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Cold atoms are highly tunable and controllable systems that can explore the im-

pact of quantum statistics on many-body physics and realize topological states.

This thesis presents three experiments toward these goals:

1. We implemented a measurement technique to optimize imaging of s-wave

scattering halos in degenerate Fermi gases (DFGs) and took preliminary

steps toward realizing effective p-wave interactions.

2. We launched solitons in elongated Bose-Einstein condensates (BECs) and

observed a soliton’s Brownian motion. We also showed that a dilute back-

ground of impurities dramatically effects the soliton. The added impurites

scatter off the much larger soliton, contributing to its Brownian motion

and decreasing its lifetime.

3. We created a hybrid two-dimensional (2-D) lattice with synthetic flux. This

hybrid 2-D lattice was only three sites wide in one dimension, ideal for

studying edge states. We directly imaged the localized edge and bulk

eigenstates of BECs in this quantum Hall ribbon. Further, we observed

both the skipping orbits of atoms traveling down our system’s edges and

a universal dynamical Hall conductivity.

For future studies, loading a soliton into a Bose quantum Hall ribbon would

add the complexity of interactions.



In the remainder of this thesis, I turned my attention to the study of the

community of physics, focusing on a measurement of sexual harassment experi-

enced and observed by undergraduate women while studying physics. We con-

ducted an internet-based survey (n = 522) of attendees of the American Physi-

cal Society’s (APS) Conferences for Undergraduate Women in Physics (CUWiP)

to measure the extent to which attendees personally experienced or observed

sexual harassment in a context associated with physics. Forty-nine percent of

the respondents reported having experienced sexual harassment in physics and

forty-eight percent of respondents reported ‘sometimes’ or ‘often’ observed ha-

rassment in physics. Sexual harassment contributes to a chilly or unwelcome

climate for both harassment targets and observers. It is unknown how preva-

lent sexual harassment is in the field of physics and whether or not it is a con-

tributing factor to the field’s inability to recruit and retain female students.
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For survivors,

I am sorry this happened to you.

It’s not your fault. I believe you.

You are not alone.
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CHAPTER 1

INTRODUCTION

We are interested in studying new topological phases of matter, where non-local

topological properties emerge from local degrees of freedom. Cold atom sys-

tems offer a good venue to create and study topological matter because they are

tunable and easy to probe quantum systems. Twenty years ago, laser cooling

and trapping of bosonic atoms led to the observation of a new state of matter,

Bose-Einstein condensates (BEC) [7]. Shortly after, the onset of Fermi degener-

acy in a cold gas of fermions was observed as well [46]. A degenerate Fermi gas

(DFG) was not a new state of matter, for example, the electrons in a room tem-

perature metal (e.g. a penny). In contrast to their solid state counterparts, many

features of quantum gases can be straightforwardly calculated and give insight

to many-body physics of fermions. These atomic gas samples are created in vac-

uum and trapped by magnetic fields and laser light, which can be configured to

any arbitrary potential and even be a knob for tuning the inter-particle interac-

tions. Experimental dynamics occur on millisecond timescales and single-atom

resolution is now possible with quantum gas microscopes [13, 119]. For these

reasons, we believe cold atom systems are ideal systems to realize topologically

interesting states of matter and study many-body quantum physics. This thesis

details three experiments toward that goal.

The quintessential topological effect is the quantized conductance in 2D elec-

tron gases called the Quantum Hall Effect [65]. This effect was originally ob-

served at the large magnetic field of ∼ 15T. We experimentally realized a large

artificial magnetic field for a 87Rb BEC in a 2-D hybrid lattice [35]. This lattice we

created existed in both spin and position space. Introducing complex tunneling

1



allowed us to create a synthetic magnetic field equivalent to ∼ 20, 000 T in a con-

densed matter system1. Our spin dimension only had 3 sites, which naturally

created a hard walled potential ideal for studying edge states. We observed

localized chiral currents and cyclotron orbits[124, 93].

After measuring these single-particle effects in the quantum Hall regime, we

wanted to build on our understanding by adding a new level of complexity:

interactions. Typical measurements of the effects of interactions in a BEC are

performed through observing collective modes or solitons. Once we made long

lived solitons, we began to explore measurement options. Our theorist collabo-

rator, Victor Galitski, suggested having a small fraction of atoms in a different

internal state interacting with a soliton would be interesting. A soliton in a BEC

is similar to a classical object in a quantum gas. We observed that these impurity

atoms dramatically decreased the soliton lifetime and enhanced its Brownian

diffusion.

An another example of a topological state is a Majorana fermion. In solid

state superconductors or in DFGs, these Majorana fermions are exotic quasipar-

ticle excitations, which are their own anti particle and exhibit non-abelian braid-

ing statistics [131]. Interactions charaterized by p-wave and other higher odd

partial waves in a spin polarized Fermi gas are critical for engineering DFGs to

support Majorana fermions [138]. The first measurement presented in this thesis

explored an s-wave Feshbach resonance by directly imaging elastic scattering of

two DFGs with opposite momenta [54]. We then report on preliminary attempts

to modify the fermionic interaction by laser dressing, an extension of a tech-

nique already demonstrated to introduce d- and g-wave contributions to scat-

tering in BECs [134]. Using this technique to create p-wave interactions would

1This is calculated for a material with a 5 Å lattice spacing.
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be a step towards observing Majorana fermions in a DFG.

In parallel with these traditional physics experiments, I turned my attention

to studying the physics professional environment, focusing on the issue of sex-

ual harassment. At the American Physical Society’s (APS) March Meeting 2015

during the panel discussion at the end of Session F33: Supporting the Recruit-

ment and Retention of Women in Physics, I brought up sexual harassment and

assault in professional contexts and asked how it impacted women at other uni-

versities. After my question, a member of the lesbian, gay, bisexual, and trans-

gender (LGBT) community also shared her concerns. She credited my speaking

up with her ability to speak up as well. After the session, many women ap-

proached me and shared their stories. A majority of the stories were of assault

and rape perpetrated by other physicists. Other conference attendees continued

to seek me out and share their stories for the duration of the conference.

Recently, a survey academic field experiences (SAFE) in anthropology re-

ported 64% of respondents experienced sexual harassment and 22% experi-

enced sexual assault [40]. I wanted to perform a similar survey in physics In

May 2015, I contacted the lead author on the SAFE study, Professor Kathryn

Clancy. In June 2015, I met with Theodore Hodapp, Director of Education at

APS, to advocate for such a survey. Together in collaboration with Eric Brewe,

Renee Michelle Goertzen, and Zahra Hazari, we added a few questions on sex-

ual harassment to their annual evaluation survey for the APS Conference for

Undergraduate Women in Physics (CUWiP). I hope our results from this study

assist in persuading others a broader survey of physics professional environ-

ments would be a useful endeavor. I believe this result is the beginning of quan-

titatively studying how prevalent sexual harassment is in the field of physics

3



and whether it’s a contributing factor to the field’s inability to recruit and retain

female students.

Lastly, appendices A-D are peer-reviewed, published articles to which I con-

tributed to during the course of my PhD.
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CHAPTER 2

MANIPULATING PARTICLES WITH EXTERNAL FIELDS

Ultracold atoms are easily manipulated with magnetic fields, laser light and

radio-frequency (rf) magnetic fields. This chapter reviews some basic atomic

structure and interactions between electromagnetic fields and atoms. Addition-

ally, we discuss an interaction of a charged particle with a magnetic field and

how charge neutral atoms behave in an analogous fashion when manipulated

by external fields.

2.1 Atomic structure and interaction with external magnetic

fields

All results in this thesis were with alkali atoms, which have one valence shell

electron and in their ground state the total angular momentum L = 0. This

places them in the first column of the periodic table and they are often refered

to as hydrogen-like. For our experiments with Bose-Einstein condensates, we

used 87Rb atoms. For our experiments with degenerate Fermi gases, we used

40K. For more details on laser cooling and trapping and physical and optical

properties of 87Rb and 40K, I recommend Refs. [95], [121], and [127].

2.1.1 Atomic structure at zero magnetic field

Spin-orbit coupling of the spin S = 1/2 of the one valence electron and the spin

L associated with its angular momentum gives rise to fine structure of an alkali
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Figure 2.1: Level diagram of the fine and hyperfine structure of 87Rb (40K). En-
ergy levels are not to scale. Energy splitting [121, 127] is provided to show
orders of magnitude.

atoms. For the first excited state L = 1, thus the total angular momentum J

can be either 1/2 or 3/2 for the Fraunhofer D1 and D2 lines, respectively. Fine

structure states are further divided into hyperfine states. The total angular mo-

mentum of the electron J couples to the nuclear spin I giving the total angular

momentum of the atom F = I + J. Figure 2.1 displays the fine and hyperfine

structure for 87Rb (40K).

2.1.2 Interacting with external magnetic fields

An alkali atom’s hyperfine manifold consists of (2I + 1) × (2J + 1) Zeeman sub-

levels. An applied static magnetic field can shift the energy of these sublevels

6



because magnetic moments due to spin and orbital angular momentum interact

with such fields similar to how a loop of current would1. In terms of the atom’s

total magnetic dipole µA and external magnetic field B, the shift in energy for a

Zeeman sublevel is

HB = −µA · B =
µB

~
(gS S + gLL + gII) · B (2.1)

where gs,gL, and gI are the electron spin, the electron orbital and the nuclear g-

factors that correspond to the different magnetic dipole moments arising from

specified angular momenta. For small bias magnetic fields where the electronic

spin has not become uncoupled from the nuclear spin and F is a good quantum

number, the energy shift can be approximated by ∆E|F mF〉 = µBgFmF B, where

gF is the Landé g-factor of the atomic state. This regime is dubbed the linear

Zeeman regime because the energy shifts linearly depend on the magnetic field.

For the ground state of alkali atoms, HB can be exactly solved. This solu-

tion is the Breit-Rabi fomula, which describes energy shifts due to an external

magnetic field from small (linear Zeeman) to intermediate to larger (hyperfine

Paschen-Back regime) as compared to the hyperfine energy splitting. The en-

ergy shifts of 87Rb and 40K ground states, given by

E|J=1/2 mJ I mI〉 = −
∆Eh f s

2(2I + 1)
+ gIµBmB ±

∆Eh f s

2

(

1 +
4mx

2I + 1
+ x2

)1/2

, (2.2)

are plotted in Fig. 2.2. ∆Eh f s is the hyperfine splitting, m = mI + mJ = mI ± 1/2

assigns the sign in Eqn. 2.2, and we define

x =
(gJ − gI)µBB

∆Eh f s

. (2.3)

Equation 2.2 is not correct for the “stretched” m = ±(I + 1/2) states due to a sign

1We focus on the regime where energy shifts caused by the applied magnetic field compared
to fine structure energy splitting, thus J remains a good quantum number
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Figure 2.2: Hyperfine energy shifts of the ground states of 87Rb and 40K versus
external magnetic field.

ambiguity. The energy shifts of the stretched states are

E|J=1/2 mJ I mI〉 = −
∆Eh f s

2(2I + 1)
+ gIµBmB +

∆Eh f s

2
(1 ± x) , (2.4)

where the ± is selected to be the sign of m.

Shifting topics from native internal coupling in the atoms giving rise to its

structure, we can change the internal state of the atom by applying external

fields. We can couple different Zeeman sublevels of our atoms by illuminating

them an oscillating magnetic field with frequencyωr f . For 87Rb, we worked with

condensates in the F = 1 hyperfine manifold and operated at bias magnetic field
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where both the |F = 1,mF = +1〉 → |F = 1,mF = 0〉 and the |F = 1,mF = 0〉 → |F =

1,mF = −1〉 transitions were close in frequency. Our energies E+1, E0, and E−1 are

the solutions of Eqn. 2.2 for the |J = 1/2 mJ = −1/2 I = 3/2 mI = +3/2, 1/2,−1/2〉

or |F = 1,mF = +1, 0,−1〉 states. We can define resonance as ωr f = ωz, where

~ωZ =
E−1 − E+1

2
. (2.5)

In the rotating frame, this defines a detuning δ = ωr f − ωZ and a quadratic

Zeeman shift2
~ǫ = |E0 − (E+1 + E−1)/2|. For 40K, we work at fields were the

|F = 9/2,mF = −9/2〉 → |F = 9/2,mF = −7/2〉 were not close in frequency to

another transition.

2.2 Optical dipole potentials

All of our experiments were performed in optical dipole traps (ODTs) [60].

Using the semi-classical approach to an atom in a light field, the electronic

states of the atom are quantized and the light is an oscillating electric field

E(r, t) = ezE(r) exp(−iωt)+ c.c.. Let’s consider that our atom has a ground state |g〉

and an excited state |e〉with an optical transition frequncy ω0 defined by the en-

ergy difference between |g〉 and |e〉. Coupling to the continuium of empty modes

of the electric field gives the excited state a spontaneous decay rate

Γ0 =
ω3

0

3πǫ0~c3
|〈e|µeg|g〉|2 (2.6)

with the dielectric constant ǫ0, speed of light c and the dipole matrix element

µeg between the ground and excited states. For our multilevel atoms, there is

2The quadratic Zeeman shift is usually expressed as an approximation that varies quadrat-
ically with field, hence the name. Additionally, the quadratic Zeeman shift is negative, but to
keep in line with our convention where we express the quadratic Zeeman shift as explicitly
negative, I define ~ǫ as an absolute value.
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more than one ground and one excited state. We can write down our transition

matrix element more generally for states |i〉 and | j〉 as µi j = ci j||µ||, where ci j is a

real transition coefficient and ||µ|| is a reduced matrix element.

For our Hamiltonian, which describes an atom in an electric field, the tem-

poral variation of Eis important, but the spatial variation is not. The atomic

charge distribution is much smaller than the wavelength of light. In this dipole

approximation, our Hamiltonian is HE = −µE · E with electric dipole operator

µE = −er. We use second-order time-independent perturbation theory to write

down the AC stark shift

∆Ei =

∑

j,i

|〈 j|H|i〉|2
Ei − E j

=
3πc2
Γ0

2ω0
I ×

∑

j

c2
i j

∆i j

, (2.7)

with dressed state energies Ei and Ei such that our detuning ∆i j = (Ei − Ei)/2 =

ω − ω0. This shift is linearly proportional to laser intensity I = 2ǫ0c2|E|2.

Our conservative optical potentials in this thesis are all made with linearly

polarized, λ = 1064 nm light from IPG fiber amplifiers. We show the different

ground and excited states of 87Rb in Fig. 2.1. Our 1064 nm laser light resolves the

fine structure, but not the hyperfine structure. The expressions for the dipole

potential and the scattering rate simplify to

Udip(r) =
πc2
Γ0

2ω3
0

(

2
∆2
+

1
∆1

)

I(r) and (2.8)

Γsc(r) =
πc2
Γ

2
0

2ω3
0

(

2
∆

2
2

+
1
∆

2
1

)

I(r), (2.9)

where the optical transition frequency ω0 = (ω1 + ω2)/2 is an average of the

transitions frequencies ω1, ω2 for the D1 and D2 lines, respectively. Additionally,

we have defined an average spontaneous decay rate Γ0 = 3Γ1Γ2/(2Γ1 + Γ2) and

associated detunings ∆2 = ω − ω2 and ∆1 = ω − ω1.
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For our experiments, we used a crossed-beam ODT, with one beam fre-

quency shifted from the other. Both of these beams were focused at the atoms.

The intensity of a focused Gaussian beam is

IGB(r, z) =
2P

πσ2(z)
exp

(

−2
r2

σ2(z)

)

, (2.10)

where P is the bower, σ is the 1/e2 radius, and z is the direction of propagation.

The radius σ(z) = σ0

√

1 + (z/zR)2 depends on both the beam waist or minimum

radius ω0 and Rayleigh length zR = πσ0/λ. Because our laser wavelength λ =

1064 nm corresponds to a frequency that is smaller than the optical transition

frequencies, our trap is red-detuned and atoms are attracted to the intensity

maxima.

2.2.1 Optical Lattices

Two counter-propagating laser beams along ex with the same laser frequency

ω and wavevector k = 2π/λ will create an interference pattern. With V0 rep-

resenting the potential at the intensity maxima, an atom will see a periodic

potential Vlat(x) = −V0 cos2(kx) and its wavefunction have the same periodic-

ity. Borrowing from solid state physics, we can write the atom’s wave function

φ(n)
kx

(x) = eikx · u(n)
kx

(x) as a product of a plane wave eikx and a function u(n)
kx

(x) with

the same periodicity of the lattice [8]. In atomic physics, we call the crystal mo-

mentum kx, the quasimomentum3. An atom in a periodic potential obeys the

Schrödinger equation, so we insert φkx
into the Schrödinger equation

[

1
2m

( p̂ + kx)2
+ Vlat(x)

]

u
(n)
kx

(x) = En(x)u(n)
kx

(x) (2.11)

3Rumored to be due to some one’s faulty memory of the name in Ashcroft and Mermin [8]
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to find a new equation for u(n)
kx

(x). We can express u(n)
kx

(x) as a Fourier series

∑

ℓ cℓe
2ikℓx with −∞ < ℓ < ∞. Our potential Vlat(x) can also be written as a Fourier

series Vlat(x) = −V0(eikx
+ e−ikx

+ 2)/4, we will drop the constant term because it

solely shifts the overall energy. Equation 2.11 becomes

∑

ℓ

(2~kℓ + kx)2

2m
cℓe

2ikℓx
+

V0

4

∑

ℓ

cℓ
(

e2ik(ℓ+1)x
+ e2ik(ℓ−1)x

)

= En

∑

ℓ

cℓe
2ikℓx. (2.12)

Notice that the lattice couples together the ℓ component to the ℓ±1 components.

We can now write our Schrödinger equation in matrix form

∑

ell

Hlat · cℓ = En

∑

ell

cℓ with Hlat = ER



















































(kx + 2l)2 l = l′

V/4 |l − l′| = 1

0 otherwise,

(2.13)

where we express energy in units of recoil energy ER = ~
2k2

R/2mRb with atomic

mass mRb [57]. Additionally, the quasimomentum kx is in units of the recoil

momentum ~kR = 2π~/λL. Figure 2.3 displays band structure for varying lattice

depths from diagonalizing this Hamiltonian. We plot the lowest three bands for

a numerically evaluated spectrum with −5 < ℓ < 5.

2.3 Charged particle interacting with magnetic fields

In quantum mechanics, the Hamiltonian of a charged particle q with momen-

tum p and mass m in a magnetic field B

H =
1

2m
(p − qA)2, (2.14)

where A is the vector potential defining by B = ∇ × A and p is momentum

operator. A charged particle confined in 2-D subject to a perpendicular magnetic
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Figure 2.4: Particle with charge q confined to a 2D plane with perpendicular
magnetic field B

field B will undergo cyclotron orbits at a constant angular frequency ωc = q|B|/m

as shown in Fig. 2.4. The radius Rc = v/ωc of the orbit depends on the charged

particle’s velocity v = (p − qA)/m. For the perpendicular field B = Bez, where

B = |B|, we can make the Landau gauge choice and define A = xBey. This gauge

choice is slightly inconvenient because it breaks the rotational symmetry of our

problem, but it will make reducing our 2-D problem to being described by a

1-D harmonic oscillator easier. Note, ex is no longer translationally invariant.
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Inserting our gauge choice into Eqn. 2.14, our Hamiltonian becomes

H =
1

2m
(p2

x + (py + qBx)2). (2.15)

The trial wavefunction ψk(x, y) = ψk(y)ψk(x) = eiky fk(x) is separable in ex and ey

and is an eigenstate of py. Combining ψk(x, y) and Eqn. 2.15, our Hamiltonian

reduces to

Hψk(x, y) =
1

2m
(p2

x+(py+qB)2)eiky fk(x) =
1

2m
(p2

x+(~k+qB)2) fk(x) = Hkψk(x), (2.16)

where

Hk =
1

2m
p2

x +
1
2

mω2
B(x + kℓ2

B)2 (2.17)

is a simple 1-D harmonic oscillator Hamiltonian. The physics of our 2-D elec-

tron was reduced to a 1-D harmonic oscillator problem with the center of mass

motion shifted by −kℓ2
B, where we have defined a magnetic length ℓB =

√
~/mωc.

The reduction from 2-D to 1-D implies that each of the harmonic oscillator en-

ergy levels of our system are degenerate.

2.3.1 Aharonov-Bohm effect

A charged particle can still be impacted by a magnetic field B even where B =

0. An extremely long solenoid with current I and cross sectional area A will

create a uniform B inside and outside the field will be zero. If we restrict our

charged particle to a plane perpendicular to the solenoid, we can define a curl

free vector potential A(r) = (Φ/2πr)φ̂, where Φ = AB is the flux through the

solenoid. As a charged particle travels down one of the two paths illustrated

in Fig. 2.5, the effect of the vector potential becomes an overall phase factor

eφAB/2 on the wavefunction ψ of our charged particle. We can calculate the phase
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Figure 2.5: The Aharonov-Bohm effect: charged particles acquire a phase even
when B=0 as they travel on either side of a long solenoid because of a nonzero
vector potential A.

difference around these two paths

φAB

2
=

q

~

∫

A · dr =
q

~

Φ

2π

∫ (

1
r
φ̂

)

· (rφ̂dφ) = ±qΦ

2~
. (2.18)

The total phase difference between the paths is φAB = qΦ/~ and depends on the

magnetid field B. The Anahorov-Bohm effect was first observed in shifting the

interference fringes of an electron beam by adjusting the magnetic field through

a solenoid [36]. In Ch. 7, we used an engineered Anahorov-Bohm phase φAB

to define a synthetic magnetic field. This phase is order unity, which is only

possible in engineered materials [53, 71], or in atomic [74, 3, 97, 79, 4, 93] and

optical [62] settings.
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2.3.2 Quantum Hall Effect

The signatures of the integer quantum Hall effect (IQHE) are quantized Hall

conductance plateaus and their associated vanishing longitudinal resistiv-

ity [129]. Conceptually, the IQHE can be explained by the existence of pro-

tected edge states, often visualized as skipping orbits [31, 43, 65, 99]. Placing

our charged 2-D particle in a strong perpendicular magnetic field B closer to an

infinitely hard edge than its magnetic length ℓB, the charged particle will reflect

from the edge before completing its orbit and acquire a drift velocity along the

edge. Examples of these trajectories are shown in Fig. 2.6A.

A quantum Hall bar (Fig. 2.6B) is a good conceptual tool. A voltage can be

applied across contacts 1 and 4. Contacts 2, 3, 5, and 6 are voltage probes and do

not supply or draw current. We will now consider our charged particle to be an

electron q = −e. We have N available edge states. There are edge states on both

edges, which are spatially separated and travel opposite directions. Applying a

voltage V1 at contact 1 injects an electron with energy −eV1 into an available edge

state. Because contacts 2 and 3 do not draw current, V1 = V2 = V3. Similarly, all

of the bottom contacts have the same voltage V4 = V5 = V6. Using our total

current is I = −N(e2/h)V1, we can calculate the longitudinal and Hall resistance.

Our longitudinal resistance is (V3 − V2)/I = 0. The resistance across the Hall

bar is the signature (V3 − V5)/I = h/(Ne2) quantized resistance. There are many

limitations on this conceptual model, however, it provides the framework for

the appearance of analogous localized edge states in Chapter 7.
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Figure 2.6: Conducting edge states. (A) Semi-classical skipping orbits offer a
visualization of the conducting edge states. (B) A quantum Hall bar showing
conducting edge states which can be visualized as the skipping orbits above.

2.4 Fooling neutral atoms to act like charged particles in mag-

netic fields

One of the first ways to make neutral atoms behave like charged particles in a

magnetic field was to use the similarity between the Lorentz force FL = q(v × B)

and the Coriolis force FC = −2m(Ω × v). This led to some awesome vortex lat-

tices [2, 115]. However, because the magnetic field is directly proportional to

the rotation rate, reaching the quantum Hall regime through rotation is diffi-
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cult. The added energy heats the gas and reaching the quantum Hall regime

requires the ratio of the number of vortices to the number of atoms to be of or-

der unity. Another method is to create an artificial gauge field explained in the

next section. There are many methods to accomplish this, such as shaking op-

tical lattices to introduce a vector potential [123, 79] or laser-assisted tunneling

in a titled optical lattice [3, 97]. Here, I will describe how a two-photon Ra-

man transition and a magnetic field gradient can create an effective magnetic

field [88, 120]. For this section we will focus on 87Rb.

2.4.1 Artificial gauge fields

We use a two-photon Raman transition to couple together different Zeeman

sublevels in the F = 1 hyperfine manifold with different relative momentum

±2kR, where kR is the single-photon recoil momentum ~kR = 2π~/λ. This mo-

mentum defines our recoil energy ER = ~
2k2

R/2mRb, where mRb is the atomic

mass and λ ≈ 790 nm is the wavelength of our Raman lasers. Populations in

the different spin and momentum states will coherently oscillate with Rabi fre-

quency ΩR set by the laser intensity. Our counter-propagating Raman lasers

have a frequency difference ∆ωR which is selected to be near resonance for

ωz (defined in Eqn. 2.5) at our bias field B = B0ez. This defines a detuning

δ = ΩL − ωz. Our Hamiltonian in the reference frame rotating at ∆ωL and in

the basis | + 1, kx + 2kR〉, |0, kx〉, | − 1,−2kR〉 basis is

H = ER









































(kx + 2)2 − δ ~ΩR/2 0

~ΩR/2 k2
x − ǫ ~ΩR/2

0 ~ΩR/2 (kx − 2)2
+ δ









































(2.19)
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Figure 2.7: Synthetic magnetic field with artificial gauge fields. (A) Experimen-
tal setup: two counter-propagating laser beams with orthogonal linear polar-
ization and frequency difference ∆ωR. (B) Internal states of an F = 1 hyper-
fine manifold being addressed with a two-photon Raman transition. (C) Our
simulation’s vector potential qAx/~kr versus detuning δ. Due to the magnetic
field gradient in ez, δ is a function of z. (D) Calculated energy bands (colorful
curves) of our Raman coupling Hamiltonian for coupling strength ~ΩR = 8.0ER,
quadratic Zeeman shift ~ǫ = 0.6ER, and detunings ~δ = −5.0 ER, 0, 5.0 ER from
left to right. The gray curves indicate the bare states and the colorbar indicates
spin.

To engineer a spatially varying vector potential to generate a synthetic magnetic

field, we create a spatial varying detuning δ.

Figure 2.7A shows a schematic of a laser geometry with an applied gradient

b′z ez to vary the detuning δ(z) ≈ gFµB∆B(z) across a condensate. This change in

δ shifts the minimum kmin of the dispersion. Our Hamiltonian for motion along
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ex becomes

H∗x ≈
~

2(kx − kmin)2

2mRb
=
~

2(kx − qA∗x/~)
2

2mRb
, (2.20)

where we have defined an engineered vector potential qA∗x/~. Our vector poten-

tial A∗ = A∗xex is a Landau gauge choice for synthetic magnetic field B = B∗ey,

where B∗ = ∂A∗x/∂z = (∂A∗x/∂δ)(∂δ/∂z). For our simulated qA∗x/~ in Fig. 2.7, we

assumed a realistic laboratory gradient of 5.5 G/cm and a cloud extent ∼ 50 µm

leading to a 10ER span in detuning δ across the cloud. This method for creat-

ing synthetic magnetic fields is limited by the linear extent of the BEC because

the synthetic field is proportional to the difference in detuning from one end of

the cloud to the other. In Ch. 7, we extend on this method by using an optical

lattice instead of a magnetic field gradient to create spatial differences in phase.

There, the limit of accumulated phase difference is set by the ratio of the mis-

matched wavelengths between the Raman and optical lattice lasers as opposed

to the linear extent of the cloud.
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CHAPTER 3

DEGENERATE QUANTUM GASES

In this chapter, I will review some basic quantum statistics to define relevant en-

ergy scales for our experiments such as the chemical potential, the condensation

temperature Tc for BEC, the Fermi energy ǫF and corresponding temperature TF .

Then we will discuss scattering in cold atoms, characterize atomic interactions

with the s-wave scattering length and introduce magnetic Feshbach resonances.

Finally, we will look at a derivation of the Gross-Pitaenskii equation (GPE) using

an effective interaction potential characterized by s-wave scattering. For more

details on Bose-Einstein condensates and degenerate Fermi gases, I recommend

Refs. [107] and [44].

3.1 Brief review of quantum statistics

A feature of laser cooling and trapping atoms is that all atoms are the same. An

87Rb atom in Ithaca, NY is identical to an 87Rb in Gaithersburg, MD. The “quan-

tum” in quantum degenerate gas is due to this indistinguishably. Degenerate

implies the gas is in a regime where this indistinguishably is relevant. For this

section, I found [80] and [69] to be useful for reviewing quantum statistics.

3.1.1 Identical particles

Imagine we have two identical particles as in Fig. 3.1. If we switch or exchange

the two particles, any description we have written down of that two particle
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Figure 3.1: For indistinguishable particles the probability distribution has to be
the same before and after exchange because they are identical.

state must be the same as before the exchange. |Ψ(r1, r2)|2 is the probability of

finding particle 1 at position r1 and finding particle 2 at position r2. Similarly, if

the particles in the opposite positions, the probability for that state is |Ψ(r2, r1)|2.

These probabilities must be equal. If we only consider single-valued solutions,

there are two allowed wavefunctions:

|Ψ(r1, r2)〉 = +|Ψ(r2, r1)〉

and |Ψ(r1, r2)〉 = −|Ψ(r2, r1)〉.
(3.1)

Consequently, there are two types of indistinguishable particles: bosons

and fermions. Bosons are symmetric(+) under exchange and fermions are

antisymmetric(-) under exchange. A degenerate quantum gas is where the

inter-particle spacing is approximately the size of the characteristic length of the

quantum wavefunction that describes that particle. For our ultracold atomic en-

sembles with density n = N/V , we can describe the characteristic length of the

wavefunction as the thermal de Broglie wavelength λdB =

√

2π~2/mkBT . When

nλ3
dB
∼ 1, then quantum statistics becomes important and we must treat our

atoms as bosons or fermions. The chemical potential µ can be described as the

amount of energy required to add an additional particle and behaves differ-

ently at low temperatures depending on the type of particle in the ensemble. In
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Figure 3.2: the chemical potential µ for fermions (blue), classical particles (red)
and bosons (green) at constant density n versus temperature T .

Fig. 3.2, we plot the chemical potential µ for an ideal Fermi gas, an ideal clas-

sical gas, and an ideal Bose gas at constant density n. The chemical potential

µ very clearly illustrates the impact of differences of quantum statistics in the

degenerate regime.

There are more than bosons, fermions, and classical particles. Revisiting the

wavefunction solutions for exchanging identical particles, we can write eqn. 3.1

in a more general fashion

|Ψ(r1, r2)〉 = eiθ|Ψ(r2, r1)〉, (3.2)

where θ = 0 for bosons and θ = π for fermions. Anyons are particles for which θ

is any other value besides 0 or π. Anyons with non-trivial phases can have inter-
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esting properties when braided [102]. Majorana fermions are a specific type of

fermion, which are their own anti-particle. In this thesis, I focus on fermions and

bosons. However, the quest for Majona modes in p-wave super conductors is

the motivation for the proposed experiment in Chapter 5. Majorana modes are

composite quasiparticles where the simple physical exchange operations we de-

scribe in this section alter the quantum wavefunctions in non-trivial ways [131].

3.1.2 Bose-Einstein Condensates

A Bose-Einstein condensate (BEC) is a macroscopic occupation of the ground

state by a gas of bosons. This macroscopic occupation occurs when for a given

volume V , there are no more higher momentum states available when we add

the Nth+1 boson. Derived from the Bose distribution,

n~k =
1

z−1eβǫk − 1
, (3.3)

describes the occupation in a momentum state ~k at a temperature T with β =

1/kBT , ǫk = ~
2k2/2m, and k = |~k|. z is the fugacity, defining a chemical potential

through z = eβµ. To calculate the available~k states for a uniform density n = N/V ,

we sum over k and then take the thermodynamic limit to arrive at the integral

n =

∫

d3k

(2π)3

1
z−1eβǫk − 1

=
1

2π2

∫ ∞

0
dk

k2

z−1eβǫk − 1
. (3.4)

We will define V to be a cube with sides of length λdB. We can simplify Eqn. 3.4

with a substitution βǫk = x2 and k = x
√

2m/β~2. Combining our substitution and

specified volume, we get

nλ3
dB =

4
√
π

∫ ∞

0
dx

x2

z−1ex2 − 1
= Li3/2(z), (3.5)
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where Li3/2(z) is a polylogarithm. Notably, the derivative of this polylogarithm

is itself a polylogarithm

z
d

dz
Li3/2(z) = Li1/2(z) =

∞
∑

ℓ=1

zℓ

ℓ1/2
. (3.6)

At z = 1, this geometric series diverges. This is unphysical. Our integral is

essentially counting N atoms in a box λ3
dB

. The integrand can’t diverge, so z ≤ 1.

However when we took the thermodynamic limit, we assigned no weight to the

k = 0 atoms because 4πk2dk vanishes at k = 0. Once the density is high enough

or the temperature is low enough, any additional atoms will occupy the ground

k = 0 state no energy cost. For non-interacting bosons, we can fit an arbitrary

number N0 atoms in the ground state. Our total N = N0 + Nex atoms is the sum

of the number Nex = nλ3 atoms in states k > 0 and N0.

The distribution of atoms in the excited states defines the temperature T of a

condensate. The critical temperature Tc of a condensate is when nλ3
dB
= Li3/2(z =

1) = ζ(3/2) ≈ 2.612 and no more atoms are allowed in the excited states. For a

given, uniform density n, the critical temperature is

Tc =
2π~2

mkB

(

n

ζ(3/2)

)3/2

. (3.7)

For a fixed density n, we plot the condensate fraction

N0

N
= 1 − Nex

N
= 1 − ζ(3/2)

nλ3
dB

= 1 −
(

T

Tc

)3/2

(3.8)

as a function of temperature in units of Tc in Fig. 3.3. A T = 0, all of the atoms

are in the condensate. A T increases, N0/N decreases. However, below Tc, we

see that a significant fraction of the atoms occupy the ground state. This state is

a BEC.
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Figure 3.3: The condensate fraction N0/N (solid) and fraction in the excited states
Nex/N (dashed) versus temperature T/Tc.

