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Abstract
We describe a technique to emulate the dynamics of two-level PT -symmetric 
spin Hamiltonians, replete with gain and loss, using the unitary dynamics 
of a larger quantum system. The two-level system in question is embedded 
in a subspace of a four-level Hamiltonian, with the exterior levels acting as 
reservoirs. The emulation time is normally finite, limited by the depletion of 
the reservoirs. We show that it is possible to emulate the desired behaviour 
of the PT -symmetric Hamiltonian without depleting the reservoir levels, by 
including an additional coupling between them. This extends the emulation 
time indefinitely, when in the unbroken symmetry phase of the non-unitary 
PT  dynamics. We propose a realistic experimental implementation using 
dynamically decoupled magnetic sublevels of ultracold atoms.

Keywords: PT -symmetry, non-Hermitian, pseudospins

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum theory is our most successful description of nature. It describes the dynamics of 
closed systems by means of Hermitian Hamiltonians. The Hermitian constraint leads to uni-
tary evolution with a real-valued, and hence measurable, eigenvalue spectrum. Remarkably, 
this constraint is stronger than necessary: non-Hermitian Hamiltonians that commute with the 
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joint parity-time PT  operator, also afford real-valued eigenvalues. These models emerged 
from perturbative approaches in quantum field theory [1, 2] and can have all-real eigenvalues 
in some parameter regimes [3, 4]. In such models, a free parameter of the Hamiltonian drives 
a phase transition between two regimes where the PT  symmetry is either unbroken or broken, 
leading to real and complex eigenvalues respectively [5]. In the PT -symmetric phase a self-
consistent theory can be defined, with an appropriate redefinition of the inner-product of the 
Hilbert space, which albeit violates the no-signaling principle [6].

Nevertheless, models based on PT -symmetric Hamiltonians are still useful in the study of 
open quantum systems since they can offer a simplified, alternative formulation to the Lindblad 
equation description [7]. Generally, it is possible to derive a non-Hermitian Hamiltonian from 
a given Lindblad equation, that is a valid description of the systems’ dynamics until the prob-
ability of a quantum jump becomes too large.

Experiments in both the classical and the quantum domain have demonstrated  
PT -symmetric systems [8, 9], e.g. using coupled optical waveguides [10–12], and driven sys-
tems [13–16]. Experiments in the quantum domain include the realisation of PT  Hamiltonians 
in exciton-polariton billiards [17, 18] and single-photon interferometers [19]. The physics of 
these systems becomes even richer close to the critical point between the broken and unbroken 
regime; the phase associated with encircling the critical point is similar to the Berry phase 
associated with Dirac points in topological materials [20, 21].

In a series of papers [22–24], Wunner and coworkers showed that it is possible in princi-
ple to reproduce the dynamics of a two-level PT -symmetric Hamiltonian with a four-level 
Hermitian system. In this configuration two of the levels map to the PT -symmetric levels 
and the remaining two act as probability amplitude source and sink. The embedded PT -sub-
space is coupled to the rest of the system using time-dependent transition matrix elements 
that emulate the non-unitary particle flow between the subspaces; we refer to this scheme 
as coherent emulation. Here we extend these works, initially by adopting a different calcul-
ational approach that permits analytic closed-form solutions in these four-level systems. This 
approach makes it explicit that the emulation of the two-level PT -symmetric dynamics in 
these works is always limited in time, and that it breaks down due to a depletion of the prob-
ability amplitude in the source level.

We then consider the case of periodic boundary conditions by including an additional cou-
pling between source and sink levels, to counter the depletion of the source level. We show 
that this cycling field increases the emulation time for any given set of parameters. Moreover, 
when the coupling strength of the cycling field exceeds a critical value, the duration of the 
emulation is extended indefinitely. Above this threshold the system dynamics dramatically 
change such that a genuinely periodic behaviour occurs. Implementation of this scheme 
requires the solution of a pair of coupled, non-linear differential equations  to pre-compute 
the time-dependent Hamiltonian required to emulate PT -symmetric behaviour in the tar-
get subspace. Our protocol therefore consists of a classical computation device to design a 
control sequence, different for all initial conditions, and a quantum system to implement the 
sequence. We use these results as the basis for the discussion of a realisation of the PT -sym-
metric dynamics in pseudospins corresponding to internal states of the groundstate manifold 
of alkali atoms cooled to degeneracy.

