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Quantum degenerate gases have provided rich systems to simulate engineered

Hamiltonians and to explore quantum many-body problems in laboratory-scale ex-

periments. In this work, I focus on spin-orbit-coupled (SOC) Bose-Einstein conden-

sates (BECs) of Rubidium-87 atoms realized using two-photon Raman coupling in

which various novel phases are predicted to exist due to competing energies from the

atomic internal structure, coupling strength, and many-body collisions.

BECs are observed primarily using the interaction between light and matter, where

it is common to probe the atoms with near-resonant light and image their shadow on

a camera. This absorption imaging technique measures the integrated column density

of the atoms and it is crucial to focus the imaging system. I present a systematic

method to bring the ultracold atom systems into an optimal focus using the power



spectral density (PSD) of the atomic density-density correlation function. The spatial

frequency at which the defocus-induced artifacts first appear in the PSD is maximized

at the focus. The focusing process thus identifies the range of spatial frequencies over

which the PSD is uncontaminated by finite-thickness effects.

Next, I describe magnetic phases which exist in spin-1 spin-orbit-coupled conden-

sates at a near-zero temperature. I observe ferromagnetic and unmagnetized phases

which are stabilized by the locking between the spin and linear momentum of the

system. Our measurements of both the first- and second-order transitions are in

agreement with theory.

Finally, I discuss the stripe-ordered phase that occurs in SOC Bose gases favoring

the miscibility configuration. The stripe phase is theoretically predicted to have an

excitation spectrum analogous to that of a supersolid and to exhibit spatial density

modulation within specific regions of parameter space. I used optical Bragg scattering

to probe the small density modulation present in the atomic spatial distribution. I

present for the very first time observation of the stripe phase in a Raman SOC Bose

gas and its phase diagram in various parameter space. Our observations of the phase

boundaries are consistent with theory and previous work.
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Preface

The first question I asked myself when I started writing this dissertation was:

“Why do I even bother doing this?” And, of course, the obvious answer was to

graduate soon and obtain my Ph.D.! Finally, I am seeing the light at the end of the

tunnel?! However, in the process of putting my ideas into written words, I found this

was harder than expected and I needed to do serious planning.

The next step for me was to look up in the internet (which has become the verb

Google nowadays) and search for a good guideline for writing a doctoral thesis. Even-

tually, I stumbled upon an article by Patricia Gosling and Bart Noordam on “Mas-

tering Your Ph.D.: Writing Your Doctoral Thesis With Style” [Science (2007), DOI:

10.1126/science.caredit.a0700183] and decided to stick with it. I found this ar-

ticle to be very helpful and I would like to share it with my readers. One of the many

reasons you might be reading this thesis is because you are in the process of writing

your own thesis. If that is the case, congratulations and good luck!

To quote from the article: “In a thesis, it is better to err on the side of being

too detailed than to risk leaving out crucial information. Be generous to the next

generation of researchers; a detailed description of your progress and failures will
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save them a lot of time.” This gave me a sense of purpose in writing and helped me

answer the question “Why do I even bother doing this?”

Last but not least, I would like to mention Chapter 4 and 6 in this dissertation

are from previously published works: “Putra, A. et al., Optimally focused cold atom

systems obtained using density-density correlations. Review of Scientific Instruments

85, 013110 (2014),” and “Campbell, D. L. et al., Magnetic phases of spin-1 spin-orbit-

coupled Bose gases. Nature Communications 7, 10897 (2016).” The former published

paper on optimally focused cold atom systems was a result of my research project as

a requirement for advancement to doctoral candidacy. The latter paper was a Ph.D.

research project led by a senior grad student, Dan Campbell. Both published articles

have a Creative Commons (CC) license, which grants people the rights to share the

articles with proper citation. I acknowledge Dan for responding my email and giving

me permission to include his published paper in this dissertation.

As final words, I hope I did a decent job here and happy reading!
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CHAPTER 1

Introduction

The quest to understand the nature of light and matter has long been at the very

core of physics. For example, efforts to understand the spectrum of electromagnetic

radiation emitted by a “blackbody” object led to the discovery of Planck’s constant,

the conception of spontaneous and stimulated emission, and the quantization of light.

These pursuits eventually revolutionized the theory of statistical mechanics and led

to the birth of quantum mechanics.

In 1924, Satyendra Nath Bose developed the theory of the statistical mechanics of

photons which allowed a theoretical derivation of Planck’s law. Bose sent his work to

Albert Einstein who realized the import of it and supported Bose’s ideas, leading to

the formulation of a new class of particles that obeyed Bose-Einstein statistics [132].

Such particles are named bosons and they have integer values of total spin. Bose

predicted that a collection of such non-interacting particles can occupy the same

state and most of the particles will “condense” into the lowest accessible quantum

state at nearly zero temperature, which was known as Bose-Einstein condensation.

Evidence for Bose-Einstein condensate (BEC) was first linked to the observed

superfluid properties in helium-4 below the temperature 2.17 K at 1 atm (below

the lambda point) [105]. However, due to the strong atomic interactions in 4He,
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the original BEC theory must be modified in order to describe the emergence of

superfluidity [132]. It was not until 1995 that a nearly pure condensate was observed

in a dilute vapor of rubidium-87 atomic gases [7], and separately in sodium-23 atoms

[38], where the measured occupancy number of bosons in the ground-state provided

a direct evidence for BEC.

Since then, advances in technology have enabled the BEC state to be observed in

many more isotopes and particles at temperatures from 10 to 100 nK [31, 56, 65, 146].

These quantum degenerate gases have provided rich systems to simulate engineered

Hamiltonians and to explore quantum many-body problems in laboratory-scale ex-

periments, which serve as benchmarks to validate or eliminate theoretical models.

Experimental observations of various quantum many-body phenomena include the

superfluid-Mott insulator transition in the Bose-Hubbard model [58], condensation of

fermionic atom pairs in the BCS-BEC crossover regime [145], and antiferromagnetic

correlations in the Hubbard model [65], to mention but a few.

In my research, I was interested in studying spin-orbit-coupled (SOC) BECs of

87Rb atoms. The spin-orbit coupling scheme used counter-propagating lasers to in-

duce two-photon Raman transitions between different spin states of the atoms, caus-

ing spin angular momentum of the atoms being locked to their linear momentum

[102, 103]. In this scheme, I was able to control the detuning δ between coupled

spin states by changing the Raman laser frequencies, and I could tune the coupling

strength Ω by varying the laser intensities. In this system, due to competing en-

ergies between the many-body interaction and single-particle Hamiltonian, it was
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predicted that there exist three different phases: the stripe-ordered phase, the mag-

netized plane-wave phase, and the unmagnetized zero-momentum phase [69, 98]. In

this dissertation, I present my observations of these phases.

In particular, I experimentally explored the magnetic phases present in spin-1

SOC condensates [22, 90]. This system exhibits magnetized and unmagnetized phases

in two-dimensional (2D) parameter space. The behavior is mainly governed by the

single-particle Hamiltonian. Phase transitions between the magnetic phases are well-

described by the Landau phenomenological theory [129]. Across one dimension of the

2D parameter space, the free energy dispersion of the SOC condensates has three local

minima (with two of them being degenerate), which becomes a single global minimum

exhibiting a first-order phase transition. Meanwhile, along the other parameter space,

the free energy dispersion has two degenerate local minima which eventually merge

into a single minimum, displaying a second-order phase transition.

In SOC Bose gases, where two-body collisions within the s−wave approximation

favor miscibility [177], there exists a stripe-ordered phase in the ground state of the

many-body Hamiltonian within certain regions of parameter space [69, 98]. The stripe

phase has drawn interests because it has properties that are analogous to supersolidity.

Specifically, the excitation spectrum of the mean-field energy exhibit a roton-maxon

like feature [97, 109]. This roton-maxon character has recently been observed by Ji

et al. [79] for the magnetized phase, where the roton-mode is softening near the

transition to the stripe phase, in agreement with theoretical calculations.
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Another important feature of the stripe phase is the existence of density modu-

lations. For typical SOC 87Rb atoms realized in the Raman coupling scheme, direct

observations of these density modulations in the ground state have proven challenging

for various reasons [108]. The spatial periodicity of the density modulation is rela-

tively small, on the order of 0.4µm, which is beyond the resolution of most imaging

systems. Besides, the density contrast is predicted to be less than 5% and experi-

mental observation requires a precise control of the magnetic field, within 10µG.

The main objective of my Ph.D. research was to observe the long-sought stripe-

ordered phase experimentally. To overcome the above challenges, I first prepared the

atoms in an equal population of mixed states since the stripe phase favors miscibility.

I then loaded the spinor condensates into the SOC dressed states and let the system

evolved into the metastable states, which gave a detectable region of the stripe phase.

I used optical Bragg scattering [17, 174] and a high-sensitivity camera to detect the

scattered photons by the very small density modulation of the stripe phase. I also

implemented a combined feedforward plus feedback control system to compensate for

magnetic field drift.

Although there have been many efforts to enhance the stripe phase, at present

there is only one experimental group that has managed to directly observe the density

modulation of the stripe phase. The stripe-ordered phase was first detected by Jun-Ru

Li et al. [95] in SOC Bose gases. They realized a spin-orbit coupling scheme using a
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“superlattice” 1 potential [4, 5, 96], where the interaction strength between spin states

can be artificially tuned to enlarge the region of the stripe phase. Unfortunately,

in their work, the presence of the density modulation was only observed in a narrow

region of coupling strength Ω. It was not obvious that the density modulation existed

within the predicted 2D parameter space of the SOC system and their observations

do not provide clear signatures of the phase boundaries of the stripe phase.

In this work, I present my observations of the stripe phase over a range of pa-

rameters in the phase diagram. I first investigated the stripe phase in the parameter

space of coupling strength and detuning (Ω, δ). My results were in agreement with

theoretical predictions [69, 98] and previous measurements [95, 103]. I explored the

stripe phase for various hold times thold and studied the metastability condition of

the system [103]. I observed the scattered Bragg signal in the stripe phase to be de-

caying with a time constant of about 0.1− 1 s, supporting arguments that the stripe

phase formation was due to a many-body spin-dependent interaction. To confirm

the long-range phase coherence of the stripe phase, I did a time revival scan of the

observed Bragg signal using Talbot interferometry [120, 150]. Finally, I examined the

finite-temperature phase diagram of the stripe-ordered phase as a function of coupling

strength and temperature (Ω, T ). My observation in the (Ω, T ) space had a profile

consistent with previous theoretical and experimental reports [28, 78, 178].

1The superlattice potential was created by superimposing two standing waves (lasers), with one laser
wavelength λ1 was an integer multiple of the other nλ2 = λ1. This resulted in a spatially periodic
staggered (double-well if n = 2) potential.
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1.1. Overview of the dissertation

1.1. Overview of the dissertation

Chapter 2 describes the essential part of the theory of atomic physics related to

this work. First, I give an overview of atomic structure, laser cooling and trapping

techniques used to achieve BECs. Next, I discuss the properties of BECs within the

mean-field Gross-Pitaevskii equation (GPE) and stationary solutions of the wave-

function within the Thomas-Fermi approximation. I also discuss a set of coupled

GPEs governing spinor BECs and atomic physics nomenclature associated with such

system, particularly for multi-component BECs in the F = 1 hyperfine manifold of

the 5S1/2 electronic ground states of 87Rb atoms.

Chapter 3 describes the setup and apparatus for my experiments. I discuss the

hardware I used and the experimental sequences to produce 87Rb BECs. I also discuss

the control of magnetic field in our laboratory, including the calibration of the field, its

measurement, and the feedback control to compensate for ambient field drift, which

is important in the detection of the stripe phase.

Chapter 4 describes the technique I used to optimally focus cold atoms systems

using the power spectral density of the atomic density-density correlations. This

technique is especially useful in finding the optimal focus of time-of-flight absorption

imaging, which requires no hardware changes and minimum computational effort.

This chapter is taken from previous published paper [140]: “Putra, A. et al. Optimally

focused cold atoms systems obtained using density-density correlations. Review of

Scientific Instruments 85, 013110 (2014).”
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1.1. Overview of the dissertation

Chapter 5 describes coherent manipulation of atoms with electromagnetic waves.

This chapter covers the method I used to prepare different mixtures of the spinor

F = 1 Bose gases using a radio frequency (RF) source. I discuss the microwave-

assisted partial-transfer absorption imaging technique we used to provide feedback

for our dc magnetic field control. I also review the ac-Stark effect within the frame-

work of perturbation theory. Lastly, I discuss how I used the vectorial light shift to

realize various engineered Hamiltonians in our systems, along with the accompanying

calibration techniques.

Chapter 6 describes observations of magnetic phases of spin-1 SOC Bose gases. I

discuss the experimental setup to realize the spin-1 SOC system and its corresponding

Hamiltonian. I present our measurements of the first- and second-order phase transi-

tions between a polar BEC and a ferromagnetic BEC. This chapter is from Ref. [22]:

“Campbell, D. L., et al., Magnetic phases of spin-1 spin-orbit-coupled Bose gases,

Nature Communications 7, 10897 (2016).”

