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The multiscale entanglement renormalization ansatz (MERA) postulates the existence of quantum
circuits that renormalize entanglement in real space at different length scales. Chern insulators, however,
cannot have scale-invariant discrete MERA circuits with a finite bond dimension. In this Letter, we show
that the continuous MERA (cMERA), a modified version of MERA adapted for field theories, possesses a
fixed point wave function with a nonzero Chern number. Additionally, it is well known that reversed
MERA circuits can be used to prepare quantum states efficiently in time that scales logarithmically with the
size of the system. However, state preparation via MERA typically requires the advent of a full-fledged
universal quantum computer. In this Letter, we demonstrate that our cMERA circuit can potentially be
realized in existing analog quantum computers, i.e., an ultracold atomic Fermi gas in an optical lattice with
light-induced spin-orbit coupling.
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A quantum many-body system has a Hilbert space
whose dimension grows exponentially with system size,
making exact diagonalization of its Hamiltonian imprac-
tical. Fortunately, tensor networks [1,2] are capable of
efficiently representing the ground states of many sys-
tems with local interactions [3–8]. Another powerful tool
in many-body physics is the renormalization group (RG)
[9,10], which uses the fact that the description of a
physical system can vary at different length scales,
forming a hierarchical structure. The RG provides a
systematic prescription to transform an exact microscopic
description to an effective coarse-grained description.
Applications of RG range from critical phenomena in
condensed matter to the electroweak interaction in high-
energy physics [11].
One approach, which combines tensor networks and the

renormalization group, is called the multiscale entangle-
ment renormalization ansatz (MERA) [3,7]. MERA pro-
poses a quantum circuit acting on a state that is initially
entangled at many length scales. The two elementary
building-block tensors of the MERA, isometries and
disentanglers, are discrete unitary gates that physically
implement RG in real space by successively removing
entanglement at progressively larger length scales.
Interestingly, since the circuit depth only increases loga-
rithmically with the system size, a reversed MERA circuit
can efficiently prepare a state with finer entanglement
structure from a weakly entangled initial state. In practice,
MERAs are most convenient when the disentanglers and
isometries are independent of the length scale [12–18]. The
state that is left unchanged in the thermodynamic limit by

these scale-invariant unitaries is termed a fixed-point
wave function.
Experimentally, a reversed MERA circuit might be used

to prepare exotic states, such as chiral topological states,
which include integer quantum Hall states and certain
fractional quantum Hall states [19,20]. Some fractional
quantum Hall systems are believed to feature anyons useful
for topological quantum computation [21]. Due to their
great theoretical interest, it would be useful to be able to
study these systems under highly controlled settings, such
as in ultracold atomic gases. However, to create a chiral
topological state in the lab, we must not only engineer the
parent Hamiltonian, but also cool the system down to the
ground state. The latter is usually hard experimentally for
topological states due to their long-range entanglement
[22]. A reversed MERA circuit can possibly resolve this
issue by directly generating the target chiral topological
state from another state that is easier to obtain by cooling.
Here, as a first step towards finding a MERA for a

fractional quantum Hall state, we instead search for a
MERA whose fixed-point wave function describes an
(integer) Chern insulator. A Chern insulator is an integer
quantum Hall state on a lattice and is therefore a simpler
system than the fractional quantum Hall state. However,
there are no-go theorems stating that a MERA cannot have
a Chern insulator ground state as its fixed-point wave
function [23–26]. Since conventional MERA only contains
strictly local interactions, adding quasilocal interactions
with quickly decaying tails could possibly circumvent the
no-go theorems. A modified formalism of MERA adapted
for field theories called continuous MERA (cMERA) [27]
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can include such quasilocal interactions [28]. The distinc-
tion between strictly local and quasilocal interactions is that
the interaction range of the former is finite, while the latter
are a broader class that includes interactions decaying faster
than any power law with respect to distance, e.g., expo-
nentially decaying interactions. In contrast to the MERA
paradigm, in which the renormalization circuit consists
of discrete unitary gates, cMERA treats the circuit time,
which corresponds to the length scale, as a continuous
variable and generates continuous entanglement renormal-
ization using a Hermitian Hamiltonian.
In this Letter, we show that a type of Chern insulator

wave function can be generated by a scale-invariant
cMERA circuit. The Chern insulator model we consider
is the Bernevig-Hughes-Zhang model in the continuum
limit [29]. In addition, we propose a possible experimental
realization of the cMERA circuit with neutral 171Yb atoms
in an optical lattice by introducing spin-orbit coupling.
Our work complements and can be contrasted with

