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Abstract
We trap individual 1DBose gases and obtain the associated equation of state by combining calibrated
confining potentials with in situ density profiles. Our observations agreewell with the exact Yang–
Yang 1D thermodynamic solutions under the local density approximation.Wefind that our final 1D
systemundergoes inefficient evaporative cooling that decreases the absolute temperature, but
monotonically reduces a degeneracy parameter.

1. Introduction

Strongly interacting systems are ubiquitous inmodern physics, from astrophysical objects such as neutron stars
to themyriad of correlated electron systems in condensedmatter. Experimental developments in ultracold
atomic physics enablemultiple avenues to explore interacting quantummatter, for examplewith optical lattices
[1], Feshbach resonances [2] ormediated long-range interactions [3]. Furthermore, tailored potentials can
reduce the effective dimensionality of cold atomic gases; for example, a 2Doptical lattice can partition a 3D
system into an array of 1D gases [4–6]. Remarkably, the theory of a 1DBose gas (1DBG)with contact repulsive
interactions is exactly solvable at all temperatures [7, 8], making it an ideal system to benchmark experiment
against theory.

In cold atomic gases, the≈5 nm range [2] of the interatomic potential is vastly smaller than the100 nm
interatomic spacing, hence interactions arewell described by a local contact potential with strength g. This gives
the 1DHamiltonian
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forN interacting bosons ofmassmwhich in the absence of a potential, i.e.V(z)=0, becomes the Lieb–Liniger
[7]Hamiltonian.

Lieb and Liniger showed that eigenstates of thisHamiltonian are parametrized by the dimensionless
interaction parameter mg n2g = , where n is the density. Here the relevance of interactions increases with
decreasing density. For γ=1mean-field theory accurately describes the system,while for γ?1 the atoms
strongly avoid one another and behavemuch likeweakly interacting fermions. Yang andYang extended this
solution to non-zero temperature [8] and cold atom experiments have validated the accuracy of the ‘Yang–Yang’
thermodynamics [9–11].

Here we study the physics of individual 1DBGs using 87Rb atoms in an optical ‘tube trap’ (figure 1(a)) and
benchmark the thermodynamic equation of state (EoS) against Yang–Yang thermodynamics. Our individual-
system realization bridges an existing gap in experiments, on the one hand avoiding the issue of ensemble
averaging present in realizations using optical lattices [4–6, 10] and on the other hand enabling the future study
of 1Dmulti-component systems not viable usingmagnetic confinement potentials [12, 13].
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Figure 1. (a) Schematic of the trap formed by a tightly focused blue-detuned laser beam in the LG01mode propagating along ez and a
red-detunedGaussian laser beampropagating along ex. (b) In situ absorption image of the trapped 1DBG. (c) Linear densities from a
single 1DBG (white circles), the average of 100 realizations (green circles), and thefit of the Yang–Yangmodel to the average (black
solid curve) givingT=152 nK andμ0/ÿ=2π×1.92 kHz, alongwith the residuals (gray squares).

Figure 2.Three regimes can be identified in the γ,T/Td parameter spacewhich correspond to the strongly interacting degenerate
(red), weakly interacting degenerate (blue) and non-degenerate (green) regimes. The different qualitative regimes are approximately
delineated by the black lines, but these are simply crossovers. Specific experimental realizations of inhomogeneous systems cover a
given range of these parameters (white circles).
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The physics of 1DBGs can be divided into three qualitative regimes [14] shown infigure 2. For sufficiently
high temperatures (green region) the EoS is dominated by thermal effects and approaches that of a non-
interacting classical gas. Below the degeneracy temperatureT n mk2d

2 2
B= , where kB is Boltzmann’s constant,

and forweak interactions (γ= 1), the reduced thermal fluctuations allowBose statistics toweigh in [15],
creating a phase fluctuating degenerate gas. For lower temperatures whereT/Td<2γ (blue region), the thermal
energy falls below the chemical potential and the system iswell described by theGross–Pitaevskii equation
(GPE). In contrast, for systemswith large interactions (γ? 1) the EoS resembles that of an ideal Fermi gas [10],
with the formation of a Fermi surface forT<Td (red region). Yang–Yang thermodynamics provides EoS’s
encompassing all of these regimes, relating quantities like the particle, entropy and pressure densities to the
chemical potentialμ and temperatureT, e.g. n(μ,T).