3.1.3 Degenerate Fermi Gases

A degenerate Fermi gas is a gas of N fermions below the Fermi temperature TF

derived from the energy of the N atoms at T = 0. The occupation of a fermion

in a state ~k is

n~k =
1

z−1eβǫk + 1
, (3.9)

valid for T , 0. At T = 0, n~k is one for ǫk < ǫF and zero for ǫk > ǫF , where ǫF is

the Fermi energy. Our Fermi momentum kF is the momentum k corresponding

to ǫk = ǫF . At T = 0,

N =
∑

k<kF

1 =
V

(2π)3

4π
3

k3
F (3.10)
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Figure 3.4: The Fermi distribution of occupation number n(ǫ) versus energy ǫ.
The occupation at absolute zero is plotted for comparison.

atoms occupy all of the momentum states below kF . Thus, for a given atomic

density n = N/V , we can define a Fermi energy ǫk, a Fermi momentum kF and a

Fermi temperature T :

kF = (6π2n)1/3

ǫF =
~

2

2m
(6π2n)2/3

TF =
ǫF

kB

.

(3.11)

In Fig.3.4, the occupation 〈nǫ〉 is plotted versus energy for different frations of

the Fermi temperature at a constant density n. As the temperature becomes

larger, there is less occupation in the lower energy states and the distribution

begins to resemble the distribution for classical atoms. For temperatures that

are small fractions of the Fermi temperature TF , the occupation deviates from
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the zero temperature distribution around ǫF .

To approximate the chemical potential for constant density, we again con-

sider a volume with sides the length of the λdB and make the same substitution:

nλ3
dB =

4
√
π

∫ ∞

0
dx

x2

z−1ex2
+ 1

. (3.12)

Because z is small for fermions at a low temperature, we cannot do the series

expansion like in the boson case. Instead, we will look at the T → 0 limit and

use that case to approximate the chemical potential at low temperatures around

TF . As T → 0, the chemical potential µ → ǫF . At T = 0, there is a sharp change

in occupation number at ǫF . Our density as defined by the Fermi distribution at

low temperatures is

nλ3
dB =

4
√
π

∫ ∞

0
dx

x2

z−1ex2
+ 1
≈ 4

3
√
π

[

(ln z)2/3
+
π2

8
1
√

ln z
+ · · ·

]

(3.13)

If we only keep the first term and look at the zero temperature limit and defining

n by the Fermi energy,

ln z ≈
(

3
√
π

4
nλ3

dB

)2/3

=
TF

T
, (3.14)

we correctly find µ = kBT ln z = kBTF = ǫF . Including the next order, we solve for

ln z =

(

3
√

(π)
4

nλ3
dB −

π2

8
1
√

ln z

)2/3

. (3.15)

Substituting in ln z = TF/T on the right-side of the equation and using a series

expansion at T = 0, we find the chemical potential

µ ≈ ǫF













1 − π

12

(

T

TF

)2










. (3.16)

This approximation is what is plotted in Fig. 3.2.
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3.2 Scattering in ultracold atomic gases

In ultracold gases, most scattering events are s-wave and can be characterized

with a single parameter, the s-wave scattering length. First, I will discuss calcu-

lating the s-wave scattering cross section for 2 distinguishable atoms, then for

2 identical atoms. Adding complexity, I will then discuss scattering between

atoms with different internal states. Finally, I will introduce magneticcally tun-

able Feshbach resonances, like the one studied in Ch. 5.

3.2.1 s-wave scattering length

For distinguishable atoms with mass m1 and m2, the reduced mass is M =

m1m2/(m1+m2). In the center-of-mass(COM) reference frame, we can write down

their wavefunction at far distances as the sum of the incoming plane wave eik·r

and the scattered wave

√
Vψ = eik·r

+ ψsc(r) = eik·r
+ f (k, k′)

eik′·r

r
, (3.17)

where |k′| = |k| is defined by the energy of the state E = ~k2/2M, and f (k′) is

the scattering amplitude. Because we work with cold gases, we assume the

atoms are in the ground state and, currently, do not take into consideration any

internal degrees of freedom. Thus, the interaction is spherically symmetric and

the scattering amplitude f (k′) = f (θ) is solely dependent on the scattering angle

θ. Only considering s-wave scattering, f (θ) = a is fully characterized by the

s-wave scattering length a.

To calculate if incoming particles will scatter, we define a differential cross

section dσ/dΩ–the number of particles scattered into the solid angle dΩ per unit
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time divided by the incident flux of particles in a unit of cross sectional area per

unit time. To define a scattering cross section σ, we integrate dσ/dΩ over all

solid angles

σ =

∫

dσ

dΩ
dΩ =

∫ 1

−1
cos θ| f (θ)|2 = 4πa2. (3.18)

In polarized Fermi gases and BECs, the particles are not distinguishable.

This has a direct effect on the scattering amplitude and σ. For indistinguish-

able particles, we need to symmeterize the wavefunction, which corresponds to

changing the sign of the relative position vector from r→ −r and θ → π− θ. The

wave function of the COM system is now

√
Vψ = eik·r ± eik·r

+
[

f (θ) ± f (π − θ)] eik′·r

r
, (3.19)

where the + is for bosons and the − is for bosons. The scattering amplitude

vanishes for s-wave scattering of identical fermions and doubles for identical

bosons leading. Therefore the scattering cross section

σ =































8πa2 bosons

0 fermions

(3.20)

is different. For spin polarized fermions, this freezes out evaporative cooling.

For bosons, this introduces a factor of two in approximating the interaction po-

tential for a BEC in only one internal state.

We will use the Born approximation to the first order to define an effective

interaction. A typical 87Rb BEC with density n ∼ 1015 /cm3 has an inter-particle

spacing of ∼ 100 nm, which is much greater than the s-wave scattering length

a ∼ 100a0 ∼ 5 nm. So, it is valid to ignore the atomic potential at short length

scales. Defining a spherically symmetric effective potential Ueff(r), we calculate
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an interaction potential

∫

Ueff(r)d3r ≈ 2π~2

M
f 1(θ) ≈ 4π~2a

mRb
= U0. (3.21)

We will assume an effective contact interaction between atoms Ueff(r, r′) =

U0δ(r, r′) for identical bosons.

3.2.2 Scattering between different internal states

As discussed in Sec. 2.1, our alkali atoms have different internal states whose

energy varies with an externally applied field. Considering them increases the

complexity of our scattering problem because it introduces multiple exit chan-

nels which we have to sum over. Labeling the internal states |αβ〉 of our incom-

ing atoms, our non-interacting Hamiltonian is

H0 =
p̂2

2M
+ HB(α) + HB(β), (3.22)

where HB|α〉 = ǫα|α〉. The total energy of our incoming atoms is

Eαβ(kαβ) =
~

2k2
αβ

2M
+ ǫα + ǫβ. (3.23)

Labeling our exit channel states as the states as |α′β′〉, we can generalize our

single channel wave function in Eqn. 3.17 to include multiple exit channels:

√

(V)ψ = eikαβ·r|αβ〉 +
∑

α′β′

f (kαβ, k′α′β′)
e

ik′
α′β′ ·r

r
|α′β′〉. (3.24)

When the exit channels are different than the entrance channels, the final rel-

ative momentum kα′β′ can be different than kαβ as long as the total energy E is

conserved, E = Eαβ(kαβ) = Eα′β′(kα′β′). kα′β′ must satisfy

~
2k2
α′β′

2M
=

~
2k2
αβ

2M
+ ǫα + ǫβ − ǫα′ − ǫβ′ . (3.25)

When k2
α′β′ ≤ 0, the channel is a closed.
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3.2.3 Feshbach resonances

A Feshbach resonance occurs when a diatomic molecular state energetically ap-

proaches the two-atom continuum [39, 128]. Diatomic molecular bound states

also have magnetic moments and the energy of those states can be tuned with a

static magnetic field. Consequently, the Feshbach resonance can be accessed by

changing the bias magnetic field. Tuning interactions in a DFG with a Feshbach

resonance has led the creation of molecular Bose-Einstein Condensates (BECs)

[58, 140, 78] as well as observation of the phase transition from the Bardeen-

Cooper-Schrieffer (BCS) superconducting regime to the BEC regime at suffi-

ciently low temperatures [18, 25, 139, 111].

When the energy Eαβ of the open channel of two atoms approaches the en-

ergy of the molecule in the closed channel Em’cule, the coupling of those two

states has a dramatic impact on the scattering length a of the two atoms. We

can define the scattering length a as a function of magnetic field B and near a

magnetic Feshbach resonance B0 as

a = abg

(

1 − ∆B

B − B0

)

(3.26)

where abg is the s-wave scattering length of the open channel states far from the

resonance B0 and ∆B is the width of the resonance related to the coupling be-

tween the closed and open channels and the wavefunction overlap of the bare

atoms with the molecular states and their magnetic moments. Many experi-

mental techniques have been used to characterize Feshbach resonances: atom

loss due to three-body inelastic scattering, re-thermalization timescales from

one axis to another, and anisotropic expansion of a cloud upon release from

a confining potential [98, 73, 42, 104, 112]. In Ch. 5, we measured the location of

the Feshbach resonance by imaging the elastic s-wave scattering halos.
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3.3 Brief Intro/Overview of the Gross-Pitaevskii Equation

When fully condensed, all the bosons in a BEC will have the same single particle

wavefunction. The Hartree approximation allows us write down the many-

body wave function

Ψ(r1, r2, · · · , rN) =
N

∏

i=1

φ(ri) (3.27)

for our N-particle system as a product of single particle wave functions φ(r). The

single particle wave function is normalized such that
∫

dr |φ(r)|2 = 1. Including

the effective interaction potential from Sec. 3.2.1, the effective Hamiltonian for

the N-particle system in a potential V(r) is

H =

N
∑

i=1

[

p2
i

2m
+ V(ri)

]

+
U0

2

N
∑

i=1

N
∑

j,i

δ(ri − r j). (3.28)

We find our energy functional by taking the expectation value of the Hamilto-

nian

E = 〈Ψ∗(r1, r2, · · · , rN|H|Ψ(r1, r2, · · · , rN〉

=

∫

dr

















N
∏

i=1

φ∗(ri)

















N
∑

i=1

[

p2
i

2m
+ V(ri)

]

+
U0

2

N
∑

i=1

N
∑

j,i

δ(ri − r j)

















N
∏

i=1

φ(ri)

















= N

∫

dr

[

~
2

2m
|∇φ(r)|2 + V(r)|φ(r)|2 + (N − 1)

2
U0|φ(r)|4

]

,

(3.29)

and simplifying by evaluating the sums and products. Our typical 87Rb BECs

have ∼ 106 atoms, thus N >> 1 and (N − 1) ≈ N. We will assume a condensate

wavefunction ψ(r) =
√

Nφ(r), where the density of the particles is n(r) = |ψ(r)|2.

The energy for our system becomes

E =

∫

dr

[

~
2

2m
|∇ψ(r)|2 + V(r)|ψ(r)|2 + U0

2
|ψ(r)|4

]

. (3.30)

We will now assume that our number N is constant and minimize E − µN for

fixed µ. Combining this with Eqn. 3.30, we get the time-independent Gross-
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Pitaevskii equation (GPE)

− ~
2

2m
∇2ψ(r) + V(r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r). (3.31)

From this equation, we can define a length scale over which the density of our

condensate can change with minimal kinetic energy cost. The length scale is the

healing length ξ =
√

~2/2mnU0 of the condensate.

To study dynamics in a condensate, we adapted the time-independent GPE

to be time-dependent. Propagating the GPE in time is difficult due to its non-

linear term. Implementing a time-splitting spectral method (TSSP), we can

study dynamics of our condensate [16]. I implemented a 1-D GPE solver for a

harmonic trap V(x) = mω2
xx2 plotted in Fig. 3.5A. For simulations, we will make

our Hamiltonian dimensionless. A natural length for a harmonic trap will be the

harmonic oscillator length xs and we’ll scale the time by our oscillator frequency

ωx. Our dimensionless variables are

t̃ = ωxt, x̃ =
x

xs

, and ψ̃(x̃s, t̃) =
√

xsψ(x, t). (3.32)

The dimensionless Hamiltonian we numerically solve is

i
dψ

dt
= −β

2
d2

dx2
ψ(x, t) + α

x2

2
ψ(x, t) + γ|ψ(x, t)|2ψ(x, t), (3.33)

where we have dropped the tildes. For the simulation, we set β = α = 1. To

determine a good value for γ, I used input parameters from our experiment.

We wanted to simulate an elongated condensate in an approximately harmonic

trap with trap frequency ωx ≈ 5.4 Hz and Thomas-Fermi radius ≈ 100 µm. The

trap frequencies in the other directions were ∼ 4 × ωx. Neither the dynamics

in these dimensions nor the changing density profile in these directions along

x are included in our modeling. I ran the simulation for different γ and se-

lected γ = 960, where the simulated ground state’s probability density matched
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Figure 3.5: Results from a 1-D GPE solver using a time-splitting spectral
method. All values are dimensionless, we dropped the tildes for simplicity.
(A) The simulated 1-D harmonic potential versus position. (B) The ground state
(green curve) found by seeding the solver with white noise and using imaginary
time to add dissipation into the simulation. The Thomas-Fermi probability dis-
tribution (blue curve) is completely covered except at the edges. This deviation
is not visible at this scale. (C) Oscillations in the harmonic trap after displacing
the numerically found ground state to x = 5.

a Thomas Fermi probability distribution with radius ≈ 100 µm or 10.0833 in the

dimensionless units.

To numerically find the ground state of the system, I set time to to be com-

plex. Including an imaginary term in the time introduced dissipation and in-

creasing the proportion of imaginary time in a given time step would find the

ground state more rapidly. When introducing imaginary time, the wavefunc-

tion was normalized after every time step. To determine if the state was the

ground state, I calculated the overlap integral with the state from the previ-

ous time step. If the difference of this overlap integral and 1 was < 1e − 9, the
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numerically found wavefunction was considered to be the ground state. Both

of the Thomas-Fermi and the numerically simulated ground state probability

distributions are plotted in Fig. 3.5B. The Thomas-Fermi distribution is almost

completely covered by the probability distribution of the ground state. Because

the Thomas-Fermi approximation sets the kinetic energy term to zero, there is

no cost to rapidly changing the wavefunction, and the calculated probability

density is an inverted parabola with sharp cusps where the probability density

goes to zero. This is where the simulated probability deviates from the Thomas-

Fermi approximation because the nonzero kinetic energy forces the probability

density to change over the healing length ξ. If we displace the numerically

found ground state from the center of the harmonic trap, the probability den-

sity will oscillate with periodicity T = 2π/ωx. The average position versus time

is shown in Fig. 3.5C and we see the expected sinusoidal oscillations.
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CHAPTER 4

RUBIDIUM-POTASIUM APPARATUS

Our experimental set-up at NIST in Gaithersburg, MD has been well docu-

mented initially in [87] and then with further detail [77]. My goal for this chap-

ter is to document modifications and additions to the Rb-K (formerly known as

RbII) apparatus that enabled the experiments discussed in this thesis. Figure

4.1 displays the basic geometry of our apparatus with important cooling and

trapping laser beams for the creation of BECs and DFGs drawn.

4.1 Experimental sequence for creation of a BEC

We used a Zeeman slower to cool the 87Rb atoms coming out of a combined

Rb-K oven. The atoms are cooled on the |F = 2,mF = 2〉 → |F′ = 3,mF = 3〉

transition with a laser beam propagating down the slower in the opposite di-

rection of the collimated atomic beam. A 2 → 2 fiber splitter combined the

slower light with ≈ few mW of slower repumper light in resonance with the

|F = 1〉 → |F′ = 2〉 transition. The magnetic field provided by the Zeeman

slower shifts the energy of the atoms, so they stay in resonance with the cooling

and repumper lasers as their velocity changes. The atoms are then captured in

a magneto-optical trap (MOT). We typically load the 87Rb MOT for 2.5 s. For

the MOT, we run a 25 A current through our large coils in anti-Helmholtz con-

figuration providing B′z ≈ 13 G/ cm. The light for our MOT is sent into a cus-

tom fiber splitter (Fig. 4.2) to create 3 sets of counter propagating beams with

∼ 9 mW in each beam. The MOT cooling light was ≈ −20 MHz detuned from the

|F = 2〉 → |F′ = 3〉 transition. Our Rb MOT repump light was ≈ 1 MHz detuned
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Figure 4.1: Schematic of Rb-K BEC/DFG machine. Atoms are laser cooled along
a Zeeman slower and captured by a MOT. The MOT beams are all directed
into the chamber with flipper mirrors (not shown). Two additional MOT beams
propagate along the ez axis. A pair of large coils are recessed into the chamber’s
bucket windows. Our PCB rf coils rest on the bucket window. A green plug
beam is directed into the chamber with a long pass dichroic. This figure is not
to scale.

from the |F = 1〉 → |F′ = 2〉 transition. For 87Rb, only a few milliwatts of re-

pump are required. After we have loaded our MOT, we then turned off all the

currents in the Zeeman slower and anti-Helmholtz coils and shut the oven shut-

ter. Additionally, we quickly jumped the MOT cooling light detuning 33 MHz

from resonance and reduced the MOT repump intensity to essentially leakage

light. The cooling light in the Zeeman slower was turned off as well. While the
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Figure 4.2: Schematic of custom Evanescent Optics Inc. fiber splitter. We used
this device to combine the MOT cooling and repump light for our dual species
apparatus.

atoms experienced the optical molasses created by the MOT cooling beams, we

ramped the cooling light detuning 33 MHz to 104 MHz away from resonance to

further cool the atoms. The lack of repump caused the atoms to be optically

pumped into the F = 1 ground state. We optically pumped the atoms into the

|F = 1,mF = −1〉 for 1 ms state by illuminating them with the slower repumping

light. We then turn on the xz imaging probe to blow away any remaining F = 2

atoms.

We then rapidly turned on a quadrupole magnetic trap with a current of

130 A in our large coils in an anti-Helmholtz configuration. After a 20 ms hold,

we linearly ramped the current from 130 A to 250 A in 0.2 s to compress the

atoms and increase their collision rate. After compression, we turn on our op-

tical dipole trap. For all experiments in this thesis, the beam propagating along

ex has the smallest beam waist (See Tab. 4.4 for specific beam waist informa-

tion) in ez, the direction of gravity. We turned on the dipole trap with most of

the power in this beam and at the highest power possible. We turned on our
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rf magnetic field and linearly ramped the frequency from 22 MHz to 4 MHz in

4 s. This flipped the spin of the highest energy atoms and then allowed the

remaining atoms to thermalize at a lower temperature. We decompressed the

quadrupole trap by ramping the current in the coils from 250 A to 60 A in an

exponential ramp with time constant τ = 1.5 s over 3 s. While decompressing,

we lowered the atoms into the dipole trap by ramping a smaller bias coil in

Helmholtz configuration providing field in ez from 10 A to 8 A. This lowers the

quadrupole zero toward the dipole trap.

We completed the evaporation to BEC in the optical dipole trap. The

quadrupole is still on, just barely compensating for gravity. We evaporated in

the optical dipole trap in either 3 s for typical BECs or 5 s for an elongated

BEC. For the overall power in the dipole trap, we either used a linear ramp

or sometimes we used an “O’Hara” ramp [103] to ramp from the initial power

command to the final power command. The O’Hara ramp ramps the dipole po-

tential more rapidly at first, then slows down. Also during this evaporation we

linearly ramped the amplitude command to acousto-optic modulator (AOM)

controlling the power balance in the two beams of our dipole trap. This further

lowered the power in the beam along ex while increasing the power in the ey

beam. After evaporation in the dipole trap, we ramped the quad current to 0 A

with an exponential ramp with time constant τ = 0.8 s over 5 s. Ramping off the

quadrupole continued the evaporation by decreasing the optical trap depth due

gravity. This sequence creates a |F = 1,mF = −1〉 87Rb BEC in an optical dipole

trap.
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4.2 Experimental sequence for creation of a DFG

Our Zeeman slower slowed both 87Rb and 40K atomic beams. Because 40K is

lighter than 87Rb, the atoms will “bloom” or acquire a transverse velocity at the

output of the slower. To increase the number of 40K atoms ultimately captured

in the MOT, we cooled the atoms in an orthogonal direction to the slower im-

mediately after the oven, but before the slower. We loaded the 40K MOT first by

turning on the slower cooling, slower repump, transverse cooling, MOT cool-

ing, and MOT repump light for 40K, but not 87Rb. After 7 s of 40K MOT loading,

we also loaded 87Rb for a 1.5 s of MOT loading. The current in the large, anti-

Helmholtz was 25 A, similar to BEC creation.

We cooled both species in optical molasses for 2 ms. For 87Rb, we did an

abbreviated ramp of the MOT cooling light detuning from 33 MHz to 53 MHz

away from resonance. For 40K, we lowered the intensity of the MOT cooling

light without modifying its detuning. We optically pumped both species into

their maximally stretched magnetically trappable states, |F = 9/2,mF = 9/2〉 for

40K and |F = 2,mF = 2〉 for 87Rb. 40K had a dedicated optical pumping beam. We

used the slower rempump and MOT repump light, as well. For 87Rb, we pulsed

on the slower light and both the slower and MOT repump light.

Both species were then loaded into a quadrupole magnetic trap with a cur-

rent of 130 A in our large coils in anti-Helmholtz configuration. The currents in

our 3 pairs of Helmholtz bias coils are listed in Tab. 4.2 for both the creation of a

DFG and a BEC. Similar to the BEC sequence, we compressed the magnetic trap

by linearly ramping the current in in the large coils from 130 A to 160 A. Af-

ter compression, we cooled our atoms evaporatively via forced rf evaporation,
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Coils Null Rb mag cap Rb opt pump RbK mag cap RbK opt pump

ex −1.10 −6 −0.3 −15 1
ey 0.12 0 1 −4 2.35
ez 3.59 10 4.8 10 4

Table 4.1: Bias fields during the magnetic quadrupole trap capture (mag cap)
and optical pumping (opt pump) experiment sequence. The coils are labeled by
the direction they provide a bias field. All the currents are in amps. Rb(RbK)
is labeling the bias fields used in the experiment sequence for creation of a
BEC(DFG).

sweeping the rf frequency from 18 MHz to 2 MHz in 10 s. During evaporation,

the magnetic trap was plugged by a λ = 532 nm beam, tightly focused to ≈ 30 µm

and ≈ 5W in power, providing a repulsive potential around the quadrupole

zero to prevent Majorana losses. Since the 40K atoms were spin polarized and

therefore only interacted by increasingly suppressed p-wave interactions, they

re-thermalized largely due to sympathetic cooling with 87Rb atoms.

After the 10 s evaporation in the plugged quadrupole trap, we turned on

our crossed beam optical dipole trap at full power (∼ 6W) predominantly in

the more tightly focused beam. Both the green plug beam and the optical

dipole trap remain on as we decompressed the quadrupole trap by exponen-

tially ramping the current from 160 A to 25.5 A with time constant τ = 1.5 s

over 3 s. Next, we evaporated in the optical dipole trap by ramping the relative

power balance in the crossed beams to their final balance in 3 s. This reduced

the overall dipole trap depth because more power was in a beam with a larger

beam waist. We also ramped off the power in the green plug beam during this

3 s as well. We simultaneously evaporated from the dipole trap by lowering

the overall optical power with an O’Hara ramp and using an exponential ramp

to turn off the quadrupole field with time constant τ = 1.5 s over 2 s. At this

42



juncture, we had |F = 2,mF = 2〉 87Rb atoms and |F = 9/2,mF = 9/2〉 40K atoms in

our crossed beam optical dipole trap.

We then used adiabatic rapid passage (ARP) to transfer the 87Rb atoms from

the |F = 2,mF = 2〉 state to the |F = 1,mF = +1〉 ground state via 6.8556 GHz mi-

crowave coupling (20.02 MHz from the zero field resonance) followed by ramp-

ing the current in the bias ez coils 1 A in 50 ms. This state was chosen to minimize

spin changing collisions with 40K atoms during further evaporation [22]. After

the ARP, we briefly applied an on-resonant probe laser, ejecting any remaining

87Rb atoms in the F = 2 manifold from the trap. We evaporated further in the

optical trap again using an O’Hara ramp for 1 s. The optical potential from the

dipole trap no longer holds the 87Rb against gravity. We used a second ARP to

transfer the 40K atoms into the |F = 9/2,mF = −9/2〉 state by illuminating the

atoms with a 3.3 MHz rf field and sweeping the current in the bias ez coils 5 A in

150 ms. At the end of this sequence, we had a DFG of about 75, 000 40K atoms in

the |F = 9/2,mF = −9/2〉 state with temperature ≈ 0.4TF .

4.3 Lasers!

The real reason for this PhD: an excuse to play with lasers.

4.3.1 Potassium cooling lasers

Our potassium laser system at the writing of this thesis has been dismantled to

be reconfigured to provide cooling light for a 2-D to 3-D MOT system. I will

document the laser system as it was for our results discussed in Chapter 5. Our
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Figure 4.3: A screen shot of our absorption (yellow) and error signal (pink) for
locking the potassium laser with Digilock software connected to a Toptica
Photonics Feedback Controlyzer connected to our repump laser sys-
tem.

potassium laser cooling light was generated by two Toptica Photonics TA

Pro systems. To stabilize our laser’s frequency, we lock to a 39K transition with a

93.26% natural abundance in contrast to the 0.0117% natural abundance of 40K.

The upper hyperfine structure of 39K is unresolved, so saturation absorption

spectroscopy of 39K on the D2-transition has 3 features: two absorption peaks of

the two hyperfine ground states and an enhanced depletion at their crossover

due to optical pumping effects. These 3 features are visible in Fig. 4.3, and we

locked on the error signal derived from F = 2 → D2 transition, the left most

feature. To increase our absorption signal, we heat our potassium cell to 54 ◦C

controlled by a Thorlabs Temperature Controller TC200.

Figure 4.4 shows our repump laser system. To the left of the Toptica

Photonics TA Pro is our Doppler-free saturated absorption spectroscopy.
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Figure 4.4: Potassium repumper laser system
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Beam Path color AOM frequency [MHz] Shift from res.[MHz]

MOT Red +80 0
Slower Orange −80 −160
Beat note Pink none −80
Sat abs probe Red −80 × 2 −240
Sat abs pump Orange −350 × 2 −940

Table 4.2: Potassium repumping beams. Resonance (res.) is the 40K|F = 7/2〉 →
|F′ = 9/2〉 transition. We used an error signal generated from saturation absorp-
tion spectroscopy (sat abs) to stabilize the laser frequency.

We wanted the frequency of our repumper laser to be 80 MHz below the 40K|F =

7/2〉 → |F′ = 9/2〉 transition. The 39K transition we stabilized to is −511.9 MHz

from our bare laser frequency set-point. We double passed our bare laser light

through a 160 MHz AOM before sending the light to the spectroscopy set-up.

We then shifted our pump laser frequency by 700 MHz (double pass a 350 MHz

AOM) with respect to our probe. The shift from resonance atoms in the heat

cell see is half of the frequency difference between the pump and probe beam,

thus we have upshifted our bare laser light by 160 MHz + 350 MHz = 511 MHz.

We send the bare seed output to the beat-note lock for our cooling laser. The

TA output generated our repump light for our potassium MOT and Zeeman

slower. Table 4.2 lists all the beams derived from both TA output and the seed

output.

Our potassium cooling laser’s frequency was stabilized by a beat-note lock

to ∼ −100 MHz from the 40K|F = 9/2〉 → |F′ = 11/2〉 transition. The frequency

of our laser could be adjusted during the sequence because we compared the

beat-note to a signal from a Novatech 409A programmable frequency synthe-

sizer multiplied by 16 by our electronics. During the MOT stage of our exper-

imental sequence, we typically locked the cooling laser 1265 MHz away from

the repumper laser. The cooling laser provided light for laser cooling, optical
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Beam Path color AOM frequency [MHz] Shift from res.[MHz]

MOT Red +80 −24
Slower Orange −80 −160
Opt. pump Purple +80 × 2 +48.7
Beat note Pink none −80
Transverse Blue +100 0
xz probe Yellow +100* 0
xy probe Green +100* 0

Table 4.3: Potassium cooling beams. Resonance (res.) is the 40K|F = 9/2〉 → |F′ =
11/2〉 transition. Our optical pumping (opt. pump) used the same fiber launch
and shutter as the Zeeman slower cooling beam. *These two are the same AOM

pumping, and absorption imaging. Figure 4.5 illustrates how we derive all the

light we need from the TA output of our cooling laser system. Because so many

beams are derived from the cooling laser, several of the 0th order beams from

different AOMs are used. The unshifted 0th order light is the same color as the

light heading into the AOM. The seed output was only used for diagnostics and

the beat-note lock. We used two New Focus Servo Controllers to feed-

back on both the current and piezo of the seed laser our TA Pro. Table 4.3 lists

the beams of our potassium cooling laser.

All of the laser light was piped from our laser systems table to our main ap-

paratus illustrated in Fig. 4.1 with optical fibers, though how the rubidium and

potassium cooling and imaging light was combined for our dual species appa-

ratus varied. The MOT cooling and repump light for potassium were combined

with the rubidium MOT light as shown in Fig. 4.2. The potassium slower and

repump light were sent through a 2 → 2 fiber. The slower light was merged

with the rubidium slower light on the apparatus table with a polarizing beam

splitter and thus has the opposite helicity compared to the rubidium light. The

transverse cooling was piped over on a optical fiber. There was no rubidium

transverse cooling. Both the xy and xz imaging probes had there own 2 → 2
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Figure 4.5: Potassium cooling laser

48



Experiment Propagation direction Order Horizontal[µm] Vertical[µm]

Chapter 5 ey 0th 150 98
ex +1st 118 34

Chapter 7 ey −1st 96 104
ex 0th 98 38

Chapter 6 ey −1st 83 66
ex 0th 46 38

Table 4.4: Optical dipole trap beam waists for the different experiments pre-
sented in this thesis. The orders are of the “Split” AOM. For work with solitons,
we switched out cylindrical optics in the 0th order’s path for spherically sym-
metric ones.

fiber splitter to combine the rubidium and potassium probe light. The second

output port was useful for alignment and power monitoring.

4.3.2 Optical dipole trap

A IPG YDL-10-LP 10W fiber laser provided 1064 nm light for both beams of

our crossed optical dipole trap during our experiments presented in Ch. 5 and

our preliminary work for Ch. 7. After our 10W fiber laser died in October

2014, we installed a IPG YDL-30-LP 30W replacement laser. This catastro-

phe proved useful because we modified our alignment to enable deflection of

the beam propagating along ey. The output of either laser was sent through

two AOMs: the “Power” AOM and the “Split” AOM. These AOMs were driven

by 80 MHz IntraAction deflector drivers with both an amplitude and a fre-

quency modulation input. The Power AOM was used to stabilize the intensity

of our optical dipole trap. A beam sampler picked off light from the Power

AOM’s 1st order and directed this light to a photodetector connected to our in-

tensity stabilization feedback loop. The voltage to the amplitude input for the

Power AOM was adjusted to maintain an intensity, linear with computer com-
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mand, at a set-point. The Split AOM controlled the relative power in the 0th

and ±1st order. During the replacement process, we switched from using the

0th order and the +1st order to using the −1st order and the 0th order. With

the 0th order providing most of the confinement against gravity, we created

time-averaged-potentials with a few hundred kilohertz sawtooth from a func-

tion generator. Additionally, deflection of our −1st order beam provides a mo-

mentum kick for our currently being implemented experiment of Bloch oscilla-

tions for optical lattices along ex.

Dipole trap alignment was slightly different depending on whether we

wanted to make a DFG or a BEC. For BECs, we aligned our dipole trap beams

to the quadrupole field zero with the nulling fields listed in Tab. 4.2. Then, we

applied a bias field in the ez direction during rf evaporation in the quadrupole

trap to have the field zero above the dipole trap. This configuration led to very

efficient loading from our magnetic trap to our optical dipole trap. For DFGs,

our green plug beam created a repulsive potential at the quadrupole field zero

to prevent Majorana losses. We aligned our dipole trap about 50 µm below our

quadrupole trap zero so the repulsive potential due to the green beam was not

fighting the attractive potential of our dipole trap.

4.3.3 Optical lattices and Raman lasers

We have installed two co-propagating 1-D optical lattices. Our 766.704 nm

potassium lattice light was from the monitor output for the MOT repump light

of our custom fiber splitter (Fig. 4.2). This lattice was not intensity stabilized.

We used it for rapid pulses in our scattering experiments. Our other 1-D optical
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Figure 4.6: Schematic of our dual species apparatus highlighting 1-D optical
lattices and Raman lasers. This figure is not to scale.

lattice was generated by a IPG YAR-10K-1064-LP-SF fiber amplifier seeded

by 5 mW picked off from a shared NP Photonics fiber laser source. Figure 4.6

is a schematic of our optics alignment for merging these two beams.

This schematic also shows the configuration of our Raman lasers beams. The

source for these beams was a Coherent MBR-110 Ti:Sapphire (Ti:Sapph) tun-

able laser pumped by a Coherent Verdi V-10 at 10 W on a separate optical

table from our experiment. On our Ti:Sapph laser table was where we controlled

the relative frequency of our Raman lasers by shifting their bare laser frequency

51



with an AOM. By controlling the amplitude of the rf tone on the AOMs, we

could also control the intensity of our Raman beams. Even with the rf tone

coming from the same source, phase noise was added to our Raman beams by

traveling through the optical fibers. This additional phase noise was particu-

larly apparent for experiments sensitive to optical phase, like our experiments

presented in Chapter 7. So using a beam sampler on the Raman C fiber launch,

we combined a small amount of light picked off from both Raman A and C and

actively stabilized the phase. This stabilized the Raman frequency and opti-

cal phase at the atoms against the phase noise added by the optical fibers that

conveyed the light from the laser table to the experiment. Additionally, the de-

liberate choice to install the phase stabilization adjacent to the 1064 nm optical

lattice retro reflection mirror passively stabilized the phase of the Raman light

to the 1-D optical lattice. Without the phase lock, we observed rapid dephasing

and heating of a BEC loaded into our 2-D hybrid lattice with synthetic flux.