2. Two-level PT -symmetric Hamiltonian

We focus on an extensively studied minimal model [11, 17, 25–28], that captures all the rel-
evant information of such systems,
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h =

(
−iΓ Λ

Λ iΓ

)
, (1)

and aim to describe the full dynamics governed by h for all times and Γ, Λ > 0. The par-
ity operator for this model is P = σx, where σi, i = x, y, z  are the Pauli operators, and time 
reversal gives T hT −1 = h∗. For this Hamiltonian, PT -symmetry implies Ph − h∗P = 0, 
which is manifestly obeyed by equation  (1). The eigenvalues of h are ε± = ±α/2, where 
α = 2

√
Λ2 − Γ2  is the level splitting. This sets a natural energy scale for the system and 

allows us to use dimensionless time τ = αt ; coupling λ = 2Λ/α; and gain γ = 2Γ/α. We 
assume here that we stay in the PT -unbroken phase such that α is real, i.e. Γ < Λ. As with 
Hermitian Hamiltonians we define a time evolution operator G(τ) that propagates the state 
ψ(τ) = (ψ1(τ),ψ2(τ))

T  to time τ:

G(τ) = cos(τ/2)I− sin(τ/2)(γσz + iλσx), (2)

where I is the 2 × 2 unit matrix. We consider initial conditions with real-valued amplitudes 
throughout ψ(0) = (cos(θ/2), sin(θ/2)).

Several aspects of this solution are of particular interest here. First, we consider the norm 
n(τ) ≡ |ψ1(τ)|2 + |ψ2(τ)|2 and the atomic magnetisation w(τ) ≡ |ψ1(τ)|2 − |ψ2(τ)|2. 
Although our technique is valid for all initial states, for brevity of exposition we base our 
subsequent discussion on the symmetric case when θ = π/2. In this case, we obtain

n(τ) = λ2 − γ2 cos(τ); (3)

w(τ) = −γ sin(τ). (4)

For γ → 0, the norm becomes λ2 → 1, and the magnetisation disappears. In this limit, there 
is no evolution since the initial state is an eigenstate of h. For θ = π/2, oscillations in the 
magnet isation only occur when h is non-Hermitian, and the oscillation frequency is given 
by the splitting α. Also of interest is the relative phase between wave-function components 
which, again for θ = π/2, is defined by

tan (Φ(τ)) = γλ(1 − cos(τ)). (5)

This phase difference is plotted in figure 1.
Two important timescales emerge from these equations. The first is the period of the 

PT -symmetric oscillations in equation (4), which, with our choice of scaling for τ, is sim-
ply 2π. The second corresponds to important changes that take place at shorter times. These 
are apparent in the phase difference in equation (5), plotted in figure 1. For small γ/λ, we 
may approximate Φ(τ) ≈ 2γ/λ sin2(τ/2) and the dynamics unfold with the same period as 
the magnetisation of equation (4). However, for increasing γ, the nonlinearity of the arctan 
function becomes important, and gives rise to sharp changes in the relative phase. Expanding 
the phase about one of its minima, we find Φ(τ) ∼ λγ(τ − τmin)

2/2. Thus the characteristic 
timescale associated with these minima is τsharp = (λγ/2)−1/2 ∼

√
2/γ � 1 in the γ → λ 

limit. These two contrasting timescales set strict requirements for any experimental imple-
mentation of this scheme that become apparent when approaching the critical point from 
either the broken or unbroken symmetry phases. As such, we confine ourselves to looking into 
the PT -symmetric phase only and explore how close to the critical point an experiment can 
approach and still emulate the PT -dynamics faithfully.