In trapped systems, the confining potentialV(z)�0 can often be treated as an inhomogeneous chemical
potentialμ(z)=μ0−V(z)which allows formultiple regimes to be present in a single 1DBG.Wedefineμ0 as
the local chemical potential atV(z)=0. This can be quantitatively understood [16]within the local density
approximation (LDA) allowing the density profile n(z,T) to be interpreted as an EoS n(μ(z),T). As a
consequence, the EoS can be experimentally determined fromawell-calibrated trapping potentialV(z) and the
observed density profiles.

We extract this n(μ(z),T)EoS from in situ absorption images [17–19] of individual systems (figure 1(b)),
eliminating ensemble averaging. Becausewe obtain the 1Ddensity directly, we do not apply the inverse Abel
transform [18] thereby avoiding added noise.We benchmark ourmeasurement against the Yang–Yang EoS
(figure 1(c)), fromwhich other thermodynamic quantities become readily available (e.g. free energy, entropy
and pressure).

Thismanuscript is organized as follows: in section 2, we describe our experimental setup and data
acquisition protocol; in section 3, we address the different calibration aspects of our analysis; in section 4, we
discuss the results; and in section 5, we conclude.

2. Experiment

Weprepare cold atoms beginningwith amagneto-optical trap followed by verticalmagnetic transport [20] into
amagnetic quadrupole trap, ultimately loading a 1064 nmcrossed optical dipole trap [21, 22]. This gives
N≈2×105 atomBose–Einstein condensates (BECs) of87Rb in the F m5 S 1, 0F1 2 = = ñ∣ hyperfine ground
state with≈70Hzmean trapping frequencies. The atoms are then transferred into the composite high aspect-
ratio trap shown infigure 1(a). This trap includes a red-detuned (λG=1064 nm)Gaussian beam along exwith
waist w 203 2 mG m= ( ) providing reduced longitudinal confinement owing to its larger waist as compared to
the 70 mm» crossed dipole beamwaist. A transverse ‘tube trap’ along ez is provided by a blue-detuned
(λLG=532 nm) Laguerre–Gauss (LG01) beam, tightly focused to awaist of w 5.6 5 mLG m= ( ) . In our standard
configuration these beams have powers PG=0.8(1)WandPLG=1.0(1)W, giving a peak transverse trapping
frequency 2 2 17 2 kHzx y

1 2w p w w p= =^ ( ) ( ) .
The transverse zero-point energy fromω⊥ produces an anti-confining potential along ez due to the

divergence of the LGbeam. The anti-trapping potential shown in green in figure 3 significantly alters the overall
longitudinal potential
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where 20w p^
( ) denotes the peak transverse trapping frequency; za is the center of the anti-trap; zR is the Rayleigh

range of the LGbeam; andV0 is an energetic offset chosen such that theminimumof the potential is zero. The
black shaded curve infigure 3 shows the combined anharmonic potential of the longitudinal trap (red curve) and
the anti-confining potential. Small amplitude longitudinal dipole oscillations in the combined potential have
frequencyωz/2π=12.1(2)Hz.

Figure 4 depicts our four step loading scheme. (i)Wefirst ramp up the intensity of the LGbeam from zero in
250 ms until the tube trap can suspend atoms against gravity. Because the 3D system is always larger than 30 mm ,
the 5 mm» LGbeamonly captures a small fraction of the initial 3D ensemble. (ii)We then lower the intensity of
the crossed dipole trap in 250 ms, allowing the atoms outside the tube trap to fall away. (iii)We then rampup the
final 1064 nm longitudinal trap in 250 ms. (iv) In thefinal 250 mswe simultaneously increase the intensity of the
LGbeam to itsfinal value while removing the crossed dipole trap.

These 250 ms rampswere chosen to be adiabatic with respect to all the confining potentials.Monopole and
dipolemodes of the 1DBG can be induced by both beammisalignment and excessive ramp rates in this scheme.
Our ramp timeswere chosen tomitigate these residual excitations.
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Wecontrol the temperature of the 1DBGby varying the temperatureT3D of the initial 3DBose gas.We tuneT3D
by adjusting thedepthof the crosseddipole trap, covering the range fromT 343D = –320nK,with anobservedBEC
transition atT 160 nK3D

c » .WedetermineT3Dwith time-of-flightmeasurements.Thenumber of atoms in the
1DBG increaseswithdecreasingT3Ddue to the increasing 3Ddensity asT3D falls.Gravitational sag is a complicating
factor: as the crosseddipole trapdecreases, the 3Densemble lowers due to gravity, but the vertical alignmentof the
tube trapdoesnot.Wemitigate this effect by increasing the crosseddipole power after thefinal evaporation such that
the crosseddipolepotential is in afixed vertical positionprior to loading the tube trap.