4.3.4 Green plug beam

The original plan for our green plug beam to plug our quad zero with 532 nm

light generated by a Coherent Verdi V-5 operating at 5 W. This light was

to be controlled with an AOM and coupled to a NKT Photonics LMA-PM-10

high-power polarization-maintaining fiber to improve pointing stability. We

estimated we have ∼ 3 W at the atoms. For a potential barrier of 1 mK for our 40K

atoms, we wanted a beam waist of about 10 µm. We never could get more than

2 W out of the fiber, even though we did not implement this with a 5 W Verdi

but with a 18 W Verdi operating at 12.5 W. Increasing the operating power of

our Verdi did not increase the power out of the fiber. Additionaly, our green
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Figure 4.7: Beam shaping our green plug beam. The measured beam waist was
after our green plug beam’s control AOM. Pictured is the telescope we used to
expand the beam before focusing it onto the quadrupole zero at the atoms. This
figure is not to scale.

beam’s position needed to be adjusted throughout the day. We monitored its

position by in-situ imaging 87Rb atoms in the quadrupole trap with the green

plug on and adjusted its location with a mirror driven by a picomotor in the

green beam’s path.

Often times a drop in 40K atom number corresponded to the green beam

moving. We decided to free space couple the green plug to acheive more power

at the atoms and have a larger beam waist. We removed the fiber and profiled

the beam directly after the AOM. We designed a telescope, illustrated in Fig. 4.7

to expand the beam before the f3 = 250 mm lens focused it down to ∼ 30 µm at

the atoms. Our green plug beam was combined with our xz imaging probe beam

using a DMLP567L dichroic mirror. We used another DMLP567L dichroic mirror

to deflect the green beam after the experiment chamber. We protected our xz

imaging camera with a filter. We minimized the green plug’s beam waist at the

atoms by imaging the leakage light with amplitude to the AOM commanded
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Figure 4.8: xy imaging system configured for phase imprinting. Our phase im-
printing beam is sent backwards through our imaging system after backlighting
a razor edge mounted to a translation stage. We roughly focused the edge onto
the atoms with our relay imaging system. This figure is not to scale.

zero. Even with chromatic aberrations, this method was effective. Running the

Verdi at 12.5 W, we had ∼ 5 W at the atoms. This did reduce our potential

barrier, but the larger beam’s position did not have to constantly be adjusted.

4.3.5 Imaging systems

We had two imaging planes in our experiment. Our xz imaging plane was de-

fined by gravity in one direction and long axis of our aparatus in the other. His-

torically, our slower defined the ex direction, hence the xz imaging axis name.

Our xz imaging system has a magnification of 2. Our xy imaging plane is defined

by our crossed dipole trap. The xy imaging system consisted of a compound lens

with an effective focal length of 83 mm recessed in our chamber’s bucket win-

dow and a 500 mm lense shown in Fig. 4.8. These lenses gave a magnification
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of 6 and a resolution of about 2 µm. Due to its superior resolution, we used this

imaging axis to image an edge onto our condensate and launch solitons. Fig-

ure 4.8 shows our imaging system in its configuration for our experiments pre-

sented in Ch. 6. We used a polarizing beam splitter (PBS) to merge our soliton

beam into our imaging optics. A kinematic base with a gold mirror directed our

phase beam into the imaging system. When this base was removed, our Flea3

camera was focused in-situ for the microwave magnetic field lock used in Ch. 7.

We installed a relay imaging system to roughly focus our edge at the location of

the atoms. First, we focused the atoms onto our relay imaging camera. Then,

we placed our razor edge in the focal plane of our relay imaging. The position

of the razor edge for phase imprinting needed to be positioned within ≈ 5 µm.

Our relay imaging system did not have that resolution. The final focusing of

our edge was completed by looking for the existence of long lived solitons as a

function of position on the translation stage where the edge was mounted.

4.4 Magnetic fields

We have 3 pairs of bias coils in Helmholtz configuration for bias fields in the ex,

ey, and ez directions, as shown in orange in Fig. 4.1. These bias coils were used

to null fields or set bias magnetic fields < 10 G. Their currents were stabilized by

proportional-intergral control circuits and could be ramped or changed during

the experimental sequence. An additional set of 4 coils were used to cancel

out gradients in Bz along ex. Two coils are pictured in Fig. 4.1 and the other

two are directly beneath them. Canceling out the gradient in ex was important

for our studies with evenly distrubuted spin impurities in Ch. 6. We canceled

the gradient by making 50/50 mixtures of elongated 87Rb in |F = 1,mF = −1〉
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Figure 4.9: This schematic displays our H-bridge and current feedback for our
large coils. When IGBT’s 2 and 3 are gated on, our coils are in anti-Helmholtz
configuration. When IGBT’s 1 and 4 are gated on, our coils are in Helmholtz
configuration.

and |F = 1,mF = 0〉 states because these states are miscible at our experiment’s

operating fields. During time-of-flight (TOF), we applied a Stern-Gerlach pulse

to separated the spin states. As we changed the current in the coils, the spin

states went from being on either half of the condensate, to spatially overlapped,

to the opposite location. We set the current to the middle of the range where the

spin states were mixed.

An H-bridge changed our large coils from anti-Helmholtz configuration for
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our MOT and quadrupole magnetic trap to Helmholtz to achieve ≈ 200 G fields

for our studies of the 40K |F = 9/2,mF = −7/2〉 and |F = 9/2,mF = −9/2〉 Fes-

hbach resonance in the same sequence. Figure 4.9 shows our H-bridge with 4

insulated-gate bipolar transistors (IGBTs) controlled by 2 TTL signals from our

control computer to switch configurations. In either configuration, our coils’

current was supplied by an Agilent 6690A. We stabilized our current by com-

paring a voltage from a Hall probe to our computer command. Our servo board

sent a voltage to the gate of our MOSFET bank–an array of 19 MOSFETs in

parallel–to feedback on the current.

4.4.1 Magnetic field stabilization with microwave servo

We used microwaves to address transitions between the two ground hyper-

fine states of 87Rb. As shown in Fig. 2.1, these states are ∼ 6.8 GHz apart.

Our microwave source was a Stanford Research Systems SG384. We

duplicated the design of our colleagues at NIST in Trey Porto’s rubidium lab

(Fig. 4.10). We manually set the output of the source to be 100 MHz away

from the zero field splitting. A mixer combined our microwave source with

an ≈ 100 MHz frequency generated by our Novatech 409A to generate a fre-

quency which addressed allowed transitions at a given bias magnetic field B.

We usually performed experiments with 87Rb BECs in the F = 1 hyperfine

manifold. By pulsing on-resonant microwaves and taking an absorption im-

age without repump light addressing the |F = 1〉 → |F′ = 2〉 transition, we

could take images of our BEC in-situ and continue an experimental sequence
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ZX60-4016E-S+ZYSWA-2-50DR

rf Switch

Figure 4.10: Microwave source schematic for all the components from source to
antenna. Blue arrows denote the microwave frequency path, green arrows are
inputs, and red arrow indicate outputs for monitoring, debugging or tuning.
Components requiring power are marked. The high power microwave ampli-
fier is water cooled. Modified image originally created by Lindsay LeBlanc for
the laboratory’s manual.
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with a slightly depleted BEC. We used this technique to set up a microwave

field lock that fed back on our bias coils in the ez direction. This stabilized our

bias magnetic field against long-term drifts. During our sequence we applied a

1 ms pulse of our microwaves detuned by 500 Hz from our resonance with our

bias field set point. Resonance was determined by which transition we were

addressing. After each pulse, we absorption imaged the transfered atoms with

a probe on resonance with the |F = 2〉 → |F′ = 3〉 transition. Figure 4.11A

shows an example of our counting the number (n1, n2) of transferred atoms af-

ter each pulse versus scanning the bias field. To calibrate the sensitivity of our

microwave field lock we repeated this scan several times over a narrower field

range. The normalized asymmetry (n1 − n2)/(n1 + n2) produced a signal approxi-

mately linear in a ∼ 0.5 mG range. The different markers in Fig. 4.11B represent

different scans. The long term drift of our bias field is apparent. Converting

from current to magnetic field, we found a slope of 0.35 ± 0.01 mG. Our field

sensitivity was the root mean square of our residuals or 0.0027 mG. After every

sequence, we sent a voltage to our bias coil command proportional to the nor-

malized asymmetry. Our integrator constant for our bias field lock was ≈ 60 s,

because that was the length of our sequence. We designed the rest of our se-

quence in phase with 60 Hz.

For our results sensitive to detuning, like the ones presented in Ch. 7, we

also used these images to provide an unbiased veto against shots with substan-

tial field errors [85]. For our results in Ch. 6, this gave us a very reliable state

preparation which was sensitive to magnetic field. We have implemented the

microwave field lock with both xy and xz imaging1.

1These are historical names. In the coordinate system I defined for the experiment they are
the exey and the (ex + ey)ez imaging systems
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Figure 4.11: Magnetic field stabilization. (A) The red(blue) markers represent
the number n1 (n2) of transfered atoms after the first(second) pulse versus cur-
rent in bias coils. (B) Current in bias coils versus the normalized difference in
transferred atoms between the two microwave pulses. Colors are for different
data runs. Purple was taken first, pink last. This shows drift in a short time
(∼ 30 minutes). (C) Calibration for field sensitivity was calculated by finding
the RMS average of the residuals from a linear fit of the field to the normalized
difference of transferred atoms.
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CHAPTER 5

S-WAVE SCATTERING OF FERMIONS

5.1 Introduction

We are interested in engineering topologically interesting systems that can sup-

port Majorana modes, which have non-abelian statistics[131]. One system that

can support these modes are px + ipy-wave superconductors that have Cooper

pairs with orbital angular momentum ℓ = 1 [131]. Section 3.2.1 discussed how

we can use one parameter, the s-wave scattering length, to characterize inter-

action in our cold atom samples. However, to support Majorana modes in

cold atom systems, interactions in the p-wave channel are required [138, 75].

For BECs, optically dressing the atoms with two-photon Raman transitions has

been shown to introduce d-wave and g-wave contributions into typical s-wave

scattering events [134]. This technique should be extend-able to fermions for

simulating odd higher-order partial waves.

Our first step in this experiment was to characterize s-wave scattering halos

for binary spin mixtures in a degenerate Fermi gases. Scattering halos appear

as circles in 2-D images of the density distribution of 3-D atoms after colliding

atomic clouds with different momenta. In BECs scattering halos are readily im-

aged with typical imaging techniques [55, 38, 125, 28], we found that the lower

density of our DFGs compared to typical BEC densities to be a barrier to fully

characterizing these low energy s-wave collisions. To enhance the number of

collisions and increase our signal, we performed the measurement in the vicin-

ity of a magnetically tunable s-wave Feshbach resonance (see Sec. 3.2.3). Even

with this enhancement, absorption imaging still had detection uncertainty that
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impacted the regions of low atomic density the most. We then used high in-

tensity imaging to reduce our signal-to-noise. As the atoms absorb light from

the probe beam, each scattered photon imparts momentum to the atoms. As

the atoms accelerate due to the radiation pressure of the probe beam, the atoms

are Doppler shifted out of resonance. This leads to under counting during the

imaging process [82] and so we developed an image processing technique that

accounted for this [54]. We were able to characterize a s-wave Feshbach res-

onance in 40K directly through measuring the fraction of atoms scattered dur-

ing the collision at different bias magnetic fields and deduced the location and

width of the resonance without relying on proxy effects. This work is published

in New Journal of Physics 18 (2016) 013001.

We never completed the experiment to induce higher order partial waves in

40K. In the last section of this chapter, I report on a few different techniques we

explored before deciding to postpone this experiment with 40K due to the daily

struggle with maintaining a constant, acceptably large atom number.

5.2 s-wave scattering experiment

In this section, I will discuss the procedures and ingredients for our s-wave scat-

tering experiment that occur after creating a spin polarized |F = 9/2,mF = −9/2〉

DFG of ≈ 4 × 105 atoms of 40K at a temperature T ≈ 0.4 TF in a crossed opti-

cal dipole trap with frequencies (ωx, ωy, ωz)/2π = (39, 42, 124) Hz as described in

Chapter 4.
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5.2.1 Preparation of 50/50 spin mixtures in DFGs

To map out the wide s-wave Feshbach resonance at 202.1 G for |F = 9/2,mF =

−9/2〉 and |F = 9/2,mF = −7/2〉 40K atoms, we devised a standard procedure for

creating a spin mixtures above and below the resonance. We ramped the bias

magnetic field to 190.5 G (217.1 G) and turned on a 42.42 MHz (47.11 MHz) rf

field resonant with the Zeeman splitting between the two states when prepar-

ing the mixture below (above) the Feshbach resonance. We then sinusoidally

modulated the bias field at 125 Hz for 0.5 s, with a 0.14 G amplitude, producing

an equal mixture of the two hyperfine states. Because the rf circuit was opti-

mized for frequencies of a few MHz, the rf intensity at ∼ 40 MHz was too low

for us to calibrate the coupling strength. Depolarizing a DFG decreased the TF

because the number of available states increased by a factor of two, decreasing

the Fermi momentum kF . Thus the temperature was larger in units of TF . This

depolarization allowed the fermions to re-thermalize [45]. We evaporated to a

lower optical potential, decreased their temperature, and narrowed our atoms’

momentum distribution.

5.2.2 Mapping out the Feshbach Resonance

After creating depolarized gases at fields ≈ ±15 G away from the 202.1 G Fes-

hbach resonance, we used traditional methods to map out the resonance [109].

First, we measure inelastic collision losses in atom number versus bias mag-

netic field. To approach the set-point quickly and avoid unintended, additional

losses, we designed a two-step procedure using a pair of large coils and a con-

centric pair of small coils. Our large coils had a larger inductive time scale than
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our small coils. We implemented an H-bridge to change the configuration of

our large coils from anti-Helmholtz for the MOT and magnetic trapping staged

of our experiment to Helmholtz to reach magnetic fields of hundreds of Gauss

(See Sec. 4.4). We approached resonance from both above and below the Fesh-

bach resonance to map out the loss. Figure 5.1 displays both sets of data. After

creating a spin mixture at the desired field above (below) the resonance and

evaporating further, we used the large coils to set the bias magnetic field B to

a set-point 5.1 G above(below) the intended bias field. We held the atoms at

this field for 100 ms to allow the eddy currents induced by the large coils to

settle, and then used the smaller coils to quickly change the bias field the re-

maining 5.1 G. We held the bias field at its set-point for 200 ms. Our loss feature

was shifted to the lower field, repulsive scattering length side of the resonance

where a weakly-bound molecular state exists. This is consistent with previous

measurements [110].

Next, we explored Feshbach molecule creation and dissociation [111]. When

we ramped through the Feshbach resonance coming from the attractive, high-

field side, Feshbach molecules were created. For accurate atom counting, we

dissociated the molecules before taking an absorption image. The on-resonant

probe beam for the bare atom states was not on resonance for the Feshbach

molecule. In Fig. 5.2 we show our molecule creation and dissociation process.

During time of flight (TOF), we held at the set-point for the bias field for 1 ms.

After the 1 ms, we either continue to hold at the set-point to image or ramp away

from the resonance to dissociate the Feshbach molecules. To create Feshbach

molecules, we had to evaporate to a slightly lower temperature, we reduced

our dipole trap depth by 10% compared to the depth used in our loss experi-

ments. Dissociation during TOF recovers most of the atoms above the Feshbach
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Figure 5.1: Atom loss near Feshbach resonance. (A) Approaching the Feshbach
resonance with a spin mixture from lower field. The atom number was mea-
sured after a 200 ms hold time at the bias field. (B) Approaching the Feshbach
resonance with a spin mixture made above the resonance.The dashed line is the
location of the resosnance B0.

resonance.

5.2.3 Magnetic field calibration

The magnetic fields produced by our large bias coils around 200 G were in-

dependently calibrated by rf-spectroscopy on the |F = 9/2,mF = −9/2〉 to

|F = 9/2,mF = −7/2〉 transition of 40K. We prepared a spin polarized DFG as
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described in Ch. 4 and ramped the bias coils to variable set-points while keep-

ing the smaller coils at their zero field setting. We illuminated the atoms with a

rf field of frequency νr f and performed adiabatic rapid passage (ARP) by ramp-

ing the small bias coils 0.284 G or 2 A in 250 ms. We applied a Stern-Gerlach

pulse by switching our large coils back to anti-Helmholtz configuration and im-

aged the atoms to measure the fractional population in the |F = 9/2,mF = −9/2〉

and |F = 9/2,mF = −7/2〉 states. We then fit the fractional population in the

|F = 9/2,mF = −7/2〉 state as a function of current to a Gaussian function. Due

to our low rf coupling, we did not fit to the traditional Lorentzian model. Addi-

tionally, we often did not achieve complete transfer into the |F = 9/2,mF = −7/2〉

state. The center of the Gaussian corresponded to the resonant magnetic field

and the standard deviation of the fit parameters was our uncertainty. We used

the Breit-Rabi formula to determine the resonant field value at νr f . We did this

for 5 different νr f , and the magnetic field produced by our MOT coils varied lin-

early with their commanded current. Our fit included the uncertainties in the

center position of the Gaussian and the uncertainty of the slope gave our field

uncertainty. Our large bias coils produce 1.91 G/A with an uncertainty of 0.04 G.

5.2.4 Optical lattice for 40K

For engineering higher order partial waves with 40K as opposed to 87Rb, mod-

ifications to the technique were necessary. 87Rb is a BEC, therefore most of

the atoms occupy only on momentum state. Because the spread in momen-

tum was smaller for 87Rb, the scattering halos were more readily imaged due

to their higher densities as compared to DFG of 40K. Loading a dressed state

with atoms in a equal superposition in the |F = 1,mF = ±1〉 internal states of
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Figure 5.3: Absorption image of a DFG after a π/2 Raman pulse at δ = 4ER. The
atoms close to 0 momentum are coupled to the other spin state.

87Rb created two clouds with ±2kR, where ~kR = 2π~/λR is the recoil momen-

tum associated with the two-photon Raman transition. The momentum spread

of the BEC was negligible compares to kR. In contrast, for our DFG of 40K, kR

was comparable to the Fermi momentum kF as pictured in Fig. 5.3. This image

was taken with a weak Raman π-pulse with a detuning δ = 4ER (see Sec. 5.4.1).

Additionally, we opted to perform the experiment with the |F = 9/2,mF = −9/2〉

and |F = 9/2,mF = −7/2〉 internal states of 40K to enhance their interactions with

a Feshbach resonance. With only optical dressing, our fermions in the different

spin states would move away from each other with only 2~kR. We needed to

have a modified procedure to engineer collisions with optically dressed 40K.

I installed a 1-D optical lattice co-propagating with our Raman A/C beams

(see Sec. 4.3.3). Kapitza-Dirac pulses–the scattering of matter from pulses of

a standing wave light pulse–of this lattice created two spatially overlapping
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clouds with opposite momenta 4~kL, where ~kL = 2π~/λL is the lattice recoil mo-

mentum. The optical lattice had a beam waist of 160 µm. We used near-resonant

λL = 766.704 nm light by diverting a small amount of the 40K repumping light

used during laser cooling. We only needed 0.06 mW for a lattice depth ≈ 8EL,

where EL = ~
2k2

L/2mK is the lattice recoil energy. We rapidly pulsed this lattice

on and off with a double-pulse protocol [136]. The pulse sequence was opti-

mized to transfer most of the atoms into the ±2~kL momentum states, shown in

Fig. 5.4B. The optimized pulse times were τ1 = 23 µs for the first pulse, τ2 = 13 µs

off interval, and τ3 = 12 µs for the second pulse. Since the initial Fermi gas had a

wide momentum spread and the lattice pulsing is a momentum dependent pro-

cess [48], not all the atoms were transferred into the target momentum states.

We optimized our pulse times to minimize the atoms remaining in the untrans-

ferred state.

We absorption imaged the atoms after a 6.8 ms TOF and the ±2~kL atoms had

traveled ≈ 203 µm. Figure 5.5 includes examples of our absorption images. Due

to conservation of momentum, single scattering events are easily identified. Af-

ter an elastic collision event between an atom traveling with −2~kL momentum

and an atom traveling with +2~kL momentum, the atoms will depart with equal

and opposite momenta 2~kL at an arbitrary angle. Therefore, the single collision

s-wave scattering halo should be a spherical shell with a radius corresponding

to the ±2~kL momenta imparted from the lattice and a thickness given by ~kǫ , as

illustrated schematically in Fig. 5.4C.
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Figure 5.4: (A,B) The 1D lattice was pulsed, imparting momentum to the atoms.
(C) After time of flight, the two clouds traveling along ±ex directions have sep-
arated and the atoms that underwent a single scattering event were evenly dis-
tributed in a scattering halo around the unscattered clouds.

5.3 s-wave scattering results

5.3.1 Image processing

We optimized our signal-to-noise ratio for low atom numbers by imaging with

long, high-intensity pulses [54]. Our imaging pulse was 40 µs with an intensity

0.6 IS AT . We used a probe beam approximately the size of the s-wave scatter-

ing halos to minimize interference fringes on the beam. These pulses imparted
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a non-negligible velocity from the radiation pressure and Doppler shifted the

atoms out of resonance with respect to the probe. We simulated this recoil

induced detuning and corrected the images to count the fraction of scattered

atoms in our collision experiment. An example of images before and after pro-

cessing are shown in Fig. 5.5. From our simulations, we created a look-up table

to go from the measured optical depth to a corrected column density along ez.

The processing constituted a ≈ 30 % change in the column density.

5.3.2 s-wave scattering halos

Our procedure for directly imaging s-wave scattering halos above and below

the Feshbach resonance were as identical as possible. We created a spin mix-

ture above or below the Feshbach resonance, used the two-step procedure to

approach the bias field set-point, held at resonance for 3 ms, pulsed the 1-D op-

tical lattice, and then turned off the optical dipole trap. The atoms expanded at

high-field for 2 ms. For data points below the resonance, the bias field remained

constant for these 2 ms before quickly going to the bias fields for imaging as

represented in Fig. 5.2 field ramp A. For data points above the resonance, we

held at the set-point for 1 ms and then ramped the bias field to larger bias fields

to dissociate the molecules as represented in Fig. 5.2 field ramp B. We collected

fifteen images at every set-point.

Figure 5.6 displays our corrected absorption images of s-wave scattering ha-

los in the vicinity of a magnetically tunable Feshbach resonance. In each im-

age, the two high-density clouds on the left and right are the atoms in the ±2kL

momentum orders that passed through each other unscattered. The cloud in
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Figure 5.5: (A) Uncorrected optical depths, far from resonance (196.8 G) on the
left and close to resonance (200.4 G) on the right obtained from out unprocessed
absorption images. (B) Atomic column density obtained by applying correc-
tions to raw optical depth above based on simulations [54].

the center were untransferred atoms after pulsing, and thus obtained no mo-

mentum. This cloud appears somewhat depleted closer to resonance due to

scattering with atoms in the ±2kL momentum orders, this effect was not taken

into account in our analysis. The thin spread of atoms in the radius 2~kL with

thickness 2~kǫ were the scattered atoms.
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To extract the radial dependence of the 3D distribution from our 2D images,

we performed an inverse Abel transform assuming cylindrical symmetry along

ex, defined by the lattice [26]. We thus obtained the atomic distribution ρ(r, θ) as

a function of r, the radial distance from the scattering center, and θ, the angle be-

tween r and symmetry axis ex, integrated over φ. We then extracted the number

of atoms Nscat that underwent a single scattering event as a fraction of the total

atom number Ntot for each image, as shown in Fig. 5.7. Nscat was the number

of atoms outside the Fermi radius of the unscattered clouds, but inside the arc

created by rotating the Fermi momentum kF around the original center of the

cloud (red arcs in Fig. 5.7). Ntot was the sum of Nscat and the counted atoms in

the two unscattered clouds. For both the scattered and unscattered quantities,

we extrapolated to include atoms that would fall outside the field of view of our

camera. The undiffracted atoms were not counted as they did not contribute to

the scattering halo under study.
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5.3.3 Determination of Feshbach resonance magnetic field po-

sition

Since we were well below the p-wave threshold temperature and p-wave colli-

sions are energetically forbidden, our scattering cross-section σ = 4πa2 was fully

defined by the s-wave scattering length a [45]. After publishing our manuscript

on s-wave scattering halos in 40K, a result in a higher energy scattering regime

more readily imaged p-wave scattering halos because a larger fraction of the

atoms scattered [126]. A single particle incident on a cloud of atoms with a sur-

face density of N/A–where A is the cross-sectional area of the cloud and N is the

number of atoms–will scatter with probability Pscat = σN/A. In our case, each

half Ntot/2 of the atoms was incident on the other half. Thus, the number of ex-

pected scattering events was Nscat = σN2
tot/4A. Assuming A was constant for all

our data, we defined a fit parameter b0 = 4πa2
bg/4A, where abg is the background

scattering length. We thus adapted Eqn. 3.26 to obtain the fit function

Nscat

N2
tot

= b0

(

1 − ∆

B − B0

)2

+C, (5.1)

where B0 is the resonant field value, ∆ is the width of the resonance, and the

offset C accounts for any systematic difference in the initial and final intensity

images with no atoms present.

We extract Nscat/N
2
tot at each bias magnetic field by plotting the measured

Nscat/Ntot versus the total atom number Ntot for each of the fifteen images at that

set-point. These data were linear versus Ntot, and the slope and variance of this

fit gave the value and uncertainty of the data plotted in Fig. 5.8. The red curve

depicts a best fit of the model given in Eqn. 5.1 and the extracted parameters

were ∆ = 1.0(5) mT and B0 = 20.206(15) mT. For the fit, we excluded data points
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very near the resonance. In this regime, our assumption that scattered atoms

only undergo a single scattering event breaks down and the atomic gas needs to

be treated hydronamically[39]. This led to a large uncertainty on our extracted

resonance width.

5.3.4 Conclusion

Our findings are in good agreement with the accepted values for the 40K s-wave

Feshbach resonance for the |9/2,−9/2〉 and |9/2,−7/2〉 states are B0 = 20.210(7)

mTand ∆ = 0.78(6) mT[111]. Although the data without the recoil induced

detuning correction were ≈ 30 % different from the corrected data, the optimal

parameters from fitting the uncorrected data were within our uncertainties from
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the values listed above. The resonance location was largely unaffected by the

correction, as the scattering cross-section diverges there, making it insensitive

to the precise values. The width may have been affected, however the uncer-

tainty on the fit is too large for the effect to be significant. Our imaging analysis,

optimization of SNR, and our study of s-wave scattering halos will be useful for

simulating higher-order partial waves with collisions between femions.

In our manuscipt, we noted that erbium and dysprosium DFGs [5, 90] have

much higher densities than alkali DFGs and could more readily image low en-

ergy scattering halos. Recently, a result on studying dipolar interactions with

scattering halos was shared on arXiv [29].

5.4 Outlook: synthetic partial waves with 40K

By the end of January 2014, a constantly decreasing atom number without ex-

planation led us to postpone experiments with 40K until after we develop and in-

stall a 2-D MOT for potassium. This was after a series of unfortunate events: the

October 2013 federal government shutdown, running out of potassium, potas-

sium oven controller malfunctions, unplanned air handling outages, etc. My

hope for this section is to document what we learned in combining Raman cou-

pling and Kapitza-Dirac pulses for posterity.

5.4.1 Technique: Optical dressing then lattice pulsing

We began our attempts at simulating higher-order partial waves by optically

dressing spin polarized DFGs and then pulsing the 1-D optical lattice. The plan
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was to adiabatically turn on Raman coupling, wait a quarter of a trap period for

the atoms to come to rest, then use the optimized Kapitza-Dirac pulses to cre-

ate two clouds with opposite momenta. We tried this, but found that Kapitza-

Dirac pulses excited the atoms to both the higher bands of the optical lattice

and the excited band of our dressed atom state. This led to several, hard to

interpret momentum orders in our absorption images. Notably, in rubidium,

there was a fall off of synthetic d-wave contributions to the scattering halos for

Raman coupling strengths above 6ER [134]. We wanted to maximize our signal

for synthetic p-wave partial waves, so we wanted Raman couplings less than

6ER. Consequently, our designed Kapitza-Dirac pulses for the optical lattice

with potential depth ≈ 8ER excited the atoms to the higher Raman band as well

(the wavelengths of the 1-D optical lattice and the Raman lasers were effectively

the same). Our solution to this was to modify the procedure. We would adia-

batically ramp up the Raman to the desired coupling strength, wait a quarter

trap period, then quickly increase the Raman coupling, apply the Kapitza-Dirac

pulses, then quickly ramp back down to the Raman coupling set-point for TOF

and the collisions. This method was effective at producing two optically dressed

clouds with equal and opposite momenta.

First, we dress our spin polarized gas with a two-photon Raman transi-

tion that couples together the |9/2,−9/2〉 and |9/2,−7/2〉 states as discussed in

Sec. 2.4.1. For the following experiments, we used laser light with wavelength

λR = 768.49 nm, defining our recoil momentum ~kR = 2π~/λR and recoil energy

ER = ~
2k2

R/2mK. The Hamiltonian describing this coupling in the |9/2,−9/2〉,

|9/2,−7/2〉 basis with the |9/2,−9/2〉 atoms at rest is

HR = ER


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






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k2
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, (5.2)
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Figure 5.9: π-pulse with low Raman coupling to find −4ER detuning. (A) Frac-
tion of population transfered versus Raman detuning found by scanning the
frequency difference in the Raman beams. (B) Bare state dispersion relations
at δ = −4ER. The gray line represents the Fermi energy and the shading is the
momentum distribution of the atoms. (C) Absorption image of the atoms after
a π-pulse at δ ≈ 4ER. The momentum states around kx = 0 were transfered to the
different spin state.

where kx is the quasi momentum, δ = ∆ωR−∆ωZ is the detuning from the Raman

resonance, and ~Ω is the coupling strength.

We wanted to optically dress the atoms with zero detuning δ for a given

bias magnetic field. We measured our detuning by going to small coupling

strengths ~ΩR < 1 then slicing out a narrow range of momenta to the |9/2,−7/2〉

and scanning the frequency difference ∆ωR in the Raman beams to determine

the experiment parameters for −4ER detuning [37]. We used Raman A/C with

beam waists ≈ 160 µm, power ≈ 4 mW and a 75 µs π-pulse. Figure 5.9 is an

example of such a scan. We also show an example absorption image and the

bare states for δ ≈ −4ER.

To measure the sloshing in the optical trap after turning on the dressing, we
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Figure 5.10: Sloshing of optically dressed 40K atoms in the dipole tap. The
red(blue) markers indicate the atoms were demapped into the |9/2,−7/2〉
(|9/2,−9/2〉) state. The gray markers indicate the position of atoms versus time
without optical dressing.

set the frequency difference between the Raman laser beams such that δ = 0.

We adiabatically ramped the Raman coupling from 0 to about 7ER (35 mW) in

2 ms with a linearly increasing command to the AO driver. The originally at

rest |9/2,−9/2〉would be loaded into the dressed state with 1kR momentum and

began to oscillate. To image the atoms, we demapped back onto the bare spin

states before ramping off the Raman. During TOF, we would wait 1ms, then

ramp the field by about 0.75 G in 0.5 ms before ramping off the Raman intensity

in 0.5 ms. To map into the |9/2,−9/2〉 (|9/2,−7/2〉), we ramped to higher(lower)

magnetic fields. The position versus time for this data is plotted in Fig. 5.10.

So, one proposed technique for seeing higher order partial waves with 40K

is:

1. Adiabatically ramp on Raman coupling (~Ω < 8ER, about 30 mW)

2. Wait a 1/4 trap period
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3. Ramp to higher Raman coupling in 50 µs (~Ω > 8ER, about 65 − 70 mW)

4. Kapitza-Dirac pulses with 1-D optical lattice at ≈ 8ER

5. Ramp back to desired Raman coupling set-point for synthetic partial

waves in 50 µs

6. Allow atoms to expand and collide in TOF at Raman Coupling set-point

for 1 ms

7. Demap onto one spin states by ramping the bias field 0.75 G in 0.5 ms and

then Ramp down Raman intensity in 0.5 ms

This technique has the advantage that there are no losses due to the Feshbach

resonance until the experiment starts. However, the disadvantage of beginning

with a spin polarized gas is that it is harder to cool well and has a larger dis-

tribution of initial momentum states populated. Additionally, waiting the 1/4

trap period to begin the experiment is complicated and heats the atoms, further

increasing the momentum distribution and decreasing the atom number.

5.4.2 Technique: Pulse Raman, pulse lattice, optically dress

Here, I will describe a technique we implemented partly. We successfully pulsed

the Raman, then pulsed the lattices to create 2 clouds of opposite momenta and

spin. If we had this pulsing technique for the s-wave scattering experiment,

it would have increased our scattered signal by a factor of two. We made the

decision to no longer work on 40K before attempting to ramp on the Raman

to optically dress the colliding atoms. I do not know what might arise when

that step is implemented. We successfully implemented the pulsing sequence
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Figure 5.11: Pulse Raman, then pulse lattice. (A) Pulse sequence of light. First
pulse on Raman coupling for a π-pulse, then pulse Kapitza-Dirac pulses for
atoms optimized to transfer atoms with momtentum 2kR to a different band. (B)
Absorption image of atoms after this pulse sequence with a spin polarized gas.
(C) Absorbtion image of atoms after this pulse sequence on a spin mixture.

for both a spin polarized gas and a spin mixture. Here is our alternative pulse

sequence technique:

1. Begin with spin mixture at the desired bias magnetic field

2. Apply a π-pulse at large Raman coupling (11ER, 70 mW) and δ = 0

3. Apply Kapitza-Dirac pulses optimized to transfer atoms with kx = ±2kR

and 1kR width to momentum kx = ∓2kL

4. Ramp on Raman in ≈ 50 µs
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We began implementing this pulse sequence with a spin polarized gas. Ap-

plying the π-pulse with the Raman gave the |9/2,−9/2〉 atoms gave them a 2kR

kick in the +ex directions. We then used the optimized Kapitza-Dirac pulses

illustrated in Fig. 5.11A and saw the atoms get a 2kL kick in the −ex direction.