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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3. Emulation with a four-level system

Given that our understanding of Nature is in terms of Hermitian dynamics, we seek to cre-
ate designer subspaces of larger systems that evolve according to a desired PT -symmetric 
Hamiltonian. We simulate the non-unitary dynamics of equation (1) using a four-level system 
with wavefunction φ(τ) = (φ0(τ),φ1(τ),φ2(τ),φ3(τ))

T . We encode the PT  dynamics in 
the two central levels φ1, and φ2, and use φ0 and φ3 as the sink and source levels. Our ‘emula-
tor’ will thus be a system with dimensionless Hamiltonian3

H(τ) =




δ0(τ) Ω01(τ) 0 Ω03

Ω01(τ) 0 λ 0
0 λ 0 Ω23(τ)

Ω03 0 Ω23(τ) δ3(τ)


 . (6)

These couplings are sufficient to completely emulate the time-dynamics of PT -symmetric 
Hamiltonians as in equation (1). The dimensionless detunings δ0(τ), δ3(τ) and the couplings 
Ω01(τ), Ω23(τ) are time-dependent functions that we choose such that the behaviour of the 
two levels in the central subspace matches that of the PT -symmetric system, i.e. such that 
φ1(τ) = ψ1(τ) and φ2(τ) = ψ2(τ). The static coupling Ω03 between the source level φ3 and 
sink level φ0 replenishes the source population by transferring particles from the sink level. 
We initialise the system such that the population of the central subspace always starts as 
ψ1(0)2 + ψ2(0)2 = 1; this implies a rescaling of φ1, φ2 by an appropriate factor so that it is 
normalised to unity at t  =  0.

We determine the dynamic detunings and couplings using the following procedure. We first 
split the wavefunction components into real and imaginary parts, φi = φR

i + iφI
i, and use the 

Schrödinger equation for our four-level system to get the equations:

Figure 1. (a) The two populations p1 = |ψ1|2 (black) and p2 = |ψ2|2 (blue) of the 
PT -symmetric system with ψ1(0) = ψ2(0) = 1/

√
2 and γ = 0.5λ. The norm n from 

equation (3) is also shown. (b) The phase difference Φ of equation (5) as a function of 
time for various γ. The time axis here is scaled with PT  level-splitting α. Relative to 
this scale, the minima of the phase become ever sharper as γ increases.

3 The corresponding physical Hamiltonian is H′(t) = 1
2αH(αt).

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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(
φ̇R

0 , ψ̇R
1 , ψ̇R

2 , φ̇R
3

)T
= H(τ)

(
φI

0,ψI
1,ψI

2,φI
3

)T
;

(
φ̇I

0, ψ̇I
1, ψ̇I

2, φ̇I
3

)T
= −H(τ)

(
φR

0 ,ψR
1 ,ψR

2 ,φR
3

)T
,

 
(7)

where we have replaced φ1 and φ2 with their target wavefunctions ψ1 and ψ2, and where 
φ̇i = dφi/dτ . We then write the second derivatives of ψ(τ) with respect to time,

ψ̈R
1 − Ω̇01(τ)φ

I
0 − Ω01(τ)φ̇

I
0 − λψ̇I

2 = 0;

ψ̈R
2 − λψ̇I

1 − Ω̇23(τ)φ
I
3 − Ω23(τ)φ̇

I
3 = 0,

 (8)

for the real part and,

ψ̈I
1 + Ω̇01(τ)φ

R
0 +Ω01(τ)φ̇

R
0 + λψ̇R

2 = 0;

ψ̈I
2 + λψ̇R

1 + Ω̇23(τ)φ
R
3 +Ω23(τ)φ̇

R
3 = 0,

 (9)

the imaginary part respectively. We use the equations for ψ̇1,2  in equation (7), together with 
equations  (8) and (9) to solve for φ0,3, and φ̇0,3, which we then eliminate from the equa-
tions for φ̇0,3 in equation (7). From this set of four equations we obtain explicit expressions 
for δ0(τ) and δ3(τ) in terms of Ω01(τ), Ω23(τ) plus known quantities, together with a pair of 
coupled first-order differential equations

Ω̇01 = f1Ω01 + f2Ω3
01 + f3Ω03Ω

−1
23 Ω2

01;

Ω̇23 = g1Ω23 + g2Ω
3
23 + g3Ω03Ω

−1
01 Ω2

23,
 (10)

where fi ≡ fi(τ) and gi ≡ gi(τ) are functions defined solely in terms of φ1, φ2 and their 
derivatives.