Refs. [30,31]. While Ref. [30] previously developed a
cMERA for the continuous Chern insulator model men-
tioned above, our work uses a scale-invariant disentangler.
Other prior work in Ref. [31] presented a scale-invariant
entanglement renormalization for a two-band Chern insu-
lator model. While Ref. [31] makes use of the lattice
structure and quasiadiabatic paths between a series of
gapped Hamiltonians, our cMERA approach allows
smooth time evolution and emphasizes the continuum
physics. Another difference is that the RG evolution in
Ref. [31] involves interactions decaying with distance
faster than any power-law function but slower than an
exponential, whereas our cMERA only needs an exponen-
tially decaying interaction. Other known methods for
representing chiral topological states include artificial
neural network quantum states [32–34], projected
entangled pair states [25,35–37], matrix product states
[38], and polynomial-depth unitary circuits [39].
Review of cMERA.—Within the framework of conven-

tional MERA [3,7], disentanglers Vu and isometries Wu
are strictly local discrete unitary operators employed to
renormalize entanglement at layer u ∈ Zþ. In cMERA
[27], we simply replace them by continuous unitary trans-
formations, which are infinitesimally generated by self-
adjoint operators KðuÞ and L: Vu → e−iKðuÞdu, Wu →
e−iLdu. The notation du denotes an infinitesimal RG step,
and u ∈ ð−∞; 0�. When the continuous variable u
approaches zero, the system is said to be at the ultraviolet
(UV) length scale, possessing both short-range and long-
range entanglement. As u → −∞, the system flows to the
infrared (IR) length scale, where short-range entanglement
is removed and nearly all degrees of freedom are disen-
tangled from each other. Note that the generator of
disentangler KðuÞ can in general depend on scale u. A
cMERA is called scale invariant if KðuÞ is independent
of u.

To emulate the coarse-graining behavior of isometries in
conventional lattice MERA, L is chosen to be the scaling
transformation in field theory. For example, for a single
fermion field ψðxÞ in d spatial dimensions, we pick L ¼
−ði=2Þ R ½ψ†ðxÞx ·∇ψðxÞ − x ·∇ψ†ðxÞψðxÞ�ddx [27,30];
thereby, fermionic operators ψðxÞ in real space and ψðkÞ in
momentum space satisfy the following scaling transforma-
tions: e−iuLψðxÞeiuL ¼ eðd=2ÞuψðeuxÞ, e−iuLψðkÞeiuL ¼
e−ðd=2Þuψðe−ukÞ. One can check that the anticommutation
relations fψðxÞ;ψ†ðx0Þg ¼ δðx − x0Þ in real space and
fψðkÞ;ψ†ðk0Þg ¼ δðk − k0Þ in momentum space are pre-
served under the scaling transformation. Wewill sometimes
abuse the terminology to call KðuÞ and L themselves the
disentangler and the isometry rather than the verbose
generator of disentangler and generator of isometry.
The renormalized wave function is governed by the

Schrödinger equation,

i
∂
∂u jΨ

SðuÞi ¼ ½KðuÞ þ L�jΨSðuÞi; ð1Þ

where the superscript S denotes the Schrödinger picture. In
this Letter, we will focus on the interaction picture, which
provides a more convenient way to look at continuous
entanglement renormalization. We treat L as a “free”
Hamiltonian and KðuÞ as an “interaction” Hamiltonian,
i.e., jΨIðuÞi ¼ eiuLjΨSðuÞi, where the superscript I
denotes the interaction picture. Substituting this equation
into Eq. (1), we obtain

i
∂
∂u jΨ

IðuÞi ¼ K̂ðuÞjΨIðuÞi; ð2Þ

where K̂ðuÞ¼defeiuLKðuÞe−iuL is the disentangler in the
interaction picture. The renormalized wave function
jΨIðuÞi at scale u can be formally written in terms of
the IR state jΩI