Figure 5.11B is an example absorption image of a spin polarized gas after this

pulse sequence. In Fig. 5.11, we show the same pulse sequence applied to a spin

mixture. This creates two clouds of opposite spin and momenta.

The advantages of this technique is there is no 1/4 period trap wait time

and spin mixtures are cooled more easily. However, we would have to consider

losses due having a binary spin mixture in the vicinity of a Feshbach resonance

earlier in the sequence. Additionally, the Feshbach resonance moves to higher

field with Raman coupling [133], so that would be an additional complication.
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CHAPTER 6

SOLITONS IN THE PRESENCE OF IMPURITIES

Solitons are spatially-localized, propagating excitations resulting from an inter-

play between nonlinearity and dispersion. We launched long-lived dark soli-

tons in highly elongated 87Rb Bose-Einstein condensates (BECs) and showed

that a dilute background of impurity atoms in a different internal state dramat-

ically affects the soliton. With no impurities and in one-dimension (1-D), these

solitons would have an infinite lifetime, a consequence of integrability. Under-

standing the decay and destabilization of solitons is an outstanding problem.

We contributed to understanding this problem by observing how adding im-

purities decreases soliton lifetime and contributes to its Brownian motion [50].

By measuring decreasing lifetime with increasing impurities, we studied how

random processes destabilize solitons. Additionally, we describe the soliton’s

diffusive behavior using a quasi-1-D scattering theory of impurity atoms inter-

acting with a soliton, giving diffusion coefficients consistent with experiment.

6.1 Introduction

Our BECs can be modeled by the one-dimensional (1-D) Gross-Pitaevski equa-

tion (GPE) derived in Sec. 3.3. Solitons are exact excited state solutions of the

GPE. In atomic (BECs), density maxima can be stabilized by attractive interac-

tions, i.e., bright solitons [122]; or as here, density depletions can be stabilized

by repulsive interactions, i.e., dark solitons [30, 47]. For a homogeneous 1-D

BEC of particles with mass m with density ρ0, speed of sound c, and healing
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(6.1)

are expressed in terms of time t, axial position z, the soliton velocity vs, and

soliton width ξs = ξ/
√

1 − (vs/c)2. Such dark soliton solutions have a minimum

density ρ0(vs/c)2 and a phase jump −2 cos−1(vs/c) dependent upon the soliton ve-

locity vs. These solitons behave as classical objects with a negative inertial mass

ms, essentially the missing mass of the displaced atoms. This implies increasing

the velocity reduces the kinetic energy, thus the addition of dissipation acceler-

ates rather than decelerates dark solitons [101]. This can also be seen from the

soliton equation of motion [49]

msz̈(t) = −γż(t) − ∂zV + f (t) (6.2)

where V is the axial confining potential, γż is the friction force and f (t) is a

stochastic Langevin force. f (t) is responsible for Brownian motion of the soliton

and is connected to the friction coefficient γ through the fluctuation-dissaptation

thoerem. Both can be controlled by the impurity atoms in the system.

6.2 Solitons in elongated condensates

Idealized solitons are infinitely long-lived due to the integrability of the 1-D

GPE. Integrability breaking is inherent in all physical systems, for example due

to the non-zero transverse extent of quasi-1-D systems. Indeed in experiments,

solitons are only long-lived in highly elongated geometries [20, 130, 66], where

integrability breaking is weak. Cold atom experiments have profoundly ad-

vanced our understanding of soliton instability by controllably lifting integra-
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Figure 6.1: To make elongated BECs, we spatially modulated one beam of our
crossed-beam optical dipole trap (ODT). Orthogonal to the plane defined by
the ODT, we back-lit a razor blade to imprint a phase shift (orange) on half the
condensate and launch solitons.

bility by tuning the dimensionality [6, 83]. Here, we studied the further lifting

of integrability by coupling solitons to a reservoir of impurities.

6.2.1 Soliton creation and optimization.

We created BECs in the optical potential formed by a pair of crossed horizontal

laser beams of wavelength λ = 1064 nm [87]. The beam traveling orthogonal to

the elongated direction of the BEC was spatially dithered by modulating the fre-

quency on an acoustic-optic modulator in the beam path at a few hundred kHz

as shown in Fig. 6.1. This created a nominally flat-bottomed, time-averaged po-

tential. We loaded into this optical potential after evaporating in a magnetic

quadrupole trap. Our atoms were initially in the |F = 1,mF = −1〉 internal

state. We transfered them into the |F = 1,mF = 0〉 internal state by ramping
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a radio frequency (rf) magnetic field on ≈ 68 mG or 0.047 MHz away from res-

onance, linearly ramping to resonance in 5 ms, and then ramping off the rf in

5 ms. Magnetic field drifts would contribute to unwanted admixtures of atoms

in the |F = 1,mF = −1〉 and|F = 1,mF = +1〉 states, so we actively stabilized

the magnetic field before state transfer as described in Sec. 4.4.1. We prepared

N = 8(2) × 105 atoms in the |F = 1,mF = 0〉 internal state at a temperature

T = 10(5) nK. To reach the extremely cold temperatures necessary to realize

long lived solitons, we evaporated to the lowest dipole trap depth in which our

technical stability allowed us to realize uniform BECs. In our system, number

fluctuations increased at this low trap depth. Our system’s ≈ 250 µm longitudi-

nal extent was about 30 times its transverse Thomas-Fermi diameter set by the

radial trap frequency ωr = 2π × 115(2) Hz and chemical potential µ ≈ h × 1 kHz.

We then applied a phase shift to half of a condensate by imaging a back-lit,

carefully-focused razor edge with light red detuned by ≈ 6.8 GHz from the D2

transition for 20 µs to launch long-lived dark solitons [30, 47].

6.2.2 Soliton oscillations

We absorption-imaged our solitons after a sufficiently long time-of-flight (TOF)

that their initial width ξs ≈ 0.24 µm expanded beyond our ≈ 2 µm imaging res-

olution. Figure 6.2A is an image of our elongated BEC taken 2 ms after the soli-

ton’s inception. This density depletion feature had a velocity vs in the positive ez

direction and quickly decayed into several excitations including the dark soliton

of interest. After a few hundred milliseconds, the additional excitations dissi-

pated and the remaining soliton was identified. Figure 6.2B displays an image

of a BEC with a dark soliton taken 0.947 s after its inception. The soliton is the
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Figure 6.2: Soliton tracking. Each absorption image was taken with a 19.3ms
TOF. (A) Image taken 2 ms after the phase imprint and a longitudinal density
distribution obtained by averaging over the remaining transverse direction. An
image and 1-D distribution taken at time t = 0.942 s (B) with a soliton that has
≈ 30% contrast and (C) without a soliton.

easily identified density depletion sandwiched between two density enhance-

ments. We quantitatively identified the soliton position as the minimum of the

density depletion from 1-D distributions (right panels of Fig. 6.2A and B). By

backtracking the soliton trajectory, we were able to distinguish the soliton even

at short times where there were multiple density depletions. Often, at longer

times after the phase imprint, there would be no soliton present. Figure 6.2C is

an example of an image taken with an identical procedure to Fig. 6.2B but there

is no soliton present.

In addition to the extremely low temperature requirements, a sharp edge

was essential for creating long lived solitons. Placement of the edge was dif-

ficult. Going to a few seconds after the phase imprint and adjusting the edge

position at constant intensity in the phase imprint beam was efficient for find-

ing the soliton at the beginning of the day. We found the turning on the water

cooling would shift the position of the dipole trap by a beam waist in approxi-

mately four hours after machine turn-on in the direction orthogonal to the phase

imprint beam. The ∼ 10 µm difference in position of the dipole trap caused the
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edge to be out of focus at the atoms. Luckily, our magnetic field lock fedback

on xz images (see Ch. 4) and we could manually feedback on the dipole trap

position. Alternatively, we found it helpful, but risky to leave the water cooling

on overnight during data collection. Leaving on the water cooling on overnight

allowed the system to be in nominal thermal equilibrium when we turned it on

in the morning, giving a one hour instead of four hour warm up.

Figure 6.3A shows a series of 1-D distributions taken from time t ≈ 0 s to

4 s after the phase imprint. These images show three salient features: (1) the

soliton underwent approximately sinusoidal oscillations, (2) there was signifi-

cant scatter in the soliton position, and (3) the soliton was often absent at long

times. Items (2) and (3) suggests that random processes were important to the

soliton’s behavior. These random processes may include but are not limited to

phase and density fluctuations or interations with phonons. The soliton’s posi-

tion z–when present–is represented by the light pink symbols in Fig. 6.3B and

the darker pink symbols mark the average position 〈z〉 for each time t. To collect

data, we repeated each measurement 8 times.

6.2.3 Microwave tomography

To verify we had a soliton and not some other excitation such as a solitonic

vortex, we used rf-tomography techniques to study the density profile of the

atoms orthogonal to the imaging direction [83, 76]. This technique works by

applying a magnetic field gradient in the direction orthogonal to the imaging

plane, then scanning the frequency of a microwave (µ-wave) Blackman pulse

to be in resonance with an atomic transition at different spatial locations in
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Figure 6.3: Soliton oscillations: (A), A subset of the data where each vertical slice
is the density distribution obtained from a single realization of the experiment
plotted verse time t. (B), The axial position zi of the soliton (light pink) versus
time t for different realizations of the experiment. Dashed lines represent the
edges of the elongated condensate. The dark markers represent the average
soliton position 〈z〉 at each time t.

the condensate. We opted to use an microwave pulse to transfer the atoms

to a different hyperfine state. Using pulse on resonance with a different Zee-

man sublevel within the same hyperfine state would have transfered the atoms

to two different states instead of one because our majority atoms were in the

|F = 1,mF = 0〉 state. We turned a 2.4 mG/ µm gradient in the direction orthog-

onal to the imaging plane, then pulsed on a microwave field detuned from the

|F = 1,mF = 0〉 → |F = 2,mF = −1〉 transition. We scanned this detuning to get

the in-situ density profile in this direction. As shown in Fig. 6.4, the measured

90



0.15

0.10

0.05

0.00

-10 -5 0 5 10

y [ m]

T
ra

n
s
fe

re
d
 f

ra
c
ti
o
n

Figure 6.4: Microwave tomography of in-situ atoms. We plot the fraction of
transferred atoms versus the position in the orthogonal direction. Fitting the
density distribution in this direction to a 1-D Thomas-Fermi profile we find a
Thomas-Fermi radius of 7.1 ± 0.3 µm.

Thomas-Fermi radius 7.1 ± 0.3 µm in this direction is larger then the ∼ 4-5 µm

we expected from our measurements of speed of sound and our atom num-

ber calibration. However, the larger Thomas-Fermi radius can be due to the

gravitational sag in this direction. Comparing the trap potential to the chemi-

cal potential indicated that gravitational sag was the most likely reason for the

larger radius. Figure 6.5 plots an optical potential without sag (red). The purple

curve is the same optical potential with sag. When we measured trap frequen-

cies, the gravitational sag was present. Without sag, for a given beam waist and

optical power, the measured trap frequency would be larger. The pink curve

represents an optical potential with sag adjusted to match the measured trap
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Figure 6.5: Effect of gravitational sag on optical potential. The optical poten-
tial without gravitational sag (red) was calculated from the ODT’s measured
beam waist 35 µm and trap frequency ωr = 2π × 115(2) Hz. Other curves
(pink,yellow,purple) include gravitational sag. The approximate chemical po-
tential µ is included for reference.

frequency. The yellow curve was adjusted until the intersection of the optical

potential with the chemical potential µ (gray) was ≈ 14 µm. Because we did not

measure our trap frequency as a function of power, we did not have a model for

our optical potential. However, gravitational sag does have a large impact on

in-situ Thomas-Fermi radii. We did convolve the Blackman window pulse we

used with a Thomas-Fermi profile, but the in-situ radius from the convolved fit

was consistent with the fit absent the convolution.

We used our µ-wave tomography technique to verify we had a soliton from

images of our out-coupled atoms. Our resolution was set by the 1 ms pulse du-

ration and energy shift from the applied magnetic field gradient. Our calculated

resolution was ≈ 0.6 µm. To ensure mean field effects during TOF did not affect

our tomography of the atoms, we doubled the gradient immediately following
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the pulse during TOF so that the transferred atoms expanded in a different spa-

cial location than the majority atoms. The absorption imaged captured both the

transferred and untransferred atoms. The series of images in Fig. 6.6 displays

the tomography of the atoms at 1.045 s and 1.420 s after soliton inception. The

transferred atoms were likely out of focus from the added field gradient lead-

ing to the odd looking soliton feature.The tomography data supported that we

launched a soliton due to the density depletion not being localized in the direc-

tion orthogonal to the imaging direction. When a soliton feature was present,

even at long time, our µ-wave tomography data confirms that it is a soliton, not

a decay product such as a solitonic vortex or ring.

6.3 Injecting impurity atoms

Having established a procedure for creating solitons, we turned to the impact

of coupling to a reservoir of impurity atoms in a different internal state, thus

further breaking integrability.

6.3.1 Injection and number calibration

We controllably introduced a uniform [51] gas of NI impurity atoms in thermal

equilibrium with our BECs using an rf pulse resonant with the |F = 1,mF = 0〉

to |F = 1,mF =+1〉 transition prior to evaporation to degeneracy [105]. This gave

impurity fractions NI/N from 0 to 0.062 in our final BECs. We use a Blackman

enveloped rf pulse at 9 G magnetic field to transfer the |F = 1,mF = 0〉 atoms pri-

marily to the |F = 1,mF = +1〉 internal state [76]. We varied the impurity fraction
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Figure 6.6: rf-Tomography of solitons. For each panel, the serires of images
on top are the untransfered atoms for reference. The bottom series of images
represennts a slice of the 3-D condensate at different z-positions using our rf-
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by tuning the rf amplitude. Even though the fraction of impurity atoms before

evaporation determined the fraction after evaporation, they were not equal due

to a preferential evaporation of the minority spin state [105].

We characterized the impurity fraction through careful calibration of our ab-

sorption imaging. First, we find the saturation intensity Isat and effective sat-

uration intensity I
e f f
sat = αIsat that characterize our imaging system [113]. We

imaged an optically thin cloud of atoms, i.e. a gas above Tc, as a function of

probe power to determine Isat = 2.5 × 104 in counts per pixel on the camera.

We then use measurements of the probe’s beam waist and power to determine

the intensity at the atoms corresponding to counts on at the camera. Knowing

the intensity at the atoms defines α = 5.5 for our imaging system and we now

have a corrected method to go from the optical depth in an absorption image to

number of atoms.

We can also calculate our atom number by using Castin-Dum methods to cal-

culate an in-situ Thomas-Fermi radius from a Thomas-Fermi radius after time

of flight and the trap frequencies [34]. We found these methods to agree for

most optical depths. The low optical depths, corresponding to low densities, is

where the counting method and the Castin-Dum method differed. However we

did not expect Castin-Dum to work well at low densities due to the method’s

dependence on chemical potential. We then used our corrected counting and

a Stern-Gerlach technique during TOF to measure the relative fraction of the

impurity atoms after evaporation. Typically, we prepared our spin composition

above Tc. With this technique, we had some difficulty preparing the atoms only

in |F = 1,mF = 0〉without impurities. We modified the procedure to prepare the

spin state at an optical depth just below Tc. If we preformed our state prepara-
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Figure 6.7: Impurities versus rf amplitude in laboratory units. The uncertainties
are the standard deviation of five data points. State preparation in the majority
spin state with thermal atoms led to a final state with 1.2% impurity atoms. This
was overcome by preparing the no impurities sample at a slightly lower optical
potential before continuing to evaporate to the final trap depth.

tion in a gas above Tc, we found that there were always 1.2% impurity atoms.

This may be due to gradients across the larger extent of the thermal atoms hav-

ing some atoms be out of resonance with rf fields used for state preparation.

6.3.2 Temperature measurements with impurities

Below the majority atom’s condensation temperature Tc = 350 nK, we removed

the majority atoms and fit the TOF expanded the impurity atoms to a Maxwell-

Boltzmann distribution [105]. We removed the majority atoms before TOF by

96



pulsing on a µ-waves resonant with the |F = 1,mF = 0〉 → |F = 2,mF = −1〉 tran-

sition, then blew away the atoms with our probe resonant with the F = 2→ F′ =

3 optical transition. No repump light was on during this process to allow the

impurity atoms to expand unperturbed. Once the temperature was below Tc for

the impurity atoms, fits to a Maxwell-Boltzmann distribution give temperature

estimates that can significantly underestimate the true temperature. With this

method, we did observe a decrease in temperature at higher concentrations of

impurity atoms consistent with data from similar experiments [105]; however,

the change in temperature we observed was smaller than the uncertainty in our

measurement. Fitting the small number of impurity atoms to a Bose distribution

was challenging due to the signal-to-noise and the addition of another free pa-

rameter. To limit the number of free parameters, we preformed a global fit of the

temperature on a few different impurity fractions and constrained the chemical

potential µ to be negative. This provided an estimation of the temperature with

large uncertainties. We found for our usual operating parameters and based on

information from both temperature measurements, T = 10(5) nK.

6.4 Solitons in the presence of impurities

6.4.1 Impact on oscillations

Figure 6.8 displays the soliton position versus time for a range of impurity frac-

tions. Adding impurities gave two dominant effects: further increasing the scat-

ter in the soliton position z and further decreasing the soliton lifetime. These

effects manifested as a reduced fraction fs of images with a soliton present and
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an increase in the sample variance Var(z) =
∑

(zi − 〈z〉)2 / (M − 1) computed using

the number M of measured positions zi at each time. Additionally, the soliton

oscillation frequency was slightly shifted with impurities resulting from an un-

intentional change in the underlying optical potential. This change also slightly

reduced the BECs longitudinal extent. This is not an effect due to the presence

of the impurities.

6.4.2 Impact on lifetime

The addition of impurities had a dramatic impact on the soliton lifetime. While

we lack a quantitative model of the soliton’s decay mechanism, there are sev-

eral reasons to expect a finite lifetime. When dissipation is present, solitons

accelerate to the speed of sound and disintegrate. Additionally, because our

trap geometry has a finite transverse extent, quantified by the ratio µ/~ωr ≈ 9,

solitons can be dynamically unstable and can decay into 3-D excitations [94].

Our soliton’s initial velocity vs ≈ 0.3 mm/s, roughly 1/5 the 1-D speed of sound

c ≈ 1.4 mm/s[137], implies it is in an unstable regime, where, as observed, it

should decay [101]. Furthermore, numerical simulations show that in anhar-

monic traps solitons lose energy by phonon emission, accelerate, and ultimately

decay [106]. All of these decay mechanisms can contribute to the soliton lifetime

even absent impurities.

The added impurities act as scatterers impinging on the soliton, further

destabilizing it. This effect is captured in Fig. 6.9, showing the measured sur-

vival probability fs versus time for a range of impurity fractions. We fit the
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Figure 6.8: Impact of impurities. Here, we plot the position zi of the soliton
(light pink) versus time t after phase imprint for different impurity levels. The
dark pink markers are the average positions 〈z〉 for each time t. Dashed lines
represent the extent of the condensate on either end versus t.
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Figure 6.10: Soliton lifetime in the presence of impurities. The lifetime τ ex-
tracted from fits of the survival fraction fs versus impurity fraction NI/N in the
condensate.

survival probability

fs(t) = 1 − 1
2

erfc
[

− ln(t/τ)
√

2σ

]

, (6.3)

essentially the integrated lognormal distribution of decay times, suitable for de-

cay due to accumulated random processes, to our data[41]. The survival prob-

ability fs(t) has a characteristic width parameterized by σ and reaches 1/2 at

time τ which we allows us to associate τ with the soliton lifetime. Figure 6.10

shows the extracted lifetime τ versus impurity fraction NI/N, showing a mono-

tonic decrease. Our maximum NI/N gives a factor of four decrease in lifetime τ.
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6.4.3 Enhanced diffusion

The second important consequence of adding impurities was an increased scat-

ter in soliton position z, reminiscent of Brownian motion. Indeed, as shown in

Fig. 6.11, this scatter, quantified by Var(z), increased linearly with time. We ob-

tained the diffusion coefficients D as the slope from linear fits to these data and

calculated D using a quasi-1-D scattering theory. The energy of the infinitely

long 1-D system is given by the GPE energy functional

E
[

ϕ, ψ
]

=

∫

dz
~

2

2m
|∇ϕ|2 + ~

2

2m
|∇ψ|2 + g

2
|ϕ|2|ϕ|2 + g′

2
|ϕ|2|ψ|2, (6.4)

describing the majority gas interacting with itself along with the impurities with

interaction coefficients g and g′, respectively. The fields ϕ and ψ denote the

condensate and impurity wavefunctions. Since the impurities are very dilute,

we do not include interactions between impurity atoms. Impurity scattering

states with momentum kz in the rest frame of the soliton are described by the

reflection coefficient

R(k) =
1 − cos(2πλ)

cosh(2πkzξ) − cos(2πλ)
, (6.5)

where λ(λ − 1) = g′/g. In 87Rb, we have g ≈ g′, giving λ ≈ 1.5. The scattering

problem is fully characterized by R(k) and the problem is reduced to that of a

classical heavy object moving through a gas of lighter particles.

We treat the soliton as a heavy classical object with a kinetic equation includ-

ing a weak stochastic force due to elastic collisions with the much lighter impu-

rity atoms. The collision integral can be expressed in Fokker-Planck form [86]

with diffusion coefficient

D =
(kBT )2

B
, (6.6)

giving Dt = Var(x). Momentum diffusion is described by the transport coeffi-
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cient [52]

B = 2~
∑

m,l

∫ ∞

−∞

dkz

2π
k2

∣

∣

∣

∣

∣

∂ǫ

∂kz

∣

∣

∣

∣

∣

R(kz)n(ǫ) [1 + n(ǫ)] , (6.7)

where ǫm,l(k) = ~2k2/2m + ~2 j2
m,l/2mR2 is the impurities’ quasi-1D dispersion with

quantized states in the radial direction, where jm,l is the lth zero of the mth Bessel

function. The quantization in the radial direction is due the tight confinement

in the radial direction as compared to the temperature. n(ǫ) is the Bose-Einstein

distribution for impurity atoms excluding the condensed impurity atoms. We

model the impurity atoms as being in a uniform potential with cylindrical vol-

ume the size of the majority condensate. R(kz) is the reflection coefficient defined

in Eqn. 6.5. The term [1 + n(ǫ)] accounts for bosonic enhancement.

Figure 6.12 plots D measured experimentally (markers) and computed theo-

retically (solid and dashed lines) as a function of NI/N. The quasi-1-D scattering

theory accurately captures the soliton diffusion in the presence of impurities.

For the theory, the abrupt change in dependence on impurity fraction is due to
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the condensed impurity atoms not contributing to the soliton diffusion. Any ad-

ditional impurity atoms are added to the impurity condensate, not the thermal

reservoir of scatterers. In our quasi-1-D theory, the soliton is not reflectionless

to phonons as in the true 1-D problem, but we did not considered them in our

model. Thinking about how this may impact our results, adding more scatterers

would contribute to the transport coefficient B, and since D ∝ 1/B the diffusion

coefficient should be smaller with more scatterers. This is why our measure-

ment of a suppressed diffusion coefficient at NI/N = 0 is intriguing. With such

scatterers as not reflectionless phonons, we expected some baseline diffusion

coefficient at NI/N = 0 to be larger than with impurities. Indeed, if the diffusion

at NI/N = 0 was due to technical noise in the velocity from the soliton launching

technique, we would again expect a suppression of the diffusion coefficient with

the addition of impurities, not enhancement. Thus, in the absence of impurities,

the precise mechanism of dissipation cannot be identified within the scope of

our theory and the observation of reduced diffusion remains an outstanding

problem.

6.5 Conclusions and outlook

Realizing solitons in spinor systems with impurity scatterers is an exciting

playground for studying integrability breaking and diffusion of quasi-classical,

negative-mass objects. Our observed reduction in soliton lifetime with increas-

ing impurity fraction is in need of a quantitative theory. For the case of no

impurities there is a further open question for both theory and experiment of

whether friction and diffusion can be present even in the case of preserved in-

tegrability due to non-Markovian effects, as was recently discovered for bright
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solitons [49]. We began this experiment to learn about solitons. In particular, we

would like to load solitons into the synthetic dimensions experiment to achieve

the lofty experimental goal of chiral edge solitons. Understanding how to load

solitons into systems with optical lattices or Raman coupling would be the next

steps before continuing to add complexity. In this chapter, we studied how the

soliton interacts with uniformly distributed atoms in a different internal spin

state.
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CHAPTER 7

BOSE-EISTEIN CONDESATES IN THE QUANTUM HALL REGIME

In this chapter, I discuss experiments in which we realized a large effective mag-

netic field for charge neutral atoms in a hybrid two dimensional (2-D) lattice.

Our hybrid 2-D consists of a 1-D optical lattice as one dimension and an internal

state of the atom as another, synthetic dimension. This specific choice of internal

states of 87Rb enabled single site resolution in the synthetic dimension through

the use of a Stern-Gerlach pulse during time of flight (TOF). We used a two-

photon Raman transition to induce tunneling in the synthetic dimension and to

imprint an engineered phase onto an atom, an effective Aharonov-Bohm phase

φAB/2π. This phase fully defined an effective magnetic field. We directly imaged

the eigenstates of the hybrid 2-D system with and without the synthetic mag-

netic flux. Then we studied dynamics by exciting coherent super positions of

magnetic subbands, analogs to Hofstadter bands, and observed bulk and edge

dynamics. The single site “spatial” resolution in the synthetic dimension en-

abled us to directly image bulk excitations, normally inaccessible in condensed

matter systems, and skipping orbits of edge site excitations. This work is pub-

lished in Science 349 (2015) concurrent with a similar technique implemented

with fermionic ytterbium by Mancini et al. [124, 93].

7.1 Introduction

Cold atoms are highly tunable and controllable systems that can realize exotic

topological states. The quintessential topological state is the quantum Hall ef-

fect, a topological insulator formed in a 2-D electron gas with an insulating bulk
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and conducting, protected edge states [65]. Many groups see the realization of

quantum Hall states in cold atoms as a stepping stone to creating more exotic

topological states. Creating large artificial gauge fields, analogous to large mag-

netic fields, is one way to realize the extreme quantum limits required for quan-

tum Hall-type effects in cold atoms. Previous, pioneering methods required

large Raman laser coupling, leading to heating through spontaneous emission,

and had the disadvantage of the realized effective magnetic field strength lim-

ited by the linear extent of the condensate [88]. Other experimental methods

for creating large artificial gauge fields reduce the limitations imposed by spon-

taneous emission, but introduce other sources of heating leading to lifetimes

well below 1 second. These methods include shaking optical lattices to intro-

duce a vector potential [123, 79] and laser-assisted tunneling in a titled optical

lattice [3, 97]. Our technique presented in this chapter minimizes the required

Raman laser coupling and has lifetimes due to spontaneous emission larger than

10 seconds.

7.2 Synthetic Dimensions: Particle in a Box

The tight-binding Hamiltonian

Htb = −
∑

j,m

[

tx| j + 1,m〉〈 j,m| + ts| j,m + 1〉〈 j,m| + h.c.
]

(7.1)

with hopping amplitudes tx and ts governs the motion of particles moving in a

2-D lattice [8] with sites labeled by j and m. We implemented a such 2-D lattice

by combining a conventional optical lattice to define the long axis of our system

(ex direction, with sites labeled by j, and effective tunneling strength tx), with

three sequentially coupled internal “spin” states to define the short axis of our
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Figure 7.1: Particle in a Box with Synthetic Dimensions. (A) Experimental setup
with 1-D optical lattice, bias magnetic field B0 and oscillating rf field Br f . (B)
The rf field coupled the three internal states of 87Rb with Rabi frequency ΩR and
detuning δ. The m = 0 internal state is shifted by the quadratic Zeeman shift
ǫ. (C) Our 2-D hybrid lattice hoping tx in the spatial dimension ex and ts in the
synthetic dimension es. (D) Potential along es can be modeled as a square well
with infinite hard walls at m = ±2

system (es direction, with just three sites labeled by m ∈ {−1, 0,+1}, and effective

tunneling strength ts) [23]. Figure 7.1 shows a schematic for the experimental

set up, the coupling of the different internal states, and the resulting hybrid 2-D

lattice. As shown in Fig. 7.1A, we used a 1-D optical lattice, formed by a pair

of λL = 1064.46 nm laser beams counter-propagating along ex with beam waists

≈ 160 µm × 135 µm for the forward beam and ≈ 126 µm × 150 µm for the retro-

reflection. This lattice defines the single-photon recoil momentum ~kL = 2π~/λL

and recoil energy EL = ~
2k2

L/2mRb, where mRb is the atomic mass. The tunnel-

ing tx in the spatial dimension was controlled by adjusting the intensity of the

laser beams to control the potential V due to the optical dipole force. The in-

ternal “spin” states are the Zeeman sublevels of the f = 1 hyperfine manifold

of 87Rb and the tunneling between these sites is controlled by an rf magnetic

field. The amplitude of this field controls the tunneling strength tx along the
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spin “direction” es, proportional to the Rabi frequency ΩR. The frequency of the

rf field was set to be in resonance with gµBB0/h ≈ 0.817 MHz Zeeman splitting,

giving δ = 0.0. The corresponding quadratic Zeeman shift additionally lowered

|m = 0〉 by ǫ = 0.05EL as shown in Fig. 7.1B. Since there are no other Zeeman sub-

levels, this system effectively has an infinite repulsive potential at sites m = −2

and m = +2 as shown in Fig. 7.1D. This allows for the formation of robust edge

states in the presence of an effective magnetic field, analogous to the conduct-

ing edge states discussed in Sec.2.3.2. Interestingly, the synthetic dimension es

is an exact realization of the tight-binding model with only tunneling to nearest

neighboring sites and no tunneling to next to nearest neighboring sites. For the

sites in the optical lattice, the tight-binding model is a very good approximation

(see Sec. 2.2.1).

We began our experiments by directly imaging adiabatically loaded eigen-

states of the three lowest bands of our hybrid 2-D lattice. The Hamiltonian for

our system in momentum space in the |l,m〉 basis is

Hr f = EL







































































(kx + 2l)2
+ mδ + (|m| − 1)ǫ l = l′,m = m′

V/4 |l − l′| = 1,m = m′

~ΩR/2 l = l′, |m − m′| = 1

0 otherwise,

(7.2)

where the quasimomentum kx is in units of kL and −∞ < l < ∞ is an integer. Now

we find the eigenstates and eigenvalues of our 2-D lattice and plot the 6 lowest

energy bands in Fig. 7.2. This was done numerically with lmax = 5, but there were

not any significant quantitative differences when lmax = 25. The parameters for

this simulation were (~ΩR,V, δ, ǫ) = (0.5, 6, 0.0, 0.05)EL. The band structure of our

hybrid 2-D lattice is similar to the band structure for a 1-D periodic potential,
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Figure 7.2: Bloch bands for hybrid 2-D lattice as a function of quasimomentum
kx in the ex dimension

however, each band in our system now has 3 subbands. The colorbar represents

the magnetization 〈m〉 in each subband. Because δ = 0, the bands and subbands

all have the same magnetization 〈m〉 = 0. Adjusting the detuning δ changes 〈m〉

for the lowest and highest energy subbands within a band by adjusting which

m site has the lowest or highest energy.

We now load our atoms into these different magnetic subbands. We can do

this by initializing the atoms in different m states within the f = 1 hyperfine

manifold, then adiabatically turning on our hybrid 2-D lattice. We initialize our

BECs, confined in our typical crossed-beam optical dipole trap, with trap fre-
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quencies (ωx, ωy, ωz)/2π = (50, 40, 110) Hz, into one of three internal |m〉 states

with a bias magnetic field B0ez. To load into the ground, 1st and 2nd excited

subband, we initialized our BEC in the m = +1, 0,−1 Zeeman sublevel, respec-

tively. Then, we adiabatically loaded into the lowest band of the optical lattice

by linearly increasing the optical potential from 0 to 63 ∼ 6EL in 200 ms. The

lattice depth V ≈ 6EL (about 63 mW) gave a hopping strength |tx| ≈ 0.05EL along

ex. To turn on hopping in the synthetic dimension, we would linearly ramp

the magnetic field to (B0 − 0.06B0)ez, and then linearly ramp on an rf magnetic

field. Then we would linearly ramp the magnetic field back to resonance B0ez in

250ms, adiabatically turning on tunneling in the synthetic dimension.

After preparation, we used a measurement procedure common to all exper-

iments in this chapter: we simultaneously removed all potentials and coupling

fields (toff < 1 µs), which returned the atoms to bare spin and momentum states.

The atomic cloud expanded for a ≈ 18 ms time-of-flight (TOF) period. During

TOF a 2 ms magnetic gradient pulse was applied, Stern-Gerlach separating the

three |m〉 states. The resulting 2-D column density was recorded using stan-

dard absorption imaging techniques, giving the normalized momentum distri-

butions nm(kx) with perfect single lattice site resolution along es as shown in

Fig. 7.3A. The site-resolved fractional population distributions for each image

are displayed next to their corresponding absorption image in Fig. 7.3B.

