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Weakly measuring many-body systems and allowing for feedback in real-time can simultaneously
create and measure new phenomena in quantum systems. We theoretically study the dynamics of
a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a
domain wall, and focus on the trade-off between usable information obtained from measurement
and quantum backaction. Each weakly measured system yields a measurement record from which
we extract real-time dynamics of the domain wall. We show that quantum backaction due to
measurement causes two primary effects: domain wall diffusion and overall heating. The system
dynamics and signal-to-noise ratio depend on the choice of measurement observable. We propose a
feedback protocol to dynamically create a stable domain wall in the regime where domain walls are
unstable, giving a prototype example of Hamiltonian engineering using measurement and feedback.

I. INTRODUCTION

Understanding system-reservoir dynamics in many
body physics is a new frontier. An external bath can
be thought of as a ‘measurement reservoir’ from which
the environment extracts information about the sys-
tem [1, 2]. From this perspective, minimally destruc-
tive (i.e. backaction-limited) measurements constitute
a controlled reservoir that also provides a time-resolved
but noisy record of system evolution [3–6]. Weak mea-
surement has long been implemented in quantum-optical
systems to monitor and control nearly-pure quantum
states [2, 7], or in spin ensembles to create squeezed
states [8–10]. Extending this understanding to inter-
acting many-body systems opens the door to measure-
ment and quantum control of new, otherwise inaccessible
strongly-correlated matter.

We theoretically investigate weakly measured spinor
Bose-Einstein condensates (BECs), an experimentally
accessible system for which closed system dynamics are
well known [11]. We explore measurement protocols sen-
sitive to domain walls in two-component BECs, where
the resulting measurement record tracks the domain wall
over time. Furthermore, we show that classical feedback
based upon the measurement record can create and sta-
bilize domain walls. This process of ‘stochastic stabiliza-
tion’ via feedback from a noisy environment occurs in
many other contexts, such as cell differentiation in bi-
ology whereby environmental noise can stabilize specific
cell characteristics [12, 13].

Spinor condensates are predicted to host exotic spin
texture defects such as skyrmions and non-abelian vor-
tices [11, 14–19]. These defects interact with local exic-
tations and undergo diffusion; in real systems the excita-
tions further destabilize many exotic spin textures [20–
23]. Stabilizing non-abelian excitations using current
techniques has proven difficult, but might be possible
using weak measurement and feedback, similar to our
proposed approach for stabilizing a domain wall.

Domain walls in two-component BECs provide a test
platform to understand the effects of repeated weak mea-

surement on the stability and dynamics of topological de-
fects. By combining quantum trajectory techniques (for
open-system physics [24, 25]) with Gross-Pitaevskii sim-
ulations (for closed system dynamics [26, 27]), we study
the interplay of measurement, coherent evolution, and
classical feedback. We propose two measurement proto-
cols sensitive to the domain wall position and find that
the choice of measurement observable affects both the
heating rate and the dissipative dynamics of the domain
wall.

II. MODEL

A. Measurement

We model spin-resolved dispersive imaging of a quasi-
one-dimensional (1D) multicomponent condensate along
ex which interacts with a brief pulse of far detuned laser
light of wavelength λ and duration δt traveling along
ez [28, 29]. Here, the condensate is the system, and the
light pulse is the ‘environment’, which is then subject to
strong quantum measurement. We describe the optical

field by the spatial mode basis
∑
n χ
∗
n(z)â†nj where â†nj

describes the creation of a photon at xj (along the long
axis of the 1D BEC) in spatial mode n and χ∗n(z) is a nor-
malized mode function (along the direction of the probe’s
propagation). We model the incoming probe beam as a
coherent state with amplitude |α| and phase φ = π/2 in
a single spatial mode χ0(z) = (cδt)−1/2, where c is the
speed of light.

Atoms interact locally with the light via an interac-
tion Hamiltonian described by a spin-dependent ac Stark
shift [30],

ĤSR
rj =

~γ
cδt

Ŝrj ⊗ n̂j , (1)

where the reservoir operator n̂j = â†j âj counts the

photon number at xj . The system operators Ŝrj =

b̂†σj [τ · r]σσ′ b̂σ′j measure the spin in the direction r,
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FIG. 1. (a) Computed ground state system with a single do-
main wall and schematic illustration of phase contrast imaging
layout. The system is weakly coupled to an array of homo-
dyne detectors, where l.o. indicates a strong local oscillator.
The BEC is phase separated into spin up (red/left) and spin
down (blue/right); the black line indicates total density. (b-
c) Measurement outcome M of a single weak measurement
with strength ϕ = 0.1 of (b) Mz and (c) M⊥ (defined in
text).

where b̂†σj describes the creation of an atom of spin

σ ∈ {↑, ↓} at xj and τ = (τx, τy, τz) is the vector of Pauli
matrices. The system-reservoir interaction strength γ is
set by the atomic transition strength and the detuning
from resonance.