3. Imaging

Wederive the density n(z) from in situ absorption images. Our imaging systemhas a resolution of1.85 5 mm( )
andmagnification thatmaps one 5.6 mm sensor pixel to 0.84 1 mm( ) in the object plane. In preparation for
imaging, we apply a 20 sm repump pulse to transfer the 5 S1/2 F m1, 0F= = ñ∣ atoms into the 5 S1/2 F 2= ñ∣
hyperfinemanifold.We then image [23]with a circularly polarizedλp=780 nmprobe beam resonant with
the 5 S1/2 F 2= ñ∣ to 5 P3/ 2 F 3= ñ∣ transition for 20 sm at an average intensity of I=2.5Isat, where Isat =
1.67 mW cm 2- is the saturation intensity of the resonant atomic transition. An image of the probe beam
following absorption Ia, the probewithout atoms present Ip, and a dark framewith no probe present Id, are each
recorded on a charge-coupled device camera. From these images we obtain the absorbed fraction

Figure 3.Trapping potential along ezwith both contributions from the anti-trap (solid green curve) and red-detuned beam (solid red
curve). The shaded regionmarking the total trapping potential illustrates the uncertainty from the parameters entering into
equation (2). This includes the covariancematrix for the parameters ofV(z) fromour global Yang–Yangfit discussed in section 4.

Figure 4.Adiabatic loading procedure. Each curve shows the intensity of a laser beam. The dashed–dotted blue curve depicts the
crossed dipole trap; the solid green curve denotes the LG tube trap; the dashed red curvemarks the longitudinal trapping laser.
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f I I I Ip a p d= - -( ) ( ). For each set of experimental parameters we repeat the experiment for≈100
realizations.

Our image analysis is amultiple step process.Wefirst preprocess the raw images to correct for background
artifacts and improve the signal-to-noise ratio by a factor of≈10.We then extract the linear densities using an
absorptionmodel that includes amodest Lamb–Dicke suppression. As compared to a naïvemodel, n(z)
increases by asmuch as 30%. This process leaves our qualitative results unchanged.

We reconstruct an optimal Ip
opt for each Ia as a linear sumof Ip from all realizations byminimizing the sum

squared difference between Ip
opt and Ia away from the atoms [24, 25]. This reconstruction reduces fringing due to

vibrationalmotion that occurred between acquiring Ia and Ip, alongwith shot noise present on each Ip.We use
similar techniques to remove a systematic difference in dark counts between Ia and Ip, as well as to account for
structured read-out noise.We then computemean absorbed fractions f̄ over each set of experimental
parameters, and use uncentered principal component analysis (PCA) to further suppress shot noise. From f̄ and
a detector calibrated [17, 26, 27] in units of Isat, we compute ‘naïve’ optical depths using the standard solution to
the Beer–Lambert (BL) law [27], whichwe sumalong columns to produce ‘naïve’ linear densities.

We take into account the fact that the transverse extent of our atom cloud (for a tube trap the radial
confinement gives an extent of m 110 nm w »^ ) is below the resolution of both our imaging system and

the optical scattering length 3 2 300 nmp
2 2l p » .We further incorporate the transverse diffusivemotion that

atoms undergo during the imaging pulse. Each of these effects violates the assumptions underlying the BL law. In
comparisonwith the naïve BL law, ourmodel for the density agrees at low density but deviates up to 30%at
higher densities. This process is described in greater detail in the supplementarymaterial.

4. Results

The results of our image processing are 1Ddensity profiles n zj ( )( ) confined in the same trapping potential but
with one of 24 different initial conditions labeled by j. In the LDAwe expect that these density profiles can result
fromYang–Yang thermodynamics. For each j, both the temperatureT j( ) and the overall chemical potential j

0m
( )

are in principle unknownbecause of the lack of suitable reservoirs. As a result we obtain these quantities fromfits
to the Yang–Yang EoS and assess their validity in terms of the reduced chi-squared.

For each j, the Yang–Yang EoS predicts the complete density profile as shown in figure 1(c)with just two free
parametersT j( ) and j

0m
( ).We constrain thefit to the trapping region between the localmaxima ofV(z). The

potential is parametrized by the common set of parameters shown in table 1.We include some of these as
additional parameters in ourfit shared between all j. In table 1we show the calibrations by othermeasurements
alongwith their uncertainties; these are provided as initial guesses and bounds to the Yang–Yangfit. An
additional uncalibrated parameter zd accounts for a tiny displacement of the 1DBG relative to the center ofV(z)
for times following the loading protocol. The inclusion of zd leaves themain results unchanged and its value lies
within the relative alignment uncertainty of the trap centers. Different combinations offixed parameters have no
qualitative effect on the results. The third column in table 1 shows the potential parameters derived from the
Yang–Yangfit.We evaluate the goodness-of-fit with the reduced chi-squared 1.52c »n . Lastly, the residuals of
thefit show systematic variations in Ia, which are reflected by the gray pixels infigure 1(c).