First, we loaded into the ground subband by initializing the BEC in the

|m〉 = +1 internal state which has the lowest energy in a bias magnetic field

B0ez. The top panel in Fig. 7.3A shows typical data for this procedure. Note, the

fractional population nm =

∫

dkxnm(kx) resembles (Fig. 7.3B) that of a particle in

a discretized box along es, while the momentum distributions, typical for atoms
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in an optical lattice [59], have the same profile for each m site. This demonstrates

that the two directions are uncoupled. The grey dashed lines in Fig. 7.3B are the

particle in a box wave probability densities:

|Ψ1(qm)|2 = sin
(

πqm

2

)

|Ψ2(qm)|2 = cos (πqm)

|Ψ3(qm)|2 = sin
(

3πqm

2

)

,

(7.3)

which can be found in any quantum mechanics text book. qm is a non-integer

position coordinate along es in units of lattice site m for purposes of plotting.

Then, we initialized the BEC in the |m〉 = 0 and −1 internal state and adiabat-

ically loaded following the same procedure. For the three lowest subbands of

our system, we measured the momentum distribution along ex and the corre-

sponding probability density for a particle in a box along es.

7.3 Synthetic Flux: Quantum Hall Ribbon

Now, we will introduce complex hopping into our hybrid 2-D lattice by using

two-photon Raman transitions instead of an rf magnetic field to enable hop-

ping in the synthetic m direction. The Raman lasers with wavelength λR co-

propagated with the 1-D optical lattice (Fig. 7.4A) and introduced a phase to

the wavefunction of the atom as it hopped from site to site directly proportional

to the ratio λL/λR. This acquired phase is an effective Aharonov-Bohm phase

φAB/2π and fully defines the effective magnetic field. For the wavelengths of

light we choose φAB/2π ≈ 4/3 around each plaquette corresponding to a field

of ∼ 20, 000 T in material with typical lattice constant a ∼ 5 Å. By introducing

this complex hopping into our hybrid 2-D lattice, we engineered a system that
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the Raman lasers introduces a complex hopping along tx creating an effective
Aharonov-Bohm phase φAB.

is described by the Harper-Hofstader Hamiltonian for a charged particle in a

2-D lattice.

7.3.1 The Harper-Hofstadter Hamiltonian

The Harper-Hofstadter Hamiltonian

HHH = −
∑

j,m

[

tx| j + 1,m〉〈 j,m| + ts| j,m + 1〉〈 j,m| + h.c.
]

(7.4)

with complex hopping amplitudes tx and ts governs the motion of charged par-

ticles moving in a 2-D lattice [64, 68] with sites labeled by j and m, the situation

which we engineered for our neutral atoms. Analogous to the Landau gauge

in continuum systems, we describe our experiment with real ts (no phase), and

with complex tx = |tx| exp(−iφABm) dependent on m. As shown in Fig. 7.4B, the
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sum of the tunneling phases around any individual plaquette is φAB.

7.3.2 Eigenstates of the Harper-Hofstadter Hamiltonian

To find the eigenstates of the Harper-Hofstader Hamiltonian, we again write

our Hamiltonian as a matrix in the |l,m〉 basis for our hybrid 2-D lattice. Similar

to controlling magnitude of the rf field, the intensity in the Raman lasers gave

a laboratory tunable effective tunneling strength |ts| ∼ |tx| along the spin “direc-

tion” es, proportional to the Rabi frequency ΩR. However, now there are 2~kR

momentum imparted by these transitions and this results in a spatially periodic

phase factor exp(i2kRx) = exp(iφAB j) [35]. The sign of φAB was controlled by the

relative detuning of the Raman lasers. Consequently, our Hamiltonian is

HHH = EL







































































(kx + 2l + 2mφAB)2
+ mδ + (|m| − 1)ǫ l = l′,m = m′

V/4 |l − l′| = 1,m = m′

~ΩR/2 l = l′, |m − m′| = 1

0 otherwise.

(7.5)

Figure 7.5 plots the numerical simulation of the 3 lowest magnetic subbands

with the parameters (~ΩR,V, δ, ǫ) = (0.2, 6, 0.0, 0.05)EL. There are two very no-

ticeable differences between this band structure with flux and the other without

flux. First, the magnetization is no longer the same for each subband. Insted the

magnetization depends on the quasimomentum kx. Second, the lowest band

now has 3 local minima. This will be essential for imaging localized edge states.

In IQHE systems these states would govern the conductivity, but as individual

eigenstates they exhibit no time-dependance. We will now load into the ground

band of our Hamiltonian. In contrast to the previous Hamiltonian, initializing
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Figure 7.5: Bloch bands for hybrid 2-D lattice with magnetic flux as a function
of quasimomentum kx in the ex dimension.

the states into the different Zeeman sublevels no longer adiabatically loads into

the different sublevels. Now, the different states will load into the bulk or edge

states for initializing in the m = 1 or m = ±1 states, respectively.

The two counter-propagating λR = 790.04 nm Raman lasers along ex have

orthogonal polarization, wave-vector kR = ±2π/λR and beam waist ≈ 175 µm,

as shown in Fig. 7.4A. These lasers counter-propagated at an angle θ = 0.75◦

away from ex established by the 1-D lattice, effectively reducing kR by ≈ 1× 10−4

and introducing a quadratic Zeeman like term with strength −0.001EL. Both of

these effects are negligible in our experiment. The Raman lasers’ relative phase
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was actively stabilized so the phase noise in the Raman beams did not translate

to the phase imparted to the atoms (see Sec. 4.3.3). To adiabatically load the

ground band, we once again ramped on the 1-D optical lattice from 0EL to 6EL

in 200 ms. Due to the next higher subband being 4EL away, we could ramp

the Raman lasers on resonance from 0EL to 0.2EL (about 1 mW) in 10 ms and

adiabatically load the ground band of our system.

We directly imaged the three eigenstates of the ground Hofstadter band

along es for both positive (Fig. 7.6A,B) and negative (Fig. 7.6C,D) flux. The data

in Fig. 7.6, with φAB , 0, are qualitatively different as a function of both kx and

m. In kx for positive flux, the zero order of the 1-D optical lattice for the m = +1

is shifted by 2(kR − kL) relative to the m = 0 site. In m, the occupation no longer

resembles the distribution expected from a particle in a box.

These differences can be understood in analogy with a 2-D electron in a per-

pendicular magnetic field, confined in one dimension with hard walls. Along

the confined direction the wavefunction is localized to the scale of the magnetic

length ℓB =
√

~/qB, with center position at kxℓ
2
B in the bulk. Even though the

magnetic length is a continuum concept, estimating it for our system is useful

for conceptualizing the localized edge eigenstates. Since all physics is 2π peri-

odic in the acquired phase, our flux φAB/2π ≈ 4/3 is equivalent to φAB ≈ 2π/3.

In our system the magnetic length ℓ∗B =
√

3/2π ≈ 0.7 in units of lattice period

is of order unity. The analogue of the wavefunction’s localization is observed

by comparing the significantly narrowed the bulk state (Fig. 7.6, middle row)

with φAB , 0 to the φAB = 0 case (Fig. 7.3, top row). Continuing the analogy,

for large |kx|, the electron becomes localized near the edges. For data initialized

in the m = ±1 site, we observed the appearance of states localized at the sys-
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Figure 7.6: Eigenstates for positive and negative flux. (A,C) Absorption images
with momentum resolution in ex and site resolution in es for positive and neg-
ative flux. (B,D) Fractional population nm for positive and negative flux. The
eigenstates are localized on the edges and on the bulk.

tem’s edges (Fig. 7.6 top and bottom row), which are completely absent for the

ground band when φAB = 0. These localized edge states are the analogue to the

current carrying edge states in fermionic IQHE systems. In contrast, localized

bulk states correspond to closed cyclotron orbits.

7.4 Dynamic Hall effect

Next, we loaded our systems into the bulk (m = 0 site) with ts = 0 with δ ≈ 0,

and then abruptly turned on ts, allowing tunneling along es. Consequently, the
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Figure 7.7: Chiral Current in Quantum Hall Strip. (A) The tunneling in es was
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curves are generated by evaluating our full Hamiltonian with best fit parame-
ters (~ΩR, V, δ, ǫ) = (0.73, 6, 0.001, 0.05)EL.

resulting state consisted of coherent superpositions of magnetic subband eigen-

states with crystal momentum qx/kL = −mφAB/π. When φAB , 0, atoms coher-

ently tunneling along es experienced an associated Lorentz force along ex. This

motion along m drove transverse, i.e. Hall, edge currents Im=±1(τ) = nm(τ)〈vm〉

along ex (Fig. 7.7A), where 〈vm〉 is the mean velocity of atoms on site m along ex.

Figure 7.7 displays these dynamics and how balanced populations oscillated

in and out of the the originally empty m = ±1 sites as a function of time τ. At

time τ1 = 0, we linearly ramped ~ΩR from 0ER to a set-point in 300 µs. We var-

ied ~ΩR from 0.2ER to 0.9ER (about 0.9 mW to 3 mW) changing the tunneling

anisotropy ts/tx from about one to three. The shortened time scale was adiabatic

with respect to the ≈ 5EL band spacing in the 1-D optical lattice, yet nearly in-

stantaneous with respect to the ≈ 4tx magnetic band width. At τ2 the maximum

fractional population of atoms tunneled to the edges, acquired a transverse ve-
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locity and contributed maximally to our defined a chiral current I = I1 − I−1.

The transverse velocity was controlled by two parameters: φAB set the crystal

momentum acquired while tunneling, and tx gave the natural unit of velocity

2tx/~kL. At τ3, the atoms tunnel back to the bulk state and I = 0.

We confirmed the system’s chirality by inverting φAB and verifying that I

changed sign. Additionally, we repeated the experiment with φAB = 0, and

observed no chiral current. Because the transverse velocity for the atoms was

symmetric (〈v+1〉 = - 〈v−1〉), I oscillated in phase with the fractional populations

in the edges 〈|m|〉 V as shown in Fig. 7.8A. We extracted a slope S from linear

fits to I dependence on 〈|m|〉. Figure 7.8B displays an example of this linear fit

for positive, negative and zero flux. The small offset is due to a non-zero turn

on time for tunneling in es and is correctly predicted by our theory. The peak

edge current Imax strongly depends on ts/tx (Fig. 7.8C), increasing from zero

then reaching saturation when all the atoms are no longer in the bulk, but on

the edges. This dependence and saturation of the chiral current on the tunnel-

ing anisotropy ts/tx is reminiscent of the optical lattice experiments in Ref. [10].

For small ts/tx, few atoms tunneled to the edges, giving a correspondingly small

Imax. As ts/tx increased Imax was bounded its value with all the atoms contribut-

ing to the current on the edges [70]. In contrast, S , essentially constant in ts/tx

as shown by the inset in Fig. 7.8C. The slight downward curvature in our the-

oretical model, plotted by the grey curve, evidences 5%-level corrections pro-

portional to |ts|2 to the tight binding model, owing to mixing with excited Bloch

bands of the 1-D optical lattice.

The linear dependence of the chiral current on m demonstrates a new kind of

dynamic Hall effect. We can measure this bulk property due to simultaneously
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Figure 7.8: Dynamic Hall effect. Data shown in red, black, and empty circles
are taken for positive, negative, and zero φAB, respectively. Our theory (solid or
dashed curves) uses parameters determined from Fig. 7.7B for φAB , 0, giving
ts = 0.14EL. (A) We observed in-phase oscillation of I and the combined m = ±1
populations 〈|m|〉. The pink dashed line shows how we extracted Imax. (B) The
chiral current I = I1 − I−1 had the same sign as φAB and was linear in 〈|m|〉. (C)
The chiral current saturated in tunneling anisotropy ts/tx, but the slope of Iwas
essentially constant in ts/tx (inset).

resolving the momentum along ex and site m in our TOF images. Although this

bulk property is hard to access in condensed mater systems due to the symmetry

of the produced current and the dominant edge properties, this behavior should

still exist.

7.5 Edge magnetoplasmons: skipping orbits

Edge magnetoplasmons are superpositions of edge eigenstates in different Lan-

dau levels [81, 9], or here magnetic bands. We launched these excitations and

recorded their full motion, including a chiral drift along the system’s edge and

an underlying skipping motion, on either edge. Figure 7.9 illustrates this motion

starting from m = −1. The potential was tilted along es, such that the initially

occupied site was at the potential minimum( Fig. 7.9B). We used our simula-

tions of our full Hamiltonian to specify what detuning δ and Raman coupling
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m = −1 edge to the bulk, they began their orbit. Before finishing the orbit, they
encounter the infinitely hard edge of the system and reflect off it. This leads to
a chiral drift along the edge. (B) The non-zero detuning δ tilts the potential.

strength ~Ωwould create the large enough orbits to image easily. Our modeling

of the full Hamiltonian, which does not include interactions, was more consis-

tent with experiment at smaller atom numbers. Also based on our simulations,

we decided to operate a larger quadratic Zeeman shift to more easily image the

skipping orbits, therefore we changed our bias field B0. Thus, our Raman cou-

pling was detuned from the gµBB0/h ≈ 1.35 MHz Zeeman splitting by a nonzero

δ and tilted the lattice along es as shown in Fig. 7.9. The corresponding quadratic

Zeeman shift additionally lowered |m = 0〉 by ǫ = 0.13EL. We loaded our sys-

tems on to either edge in m with ts = 0, and then abruptly turned on ts, allowing

tunneling along es. The abrupt turn-on resulted in either edge state consisting of

coherent superpositions of magnetic band eigenstates with crystal momentum

qx/kL = −mφAB/π, which began to coherently tunnel along es and experienced

an associated Lorentz force along ex. These atoms then became cold-atom ana-

logues to edge magnetoplasmons: they began cyclotron orbits, were reflected

from the hard wall, and skipped down one edge or the other.

In Fig. 7.10, we plot the time evolving average position 〈m(τ)〉 along es
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shows a skipping orbit trajectory.

and velocity 〈vx(τ)〉 = ∑

m Im along ex for excitations on both edges. 〈vx(τ)〉

evolved periodically in time but with opposite velocities for the different edges.

The solid curves are numerical simulations using parameters (~ΩR, V, δ, ǫ) =

(0.58, 5.2,±0.087, 0.13)EL. The spatial trajectories are illustrated in Fig. 7.10 C,

where we obtained the displacement 〈δ j(τ)〉 by directly integrating 〈vx(τ)〉/a,

where a = λL/2 is the lattice period. These data clearly show edge magneto-

plasmons with their chiral longitudinal motion, and constitute the first experi-

mental observation of their edge localization and transverse skipping motion.
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7.6 Conclusions and Outlook

We engineered a 2-D lattice with square geometry for 87Rb Bose-Eistein con-

densates in which we directly controlled the acquired phases as atoms tra-

versed the lattice, giving a tunneling phase φAB/2π ≈ 4/3 around each plaquette.

Aharonov-Bohm phases of order unity are only possible in engineered mate-

rials [53, 71], or in atomic [74, 3, 97, 79, 4, 93] and optical [62] settings. These

phases take the place of the Aharonov-Bohm phases produced by true magnetic

fields and suffice to fully define the effective magnetic field. With our hard-wall

potential, a realization of the Laughlin charge pump [84] is straightforward: as

particles accelerate along ex, mass moves from one edge to the other in the or-

thogonal direction es. My colleague Dina Genkina is currently implementing the

Laughlin charge pump in the lab. We are also set up to extend our technique

to periodic boundary conditions, coupling together the |m = ±1〉 states. An-

other colleague Ben Stuhl began implementing this experiment before moving

out west. The implementation of periodic boundary conditions should produce

systems exhibiting a fractal Hofstadter spectrum [35], even given a three-site ex-

tent along es. Going beyond conventional condensed matter realities, the flexi-

bility afforded by directly laser-engineering the hopping enables the creation of

Möbius strip geometries: topological systems with just one edge [24].
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CHAPTER 8

PHYSICS, WE HAVE A PROBLEM: SEXUAL HARASSMENT

In this chapter, I present the results from a pre- and post conference evaluation

survey of the American Physical Society (APS) Conferences for Undergraduate

Women in Physics (CUWiP). Forty-eight percent (252/521) of the respondents

reported ‘Sometimes’ or ‘Often’ observing sexual harassment in physics. Forty-

nine percent (255/522) of the respondents reported having personally experi-

enced sexual harassment in physics. We also found strong correlations among

experienced harassment, frequency of observed harassment and perception of

serious, unresolved gender issues in physics. Lastly, reporting more frequent

observations and personally experiencing sexual harassment were correlated

with a lower GPA in physics courses. These results are part of an ongoing study

on participants’ career plans, attitudes, and prior experiences with physics to

improve undergraduate physics education and the CUWiP experience for fu-

ture students. I joined the collaboration in June 2015 after advocating for the

addition of questions pertaining to sexual harassment in physics.

8.1 Introduction

The term “sexual harassment” was coined in response to the behavior of a

physics professor at Cornell University [12]. This is the story of Carmita Wood,

an administrative assistant at Wilson Synchrotron Laboratory. Wood was in her

mid-forties and a mother of four in June of 1974 when she was forced to quit

her job. Wood developed severe physical pain from the constant stress of fend-

ing off the professor’s advances such as physically accosting her or mimicking
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masturbation in her presence. When the professor went on a one year leave of

absence, the pain went away. In anticipation of his return and the return to daily

stresses of harassment, Wood quit. She was denied unemployment benefits for

voluntarily leaving her job. For legal assistance and support, she approached

Lin Farley, a lecturer in the Women’s Section of Cornell University’s Human Af-

fairs Program. Ultimately, Wood lost the appeal, but a movement against sexual

harassment in the workplace was born [27, 12, 96].

Recently, several high profile cases of sexual harassment in academia have

been brought to light in the fields of anthropology [14], astronomy [135] and

biology [63]. These cases have indicated the need for academic communities

to address issues of sexual harassment in their professional spheres. Many cli-

mate studies have been underway in anthropology [40] and astronomy [114]. In

the field of physics, the APS ad-hoc committee on lesbian, gay, bisexual, trans-

gender (LGBT) Issues recently released a report on a professional climate sur-

vey of the members of the LGBT community in physics [11]. In this report,

the female survey participants reported experiencing exclusionary behavior–

defined as behavior that shuns, ignores or harasses a person–at three times the

rate of male participants. Additionally, a qualitative study of female graduate

students’ experiences in physics found that a majority of its participants expe-

rienced microaggressions–subtle insults or slights–and several reported experi-

encing more traditional hostile sexism [19]. We complement these climate and

qualitative studies by measuring the extent to which female undergraduates

experience and observe sexual harassment in physics.

To explore the ways sexual harassment may impact female undergraduates,

we offer three hypotheses: (1) Sexual harassment occurs in physics contexts–
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defined as in research labs, instructional settings, department or student orga-

nization events–and the degree to which respondents directly experience and

observe sexual harassment will be correlated to each other, (2) reporting that

one believes that there are serious gender issues to be reconciled in physics will

be positively correlated with both experienced and observed harassment, and

(3) reported GPA from physics courses will be negatively correlated with expe-

rienced and observed harassment.

8.2 Methods

In this section, I detail the methods for our internet-based survey (n = 522) of

attendees of the American Physical Society (APS) Conferences for Undergradu-

ate Women in Physics (CUWiP). I will discuss our participant recruitment and

demographics. Then, I will discuss the question design and present the ques-

tions in their full text. Notably, we were able to survey a large proportion of the

female undergraduate physics majors in the United States.

8.2.1 Ethics Statement

Participation was voluntary and informed consent was obtained from all sur-

vey participants. We obtained approval for human subjects research with min-

imal risk from the University of Maryland College Park Institutional Review

Board (project [505475-11]). In addition, I obtained an exemption (Protocol

ID# 1601006083) from Cornell University’s Office of Research Integrity and As-

surance.
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8.2.2 Participant Recruitment

CUWiP are a continuation of a grass-roots collaborative effort of physicists from

around the country that has provided conferences annually since 2006. The

goals of the CUWiP effort are to increase retention and improve career out-

comes of undergraduate women in physics. As part of the effort to measure the

impact of the conference goals, online pre- and post-conference assessment sur-

veys are administered annually. In 2016, there were 1088 attendees at CUWiP.

These attendees were predominantly undergraduate female physics majors. In

2014, 1341 women graduated with a Bachelor’s degree in physics [1]. Estimat-

ing the number of female undergraduates majoring in physics by multiplying

the number of Bachelor’s in a year by four, there are approximately 5,400 female

physics majors in the United States (U. S.). The demographic breakdown will

be discussed in the next section. If we solely look at the number of the attendees

compared to the number of female physics majors, we have the possibility of

sampling about 19% of the female physics majors in the US.

By recruiting our survey participants from this population, we have the po-

tential to collect responses from a large fraction of the undergraduate women

in physics in the U. S. Additionally, by including our questions about observed

and experienced harassment on a post conference evaluation survey, the results

will have a different response bias than typical climate or sexual harassment sur-

veys. So far, field specific surveys have used snowball methods, where partici-

pants recruited other participants and the survey was advertised at conferences

and through social media. These snowball climate surveys can have selection

bias, e.g. introduced through participants forwarding the survey to members

of the community who have disclosed negative experiences, and response bias,
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e.g. people who have been harassed may be both more or less likely to respond

to a survey on sexual harassment. There were no repeat survey participants

because each participant had a unique identifier.

8.2.3 Participant Demographics

For our study, we focused on the sample of the (890) self-identified female un-

dergraduates of the (1088) total CUWiP attendees in January 2016. Out of the fe-

male undergraduate attendees, 524 took the post survey and n = 522 responded

to the questions on sexual harassment. Comparing the demographics of our

sample to the population of female physics undergraduates is difficult because

the collection of the racial demographics of our sample was more flexible than

the demographic data on undergraduate physics students, i.e. our survey al-

lowed for more choice than usual demographic data. All demographic ques-

tions were asked on the pre-survey (Table 8.2). The participants were asked if

they were Hispanic or Latino(a). Separately, they were asked with which racial

groups they identified and informed they could mark all that apply with op-

tions Black, White, Asian, Native American or Alaskan Native (NAAN), Native

Hawaiian or Pacific Islander (NHPI) or Other. Other had an option for the par-

ticipant to self-identify. In contrast, the demographic data on students earning

their Bachelor’s degree in physics has these inquiries as one question, and if a

student is Hispanic or a Temporary resident, any additional information about

their racial identity is not reported. Furthermore, the data does not include

which racial groups multi-racial students identify. These differences in demo-

graphic data collection could lead to significant differences of the proportion of

students reported in different racial groups.
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To assess whether our results give us insight into the female undergraduates’

experiences with sexual harassment, we first compare the largest demographic

group easily identified through both methods of collection. Sixty-eight percent

(601/890) of the female, undergraduate CUWiP attendees identified as white

and non-Hispanic/Latina. This is consistent with the 68% (911/1341) white,

non-Hispanic women who earned Bachelor’s degrees in 2014 [1]. If we exclude

the women who identified in multiple racial groups from the count, the atten-

dees included closer to 62% (554/890) white, non-Hispanic women. We can-

not know how the women who self-identified as multi-racial or white, His-

panic would have reported their race/ethnicity if they were only given one

option. The data indicates that the vast majority of our sample is white and

non-Hispanic, similar to the reported population of women earning Bachelor’s

degrees in Physics. The demographics of the self-identified female undergradu-

ates were sufficiently heterogeneous with respect to the remaining demographic

characteristics of the women earning Bachelor’s degrees in physics that there is

a good basis for the generality of our results. Table displays the demographic

data of our sample, the CUWiP attendees and women who Bachelor’s degrees in

physics at U. S. institutions. For our data, participants are counted in all groups

with which they identified. Due to difference in data collection, we cannot dif-

ferentiate if we are oversampling under-represented minority (URM) female un-

dergraduates or if the additional flexibility of our demographic data collection

is the explanation for the demographic differences between the attendees and

the degree earners.

We compared the demographics of the female undergraduate CUWiP atten-

dees (890) to our sample(n = 522)–the participants who responded to the sexual

harassment questions on the post-survey–to examine the response bias. About
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Race or Ethnicity Sample % Attendees % Degrees† %

Total 522 100 890 100 1341 100

URM 174 19.6 97 18.6 146 10.8
Hispanic or Latina 131 14.7 75 14.4 86 6.4
Black 19 3.6 36 4.0 54 4.0
NAAN 12 2.2 17 1.9 4 0.3
NHPI 2 0.4 9 1.0 2 0.1

White 419 80.2 691 77.6 – –
w/o Hispanic or Latina 365 69.9 601 67.5 – –

and w/o multi-racial 338 64.8 554 62.2 911 67.9
Asian 77 14.8 149 16.7 89 6.6
Other 16 3.1 24 2.7 54 4.0
Multi-racial 39 7.5 64 7.2 49 3.7

Table 8.1: Racial/Ethnic Groups of our sample of and total female, undergrad-
uate CUWiP attendees, and Bachelor’s degrees in physics earned by women at
U. S. institutions in 2014 [1]. †This demographic data was collected with slightly
different racial and ethnic groups, and only allowed for an individual to be iden-
tified in one.

15% (131/890, 75/522) of our selected population and sample reported identify-

ing as Hispanic/Latina and about 1% (13/890, 6/522) did not specify. A majority

66% (342/522) of our sample specified being in their 3rd, 4th or 5th year of col-

lege and the remaining 34% (180/522) specified being in their 1st or 2nd year

of college. This is consistent with the overall selected population’s year in col-

lege demographics: 65% (582/890) and 35% (308/890), respectively. Ninety-four

percent of both the female CUWiP attendees (834/890) and the participants in

our sample (492/522) intend to complete a Bachelor’s degree in physics. There

are no large shifts in demographics from the demographic data about CUWiP

attendees to the sample in which we measured observations and experiences of

sexual harassment.
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8.2.4 Survey Design

The results in this study derive from two questions on the pre-survey admin-

istered at the time of conference registration and two questions on the post-

conference survey after the conference was completed. Both surveys were ad-

ministered online. The pre-survey question on belief in gender issues was asked

after inquiring about the participant’s career plans and in a section inquiring

about their physics attitudes and experiences. The question on the participant’s

physics GPA was in this section as well. Both of these questions came before in-

quiring about the participant’s demographic data. Both of these questions were

asked before the participants attended the conference as shown in Table 8.2. Ad-

ditionally, the GPA inquiry was on a pre-survey which was administered prior

to the post survey with the questions on sexual harassment, hence our partic-

ipants were not primed by the sexual harassment questions to report a lower

physics GPA.

The two questions on the post-survey asked about the frequency at which

the participant observed harassing behavior and whether the participant had

personally experienced this behavior limited to a context associated with

physics (Table 8.3). These questions were adapted from question 31 and 32

on the climate survey of academic field work in anthropology [40]. We do

not ask about harassment through direct query, but rather describe behav-

ioral experiences and ask about frequency and whether or not the participant

was personally targeted. This is the preferred method for studying sexual ha-

rassment because people’s perceptions about sexual harassment change over

time. Additionally, a study on two private sector organizations and one uni-

versity found that regardless of whether a women labeled her experiences as
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12. Other than representation (i.e. numbers participating), do you feel that
there are serious gender issues in physics? Not at all 0 1 2 3 4 Very much so

14. What year are you in college?

• First year
• Second year
• Third year
• Fourth year

• Fifth year
• Graduate Student
• Faculty

15. Which of the following physics courses (or equivalent) have you taken
and completed in college? Mark all that apply.

• Intro Physics I
• Intro Physics II
• Modern Physics
• Classical Mechanics (not intro)
• Thermodynamics (Stat. Mech.)

• Electromagnetism I
• Electromagnetism II
• Quantum Mechanics I
• Quantum Mechanics II

16. What is your approximate average GPA (4=A, 3=B, 2=C, 1=D, 0=F) in
these physics courses-please enter a number(decimals allowed)? .

20. Are you Female or Male?

• Female
• Male
• Other:

21. Are you Hispanic or Latino(a)?

• No
• Yes

22. With which racial group(s) do you identify? (For multi-racial, mark all
that apply)

• Black
• White
• Asian
• Native American or Alaskan

Native
• Native Hawaiian or Pacific Is-

lander
• Other:

Table 8.2: Pre-survey Questions
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16. With what frequency do you observe or hear about individuals making
inappropriate or sexual remarks, comments about physical beauty, cogni-
tive sex differences, or jokes in a context associated with physics (e.g. in
research labs, instructional settings, department or student organization
events)? These may come from other students, high school teachers, in-
structors or professors.

• Never

• Rarely

• Sometimes

• Often

17. Have you ever personally experienced inappropriate or sexual remarks,
comments about physical beauty, cognitive sex differences, or jokes in a con-
text associated with physics?

• Yes

• No

• I don’t know

Table 8.3: Post-survey Questions

sexual harassment, she experiences similar psychological, work and health con-

sequences [91]. A study on both men and women in the military strongly repli-

cated these results [100] suggesting they are quite generalizable. Furthermore

this study found that negative outcomes were more related to frequency of the

sexually harassing behavior rather than labeling the behavior as “sexual harass-

ment”.

8.2.5 Enumeration and Analysis

Identifying correlations required us to enumerate the responses to the sexual ha-

rassment questions. For post-survey question 16, we note the ordinal response
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has four levels, increasing with frequency. We set ‘Never’= 1, ‘Rarely’=2, ‘Some-

times’=3, and ‘Often’=4. Because the response is ordinal, we note we should not

assume a linear relationship with other variables. We use a Spearman’s Rank

correlation ρS test to look for correlations between the observed response and

our other variables of experienced, belief in gender issues and GPA. For the

experienced question, we excluded the ‘I don’t know’ responses from the anal-

ysis, because there is not a clear placement relative to ‘Yes’ and ‘No’. We set

‘Yes’=1 and ‘No’=2. The responses to the question about belief in gender issues

in physics was already enumerated as it is an anchored Likert-type scale from

‘Not at all’ (0) to ‘Very much so’ (4). GPA was already enumerated as well, how-

ever it saturates at 4.0. To test for correlations between the experienced response

and belief in gender issues or GPA, we used a Pearson’s product-moment cor-

relation ρP due to the variables all qualifying as an interval scale.

8.3 Results and Discussion

8.3.1 Female undergraduate physics majors experience and ob-

serve sexual harassment

Forty-eight percent (252/521) of respondents report they observed harassment

‘Sometimes’ or ‘Often’ in a context associated with physics (Fig. 8.1A). Forty-

nine percent (255/522) of the respondents reported being the target of sexual

harassment (Fig. 8.1B). These results support our hypothesis that sexual harass-

ment occurs in contexts associated with physics.
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Figure 8.1: Observed and experienced sexual harassment in physics

We predicted prevalence because women in male-dominated occupations

report experiencing sexual harassment at higher rates than women in female-

dominated ones [21]. The 49% of our respondents reporting observations of

sexual harassment is similar in magnitude to the 38% (184/481) of female partic-

ipants who reported observations of sexual or inappropriate comments occur-

ring ‘Regularly’ or ‘Often’ at scientific field sites [40], despite varying method-

ologies. Our data provides compelling evidence that students are experiencing

sexual harassment in physics contexts. For reference on the collegiate expe-

rience, the American Association of Universities conducted a climate survey

on Sexual Assault and Sexual Misconduct and found 61.9% of that sample of

female students (n = 55, 552) experienced sexual harassment on campus [32].

More broadly, a recent meta-analysis of incident rates of work-related sexual ha-

rassment studies with probability sampling and behavioral experiences survey

methods reported 58% of women (excluding studies on students) in academic

samples and 69% of women in military samples reported having experienced

harassing behaviors [72].
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Our survey questions solely focused on gender, not on any intersection of

gender and other marginalized identities, eg. race or ability. Additionally, we

only analyzed the data in the context of the female students due to the small

representation of the responses from other genders. It is important to remem-

ber that people with additional marginalized identities often face more harass-

ment and discrimination. As shown in Fig. 8.2, we did explore if belonging

to a racial group increased or decreased the likelihood of reporting observed

or experienced sexual harassment. An exact Fisher’s test performed on each

Hispanic

Black

White

Asian

NAAN/

NHPI

Multiple

Proportion of Respondents

0.0 0.2 0.4 0.6 0.8 1.0

Women

of Color

28 30 9

5 7 3

166 170 33

33 28 7

4 8

16 17 4

43 45 14

Proportion of Respondents

0.0 0.2 0.4 0.6 0.8 1.0

A   Observed frequency
Frequency

Rarely

Sometimes

Often

B   Directly Experienced
Experienced

Yes

I don’t know

No

34 9 32

7 1 11

208 45 166

32 10 35

9 1 4

20 1 18

54 12 53

Figure 8.2: Sexual harassment in physics reported by female undergraduate
physics majors by their race and ethnicity.

racial sub group and on Women of Color–female participants identifying with

any non-white racial group–as compared to the rest of the female participants

had no statistically significant difference among racial groups. This is consis-

tent with a study on n = 208 women faculty scientists, which found no differ-

ent between the rates of reported sexual harassment among white women and

Women of Color [117]. However, an intersectional bias study of n = 557 female

STEM faculty found that through direct query–inquiring whether the partici-

pant had been sexual harassed on the survey–white women (37.2%) were the

138



most likely to report sexual harassment, as compared to Asian women (25%),

Latinas (21.9%) and Black women (12.5%) [132].

Prevalent sexual harassment in physics may be indicative of a deeper cul-

tural problem surrounding women in physics. Male attitudes about women in

science have been studied through measured gender bias in their evaluations

of women in science. For example, elite male life sciences faculty employ fewer

women [118], male biology students have a strong male bias when evaluating

the knowledge of their peers [61], and male students rate female high school

science teachers significantly lower than their male counterparts on evaluations

in biology, chemistry, and physics [108]. Furthermore, women can also show

bias against women in science, particularly in the physical sciences. In the same

study that found a male bias in male student evaluation of high school science

teachers, female students did not show a gender bias on evaluations in biology

and chemistry, but did in physics [108]. This gender bias may be illustrating the

impact on both male and female students of deep-seated cultural stereotypes

about women in physics. Knowing more about the attitudes about women in

physics in different educational environments and rates of sexual harassment in

those environments would be a potential future study.

