating magnetization as an emergent dynamical gauge field continues to apply with 
the addition of the helical magnetic field. The helical magnetic field is then responsible for an interaction-tuned 
quantum critical point, where sufficiently strong interactions can disorder an ordered Ising-like phase with a 
broken Z2 symmetry. The effective field theory expectation of a continuous quantum phase transition was then 
verified with detailed DMRG simulations. Although the results are quite different, we note that as a minimal 
model our study also complements recent work on the 1D Ising field with an interaction (as opposed to gauge) 
coupling to an acoustic mode32.

Our effective field theory analysis yields a long wave-length effective Lagrangian valid near the quantum 
critical point identical to one proposed for one-dimensional ferromagnetic Fermi liquids4 with a Lifshitz-like 
dynamics (i.e. z ≃ 2) and similar to that that proposed for “flat band” condensates of weakly interacting spin-orbit 
coupled bosons15. In the latter case, their expectation of a collective mode with Lifshitz-like dynamics (i.e. ω ∝ k2) 
arises straightforwardly from the underlying k4 spectrum for noninteracting bosons exactly at the flat band point. 
In our case, strong spin-independent interactions drive the transition even for weak Ω0, far from the flat band 
point. The ε-expansion results in ref.4 suggest that interaction-induced fluctuations modify the quantum critical 
properties from classical, mean-field estimates, which we verify with exact numerics.

In addition to Fermi liquid ferromagnetism and the spin-orbit coupled Bose liquid studied here, Eq. (1) can 
also be the starting point to describe spinless bosons in flux ladders33,34, where the “leg” of the ladder plays the role 
of pseudospin and the flux is a leg-dependent hopping phase (i.e., a pseudospin-orbit coupling). This platform 
is subtly different because of the necessary presence of an underlying lattice, but also supports an incredibly rich 
landscape of quantum phases and QPTs. In future work it would be interesting to determine if the interacting 
fixed point we uncover here is naturally realized there as well. More generally, Lifshitz critical points have also 
garnered substantial recent interest in higher spatial dimensions and in frustrated spin chains35–39, and similar 
physics could even be relevant to superconductor-helimagnet heterostructures40, with the superconductor pro-
viding the phase field and the direction of chirality of the helimagnet providing the Ising-like field.

The continuous phase transition in a strongly interacting gapless itinerant magnet demonstrated in this work 
shows that the spinor Bose liquid can be used as an experimentally realistic platform to study such quantum 
critical points. The combination of analytic and numerical results presented here show that the critical dynamics 
of the interaction-tuned Z2 ferromagnetic transition differ qualitatively from mean field. Our results for a simpler 
relative of itinerant quantum critical points in Fermi liquids may yield more general insight into those problems. 

Figure 3. (a) Log-log plot of the correlation function 〈s3(x0)s3(x)〉 as a function of x. N = 300 sites and U = 2.2, 
which is close to the critical interaction. As per Eq. (17), the linear slope of the log-log plot yields d + z − 2 + η ≃ 1.1. 
(b) Data collapse of the s3 correlation function. For different values of interaction (from U = 2.4 to U = 2.8) we 
rescale x − x0 by the correlation length ξ(U), to achieve data collapse. The dashed line is ξ− −e x x( )/0  with a small shift, 
as a guide to the eye. (c) Correlation length varying U. The solid line is a fit yielding the exponent ν ≃ 1/3. The shaded 
region represents data collected from the less-converged wavefunctions, as in Fig. 2.
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The strongly interacting 1D spinor boson system in a helical magnetic field that is proposed in this work is already 
accessible in experiments on ultracold Rb and presents the ideal venue for the study of this class of criticality 
in the near future. Critical properties should be easily accessible from the temperature dependence of spatially 
resolved correlations in the system. Furthemore, given the slow timescale of the dynamics, this system (similar 
to the superfluid-Mott transition41) might provide an ideal platform to observe the surprising dynamics of this 
critical point.

Methods
Derivation of the effective Lagrangian. Following refs18,19 the dynamics of the local order parameter of 
a system at sufficiently long wave-lengths and low frequencies is governed by a unitary operator U = exp(iπaTa), 
with the local order parameter encoded in πa(x, t). This has been recently extended to non-relativistic systems 
by Watanabe and Murayama16 for general classes of symmetry groups. Here we are interested in the low-energy, 
long-wavelength Lagrangian of interacting spinor bosons, possessing SU(2) rotation invariance of the spinor 
as well as Galilean invariance. As mentioned in the main text, the ground state spontaneously breaks Galilean 
invariance and reduces the rotation symmetry from SU(2) to O(2). From the effective field theory perspective, the 
low-energy dynamics is completely determined by an effective Lagrangian constrained by these symmetry (and 
symmetry-breaking) considerations.

We obtain the explicit form of the effective Lagrangian from the more general group-theoretic form given 
in ref.16. We start by recalling their results for the symmetry class of the spinor Bose gas, where the effective 
Lagrangian in terms of Galilean covariant derivatives contains only four parameters, up to second order in deriv-
atives, and is written as

L D D D Dπ π π π= − + + −⊥ ⊥a a a a( ) ( ) ( ) (19)t t t xeff 0
3

1
3 2

2
2

3
2

For convenience, we have combined π1,2 into π⊥. The Galilean covariant derivatives (containing the atomic 
mass m) are given as

 π ρ π ρ ρ ρ= = −⊥ ⊥ ⊥ ⊥ ⊥

m
, 2

(20)x t t t x x
3

for π⊥, while for π3 we have

 π π ρ ρ= = −
m

0, 1 ( ) (21)x t t x
3 3 3 3 2

Unpacking this notation, these covariant derivatives are constructed from components of a Maurer-Cartan 
form ω ≡ − †iU dU , so ω ω π ω π ω= = =d d T Ta

a
a
b a

b
b

b. Next, the covariant derivatives contain time and space 
derivatives of the πa(x, t). Using