Our general solution procedure starts therefore by assuming initial values of the couplings 
and solving the differential equations  for Ω01(τ) and Ω23(τ). From these, we obtain δ0(τ) 
and δ3(τ). Finally, we determine initial values of the source and sink levels, φ3(τ = 0) and 
φ0(τ = 0), by solving the equations for ψ̇1,2  at t  =  0. For simplicity in the following we will 
assume the initial couplings to be equal: Ω01(τ = 0) = Ω23(τ = 0) = Ωinit.

4. Open boundary conditions

While equation (10) must in general be solved numerically, in the absence of the cycling term 
Ω03 = 0, they decouple and admit analytic solutions. Here we focus on initial conditions with 
equal amplitude in each of the target PT -symmetric states, giving

(
Ω23(τ)

Ωinit

)2

=
λ2 − γ2 cos τ + γ sin τ

1 − Ω2
init (1 + λ2τ/γ − cos τ − γ sin τ)

, (11)

and

δ0,3(τ) =
λ

λ2 − γ2 cos τ ∓ γ sin τ
, (12)

where Ω01(τ) = Ω23(−τ) (so that when time is reversed the source acts as a sink and vice 
versa), and δ0(τ) takes the upper sign and δ3(τ) the lower. The dynamic couplings are plot-
ted for representative parameters in figure 2(a), making clear that the coupling Ω23 diverges. 
Physically, this break down arises due to the depletion of source level, as shown in figure 2(b). 

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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As the population of this level decreases, a stronger coupling Ω23 is required to maintain the 
constant probability flux at rate γ into the system, and this necessarily stops when the level is 
depleted.

Let us denote as τ∗ the time at which Ω23 diverges, the maximum time we can expect our 
emulation to run. We obtain τ∗ as the smallest time at which the denominator in equation (11) 
vanishes, and plot it in figure 3(a) as a function of the starting coupling Ωinit for different 
values of γ. For γ in the range 0.2λ � γ � 0.8λ, changing γ does not alter the τ∗ very much. 
However, increasing γ above 0.8λ leads to a significant drop in maximum emulation time; 
we observe similar behaviour for decreasing γ � 0.2. We can obtain a simple approximation 
to the breakdown time by setting the oscillating terms in the denominator of equation (11) to 
zero. This gives

τ∗ ≈
γ
(
1 − Ω2

init

)
(Ωinitλ)2 , (13)

valid for Ωinit � 1. In the opposite regime, Ωinit � 1, we obtain an alternative approximation

τ∗ ≈ γ/Ω2
init, (14)

by expanding the denominator to first order in time, and setting the result equal to zero. Both 
these expressions are good approximations in their respective regions of validity as shown in 
figure 3(a).

From the limits of equations (13) and (14), as well as from the full results in figure 3(a), we 
see that the dominant behaviour of the breakdown time τ∗ is an approximate scaling with Ω−2

init. 
Thus, in principle, we can always arrange our initial coupling strength to enable the emulation 
to cover any time interval of interest. However, making Ωinit arbitrarily small is not without 
cost: the initial values of the source and sink populations required by the emulation are

Figure 2. (a) The two time-dependent couplings Ω01(τ) (black) and Ω23(τ) (blue) 
required for emulation, as a function of dimensionless time τ/π  for parameters 
γ = 0.5λ, Ω01(0) = Ω23(0) = Ωinit = 0.05λ, φ1(0) = φ2(0) = 1/

√
2  and no cycling 

field Ω03 = 0. (b) The corresponding sink and source populations p0 = |φ0|2  (maroon) 
and p3 = |φ3|2  (green). At time τ = 41.09π (indicated with the vertical dashed line), 
the coupling Ω23 diverges as the source level is depleted. This breakdown is a common 
feature of all solutions without periodic boundary conditions.