8.3.2 Correlations with belief in serious gender issues in

physics and physics GPA

We found a strong relationship with those who directly experience and those

who frequently observe sexual harassment (ρS = −0.503,N = 462, p < 0.0001). In

Fig. 8.3, the respondents (N = 521) are grouped based on their responses to the
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experienced question and calculated the percentages each group that responded

‘Never’, ‘Rarely’, ‘Sometimes’ or ‘Often’ to the inquiry about frequency of ob-

servation. The area of the circles is proportional to the percentage of responses

in each ‘Yes’, ‘I don’t know’ or ‘No’ subgroup. Even though the ‘I don’t know’

responses were not included in the correlation test, overall their responses were

less extreme than the whole population and were fairly evenly balanced be-

tween ‘Rarely’ and ‘Sometimes’. The strong correlation is visible.

Yes
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Never Rarely Sometimes Often
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Figure 8.3: Experienced versus frequency of observed sexual harassment. The
uncertainties are the standard error.

One explanation for correlation between observed and experienced harass-

ment can be because higher levels of sexual harassment occur where such be-

havior is perceived as being tolerated [100]. Another explanation could be that

certain women galvanize more sexual harassment than others. To be viewed

as competent physicists, some women distance themselves from their gender

and gender-roles [56]. An experimental psychology paper exploring the cause

of sexual harassment found that women who violate feminine ideals and work

in male-dominated fields are the most likely to be sexually harassed to pun-

ish them for being gender-role deviant [21]. So a woman distancing herself
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from her gender-roles to be viewed as a competent physicists, then becomes

more likely to be sexually harassed for being gender-role deviant. This trade-

off between these two ideas of being feminine or competent is referred to as

the tightrope [132]. Understanding the causes of this correlation is beyond the

scope of the current study.

This correlation is unlikely to be due to some women being “more sensi-

tive” than others. The idea that the prevalence of sexual harassment is over-

estimated due to women “whining” has been widely refuted [72, 91, 100]. A

meta-analysis study compared the reporting of sexual harassment at work to

the reporting of experiencing harassing behaviors at work, the labeling of sex-

ual harassment was half the reports of harassing behavior [72]. A study in the

military found that negative occupational, psychological and health outcomes

correlate more with frequency of experiences with unwanted sexual behavior

than labeling such behavior as sexual harassment [100]. These studies and oth-

ers provide evidence against the so-called “whiner” hypothesis.

We found a medium correlation (ρS = 0.350,N = 517, p < 0.0001) be-

tween frequency of observed sexual harassment and belief in gender issues in

physics (Fig. 8.4A). We found a medium correlation (ρP = −0.293,N = 457, p <

0.0001, 95%CI = [−0.375,−0.207]) test between experienced sexual harassment

and belief in gender issues in physics(Fig. 8.4B). Figure 8.4 is a box-and-whisker

plot. Dividing the data into four equal parts (quartiles), the box represents the

middle half of the data. The whiskers are the minimum and the maximum of the

data, where outliers are represented by points. The thick vertical line is the me-

dian of the data. The box represents Our hypothesized correlation between be-

lief in gender issues in physics and observed frequency and experienced sexual
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harassment was supported. Notably, in the military study about the impact of

labeling behavior as sexual harassment, the variable most related to whether or

not participants labeled the behavior as sexually harassing was whether or not

the participant viewed sexual harassment as a serious societal problem [100].
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Figure 8.4: Correlation between belief in unresolved gender issues in physics
and either frequency of observation or personally experienced sexual harass-
ment in physics. (A) Belief in gender issues in physics versus frequency of ob-
servations of sexual harassment. (B) Number of participants who responded
explicitly to whether they had experienced sexual harassment versus belief in
gender issues in physics.

We found a significant correlation (ρS = −0.153,N = 500, p < 0.001) between

reported physics GPA and observations of sexual harassment (Fig. 8.5A). We

also found a significant correlation (ρP = 0.141,N = 441, p < 0.003, 95%CI=

[0.048, 0.231]) between physics GPA and directly experienced harassment

(Fig. 8.5B). These correlations support our hypothesis about correlations be-

tween a lower physics GPA and experienced and more frequently observed

sexual harassment. This can be due to interactions with sexist men engaging

stereotype threat for female students [89]. People typically hold different stereo-

types about women than about successful scientists [33], thus observing and ex-
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periencing sexual harassment could increase stereotype threat and impact the

student’s performance in physics. The difference in the median physics GPA of

the students responding ‘Often’ compared to the students responding ‘Never’

is significant for students applying to physics PhD programs due to the expo-

nential dependence of acceptance on GPA [92].
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Figure 8.5: Correlation between physics GPA and either frequency of observa-
tion or personally experienced sexual harassment in physics. (A) Physics GPA
in completed physics courses versus frequency of observations of sexual ha-
rassment. (B) GPA in completed physics courses versus personally experienced
sexual harassment.

8.3.3 Study Limitations

For this study, there was not an equal probability of selecting any undergradu-

ate female physics majors. By selecting from CUWiP, we may only be sampling

women with strong support to continue in their physics careers. Our questions

are cumulative over the participant’s entire experience associated with physics,

so we cannot differentiate between high school experiences and collegiate ex-

periences and found an almost linear increase in observed and experienced ha-
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rassment versus year in college and number of physics courses completed. Cur-

rently, we only reported on correlations in our data. For example, participants

who believe gender issues are a serious problem in physics may also be more

likely to report observed and experienced harassment based on gender.

8.4 Outlook and Moving Forward

Our results indicate experienced and observed sexual harassment are correlated

in this sample, and that those in this sample who observe or experience sexual

harassment also tend to believe that serious gender issues are relevant to the

field of physics. The correlation between sexual harassment and physics GPA,

though weaker, could also have a dramatic impact on female students’ pro-

fessional role confidence and their decisions to continue to pursue a career in

physics. Recently, a longitudinal study on women’s building of professional

identity while earning a Bachelor’s degree in engineering found many of the fe-

male participants experienced hostile sexism, sexual harassment, and isolation

in their summer internships. These interactions during a professional training

lead them to question engineering being the right “fit” for them [116]. Expe-

riencing and observing sexual harassment may have a similar effect on young

female physicists. Both experiencing a lack of fit and a depressed physics perfor-

mance could be how sexual harassment affects underrepresentation of women

in physics.

Discussions of underrepresentation of women in science during high school

can have a positive effect on female students’ persistence in physics [67]. By-

stander intervention programs to prevent sexual violence towards women typ-
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ically involve students discussing sexism and socialized gender-roles and how

these concepts support a rape-prone culture and how to use social pressure to

positively intervene in potentially harmful situations [17]. In recent psychology

studies, these programs effectively increase intervention tendencies and reduce

attitudes that support rape culture for both male and female students [15]. Fur-

thermore, a survey of female science faculty found that effective chair leader-

ship could mitigate the negative job outcomes due experiences of sexual harass-

ment and gender discrimination [117]. Moving forward, we hope the evidence

on the prevalence of sexual harassment compels the physics community to raise

awareness of sexual harassment, create guidelines for respectful behavior and

implement anti-harassment and bystander intervention training for all mem-

bers of the community while evaluating the effectiveness of these programs.

This will take strong leadership to steer the community towards addressing the

chilly climate experienced by many undergraduate women in a quantitative,

visible manner.
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Nondestructive imaging of an ultracold lattice gas
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We demonstrate the nondestructive imaging of a lattice gas of ultracold bosons. Atomic fluorescence is induced

in the simultaneous presence of degenerate Raman sideband cooling. The combined influence of these processes

controllably cycles an atom between a dark state and a fluorescing state while eliminating heating and loss.

Through spatially resolved sideband spectroscopy following the imaging sequence, we demonstrate the efficacy

of this imaging technique in various regimes of lattice depth and fluorescence acquisition rate. Our work provides

an important extension of quantum gas imaging to the nondestructive detection, control, and manipulation of

atoms in optical lattices. In addition, our technique can also be extended to atomic species that are less amenable

to molasses-based lattice imaging.

DOI: 10.1103/PhysRevA.90.033422 PACS number(s): 37.10.Jk, 03.67.−a, 03.75.Lm, 67.85.Hj

I. INTRODUCTION

The creation, control, and manipulation of ultracold atomic

gases in tailored optical potentials has spurred enormous

interest in harnessing these mesoscopic quantum systems for

the realization of ultracold analogs of correlated electronic

materials [1,2], studies of nonequilibrium dynamics in isolated

quantum many-body systems [3]. and quantum metrology [4].

The dilute nature of these gases and the weak interactions

impose stringent restrictions on the energy, entropy, andmeans

of manipulating and probing these systems. This has led to

the development of techniques to cool and image these gases

at ever increasing levels of precision and resolution. In this

context, the in situ imaging of lattice gases at high spatial

resolution has emerged as a powerful tool for the study of

Hubbard models [5–8] and quantum information processing

[9].

In this article, we demonstrate a two-photon imaging

technique for ultracold lattice gases. The scheme relies on

extracting fluorescence from the atoms while simultaneously

cooling them to the lowest band of the lattice via Raman

sideband cooling (RSC) [10–12]. Through a combination of

sideband spectroscopy and time-of-flight measurements, we

demonstrate broad regimes of fluorescence acquisition rates

and lattice depths for which the imaging scheme preserves

the spatial location and also retains the atoms in the ground

vibrational state. As a result, this imaging scheme enables

the imaging of atoms in shallow lattices with high fidelity.

In addition, the two-photon scheme is less sensitive to details

of atomic structure thereby permitting its extension to atomic

species less amenable to molasses-based imaging.

II. IMPLEMENTATION OF THE IMAGING TECHNIQUE

The principle of the imaging sequence is depicted in Fig. 1.

Raman sideband cooling is employed to cool individual atoms

within an optical lattice to the lowest vibrational band while

simultaneously pumping the atoms to the high field seeking

state. In the case of 87Rb atoms used in our study, this state

is denoted by |g〉 = |F = 1,mF = 1; ν = 0〉, where ν is the

*mukundv@cornell.edu

vibrational state of the atom within a lattice site. Importantly,

this state is a dark state with respect to the optical fields

used for Raman cooling. As such, the atoms do not emit

any fluorescence while in this ground state. Fluorescence

is induced in these atoms by shining a circularly polarized

(σ−) beam resonant with theF = 1 → F ′ = 0 (D2) transition.

Simultaneous use of RSCmitigates the increase in temperature

caused by this fluorescence beam by cycling the atoms back

to |g〉. Due to this cycling, fluorescence can be repeatedly

extracted from the atomic distribution while leaving the atom

in its original state.

For the studies described below, we use three-dimensional

(3D) optical lattices that are typically detuned 2π × 160 GHz

from the F = 1 → F ′ (D2) transition of 87Rb. The lattice

provides both the confining potential as well as the coherent

two-photon coupling required for sideband cooling [13]. In the

absence of RSC, we measure a heating rate of 11 nK/ms due

to the photon scattering from the near-resonant lattice. While

this does not pose a limitation for the studies described in this

work, this heating can be significantly reduced by employing

separate optical fields to provide the lattice confinement and

the Raman coupling.

Atoms are loaded into this lattice and initialized in the

ground state |g〉 by a 10 ms period of RSC. Based on

measurements of the atomic density within the lattice, we

estimate filling fractions on the order of f = 0.20–0.25. The

average vibrational occupation number is measured using

sideband spectroscopy to be 〈n〉 6 0.01 for the entire range of

lattice depths studied here. Fluorescence images are acquired

by switching on the fluorescence beam at a variable intensity.

The images are acquired within exposure times of up to 30

ms following which the number of atoms and temperature of

the atomic distribution are measured using a combination of

time-of-flight absorption imaging and sideband spectroscopy.

We perform sideband spectroscopy to accurately quantify

local changes in temperature due to fluorescence imaging.

For this, we employ a pair of counterpropagating beams

detuned 2π × 7.5 GHz from the F = 1 → F ′ (D2) transition

of 87Rb. The beams are focused to an approximate waist

of 8 µm. The measured sideband asymmetry [14] allows a

local extraction of the vibrational occupation number (Fig. 2).

An oblique orientation of these beams with respect to the

lattice coordinates ensures sensitivity of the sideband spectra

1050-2947/2014/90(3)/033422(4) 033422-1 ©2014 American Physical Society
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FIG. 1. (Color online) (a) Lattice imaging scheme: An atom

within a lattice site is cooled to the ground state |g〉 ≡ |F = 1,mF =

+1; ν = 0〉 via RSC. An auxiliary imaging beam promotes the atom

out of this state to a fluorescing state, which is subsequently cooled

back to |g〉. Repeated cycles of this process extract fluorescence

from the atom while continually restoring the atom to |g〉; (b) The

near-resonance optical fields used in the imaging sequence. A cooling

beam (RSC) with σ+ and π components cools and optically pumps

the atom into the dark state |g〉. A σ− beam induces fluorescence by

bringing the atom out of the dark state. (c) Raman fluorescence image

of a gas of 1.5× 106 atoms obtained within 15 ms. The field of view

is 250µm × 250µm.

to atomic motion in all three dimensions. The two-photon

pulses are typically 500µs in duration with typical pump

(probe) powers of 10 µW (20 nW). We have verified that the

vibrational occupation number extracted from the sideband

spectra is consistent with temperatures measured by time-of-

flight imaging following a rapid (< 1µs) extinction of the

lattice [15]. Also, the observed width of the sidebands is

consistent with our estimate of the coherent Raman coupling

induced by the near-resonant lattice.
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FIG. 2. Spatially resolved sideband spectroscopy of the lattice

gas following the imaging sequence yielding 〈n〉 = 0.01+0.03
−0.01. Inset:

A time-of-flight absorption image of the ultracold gas following an

intense interrogation pulse at the two-photon resonance. The divot

near the center of the atomic distribution shows the location and

relative size of the beams used for sideband spectroscopy. The field

of view is 600 µm × 600 µm.

III. DISCUSSION

Our imaging scheme, as constructed, relies on the compe-

tition between two processes: atomic fluorescence at a rate Ŵf

that yields spatial information about the atomic distribution,

and RSC at a cooling rate ŴRSC that serves to cool the atoms

back to the ground state within each lattice site. While the

former depends solely on the intensity of the fluorescence

beam, the latter is given by ŴRSC ∼ Ŵopt × Ä2
R/(Ŵ2opt + 2Ä

2
R)

where ÄR is the coherent Raman coupling between the states

|mF ,ν〉 and |mF − 1,ν − 1〉, and Ŵopt is the rate of optical

pumping to the |mF = +1〉 state [16]. As the fluorescence

rate is increased significantly beyond the cooling rate, atoms

can be promoted to higher bands within the lattice and can

tunnel to neighboring sites. In addition tomodifying the atomic

distribution, such tunneling can also lead to multiply occupied

lattice sites and subsequent loss due to light-induced collisions.

To identify the regimes of imaging where the scheme

is nondestructive, we use light-induced collisional loss as a

diagnostic tool to monitor atomic tunneling across lattice sites.

Further, in order to clearly demarcate atomic dynamics due

to the fluorescence pulse from that due to RSC, we employ

a pulsed imaging sequence wherein the fluorescence pulse

and RSC are employed in rapid succession with a variable

duty cycle. As expected, the average vibrational occupation

number measured at the end of the fluorescence pulse grows

with increasing fluorescence rate [Fig. 3(a)]. However, RSC

is very efficient at cooling the atoms back to the ground state

at the end of each cycle. At the end of each RSC cycle, we

measure average vibrational occupation numbers (∼ 0.01) that

are, within our measurement uncertainty, indistinguishable

from those measured in the absence of the fluorescence pulse

(Fig. 2). The typical measured RSC cooling rates of 13µK/ms

are also consistent with that estimated based on the intensities

of the lattice and optical pumping beams.

While simultaneous cooling during fluorescence acquisi-

tion leaves the final vibrational occupation unaltered, the

transient increase in temperature during the fluorescence

pulse can cause tunneling of atoms to neighboring lattice

sites. This tunneling rate depends sensitively on both the

average vibrational occupation number as well as the lattice

depth U0, typically parametrized in units of the recoil energy

Er = ~
2k2/2m. At low rates of fluorescence acquisition [17],

we observe that the total number of atoms is left unchanged

subsequent to the imaging sequence indicating a negligible

level of tunneling across sites. Beyond a certain fluorescence

rate Ŵf,max, we observe two-body loss indicating the onset

of tunneling of atoms [Fig. 3(b)]. As indicated by the rapid

decrease of atoms for fluorescence rates past this maximal

value, two-body loss is a very sensitive measure of the

tunneling rates induced by the imaging sequence (see also

Refs. [18,19]). The temporal evolution of the atom number

following a brief, intense fluorescence pulse indicates that RSC

cools and binds the atoms to the ground state of a lattice site

within 100 µs [see inset of Fig. 3(b)], again consistent with

measurements of the cooling rate.

We have performedMonteCarlo simulations of the imaging

process that accurately capture the sensitivity of two-body

loss to tunneling events and the threshold behavior arising

from the competition of imaging, RSC, and tunneling. For the
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FIG. 3. (Color online) Regimes of fluorescence acquisition rates

for non-destructive imaging. (a) Measured temperature of the lattice

gas in a pulsed imaging sequence, in units of the vibrational frequency

ωL. The temperature during the fluorescence pulse grows (red) with

increasing fluorescence rates while RSC rapidly cools the atoms back

to the ground state (blue). (b) Measured atom number following the

imaging sequence. At low fluorescence rates, the atom number is

conserved indicating negligible levels of tunneling across sites. As

the fluorescence rate is increased, the increasing temperature during

the fluorescence pulse causes tunneling followed by light-induced

loss. The shaded area represents the critical fluorescence rate for

the onset of tunneling as identified by our measurements of light-

induced loss. Inset: Evolution of atom number immediately following

an intense fluorescence pulse (Ŵf = 6× 105 s−1) shows that RSC

quickly (within 100 µs) binds the atoms to the ground state of a

lattice site thereby drastically suppressing tunneling.

filling fractions used in this work (0.20–0.25), the measured

critical fluorescence rate, Ŵf,max, as identified by the onset of

light-induced loss, is within 20% of the critical fluorescence

rate for the onset of tunneling. We further find that the

filling fraction needs to be reduced by more than an order of

magnitude before there is a significant probability of tunneling

events that do not lead to measurable loss. These findings

justify the correspondence between the onset of tunneling in

the lattice gas and our measured onset of two-body loss.

Similar considerations apply to the imaging of atoms in

shallow optical lattices (Fig. 4). In this case, the rates of
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FIG. 4. The fraction of atoms remaining after the imaging

sequence (Nf /Ni) vs fluorescence rates for lattice depths ofU0/Er =

14.6,24.9,36.7 and 76.2 (left to right). Inset: An estimate of the

maximum fluorescence acquisition rate Ŵf,max per atom vs s =

U0/Er .

tunneling grow exponentially with decreasing lattice depth

[20,21]. This leads to a reduction of the maximal fluorescence

rates that can be used while constraining atomic motion. As

expected, an estimate of this maximum allowable fluorescence

rate shows an exponential decrease with lower lattice depths

(see inset of Fig. 4). Importantly, we see that fluorescence

acquisition rates greater than 104 photons/s per atom are

possible even for lattice depths around 15 recoil energies. This

makes possible the use of this imaging technique to study

lattice gases in regimes where coherent tunneling of atoms

within the lowest band occurs on experimentally relevant time

scales. In addition, it augurs the intriguing possibility of using

this imaging scheme to influence or exert spatial control over

such coherent tunneling processes. Nondestructive imaging of

atoms in even lower lattice depths could be made possible

by increasing the Raman cooling rates and operating at lower

fluorescence acquisition rates.

At the lowest lattice depths, possible limitations to our

imaging scheme include the reduced fidelity of RSC due

to a lower Lamb-Dicke parameter and off-resonant Raman

coupling to higher vibrational bands, an increased suscepti-

bility to photon reabsorption heating [22], and faster rates of

tunneling to neighboring lattice sites. As we show in Fig. 4,

these limitations can be overcome by a suitable choice of flu-

orescence acquisition rate and Raman cooling rates. Already,

the lowest lattice depth (s ∼ 15) for which we demonstrate

nondestructive imaging is more than two orders of magnitude

below that required for molasses-based lattice imaging.

IV. CONCLUSIONS

In summary, we demonstrate a nondestructive imaging

technique for ultracold atoms confined in an optical lattice.
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The imaging technique is based on extracting fluorescence

while simultaneously cooling the atoms to the ground state

of the lattice via Raman sideband cooling. Using a combi-

nation of sideband spectroscopy and time-of-flight imaging,

we demonstrate a large operational regime of fluorescence

acquisition rates and lattice depths for which the imaging

scheme preserves the spatial location of the atoms while

leaving them in the ground vibrational state. At the largest

rates of fluorescence acquisition (∼106 photons/s/atom) and

the lowest lattice depths, the main loss mechanism occurs due

to tunneling of atoms to occupied lattice sites followed by

rapid light-induced loss. By using the light-induced loss as a

diagnostic measure of tunneling, we show that this limitation

can be alleviated by a suitable choice of fluorescence and

Raman cooling rates. That said, we note that the imaging

scheme demonstrated here does lead to light-induced loss in

lattice sites occupied by multiple atoms. In this regard, it is

similar tomolasses-based imaging in its sensitivity to the parity

of lattice occupancy.

Our imaging technique represents a powerful extension of

lattice imaging to the nondestructive control and measurement

of lattice gases. As such, it is an enabling technique to extend

concepts of single-particle quantum control to the context

of strongly correlated many-body systems. This scheme also

permits the continuous monitoring of the out-of-equilibrium

dynamics of ultracold lattice gases. We also note that while

used primarily as a diagnostic tool here, spatially resolved

coherent two-photon processes such as the setup used for

sideband spectroscopy in our work, can also be used for

subdiffraction limited quantum control of the lattice gas

[23,24]. Lastly, our imaging scheme is also extendable to

atomic species that are less amenable to molasses-based lattice

imaging as well as to lattice geometries [25] where molasses-

based imaging can be stymied by local polarization gradients.
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QUANTUM SIMULATION

Visualizing edge states with an
atomic Bose gas in the quantum
Hall regime
B. K. Stuhl,1* H.-I. Lu,1* L. M. Aycock,1,2 D. Genkina,1 I. B. Spielman1†

Bringing ultracold atomic gases into the quantum Hall regime is challenging. We

engineered an effective magnetic field in a two-dimensional lattice with an elongated-strip

geometry, consisting of the sites of an optical lattice in the long direction and of three

internal atomic spin states in the short direction. We imaged the localized states of

atomic Bose-Einstein condensates in this strip; via excitation dynamics, we further

observed both the skipping orbits of excited atoms traveling down the system’s edges,

analogous to edge magnetoplasmons in two-dimensional electron systems, and a

dynamical Hall effect for bulk excitations. Our technique involves minimal heating, which

will be important for spectroscopic measurements of the Hofstadter butterfly and

realizations of Laughlin’s charge pump.

I
n solids, the quantum Hall effects repre-

sent an extreme quantum limit, at which a

system’s behavior defies description by classi-

cal physics. The integer quantum Hall effect

(IQHE) for two-dimensional (2D) electronic

systems in magnetic fields (1) was the first topo-

logical insulator (2): a bulk insulator with con-

ducting edge states, always present in finite-sized

topological systems, which produce the IQHE’s

signature quantized Hall resistance (3).

In classical systems, the magnetic field acts en-

tirely through the Lorentz force, whereas in quan-

tum systems, a particle with charge q in a uniform

field B additionally acquires an Aharonov-Bohm

phase fAB/2p = AB/F0, after its path encircles an

area A normal to B. (Here, F0 = 2pħ/q is the flux

quantum, and 2pħ is Planck’s constant.) We gener-

ated an effective magnetic field in a system of cold

atoms, following (4), which yielded an elongated 2D

square lattice formed from the sites of an optical

lattice in the long direction and three internal

atomic spin states in the short direction (a synthetic

“spatial” dimension). We directly controlled the

phases acquired as atoms traversed the lattice,

creating an aggregate tunneling phase fAB/2p ≈
4/3 aroundeach lattice plaquette. These phases take

the place of the Aharonov-Bohm phases produced

by truemagnetic fields and suffice to fully define the

effective magnetic field. Aharonov-Bohm phases of

order unity in the Harper-Hofstadter Hamiltonian,

currently realized in engineeredmaterials (5, 6) and

in atomic (7–12) and optical (13) settings, frag-

ment the low-field Landau levels into the fractal

energy bands of theHofstadter butterfly (14). Such

Hofstadter bands are generally associated with a

nonzero topological index, the Chern number (3).

Topologically nontrivial bulk properties are re-

flected by the presence of edge channels, com-

posed of edge states, with quantized conductance.

In fermionic systems, the number of edge channels

is fixed by the aggregate topological index of the

filled bands (2, 3, 15); this ultimately gives rise to

phenomena such as the IQHE for electrons. Con-

ceptually, the constituent edge states canbe viewed

as skipping orbits (2, 16, 17): In the presence of a

strongmagnetic field, nascent cyclotronorbits near

the boundary reflect from the hardwall before com-

pleting a revolution, leading to skipping trajectories

that follow the system’s boundary. In contrast, local-

izedbulk states correspond toclosed cyclotronorbits.

By applying large effective fields to atomic

Bose-Einstein condensates (BECs), we directly

imaged individual, deterministically prepared bulk

andedge eigenstates. In IQHEsystems, these states
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a pair of counterpropagating Raman lasers with crossed linear polarization
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would govern the conductivity, but as individual ei-

genstates, they exhibit no time dependence. The

corresponding dynamical entities are edge mag-

netoplasmons, consisting of superpositions of edge

eigenstates in different Landau levels (18, 19) or, in

this case, magnetic bands. We launched these ex-

citations and recorded their full motion, observing

both a chiral drift along the system’s edge and the

underlying skipping motion.

The Harper-Hofstadter Hamiltonian

H ¼ −

X

j;m

½txjj þ 1;mihj;mj þ

tsjj;mþ 1ih j;mj þ h:c:( ð1Þ

governs the motion of charged particles moving

in a 2D lattice (14, 20)—i.e., the situation that

we engineered for our neutral atoms—with com-

plex hopping amplitudes tx (long direction) and ts
(short direction) and sites labeled by j andm (h.c.,

Hermitian conjugate). Analogous to the Landau

gauge in continuum systems, we describe our ex-

periment with real ts (no phase) and with complex

tx = |tx|exp(–ifABm), dependent onm. The sum of

the tunneling phases around any individual pla-

quette is fAB (Fig. 1D).

We created a 2D lattice by combining a conven-

tional optical lattice (21) to define the long axis of

our system (ex direction, sites labeled by j) with

three sequentially coupled internal spin states

to define the short axis (es direction, three sites

labeled by m ∈ {–1,0,+1}); in parallel to the work

described here, an analogous scheme has been re-

alized for fermionic ytterbium (12). This system ef-

fectively has an infinite repulsive potential for |m| ≥
2 (Fig. 1C), allowing for the formation of robust

edge states. In each band of our engineered lattice

(Fig. 1E), the momentum along ex specifies the po-

sition in es (denoted by color on the curves), as for

2D electrons in Landau levels.

We used
87
Rb BECs in the f = 1 ground-state

hyperfine manifold (22), confined in an optical

dipole potential from two 1064-nm laser beams

aligned along ex and ey, with trap frequencies

(wx , wy, wz)/2p = (50, 40, 110) Hz (Fig. 1, A and B).

We adiabatically (23) loaded these BECs onto the

sites of the 1D optical lattice, formed by a pair of

laser beams (wavelength, lL = 1064.46 nm) coun-

terpropagating along ex. The motion of atoms

along ey and ez within each 2D layer formed by

the 1D optical lattice was largely unaltered by the

presence of the lattice, which only affected motion

along ex. The lattice lasers’ wavelength defines the

single-photon recoil momentum ħkL = 2pħ/lL and

recoil energy EL= ħ
2
k
2
L/2mRb, where ħ is the re-

ducedPlanck’s constant, andmRb is theatomicmass.

The lattice depthV≈6EL gave a hopping strength
|tx| ≈ 0.05EL along ex.

We then coupled the three |mi sublevels, either
with two-photon Raman transitions or with a radio-

frequency (rf)magnetic field. TheRaman lasers (lR=

790.04 nm) also counterpropagated approximately

along ex (24), with wavenumber kR = ±2p/lR; the rf

coupling effectively had a kR of 0. Either field pro-

duced a laboratory-tunable effective tunneling

strength |ts| ~ |tx| alonges, proportional to theRabi

frequency WR. The 2ħkR momentum imparted

from these transitions resulted in a spatially peri-

odic phase factor exp(i2kR x) = exp(ifAB j) accom-

panying the change inm, where fAB/2p = kR/kL ≈
±4/3 for Raman coupling, and fAB/2p = 0 for rf

coupling (25, 4). The sign of fAB was controlled by

reversing the relative detuning of theRaman lasers

(Fig. 1, A and B), effectively swapping the laser

directions.

Figure 1E shows the band structure for our

system, featuring the three Hofstadter bands ex-

pected for fAB/2p ~ 4/3, with our boundary con-

ditions. The system is most easily understood after

making the local gauge transformation | j,mi→
exp(–ifAB jm) | j,mi, which transfers the Peierls

phase from ts into tx. This fully maps our system

to Eq. 1 and results in an effective flux F/F0 =

fAB/2p per plaquette (Fig. 1D).

We began our experiments by directly imag-

ing adiabatically loaded eigenstates of the ground

Hofstadter band with either fAB/2p = 0 or fAB/

2p ≈ 4/3, in an isotropic lattice with |tx| ≈ | ts|. After

preparation, we used a measurement procedure

common to all experiments: We simultaneously

removed all potentials and coupling fields (with

a turnoff time toff < 1 ms), which returned the

atoms to bare spin and momentum states. The

atomic cloud expanded for an ~18-ms time-of-

flight (TOF) period (21). During TOF, a 2-ms mag-

netic gradient pulse was applied, and Stern-Gerlach

spin separation was used to separate the three

|mi states. The resulting 2D column density was

recorded using standard absorption imaging tech-

niques, giving the normalized momentum dis-

tributions nm(kx) with perfect single-lattice

site resolution along es.

Figure 2A shows typical data for fAB = 0, under

which conditions we adiabatically loaded the

BEC into the ground state and observed nm(kx).

The fractional population nm = ∫dkxnm(kx) (Fig.

2B) resembles that of a particle in a discretized box

along es, whereas the momentum distributions,

typical for atoms in an optical lattice (26), have the

same profile for each m site. This demonstrates

that the two directions are uncoupled at fAB = 0.

The data in Fig. 2, C to E, for which fAB ≠ 0, are

qualitatively different as a function of both kx
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Fig. 2. Adiabatically

loaded eigenstates.

(Left panels) Site-

resolved normalized

momentum distribu-

tions nm(kx) obtained

by absorption imaging.

(Right panels) Frac-

tional population nm.

(A and B) Atoms

loaded into the single

ground state present

for fAB = 0 show

the expected separa-

ble behavior along ex
and es. (C to H) Atoms

loaded into the upper-

edge, bulk, and lower-

edge states (top,

middle, and bottom

panels, respectively)

present for fAB/2p ≈

4/3 demonstrate

the coupling between

ex and es and the

localization along es.
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and m. These differences can be understood by

analogy with a 2D electron system in a perpen-

dicular magnetic field, confined in one dimension

with hard walls. Along the confined direction, the

wavefunction is localized to the scale of the mag-

netic length ℓB ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ=qB

p
, with the center posi-

tion at kxℓ
2
B in the bulk state, and where ħkx is

the electron’s canonical momentum. At large |kx|,

the electron becomes localized near the edges,

lifting the degeneracy of the otherwise ma-

croscopically degenerate Landau levels. Each of

these points has an analog in our observations

(Fig. 1E and Fig. 2, F to H). In our system, the

magnetic length ℓ
+
B e

ffiffiffiffiffiffiffiffiffiffi
3=2p

p
≈0:7, in units of lat-

tice period, was of order unity (23); this consid-

erably narrowed the bulk state (Fig. 2G), as

compared with conditions in which fAB = 0 (Fig.

2B). In addition, we observed the appearance of

states that were localized at the system’s edges

(Fig. 2, F and H), which were completely absent

when fAB = 0. These localized edge states are the

analog to the current-carrying edge states in

fermionic IQHE systems (27).

Having described the static properties of this

system, we now turn to dynamics. We loaded our

system onto differentm sites with ts = 0 and then

abruptly (24) turned on ts , allowing tunneling

along es. The resulting initial states all consisted of

coherent superpositions of magnetic-band eigen-

states with crystal momentum qx/kL = –mfAB/p,

which began to coherently tunnel along es and to

move along ex as a result of the associated Lorentz

force. Atoms initialized on the bulk m = 0 site ex-

hibited a dynamicHall effect. Those starting on the

edge sites became cold-atom analogs to edge mag-

netoplasmons: They began cyclotron orbits, were

reflected from the hard wall, and skipped down

one edge or the other.

The dynamics of atoms initialized in the bulk

state (on the m = 0 site) are presented in Fig. 3.

As schematically illustrated in Fig. 3A and plotted

in Fig. 3B, a balanced population oscillated in and

out of the originally emptym = ±1 sites, as a func-

tion of time t. When fAB ≠ 0, this motion drove

transverse (i.e., Hall) edge currents Im=±1(t) =

nm(t) hVmi along ex (Fig. 3A), where hVmi is the
mean velocity of atoms on sitem along ex .

A chiral current I = I1 – I–1 developed, with

its overall sign following that of fAB (Fig. 3C).

As atoms tunneled to the edges, they acquired

a transverse velocity controlled by two param-

eters: fAB determined the crystal momentum

acquired while tunneling, and tx set the na-

tural unit of velocity 2tx/ħkL. This led to the

observed in-phase oscillation of I and the com-

bined m = ±1 populations h|m|i.
This synchronous oscillation implies a linear

dependence of I on h|m|i, the slope S of which is

plotted in red and black symbols in Fig. 3D. We

confirmed the system’s chirality by inverting fAB
and verifying that S changed in sign. For compar-

ison, we repeated the experiment with fAB = 0 and

observed no chiral current (open symbols). These

data are in good agreement with our theory (solid

curves in Fig. 3D), which uses parameters obtained

from fits to Fig. 3B (24).