Chapter 7 describes the optical Bragg scattering technique I used to probe atomic

structure. I start by considering the theory of optical Bragg scattering and its relation

to condensed matter physics and crystallography. I then discuss the geometrical

properties of the Bragg signal, including the incidence angle dependence, beam waist

of the probe, and the angular spread of the scattered Bragg signal. Finally, I present

measurement results of optical Bragg scattering from density modulation in one-

dimensional lattice and precessing spin in SOC condensates.
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1.1. Overview of the dissertation

Chapter 8 describes my observations of stripe-ordered phase in spin-1/2 SOC

condensates. I first present theoretical background of the stripe-ordered phase within

mean-field theory. Next, I briefly discuss the experimental setup and sequences I used

to create and observe the stripe phase. Ultimately, I demonstrate the observations of

stripe phase in various parameter space and display the phase diagram.

Finally in chapter 9, I conclude with a summary of my main results and discuss

prospects for future investigations.
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CHAPTER 2

Bose-Einstein condensation in laser cooled rubidium-87 atoms

In this chapter, I review the essential theory of atom-light interactions, laser cool-

ing and trapping techniques to achieve Bose-Einstein condensation (BEC). First, I

discuss the important points related to the atomic structure, hyperfine levels, and

optical transition selection rules within the dipole approximation. Next, I give a brief

summary on laser cooling and evaporative cooling techniques that I used to produce

BECs. Finally, I discuss the properties of BECs within the mean-field theory.

2.1. Interaction of atoms with the electromagnetic field

2.1.1. Atomic structure and notation. An electron moving in a spherically

symmetric potential has coordinates (r, ϑ, ϕ) and energy E. Canonical quantization

of these variables leads to conserved observables associated with discrete quantum

numbers [19]:

r, E → n = 1, 2, 3, . . .∞ (principal quantum number)

ϑ → l = 0, 1, 2, . . . (n− 1) (orbital quantum number)

ϕ → ml = 0,±1,±2, . . .± l (magnetic quantum number)

In addition, the electron has an intrinsic spin of s = ±1/2. These four quantum

numbers are used to describe single electron configurations in central potentials.
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2.1. Interaction of atoms with the electromagnetic field

The above single-electron description can be expanded to describe electronic con-

figuration of an atomic system with many electrons. In general, the electrons are

arranged in closed and open shells, and the low energy atomic spectroscopic proper-

ties are determined by the outer electrons in an open shell. For the outer electrons,

the total orbital angular momentum of the partially filled subshells are designated by

the convention L =
∑

li, the total spin is described by S =
∑

si, and the total an-

gular momentum is J = L + S. The eigenvalues of the angular momentum operators

are always positive or zero, and they are designated by capital letters L, S, and J . As

an example, a helium atom with two electrons can have two configurations: S = 0

(singlet) and S = 1 (triplet). In alkali atoms, there is a single electron in the outer

shell (s = 1/2) and consequently the angular momentum operators are often written

in lowercase letters l, s, j = l + s [107].

The spectroscopic notation I use in this work has the form:

n2S+1LJ (2.1)

In this notation, the L quantum number is represented by its corresponding alpha-

betic character where integer values of L = 0, 1, 2, 3, 4, 5, 6, etc. are denoted by

S,P ,D,F ,G,H, I, etc.1 For alkali metals with a single outer electron, the factor

2S + 1 = 2 is often dropped for brevity.

1Due to historical reason in atomic spectroscopy, the first 4 letters stand for descriptors of lines in
alkali spectra: sharp, principal, diffuse, fundamental. The rest of the letters are continuation of
alphabetical order [163].
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2.1. Interaction of atoms with the electromagnetic field

Figure 2.1. Atomic structure of 87Rb atoms.

The spin-orbit interaction between the electron spin S and the orbital angular

momentum L gives rise to the fine structure with total angular momentum J. Incor-

porating the spin of the nucleus, the coupling between the nuclear spin I and effective

magnetic field due to the orbiting electron splits the energy levels further into hy-

perfine structure. This gives the total angular momentum F = I + J with quantum

numbers F which describe the hyperfine splitting.

An example of the resulting atomic structure is given in Fig. 2.1. Here I consider

a 87Rb atom, the alkali species I used in my ultracold atom experiments, which has

nuclear spin I = 3/2 [162]. The electronic ground state in 87Rb has quantum numbers

L = 0 and J = 1/2. Its first excited state with L = 1 is split into two energy levels
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2.1. Interaction of atoms with the electromagnetic field

with J = 1/2 and J = 3/2. The transitions between the ground state and the two

lowest excited states are labelled as the D1 line for the 5S1/2 → 5P1/2 transition and

the D2 line for the 5S1/2 → 5P3/2 transition. These two separate D−line components

have transition wavelengths λD1 = 794.979 nm and λD2 = 790.241 nm, respectively,

which are resolvable by commercial diode lasers.

2.1.2. Hyperfine structure. Hyperfine splitting due to interaction between the

nucleus and electrons can be calculated using perturbation theory in terms of mul-

tipole expansion of the field potentials. However, the formulation of this theory is

quite involved. A summary of the hyperfine calculation based on Ref. [151] is given

below.

I assume the nucleus as a point source and I consider an observation point outside

the nuclear matter in a spherical coordinate (r, θ, ϕ). The electrostatic potential V

and the magnetic vector potential A set up by the nuclear charges, currents, and

spins can be written as

V =
∞∑

k=0

r−k−1C(k) ·Q(k), (2.2)

A =
∞∑

k=0

−i

k
r−k−1

(
−ir×∇C(k)

)
·M(k), (2.3)

where the functions C(k) are spherical tensor operators of rank k with parity (−1)k,

Q(k) are tensor operators for the electric multipole moments Q(k)
µ , and M(k) are tensor

operators for the magnetic multipole moments M (k)
µ . The scalar product of two
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2.1. Interaction of atoms with the electromagnetic field

spherical tensor operators of rank k are defined as

T(k) ·U(k) =
k∑

µ=−k
(−1)µ T (k)

µ · U (k)
−µ . (2.4)

The components of the spherical tensor C(k) are given by

C(k)
µ (θ, ϕ) =

√
4π

2k + 1
Y µ
k (θ, ϕ) , (2.5)

where Y µ
k (θ, ϕ) are the spherical harmonics.

The nuclear electric and magnetic multipole moments of order k in Eqs. 2.2-2.3

can be expressed in terms of the spherical components C(k)
µ (θ, ϕ):

Q(k)
µ = e

ˆ
Ψ∗ gnuc

l rkC(k)
µ (θ, ϕ) Ψ d3r, (2.6)

M (k)
µ = µN

ˆ
Ψ∗

[
∇rkC(k)

µ (θ, ϕ)
]
·
(
gnuc
l

2

k + 1
Lnuc + gnuc

s Snuc

)
Ψ d3r, (2.7)

where Ψ is the nucleus wavefunction, and µN is the nuclear magneton. The nucleus

orbital angular momentum operator Lnuc and its g-factor gnuc
l are defined by the

summation over the orbital angular momentum of each nucleon Li:

2gnuc
l µNLnuc =

A∑

i=1

gli
e~
mic

Li, (2.8)

where mi is the mass of the i-th nucleon (either the mass of a proton or a neutron),

A is the number of nucleons, and gli are the orbital g-factors (gli = 1 for a proton,

and gli = 0 for a neutron). The nucleus spin operator Snuc and its g-factor gnuc
s are
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2.1. Interaction of atoms with the electromagnetic field

defined by the summation over the spin of each nucleon Si:

gnuc
s µNSnuc =

A∑

i=1

gsi
e~

2mic
Si, (2.9)

where gsi are the spin g-factors (gsi = 5.5857 for a proton, and gsi = −3.826 for a

neutron) [151] .

The interaction of a single electron with the nuclear potentials can be described

by the relativistic Dirac equation [151, 152]. Solutions of the interaction Hamiltonian

in the multipole series lead to several energy shifts in the atomic structure [163].

The k = 0 monopole term leads to the fine-structure of the atoms. The k = 1

magnetic-dipole term and the k = 2 electric-quadrupole term leads to the hyperfine

Hamiltonian

Hhfs = Ahf
I · J
~2

+Bhf

3

~4
(I · J)2 +

3

2~2
(I · J)− I (I + 1) J (J + 1)

2I (2I − 1) J (2J − 1)
, (2.10)

with Ahf is the magnetic-dipole hyperfine constant (applicable for I, J > 0) and Bhf

is the electric-quadrupole hyperfine constant (applicable for I, J > 1/2). Higher

order expansion terms are generally omitted since they are very small and difficult to

observe in alkali atoms.

In the presence of an external static magnetic field B along the z−direction, there

is an additional Hamiltonian

HB = − (~µL + ~µS + ~µI) ·B =
µB
~

(gLLz + gSSz + gIIz)Bz, (2.11)
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2.1. Interaction of atoms with the electromagnetic field

where gL, gS, and gI are respectively the electron orbital, electron spin, and nuclear

“g−factors” which account for their corresponding magnetic dipole moments ~µL, ~µS,

and ~µI . In Eq. 2.11 we have followed the convention that the signs of the g−factors

are opposite to the signs of the associated magnetic moments ~µ [8]. For alkali atoms,

the magnetic field contribution to the hyperfine structure splitting is typically small

compared to the fine-structure splitting, which allows us to describe the interaction

Hamiltonian HB in terms of the good quantum number J of the electrons’ total

angular momentum

HB =
µB
~

(gJJz + gIIz)Bz. (2.12)

In order to calculate the hyperfine energy structure, one must diagonalize the

total Hamiltonian Htot = Hhfs + HB, as given by Eqs. 2.10-2.12 (see Appendix A

for the derivation of matrix elements of the total Hamiltonian Htot). In general,

the degeneracy in each hyperfine manifold is lifted by the magnetic field and the

eigenstates become superpositions of the |J,mJ , I,mI〉 basis states.2 For a very weak

magnetic field, the interaction Hamiltonian HB can be treated as a perturbation to

the hyperfine Hamiltonian Hhfs and the basis states |F,mF ; I,mI〉 closely describe the

eigenstates of the system. The energy shift in this weak field regime is also known as

the “linear Zeeman effect” with (F,mF ) being the good quantum numbers. For very

large magnetic field, where HB dominates Hhfs, the basis states |J,mJ , I,mI〉 closely

describe the eigenstates of the total Hamiltonian. The energy shift in this regime is

2Other choices of basis states are |F,mF ; I,mI〉 and |F,mF ; J,mJ〉 since F is the summation of the
angular momentum operators I and J.
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2.1. Interaction of atoms with the electromagnetic field

called the “Paschen-Back effect” and (mJ ,mI) are the good quantum numbers. In the

regime of intermediate magnetic fields, the eigenstates of the total Hamiltonian Htot

are mixtures of the basis states |J,mJ , I,mI〉. The energy shift in this intermediate

regime is called the “incomplete Paschen-Back effect” and mF are the remaining good

quantum numbers.

The hyperfine structure of 87Rb in the presence of a magnetic field is shown in

Fig. 2.2. Here, I consider the 5S1/2 ground-state level and 5P3/2 excited level of the

D2 transition. Figure 2.2 shows the hyperfine energy levels ∆E/h for magnetic field

B < 500 G, typical values used in our laboratories. For the values of magnetic field

being considered, the energy shifts of the 5S1/2 level is within the linear Zeeman effect

regime, as shown in Fig. 2.2(a). Meanwhile, the energy shifts of the 5P3/2 level span

the whole range of the linear Zeeman effect to the Paschen-Back effect, as shown in

Fig. 2.2(b).

2.1.3. Dipole matrix elements. In the dipole approximation, electromagnetic

radiation with wavelength λ is assumed to have a negligible variation over the spatial

extent ratom of a single atom, i.e. λ � ratom. In this limit, the interaction between

an atom and a photon is given by the Hamiltonian

Hdip = −d · E = −er · Eε̂, (2.13)

with the dipole moment d = er and electric field E = Eε̂. Since the atomic wavefunc-

tions Ψ are written in terms of the angular momentum basis states, which transform
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Figure 2.2. Hyperfine structure of 87Rb atoms in an external mag-
netic field B. Here, we consider the fine structure levels involved in the
D2 transition: (a) 5S1/2 ground level and (b) 5P3/2 excited level.
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2.1. Interaction of atoms with the electromagnetic field

in a similar way to spherical harmonics, it is natural to expand the polarization vector

ε̂ in terms of the spherical unit vectors. These unit vectors are given by

û−1 = (êx − iêy) /
√

2, û0 = êz, û+1 = − (êx + iêy) /
√

2, (2.14)

where û±1 corresponds to right- or left-circularly polarized light (σ±-transitions) and

û0 corresponds to linearly polarized light (π-transition). This allows us to express

the position operator in terms of spherical harmonic functions:

ûq ·~r =

√
4π

3
rY q

1 (θ, φ) (2.15)

where q = 0,±1. Using the contraction rule in Eq. 2.4, we see that the dipole

operator d = er is a spherical tensor of rank k = 1.