IRi≡ jΨIðu → −∞Þi as

jΨIðuÞi ¼ P exp

�
−i

Z
u

−∞
K̂ðu0Þdu0

�
jΩI

IRi; ð3Þ

where P is the path ordering operator. Unless otherwise
stated, we will only consider the interaction picture;
therefore, we will drop the superscript I in the rest of this
Letter.
A continuous Chern insulator model.—We begin with a

two-band continuous Chern insulator model in two spatial
dimensions [29] with Hamiltonian H ¼ R

d2kψ†ðkÞ
½RðkÞ · σ�ψðkÞ, where k ¼ ðkx; kyÞ ∈ R2,RðkÞ ¼ ðkx; ky;
m − k2Þ; m > 0; k≡ jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and σ ¼ ðσx; σy; σzÞ

is a vector of Pauli matrices. The fermionic operator ψðkÞ
is a two-component spinor ψðkÞ≡ ½ψ1ðkÞψ2ðkÞ �T whose
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components satisfy fψ†
i ðkÞ;ψ jðk0Þg¼δijδðk−k0Þ for

i; j ∈ f1; 2g.
The ground state, which has the lower band filled, is [30]

jΨi ¼
Y
k

½ukψ†
2ðkÞ − vkψ

†
1ðkÞ�jvaci;

uk ¼ 1ffiffiffiffiffiffi
Nk

p
�
ðm − k2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − k2Þ2 þ k2

q �
;

vk ¼ 1ffiffiffiffiffiffi
Nk

p ðke−iθkÞ; ð4Þ

where Nk is a k-dependent normalization factor such that
jukj2 þ jvkj2 ¼ 1, and the state jvaci is the vacuum state
annihilated by ψ1;2ðkÞ. The angle θk is defined via kx ¼
k cos θk and ky ¼ k sin θk; i.e., it is the polar angle in
momentum space. The Chern number of the bottom band
of this two-band system is C ¼ ð1=4πÞ RR2 d2knðkÞ·
f½∂nðkÞ=∂kx� × ½∂nðkÞ=∂ky�g ¼ 1, where nðkÞ≡
½RðkÞ=jRðkÞj� and where the integrand divided by two
is called the Berry curvature.
Now, we show how to obtain a scale-invariant cMERA

for this model.
Entanglement renormalization of the Chern insulator.—

Following the convention in Refs. [27,30,40], we take the
Gaussian ansatz for the disentangler in the Schrödinger
picture, KðuÞ ¼ i

R
d2k½gðk; uÞψ†

1ðkÞψ2ðkÞ þ g�ðk; uÞ
ψ1ðkÞψ†

2ðkÞ� [41]. If we require our disentangler to be
scale invariant, then gðk; uÞ should not have explicit u
dependence, gðk; uÞ ¼ gðkÞ. We also take the ansatz
that gðkÞ ¼ HðkÞe−iθk , where HðkÞ is a real-valued func-
tion to be determined. Through rewriting the disentangler
as KðuÞ ¼ R

d2kψ†ðkÞ½HðkÞ · σ�ψðkÞ with HðkÞ ¼
½HðkÞ sin θk;−HðkÞ cos θk; 0�, we can intuitively under-
stand its action by imagining an effective magnetic field of
strength HðkÞ in a clockwise direction about the origin
applied to the pseudo-spin at each momentum point. In the
interaction picture, the disentangler becomes

K̂ðuÞ ¼ i
Z

d2k½Hðe−ukÞe−iθkψ†
1ðkÞψ2ðkÞ

þHðe−ukÞeiθkψ1ðkÞψ†
2ðkÞ�: ð5Þ

Now, we start to renormalize the wave function and
determine the form of the disentangler. We assume that the
renormalized wave function at scale u can be expressed as

jΨðuÞi ¼
Y
k

½PkðuÞψ†
2ðkÞ −QkðuÞψ†

1ðkÞ�jvaci; ð6Þ

with jPkðuÞj2 þ jQkðuÞj2 ¼ 1. From Eq. (2), we get

PkðuÞ ¼ Ake−iφðe
−ukÞ þ Bkeiφðe

−ukÞ;