Just prior to measurement, the system and reservoir
mode evolve together for the pulse time δt under the

interaction unitary Ûr = exp
[
−iϕ∑j Ŝrj ⊗ Q̂j

]
, which

is a local displacement operator for the X̂j quadrature

of the optical field at xj where ϕ =
√

2γ|α|/c is a small

dimensionless parameter and
[
X̂j , Q̂j′

]
= iδjj′ [? ]. The

outcome of a single measurement for the full detector
array is

Mr(xj) = 〈Ŝrj〉+
m(xj)

ϕ
, (2)

where m(xj) is a vector describing quantum projection

noise with momentum-space Gaussian statistics m̃k = 0
and m̃km̃k′ = δkk′Θ (|k| − kc) /2, where m̃k denotes the
Fourier transform of m(xj), Θ is the Heaviside function,
and kc = 2π/λ denotes a momentum cutoff due to finite
resolution. The momentum cutoff is implemented to ac-
count for the fact that the environment can only resolve
information within a finite length scale λ.

A measurement with outcome Mr(xj) transforms the

system wavefunction to |Ψ|m〉 = K̂r|m|Ψ〉 where |Ψ〉 is
the system state before measurement and

K̂r|m ≈ 1 +
∑

j

ϕmjδŜrj −
ϕ2

4

kc
kM

(
δŜrj

)2
(3)

is a Kraus operator corresponding to a global measure-
ment of Ŝr, where kM = π/∆x is the maximum momen-

tum in the simulation for grid spacing ∆x and δŜrj =

Ŝrj − 〈Ŝrj〉.

B. System Dynamics

We describe the condensate in the mean-field approx-
imation by a complex order parameter Ψj = (ψ↑j , ψ↓j)

T

where ψσj is the coherent state amplitude of each spin (or
pseudospin) component σ ∈ {↑, ↓} at xj . The closed sys-
tem evolves under the Gross-Pitaevskii equation (GPE)

i~∂tΨj =
[
Ĥ0 + u0nj

]
Ψj + u2Szjτ

zΨj , (4)

where Ĥ0 = p̂2/2ma + maω
2
t x

2
j/2 is the single parti-

cle Hamiltonian for atoms of mass ma in a harmonic
trap with frequency ωt, nj = |ψ↑j |2 + |ψ↓j |2 is the

atom number at site j, and Szj = |ψ↑j |2 − |ψ↓j |2 is the
atom number difference (magnetization) at site j. We
work in units defined by the trap with t → t/ωt and

xj → xj
√
~/maωt, and the wavefunction is normalized

to the total number of atoms, N =
∑
j nj . The spin-

independent and spin-dependent interaction strengths
u0 = 2π~2(a+a↑↓)/ma∆x and u2 = 2π~2(a−a↑↓)/ma∆x
derive from the 1D intraspin and interspin scattering
lengths a and a↑↓ [31, 32]. We fix the total atom number
to be N = 104, and use u0∆x = 0.1 and u2 = ±0.05u0,
numbers which are representative of alkali atoms. For
u2 < 0 domain walls are stable, while for u2 > 0 domain
walls are unstable. The initial condition for all measure-
ment simulations is the ground state of the GPE found
by imaginary time evolution [? ].

We calculate the Kraus operator’s impact on the initial
coherent state by assuming the system is well-described
by a new mean-field coherent state after measurement,
conditioned on the measurement result [33–36]. To order
ϕ2 the coherent state

Ψj|m =

(
1− ϕ2

4

kc
kM

)
1Ψj + ϕmj [τ · r] Ψj (5)
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FIG. 2. System heating for 48 total measurements as shown
by increasing energy. E for 128 trajectories is plotted and the
shaded area denotes the variance. Each measurement adds
energy to the system, thereby heating the system. The solid
lines indicate ϕ = 0.1 while the dotted line indicatesM⊥ with
adjusted coupling ϕ ≈ 0.13 which adds the same amount of
energy per measurement as Mz. The shaded area indicates
time in which no measurements are taken, and energy is con-
served. The dotted black lines show the analytical prediction
for E from Eqn. (6).

maximally overlaps with K̂r|m|Ψ〉, thereby defining the
updated coherent state. We numerically implement
Eq. (4) using a second-order symplectic integration
method [27]. For each measurement, we apply Eq. (5) to
the wavefunction with a randomly generated noise vector
m(xj) leading to a stochastic GPE [26, 33]. We assume
that the system dynamics evolve on a longer timescale
than the duration δt of each probe pulse.