We then apply the Wigner-Eckart theorem for spherical tensor operators. For

example, the fine structure transition matrix elements induced by light with angular

momentum q are:

〈JmJ |dq| J ′mJ ′〉 = 〈J ‖d‖ J ′〉 〈JmJ |J ′mJ ′ ; 1 q〉

= 〈J ‖d‖ J ′〉 (−1)J
′−J+m′−m

√
2J + 1

2J ′ + 1
〈J ′mJ ′|JmJ ; 1 -q〉 , (2.16)

where |〈J ‖d‖ J ′〉| are the reduced matrix elements, |JmJ〉 is the initial atomic state,

|J ′mJ ′〉 is the final atomic state, and 〈JmJ |J ′mJ ′ ; 1 q〉 are the Clebsch-Gordan coeffi-

cients for the angular momentum coupling. The reduced matrix elements are related

18



2.1. Interaction of atoms with the electromagnetic field

to the empirically determined spontaneous decay rate3

ΓJJ ′ =
ω3

0

3πε0~c3

2J + 1

2J ′ + 1
|〈J ‖d‖ J ′〉|2 , (2.17)

where ω0 is the transition frequency of the coupled fine structure states J and J ′.

Extending the Wigner-Eckart theorem to the hyperfine structure we obtain

〈FmF |dq|F ′mF ′〉 = 〈F ‖d‖F ′〉 〈FmF |F ′mF ′ ; 1 q〉

= 〈F ‖d‖F ′〉 (−1)F
′−F+m′−m

√
2F + 1

2F ′ + 1
〈F ′mF ′|FmF ; 1 -q〉 (2.18)

which gives the ratio of transition strength between different |FmF 〉 and |F ′mF ′〉

states. The reduced matrix elements for hyperfine transition are connected to the

fine structure transition by

〈F ‖d‖F ′〉 = 〈J ‖d‖ J ′〉 (−1)F
′+J+1+I

√
(2F ′ + 1) (2J + 1)





J J ′ 1

F ′ F I




, (2.19)

where the last term in curly brackets is the Wigner 6-j symbol.

The dipole approximation accordingly leads to three transition selection rules

F ′ = F or F ′ = F ± 1, (2.20)

mF = mF ′ + q ⇒ mF ′ = mF or mF ′ = mF ± 1, (2.21)

3In some definitions, either the factor (2J ′ + 1) or (2J + 1), or both, is absorbed into the reduced
dipole matrix element |〈J ‖d‖ J ′〉|.
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2.1. Interaction of atoms with the electromagnetic field

F ′ 6= F if mF ′ = mF = 0. (2.22)

Considering transition to a single excited fine-structure component, the above rela-

tions result in two symmetry cases:

(1) The matrix elements that couple to any single excited state sublevel |F ′mF ′〉

add up to a factor that is independent of the particular sublevel chosen:

∑

qF

|〈F ′mF ′ |dq|F (mF ′ + q)〉|2 =
2J + 1

2J ′ + 1
|〈J ‖d‖ J ′〉|2 . (2.23)

The interpretation of this symmetry is simply that all of the excited state

sublevels of F ′ energy level decay at the same spontaneous emission rate Γ,

and the decaying population “branches” into various ground state sublevels.

(2) Another symmetry arises from summing the matrix elements for a single

ground-state sublevel to all the sublevels in a particular F ′ energy level:

SFF ′ =

∑
q |〈FmF |dq|F ′mF ′〉|2

|〈J ‖d‖ J ′〉|2

= (2F ′ + 1) (2J + 1)





J J ′ 1

F ′ F I





2

. (2.24)

The above sum SFF ′ is independent of the particular ground state sublevel

chosen, and also obeys the sum rule
∑

F ′ SFF ′ = 1. These factors SFF ′

provide a measure of the relative strength of each of the F → F ′ transitions.
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2.1. Interaction of atoms with the electromagnetic field

Figure 2.3. Examples of transition matrix elements in the D2 line of
87Rb. Symmetry cases satisfying Eq. 2.23 are shown for the |0, 0〉 and
|3, 3〉 excited states. Symmetry cases satisfying Eq. 2.24 are shown for
the |2,−2〉 and |2, 0〉 ground states.

Following the transition rules described above for each distinct fine-structure com-

ponent, Fig. 2.3 illustrates the strength of transition matrix elements

|〈FmF |dq|F ′mF ′〉|2

|〈J ‖d‖ J ′〉|2
(2.25)

for the D2 line of 87Rb. Some of these are the transitions to the |F ′,mF ′〉 = |0, 0〉

and |F ′,mF ′〉 = |3, 3〉 excited states satisfying the first symmetry case in Eq. 2.23.

I also show examples for transitions from the |F,mF 〉 = |2,−2〉 and |F,mF 〉 = |2, 0〉

ground states satisfying Eq. 2.24.
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2.2. Laser cooling and trapping

2.2. Laser cooling and trapping

The main idea behind laser cooling techniques is to exploit the interaction of

atoms and electromagnetic field to cool down the atoms to near absolute zero [115,

134]. Laser light is used to slow down the atoms through many cycles of absorption

and spontaneous emission. Photons from excited atoms are spontaneously emitted

in random directions with zero net contribution to the atom’s average momentum.

The net result is that the atomic motion is cooled by the absorbed photon recoil

momentum. Unfortunately, the “randomness” of the spontaneous emission also causes

unavoidable “heating” of the atomic motion, setting a threshold to the lowest velocity

spread that can be achieved with this technique. The temperature limit due to this

mechanism is called the Doppler temperature [24].

Ideally, atomic transitions involving the same ground state for many cycles of

absorption and emission are desirable since it allows the atoms to be laser cooled

indefinitely. The particular transitions used in laser cooling are known as cycling

transitions. Due to population branching to several ground-state levels, an atom in

an excited state might not return to its initial ground state after absorbing photons.

This process, known as optical pumping, causes depletion of the number of atoms

being trapped. In some cases, the atoms end up in dark states – ground-state levels

that are transparent to the cooling light in a cycling transition. Since the linewidths of

the transition (excited states) and commercial lasers used are generally much smaller

than the separation between the different ground state components, a solution to this
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2.2. Laser cooling and trapping

problem is to apply another repump laser with a different frequency that re-excites

the atoms out of the “wrong” ground states. Thus, it is a common practice to apply

both cooling and repump lasers in most stages of laser cooling and trapping [115, 134].

2.2.1. Zeeman slower. In the first stage of laser cooling with a fixed laser fre-

quency, it is common to slow down the atomic vapor originating from an oven using

photon recoil from the laser beams. As the velocity decreases, the resonance condition

changes due to Doppler shift. One solution to this problem is to apply a spatially

varying magnetic field to alter the atomic hyperfine structure so as to compensate

the Doppler shift. This technique is known as a Zeeman slower [115].

An example of a B-field profile for the slower [41] along the slowing direction z is

B(z) = Bb −Bt

√
1− z/z0, (2.26)

where Bb is a constant bias field, Bt is the magnitude of the spatially varying com-

ponent, and z0 is the distance over which slowing takes place. Due to the recoil

momentum ~kR imparted by the laser beam with intensity I, an atom with mass m

moving at velocity v experience deceleration

a =
~kRΓ

2m

I/Isat

1 + I/Isat + 4 [δ0 + kRv − µ′B(z)/~]2 /Γ2
, (2.27)

where Γ is the spontaneous decay rate of the excited state, Isat is the saturation

intensity4, δ0 is the laser detuning, and µ′ is the magnetic moment of an atom.
4The saturation intensity is related to the reduced dipole matrix element of the corresponding
transition and light polarization, which can be obtained by solving the optical Bloch equation [163].
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2.2. Laser cooling and trapping

To achieve the maximum possible deceleration to cool atoms with initial speed vi

to the final speed vf , the Zeeman slower must have a length z0 given by

z0 = m
v2
f − v2

i

η~kRΓ
. (2.28)

Here the parameter η takes into account the imperfections in the Zeeman field, laser

intensity and polarization, and spatial constraints. When choosing η, the designer

has to bear in mind two criteria [41]:

(1) how much laser power is available

I

Isat

=
η

(1− η)
, (2.29)

(2) how well the field profile (including its gradient dB/dz) can be replicated to

fulfill the resonance condition at each point along the slower

η =
2mµ′

~2k3
RΓ

dB

dz

(
µ′B

~
− δ0

)
. (2.30)

2.2.2. Optical molasses – Doppler limit and sub-Doppler cooling mech-

anism. Optical molasses use the simplest laser cooling mechanism: a pair of counter-

propagating beam with wavevectors ±kR. A two-level atom moving with velocity v is

subject to the Doppler effect and observes the laser beams with detuning δl,r = δ∓kRv,

where δ is the laser frequency detuning relative to the atomic transition. In the limit

of low intensity I � Isat, where stimulated emission is not important, we neglect the
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2.2. Laser cooling and trapping

interference effect between the counter-propagating lasers and we obtain the total

scattering force as Fscatt = Fleft − Fright = −αv, where the damping coefficient α is

given by [115]:

α =
2~k2

R

Γ

I

Isat

−4δ[
1 + (2δl/Γ)2] [1 + (2δr/Γ)2] . (2.31)

With a restoring force F = −αv, the damping opposes the motion of the atom in

proportion to its speed, similar to drag forces in viscous media and hence this cooling

technique is known as optical molasses. The cooling rate F · v is maximized for the

detuning condition δ = −Γ/2.

In optical molasses, spontaneous emission plays an essential role in dissipating

energy by emission of fluorescence photons [59]. However, the random momentum

recoil of the atoms 〈p2〉 after spontaneous emission is responsible for heating. The

heating can be described in an analogous way to diffusion in Brownian motion [33]:

d

dt

〈
p2
i

〉
heating

= 2D0, i = x, y, z, (2.32)

where D0 is the diffusion coefficient. Meanwhile, the cooling by optical forces can be

described by:

d

dt

〈
p2
i

〉
cooling

= −2α

m

〈
p2
i

〉
, i = x, y, z, (2.33)

where m is the atomic mass. The steady-state (satisfying the Fokker-Planck equa-

tion) is reached when the heating and cooling are balanced. One finds the steady-state
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2.2. Laser cooling and trapping

temperature T as kBT = D0/α, where the atomic motion is associated with the tem-

perature using the equipartition theorem kBT = 〈p2
i 〉 /m. For very low saturation

parameter s = I/Isat � 1, the diffusion coefficient can be interpreted as a sum of two

independent terms due to vacuum fluctuations (spontaneous emission) and fluctua-

tions in the number of absorbed photon, and this gives the total diffusion coefficient

D0 = (sΓ/2) (~kR)2 . The minimum temperature achievable with the maximum cool-

ing rate δ = −Γ/2 is then given by the Doppler limit

TD =
~Γ

2kB
. (2.34)

In a typical D2−line transition used in laser cooling of 87Rb atoms, the Doppler

temperature is TD = 146µK [162].

During research on laser cooling and optical molasses, it was found that the low-

est achievable temperature was colder than the Doppler cooling limit [134]. This

perplexing result eventually led to a new understanding of how laser cooling could

work [37]. Two counter-propagating lasers, either with orthogonal linear polariza-

tions (lin ⊥ lin) or orthogonal circular polarizations (σ+−σ−), create a polarization

gradient. In the first case, the lin ⊥ lin configuration, spatially rotating ellipticity of

the combined light causes spatially oscillating energy shifts in various sublevels of the

atoms. Atoms which are climbing a potential hill are losing kinetic energy and have

a probability to be optically pumped back to the bottom valley, transforming part

of their kinetic energy into potential energy. This irreversible mechanism is known
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2.2. Laser cooling and trapping

as Sisyphus cooling [37]. In the second case, the σ+−σ− configuration, the combined

polarization vector is spatially rotating with the same ellipticity. A combination of

optical pumping and light shifts produces a highly sensitive motion-induced atomic

orientation resulting in a large imbalance between the radiation pressures of the two

counter-propagating waves.

Polarization gradient cooling works at velocities lower than the velocity capture

range for Doppler cooling (kv < Γ). The equilibrium temperature TSD in the sub-

Doppler cooling is proportional to the laser power TSD ∝ ~Ω2/ |δ|, where the dipole

transition Rabi frequency Ω is related to the laser intensity via I/Isat = 2Ω2/Γ2.

The one-photon recoil energy then sets a fundamental physical limit on the lowest

achievable temperature in sub-Doppler cooling to be the recoil temperature TR =

~2k2
R/mkB [37, 162]. As an example, for 87Rb atoms in the D2 transition with λD2 =

780.24 nm, the recoil temperature is TR ∼ 362 nK [162].