The dependence of the chiral current on the

tunneling anisotropy ts/tx (Fig. 3E) is reminiscent

of the optical lattice experiments in (28). The chiral

current remained linear in h|m|i, with an essen-

tially constant slope S ≈ 2txlLsin(fAB)/ħ; this dem-

onstrates a dynamic Hall effect (29) governed by

the magnetic flux and the optical lattice strength

and period (24). In contrast, the peak edge current

Imax (pink dashed line in Fig. 3C) strongly de-

pends on ts/tx (Fig. 3E), increasing from zero and

then reaching saturation. For small ts/tx, few

atoms tunneled, giving a correspondingly small

1516 25 SEPTEMBER 2015 • VOL 349 ISSUE 6255 sciencemag.org SCIENCE

Fig. 3. Chiral edge currents. (A) Schematic of

system dynamics: A system prepared on sitem = 0

at time t1 = 0 obtains a chiral edge current at t2,

which returns to zero at t3. (B) Measured frac-

tional population versus time for atoms initial-

ized on m = 0 at time t = 0.The dynamics are the

same for positive and negative values of fAB.

Colors in (A) and (B) correspond to m sites, as in

Figs. 1 and 2. (C) Chiral edge current I versus

time. Data shown in red, black, and open circles

correspond to positive, negative, and zero values

of fAB, respectively. (D) I plotted against h|m|i.

The solid curves (theory) use parameters (ħWR,

V, d, e) = (0.52, 6, 0.001, 0.05)EL, determined

from the data in (B) for fAB 6¼ 0 and giving ts =

0.14EL, and parameters (ħWR, V, d, e) = (0.33, 6,

–0.01, 0.05)EL for fAB = 0. (E) Maximum edge

current versus asymmetry (ts/tx). (Inset) Slope

S [taken from data as in (D)] is nearly indepen-

dent of ts/tx.
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Imax; as ts/tx increased, Imax began to saturate as

essentially all atoms tunneled (27).

We then shifted our focus from bulk excita-

tions to edge excitations, which we studied by

launching edge magnetoplasmons, or superposi-

tions of edge states across magnetic bands with

crystal momentum qx/kL = ∓fAB/p. We created

themon either edge, with the potential tilted along

es (Fig. 4, A and B), so that the initially occupied

site was at the potential minimum. The time-

evolving average position hm(t)i along es and the

velocity hnxðtÞi ¼
X

m

Im along ex are shown in

Fig. 4, C and D. Data shown in pink and blue

solid circles are for initial sites hm(t =0)i =±1, both

of which evolved periodically in time but with op-

posite velocities. The spatial trajectories are illus-

trated in Fig. 4E; we obtained the displacement

hdj(t)i by directly integrating hvx(t)/ai, where a =

lL/2 is the lattice period. These data show edge

magnetoplasmons with their chiral longitudinal

motion and constitute an experimental observa-

tion of their edge localization and transverse

skipping motion.

This and related approaches (12) have a practi-

cal advantage over other techniques for creating

artificial gauge fields, in that minimal Raman-

laser coupling is required [typically 10 to 50 times

less than in previous experiments using Raman

coupling (30)], thereby minimizing heating from

spontaneous emission and enabling many-body

experiments that require negligible heating rates.

Lifetimes from spontaneous emission with this

technique are in excess of 10 s (corresponding to a

heating rate of <10
–3

tx/2pħ), whereas other ap-

proaches for creating large artificial gauge fields

have lifetimes well below 1 s (8–10, 31).

The experiments described here used nearly

pure BECs, either in adiabatically prepared eigen-

states or evolving after sudden changes to the

Hamiltonian. In the former case, interactions did

not affect our measurements, whereas in the lat-

ter case, collisions during the dynamical evolution

gradually populated additional states and contrib-

uted to considerable dephasing within 10 ms. Be-

cause our approach of using the internal atomic

spin states as lattice sites involves different “syn-

thetic sites” residing in the same location in space,

the interactions between atoms are anisotropic—

short-ranged along ex but long-ranged along es. In

(32), it was shown theoretically that even such

anisotropic systems can support fractional quan-

tum Hall states.

With our hard-wall potential, a realization of

the Laughlin charge pump (33) is straightforward:

As particles accelerate along ex, mass moves from

one edge to the other in the orthogonal direction

es. Extending our technique to periodic boundary

conditions—i.e., coupling the |m = ±1i states—should

produce systems exhibiting a fractal Hofstadter

spectrum (4), even with only a three-site extent

along es. Going beyond conventional condensed-

matter realities, the flexibility afforded by directly

laser-engineering the hopping enables the crea-

tion of Möbius strip geometries, or topological

systems with only one edge (34).
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Atomically thin two-dimensional
organic-inorganic hybrid perovskites
Letian Dou,1,2* Andrew B. Wong,1,2* Yi Yu,1,2,3* Minliang Lai,1 Nikolay Kornienko,1,2

Samuel W. Eaton,1 Anthony Fu,1,2 Connor G. Bischak,1 Jie Ma,2 Tina Ding,1,2

Naomi S. Ginsberg,1,2,4,5,6 Lin-Wang Wang,2 A. Paul Alivisatos,1,2,5,7 Peidong Yang1,2,5,7†

Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor

materials for photovoltaic applications, have been made into atomically thin two-dimensional

(2D) sheets.We report the solution-phase growth of single- and few-unit-cell-thick

single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square

shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets

exhibit an unusual structural relaxation, and this structural change leads to a band gap

shift as compared to the bulk crystal.The high-quality 2D crystals exhibit efficient

photoluminescence, and color tuning could be achieved by changing sheet thickness as

well as composition via the synthesis of related materials.

T
he organic-inorganic hybrid perovskites,

especially CH3NH3PbI3, have recently been

used in solution-processable photovol-

taic devices that have reached 20% power

conversion efficiency (1–4). These layered

materials have a general formula of (RNH3)2
(CH3NH3)m-1AmX3m+1, where R is an alkyl or

aromatic moiety, A is a metal cation, and X is

a halide. The variable m indicates the number

of the metal cation layers between the two lay-

ers of the organic chains (5–11). In the extreme

case where m = V, the structure becomes a

three-dimensionally bonded perovskite crystal

with a structure similar to BaTiO3. In the oppo-

site extreme wherem = 1, the structure becomes

an ideal quantum well with only one atomic

layer of AX4
2–

separated by organic chains, in

which the adjacent layers are held together by

weak van der Waals forces.

This arrangement is fundamentally different

from transition metal dichalcogenides, in which

one layer of the metal ions is sandwiched be-

tween two hexagonal layers of S or Se atoms,

affording a rigid backbone. In contrast, the lay-

ered hybrid perovskites normally have a tetrago-

nal or orthorhombic structure and are inherently

more flexible and deformable (5–11). By varying

the value of m, the thickness and the related

optoelectronic properties of the quantum well

can be tuned. To date, many organic amines,

metal cations (Cu
2+
, Mn

2+
, Cd

2+
, Ge

2+
, Sn

2+
, Pb

2+
,

Eu
2+
, etc.) and halides (Cl, Br, and I) have been

used to construct such layered materials (m =

1 ~ 3), and their corresponding optoelectronic

properties have been well studied (12–15). Pre-

vious reports have claimed that the organic layers

effectively isolate the two-dimensional (2D) quan-

tum wells in each layer from electronic coupling,

if the organic chain is longer than propyl amine

(16). This means that the properties of the atomi-

cally thin 2D quantum well should be the same

as those of the bulk layered material (microscopic

crystal, powder, or film). This hypothesis, as well

as the technical difficulty of separating individual

layers, has probably delayed investigation of free-

standing single layers of such 2D materials. Very

recently, attempts to obtain ultrathin 2D perov-

skite samples by spin coating, chemical vapor de-

position, or mechanical exfoliation methods have

been made with limited success (17–19).

Here we report the direct growth of atomically

thin 2D hybrid perovskites [(C4H9NH3)2PbBr4]

and derivatives from solution. Uniform square-

shaped 2D crystals on a flat substrate with high

yield and excellent reproducibility were syn-

thesized by using a ternary co-solvent. We in-

vestigated the structure and composition of

individual 2D crystals using transmission elec-

tron microscopy (TEM), energy-dispersive spec-

troscopy (EDS), grazing-incidence wide-angle

x-ray scattering (GIWAXS), and Raman spec-

troscopy. Unlike other 2D materials, a struc-

tural relaxation (or lattice constant expansion)

occurred in the hybrid perovskite 2D sheets

that could be responsible for emergent features.

We investigated the optical properties of the 2D

sheets using steady-state and time-resolved pho-

toluminescence (PL) spectroscopy and cathodolu-

minescence microscopy. The 2D hybrid perovskite

sheets have a slightly shifted band edge emission

that could be attributed to the structural relaxa-

tion. We further demonstrated that the as-grown

2D sheets exhibit high PL quantum efficiency as

well as wide composition and color tunability.

A structural illustration of a monolayer 2D

perovskite (Fig. 1A) shows the case with six Br

atoms surrounding each Pb atom, and the four

in-plane Br atoms are shared by two octahedrons,

forming a 2D sheet of PbBr4
2–
. The negative

charges are compensated for by the butylam-

monium that caps the surfaces of the 2D sheet.

This structure is amenable to facile solution syn-

thesis. The ionic character of such materials is

stronger than the transition metal disulfides

and diselenides, and the bulk solid is soluble in

polar organic solvents such as dimethylformamide

(DMF) (20). To grow 2D sheets, a very dilute pre-

cursor solution was dropped on the surface of a

Si/SiO2 substrate and dried under mild heating

[see the supplementary materials (21)]. A DMF

and chlorobenzene (CB) co-solvent was initially

investigated, because CB helps to reduce the sol-

ubility of (C4H9NH3)2PbBr4 in DMF and pro-

mote crystallization. Because CB has a similar

boiling point and evaporation rate as DMF, the

drying of the solvents and the crystallization

process were uniform across the whole substrate.

We examined the products of this reaction by

optical microscopy and atomic force microscopy

(AFM), but instead of monolayers, thick par-

ticles with random shapes formed on the sub-

strate (fig. S1). Hybrid perovskites have limited

solubility in acetonitrile, and the solvent has

been used previously for making microscopic

hybrid perovskite single crystals (22). In this

case, acetonitrile evaporates more quickly and

helps induce the formation of the ultrathin 2D

hybrid perovskite sheets. When acetonitrile was

combined with DMF and CB, uniform square

sheets grew on the substrate (Fig. 1B). The edge

length of the square crystals ranged from 1 to

10 mm, with an average of 4.2 mm (the size dis-

tribution statistics can be found in fig. S2). The

detailed synthetic procedure and discussion of

the role of each solvent can be found in the sup-

plementary text (21).
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Feshbach enhanced s-wave scattering of fermions: direct

observation with optimized absorption imaging
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Abstract

Wedirectlymeasured the normalized s-wave scattering cross-section of ultracold 40Katoms across a

magnetic-field Feshbach resonance by colliding pairs of degenerate Fermi gases (DFGs) and imaging

the scattered atoms.We extracted the scattered fraction for a range of biasmagnetic fields, and

measured the resonance location to beB0=20.206(15)mTwithwidthΔ=1.0(5)mT.To optimize

the signal-to-noise ratio (SNR) of atomnumber in scattering images, we developed techniques to

interpret absorption images in a regimewhere recoil induced detuning corrections are significant.

These imaging techniques are generally applicable to experiments with lighter alkalis that would

benefit frommaximizing SNRon atomnumber counting at the expense of spatial imaging resolution.

1. Introduction

Feshbach resonances are widely used for tuning the interaction strength in ultracold atomic gases. In degenerate

Fermi gases (DFGs), the tunability of interactions provided by Feshbach resonances has allowed for studies of

the creation ofmolecular Bose–Einstein condensates (BECs) [1–3] aswell as observation of the phase transition

from the Bardeen–Cooper–Schrieffer (BCS) superconducting regime to the BEC regime at sufficiently low

temperatures [4–7]. Conversely,measuring interactions as a function of controlled parameters can be used to

characterize a Feshbach resonance.

A Feshbach resonance occurs when a diatomicmolecular state energetically approaches the two-atom

continuum [8, 9]. For amagnetic-field Feshbach resonance, a biasmagnetic field defines the relative energy of

the free atomic states in two hyperfine sublevels and themolecular state. Consequently, the Feshbach resonance

can be accessed by changing the biasfield. In cold atomic systemswhere only s-wave channels contribute to

scattering, the interactions are entirely characterized by the scattering length a. In the simple case where there are

no inelastic two-body channels, such as for the 40K resonance discussed in this work, the effect of the resonance

on the scattering length between two free atoms is [8]

⎛

⎝
⎜

⎞

⎠
⎟( ) ( )a B a

B B
1 , 1bg

0

where abg is the scattering length far from any resonance (background scattering length),Δ is thewidth of the

resonance, andB0 is the field value at which the resonance occurs.

The exact value of the resonant fieldB0 is difficult to calculate analytically and is commonly computed via

numericalmodels based on experimental input parameters [10–12] or determined experimentally [13, 14].

Many experimental techniques have been used to characterize Feshbach resonances. These include the

observation of atom loss due to three-body inelastic scattering,measurement of re-thermalization timescales,

and anisotropic expansion of a cloud upon release from a confining potential, which infer the elastic scattering

cross section from collective behavior of the cloud [15–17].More recently, precisemeasurements of the
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molecular binding energy have been performed, which can be used in conjunctionwith theoreticalmodeling to

extract the scattering cross section [18, 19].

Here direct scatteringwas the primary probe of the location andwidth of a Feshbach resonance.We collided

pairs of DFGs and imaged the resulting s-wave scattered atoms as a function of biasmagnetic field. This allowed

us to observe the enhancement in scatteringwithout relying on proxy effects.Wemeasured the fraction of atoms

scattered during the collision at different biasmagnetic fields and deduced the location andwidth of the

resonance.

In contrast to BECs, where scattering halos are readily imaged [20–22], the density of Fermi clouds is

typically≈100 times less than that of BECs5, making it necessary to enhance the strength of inter-atomic

interactions to directly detect the scattered atoms. In our diluteDFGs, evenwith the resonant enhancement of

the scattering cross section, only a small fraction of the atomswas scattered. Using typical absorption imaging,

direct detection of scattered atomswas difficult due to detection uncertainty that particularly affected regions of

low atomic density. To optimize the signal-to-noise ratio (SNR) for low atomnumbers, we absorption imaged

with fairly long, high-intensity pulses—a non-standard regime—which imparted a non-negligible velocity and

thereforeDoppler shift to the atoms. Simulation of the absorption imaging process was necessary for an accurate

interpretation of these images. Using the simulation-corrected images, we extracted the fraction of atoms

scattered in our collision experiment.

This paper is divided into twoparts. First, we study absorption imaging in the presence of a significant time-

dependentDoppler shift and showhowweuse our results to interpret data. Second, we describe our s-wave

scattering experiment and extract ameasure of the location andwidth of the Feshbach resonance in 40K.

2. Absorption imaging in the presence of strong recoil induced detuning

Absorption imagingmeasures the shadow cast by an atomic ensemble in an illuminating probe laser beamwith

angular frequencyωL. This imaging technique relies on optical transitions between ground and excited atomic

states. Such atomic transitions have an energy difference ,0 and a natural transition linewidthΓ.When

interactingwith a laserfield an atom scatters photons from the field into the vacuummodes. In the two-level

atom approximation, the rate of scattering is [25]

˜

˜ ˜
( )

I

I2 1 4
, 2sc 2

where Ĩ I Isat is the laser intensity in units of the saturation intensity, and ˜ is the detuning

L 0 in units of the natural linewidth.

An absorption image is obtained by shining an on- or near-resonant probe beam (generally ˜ 1) onto the

atomic cloud. Some of the light is scattered by the atoms, and the shadow cast by the atoms in the probe beam,
˜ ( )I x y, ,f is imaged onto a camera, as depicted in figure 1(a) (top). The probe light is reappliedwith the atoms

absent to calibrate the intensity ˜ ( )I x y,0 of light unaffected by the atoms (bottom).

Consider the light as it travels along the imaging axis ez through a 3D atomic density profile ρ(x, y, z).We

focus on a single pixel of the camera: sensitive to a single columnof atoms ρ(z), integrated in x and y over the

pixel, giving a single value of Ĩ0 and Ĩ .f Every atom scatters light according to equation (2). Therefore, the atoms
further along the imaging axis ez experience a reduced optical intensity due to attenuation of the laser field by the

other atoms (figure 1(b)). The intensity change from scattering as a function of z is

˜( )
( ) ( ) ( )

˜( )

˜ ˜
( )

I z

z
z z z

I z

I

d

d 1 4
, 3L sc 0 2

whereσ0 is the resonant scattering cross section. Integrating this equation [26] yields a straightforward relation

between the observed intensities Ĩ0 and Ĩf and the atomic columndensity ( )n z zd :

( ) ( )˜ ˜ ˜ ( )n I I I I1 4 ln . 4f f0
2

0 0

Wecall the columndensity deduced from this relation ( )n .0
1 When the probe intensity ismuch smaller than the

saturation intensity, Ĩ 1,0 and the probe light is on resonance, ˜ 0, the right-hand side of equation (4)

reduces to the optical depth, defined as ( )I IOD ln f 0 [26], giving the simple relationship ( )n OD.0
0 In

all other regimes, the optical depth is not constant and depends on the probe intensity and imaging time.

Equations (3), (4)neglect the atomic recoilmomentum and the resultingDoppler shift [27].When an atom

absorbs a photon from the laser lightfield it acquires amomentumkick kr in the ez direction. The associated

recoil velocity is v k m,r r wherem is the atomicmass and k hr is the recoilmomentum from the laser

withwavelengthλ. Each re-emitted photon imparts a similar recoilmomentum p ,e but overmany scattering

5
This is not the case for recently realized erbium and dysprosiumDFGs [23, 24], where strong dipolar interactions are present.
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events thismomentumdistribution averages to zero. Therefore the atomwill only acquire an average velocity

per photon vr along ez . The variance of p ,e however, is not zero, allowing the atoms to acquire somemomentum
transverse to the laserfield.While we ignore this correction, it results in the reduction of spatial resolution in the

final image and its effect on the atomic cloud is pictured infigure 1(c).

The average atomic velocity parallel to the lightfield after scatteringN photons isNvr and the laser frequency

as seen by the atoms isDoppler shifted k Nvr r from resonance. After an atom scatters N k v2 ,photons r r it

getsDoppler detuned by half a linewidth. For a probe intensity of Ĩ 1,0 the time it takes a single atom to scatter

on average thatmany photons is given by t N k v2 .recoil photons sc r r For 40Katoms imaged on theD2

transition, the case relevant for our experiment, N 178photons and trecoil=18.76 μs—for imaging times
longer than that the recoil induced detuning correction cannot be neglected. Furthermore, this detuning varies

bothwith imaging time t andwith distance along the propagation direction ez (figure 2). Thus, the laserʼs

spatially varying intensity profile in the atomic cloud also depends on time:

˜( )
( )

˜( )

˜( ) ˜( )
( )

I t z

z
t z

I t z

t z I t z

d ,

d
,

,

1 4 , ,
. 50 2

Assuming that the atoms do notmove significantly during the imaging time (wewill remove this assumption

shortly), the dimensionless detuning is

Figure 1.Absorption imaging. (a)Near resonant probe light illuminates the atoms, and the transmitted light (containing a shadowof
the atoms) is imaged on the camera. A second image takenwith no atoms provides a reference. (b)The probe beam is partially
absorbed as it traverses the cloud, and the intensity seen by atoms further along the imaging direction ez is lowered. (c)An atomic
cloud illuminated by a probe light field absorbs photons from the probe and re-emits them in all directions. This process results in a
net acceleration of the cloud in the direction of the probe light aswell as diffusive spreading in the transverse directions.

Figure 2.Dependence of velocity and detuning on position simulated for 40Kat three different imaging times and a probe intensity
Ĩ 0.8.0
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the relationship between the atomic density and the observed intensities is no longer straightforward.

Peturbative treatments of these equations also prove insufficient (see appendix A.1).

2.1. Simulation

To obtain a relationship between the atomic density and the observed intensities in this non-standard regime, we

numerically simulated the imaging process, including the recoil induced detuning.We used parameters relevant

to our experiment—theD2 transition of 40K,withλ= 766.701 nm,Γ/2π= 6.035MHz, vr= 1.302 cm s−1 and
Isat= 1.75 mW cm−2

[28]. The simulation obtained Ĩf as a function of imaging time t, atomic densityσ0n, and

probe intensity Ĩ .0

Weperformed two versions of this simulation. First, we took a simplistic approachwhere the spatial

distribution of atoms did not change appreciably during the imaging time: ( )vt I0 L sc —the stationary
assumption. Startingwith aGaussian density profile, we numerically integrated equations (5) and (6) and

obtained a simulated optical depth for a range of input probe intensities and atomic columndensities.We used

the results of this simulation to check the self-consistency of the stationary atomassumption and found it to be

invalid (see appendix A.2).

To account for the changing atomic distribution during the imaging pulse, we numerically simulated the

classical kinetics of atoms subject to the recoil driven optical forces, and obtained a dynamics adjusted version of

the simulated optical depth.We compared the optical depths predicted by each of the two simulations in the

parameter range t0.3 100 μs, Ĩ0.01 500 and n0.01 20 and found that the predicted optical

depthswere hardly changed by including the full time evolution (see appendix A.3). Thus, for the purposes of

deducing the atomic density from experimental optical depths, the stationary atom simulation is sufficient in the

experimentally relevant parameter regimewe explored.However, since there is no a priori reasonwhy this

should be sufficient, it is possible that for some range of experimental optical depths or imaging times this

correction is significant, or that it has some impact on the acquired transverse velocity of the atoms—an effect

not considered in our simulations. Furthermore, we simulated a range of initial density profiles ρ(z), and found

their impact on the simulatedOD to be negligible—the only observable is the integrated atomic density n, and

3D atomic densities cannot be reconstructed.

Figure 3 illustrates the effect of the recoil induced detuning correction as obtained fromour simulations. In

the limit of low probe intensity, Ĩ 1,0 the atomic velocities are hardly changed and the recoil induced

detuning correction is negligible. In the limit of high probe intensity ˜ ˜I ,0 even far detuned atomswill scatter

light at theirmaximum rate and the overall absorptionwill again be unaffected by the correction. In the

intermediate regime, there is a significant deviation between the optical depth predicted by equation (4) and the

simulated optical depth, and this deviation becomes strongerwith longer imaging times.

Figure 3.Optical depth as a function of probe intensity as predicted by the simulation (dots) and by equation (4) (curves), for three
different imaging times, and for column densitiesσ0n=1.6 (blue) and 0.2 (green). As expected, the predictions agree in both the high
and low intensity limits, and differ for probe intensities comparable to the saturation intensity and longer imaging times.
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This simulation provided uswith a correction procedure to interpret experimentally observed Ĩf and Ĩ .0 For

a given imaging time, the simulation predicted afinal intensity as a function of probe intensity and atomic

columndensity.We inverted this prediction to obtain an atomic columndensity given our observed intensities.

For interpreting experimental images, we used the optical depths predicted by the traveling atom simulation,

ODsim.

2.2. SNRoptimization

Weadded shot noise to our simulation and established optimal imaging parameters tomaximize the SNRof this

detection scheme.We considered Poisson noise on the detected arriving photons (i.e., photoelectrons) in both

the initial andfinal images I0 and If, with standard deviation proportional to q N ,e p where qe is the quantum

efficiency of the camera (0.66 for our camera) andNp is the photon number.We then propagated the shot noise

in the two images using standard error propagation techniques through the correction scheme described in

section 2.1 to obtain the uncertainty in a deduced columndensity, .n0
Wedefine the SNR as n .n0 0

As seen infigure 4(a), after about 40 μs extending the imaging time no longer yields appreciable

improvement in SNR. Imaging for 40 μs as opposed to 10 μs, where the uncorrectedmodel is appropriate,

improves the SNRby a factor of 1.5.We therefore performed the experiments described in the second section at

40 μs imaging time. Figure 4(b) shows that the optimal probe intensity varies with the atomic columndensity.

For low atomnumbers, n 0.1,0 a probe intensity of Ĩ 0.60 is best. However, in our experiment the probe

intensity had aGaussian profile andwas not uniformover thewhole image. The typical probe intensities used in

our experiments varied over the ˜ –I 0.1 0.70 range.

2.3. Calibration of saturation intensity

The calibration of the observed signal in units of the saturation intensity is crucial to ourmeasurement of the

columndensities. Our absorption images were taken using a charge-coupled device camera. For each pixel, the

camera returned an integer number of counts proportional to the radiant fluence seen by that pixel. However,

the proportionality constant depended onmany factors, such as the quantum efficiency of the camera, the

electronic gain during the readout process and losses in the imaging system.Oneway to determine this

proportionality constant is to experimentally calibrate the saturation intensity in counts per unit time.

To calibrate the saturation intensity in camera counts per unit time, we took absorption images of the atoms

at three different imaging times (40, 100, and 200 μs)with varying probe intensities. For each imagewe obtained

Ĩ0 and Ĩf in counts permicrosecond by averaging over a few pixels in a region of constant atomic column density.

We then simultaneouslyfit our simulated optical depthODsim to this full data set, with the atomic densityσ0n

and Isat in counts permicrosecond as free parameters. As seen infigure 5, themodel produced a goodfit to the

experimental data, and provided a calibration of the saturation intensity for our experiment.

Figure 4. SNR for three different column densities after correcting for recoil induced detuning. (a) SNR as a function of imaging time
for a probe intensity of Ĩ 5.00 and (b) SNR as a function of probe intensity for an imaging time of 50 μs.
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3. s-wave scattering experiment

For ourmeasurement of the Feshbach resonance location andwidth, we collided two counter-propagating 40K

clouds in a spinmixture of ∣F m9 2, 9 2F and ∣F m9 2, 7 2F hyperfine states and observed

the resulting s-wave halo of scattered atoms.Wemeasured the dependence of the scattered atomic fraction on

the biasmagnetic field in the vicinity of the Feshbach resonance.We used this data to extract the location of the

resonance at 20.206(15)mTwithwidth 1.0(5)mT, consistent with the accepted values of 20.210(7)mTand 0.78

(6)mT [7].

3.1. Experimental procedure

Our experiment is a hybrid 40Kand 87Rb apparatus, previously described in [29–31]. Initially, we prepared a spin

polarized ∣F m9 2, 9 2F DFGof 4 105 atoms of 40K at a temperature ofT≈0.4TF, whereTF is

the Fermi temperature, in a crossed optical dipole trapwith frequencies ( ) ( ), , 2 39, 42, 124x y z Hz

(see appendix B).

Tomap out the entire Feshbach resonancewithout the added losses associatedwith going through the

resonance [8], we needed to create equal spinmixtures of ∣F m9 2, 9 2F and ∣F m9 2, 7 2F

on either side of the resonance.We ramped the biasmagnetic field to 19.05 mT (21.71 mT) and turned on a

42.42MHz (47.11MHz) rffield6 resonant with the Zeeman splitting between the two states when preparing the

mixture below (above) the Feshbach resonance.We then sinusoidallymodulated the biasfield at 125 Hz for

0.5 s, with a 0.14 mT amplitude, producing an equalmixture of the two hyperfine states. The depolarization

allowed the fermions to re-thermalize, allowing us to further evaporate in the dipole trap [32]. These hyperfine

states of 40Kwere then used to study their Feshbach resonance.

After evaporation, we ramped the biasfield in a two-step fashion to the desiredfield value near the Feshbach

resonance. The two-step procedure was designed to allowus to approach the set-point quickly and avoid

additional losses. This procedure used two sets ofHelmholtz coils—large coils that provided themajority of the

biasfield but had a long inductive timescale, and smaller coils only capable of generating 0.59 mTof bias, but

with a shorter inductive timescale.We approached thefield using the large coils to bring themagnetic field to a

set-point 0.59 mTabove or below the intended biasfield.We held the atoms at this field for 100 ms to allow the

eddy currents induced by the large coils to settle, and then used the smaller coils to quickly change the biasfield

the remaining 0.59 mT. For all set-points, the data was taken approaching fromboth above and below the

Feshbach resonance7.

Once at the intended biasfield, we split the cloud into two spatially overlapping components with opposite

momenta and observed scattering as they separated. These counterpropagating components were created using

Kapitza-Dirac pulses of a 1D retro-reflected near-resonant optical lattice (λL=766.704 nm)with 8EL depth,

where E k m2L
2

L
2

K is the lattice recoil energy and k 2L is the recoilmomentum.We rapidly pulsed

Figure 5.The optical depth as a function of probe intensity for three imaging times: t=40 μs (black), t=75 μs (blue), t=100 μs
(red). The dots represent experimental data and the curves represent the bestfit of simulated data. The optimalfit parameters pictured
are aσ0n of 1.627(5) and saturation intensity of 29(7) counts/μs. The dashed curve represents the theoretical predictionwithout recoil
induced detuning corrections.

6
The rf intensity at these frequencies was too low for us to calibrate the coupling strength.

7
An extra data point was taken on each side far from the resonance using only one approach.
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this lattice on and off with a double-pulse protocol [33]. The pulse sequencewas optimized to transfermost of

the atoms into the k2 L momentum states. Since the initial Fermi gas had awidemomentum spread (here,

k k2 2.5 ,L F where kF is the Fermimomentum), and the lattice pulsing is amomentumdependent process

[34], not all the atomswere transferred into the targetmomentum states.We optimized our pulse times to

minimize the atoms remaining in the zeromomentum state.

We then released the atoms from the trap and allowed 1 ms for the two oppositemomentum states to pass

through each other while interacting at themagnetic field set-point. For data taken approaching the set-point

frombelow, we then ramped down the field and imaged the atoms. For data taken approaching the set-point

from above,moleculesmay have been createdwhen crossing the Feshbach resonance. Therefore, we first

ramped thefield up to a point above the resonance to dissociate anymolecules that were created and then

quickly ramped the field back down and imaged the atoms. After a total time-of-flight tTOF=6.8 ms, we used a
40 μs imaging pulsewith Ĩ 0.60 at the center of the probe laser, chosen for SNRoptimization as described in

section 2.2.

3.2.Magneticfield calibration

Themagnetic fields produced by our coils in the regime of interest were independently calibrated by rf-

spectroscopy on the ∣F m9 2, 9 2F to ∣F m9 2, 7 2F transition.We prepared a spin

polarized state and ramped the large coils to variable set-points.We then illuminated the atomswith a rf field

with frequency νrf and performed adiabatic rapid passage (ARP) by ramping the smaller coils 0.0284 mT in

250 ms.We applied a Stern–Gerlach pulse and imaged the atoms tomeasure the fractional population in the

∣F m9 2, 9 2F and ∣F m9 2, 7 2F states.Wefit the fractional population as a function of

current to aGaussian function8. The center of theGaussian corresponded to the resonantmagnetic field, which

was produced by the high inductance coil setpoint plus half theARP, 0.0142 mT,with an uncertainty given by

theGaussianwidth.We used the Breit–Rabi formula to determine the resonant field value at νrf.We did this for

five different rf frequencies, and acquired afield calibrationwith an uncertainty of 0.004 mT,whichwas

included in the listed uncertainty on ourmeasured value ofB0.

3.3.Methods

Wefirst processed the s-wave scattering images by comparing the observedOD to simulations taking into

account the recoil induced detuning as described in section 2. An example of images before and after processing

are shown infigure 6. The processing constituted a≈30% change in the column density.

We counted the fraction of atoms that experienced a single scattering event for each image. Single scattering

events are easily identified, as two atoms that scatter elastically keep the same amplitude ofmomentum, but

depart along an arbitrary direction. Therefore, an atom traveling at k2 L to the right that collides elastically with

an atom traveling at k2 L to the left will depart with equal and oppositemomenta k2 L at an arbitrary angle,

and after a time-of-flight sufficiently long to convert initialmomentum into position, as ours was, such atoms

will lie in a spherical shell, producing the scattering halo pictured infigure 7(a).

Absorption images captured the integrated columndensity along ez , a projected 2D atomic distribution. To

extract the radial dependence of the 3Ddistribution from the 2D image, we performed a standard inverse Abel

transform [35]. The inverse Abel transform assumes cylindrical symmetry, whichwas present in our case, with

the axis of symmetry along ex, defined by the lattice.We thus obtained the atomic distribution ρ(r, θ) as a

function of r, the radial distance from the scattering center, and θ, the angle between r and symmetry axis ex,

integrated overf, the azimuthal angle around the x axis.

We then extracted the number of scattered atomsNscat as a fraction of the total atomnumberNtot for each

image, as shown infigure 7(b). The unscattered atomnumberwas the number of atoms in the twounscattered

clouds. The number of atoms that underwent a single scattering eventwas the number of atoms outside the

Fermi radius of the unscattered clouds, but inside the arc created by rotating the Fermimomentum kF around

the original center of the cloud (red arcs infigure 7(b)). For both the scattered and unscattered quantities, we

extrapolated to include atoms thatwould fall outside the field of view of our camera. The atoms in the center

regionwere not counted as theywere originally in the zeromomentum state and could not contribute to the

scattering halo under study.We did not account for possible s-wave scattering between the atoms found in the

zeromomentum state and one of the±2kLmomentum states in this treatment.

Sincewewere in the low energy regime (the atomicmomentumwasmuch smaller than themomentum set

by the van derWaals length k k l1 ,L F vdW andwewerewell below the p-wave threshold temperature [32]),

the scattering cross-sectionwas given byσ=4π a2. The scattering cross-sectionσ gives the probability

Pscat=σN/A that a single particle will scatter when incident on a cloud of atomswith a surface density ofN/A,

whereA is the cross-sectional area of the cloud andN is the number of atoms in the cloud. In our case, each half

8
Due to our low rf coupling and high noise, we did not fit to the traditional Loretzianmodel.
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Figure 6.Examples of our absorption images after 6.8 msTOF. The 1D lattice impartsmomentum along ex . In each image, the two
large clouds on the left and right are the atoms in the±2 kLmomentumorders that passed through each other unscattered. The
smaller cloud in the center is composed of the atoms that remained in the lowest band of the lattice after pulsing, and thus obtained no
momentum. This cloud appears somewhat depleted closer to resonance due to scatteringwith atoms in the±2 kLmomentumorders
—an effect not taken into account in our analysis. The thin spread of atoms around these clouds are the atoms that underwent
scattering. (Top)Rawoptical depths, far from resonance (19.68 mT) on the left and close to resonance (20.04 mT) on the right,
(Bottom) atomic columndensityσ0n

sim obtained by applying corrections to raw optical depth above based on simulations
(section 2.1).