ω π− ∂ = ∂µ µ
† ( )iU U (22)a

a

suggests the shorthand notation ρ ω π≡ ∂µ µ( )b
a
b a  for μ = x, t. (In terms of the notation of16, ρ ω=t , ρ ω= →

x ). 
Substituting this into eff  and retaining only terms up to second order in derivatives yields

ρ ρ ρ ρ ρ= − − + + −⊥ ⊥a a
m

a a a( ) ( ) ( ) ( ) (23)t x t t xeff 0
3 0 3 2

1
3 2

2
2

3
2

Now we translate eff , via the spacetime order parameter derivatives encoded in ρµ
b, into experimentally rele-

vant quantities: the magnetization and phase. We find it useful, following ref.16, to decompose the transformation 
U as into = π σU U ei0

3
0 where U0 is now a pure SU(2) rotation. (U need not include the Galilean generators at this 

point, which were used in ref.16 to produce the Galilean covariant derivatives). In turn, we also find it useful to 
express U0 in terms of Euler angles (α, β, γ) as = ασ βσ γσU e e ei i i

0
3 2 3. However, π3 appears explicitly as the phase of 

U and must therefore be viewed as a function π3 ≡ π3(α, β, γ). The ρ can now be written as ρμ = Ωμ + ∂μπ3σ0, 
where

σ γ β α γσ γσ β β α σΩ = − ∂ = ∂ + ∂ + + ∂ + ∂ ≡ Ωµ µ µ µ µ µ µ
†iU U i( cos ) (cos sin )( sin ) (24)

b
b0 0 3 2 1

The magnetization of the spinor gas in the absence of the field points along z so that sj ∝ δj3. Any quantity 
which transforms like a vector and takes the value (s1, s2, s3) = (0, 0, 1) for the ferromagnetic Bose gas must then 
be proportional to the magnetization. Following this argument, the magnetization can be taken as 

σ σ= †s U UTr[ ]j j0 0 3  This is consistent with an intuitive picture where the state of the uniform ferromagnet is taken 
to be |Ψ0〉, and we are interested in the magnetization of a rotated state U0|Ψ0〉,

σ σ σ= 〈Ψ | |Ψ 〉 =† †s U U U UTr[ ] (25)j j j0 0 0 0 0 0 3

where the trace including σ3 reflects that only the local z-component of σ†U Uj0 0 has non-vanishing expectation in 
the fully-polarized state |Ψ0〉, as Tr[σjσ3] = δj3. In terms of the Euler angles, we can first define the orthogonal 
transformation σ σ=

 

†U U Rj j0 0 , and then sj = Rj3, or (s1, s2, s3) = (sinα sinβ, −cosα sinβ, cosβ), with no depend-
ence on γ.

We can also calculate derivatives of the magnetization sj directly,

https://doi.org/10.1038/s41598-019-43929-6


9Scientific RepoRts |          (2019) 9:7471  | https://doi.org/10.1038/s41598-019-43929-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

σ σ σ σ σ σ σ σ σ∂ = ∂ + ∂ = ∂ = Ω
 

† † † †s U U U U U U U U iRTr[( ) ] Tr[ ( ) ] 2Tr[ ] 2 Tr[ ] (26)j j j j j
b

b3 3 3 3

Now, using the identity σ σ σ ε=
 

iTr[ ] 2b b3 3  and that ρ⊥ = Ω⊥ we get ρ∂ ∝ → × →s R e[ ( )]j z j, and since R is an 
orthogonal matrix that preserves inner products,

ρ ρ∂→ ∝ → × → = ⊥s e( ) ( ) ( ) (27)z
2 2 2

The remaining terms of eff  come from the scalar field ρ3. From the above, this is explicitly

ρ π γ β α φ= ∂ + − ∂ ≡ ∂ −µ µ µ µ µa( ) cos (28)
3 3

with the vector potential aμ introduced to allow for the possibility of a curvature, i.e. ρ ρ∂ − ∂ ≠ 0t x x t
3 3 . To deter-

mine aμ, we explicitly compute

 ρ ρ β β α α β= ∂ − ∂ = ∂ ∂ − ∂ ∂ = ∂ → × ∂ → ⋅ →s s ssin ( ) ( ) (29)t x x t x t t x t x
3 3

Therefore the vector potential aμ, which satisfies = ∂ − ∂a at x x t  can be chosen to depend only on →s  and is 
therefore independent of γ. That is, we can choose φ(α, β, γ) as our third variable, with the only subtlety being 
that aμ must be given by the Wess-Zumino expression (i.e. Eq. 9).

Substituting the various ρ, we obtain the final form of the low-energy long-wavelength effective Lagrangian

 ρ φ
ρ

φ φ= − ∂ − ∂ − − ∂ −−

m
a v a

2
[( ) ( ) ] (30)

C
t x x C t teff 0

0 2 2 2

 ρ
κ

ν= − ∂ → − ∂ →−a s s
8
[( ) ( ) ], (31)

S
t

S
x S teff 0

2 2 2

The four previously-unassigned parameters are now given their physical significance: C
eff  is the real time 

Lagrangian of an acoustic mode with sound velocity vC in a liquid with average density ρ0. S
eff  is the real time NL 

σM Lagrangian for a spin-1/2 ferromagnet with spin-stiffness κS. νS has velocity dimensions reflecting the space-
time anisotropy, although the spin excitation spectrum is quadratic.
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