2.2.3. Magneto-optical trap. Doppler cooling enables a quick cooling of atoms,

typically in a timescale of a few ms (set by the Planck constant over the photon recoil

energy). However, the atoms have a spatially diffusive motion and eventually they

leave the cooling region in a timescale of a few seconds. In order to trap the atoms

within a small volume, while cooling them at the same time, additional magnetic field

gradients are applied. This setup is known as a magneto-optical trap (MOT).

In a MOT, quadrupole magnetic field gradient is added to the 3D standing wave

configuration of the optical molasses. With the presence of a magnetic field gradient
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along x such that B = b′x , the detuning δ′ (r) seen by the atoms depends on the

position r and their internal sublevel structure, i.e.

δ′ (r) = δ −
(
m′exgJ,ex −m′grgJ,gr

) µB
~
b′x, (2.35)

where m′exgJ,ex and mgrgJ,gr are respectively the magnetic moment of the excited and

ground states used in the laser cooling transition. This leads to a position-dependent

light force and this gives a restoring force −κr. The restoring coefficient κ scales

linearly with detuning and intensity (similar to the damping coefficient α), and it is

maximum for red-detuned light with δ = −Γ/2. For cold atoms close to the center

of the trap with small speed |v|, the atoms experienced a total force F = −αv − κr

equivalent to that of a damped oscillator.

An illustration of a MOT is shown in Fig. 2.4. This setup confines the atoms

both in position and momentum, yielding a large phase-space density of atoms being

trapped – the main requirement towards BEC. The main benefit of a MOT is its

flexibility to convert easily into a magnetic trap or an optical molasses configuration.

Also, the presence of a strong magnetic gradient is helpful for selectively trapping

atoms in a specific hyperfine sub-level.

2.2.4. Magnetic trap. Once atoms are cooled close to the Doppler tempera-

ture, they need to be moved to other trapping potentials to be cooled further. One

practical approach is to use a magnetic trap, where atoms are being transported by

shifting the center location of the trap. One typically uses a simple magnetic field
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Figure 2.4. (a) Setup of a magneto-optical trap (MOT). Three pairs
of counter-propagating laser beams with opposite circular polarizations
provide the damping force, while magnetic field gradient from a pair of
coils with opposite current provides the restoring force. (b) A simplified
picture of different hyperfine Zeeman sublevels being cooled by the
optical molasses. In common practices, both cycling and repump lasers
are used to maximize the number of atoms captured in the MOT.

configuration produced by a pair of opposing anti-Helmholtz coils, with the axis along

the z−direction, which has the form:

B =
b′

2
(x, y,−2z) , (2.36)

where b′ is the magnitude of the field gradient and the field has an axial symme-

try along the z−direction. This trap configuration is also known as the magnetic

quadrupole trap.

In my experiments, other pairs of Helmholtz coils generate a controllable uniform

magnetic field in certain directions. For simplicity, here I focus on the particular

case where there is a spatially uniform magnetic field B0 = B0ez which displaces the
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zero location of the magnetic trap. The magnetic trap provides a state-dependent

conservative potential (in the linear Zeeman regime):

U(r) = −µ ·B = µBgFmF
b′

2

√
x2 + y2 + 4 (z − z0)2, (2.37)

where z0 = B0/b
′ and the strength of the magnetic field gradient in the xy− plane

is half the gradient along z (since ∇ · B = 0). The force experienced by the atoms

can be calculated using F = −∇U , and only specific atomic Zeeman sub-levels can

be trapped selectively depending on the atoms’ magnetic moment (depending on the

sign of gFmF ).

In magnetic trapping, it is crucial that the trapping force is enough to coun-

teract the gravitational potential energy. For 87Rb atoms with atomic mass m =

1.443 × 10−25 kg and gravitational acceleration g = 9.81 m/s2 along the z-direction,

the gravitational field gradient expressed in frequency over distance is
∣∣dUgrav/dz

∣∣ =

mg = h · 2.14 kHz/µm. Levitation of magnetically trappable spin states is thus

achievable by selecting the appropriate field strength and position with respect to the

magnetic trap center. For 87Rb atoms in the |F = 2,mF = 2〉 state, a magnetic field

gradient of b′ ≥ 15.3 G/cm is needed to levitate the atoms against gravity. If the

gravity acceleration is along x− or y−direction, twice of the field gradient is needed

(i.e. b′ ≥ 30.6 G/cm).
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2.2.5. Evaporative cooling. Despite having very low temperature, quantum

phase transition towards BEC is not necessarily attainable unless high enough phase-

space density is obtained.5 Additional step of evaporative cooling, combined with

laser cooling, is critical to achieve BEC. In evaporative cooling, energetic particles

escape, carrying away their larger share of thermal energy, allowing the remaining

atoms to cool down. This works for a wide range of temperatures and densities, but

the process slows down as the system loses energetic particles, and hence significant

number of atoms need to be trapped. Here, I summarize the evaporative cooling

techniques [61, 83] which are relevant to my experiments.

2.2.5.1. Radio-frequency induced evaporative cooling. In magnetic traps, evapo-

ration is done through a radio-frequency (RF) induced cooling technique [83]. The

scheme uses a tunable RF radiation in conjunction with the magnetic trap to dress

the atoms. Different mF sub-level states of the atoms are mixed by the RF field,

leading to a flatter potential curve at the avoided crossing of the dressed-state eigen-

values. As the atoms move away from the trap center, traversing the avoided crossing

region and come into resonance with the RF field, the atomic state is adiabatically

transformed into a non-trapped state (with opposite sign of magnetic moment) by

stimulated emission of RF photons [83]. This process is identical to the “spilling” of

the most energetic atoms out of the magnetic trap. Evaporation is then progressively

5The phase-space density is the ratio between the particle spatial density n and the number of
significantly occupied (momentum or energy) states per unit volume. This is equivalent to the
number of particles contained within a unit of volume in the thermal de Broglie wavelength, $ =

n
(
2π~2/mkBT

)3/2.
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forced into the system by ramping down the RF frequency fRF adiabatically, with a

further option of also lowering the magnetic field gradient.

2.2.5.2. Optical dipole trap. Optical dipole traps rely on the principle that an

off-resonant laser beam attracts or repels atoms, depending on whether it is red- or

blue-detuned from the atomic transition [61]. Heating due to spontaneous emission

with lifetime Γ is avoided if the laser light is far-detuned from the atoms’ transition

frequency ω0 and a high enough laser power I is used. In the rotating-wave approxi-

mation, the dipole potential Udip and scattering rate Γsc are given by [61, 132]:

Udip (r) =
3πc2

2ω3
0

Γ

∆
I (r) , Γsc (r) =

3πc2

2~ω3
0

(
Γ

∆

)2

I (r) , (2.38)

where ∆ = ω − ω0 is the detuning and ω is the laser frequency6. A simple relation

exists between the scattering rate and the dipole potential: ~Γsc = ΓUdip/∆. These

results show two essential points for dipole trapping. For red-detuned traps (∆ < 0),

the potential minima is located at positions with maximum intensity; while for blue-

detuned traps (∆ > 0), the potential minima corresponds to minima of the intensity.

The dipole potential scales as I/∆, whereas the scattering rate scales as I/∆2 .

Therefore, optical dipole traps usually use large detunings and high intensities to

keep the scattering rate as low as possible for a required potential depth.

To exploit the ac-Stark shift effect to create a trapping potential, a spatially

dependent intensity in the form of a Gaussian laser beam is used. A Gaussian beam

6In the case of multilevel atoms, one must sum all the contribution from the excited states with
Clebsch-Gordan coefficients as the pre-factor, i.e. 1/∆→∑

j c
2
j/∆j .
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propagating in the y−direction with wavelength λ and power P has the intensity

profile [61]:

I =
2P

πw2 (y)
exp

[
−2
{
x2 + (z − z0)2}

w2 (y)

]
, (2.39)

where the spot size parameter is:

w (y) = w0

√
1 +

(
y

yR

)2

. (2.40)

Here the Rayleigh length is yR = πw2
0/λ and the minimum beam waist w0 is centered

at (0, 0, z0). For a far red-detuned beam (∆ < 0), the above intensity gives a trapping

potential in the form:

V = −U0 exp

[
−2
{
x2 + (z − z0)2}

w2 (y)

]
. (2.41)

Evaporative cooling is achieved by lowering the total trapping potential, i.e. by

ramping down the total laser power. The introduction of an offset z0 in the dipole

trap location with respect to a magnetic trap center is beneficial to limit Majorana

losses during the transfer process of the atoms from the magnetic trap to the optical

dipole trap [104].

Since a single focused beam only provides weak confinement along the propagation

axis, it is common to cross two optical dipole beams with orthogonal polarization to

create nearly isotropic atomic ensembles with tight confinement in all three dimen-

sions. In a particular case of crossed-beam traps with 90◦ intersection angle in the
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xy−plane and equal waist w0 (where w0 � yR), the dipole potential near its minimum

can be approximated by the Taylor series with lowest order of expansion [61]

VCB ' −V0

[
1− x2 + y2 + 2 (z − z0)2

w2
0

]
. (2.42)

Consequently, external potential experienced by the atoms with atomic mass m can

be approximated as a harmonic oscillator with trapping frequencies

ω2
x =

2V0

mw2
0

, ω2
y =

2V0

mw2
0

, ω2
z =

4V0

mw2
0

. (2.43)

2.3. Bose-Einstein condensation

BEC is a quantum phenomenon where an ensemble of particles with bosonic na-

ture (integer spin) occupy the same ground-state energy level as they are cooled

down to temperatures near absolute zero. In the last few decades, extensive theo-

ries of BECs have been developed [36], providing predictions of physical phenomena

exhibited by these quantum gases and offering new insights. For a more comprehen-

sive discussion, I recommend the text by Pethick and Smith [132], and the text by

Pitaevskii and Stringari [135] for more advanced (curious) readers. In this section,

I discuss the theory of BECs relevant to my work, particularly for neutral particles

with weakly repulsive interaction such as 87Rb alkali atoms.ads

2.3.1. Gross-Pitaevskii equation. The field operator Ψ̂ (r, t) describing the

atomic many-body wavefunction in the Heisenberg representation is
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2.3. Bose-Einstein condensation

i~
∂

∂t
Ψ̂ (r, t) =

[
Ψ̂ (r, t) , Ĥ

]

=

[
−~2∇2

2m
+ Vext (r, t) +

ˆ
Ψ̂† (r′, t)V (r′ − r) Ψ̂ (r′, t) d3r′

]
Ψ̂ (r, t) ,

(2.44)

where Vext (r, t) is the external potential and V (r′ − r) is the many-body interaction

potential [59]. At very low temperatures, a large number of bosonic atoms occupy a

single state allowing us to replace the field operator Ψ̂ (r, t) with a classical function

Ψ0 (r, t) which acts as the order parameter for the system. Assuming the range of

the interatomic forces is much smaller than the average distance d = n−1/3 between

particles (set by the density distribution n), we need only to consider configurations

involving pairs of interacting particles (configurations with three or more particles

interacting simultaneously are neglected). The two-body interaction potential for

dilute gases at low temperatures is given by the effective s−wave scattering potential

V (r′ − r) = gδ (r′ − r) =
4π~2a

m
δ (r′ − r) , (2.45)

where a is the s−wave scattering length and m is the atomic mass. In other words, if

the condition of diluteness |a| � n−1/3 is satisfied, then the s−wave scattering length

is sufficient to characterize all interaction effects on the atomic properties. With these
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substitutions, we obtain the Gross-Pitaevskii equation (GPE)

i~
∂

∂t
Ψ0 (r, t) =

[
−~2∇2

2m
+ Vext (r, t) + g |Ψ0 (r, t)|2

]
Ψ0 (r, t) . (2.46)

Stationary solutions for the GPE give a time evolution of the condensate wave-

function that follows the condition

Ψ0 (r, t) = ψ (r) exp (−iµt/~) , (2.47)

with chemical potential µ fixed by the normalization of the atoms’ number. The

stationary GPE reduces to

µψ (r) =

[
−~2∇2

2m
+ Vext (r, t) + g |ψ (r)|2

]
ψ (r) . (2.48)

For a dilute Bose gas of particles interacting with repulsive forces, or a > 0 as in

87Rb, the stationary GPE given by Eq. 2.48 describes the ground state of the system

[99]. The BECs are stable and robust to increasing number of particles.