Figure 5(a) shows the reduced density versus reduced chemical potential for two initial conditions, each
plotting different cuts in the EoS n(μ,T). The continuous curves infigure 5(a) represent the Yang–Yangmodel
with theT andμ0 fromour fits. For small chemical potential these density profiles are well described by the EoS
of a non-interacting Bose gas while forμ>0 they approach the predictions ofGPEmean-field theory [14]. The
Yang–Yang EoS accurately predicts both regimes. A sharp eye observes an apparent hysteresis loop visible in the
trace labeled byA, this results from the spatial dependence of g that followsω⊥. As shown infigure 3,ω⊥ is
slightly off-centered, ultimately resulting in the observed behavior. The scatteredwhite dots onfigure 2

Table 1.Table summarizing the different parameters ofV(z). The calibrated values and their
uncertainties were used as the central values and bounds for thefit.

Parameter Calibrated value Value fromfit Calibrationmethod

2w p^ 17 4 kHz( ) 17 (2) kHz Transverse expansion in TOF

za 0 10 mm( ) 7.670 8 mm- ( ) Alignment precision

zR 185 29 mm( ) 185 5 mm( ) Intensity profile of LG beam

V kt B 1.17 25 Km- ( ) 1.37 6 Km- ( ) Intensity profile of Gaussian beam

wG 203 2 mm( ) Intensity profile of Gaussian beam

2zw p V(z) 12.13 (20) Hz Small amplitude dipole oscillations

zd 8.19 (30) μm
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represent these two traces in the γ,T/Td plane. These data are shown to be either in the interacting regime or
belowdegeneracy, but not in both.

Figure 5(b) summarizes the outcome of all our Yang–Yangfits inwhichwe variedT3D, the initial 3D
temperature (left panels); or the hold time t in the 1D trap for our lowestT3D (right panels) cloud. In the top left
panel, we observe that as a function of decreasingT3D, the 1D temperatureT first remains constant and then
counterintuitively increases. In contrast, as shown in the bottom left panel, the degeneracy parameter defined as
T Td

0( ), is amonotonically increasing function ofT3D showing how themore degenerate 3D clouds result in
more degenerate 1DBGs.

For the lowest achievableT3D and as a function of hold time, we see that both the total atomnumberN and
the 1D temperatureT drop (top right panel in figures 5(b) and (c), respectively), yet the 1DBGdoes not become
more degenerate (bottom right panel infigure 5(b)). The simultaneous drop inT andN is consistent with
evaporative cooling along the longitudinal axis of the tube trap, which has depth of≈700 nK. The inability of
such evaporative cooling to increase or evenmaintain degeneracy results from the slower relative decrease inT
with respect toTd as driven by the atomnumber loss.

We explore the character of this loss bymodeling the atomnumber decaywith amodel including one-body
loss and three-body loss fromphoton scattering, background gas collisions and inelastic three-body
collisions [5].

Figure 5(c) shows themeasured atomnumberN (blue diamonds).Wefit thedecaymodel to the observed
number (dark blue curve), giving a one-body loss coefficient K 0.108 2 s1

1D 1= -( ) aswell as a three-body loss

coefficient K 4.36 7 10 cm s3
1D 29 6 1= ´ - -( ) . The value of K1

1D is consistentwith the combined vacuum-limited
lifetime and estimatedoff-resonant scattering rate from the static dipole potentials. In contrast, the three-body loss
coefficient fromourfit is in excess of the intrinsic 3D three-body loss coefficient K 5.8 3 10 cm s3

3D 30 6 1= ´ - -( )
[28]by a factor of≈7.5.We attribute this enhancement to thedifference in the three-body correlation function g(3)

[5, 14] fromapurely coherent sample. The observed cooling is consistentwith initial rapid evaporation as atoms
with sufficient kinetic energy [29]overcome the longitudinal barrier ofV(z).