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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φ0(0) =
−iγφI

1(0)
Ωinit

and φ3(0) =
iγφI

2(0)
Ωinit

. (15)

Since the total probability is not contained in the PT -symmetric subspace, we define the 
PT -symmetric fraction in terms of the populations pi = |φi|2 as

r ≡ min
τ

[
p1(τ) + p2(τ)∑

i pi(τ)

]
. (16)

This expresses the minimum probability of finding the system in the PT -symmetric subspace. 
This definition is motivated by an experimental resource limit since detecting the probability 
distribution in all states becomes increasingly cumbersome as PT -symmetric fraction gets 

smaller. The PT -symmetric fraction is equal to r = min
τ

n(τ)/N0 , where n(τ) is the norm 
of equation (3) and N0 =

∑
i pi(0) is the total population at time τ = 0, which is a conserved 

quantity. Without they cycling field and with symmetric initial conditions, equations (3) and 
(15) imply

r = min
τ

[
λ2 − γ2 cos(τ)

1 + (γ/Ωinit)2

]
=

1
1 + (γ/Ωinit)2.

 (17)

In the limit Ωinit/γ � 1, this gives r ∼ Ω2
init/γ

2. Thus, decreasing Ωinit to extend the emulation 
time necessarily leads to a corresponding decrease in the PT -symmetric fraction.

Figure 3. The breakdown time τ∗ as a function of the initial coupling strength Ωinit. 
(a) Case without Ω03 = 0, for several values of γ/λ. The solid lines represent the exact 
solutions; circles, the approximation of equation (13); and triangles, the approximation 
of equation  (14). Lowering the coupling strength Ωint extends the duration of the 
emulation. (b) The breakdown time with periodic boundary conditions for a range of 
cycling field strengths Ω03 and for fixed γ = 0.5λ. For large initial coupling strength 
Ωinit, the cycling field has little effect. As Ωinit is lowered, however, we see a dramatic 
divergence of the breakdown time which corresponds to the onset of periodic behaviour. 
Parameters not explicitly mentioned are the same as in figure 2.

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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5. Periodic boundary conditions and the perpetual emulation threshold

We now consider the effects of the cycling coupling field. In this case, equation (10) for Ω01 
and Ω23 do not decouple and we obtain our results through numerical integration.

Figure 3(b) shows the breakdown time τ∗ of the emulation as a function of the initial 
coupling Ωinit for several values of the cycling strength. For large Ωinit, the cycling field does 
not significantly affect the breakdown time. However, as Ωinit decreases, the breakdown time 
increases until it rapidly diverges at a value that increases with the cycling strength.

Figure 4 shows the populations of the sink and source levels as a function of time for several 
values of Ω03 and for fixed initial coupling Ωinit = 0.05λ. As Ω03 is initially increased from 
zero, the decline of p3 with time becomes shallower. The solution nevertheless terminates with 
p3  =  0, as in the Ω03 = 0 case. This trend continues until the critical value Ω03 = 0.014 12λ of 
the cycling strength is reached and the cycle-averaged gradients of p0 and p3 are both zero. At 
this point, the behaviour of the populations is purely periodic; they never drop to zero and the 
coupling Ω23 does not diverge. For yet larger values of Ω03 the populations reverse order such 
that p3 > p0, and, in the long-time limit, become periodic once again. The emulated PT -sym-
metric dynamics are correct for all times when Ω03 exceeds its critical value.

In figure 5 we explore the dynamics of the coupling functions and plot Ω01(τ) as a func-
tion of Ω23(τ). Without periodic boundary conditions (figure 5(a)) the trace simply diverges. 
With Ω03 equal to its critical value (figure 5(b)) the functions form a single closed orbit which 
illustrates the periodic nature of this solution. Then, for higher values of Ω03 (figure 5(c)), after 
some initial transients, the behaviour collapses onto a closed orbit. We note that these closed 
orbits do not represent limit cycles because different initial values of the couplings give rise 
to different oscillating states. Finally, in figure 5(d), we show results for a value of Ω03 far 
in excess of its critical value. In this case, the long-time orbit develops a sharp kink feature, 
which is a sign of the pronounced lack of time-reversal symmetry in the coupling functions 
in this regime.