2.3.2. Thomas-Fermi approximation for Bose gases in the harmonic

trap. We now consider the stationary GPE in a time-independent harmonic trap

Vext (r) =
1

2

∑

j=x,y,z

mω2
j r

2
j . (2.49)

If the chemical potential µ and interaction energy g |ψ (r)|2 is larger than the energy

spacing of the harmonic oscillator µ ' g |ψ (r)|2 � ~ωj, we can neglect the kinetic
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energy term in the stationary GPE. The limit in which one ignores the kinetic energy

term is called the Thomas-Fermi (TF) approximation and Eq. 2.48 reduces to:

µTFψ (r) '
[
Vext (r, t) + g |ψ (r)|2

]
ψ (r) . (2.50)

The analytical solution to the atomic density distribution is:

nTF (r) = |ψ (r)|2 =
1

g

(
µTF −

1

2

∑

j=x,y,z

mω2
j r

2
j

)
(2.51)

if µTF > Vext (r), and nTF = 0 elsewhere. In the TF limit for harmonic traps, the

atomic distribution has an inverted parabolic profile and the atomic cloud has an

elliptical geometrical shape bounded by the condition µTF = Vext (r). The TF radii

are given by

Rj =

√
2µ

mω2
j

, j = x, y, z, (2.52)

and the chemical potential constrained by the total number of condensed atoms N is

accordingly [23]

µTF =
15Ng

8πRxRyRz

=
~ω̄
2

(
15Na

√
mω̄

~

)2/5

, (2.53)

where ω̄ = (ωxωyωz)
1/3. The momentum distribution of the condensate in the TF

limit can be found by taking the Fourier transform of the TF wavefunction [59],

nTF (p) = N
15

16~3
RxRyRz

(
J2 (p̃)

p̃2

)2

, (2.54)
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where J2 is the Bessel function of order 2 and

p̃ =
1

~

√ ∑

j=x,y,z

p2
xR

2
x. (2.55)

It is important to note that the TF approximation breaks down near the boundary

of the density profile where nTF (r)→ 0 as the kinetic energy term is comparable to

the interaction energy. It is then natural to define a characteristic length connected to

the interactions in the system, namely the condensate healing length ξ = h/
√

2mgn0,

where n0 is the peak density evaluated at the centre of the trap n0 = nTF (r = 0) =

µ/g. Within the condensate healing length region near the boundary, where rj '

Rj ± ξ, one must include the finite-size corrections to the TF limit [36, 132, 135].

2.3.3. Expansion of partially condensed ultracold gases. Measurements of

the atomic density distribution reveals the condensation nature of an ultracold gas.

In the laboratory, this is normally done by releasing the harmonic trap and letting the

atomic cloud expands. The momentum distribution of the cloud is transformed into

a spatial distribution. Images of the atomic cloud can be captured by the cameras.

Further, the time-of-flight (TOF) expansion increases the size of the spatial structure

so that it is large enough to be resolved by the imaging system.

Ultracold gases produced in the lab have a small fraction of non-condensed (ther-

mal) atoms. While the condensed fraction of the cloud can be approximated with the

TF distribution, the thermal density nth (r) can be calculated using a semiclassical
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expression for the Bose statistics in the grand canonical ensemble [59]

nth (r) =

ˆ
d3p

(2π~)3np (r) =

ˆ
d3p

(2π~)3

1

exp [β {H (r,p)− µ}]− 1
, (2.56)

where β = 1/kBT and T is the temperature, H (r,p) = p2/2m + Veff (r) is the

semiclassical Hamiltonian and µ is the total chemical potential.

In my work, for temperature T below the critical condensation temperature Tc,

I can apply the Hartree-Fock theory to the many-body Hamiltonian [50, 135]. Since

I was only interested in the expansion of thermal atoms near the tail-end of the

condensate TF distribution (nTF (r) ≈ 0), I can approximate the effective potential

experienced by the thermal atoms as Veff (r) − µ ' Vext (r) − µTF and I obtain the

relation7

H (r,p)− µ ' |p|2 /2m+ Vext (r)− µTF. (2.57)

Performing the integration in Eq. 2.56 over the momentum space yields the spatial

distribution of the thermal cloud [59]

nth (r) =
1

λ3
T

g3/2

(
exp

[
µTF − Vext (r)

kBT

])
=

1

λ3
T

g3/2 (Z exp [−βVext (r)]) , (2.58)

where λT =
√

2π~2/mkBT is the thermal de Broglie wavelength, Z = exp (µTF/kBT )

is the fugacity, and gm (x) =
∑∞

j=1,2,... x
j/jm is the Bose function.

7For T � Tc with nTF � nth, the Hartree-Fock approximation gives Veff (r) − µ ' Vext (r) +
2gnTF (r)−µTF = gnTF (r). This is equivalent to saying the thermal atoms experienced a “trapping”
potential with an inverted parabola (TF) profile, due to interaction with BEC atoms [50].

39



2.3. Bose-Einstein condensation

A TOF expansion of the thermal cloud occurs after releasing the harmonic trap.

The momentum distribution function in Eq. 2.56 evolves in time according to np (r, t) =

np (r− pt/m). This modifies the thermal density to:

nth (r, t) =
1

λ3
T

∏

j=x,y,z

1√
1 + ω2

j t
2
g3/2

(
Z exp

[
−βṼext (r, t)

])
, (2.59)

for the effective harmonic trap

Ṽext (r, t) =
1

2
m
∑

j=x,y,z

ω2
j

1 + ω2
j t

2
r2
j . (2.60)

To calculate the TOF expansion of the condensed part, I now generalize the

frequencies of the trapping potential to be time-dependent ωj (t). Their initial static

values ωj0 fix the initial equilibrium configuration of the system corresponding to the

TF distribution. To solve the time-dependent GPE in Eq. 2.46, I use the ansatz [23]

Rj (t) = λj (t)Rj0 = λj (t)

√
2µ

mω2
j0

, j = x, y, z, (2.61)

where λj (0) = 1 and Rj0 is the stationary values of the initial TF radii. In this

treatment, the inverted parabolic TF profile is preserved throughout the expansion

of the cloud. The scaling factors obeys λj (t) the second-order differential equations

d2λj (t)

dt2
=

ω2
j0

λj (t)λx (t)λy (t)λz (t)
− ω2

j (t)λj (t) , j = x, y, z. (2.62)
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For the sudden release of a harmonic trap, ω2
j (t > 0) = 0, the above equation becomes

d2λj (t)

dt2
=

ω2
j0

λj (t)λx (t)λy (t)λz (t)
, j = x, y, z. (2.63)

The expansion of the TF radii is obtained by solving Eq. 2.63 for λj (t).

The total density, including both condensed and non-condensed parts, after TOF

expansion for time τ is

ntot (r) = nTF (r) + nth (r)

=
15N

8πRx (τ)Ry (τ)Rz (τ)
max

(
0,

[
1−

∑

j=x,y,z

r2
j

R2
j (τ)

])
+

∏

j=x,y,z

1

λ3
T

√
1 + ω2

j0τ
2
g 3

2

(
Z exp

[
− m

2kBT

∑

j=x,y,z

ω2
j0r

2
j

1 + ω2
j0τ

2

])
. (2.64)

In common imaging techniques, such as absorption imaging, the density distribution

being probed is always integrated over the imaging axis, i.e. along z, and one can

write the column density as

ρtot (x, y) = ρTF (x, y) + ρth (x, y) . (2.65)

The TF distribution of the condensed cloud integrated over z gives the column density

ρTF (x, y) =
5N

2πRx (τ)Ry (τ)
max


0,

[
1−

∑

j=x,y

r2
j

R2
j (τ)

]3/2

 . (2.66)
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Meanwhile, the column density for the thermal cloud is given by [26]

ρth (x, y) =
1

λ3
T

√
2πkBT

mω2
zo

∏

j=x,y

1√
1 + ω2

j0τ
2
g2

(
Z exp

[
−
∑

j=x,y

r2
j

2σ2
j

])
, (2.67)

where the root-mean-square (RMS) widths of the thermal density profile are

σj =

√
1 + ω2

j0τ
2

ω2
j0

kBT

m
, j = x, y, z. (2.68)

For a long enough time τ � 1/ωj0, the thermal cloud expansion becomes isotropic

and the temperature can be inferred from the distribution RMS width, namely kBT =

m (σ/τ)2. In general, to measure the temperature of the system, two different release

time with durations τ1 and τ2 are used. The thermal wings of the released ultracold

gases are fitted to yield different values of RMS widths, which provide a measure of

the system temperature as

T =
m

kB

(
σ2
j2

τ 2
2

− σ2
j1

τ 2
1

)
. (2.69)

Figure 2.5(a) shows an example of column density profile ρtot (x, y) of a 87Rb Bose

gas released from a harmonic trap. The column density is proportional to the optical

depth (OD) obtained by absorption imaging along the z−direction. The squared

RMS widths, σ2
x and σ2

y, are obtained by fitting the thermal portions of the atomic

cloud with Eqs. 2.65-2.67. Plotting σ2
x and σ2

y with respect to the square of TOF
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Figure 2.5. Temperature of a 87Rb Bose gas released from a harmonic
trap. (a) Fitting the column density profile ρtot (x, y) of a released 87Rb
Bose gas from a harmonic trap gives the RMS widths, σx and σy. (b)
Plot of σ2

x and σ2
y with respect to the square of TOF duration τ 2. The

temperature of atomic cloud T = 165(2) nK is obtained using Eq. 2.68.

duration τ 2, we can then use Eq. 2.68 to obtain the temperature of the atomic cloud

T = 167(2) nK, as shown in Fig. 2.5(b).

2.3.4. Spinor Bose-Einstein condensates. The GPE used to describe a single

component condensate in previous subsections can be extended to study the dynamics

of multi-component BECs. Here I consider three-component condensates in the F = 1

hyperfine manifold described by the wavefunctions ψ−1, ψ0, and ψ1 in an external

potential V . A set of coupled GPEs for the mean-field dynamics is given by [68, 159]

(see Appendix B for the derivation of the three-component GPEs)
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i~∂tψ1 =

{
−~2∇2

2m
+ V + (c0 + c2)

[
|ψ1|2 + |ψ0|2

]
+ (c0 − c2) |ψ−1|2

}
ψ1

+c2ψ
∗
−1ψ

2
0, (2.70)

i~∂tψ−1 =

{
−~2∇2

2m
+ V + (c0 + c2)

[
|ψ−1|2 + |ψ0|2

]
+ (c0 − c2) |ψ1|2

}
ψ−1

+c2ψ
∗
1ψ

2
0, (2.71)

i~∂tψ0 =

{
−~2∇2

2m
+ V + (c0 + c2)

[
|ψ1|2 + |ψ−1|2

]
+ c0 |ψ0|2

}
ψ0

+2c2ψ
∗
0ψ1ψ−1, (2.72)

where c0 is the spin-independent coefficient and c2 is the spin-dependent coefficient.

For repulsive gases, the spin-independent coefficient c0 is positive. In such system,

the sign of spin-independent coefficient c2 characterizes the “magnetic” nature of the

ground states of spinor Bose gases, i.e. a negative (positive) sign of c2 represents a

ferromagnetic (anti-ferromagnetic) phase.

The spinor condensates are characterized based on the miscibility and immiscibil-

ity of the different spin components. The terms used here are analogous to the mixing

of liquid phases: immiscible means the two components are phase separated, as in

oil and water; and miscible means the two components are phase mixed. In a simple

picture of a homogenous two-component system, labeled by a and b, the mean-field
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energy takes the form

E =
1

2

ˆ
d3r
(
gaan

2
a + gbbn

2
b + 2gabnanb

)
, (2.73)

where gaa, gbb, and gab are the interaction coefficients between two identical or different

spins. Minimization of this energy gives the criterion for miscibility gab <
√
gaagbb or

immiscibility gab >
√
gaagbb [132]. In a ferromagnetic condensate with c2 < 0, one finds

the states mF = ±1 are immiscible since g1,1 = g−1,−1 = c0 + c2 and g1,−1 = c0 − c2;

while the states mF = +1 (or mF = −1) and mF = 0 are miscible since g0,0 = c0

and g0,1 = g0,−1 = c0 + c2. The opposite happens for anti-ferromagnetic condensates

where c2 > 0. The alkali species we work with has a ferromagnetic nature since c2 has

a negative value in the F = 1 hyperfine manifold of 87Rb 5S1/2 ground state [177].

In the presence of external magnetic fields and field gradients, the spinor dynamics

governed by Eqs. 2.70-2.72 exhibit a variety of phenomena, including coherent spin

mixing, spin textures, spin-domain formation and coarsening [27, 165]. The spin

interaction energy |c2|n sets the timescale for the spinor dynamics, where |c2|n/h '

10 Hz or h/ (|c2|n) ' 0.1 s in a typical 87Rb condensate. In spinor condensates, a

characteristic length associated with c2 is the spin healing length ξs = h/
√

2m |c2|n0.