Figure 7. (a)Our experimental setup. Top. The 1D lattice was pulsed, impartingmomentum to the atoms and defining the axis of
symmetry. Bottom. After time of flight, the two clouds traveling along±ex directions have separated and the atoms that underwent a
single scattering event were evenly distributed in a scattering halo around the unscattered clouds. (b) Inverse Abel transformof
corrected image. The atomswithin the Fermimomentum kF of each unscattered cloud center are in the unscattered region and
counted towards the total unscattered number. The atomswithin the radius k k r k kL F L F but outside the unscattered
region are counted towards the number of single scattered atoms.

8
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of the initial cloud, with atoms numberNtot/2, was incident on the other half. Thus, the number of expected
scattering events was ( ) ( )N N N N A2 2 4 .scat tot tot tot

2 AssumingAwas constant for all our data, we

defined afit parameter b a A4 4 ,0 bg
2 where abg is the background scattering length.We thus adapted

equation (1) to obtain thefit function

⎛

⎝
⎜

⎞

⎠
⎟ ( )

N

N
b

B B
C1 , 7scat

tot
2 0

0

2

whereB0 is the resonantfield value andΔ is thewidth of the resonance, the parameters in equation (1), and the

offsetC accounts for any systematic difference in the initial and final intensity images with no atoms present.

For each value of the biasmagnetic field, we took 15 nominally identical images, allowing us to compensate

for shot-to-shot atomnumberfluctuations.Wefit the fraction of scattered atomsNscat/Ntot versus the total

atomnumberNtot for each of these 15 images to a line. The slope of thisfit was taken to be the value ofNscat/Ntot
2

at that biasmagneticfield, and the variance of thefit gave the uncertainty on that data point.

3.4. Results

Our data is presented infigure 8. The red curve depicts a bestfit of themodel given in equation (7). Thefit

parameters we extractedwereΔ=1.0(5)mTandB0=20.206(15)mT.Toobtain thefit, we used data taken by

approaching the resonance from above for points abovewherewe expected the resonance to be and data taken

approaching the resonance frombelow for points below.We also excluded from the fit data points very near the

resonance, as there the assumption n 1 is no longer valid and the problemmust be treated

hydrodynamically [8]. Due to this, we could not obtain usable data very close to the resonance, explaining the

large uncertainty on the resonancewidth.

The accepted values for the 40K s-wave Feshbach resonance for the ∣9 2, 9 2 and ∣9 2, 7 2 states are

B0=20.210(7)mTandΔ=0.78(6)mT [7], which is in good agreementwith ourfindings. Although the data

without the recoil induced detuning correctionwere≈30%different from the corrected data, the optimal

parameters from fitting the uncorrected datawerewithin our uncertainties from the values listed above. The

resonance locationwas largely unaffected by the correction, as the scattering cross-section diverges there,

making it insensitive to the precise values. Thewidthmay have been affected, however the uncertainty on the fit

is too large for the effect to be significant. Performing the correctionwas still necessary to ensure the values were

proportional to the scattering cross section and to obtain a trustworthy result.

Some potential sources of systematic uncertainty that we did not account for include scatteringwith atoms

that did not receive amomentumkick from the lattice pulsing and the impact ofmultiple scattering events.

4. Conclusion

We studied the effects of recoil-induced detuning on absorption images and found an imaging time that

maximized SNR to be≈40 μs for 40Katoms.We used these results to directly image s-wave scattering halos of

the Fermi gas around the≈20.2 mTFeshbach resonance and verify the resonance location andwidth.Our

imaging analysis can be used in any absorption imaging applicationwhere SNRoptimization is critical.

Figure 8.Normalized scattered population plotted versus bias fieldB. Green dots represent data taken coming frombelow the
resonance, and blue dots represent the data taken coming from above the resonance. The red curve depicts the line of best fit. The
regimewhere the scattering length is likely large enough for the atoms to behave hydrodynamically is shaded in gray, and data points
in that areawere excluded from thefit. Resonant field valueB0 from literature and as found in this work are indicated.
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AppendixA

A.1. Peturbative treatment

By considering equations (5), (6) perturbatively in imaging time, we can obtain corrections to the column

density due to recoil induced detuning to second order [36]:

( )( )n c c t c t , where A.10
2
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2
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However, as shown infigure A1(a), the perturbative treatment is only accurate to times up to the recoil time

trecoil—defined as the time it takes a single atom to getDoppler shifted from resonance by half a linewidth—after

which this prediction begins to diverge. To adequately correct for the recoil induced detuning of the atoms,

numerical simulation is necessary.

A.2. Stationary atommodel

To solve equations (5), (6), we divided the cloud into spatial bins. In this approximation, the number of atoms in

each binwas time-independent. The algorithmused is shown in algorithm1, inwhichwe took aGaussian

profile for our initial density distribution.We call the optical depth simulated by this algorithm the simulated

optical depthODsim1.

Algorithm1. Stationary atommodel

˜[ ] ˜I n t I0, 0 {n is the bin index, t is the time index}

˜[ ]n t, 0 0 {light initially resonant}

Hf=0 {Radiantfluence seen by camera after passing through cloud}

for t=0 to tf do {loop over time steps}

for n=1 toN do {loop over bins,N is total bin number}

A=σ0ρ[n] dz {dz is the size of spatial step}

( [ ])B v t c ndr {dt is the size of the time step}
˜[ ] ˜[ ] ˜[ ] ( ˜[ ] ˜[ ])I n t I n t AI n t n t I n t, 1, 1, 1 4 , 1 1,2 {equation (5)}
˜[ ] ˜[ ] ( ˜[ ] ˜[ ])n t n t B I n t I n t, , 1 1, , {equation (6)}

end for

˜[ ]H H I N t t, df f {collecting totalfluence seen by the camera}

end for

( ˜ )H I tOD ln f f
sim1

0

Wechecked the validity of our simulation in the limits where the problem is analytically solvable. In the limit
where the probe intensity ismuchweaker than the saturation intensity, Ĩ 1,0 the atoms’ velocities are hardly

changed, and equation (5) reduces to

˜( ) ˜( ) ( )
I z

z
I z

d

d
, from which we recover the analytic form, A.30

˜ ˜ ( )( )n I Iln . A.4f0
0

0

In the limit where the probe intensity ismuch larger than the saturation intensity, ˜ ˜I ,0 even far detuned

atomswill scatter light at theirmaximum rate. The time dependence of the detuning can thus be neglected, and

equation (5) becomes

˜( )
( )

I z

z

d

d
, which integrates to A.50
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˜ ˜ ( )n I I . A.6f0 0

We recognize the right-hand sides of equation (A.4) and equation (A.6) as the two terms in equation (4). Thus, as

shown infigure 3,ODsim1 coincides with the optical depth as predicted by equation (4) in both the small and

large probe intensity limits.

We used the results of this simulation to check the self-consistency of the stationary atom assumption, i.e.

the distance traveled by the atoms (as deduced from integrating the acquired recoil velocity over the imaging

time) is less than the bin size. As shown infigure A1(b), not only do the atoms travelmore than the bin size, but

they travel far beyond the initial extent of the cloud.Moreover, owing to the higher initial scatter rate, the back of

the cloud overtakes the front for long imaging times. Thus, the atomic distribution as a function of position

changes dramatically during the imaging pulse, and the stationary assumption is invalid.

A.3. Traveling atommodel

To account for the changing atomic distribution during the imaging pulse, we numerically simulated the

classical kinetics of atoms subject to the recoil driven optical forces. To simulate large ensembles in a reasonable

time, wemodeled composite atoms, each describing the aggregate behavior ofNca atoms. The amended

algorithm is shown in algorithm2.

Algorithm2.Travelling atommodel

z[n]=z0, ˜[ ]n 0 {initialize position and detuning for each composite atom, labeled by index n}

O[i]=n {make a list of composite atom indexes, ordered by position}
˜[ ] ˜I n t I0, 0 {t is the time index}

Hf=0 {Radiantfluence seen by camera after passing through cloud}

for t=0 to tf do {loop over time steps}

for i=1 toNca do {loop over composite atoms}

n=O[i] {apply probe intensity to composite atoms in order of appearance}

A=σ0Nca dz {dz is length over which atomswere grouped into single composite atom}

( )B v t cNdr sa {dt is the time step}
˜[ ] ˜[ ] ˜[ ] ( ˜[ ] ˜[ ])I n t I n t AI n t n I n t, 1, 1, 1 4 1,2 {equation (5)}
˜[ ] ( ˜[ ] ˜[ ])n B I n t I n t1, , {equation (6)}

[ ] ˜z n t kd 2 r { ˜ k2 r is the velocity at ˜ detuning}

end for

O[i]=sort(n, key=z[n]) {sort composite atom indexes by current position}

˜[ ]H H I N t t, df f {collecting totalfluence seen by the camera}

end for

( ˜ )H I tOD ln f f
sim2

0

To validate our code, we again checked the velocity predicted in thismodel against known limits. One such

limit is that of a single composite atom. In this case, there is no attenuation, and the intensity seen by the

composite atom is constant at Ĩ .0 Only the detuning evolves in time, and equations (5) and (6) give

˜( ) ˜

˜ ˜
( )

t

dt

k v I

I

d

2 1 4
. A.7r r

2

Equation (A.7) can be solved numerically, and is in agreementwith our simulation, as seen infigure A2(a).

We used thismodel to study the time evolution of the cloud shape during imaging and visualized the phase

space evolution of superatoms, shown infigure A3. The cloud shape is strongly distorted during imaging.

We compared the optical depths predicted by each of the twomodels, ODsim1 andODsim2. As seen figure

A2(b), the predicted optical depthswere hardly changed by including the full time evolution:
OD OD OD 0.01sim1 sim2 sim1 for times up to 100 μs, Ĩ0 up to 50 andσ0nup to 2.0.

Appendix B

Weused a Zeeman slower to slow both 87Rb and 40Kbefore capturing in amagneto-optical trap (MOT). After 7

seconds ofMOT loading 40K followed by 1.5 s of loading both 40K and 87Rb, we cooled both species in optical

molasses for 2 ms.We optically pumped both species into theirmaximally stretchedmagnetically trappable

states, ∣F m9 2, 9 2F for 40Kand ∣F m2, 2F for 87Rb. Both species were then loaded into a

quadrupolemagnetic trapwith a gradient of≈7.68 mT cm−1 along ez , and cooled evaporatively via forced rf

evaporation, sweeping the rf frequency from18 to 2MHz in 10 s. Themagnetic trapwas plugged by a

λ= 532 nmbeam, tightly focused to≈30μmand≈5W in power, providing a repulsive potential around the
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zerofield point to preventMajorana losses. Since the 40K atomswere spin polarized and therefore only

interacted by the strongly suppressed p-wave interactions, they re-thermalized largely due to sympathetic

coolingwith 87Rb atoms.

We then loaded the atoms into a crossed optical dipole trap, provided by a 1064nm fiber laser, and continued

evaporative cooling by slowly ramping down the dipole trap to trap frequencies of ( ), ,x y z 2

( )39, 42, 124 Hz (for potassium atoms) in the three spatial directions, while also turning off the quadrupole

field.We then usedARP to transfer the 87Rb atoms from the ∣F m2, 2F state to the ∣F m1, 1F

absolute ground state via 6.8556 GHzmicrowave coupling (20.02 MHz from the zero field resonance) followed

by amagnetic field sweep from−0.469 to−0.486 mT in 50 ms. This state was chosen tominimize spin changing

collisions with 40K atoms during any further evaporation [37].We then briefly applied an on-resonant probe

laser, ejecting any remaining 87Rb atoms in the F=2manifold from the trap.We again usedARP to transfer the
40Katoms into the ∣F m9 2, 9 2F state by using a 3.3 MHz rf field and sweeping the biasmagnetic field

from−0.518 to−0.601 mT in 150 ms.

Figure A2. (a)The velocity of a single composite atom as a function of probe intensity for various imaging times. Simulation data
(dots) and numerical solutions of equation (A.7) (lines) are in agreement. (b)Top.Optical depth as a function of probe intensity for an
imaging time t=100μs. OD1 andOD2 are optical depths predicted from a given columndensity by equation (4) and (A.1)
respectively. The two versions of simulated optical depth,ODsim1

(green curve) andODsim2
(green dots) are plotted. Bottom. The

fractional difference between two versions of the simulatedOD, OD OD OD .sim1 sim2 sim1

Figure A1. (a)Column densities deduced from simulated optical depths of on-resonant imaging at probe intensity Ĩ 0.8.0 The
input column densitywasσ0n=1.6.σ0n

1 is the high probe intensity corrected column density given by equation (4).σ0n
2 is the

column density as expanded to second order in time, equation (A.1). (b)Position of atoms as a function of imaging time for atoms in
the first (solid green), middle (dashed red), and last (dotted blue) bins of the simulated density distribution for an initial cloud 50μm
in extent. The probe intensity used in this calculationwas 1.2 Isat, and the column density wasσ0n=1.6.
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We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest
Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized
pumping set by the global—topological—properties of the bands. In contrast, our geometric charge pump
for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by
local—geometrical—properties of the band structure. Like topological charge pumps, for each pump cycle
we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave
packet’s position in each unit cell, i.e., the polarization.

DOI: 10.1103/PhysRevLett.116.200402

Ultracold atoms in optical lattices provide a unique
setting for experimentally studying concepts that lie at
the heart of theoretical condensed matter physics, but are
out of reach of current condensed matter experiments.
Here, we focus on the connection between topology,
geometry, and adiabatic charge pumping [1–7] for Bose-
Einstein condensates (BECs) in cyclically driven lattice
potentials.
Particles in periodic potentials form Bloch bands with

energy ϵnðqÞ and eigenstates jΨnðqÞi ¼ expðiqx̂ÞjunðqÞi
labeled by the crystalmomentumq alongwith the band index
n. The states juni retain the underlying periodicity of the
lattice, set by the unit cell size a. Motion in lattices is
conventionally understood in terms of these bands: metals
arematerialswith partially filled bands,while insulators have
completely filled bands. In this context, a topological charge
pump is a counterintuitive device, where charge motion—
conduction—accompanies the adiabatic and cyclic drive of
an insulating lattice’s parameters. Thouless showed that this
conduction is quantized, completely governed by the band
topology [8,9]. Although various charge pumps have been
realized in condensed matter devices—such as modulated
quantum dots [10–12], one-dimensional (1D) channels
driven by surface acoustic waves [13], and superconducting
qubits [14]—Thouless pumps remain unrealized in con-
densed matter settings but have been demonstrated in recent
experiments with cold-atom insulators [15,16].
Here, we break from this established paradigm for

insulators and create a quantum charge pump for a BEC
in a 1D lattice [17–19] occupying a single crystal momen-
tum state q. This charge pump gives nonquantized motion
sensitive to the Berry curvature at q integrated over the
whole pump cycle, a local geometric quantity, rather than a
global topological quantity. Berry curvatures play an
important role in condensed matter systems. An iconic

example is the integer quantum Hall effect, where the
electrons acquire an anomalous transverse velocity propor-
tional to the Berry curvature and the quantized Hall
conductance is given by the Berry curvature integrated
over the whole two-dimensional (2D) Brillouin zone (BZ)
[20]; recent cold-atom experiments in 2D have measured
such curvatures integrated over part [21,22] or all [23] of
the BZ. In an analogous way, 1D lattice systems, driven
cyclically in time t, have a generalized Berry curvature
defined on the 2D effective BZ in q, t space. This curvature
is the source of an anomalous velocity [24], utilized to drive
an adiabatic quantum pumping process.
The Rice-Mele model [25–28] of a bipartite lattice with a

unit cell consisting of A and B sites is the paradigmatic
system for understanding quantum pumps. The
Hamiltonian for this tight-binding model is

ĤRM ¼ −
X

j

½ðtþ δtÞb̂†j âj þ ðt − δtÞâ†jþ1b̂j þ H:c:(

þ Δ

X

j

ðâ†j âj − b̂†j b̂jÞ; ð1Þ

where â†j and b̂†j describe the creation of a particle in unit
cell j and sublattice site A or B, respectively. The nominal
tunneling strength t is staggered by δt, and the sublattice
sites are shifted in energy by Δ.
We investigated quantum pumping in a novel 1D (along

ex) bipartite magnetic lattice (building on Refs. [29,30])
that in effect allowed independent control of t, δt, andΔ. As
shown in Figs. 1(a) and 1(b), our magnetic lattice for 87Rb
arose from the interplay of one rf and two Raman fields that
coupled the jf ¼ 1;mF ¼ )1; 0i “spin” states comprising
the f ¼ 1 ground state hyperfine manifold, which were
Zeeman split by ℏωZ. The natural units of momentum and
energy are given by the single photon recoil momentum
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ℏkR¼2πℏ=λR and its corresponding energy ER¼ℏ
2k2R=2m,

where m is the atomic mass. In the frame rotating at the rf
frequency δω and under the rotating wave approximation,
the combined rf-Raman coupling lead [31] to the overall
Hamiltonian

Ĥ ¼ ℏ
2k̂2x

2m
þ Ωðx̂Þ · F̂þ ĤQ; ð2Þ

where F̂ is the total angular momentum vector operator. We
interpret Ωðx̂Þ ¼ ½Ωrf cosðϕÞ þ Ω̄ cosð2kRx̂Þ;−Ωrf sinðϕÞ−
δΩ sinð2kRx̂Þ;

ffiffiffi

2
p

δ(=
ffiffiffi

2
p

as a spatially periodic effective
Zeeman magnetic field, in which Ωrf is the rf coupling
strength; Ω̄ ¼ Ωþ þ Ω− and δΩ ¼ Ωþ −Ω− are derived
from the individual Raman coupling strengths Ω); δ ¼
δω − ωZ is the detuning from Raman-rf resonance; and ϕ is
the relative phase between the rf and Raman fields.
Additionally, HQ ¼ −ϵðℏ2

Î − F̂2
zÞ=ℏ describes the quad-

ratic Zeeman shift, where Î is the identity operator.
This spatially varying effective magnetic field produces a

1D bipartite lattice [2,32] with lattice constant a ¼ λR=2
and with adiabatic (Born-Oppenheimer) potentials depicted
in Fig. 1(c). This magnetic lattice is most easily concep-
tualized for small δΩ: the Ω̄ cosð2kRx̂Þ term provides

periodic potentials for the jmx ¼ )1i states spatially
displaced from each other by a=2 [dashed curves in
Fig. 1(c)]; the resulting mx ¼ )1 sites are then staggered
in energy, giving Δ ≈ Δmax cosðϕÞ, with Δmax ¼ Ωrf=

ffiffiffi

2
p

.
The Ωy term couples these sublattices together: the rf
term −Ωrf sinðϕÞ generates constant height barriers
(largely specifying t), which become staggered by the
−δΩ sinð2kRx̂Þ contribution (largely specifying δt).
Figure 1(d) plots the energies of the resulting lowest two

bands as a function of ϕ (modulating Δ cosinusoidally).
Although our lattice is not in the tight-binding limit, the
band structure qualitatively matches that of the Rice-Mele
model. In the remainder of this Letter, we focus on the
lowest band n ¼ 0 and henceforth omit the band index.
As illustrated by the shading in Fig. 1(c), in each unit cell

the sublattice sites are labeled by their F̂x spin projection
with the jmx ¼ −1i site on the left and jmx ¼ þ1i site on
the right. To confirm this, we adiabatically loaded
jmz ¼ −1i BECs into the lattice’s ground state by simul-
taneously ramping the detuning from 5ER to 0 while
ramping on the coupling fields in 10 ms. Following
preparation, our measurement sequence began with a
π=2 spin rotation along ey, allowing us to measure the

eigenstates of F̂x in our F̂z measurement basis. We
achieved this π=2 rotation (rot) with a 44 μs pulse from
an additional rf field with phase ϕrot ¼ π=2 and strength
ℏΩrf;rot ¼ 2.2ER, applied while the Raman coupling was
greatly reduced (Ω̄ ≪ Ωrf;rot) and the lattice rf coupling was
off (Ωrf ¼ 0). We then abruptly removed the remaining
control fields along with the confining potential and
absorption imaged the resulting spin-resolved momentum
distribution after a 20 ms time-of-flight period in the
presence of a magnetic field gradient along ey.
Figure 2 shows the measured F̂x spin composition [33]

and magnetization for adiabatically loaded BECs as a
function of ϕ with δΩ ¼ 0. Because ΔðϕÞ controls the
relative depth of the jmx ¼ )1i wells, we observe ground
state spin populations that follow this “tilt.” For example,
when ϕ ¼ 0 or π the double well is strongly tilted and we
observe the near perfect spin magnetization, consistent with
atoms residing in the individual sublattices; in contrast,
when ϕ ¼ π=2, the double wells are balanced and we
observe equal populations in each jmxi state as expected for
equal occupancy of both sublattices. Thus, the magnetiza-
tion [Fig. 2(b)] measures the mean atomic position within
each unit cell, i.e., the polarization.
Having constructed a physical realization of the Rice-

Mele model, and demonstrated the requisite control and
measurement tools, we now turn our attention to topological
and geometrical charge pumping. These fundamentally
quantum mechanical effects rely on the canonical commu-
tation relation between position and momentum. Consider
a finite wave packet with a center of mass (c.m.) position
hxi ¼ hΨjx̂jΨi, subject to a lattice Hamiltonian Ĥ that is

FIG. 1. Bipartite magnetic lattice. [(a) and (b)] Dipole trapped
87Rb BECs subject to a bias magnetic field B0ez had a
Zeeman splitting ωZ=2π ¼ 0.817 MHz and a quadratic shift
ℏϵ ¼ 0.03ER. These BECs were illuminated by four Raman
beams and an rf magnetic field. Each of the two Raman couplings
(strengthsΩ)) was derived from two cross-polarized Raman laser
beams with frequency components ω and ωþ δω. (c) Adiabatic
potentials colored according to hmxi computed for ℏðΩ̄;Ωrf ; δÞ ¼
ð6; 2.2; 0ÞER, δΩ=Ω̄ ¼ −0.1, and ϕ ¼ π=4. The dashed curves
plot the)ℏΩx contributions to the potential experienced by states
jmx ¼ )1i. (d) Lowest two energy band energies plotted as a
function of ϕ, otherwise with the same parameters as (c).
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adiabatically modulated with period T, i.e., ĤðtÞ ¼
Ĥðtþ TÞ. After one cycle, any initial crystal momentum
state is transformed, jΨðqÞi → exp½iγðq̂Þ(jΨðqÞi, at most
acquiring a phase, where q̂ is the crystal momentum
operator; this defines the single-period evolution operator
ÛT ¼ exp½iγðq̂Þ(. The time-evolved position operator
Û†

T x̂ÛT ¼ x̂ − ∂ q̂γðq̂Þ is displaced after a single pumpcycle.
The displacement is particularly simple in two limits:

when just a single crystal momentum state is occupied or
when every crystal momentum state in the BZ,
−π=a ≤ q < π=a, is occupied with equal probability. As
for our BEC, when a single jq0i state is occupied the
displacement is Δxðq0Þ ¼ −∂qγðqÞjq0 . Both the dynamical
(D) phase γDðqÞ ¼ −ϵ̄ðqÞT=ℏ from the time-average energy
ϵ̄ðqÞ and the geometric Berry (B) phase γBðqÞ ¼
i
R

T
0
huj∂tuidt contribute to γðqÞ ¼ γDðqÞ þ γBðqÞ. In agree-

ment with conventional descriptions [18,24,27], this predicts
a mean velocity v̄ðqÞ ¼ ∂qϵ̄ðqÞ=ℏ − T−1

R

T
0
Fðq; tÞdt. The

first term is the usual group velocity and the second term—

the anomalous velocity—derives from the Berry curvature
Fðq; tÞ ¼ iðh∂quj∂tui − h∂tuj∂quiÞ. In our experiment, the
BEC occupied the minimum of ϵðq; tÞ at q ¼ 0 during the
whole pump cycle giving ∂qϵ̄ðqÞ ¼ 0, so only the geometric
phase γBðqÞ contributed to the per-cycle displace-
ment Δxðq ¼ 0Þ ¼ −

R

T
0
Fðq ¼ 0; tÞdt.

In the contrasting case of a filled band, the average group
velocity is also 0 and the displacement is Δx ¼
−a

R

BZ ∂qγBðqÞdq=2π; this is often expressed as Δx ¼
a
R

T
0
∂tγZakðtÞdt=2π. The Zak phase γZak¼ i

R

BZhuj∂quidq,
a topological property of 1D bands, is the Berry’s phase
associated with traversing the 1D BZ once, in the same way
that γBðqÞ is a Berry’s phase taken over a pump cycle.

Our lattice’s Zak phase is plotted in Fig. 3(a); this Zak
phase is qualitatively indistinguishable from that of the
Rice-Mele model, with singularities at ϕ ¼ )π=2 and
δΩ ¼ 0, signaling topological phase transitions across
these points. For filled band experiments, pumping trajec-
tories encircling these points give quantized charge pump-
ing [15,16]. Figure 3(b) shows the richly structured Berry
curvature Fðq ¼ 0;ϕÞ relevant to our experiment, which is
explored next.
For our charge pump experiments, we linearly ramped

the pump control parameter ϕðtÞ ¼ 2πt=T, effectively
modulating the lattice potential in two qualitatively differ-
ent regimes (separated by a critical jδΩ=Ω̄j ≈ 0.63). In the
first [Fig. 3(c), left panel] the sublattice sites rise and fall
but the local potential minima are essentially fixed in space;
in the second [Fig. 3(c), right panel] each minimum is only
present for part of the pump cycle (the potential appears to
“slide” by )a per cycle). As these schematics imply, the
associated pumping process gives either no displacement or
a quantized per-cycle displacement )a for classical tra-
jectories [34]. In quantum systems, however, geometrical

FIG. 2. Ground state spin projections. (a) Ground state spin
projections at various ϕ along with the predicted populations for
ℏðΩ̄; δΩ;Ωrf ; δÞ ¼ ð4.4; 0; 2.2; 0ÞER. The associated adiabatic
potentials [insets in (b)] have minima with spin projection
following the observed population’s trends. (b) Magnetization
derived from data in (a).

FIG. 3. Band geometry and topology computed for
ℏðΩ̄;Ωrf ; δÞ ¼ ð6; 2.2; 0ÞER. [(a) and (b)] Zak phase and q ¼ 0

Berry curvature showing the dependence on both δΩ=Ω̄ and ϕ. In
(b), the arrows show experimental charge pump trajectories in
Fig. 4(b). (c) Adiabatic potentials (displaced vertically for clarity)
computed for a range of ϕ constituting a complete pump cycle at
δΩ=Ω̄ ¼ −0.4 (left panel) and −0.8 (right panel). Filled circles
mark the local energy minima.
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pumping is controlled by the Berry curvature, giving
nonquantized per-cycle displacements that can, in princi-
ple, take on any value.
We studied adiabatic charge pumping in this lattice in

two ways: in the first we observed the F̂x magnetization,
giving the polarization within the unit cells, and in the
second we directly measured the displacement Δx of our
BEC. In both cases we loaded into the lattice’s ground state
and linearly ramped ϕ ¼ 2πt=T, driving the Hamiltonian
with period T [34]. As shown in Fig. 4(a), the magneti-
zation oscillated with the T ¼ 2 ms period, demonstrating
the periodic modulation of polarization per cycle. In good
agreement with our data, the solid curves in Fig. 4(a) show
the predicted behavior given our known system parameters.
This agreement persists to long times: for example, after 50
pumping cycles (for t ¼ 100 ms to 110 ms) the contrast is
unchanged, confirming the adiabaticity of the process [34].
Lastly, we performed a charge pumping experiment by

directly measuring the cloud’s position in situ for a range
of δΩ=Ω̄. We obtained in situ density distributions
using partial-transfer absorption imaging [35] in which
≈6.8 GHz microwave pulses transferred ≈5% of the atoms
from jf;mzi ¼ j1;−1i to j2; 0iwhere they were absorption
imaged. This technique allowed us to repeatedly measure
the in situ density distribution for each BEC. Each observed
displacement was derived from differential measurements
of the cloud position taken just before and just after the
pumping process, rendering our observations insensitive to
micron-level drift in the trap position between different
realizations.
Figure 4(b) shows data taken for δΩ=Ω̄ ¼ 0.7, 0, and−0.7

along trajectories i, ii, and iii, respectively, with both
increasing and decreasing phases. Our data display two
expected symmetry properties. First, since the displacement
Δxðq ¼ 0Þ ¼ −

R

Fðq;ϕÞdϕ depends on the sign of the
acquired phase, the direction of motion is reversed when the
ramp direction is inverted. Second, as shown in Fig. 3(b),

Fðq ¼ 0;ϕÞ is an odd function of δΩ=Ω̄, so the direction of
motion is also reversed when δΩ=Ω̄ → −δΩ=Ω̄. Thus,Δx is
an odd function of both ϕ and δΩ=Ω̄, and as expected we
observe no motion when δΩ=Ω̄ ¼ 0.
The displacement was markedly nonlinear when the

pumping time became comparable to our trap’s 80 ms
period, showing the influence of the confining potential
[36]. We included the harmonic potential in our real-space
simulations by directly solving the time-dependent
Schrödinger equation for our system [37]. The simulated
results [Fig. 4(b), solid curves] agree with our observations.
To extract the per-cycle displacement due to geometric
pumping, we fit the sinusoidal predictions of our model to
each data trace, with only the overall amplitudes and a
small vertical offset as free parameters, giving the short-
time per-cycle displacement [34]. Figure 4(c) shows these
per-cycle displacements for a range of Raman imbalances.
The in situ cloud typically had a Thomas-Fermi radius of

30 μm, corresponding to a small momentum width of
0.004kR for our BEC. We estimated the thermal fraction
to be ≈5% given by our ≈20 nK temperature (momentum
width of 0.24kR). Moreover, the per-cycle displacement is
nearly independent of q for jqj < 0.25kR [34]. These allow
us to compare the data with the expected displacement from
integrating q ¼ 0 Berry curvature [Fig. 4(c), solid line],
showing an excellent agreement and confirming the geo-
metric origin of our quantum charge pump.
Our magnetic lattice enables new experiments with 1D

topological lattices. Berry curvatures at q ≠ 0 can be
probed by performing the charge pump pairwise at )jqj
(for example, prepared via Bloch oscillations [38]). The
dynamical phases in these cases are opposite and therefore
cancel while Berry curvatures (even in q) contribute
equally to the displacements [34]. Furthermore, protected
edge states, a hallmark of topological systems, are present
at the interface between regions characterized by different

FIG. 4. Geometric charge pumping. (a) Magnetization measured while linearly ramping ϕ with period T ¼ 2 ms, along with the
prediction for ℏΩ̄ ¼ 6.38ð2ÞER, ℏδΩ ¼ 4.50ð2ÞER, and ℏΩrf ¼ 2.20ð3ÞER. (b) Displacement plotted versus ϕ=2π (number of pump
cycles). Trajectories i–iii are taken at δΩ=Ω̄ ¼ 0.7, 0, and −0.7, respectively; in each case ℏΩ̄ ≈ 6ER and ℏΩrf ¼ 2.20ð3ÞER. Solid
curves: simulation of a charge pump in the trap. The small displacement near ϕ ¼ 0 is introduced by our loading procedure.
(c) Measured displacement Δx per pump cycle (symbols), along with the prediction obtained by integrating the Berry curvature over our
pumping trajectory (solid curve). The uncertainty bars represent the 95% confidence interval.
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topological invariants [39–41]. Since in our lattice the
topological index is set by the rf phase, a bulk topological
junction can be generated by replacing the rf field with an
additional copropagating pair of Raman laser beams in
which just one beam has an abrupt π phase shift in its
center. This provides a static model of the soliton excitation
mode in polyacetylene [25,42]. Terminating our lattice with
hard-wall boundaries gives rise to similar end states—
somewhat analogous to Majorana fermions in 1D topo-
logical superconductors [40,43]—with a spin character.
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Greiner. A quantum gas microscope for detecting single atoms in a
Hubbard-regime optical lattice. Nature, 462(7269):74–77, 2009.

[14] Michael Balter. After the ACCUSATION: A complex case of alleged
sexual misconduct rattles a field and signals a cultural shift. Science,
351(6274):652–657, 2016.

[15] Victoria L. Banyard, Mary M. Moynihan, and Elizaberhe G. Plante. Sex-
ual violence prevention through bystander education: An experimental
evaluation. Journal of Community Psychology, 35(4):463–481, 2007.

[16] Weizhu Bao, Dieter Jaksch, and Peter A Markowich. Numerical solution
of the Gross-Pitaevskii equation for Bose-Einstein condensation. Journal
of Computational Physics, 187(1):318–342, 2003.

[17] Ryan P Barone, Jennifer R Wolgemuth, and Chris Linder. Preventing sex-
ual assault through engaging college men. Journal of College Student Devel-
opment, 48(5):585–594, 2007.

[18] M Bartenstein, A Altmeyer, S Riedl, S Jochim, C Chin, J Hecker Denschlag,
and R Grimm. Collective excitations of a degenerate gas at the BEC-BCS
crossover. Phys. Rev. Lett., 92(20):203201, 2004.

[19] Ramón S Barthelemy, Melinda McCormick, and Charles Henderson. Gen-
der Discrimination in Physics and Astronomy : Graduate Student Expe-
riences of Sexism and Gender Microaggressions. Private Communications,
pages 1–28, 2016.

[20] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E. M.

179
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