QkðuÞ ¼ −ie−iθk ½Ake−iφðe
−ukÞ − Bkeiφðe

−ukÞ�: ð7Þ

Coefficients Ak and Bk are complex numbers with
jAkj2 þ jBkj2 ¼ 1

2
, and φðe−ukÞ≡ R

∞
ke−u HðtÞðdt=tÞ. At

UV scale u ¼ 0, the wave function should match the
ground state in Eq. (4); at IR scale u → −∞, we would
like the renormalized wave function to be the product
state

Q
kψ

†
1ðkÞjvaci or the product state

Q
kψ

†
2ðkÞjvaci

[27,30,40]. By taking Ak ¼ −ð1=2iÞ and Bk ¼ ð1=2iÞ, the
boundary conditions can be satisfied by requiring

HðkÞ ¼ kðmþ k2Þ
2½k4 þ k2ð1 − 2mÞ þm2� : ð8Þ

Substituting Eq. (8) into Eqs. (6) and (7), we attain an
explicit form of the renormalized wave function,

jΨðuÞi ¼
Y
k

1ffiffiffiffiffiffiffiffiffi
Nk;u

p
��

ðm − k2e−2uÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − k2e−2uÞ2 þ k2e−2u

q �
ψ†
2ðkÞ

− ke−ue−iθkψ†
1ðkÞ

�
jvaci; ð9Þ

where Nk;u is a normalization factor that depends on k and
u. The Berry curvature of the renormalized wave function
at different u is shown schematically in Fig. 1. The IR
state is jΩIRi ¼ limu→−∞jΨðuÞi ¼

Q
ke

−iθkψ†
1ðkÞjvaci,

which is equal to
Q

kψ
†
1ðkÞjvaci ¼

Q
xψ

†
1ðxÞjvaci up to

an overall phase. Note that the nonzero Chern number does
not survive in the IR state because the integration operation
does not commute with the limit u → −∞. However, at
any finite u, the Chern number is always one. Therefore,
there is no phase transition during the entanglement

FIG. 1. Berry curvature of the renormalized wave function in
the interaction picture at different scales u, drawn schematically
in momentum space. The blue arrow corresponds to the direction
of the reversed cMERA circuit. The area contributing to the
Chern number expands as one approaches the UV scale.
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renormalization process, which is consistent with the
results in Refs. [30,42,43].
To analyze the spatial structure of the disentangler, we

rewrite the expression for HðkÞ. We first define λþ and λ−
as the two roots of the equation x2 þ ð1 − 2mÞxþm2 ¼ 0,
λ� ¼ ½ð−1þ 2m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m
p Þ=2�. They are real and neg-

ative when 0 < m < 1=4. Although setting this restriction
on m is not necessary for our disentangler, we will assume
it in the following in order to assist our experimental
realization. Now, the expression HðkÞ can be rewritten as

HðkÞ ¼
�
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m

p
�

k
k2 − λþ

þ
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m

p
�

k
k2 − λ−

: ð10Þ

By inserting this expression into Eq. (5) and performing a
Fourier transform, it can be shown that the disentangler
in real space decays exponentially with characteristic
length e−u=maxf ffiffiffiffiffiffiffiffiffi

−λþ
p

;
ffiffiffiffiffiffiffiffi
−λ−

p g. Therefore, our cMERA
involves quasilocal interactions.
Experimental realization of the cMERA circuit.—We

propose a way to realize our reversed cMERA circuit to
prepare a Chern insulator state in an optical lattice with
neutral 171Yb, which are fermionic atoms with two outer
electrons. From now on, we will drop the word “reversed”
for our cMERA circuit when the context is clear. Recall that
the cMERA circuit starts with an initial IR state. As
discussed above, the IR state at u → −∞ does not have
the correct Chern number; therefore, we start from a near-
IR state with large negative u. In addition, the cMERA
circuit is only valid on a lattice when the continuum
approximation holds. Therefore, throughout the circuit,
the physical length scale e−u=maxf ffiffiffiffiffiffiffiffiffi