When the spin healing length is larger than the size of the condensate, the interaction

energy is not sufficient to create spin domains in the condensates and hence the spin

dynamics in the presence of external field is largely suppressed [26]. For this reason,

studies of spin dynamics in Bose gases are generally conducted in elongated quasi
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Figure 2.6. Magnetization Mz(r) of two-component 87Rb BECs. (a)
Schematic illustrating a spinor BEC with domains in an anisotropic
crossed-dipole trap. (b) Images showing the progression from a uni-
formly magnetized condensate (short times) in which domains appear
(intermediate times), and then grow spatially (long times); during this
process the condensate slowly decays away. (c) Color scale indicating
the degree of magnetization (colors from blue to red), and the density
(intensity from black to colored).

one-dimensional trap where spatial spin structures have a tendency to form only in

the direction of the weak trap axis.

Examples of spin domain formation and coarsening, based on our previous work

in Ref. [40], are shown in Figs. 2.6-2.7. Here, we explore the time-evolving mag-

netization of two-component 87Rb BECs in the 5S1/2 electronic ground state. Our

BECs are well described in terms of a spinor wave-function Ψ(r) = {ψ↑(r), ψ↓(r)},

where the |↑, ↓〉 pseudo-spins label the |F = 1,mF = ±1〉 atomic spin states. The
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Figure 2.7. Time evolution of magnetizationMz(z) of two-component
87Rb BECs. (a) Experimental data and (b) finite temperature simula-
tion using the stochastic-projective GPE method [18]. In both simula-
tion and experiment, the spatial structure of Mz(z) coarsens after an
initial growth period as domains coalesce.

mF = 0 is not populated initially, and hence the time evolution of ψ0 (r, t) stays zero

all the time. The dynamics of the two-component BECs are governed by the spinor

Gross-Pitaevskii equation

i~∂tψ↑,↓(r) =

[
− ~2∇2

2m
+ V (r) + (c0 − c2)n(r) + 2c2N |ψ↑,↓(r)|2

]
ψ↑,↓(r) +

Ω⊥
2
ψ↑,↓(r),

(2.74)

a continuum analog to the transverse field Ising model [75]. Here m is the atomic

mass; n(r) = N
[
|ψ↑(r)|2 + |ψ↓(r)|2

]
is the total density; V (r) is a spin-independent

external potential; Ω⊥ describes the Zeeman shift of a “transverse” magnetic field (in
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an RF-dressed state); and c0,2 are the spin-independent and spin-dependent interac-

tion coefficients [69, 127]. This Hamiltonian has a Z2 symmetry describing a reversal

of |↑〉 and |↓〉, which is absent in most binary mixtures [63, 70, 114, 176].

In 87Rb’s F = 1 manifold, c0 = (100.86)× 4π~2aB/m vastly exceeds c2 ≈ −4.7×

10−3c0 [170]. For a static density profile and when Ω⊥ = 0, each spin component in

Eq. 2.74 is separately described by an attractive single-component GPE. In our spinor

experiment, we initiated a 34µs RF-pulse that puts each atom in an equal-amplitude

superposition of the |↑, ↓〉 spin states, which is the ground state of the Hamiltonian

in Eq. 2.74 when Ω⊥ is large. The system then evolves according to Eq. 2.74 with

Ω⊥ = 0. This procedure is equivalent to rapidly quenching Ω⊥ to zero.

The quenched binary mixture is held of a variable duration thold, up to 20 s, while

spin structure forms and evolves. After thold, we remove the confining potential and

allow the atomic ensemble to expand (largely transversely) for 19.3 ms, during which

time we apply a Stern-Gerlach gradient force to separate the spin components [51]. We

detect the resulting density distribution of each spin component, |ψ↑(r)|2 and |ψ↓(r)|2,

by absorption imaging. We then study the dynamics of the spin domain formation

and coarsening, where the domains are quantized by spatially varying magnetization

Mz (r) = |ψ↑(r)|2− |ψ↓(r)|2, as shown in Fig. 2.6. The time evolution of the domains

as they grow and coalesce is displayed in Fig. 2.7. In this binary spin system, we

observe the dynamical generation of spin-domains from an initially non-equilibrium

system followed by their subsequent relaxation of progressively larger domains, i.e.

coarsening.
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CHAPTER 3

Experimental apparatus and procedure

Our experimental apparatus was originally built with a plan to conduct atom-chip

experiments, where a nano-fabricated chip with micron scale wires will be placed near

the atoms to generate artificial gauge field [6, 131]. However, we shifted our priority

as the prototype of the chip was being bench-tested in the lab. Instead, we performed

other experiments, such as observation of stripe phase in spin-orbit-coupled (SOC)

condensates and study of ultracold atoms in one-dimensional (1D) trap.1

In this chapter, I give an overview of our experimental setup and the apparatus

we used to laser cool 87Rb and produce Bose-Einstein condensates (BECs) in the

RbChip lab. I first discuss the optical layouts for each laser cooling system. I describe

the green laser and Ti:sapphire laser we used for creating 1D Bose gases and SOC

condensates. I next discuss the setup in the main experiment chamber, where the

“science” is happening. Lastly, I give details of the control sequences we used to make

BECs and the method we developed to calibrate and cancel magnetic field noise.

3.1. Apparatus for laser cooling

3.1.1. Master and cooling lasers. In laser cooling of 87Rb, we use the D2

line since it has a cycling transition (F = 2 → F ′ = 3) for cooling and a repump

1As this dissertation is being revised, other lab members finally installed the chip into our main
vacuum chamber!
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Figure 3.1. Schematic of laser frequencies we use in the D2 line of 87Rb.

transition (F = 1→ F ′ = 1, 2) for recycling the atomic population back to its cooling

states. The transitions used in our laser cooling setup are shown in Fig. 3.1. Here,

two continuous-wave (cw) diode lasers provide the necessary power for laser cooling.

Acousto-optic modulators (AOMs) are used to shift the laser frequency, to switch on

and off the laser power in several 10’s of ns duration, and to control the laser power

being injected into optical fibers.
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Toptica
DL Pro

Figure 3.2. Optical layout of the master (repump) laser. The master
laser is locked to the transition F = 1 → F ′ = 2 using saturation
absorption spectroscopy of 87Rb. The master laser provides power for
the MOT repump, imaging repump, and the Bragg probe.

An optical layout of the master laser which provides the repump light is shown

in Fig. 3.2. The master laser Toptica DL Pro 100 is locked to the F = 1→ F ′ = 2

transition in the D2 line of 87Rb using saturation absorption spectroscopy [137] with

an integrated DigiLock 110 PID module. In this spectroscopy, the frequency of the

pump beam is shifted by 2f0 with respect to the probe beam, which is performed

using an AOM in the double-pass configuration [43]. The frequency commanded to

the AOM is f0 = 80 MHz, which gives a detuning of −80 MHz for the actual master

laser frequency from the F = 1→ F ′ = 2 transition frequency reference. This master

laser provides the repump power for the magneto-optical trap (MOT), absorption

imaging, and Bragg probe. Typically, the gross repump power needed is ∼ 30 mW
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Toptica
DLC TA Pro

Figure 3.3. Optical layout of the cooling (cycling) laser. The “slave”
cooling laser is beat-note locked to the master laser. The cooling pro-
vides power for the MOT cooling, optical pumping, and imaging in the
cycling transition.

with a laser linewidth of ∼ 1−10 MHz and hence a commercial diode laser is sufficient

to provide the repump light.

The second laser (slave) system, an integrated diode laser and tapered amplifier

(Toptica TA Pro) is beat-note locked [139] with respect to the master laser. The

optical layout of the main cooling laser is shown in Fig. 3.3. Here, we used the analog
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3.1. Apparatus for laser cooling

Table 3.1. Reference frequencies for the laser cooling transitions.

Laser transitions, F → F ′ Frequency command (MHz) Detuning (MHz)

Master laser, 1→ 2 80 -80
MOT repump, 1→ 2 80 0

Imaging (repump), 1→ 2 80 0
Bragg probe, 1→ 0 200 or -200 (and -400) -51 or -451

Beat-note cooling laser, 2→ 3 102.875× 64 -97
MOT cooling, 2→ 3 80 -17

Imaging (cycling), 2→ 3 97 0
Optical pumping, 2→ 2 80 (beat-note at 104.65× 64) 136

driving electronics SYS DC 110 module to control the current and temperature of the

laser diode. This module also features the ability to control the laser frequency within

a mode-hop-free tuning range of 20 GHz which is important in its application to laser

cooling. The tapered amplifier provides ∼ 2 W of power used for the MOT cooling,

imaging probe in the cycling transition (|2, 2〉 → |3, 3〉), and optical pumping to the

dark states. In addition, the unused monitor output of the MOT cooling fiber fused

couplers provides the main beam for very far-detuned Bragg probe for observations

of the stripe-ordered phase.

The frequency shifts for the laser cooling transitions are summarized in Table

3.1. The beat-note locked laser frequency has a factor of ×64 from the phase-locked

loop (PLL) frequency divider. The frequency command gives a red-detuned shift of

the slave laser with respect to the master laser, a net shift of −97 MHz from the

F = 2 → F ′ = 3 transition in the D2 line. In practice, for frequency scanning of

the cooling beams, we scan the beat-note frequency of the cooling laser where each
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AOM’s frequency is generally kept constant. For the example is given in Table 3.1, the

beat-note frequency is set at a different value to give the optical pumping a detuning

frequency of 136 MHz from the F = 2→ F ′ = 2 transition.

For the Bragg probe, I used a separate optical setup with double-pass AOM config-

uration to red-shift the frequency by −400 MHz. The single-pass AOM on the master

laser system in Fig. 3.2 can be switched to give either +200 MHz or −200 MHz fre-

quency shift with respect to the master laser. This corresponds to a detuning of

−51 MHz to −451 MHz from the closed transition F = 1 → F ′ = 0 in the D2 line

of 87Rb [124]. Variations of the AOM frequencies then allowed me to do a near-

resonant Bragg probe with the detuning range of ∆ = +10 MHz to −500 MHz for the

F = 1 → F ′ = 0 transition. For the purpose of doing very far-detuned Bragg probe

of the F = 1 state, I used the monitor output port of the MOT cooling fiber fused

couplers / combiners. This gives a red-detuning of ∆ = 6.8 GHz for the F = 1→ F ′

transition within the elastic Rayleigh scattering regime, where ∆/Γ = 1.1× 103 and

∆ is much larger than the energy splitting of the F ′ excited states.

For frequency-shifting using AOMs with typically low input optical power ∼ 1 W,

we used acousto-optic products from IntraAction Corp., i.e. the ATM-A2 series

(780 nm optical wavelength). To drive the AOMs with a fixed frequency shift de-

pending on the needs of the laser cooling processes, we used a stand-alone radio-

frequency (RF) driver with a built-in RF oscillator (matching the center frequency of

the AOMs), i.e. the model DE series. However, in most applications, time-varying
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frequency ramps of the lasers are required and hence we built a customized RF elec-

tronic system to drive the AOMs, as will be described in the next subsection. The

tunable frequency reference is supplied by a direct-digital-synthesized (DDS) signal

generator Novatech Model 409B which is programmable in 0.1 Hz steps from 0.1 Hz

to 171 MHz.

The capabilities of frequency shifting in this system are constrained by the AOMs’

crystal material. The maximum diffraction efficiency of the AOM at its operating

center frequency is ' 70−80%. Depending on the AOM specifications, the diffraction

efficiency usually drops to ' 40% if the RF driving frequency is off by 20% from the

AOM operating center frequency. Frequency-shifted beams are then injected through

optical fiber launch systems to the atoms in the main glass “science” cell. In this

system, the laser powers are controlled by analog voltage sent to the electronic drivers

which drive the AOMs.

Although the acousto-optic devices offer switching capabilities at a timescale less

than 1µs, they do not provide a 100% transmission extinction ratio. Since pW laser

power of near-resonant light is enough to heat the atoms and disrupt the cooling

process, additional mechanical shutters must be deployed to block leaking light from

the AOMs. To do this, we used computer hard-disk-drive (HDD) shutters [106] placed

right before the optical fibers. The switching times of these shutters are typically in

the order of < 100µs and they can completely block a beam size of ∼ 1 mm. The

HDD shutters have a 5 ms delay time before mechanical motions are generated once

the driving transitor-transistor logic (TTL) signal is received.
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3.1. Apparatus for laser cooling

Figure 3.4. RF electronics drive of the AOMs.

The HDD shutters have very low cost and are particularly advantageous for high

power applications. The shutter flags are easily modifiable, for example a 1/2”�

mirror can be glued to the end of the HDD pivot arm to block high power > 1 W

laser beams. However, the HDD shutters often fail after > 30 thousand cycles (within

a year or two). For the latter reason, we opt for commercial shutter systems, such as

the SRS SR474 laser shutter system which has a lifetime of > 10 million cycles. We

measured the delay time of the SR474 shutters to be 3.7(1) ms and thus we had to

take this delay into account in our experimental sequences when sending digital TTL

signals to close or open the shutters.