III. MEASUREMENT BACKACTION ON A
STABLE DOMAIN WALL

For u2 = −0.05u0 we initialize a single stable do-
main wall and compare two measurement signals: Mz

as in Fig. 1(b) and M⊥ as in Fig. 1(c) where M⊥ =√
M2

x +M2
y. The M⊥ measurement is implemented in

two steps, one measurement along x and one along y,
with ϕ→ ϕ/

√
2 to give the same overall coupling as the

single z measurement; each separate measurement im-
parts backaction onto the condensate. The signals differ
greatly; Mz gives a large signal everywhere atoms are
present except at the domain wall, whileM⊥ is non-zero
only within the domain wall. The domain wall width is
approximately the spin healing length ξs = ~/

√
2manu2.

By fitting the Mz, M⊥ to a tanh and cosh function
respectively, we extract the domain wall width ξw and
position xw over time from the measurement signal.

The two main effects of measurement backaction are
overall system heating and domain wall diffusion. Fig. 2
summarizes heating, which we quantify in terms of the
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FIG. 3. Variance x2w(t) for 128 trajectories. Mz shows clear
diffusive behavior whileM⊥ does not. As in Fig. 2, the solid
lines indicate ϕ = 0.1 while the dotted line indicates M⊥
with adjusted coupling ϕ ≈ 0.13 that gives the same heating
rate. The gray area shows the best-fit and uncertainty for the
diffusion model in Eq. (7).

energy change per measurement δE = E
[
Ψ|m

]
− E [Ψ],

where E is the GPE energy functional. From the updated
amplitude in Eqn. (5), we calculate

δEz ≈
ϕ2kc
kM

∑

j

(
k2c
12
nj + u0S

2
zj + u2n

2
j

)
(6)

for a single measurement of Ŝz, where nj and Szj denote
the atom number and magnetization of the system be-
fore measurement. The first term is from the increase in
kinetic energy due to measurement backaction, while the
other two terms describe the change in interaction energy.
For a measurement of Ŝ⊥, δE⊥ ∝ ϕ2

∑
j u0S

2
⊥j −u2S2

zj ,
which has a smaller contribution to the overall energy at
equal ϕ (for the domain wall) as verified numerically in
Fig. 2. Fig. 2 also shows the predicted energy increase
from δEz,⊥ (dotted black lines) which agrees well with
the numerical result. Adjusting the coupling for theM⊥
measurement to ϕ ≈ 0.13 leads to the same energy added
per measurement as for Mz with ϕ = 0.1. Thus, the
choice of measurement observable affects overall system
heating.

Measurement backaction also leads to diffusion effects,
similar to the case of a particle coupled to a fluctuating
reservoir. The domain wall is a localized, heavy object
whose motion can be described by a classical Langevin
theory [23, 37]. In this case the ‘reservoir’ is the stochas-
tic measurement backaction, which adds energy to the
system after each measurement without a mechanism for
dissipation.

Measurement backaction can impart noise on both the
momentum (p) and position (x) of the domain wall.
Fluctuations in x correspond to measurement backac-
tion directly changing the local spin via the Kraus op-
erator, while fluctuations in p correspond to changes in
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the superfluid velocity caused by density fluctuations,
which create a gradient in the overall condensate phase
as the system evolves in time after measurement. We ac-
count for both effects by considering a two-noise model
with strengths fx, fp respectively, which we assume to
be anti-correlated such that 〈fp(t)fx(t′)〉 = −fxfpδ(t −
t′) and 〈fp,x(t)fp,x(t′)〉 = f2p,xδ(t − t′). We quantify
measurement-induced diffusion by tracking the variance,

x2w =
f2q + f2p

2
t+

f2q − f2p
4ω

sin 2ωt+
fpfq
ω

sin2 ωt+D2
m (7)

where ω is the domain wall’s oscillation frequency. The
constant D2

m accounts for initial measurement uncer-
tainty.

Fig. 3 shows x2w(t) extracted from Mz and M⊥. For
Mz the domain wall undergoes diffusion with ω ≈ 1.5ωt

and the noise strengths fx,p scale linearly with ϕ. In
the case of M⊥ the measurement result stays relatively
flat until t ≈ 4π, indicating that backaction due to the
M⊥ measurement does not cause diffusion of the domain
wall. At longer times, x2w(t) does begin to increase, which
we attribute to overall heating rather than measurement
backaction. This shows that measurement backaction
due to Mz is more disruptive to the domain wall be-
cause each measurement imparts backaction noise across
the whole atom cloud, whereas the backaction for the
M⊥ measurement occurs only at the domain wall center
and does not affect the density away from the domain
wall.