We have shown how the addition of a cycling field can elicit one of two distinct responses. 
Below some critical coupling value, the emulation still terminates, albeit now with a larger 
breakdown time cf. the case without periodic boundary conditions. Above the critical cou-
pling, however, the cycling coupling field stabilises the dynamics, such that the emulation 
enters a purely periodic mode that can run indefinitely; a situation that only occurs when 
γ = 0 in the absence of cycling. A clear boundary between the two regimes exists and is 
shown in figure 6 as a function of Ωinit and Ω03.

6. Experimental implementation and constraints

We can readily implement our scheme to coherently emulate a two-level PT -symmetric 
Hamiltonian using ultracold atoms. Let us consider a 87Rb Bose–Einstein condensate in its 
electronic groundstate 52S1/2. 87Rb is an alkali atom with nuclear spin I  =  3/2 so that the 
groundstate splits into two hyperfine levels, F = 1, 2. We identify the PT -symmetric sub-
space with the |F, mF〉 = |1,−1〉 and |1, 0〉 levels and the reservoir levels with |1, 1〉 and |2, 0〉 
levels. The |2, 0〉 level can be connected to the stretched levels of the F  =  1 manifold via two 
microwave transitions that serve as the coupling to one of the reservoirs and the cycling field. 
However, binary collisions between the two hyperfine manifolds might limit the lifetime of 
the atomic cloud to 100 ms. For realistic rf coupling parameters this is in the ‘long emulation 
time’ limit, and does not degrade the utility of this approach for simulating PT -symmetric 
Hamiltonians. Alternatively, the continuous dynamical decoupling techniques described in 

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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Figure 4. Populations p0 = |φ0|2  (dashed) and p3 = |φ3|2  (solid) as a function of time 
for different values of 0 � Ω03 � 0.05λ and other parameters as in figure 2. Increasing 
Ω03 decreases the overall gradient of p3 until at the critical value Ω03 = 0.014 12λ the 
cycle-averaged values of Ω01 and Ω23 are constant and equal to one another. In this 
case we have purely periodic motion without decay. With further increase in Ω03, p3 
becomes larger than p0 and in the long-time limit, we observe sustained oscillations of 
the PT -symmetric subspace with no breakdown of the emulation.

Figure 5. Parametric plots of coupling functions Ω01(τ) versus Ω23(τ) over the time 
range shown in figure  4. The four panels show results for different values of the 
cycling strength Ω03. (a) For Ω03 = 0, the trace is unbounded as Ω23(τ) diverges. (b) 
For Ω03 = 0.1412λ the motion is purely periodic. (c) Above this value, the behaviour 
shows initial transients until once again a periodic trace is reached. Results are shown 
for Ω03 = 0.05λ. (d) Finally, for strong cycling, Ω03 = 0.5λ, the driving field Ω01(τ) 
becomes very strongly asymmetric in time. Parameters as in figure 2.

D Trypogeorgos et alJ. Phys. A: Math. Theor. 51 (2018) 325302
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[29, 30] allow this to be equally well realised all in the F  =  2 hyperfine manifold. We ignore 
the non-linear interaction between the pseudospins that can be made negligible using low-
density samples or an atomic Feshbach resonance; in any case, the non-linear interaction does 
not qualitatively alter the behaviour of the system [23].

Ideally, we would like to be able to emulate the PT -symmetric system with arbitrary 
parameters for as long a time as desired. While this is possible in principle, both with and 
without periodic boundary conditions, there exist a number of aspects inherent to this scheme 
that provide constraints on what is possible in practice.