3.1.2. RF driving electronics. The typical customized RF electronics we used

to drive the AOMs are shown in Fig. 3.4. We used a frequency doubler (MK-3)

after the Novatech DDS output to increase the range of the oscillator frequency by a

factor of 2. For example, we implemented the doubler to drive AOMs with operating

center frequency above 171 MHz. An RF amplifier (ZX60-8008E+) was added to

compensate attenuation from the frequency doubler. Note these two components

were not needed for applications with AOM’s operating frequency < 171 MHz in
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most of our experiments. To be able to control the RF output power via an analog

(AO) voltage, we used RF mixer electronics (ZAD-1-1+) to combine an oscillating

RF source with a programmable analog DC voltage. We then used a TTL switch

(ZYSWA-2-50-DR) for digital switching of the RF power within 10′s of ns. Lastly,

another RF amplifier (ZHL-1-2W) was used to raise the RF power to the operating

level of the AOMs, which is typically ∼ 1 W.

3.1.3. Laser for red-detuned optical dipole trap. The availability of com-

mercial cw lasers has made evaporative cooling with a 1064 nm red-detuned optical

dipole trap a standard practice in the production of 87Rb BECs. In our experiments,

we used a single-mode fiber amplifier IPG YAR-30K-1064-LP-SF to provide a con-

tinuous laser power of ∼ 10 − 20 W at a wavelength of 1064 nm. The amplifier is

seeded by an NP Photonics FLS-25-1-1064 fiber laser source. The setup for this

laser system is shown in Fig. 3.5. It is important to note since this laser falls into the

class 4 category (based on the ANSI Z136.1 laser safety standard), appropriate safety

precautions must be taken. Hence we used beam dumps in any open-ended paths of

the beam.

The 1064 nm laser power is divided into two parts, the main dipole and the weak

dipole (see Fig. 3.5). The “main” dipole power is split into two crossed-beam traps in

the main experimental chamber to create optical dipole trapping of BECs. Meanwhile,

the “weak” dipole power was used in the 1D Bose gases project that was operated

by my colleague to provide a weak confinement in the longitudinal axis of a 1D trap.
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Figure 3.5. Laser system for the 1064 nm optical dipole trap.

The 1D trap was created with a 532 nm blue-detuned optical trap with a Laguerre-

Gaussian beam [91, 167].

3.2. Green laser and Ti:sapphire laser

The two main research projects going on in the lab as of Summer 2017 involved

1D Bose gases and SOC condensates. A green laser at 532 nm was used to create

the 1D blue-detuned optical dipole trap and a Ti:sapphire laser was used to deliver

the Raman transitions in SOC condensates. The green laser (25W Millenia eV)

provides ∼ 4W power to the 1D optical dipole fiber injection and ∼ 10W pump

power to the Ti:sapphire laser (SolsTiS-SRX-F 4000). The optical layout of this

laser system is shown in Fig. 3.6. We found the typical warm-up time for these lasers

to be about 15− 20 minutes, after which they yielded nominally stable output power

within < 2%.
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SolsTiS
Ti:Sapph

Millenia eV

Figure 3.6. Optical layout of the Ti:sapphire laser system. A green
laser at 532 nm is used to pump the Ti:sapphire laser and to provide
blue-detuned optical trap. The Ti:sapphire laser is tunable in near-
infrared regime, suitable for Raman applications to create SOC con-
densates and optical lattice experiments.

The Ti:sapphire laser is tunable in the near-infrared regime 725−875 nm, suitable

to create SOC condensates involving Raman transitions and optical lattices. Tuning

of the Ti:sapphire laser is done by first tweaking the intracavity birefringent filter

(BRF) via the software user interface of the SolsTiS laser. The BRF tuning gives

a discrete change for the wavelength of the laser mode, which can take values from

0.15 to 0.80 nm. Next, changing the etalon tuning gives a more precise wavelength

in the order of 0.01 nm. The etalon tune control has to be set near the middle of its

adjustment range, i.e close to 50%, or else the laser may undergo mode-hopping to

the next etalon mode. The single mode operation of the Ti:sapphire laser with etalon
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locking gives a spectral linewidth of ∼ 10 MHz, which is sufficient for my experiments.

To further reduce the laser linewidth to sub-50kHz, a reference cavity could be used.

However, the SolsTiS SRX scanning reference cavity was not in operation (in need

of repair) at the time of writing this dissertation.

3.3. The main experiment chamber

Figure 3.7 shows our main experiment chamber where BEC is created in an ultra-

high vacuum (UHV) environment. The main chamber consists of optical tables, UHV

glass cell, vacuum pumps, various electromagnetic sources, and cameras. The atoms

are manipulated using various lasers (as described in the previous sections), which are

sent through optical fibers and focused to the atoms. Since the original plan for the

apparatus was to conduct atom-chip experiments, the main chamber was designed

to be composed of the bottom and the upper parts. The bottom part contains cold

atoms in a MOT which are transported vertically to the location near the chip in the

upper science cell [131], as shown in Fig. 3.7(b). In the upper cell, BEC is achieved

and science experiments are performed.

A full explanation on all components of the main experiment chamber requires an

extensive description. In this section, my discussion will instead focus on the optical

layout on the upper part of the main chamber. Other details on the design of the

apparatus can be found in previous dissertation from the group [131].

3.3.1. Optical layout on the upper part of the main experiment cham-

ber. Figure 3.8 shows the optical layout on the upper part of the main experiment
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(b)

(a)

transport
tower

upper
part

bottom
part

Figure 3.7. The main experiment chamber where BEC is created and
experiments are performed. (a) Photograph of the RbChip main appa-
ratus. (b) An illustration of the vertical magnetic transport system to
move the atoms from the bottom cell (MOT) to the upper science cell,
as taken from Figure 4.1 of Perry’s thesis [131].
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3.3. The main experiment chamber

Figure 3.8. Optical layout on the upper part of the main experiment
chamber. The convention for the Cartesian coordinates used in our
lab is as displayed above, with gravity pointing along the ey direction.
The optical components located on the right side (+ex direction) of the
glass cell is not shown here (see Fig. 3.9 instead).

chamber. The optical components consist of crossed-beam dipole trap, Raman lasers,

absorption imaging systems, and relay assembly for optical Bragg scattering. The

relay imaging system is not shown in Fig. 3.8 (see Fig. 3.9 instead) and it will be

discussed in the next subsection.

Our optical dipole trap is a crossed-beam setup [61] where one main beam is split

into two parts with an AOM. The zeroth order beam with higher power and tighter

focus is sent along ez. This is used to optically trap the atoms after being transferred

from the magnetic trap. The +1 order beam with less power and slightly larger beam
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3.3. The main experiment chamber

waist, is sent along ex to serve as the “cross” dipole beam. Evaporative cooling is then

performed by exponentially ramping down the overall power of both dipole beams and

allowing the highly collisional thermal atoms to be evaporated away.

Typical trap frequencies of our dipole trap are (ωx, ωy, ωz) = (93, 64, 39) Hz. Mea-

surements of the dipole trapping frequencies are done by exciting the sloshing dipole

mode [118]. The atoms in the optical dipole trap are given an initial “kick” from a

pulsed magnetic gradient force. The frequency of the collective oscillations of the

atoms’ center of mass is the optical trapping frequency.

Besides using the crossed-dipole beams to make BECs, we also have a weaker

1064 nm optical dipole trap with beam path along ez. This beam was used to give a

lesser trapping frequency (∼ 10 Hz) in the x−direction for the 1D Bose gases project.

Two counter-propagating Raman lasers are used to create SOC condensates. The

Raman A beam along ex, as shown in Fig. 3.8, provides one of the Raman lasers.

Another Raman beam along −ex, labelled by Raman B, is located on the other side

of the glass cell and it will be discussed in the next section (see Fig. 3.9 instead).

Properties of the ultracold atoms are measured using the absorption imaging tech-

nique [81]. In our apparatus, we have three absorption imaging systems for different

purposes. Two imaging probe beams along ez are combined with a beamsplitter to

do absorption imaging in situ and at ∼ 25 ms time-of-flight (TOF). These imaging

systems share the same first telescope pair for the objective and the eyepiece lenses.

Since it is important to minimize the aberrations in the in situ image, the optical
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3.3. The main experiment chamber

Relay lens assembly

Figure 3.9. Relay assembly for optical Bragg scattering experiments.
The bottom inset shows schematic of the relay lenses and the two
Fourier plane regions as mentioned in the text.

axis of the lens systems is aligned to the in situ location of the atoms. The vertically-

spaced in situ and TOF images are then picked up by two separate telescope pairs,

giving a total image magnification of 5.22× for the in situ images and 3.11× for the

TOF images.

It is important to note the biggest problem we had in our experiment was back

reflectance from the glass cell. Each surface of the glass cell gave about 8% reflectance

for light at 780 nm wavelength which was unavoidable unless we re-constructed the

whole apparatus. For this reason, careful alignment of the optics was crucial to avoid

interfering beam from back reflectance.
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3.3.2. Relay assembly for optical Bragg scattering. I used an optical Bragg

scattering technique to observe the stripe-phase in SOC condensates. Due to limited

optical access in our experiment, I had to come up with creative ideas to send our

Bragg probe beam in conjunction with the Raman lasers. In addition, I needed to

preserve the abilities to do absorption imaging, to combine a 532 nm laser beam, and

to dump the 1064 nm red-detuned optical dipole trap within the same optical axis.

To satisfy all these requirements, I constructed a relay imaging system consisting of

two pairs of f1 +f2 imaging telescopes (afocal system). The optical setup of the Bragg

probe with other laser beams is shown in Fig. 3.9.

The first pair of our relay imaging system was composed of lenses with focal length

f1A = 38 mm (EO49-104) and f2A = 250 mm (AC254-250-B). The second pair of lenses

had focal length f1B = 250 mm (AC254-250-B) and f2B = 150 mm (AC254-150-B). In

between these two pairs of lenses, I put an iris on the first image focal point to assist

with aligning the optics. This relay assembly had a total magnification of 3.9× and

it allowed me to have an “arm extension” to send the Bragg beam within the Fourier

plane region of the second lens pair.

Similar lenses with focal length of f2B = 150 mm (AC254-150-B) were used to

focus the Bragg probe and the Raman B beam to the atoms. To collimate the Bragg

probe fiber output, an aspheric lens PAF-X-5-B FiberPort was used to give a 1 mm

output waist diameter. A C220TME-B collimating lens was used for the Raman beam

giving about 2 mm output waist diameter. With 3.9× de-magnification by the relay

imaging system, the beam waist diameters seen by the atoms were respectively 250µm
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and 500µm for the Bragg and Raman beams. To clean up the polarization of the

Raman beams and Bragg probe, Glan-Laser GL10-B polarizers were used after the

collimated fiber output. Photodiodes were used to monitor the power of each Bragg

probe and the Raman B beam.

In a well-focused imaging system, a transverse displacement of the Bragg beam

automatically turns into a change in the Bragg angle with respect to the optical axis.

I used a D-shaped mirror mounted on two linear translation stages to send the Bragg

beam at λ = 780.24 nm. To calibrate the Bragg signal, I created periodic modulation

to the atomic density distribution by applying an optical lattice potential along ex

[17, 77]. In my optical lattice system with periodicity of d = 395.01 nm, the Bragg’s

angle was θB = arccos (λ/2d) = 9.02◦ with respect to the optical axis. To satisfy the

Bragg’s condition, I first aligned the beam’s transverse displacement t to be always

equal to t = f1A · tan(θB) = 6.03 mm along the Fourier plane region between lenses

f1A and f2A. Since the lens pair f2A−f1B formed a 1:1 imaging system, the 1st Fourier

plane in between lenses f1A − f2A mapped directly to the f1B − f2B region.

For alignment purposes, I made sure the Bragg signal was on the same spot with

the in situ BEC location, which was easily done with the relay imaging system. I

gradually displaced the Thorlabs PT1 xz-translational stages of the D-shaped mirror

using Newport Model 8302 piezo-controlled motor (Picomotor) actuators. I found

the optimum Bragg angle by maximizing the measured in situ Bragg signal. To further

optimize and fine tune the Bragg signal, I also rotated the D-shaped mirror with a

Newport Model 8401 Picomotor actuator. I could do a scan of the Bragg angle with
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a precision of ≥ 30 nm/f1A = 8 ·10−7 rad limited by the minimum incremental motion

of the linear Picomotor actuator. I would like to point out that the Picomotors I used

experienced hysteresis and they had no feedback mechanism (open-loop) to measure

their exact movements. It was thus important for me to keep track on the scan

directions while stepping the translation stages.

The same relay imaging system was used to send the 790 nm Raman B beam and

detect the Bragg signal at the wavelength of 780 nm. I used laser clean-up filters to

serve as dichroic mirrors for 780/790 nm light. An LL01-808-25 filter oriented at 33◦

incident angle acted as an ultra-narrow bandpass filter with 94% transmission at peak

wavelength of 780 nm and bandwidth of ±3 nm. The laser line filter was placed at

the image focal point of f2A to give the best collimation angle for the Raman beam

being sent.