IV. FEEDBACK-STABILIZED DOMAIN WALL

We now turn to creating and stabilizing a domain wall
using a measurement of Ŝz followed by classical feedback.
We start with a condensate with u2 = 0.05u0 which forms
a uniform condensate polarized in xy (easy-plane) with

〈Ŝz〉 = 0, where in the closed system a domain wall is not
energetically favorable [? ]. We derive a feedback signal

w =
1

N

∑

j

sgn(xj)Mz(xj) (8)

from each measurement Mz, where on average w̄ = 0
for a uniformly easy-axis or easy-plane polarized phase
and approaches w̄ = ±1 for a domain wall centered at
x = 0; the sign identifies the orientation. For example,
the domain wall signal in Fig. 1(b) has w = −0.99. We
then apply a magnetic field gradient Vz(xj) = gwτzxj
with strength proportional to w and gain g.

Figure 4 summarizes the results of feedback. Initially
the condensate is spin-unpolarized and w randomly fluc-
tuates about zero. After a few measurements the sign
stabilizes and |w| increases, signifying domain wall for-
mation with a stable orientation as shown by the two
branches of w in Fig. 4(a). The average w for ± orien-
tations is calculated by binning the trajectories by the
sign of w at the final timestep. Here, the band indicates

0 1 2 3 4

t/2π [ω−1
t ]

-1

0

1

w
[a

rb
.

u
n
it

s]
-20 -10 0 10 20

x
[√

h̄/maωt

]
〈S
z
〉[

a
rb

.
u
n
it

s]

+

−

(a)

(b)

FIG. 4. (a) Domain wall signal w for ϕ = 0.01 and g = −5.
The solid lines are the average over trajectories in the + or
− branch and the semi-transparent area indicates the vari-
ance. A domain wall is formed within 3 trap periods with the
orientation spontaneously determined based on the first few
measurements of the system. (b) Final value of 〈Sz〉 averaged
over all trajectories for the + (black) and − (pink) domain
wall orientations; the variance is same as the linewidth. The
internal spin-dependent interaction parameter is u2 = 0.05u0.

the variance of all trajectories on each branch. The pro-
cess is nearly symmetric; out of 256 total trajectories,
122 evolved to the ‘+’ orientation with w = 0.78 and 134
to the ‘−’ orientation with w = −0.8. This bistability is
reminiscent of spontaneous symmetry breaking in ferro-
magnets, but here quantum measurement and feedback
“spontaneously” broke the initial symmetry [? ].

In Fig. 4(b) we show 〈Sz〉 for each final orientation,
which clearly shows the presence of a domain wall. This is
reminiscent of the ground state of a two-component BEC
in the immiscible regime with u2 < 0, even though the in-
ternal interaction parameter is u2 = 0.05u0. This shows
that measurement and feedback can be used to stabilize
phases that would not be stable in equilibrium. However,
our demonstration protocol is not quite the same as tun-
ing interactions locally because w in Eq. (8) is not spa-
tially dependent. This type of feedback could not lead to
the formation of multiple domains, which happens when
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u2 is rapidly quenched [38, 39].

V. OUTLOOK

We outlined a new way to dynamically create stable
spin textures in cold gases that is directly applicable to
other systems such as Fermi gases or atoms in optical
lattices. Repeated weak measurements eventually heat
the system, which can be mitigated in experiment by
evaporation, or even by suitable local feedback [34, 40].
This work poses new questions such as: Can spatially
dependent feedback lead to an effective description with
changed interaction parameters? How can feedback max-
imally control heating? Future research could address

these questions using other types of feedback or different
measurement observables. Finally, additional sources of
noise in measurements could make feedback less efficient.
Expanding the theory to include detector inefficiencies
and technical noise is an important step toward imple-
menting our proposal, and will be addressed in future
work.
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SUPPLEMENTARY MATERIAL: MEASUREMENT INDUCED DYNAMICS AND STABILIZATION OF
SPINOR CONDENSATE DOMAIN WALLS

A. MEASUREMENT MODEL DETAILS

Just prior to measurement, the system and light pulse at xj each evolve together under Ûrj = exp
[
−iδtĤSR

rj /~
]

where

ĤSR
rj =

~γ
cδt

Ŝrj ⊗ n̂j . (9)