−λþ
p

;
ffiffiffiffiffiffiffiffi
−λ−

p g should
be significantly larger than the lattice spacing. At the same
time, this length scale should be significantly smaller than
the total size of the lattice so that boundary effects do not
dominate the bulk physics. Going forward, we begin with a
near-IR state and use our cMERA circuit to obtain the UV
state without ever violating these requirements.
Here, we assume that we already have an initial near-IR

state waiting to be inserted into the cMERA circuit. Since,
in finite-size systems, the Berry curvature is concentrated
on a few discrete momentum points near k ¼ 0, the
preparation of this near-IR state should be fast if we can
individually create states at each point in momentum space.
In the Supplemental Material [44], we provide one possible
method for generating this initial state [44].
We now present the cMERA circuit engineering scheme

(see Supplemental Material [44] for details). We use jg1i
and jg2i as shorthand notations for the two stable hyperfine
ground states jF ¼ 1=2; mF ¼ −1=2i and jF ¼ 1=2;
mF ¼ 1=2i in 1S0; these form the basis of our spinor
ψðkÞ≡ ½ψ1ðkÞψ2ðkÞ �T . We find that if we have two

metastable excited states je1i and je2i (e.g., from the 3P
manifold) with quadratic dispersions coupled by spin-orbit
interaction and couple them off resonantly to the respective
ground states as shown in Fig. 2, then the disentangler in
the interaction picture can be engineered. Intuitively, the
spin-orbit interaction allows us to generate a momentum-
dependent effective magnetic field for Eq. (5), whereas the
off-resonant couplings to quadratic dispersive bands induce
quadratic terms in the denominators of Eq. (10). To
accomplish this, we utilize the scheme detailed in
Refs. [53–56] to create two dressed excited states coupled
by spin-orbit interaction. However, as the two dressed
states are linear combinations of bare excited states, the
dressed states do not have good quantum numbers to have
clear selection rules to forbid the transitions jg1i ↔ je2i
and jg2i ↔ je1i. Nevertheless, by carefully choosing the
driving fields to couple ground states to the bare excited
states, we can create interferences to generate synthetic
selection rules. By varying the laser parameters as the
circuit progresses, we can engineer the disentangler in the
interaction picture.
When the UV state is generated by the cMERA circuit,

one can then use the experimental techniques introduced in
Refs. [57–59] to measure the Chern number and the Berry
curvature.
Discussion.—In this Letter, we found a quasilocal

cMERA whose fixed-point wave function is a Chern
insulator. This is a novel and unexpected way to represent
systems with chiral topological order. We also demonstrate
that our quasilocal quantum circuit can be realized exper-
imentally in a cold atom system, despite the common
intuition that a quantum circuit should be strictly local to
allow easier implementation.
In our realization, we only explored one possibility to

engineer spin-orbit coupling, but it may be possible to
engineer the interaction in other ways, such as using
magnetic fields on a chip [60] or microwaves [61].
Other alkaline-earth atoms could also provide promising

FIG. 2. A scheme to engineer the cMERA circuit in the
interaction picture. The two excited states are coupled by spin-
orbit interaction to each other and by off-resonant lasers to the
two ground states.
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experimental platforms. Although our experimental reali-
zation took place in the interaction picture, one could in
principle instead use the Schrödinger picture for cMERA,
where the lattice constant must continuously contract in
an experiment [62,63]. By using our cMERA circuit, the
Chern insulator bulk wave function can be prepared and
detected. We leave it for future work to study the edge
physics, for which one also needs to apply some unitaries
on the edge during the initial state preparation process and
to carefully design the corresponding disentanglers; other-
wise, the edge physics might not be preserved under the
bulk unitary process [42,43,64].
It is also interesting that the Chern insulator ground state

is a fixed point of our cMERAwith finite correlation length.
This observation seems to contradict the usual intuition that
the fixed point correlation length must be zero or infinity, as
the correlation length must decrease under rescaling of each
strictly local RG step in real space. However, since our
cMERA involves continuous time evolution and quasilocal
interactions, it has the potential to restore the original
correlation length after a finite time evolution. The no-go
theorems in Refs. [23–26] are similarly circumvented by a
cMERA construction. Our work suggests that quasilocal
RG transformations are a more powerful framework than
strictly local RG transformations. It also might shed light
on some of the key properties of MERA-like formalisms
for a wide range of chiral topological states. In the future,
we hope to extend the methods of this Letter to fractional
quantum Hall states.
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