The appearance of the timescale τsharp � 1, discussed in section 2, represents a challenge 
since for γ → λ the period of the population oscillations diverges, whilst τsharp remains fixed. 
This timescale is directly reflected in the detunings. Expanding equation (12) about one of its 
maxima, we obtain δ0(τ) ≈ (λ+ γ)

[
1 − γ(λ+ γ)(τ − τmin)

2/2
]
, which exhibits a timescale 

[γ(γ + λ)/2]−1/2 ∼ 2/γ =
√

2τsharp. The corollary is that experimental control must be able 
to simultaneously cover both small, 

√
2/γ, and large, unity, time scales.

Imperfect preparation of the initial state has a similar effect in the faithful reproduction of 
the PT -symmetric dynamics. Only the squared modulus of the wavefunction, i.e. the level 
populations, needs to be taken into account when preparing the initial states. The required 
phases can be absorbed into the driving fields through an appropriate gauge transformation, 
which means that control parameters do not need to be recalculated for different initial phases. 
An initial error of a few percent in state preparation of one of the PT -symmetric levels 
induces a small discrepancy between the realised population dynamics and the target. Due to 
the larger absolute population of source and sink levels, an error of a few percent in their prep-
aration will cause larger subsequent errors in the dynamics. This discrepancy, however, can be 
made smaller if the preparation error is common-mode, where any offset in initial population 
is shared by both source and sink levels. In any case, we can eliminate a state preparation error 
with an initial weak measurement right after state preparation takes place. The weak measure-
ment does not affect the initial populations, but provides the necessary information for recali-
brating the dynamics of the emulation. This way, the time-dependence of the coupling fields 

Figure 6. Boundaries between oscillating solutions (above the curves, marked with an 
asterisk) and terminating solutions (below the curves) as a function of initial coupling 
Ωinit and cycling strength Ω03 for γ/λ = 0.5, 0.9, 0.99. Other parameters as figure 2.
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and detunings is dictated by the measured initial state but the subsequent dynamics always 
follow that of a PT -symmetric Hamiltonian albeit with slightly different parameters than the 
intended ones. Similarly, weak measurements performed while the dynamics take place can 
also be used to correct for errors during the emulation.

Further constraints arise from the emulation scheme. The main practical constraint limit-
ing the total emulation time without periodic boundary conditions is the fact that longer times 
require larger populations of the source and sink levels, and this reduces the PT -symmetric 
fraction r. Small values of r demand a large dynamic range from the experimental detection 
scheme. In practice, the dynamic range of the detectors sets the minimum signal-to-noise 
ratio necessary for the chosen emulation parameters. This situation however can be improved 
dramatically using periodic boundary conditions.

The equations in equation (7) used to determine the initial wave function components of the 
PT -symmetric subspace at time τ = 0, are independent of the cycling strength Ω03. N0 and 
therefore r are unaltered by the addition of the cycling field and equation (17) applies irrespec-
tively of Ω03. Thus, the emulation times can be extended without changing the PT -symmetric 
fraction. The minimum value of r = rmin , set by experimental constraints, gives a minimum 
value for the ratio:

Ωinit

γ
�

√
rmin

1 − rmin
, (18)

through equation (17) and this applies independently of Ω03.
Figure 7 illustrates how this constraint can be taken into account to determine which val-

ues of Γ are experimentally accessible for a given rmin. Assuming we desire to simulate for a 
fixed time of 10πα−1, say, we require a breakdown time τ∗ > 10π. This requirement defines 
an accessible region in the parameter space of Ωinit and Ω03; the solid lines in the figure 7 
delineate the boundary of this region for various values of γ. Let us also assume a minimum  
PT -symmetric fraction of rmin = 1/10. The constraint equation  (18) then also defines 
a region in the same parameter space, and these boundaries are plotted with dashed lines. 
Clearly, for an emulation to both run long enough and have a sufficiently large r, we require 
that the two regions overlap. Whether this happens or not for a given γ can be seen from 
figure  7 as, for a feasible emulation, the two boundary lines will cross. This happens for 
γ/λ = 0.5 for example, but not for γ/λ = 0.9. Indeed, from this plot we can obtain the maxi-
mum value of γ that it is possible to emulate. If we restricted ourselves to Ω03/λ � 2 such that 
the parameter range shown in figure 7 is all that is accessible, then we should be able to emu-
late the range 0 � γ/λ � 0.875. By way of contrast, we can use the analytical approximation 
of equation (13) to obtain the accessible range with open boundary conditions, and, for the 
same parameters, this turns out to be 0 � γ/λ � 0.257. Use of periodic boundary conditions 
therefore significantly enlarges the range of possible γ values that can be explored.