We take the probe field amplitude to be strong enough that the light is still nearly a coherent state after interacting
with the atoms such that âj ≈ 〈âj〉 + δâj . To first order in δâj , we then have n̂j ≈

√
2ReαX̂j +

√
2ImαQ̂j − |α|2

where X̂j = (âj + â†j)/
√

2 and Q̂j = (âj − â†j)/
√

2i are quadrature variables with
[
X̂j , Q̂j′

]
= iδjj′ . Thus, up to a

global phase the evolution operator is Ûr = exp
[
−i∑j Ŝrj ⊗

(
ϕxX̂j + ϕqQ̂j

)]
with couplings ϕx =

√
2γ|α| cosφ/c,

ϕq =
√

2γ|α| sinφ/c. We then set φ = π/2 which gives ϕx = 0 and ϕq → ϕ =
√

2γ|α|/c. The beam is homodyne
detected on an array of detectors; during homodyne detection the reservoir state is strongly measured in the eigenbasis
of the X̂j operators with eigenvalues X̂j |mj〉 = mj |mj〉. The reservoir state |α〉 is assumed to be Gaussian over the |mj〉
states (suitable for a coherent state of light), leading to Gaussian-distributed measurement outcomes mj . Thus, the
measurement outcome for the full detector array is a vector m(xj) = (m1,m2, . . . ,mj). When coupled to the quantum

system, Ûr locally shifts the |mj〉 states by ϕ〈Ŝrj〉. The system wavefunction after measurement is |Ψ|m〉 = K̂r|m|Ψ〉
where K̂r|m = 〈m|Ûr(δt)|α〉 is a Kraus operator corresponding to a specific measurement outcome m(xj) and |Ψ〉 is

the system state before measurement. We present the functional form of K̂r|m in the main text by expanding the

formal expression to O(ϕ2).

B. SIMULATION PARAMETERS

For each simulation the internal dynamics of the system (Eq. (4) in the main text) were modeled via a Gross-
Pitaevskii equation (GPE) using the split-step integration method in Ref. [27]. First, we found the ground state of
the GPE via imaginary time t → −iτ , using the strong convergence critertion in Ref. [41] to test for convergence.
Then, we studied the effect of measurement by running the GPE in real time to account for internal dynamics, and
applying the Kraus operator (Eq. (5) in the main text) each time we ‘measured’ the system. We studied the effect of
measurement backaction in the regime where domain walls are stable (u2/u0 < 0) and we studied measurement and
feedback in the regime where they are unstable (u2/u0 > 0). The number of particles was fixed to N = 104, the time
increment was dt = 3.8× 10−4ω−1t , and the spatial increment was ∆x ≈ 0.02.

In the measurement backaction section of the main manuscript, we study the measurement backaction on the BEC
in the regime where domain walls are stable. These simulations (Figs. 1. 2. and 3 in the main text) were run with
u2/u0 = −0.05, u0 = 0.1∆x and the initial condition is given in Fig. 5

https://link.aps.org/doi/10.1103/PhysRevA.93.023610
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FIG. 5. Computed ground state system in the immiscible regime with a single domain wall. Initital condition for the ‘mea-
surement backaction’ section.

In the feedback-stabilized domain wall section of the paper we started the measurement and feedback from the
ground state of a spin-unpolarized system. These simulations (Fig. 4 in the main text) were run with u2/u0 = 0.05,
u0 = 0.1∆x and the initial condition is given in Fig. 6.
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FIG. 6. Computed ground state system in the miscible regime with equal, evenly distributed spin population. Initial condition
for the ‘feedback’ section.
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C. BEHAVIOR OF INDIVIDUAL TRAJECTORIES UNDER FEEDBACK

0 1 2 3 4

t/2π [ω−1
t ]

-1

0

1

w

FIG. 7. Example of two individual system trajectories under measurement and feedback for ϕ = 0.01 and g = −5. The dotted
lines indicate the measurement result (with measurement noise) and the solid lines are calculated using the wavefunction only.
Notice at short times (t/2π < 1) the measurement trajectories oscillate around zero and the solid lines change sign before
stabilizing around w ≈ ±1.

Under measurement and feedback, individual system trajectories show signatures of spontaneous symmetry break-
ing. The sign of the feedback signal w (defined in the main text) determines the orientation of the domain wall. Fig. 7
shows the evolution of w for two system trajectories under measurement and feedback, showing that the sign of w
does not stabilize for t/2π < 1. The average w for ± orientations is calculated by binning the trajectories based on
the sign of w at the final timestep.
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