Figure 5.Results fromYang–Yangfit. (a)EoS for two different realizations (filled colored circles) alongwith Yang–Yang EoS (solid
color curves) andmean-field prediction (solid gray curve). (b)Output parameters describing the state of the differentT3D realizations
(left side panels) and the subsequent time evolution of the lowestT3D realization (right side panels). The upper panels display the 1D
absolute temperatureTwhile the bottompanels display the same temperature in units of the peak degeneracy temperature Td

0( ).
(c)Total number of atoms as a function of time (blue diamonds) alongwith the fit to the one and three-body lossmodel (solid dark
blue curve).
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5. Conclusions

We realized individually trapped 1DBGs in a crossed dipole trap formed by a blue-detuned LG01 beam and a red-
detunedGaussian beam.We benchmarked the EoS computed fromYang–Yang thermodynamics against the
measured density profiles.We found that evaporative cooling along the edges of the tube trap took place
although this did notmaintain or increase the system’s degeneracy. Our approach enables future exploration of
spinor 1DBGs associatedwithmulti-component physics [30, 31], including spin–orbit coupling [32]. This
therefore presents a promising venue to study the limits of strongly interacting 1D systems in and out of
equilibrium.
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AppendixA. Image preprocessing and extraction ofmodeled linear densities

Weperformpreprocessing of our raw images in order to improve signal to noise and correct for known
systematic error, before extracting linear densities from each set of experimental parameters using an absorption
model. The analysis pipeline from raw absorption, flatfield and dark field images to linear densities is as follows.
In the below descriptions of our analysis pipeline we alternately use bold symbols such as u whenwe are treating
an image array as a vector for the purposes of linear algebra, and ordinary symbols with spatial dependence
u(x, y)whenwe are treating images as functions of space.

A.1. Probe image reconstruction
For each shot we reconstruct an optimal probe image Ip

opt as a linear sumof probe images from all shots:

I cF , A.1p
opt = ( )

where Ip
opt is Ip

opt unwrapped into a column vector, F is amatrix containing all probe images as columns and c is
a vector of coefficients. The optimal coefficients are determined byweighted linear regression:

c IF WF F W , A.2a
T T=( ) ( )

whereW is a diagonalmatrix of weights equal to zero in a region of interest (ROI) about the atoms and one
otherwise, and Ia is the image (as a column vector) from the shot in question of the probewith atoms present.
The vector of coefficients c is determined by numerically solving the linear system, leading to an Ip

opt that
minimizes the sum squared errorwith Ia in the region outside theROI. This probe reconstruction both reduces
fringing due to vibrationalmotion that occurs between exposures within a shot, and reduces shot noise present
on each reconstructed probe image on account of the dimensionality reduction entailed by linear
regression [24, 25].

A.2.Darkfield reconstruction
Wecorrect for a small spatially inhomogeneous systematic difference in counts (≈1.2max,≈ 0.2 typical)
between absorption and probe images, whichwe attribute to variation in ambient brightness over the 60 Hz
mains power cycle (this is systematic rather than random, as each shot is synchronized to begin at the same point
in the 60 Hz cycle).Wefit a candidate two-dimensional function to themeasured average difference between
absorption and probe images, whichwe include as a reference image Id

sys in the above linear regression in order
to extract a coefficient csys for each absorption image for howmuch of this offset was present (we obtain csys≈1
in all cases indicating little shot-to-shot variation in the offset).

We then compute themean dark frame Id over all shots, and performPCAon the set of all dark frames, with
two PCA eigenvectors revealing a source of correlated dark noise in the formof spatially sinusoidally varying
dark countswith a different phase offset for each shot, whichwe also observed to be present in the PCA
eigenvectors of the probe images (as eigenvectors four and five).We project each absorption image onto these
eigenvectors Ip

pca4 and Ip
pca5 of the probe images in order to determine coefficients cpca4 and cpca5. A

reconstructed dark field image Id
recon is then computed for each shot as

I I I I Ic c c . A.3d d d p p
recon sys sys pca4 pca4 pca5 pca5= + + + ( )
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A.2.1. Absorbed fraction and saturation parameter. Absorbed fraction f and saturation parameter S images are
then computed for each shot as

f
I I

I I
, A.4

p a

p d

opt

opt recon
=

-

-
( )

S
I

I I
1

, A.5p d
sat

opt recon= -( ) ( )

where Isat is the saturation intensity in camera count units. The ‘naïve’ optical depth for a single shot can then be
computed as:

f SfOD log 1 , A.6ına¨ve a= - - +( ) ( )

where I I0 eff sat eff sata s sº = is the empirically determined ratio between the ideal two-level and effective
scattering cross sections due to imperfect polarization andmagnetic field orientation. The average naïve optical
depth over all repeated shots for each set of experimental parameters is computed as:

f SAOD log 1 , A.7naı̈ve a» - - +( ) ( )
where themean product of absorbed fraction and f and saturation parameter S are taken over only the repeated
shots for one set of experiment parameters, andwherewe compute themean absorbed fractionwithin the log
rather than themean of the entire log term in order to avoid the systematic error that results from taking the
mean of a nonlinear function of noisy data. This naïve optical depth is not accurate across our entire dataset due

to our 1D systembeing narrower transversely than both the optical scattering length 3 2p
2 2l p and our imaging

resolution, both of which are violations of the assumptions of the BL law.We continue to compute further
reconstructions of this naïve optical depth only for comparisonwithmodeled linear densities which include a
correction to the BL law to account for this, presented further below.