One further constraint comes from considering the change in size of the dynamic couplings 
and detunings. This is not such a problem for the couplings Ω01 and Ω23 as these are made small 
by construction to extend the simulation times. On the other hand, it is desirable for the detun-
ings to also remain small but there is no a priori reason why this should be the case. Without 
periodic boundary conditions, equation (12) shows that the detunings are always bounded as 
−λ− γ � δ0,3(τ) � −λ+ γ . These bounds change however, when we turn on the cycling 
field. Figure 8 shows the size of the range of the detuning ∆δ0 ≡ |max(δ0)− min(δ0)| as a 
function of cycling strength Ω03.

The overall trend is that the range of values that the detunings take increases as we increase 
the cycling strength. The same quantity for detuning δ3 shows little variation and is always 
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Figure 7. The solid lines indicate the parameter values for which we obtain a simulation 
break-down time τ∗ = 10π for the indicated values of γ. In the regions above these 
curves, emulations last long enough to capture a minimum of ten Rabi oscillations 
of the PT  system. On the other hand the dashed lines indicate parameters for which 
r = rmin = 1/10, which from equation (17) are the straight lines Ωinit = γ/3. Parameters 
to the right of these lines lead to values of the PT -fraction r > rmin . To obtain feasible 
emulations then, we require that these two lines cross for a given γ. For the parameters 
considered here (same as figure 2), this is the case for γ/λ = 0.5, 0.85, 0.875, but not 
for γ/λ = 0.9.

Figure 8. The size of the detuning range ∆δ0 ≡ |max(δ0)− min(δ0)| as a function of 
Ω03 for various values of initial couplings Ωinit. Results are only plotted here for values 
of Ω03 that gives oscillatory solutions. The non-monotonic behaviour of these curves 
arises because the detuning δ0 has multiple extrema which change order. Parameters 
as in figure 2.
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order 2γ . Thus, to avoid requiring large detunings, we need to operate with as small Ω03 as 
possible, in which case we obtain ∆δ0 ∼ 2γ . We note that although we show the range of δ0 
here, its increase is largely due to increase in magnitude of the minimum value, |min δ0|.

7. Conclusions and outlook

Coherent emulation of non-Hermitian Hamiltonians can add to our understanding of these 
models and their connection to open systems [9, 18]. In our scheme, a single unitary system 
with no intrinsic gain or loss emulates the dynamics of PT -symmetric Hamiltonians. The 
system is first partitioned into two coherently coupled subspaces. Even though the couplings 
are coherent, they can perfectly model particle gain and loss by appropriate manipulation of 
their time dependence. The subspace of interest therefore mimics the evolution of an open sys-
tem coupled to two reservoirs. Using periodic boundary conditions, with a non-zero coupling 
between the two reservoirs, we are able to extend the emulation time indefinitely.

The coherent couplings between the embedded system and the ‘environment’ can be 
controlled with standard experimental techniques [31]. This way, the effective decoher-
ence and dynamic timescales can be adjusted arbitrarily to suit the experimental constraints. 
Remarkably, decoherence slows down to effectively zero at the vicinity of the critical point 
[32], an effect which can be understood as a collapse of the Hilbert space to a single point and 
can protect information stored in quantum memories [33].

The choice of emulation parameters dictates the properties of the reservoirs themselves. 
This opens up exciting possibilities for engineering the correlation function of the reservoirs to 
study (non)-Markovian open systems [34, 35]. These results can be extended to a wider class 
of non-Hermitian Hamiltonians using arbitrarily connected spin Hamiltonians as emulators.
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