A.3.Dimensionality reduction of absorbed fraction
Wedimensionally reduce themeanabsorbed fractions f of each set of experiment parameters in order to reduce the
effect of shot noise on column sumsof thedata. Since thepoint spread function resulting fromdiffraction inour
imaging system isfixed fromshot to shot, this has the effect of projecting themeasured absorbed fractions onto the
empirically observedpoint spread function and itsmost commonvariations, suppressing spurious apparent
absorptiondue to shot noise in regionswhere thepoint spread function results in little absorption.

The dimensionality reduction proceeds as follows. First we crop eachmean absorption image f x y,( ) to the
75-pixel highROI that entirely contains our imaging system’s point spread function to form f x y,ROI ( ). Then, for
each xposition xi in the image,we extract the vertical lines of f x y,ROI ( ) fromall sets of experiment parameters, at

that xpixel and thenearest four xpixels. Treating each vertical line as a vector4 f x f x y,i iROI ROI=( ) ( ), weobtain
the set of vectors f x j, 2 2i jROI  -+{ ( ) }andperformuncenteredPCA [33], keeping only thefirst four
normalized eigenvectors v x n, 1, 4n i Î{ ˆ ( ) [ ]}.We thenproject the (also cropped to theROI) vertical lines f xiROI ( )
of the absorbed fractions for each individual shot at the original xposition onto the subspace spannedby these
vectors:

f v f vf x y x x x x, . A.8i i
n

n i i n ired red
1

4

ROIå= =
=

( ) ( ) [ ˆ ( ) · ( )] ˆ ( ) ( )

Thuswedimensionally reduce each vertical slice (within theROI)of each shot’s absorbed fractiononto abasis of four
basis functions chosenbyuncenteredPCAof the vertical slices of allmean absorbed fractions at thatxpixel and the
nearest four other xpixels.We then computemean, dimensionally reduced absorbed fractions f x y,red ( ) for each set
of experiment parameterswithin theROI (Hereafter any imagesmentioned shouldbe assumed tobe cropped to
theROI).

We observe that towithin numerical rounding error, itmakes no difference whether themean absorbed
fractions are dimensionally reduced into this space, or the individual absorbed fractions are, before being
averaged together again.We do the latter in order to provide a statistical uncertainty estimate in themean
absorbed fraction of a given set of experiment parameters as

f x y
f x y

N
,

,
, A.9red

reds
D =( )

[{ ( )}]
( )

4
Themixed vector versus function-of-space notation here is because we are treating the vertical slices of the images as vectors, performing

dimensionality reduction on a slice-by-slice basis, whereas the x coordinate ismerely a label selectingwhich vector we are referring to.
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whereσ is the standard deviation over all repeated shots for one set of experiment parameters, {fred(x, y)} is the
set of all dimensionally reduced absorbed fractions for those shots, andN is the number of repeated shots for that
set of experiment parameters.

A.3.1. Saturation parameter at the position of the atoms. Due to the point spread function of our imaging system
being larger than the vertical extent of our atomic cloud, the saturation parameter at the location of apparent
absorption (after diffraction) does not correspond to the saturation parameter at the actual location of the
atoms, which is where saturation effects are relevant.We estimate a saturation parameter S x0( ) for each set of
experiment parameters at the estimated y position of the atoms by interpolating themean saturation parameter
for that set of experiment parameters to the y positionwhere there ismaximumapparent absorption over all
shots. The y position ofmaximumapparent absorption at each x position is taken to be a quadratic fit
y x ax bx c0

2= + +( ) with parameters determined bymaximizing the total absorption over all shots:

a b c S x y ax bx c, , argmax interp , , A.10
a b c x y

i i i
, , shots

2

i

å å= + +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ] [ ( )]( ) ( )

where interp
y

is a one-dimensional spline interpolation function interpolating in the y direction only. The

estimated saturation parameter at each x position for each set of experiment parameters is then

S x S x y y xinterp , . A.11
y

0 0=( ) [ ( )]( ( )) ( )

A.4. Naïve linear density
Wecannow compute an improved naïve optical depth for each set of experiment parameters using the
dimensionally reduced absorbed fractions and interpolated saturation parameter as:

x y f x y S x f x yOD , log 1 , , , A.12naı̈ve red red 0 reda» - - +( ) ( ( )) ( ) ( ) ( )

and then compute a naïve linear density n xnaı̈ve ( ) at each x position by dividing by the cross section and
integrating along y:

n x
y

x yOD , , A.13
y

naı̈ve
0

naive redås
=

D( ) ( ) ( )

whereΔy is the pixel size.

A.5.Modeled linear density
We face three related problems in computing the columndensity ncol(x, y) given ameasured absorbed fraction
f (x, y) and saturation parameter S(x, y) via the solution to the BL law [27]:

n x y f x y S x y f x y, log 1 , , , . A.140 cols a= - - +( ) ( ( )) ( ) ( ) ( )

Thefirst problem is that we do notmeasure f (x, y) directly—wemeasure it only after it has diffracted in the y
direction, a difference which is not negligible given the size of our atom cloud in that direction. The second
problem is that atoms do not only absorb light at their exact location in space, rather they absorb it from a
surrounding region of spacewith cross sectional area given by the absorption cross sectionσ0 [34]. Thefinal
problem is that our cloud is so small in the y direction that diffusion of atoms during imagingmay not be
negligible. These latter two problemsmean that we cannot infer ncol(x, y) from the usual solution to the BL law,
we can only determine the convolution of ncol(x, y)with some absorption profile g(y) that takes into account
both thefinite absorption region and the diffusion of atoms from their initial positions in the y direction, the
direction inwhich g(y) is not small compared to our atom cloud.With this inmind, the solution to the BL law
can bemodified to read

n g x y t f x y t S x y f x y t, , log 1 , , , , , , A.150 cols a* = - - +( )( ) ( ( )) ( ) ( ) ( )

where the convolution is only along the ydirection. Atomic diffusion and diffraction imply that the only quantity
we have experimental access to is

f x t y f x y t f x y y
1

d d , , , , A.16
y

meas
0

redò ò åt
= = D

t
( ) ( ) ( ) ( )

that is, we only observe a time average of absorption over the imaging pulse time τ, andwe only observe the
integral of the undiffracted absorbed fraction, since diffraction preserves this integral.

If the second termof the solution to the BL law dominates, then the naïve linear density is accurate, since all
three of diffraction, diffusion and convolution preserve integrals of the absorbed fraction. It is only the log term
that causes a problem, since its integral is not conserved under diffraction.
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Given amodel for n g x y t, ,col *( )( )with a single parameter n(x) for the linear density at each x position and
ameasurement fmeas(x) for each x position, we can invert (A.16) and (A.15) to obtain the linear density, under the
assumptions of themodel.

Ourmodel is the following: The absorption profile g(y) is approximated by aGaussianwith unit integral and

standard deviationσy(t) equal at t=0 to the optical scattering length 3 2p0
2 2s p l p= and increasing due

to atomic diffusion as time elapses. Since the atom cloud is narrower than this absorption profile, we
approximate the convolution n g x y t, ,*( )( ) as:

n g x y t
n x

x t

y

x t
, ,

2 ,
exp

2 ,
, A.17

y y

1D

2

2

2
ps s

* » -
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )( ) ( )

( ) ( )
( )

where x t,y
2s ( ) is increasing due tomomentumdiffusion:

x t x t t,
1

3
, , A.18y v

2 0 2 2
y

s
s
p

s= +( ) ( ) ( )

where themean squared y velocity v
2

y
s is given by the scattering rateRscat and recoil velocity vrec:

x t R x v t,
1

3
2 , A.19v

2 1
scat rec

2
y

s p= -( ) ( ) ( ) ( )

which is approximating isotropic scattering such that the per-scattering-event expected squared change in
velocity is v 3rec

2 . The scattering rate, ignoringDoppler shifts away from resonance, is, in terms of the saturation
parameter S:

R x
S x

S x2 1
. A.20scat =

G
+

( ) ( )
( )

( )

Putting this all together, themodeled y variance of the absorption profile is:

x t
S x

S x
v t,

36 1
. A.21y

2 0
rec
2 3s

s
p p

= +
G

+
( ) ( )

( )
( )

Over the duration of our imaging pulse, the diffusion described by the second term results in an increase in the
absorption profile’s standard deviation by≈30% compared to the effect of the non-zero optical scattering length
alone.

Using our absorptionmodel (A.17)with an absorption profile with y variance given by (A.21), and saturation
parameter S(x, y) given by our estimate S0(x), ourmodified BL law solution (A.15) becomes:

n x
x t

f x y t S x f x y t
exp

2 ,
log 1 , , , , , A.22

y

x t

y

0
2 ,

2
0

y

2

2

s
ps

a
-

= - - +
s

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ( )) ( ) ( ) ( )
( )

which, if numerically inverted, defines a function that takes only n(x) as input and returns f x y t, ,( ) at any given
time.Numerically integrating the result in t and y as per (A.16) extends this function into onewhich takes only n
(x) and returns the expected fmeas(x) for that linear density. Numerically inverting this function then yields our
final aim, of a function that takes as input fmeas(x) fromour data and outputs a value of n(x) for the linear density
implied by themeasured data and themodel.

We perform the above computationally non-trivial calculation to extractmodeled linear densities fromour
dimensionally-reducedmean absorbed fractions and interpolated saturation parameters for each set of
experiment parameters.

The naïve andmodeled linear densities agree at low densities but disagree by up to 20 percent at higher
densities, with the naïvemethod underestimating linear densities compared to those obtained using the
absorptionmodel.

Appendix B. Yang–Yang thermodynamics

Weuse the Yang–Yangmodel [8] to describe our data. The exact diagonalization of the underlyingHamiltonian
is carried outwith the use of the thermodynamic Bethe ansatz (TBA) (T>0Bethe ansatz). From the TBA the
following set offirst-order integral equations can be derived

k
k

m

k T c

c k q
q

2 2

2
ln 1 e d , B.1q k T

2 2
B

2 2
B  òm

p
= - -

+ -
+

-¥

¥
-( )

( )
( ) ( )( )

f k
c

c k q
f q q2 1 e 1

2
d , B.2k k T

2 2
B òp + = +

+ --¥

¥
( )( )

( )
( ) ( )( )
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n f q qd , B.3ò=
-¥

¥
( ) ( )

wherem is themass, kB is the Boltzmann constant,T is the temperature,μ the chemical potential, and
c=mg/ÿ2 is the interactionwavenumber.We use g a Ca l2 13D 3Dw= -^ ^( ), where a3D is the three-
dimensional s-wave scattering length,C is a constant of order unity [35], and l m w=^ ^ is the oscillator
length. Both k and q labelmomenta. The above equations can be solved recursively to compute n, the linear
density, given the values forμ andT, the chemical potential and temperature.

We implement a numerical solver for the YY equationswithin the LDA that takes the parametersμ,T as its
primary input and computes c and g by using the appropriate values of l⊥, a3D andm.We recursively solve for
ò(k) and f (k) fromwhichwe ultimately compute the density n.We transform all themomentum and energy
quantities

k k mk T2 , B.4B
2=˜ ( )

E E k T , B.5B=˜ ( )

so that the first twoYY equations read

k k
c

c k q
q

1
ln 1 e d , B.6q2

2 2
 òm

p
= - -

+ -
+

-¥

¥
-˜ ( ˜) ˜ ˜ ˜

˜ ( ˜ ˜)
( ) ˜ ( )˜ ( ˜)

f k
c

c k q
f q q2 1 e 1

1
d . B.7k

2 2
 òp

p
+ = +

+ --¥

¥
( ˜)( ) ˜

˜ ( ˜ ˜)
( ˜) ˜ ( )˜ ( ˜)

Wedenote the Lieb–Liniger kernel (a normalized Lorentzian) as L(c, q). Our numerical solver performs a k-
space convolution using thescipy.signal.fftconvolvemethod to evaluate the integrals. For this we

use aNk=1024 points grid that covers the range k k k10 , 10th th= -[ ], where k mk T2th B
2= is the

thermal wavenumber.We have explicitly verified that for the parameters in our experiment using different grids
give no changes to the predicted EoS.We initialize ò0(k)=k2−μ and iterate over the following recursive
relation

k k L c q, ln 1 e , B.8j
q

1 0 0
j   = - ++

-( ) ( ) ( ) ( ) ( )( )

where#denotes theFourier convolutionoperator.Once the convergence condition Ni i j i j k, 1 ,
2

tol  å - <+( ) is

satisfied,we solve for f (k)withan initial guess f k 2 1 e k
0

1p= + -( ) [ ( )]( ) and the recursive relation

f k f k L c q f q, , B.9j j1 0 0 = ++ ( ) ( ) ( ) ( ) ( )

fromwhichwe get to evaluate (B.3). After watching all the unit conversionswe get the linear density in particles
permeter.
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