The diffracted Bragg signal was captured using an electron-multiplying charge-

coupled device (EMCCD) camera, iXon Ultra 888, which has high photon sensitiv-

ity. This camera was mounted on custom-made plates to ensure mechanical stability

(see Appendix C). The wavelength of the scattered Bragg signal was expected to be

780 nm. To reduce other spurious light making it to the camera, e.g. the Raman

laser with 790 nm wavelength, I introduced an additional filter before the camera to

block out any unwanted part of the spectrum from the detected light. I used an extra

FF01-786/6 filter which was aligned at 14.5◦ incident angle to transmit wavelengths

of light at 780±6 nm. When performing experiments using the Bragg probe, an easily

removable sheet was introduced in the half numerical aperture of the imaging plane
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behind the dichroic LL01-808-25. The purpose of this was to block most of the high

power Raman A beam coming from the opposite side and the atoms’ non-interfering

fluorescence signal, assuring the light being detected did satisfy the Bragg’s condition.

I noted that the dichroic mirrors acted as tilted parallel plates for 780 nm light.

They inevitably caused coma and spherical aberrations in our imaging system along

ex. However, since detection of the reflected Bragg signal mostly involved photon

counting, these aberrations did not have a significant effect on our optical Bragg

scattering measurements.

3.4. Experimental sequences to produce 87Rb BECs

The following is a brief description of the standard experimental sequences we

used to produce 87Rb BECs.

• MOT loading / UV LIAD: Vapors of 87Rb atoms were first captured in a

MOT at the bottom cell for a duration of 1.5 to 3 s. The loading procedure we

used was based on the ultraviolet light-induced atom desorption (UV LIAD)

technique as described in Ref. [85]. An ampule provided the 87Rb metallic

source and a custom designed adapter held a thermoelectric cooler (TEC)

to control the vapor pressure in the bottom cell. The TEC was usually kept

at < −0.5◦C. The UV light came from digitally controlled 350 mW light-

emitting diode sources (Mightex SLS-0309-B, with driver SLA-1200-2). The

duration of this MOT loading process typically took 2 − 3 s, depending on

the number of atoms we needed to produce.
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In daily operations, we turned on the UV source for 15 − 20 mins to

build up enough rubidium vapor pressure before starting our experiments.

For a typical experimental cycle with a total duration of 28 s, we found it

was best to keep the UV light on for about 8 s, even when we were not

loading the MOT. We did this by turning on the UV light in other steps of

the experimental cycle, such as during the dipole evaporation stage on the

top cell. It was crucial to maintain constant vapor pressure in the bottom

cell; since too short a duration of UV light caused the number of atoms in

the produced BECs to decrease gradually. On the other hand, too long a

duration of UV caused significant heating in the BECs.

• Compressed MOT : During this step, the phase-space density of the

atoms was increased by compressing the MOT. Magnetic field gradient was

produced by a pair of opposing anti-Helmholtz (quadrupole) coils, with quan-

tization axis along the z−direction. This was done by ramping up the cur-

rents in the quadrupole coils from 8.5 A to 20 A to produce stronger magnetic

field gradient within 0.5 s. In our MOT configuration, three extra pairs of

Helmholtz coils produced a bias field with adjustable orientation. In this

stage, the bias field was also changed to optimize the phase-space density.

• Optical molasses : After the compressed MOT stage, the system param-

eters were adjusted to create optical molasses for a duration of 19 ms. To
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do this, the quadrupole field was changed to zero (no magnetic field gradi-

ent) and the polarization gradient from interfering counter-propagating lasers

cooled the atoms further [37]. The residual bias field was zeroed out in this

step because cooling mechanism in optical molasses was very sensitive to

stray magnetic field. In this step, the cooling and repump laser powers were

kept high enough (several times larger than Isat) to optimize the rate of opti-

cal pumping, and the detunings were far enough from the atomic transitions

to optimize the cooling process [115].

• Pre-optical pumping : In this stage, a small bias field in the z−direction

was applied by changing the currents on the Helmholtz coils for 1 ms (enough

time for the bias field to settle).

• Optical pumping : The optical pumping process transferred most of the

atoms to the |F,mF = 2, 2〉 state within 0.8 ms. A laser beam with σ+

polarization in resonance to the F = 2 → F ′ = 2 transition was shone on

the atoms. This eventually pumped most of the atoms to the dark states

|F,mF = 2, 2〉 via decay by spontaneous emission. We specifically chose the

low-field seeking state |F,mF = 2, 2〉 due to its highest sensitivity to the

magnetic field (the magnetic moment is |µ| = h× 2.1 MHz/G). This allowed

us to use smaller currents in our magnetic trap coils to transport the cold

atoms vertically.
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• Magnetic trap recapture : During this step, the quadrupole current was

turned on for 0.1 s to recapture atoms in the magnetic trap. We typically ran

the quadrupole coil current at 34 A. Next, the magnetic trap was compressed

by ramping up the quadrupole current to 90 A in 0.1 ms. This provided a

large enough magnetic field gradient of b′ ≈ 60 G/cm (see Eq. 2.36) to hold

the atoms agains gravity in the y−direction.

• Vertical magnetic transport : The |F,mF = 2, 2〉 atoms were trans-

ported vertically (y−direction) in 2.2 s by spatially shifting the magnetic

trap center. The transport field was generated using eleven pairs of overlap-

ping coils in anti-Helmholtz configurations with quantization axis along z.

The geometries of the coils were fixed and the trap gradient force was kept

nominally constant to minimize heating of the atoms during transport. This

was achieved by maintaining three constraints during the transport:

δBz

δz
= 120 G/cm,

δBz

δy
= 47 G/cm, A =

δBz/δx

δBz/δy
= 1.28, (3.1)

where δBz/δz, δBz/δy, and δBz/δx are respectively the magnetic field gradi-

ents along the strong (bias field) axis, transport axis, and the non-elongated

weak axis. In each step of the transport sequence, three adjacent coil-pairs

were energized (except in the very first and last step) sequentially to move

the trapped atoms from the bottom MOT cell to the top cell in 2.2 s at an
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average speed of 200 mm/sec. Details on the design of the vertical magnetic

transport can be found in Perry’s thesis [131].

• RF evaporation : RF induced evaporation was performed for a duration of

4 s [39]. Forced evaporative cooling was accomplished by linearly ramping the

RF frequency from 20 MHz to 3 MHz in a fixed magnetic field with optimum

sweep (multiple steps) to keep up with collisional thermalization.

• Decompression : The magnetic trap was adiabatically decompressed for

a total of 5 s. The decompression of the quadrupole field was done in two

stages, each with a duration of 2.5 s. In the first stage, the RF power was

kept on at the frequency of 3 MHz and the field gradient was ramped down

to a small value below b′ = 15.3 G/cm (see Subsection 2.2.4) to allow transfer

of atoms from the magnetic trap to the optical dipole trap. In the second

stage of the decompression, the gradient field was gradually brought to zero

to completely load the atoms into the optical dipole trap.

• Dipole evaporation : During this step, several stages of evaporative cool-

ing were done successively with exponential ramps of the optical trap power.

The atoms were cooled adiabatically via collisional thermalization, reaching

a phase density necessary to achieve the phase transition towards quantum

degenerate states. In between these evaporation stages, either microwave

or RF-dressing could be performed to transfer the atoms from their initial

|F = 2,mF = 2〉 state to other sub-levels in the F = 1 or F = 2 manifold.
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In our typical experimental sequences, we performed the first evaporative

cooling of the atoms for 3 s to reach the degeneracy temperature and to pro-

duce a small fraction of BEC. We transferred the atoms from |F,mF = 2, 2〉

state to |F,mF = 1, 1〉 state with microwave dressing. BECs in the F = 1

electronic ground states of 87Rb were preferable since they have smaller three-

body recombination loss rates [21, 157]. We performed a second evaporation

stage for 3 s to produce N ≈ 2.2×105 condensed atoms with negligible ther-

mal fractions. We used RF-dressing to transfer the atoms from |F,mF = 1, 1〉

state to other mF states. Finally, we performed a third evaporation stage for

2.5 s to reduce the number of atoms and slightly lower their temperature.

In RbChip lab, we used several hardware devices to conduct our experimental se-

quences. A master hardware device based on a field-programmable gate array (FPGA)

card served as the master clock to control the timing sequences of other devices. We

used a SpinCore PulseBlaster to provide TTL pulses with programmable timing

sequences. Devices from National Instruments, NI PCI-6733 and NI USB-6343, pro-

vide programmable analog voltages and digital signals to our apparatus. Other hard-

ware devices consist of Novatech 409B for generating programmable RF frequencies,

and Flea3 charged-coupled device (CCD) cameras for imaging the atoms.

The experimental sequences above were implemented with software interface writ-

ten in LabVIEW or labscript suite [161] (an open-source Python based control sys-

tem). The LabVIEW software allowed us to program devices in a serial way and it
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was convenient because most of our commercial hardwares came with LabVIEW-based

libraries. In recent few years, our lab migrated our software control system from

LabVIEW to labscript. This allowed us to use scripted programming on our devices

[161]. With labscript, a fuller exploration of the parameter spaces was feasible

and close-loop optimization of experimental parameters could be done online while

running the experiment. However, since it was time-consuming to translate LabVIEW-

based libraries to Python compatible language, I decided to use the LabVIEW-based

software for most of my experiments.

3.5. Control of magnetic field

3.5.1. Bias field calibration. We used three pairs of Helmholtz coils to gener-

ate DC bias field in our experiments, with the coil quantization axes lie along the x,

y, and z directions. The total field Btot near the center of the coil configuration as a

function of current Ii of the i−th pair is given by

Btot [Ii] =

√
C2 · (Ii − Ioff)2 +B2

⊥, i = x, y, z, (3.2)

where C is the proportionality constant for the coil strength, B⊥ is the field perpen-

dicular to the coil quantization axis, and C · Ioff is the offset due to the background

DC field along the coil quantization axis.

The calibration of the bias field in the science cell was performed by measuring the

total magnetic field experienced by the atoms. To do this we applied an RF-coupling

to the atoms and measured the resonance frequency fRF for each value of current
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Figure 3.10. Bias field calibration for each pair of coils in the
Helmholtz configuration. Here the coil current is expressed in terms
of the scaled currents Ix, Iy, and Iz.
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Table 3.2. Calibration parameters for each pair of Helmholtz coils

x-coil y-coil z-coil

C [G/V] 0.803 2.017 1.018
Ioff [V] 1.511 -0.547 0.669

Ii being sent to the coil. The measured frequency was converted to magnetic field

strength by calculating the corresponding Zeeman splitting of the hyperfine structure.

For example, RF-coupling between |F = 1,mF = −1〉 state and |F = 1,mF = 0〉 state

within the linear Zeeman regime gives the relation fRF = 0.7 MHz/G×Btot. We then

fit the measurement result to Eq. 3.2 to obtain the coil strength and the offset of the

bias field, as shown in Fig. 3.10. In practice, to include all scaling factors from the

devices being used, the coil currents were expressed in terms of the applied voltage

(V). From these measurements, we found each coil strength C in the units of G/V

and each offset current Ioff to give the zero bias field condition in our experiment cell,

as summarized in Table 3.2.

3.5.2. Cancellation of magnetic field gradient. In experiments with spinor

BECs, control of the magnetic field gradient is very important. The spatial gradient

of a vectorial magnetic field is a tensor quantity with 9 matrix elements. Gauss’s

law for magnetism ∇ · B = 0 reduces the tensor to 8 independent elements and in

current free regions the tensor becomes symmetric with 5 independent components.

In practice, we cancelled the gradient for the bias field Bz along the quantization axis
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ez of the atoms, i.e. ∇Bz = 0. In order to do this, we used three additional pairs of

compensation coils, as shown in Fig. 3.11.

The first pair uses anti-Helmholtz coils to cancel ∂Bz/∂z. The other two pairs are

arranged in a clover-leaf configuration, as shown in Fig. 3.11(a). These latter pairs

of four coils create a dipole-like magnetic field pattern if viewed along x, with zero

bias field at the origin. This gave us the ability to compensate the gradient ∂Bz/∂x

(or the gradient ∂Bz/∂y if the coil setup shown in the right panel of Fig. 3.11(a) is

rotated 90◦ in the z−axis).

Due to spatial constraints in the apparatus, we had to modify the setup of the

clover-leaf coils. The two clover-leaf pairs, each consisting of four coils, were mounted

in such a way they cancel field gradients ∂Bz/∂x
′ and ∂Bz/∂y’ in ex′ and ey′ , where

the new Cartesian axes were defined as

ex′ =
1√
2

(ex + ey) ey′ =
1√
2

(ey − ex) . (3.3)

Further, we had to deform the planar orientation of the clover-leaf coils to make it

possible to mount them in our apparatus. The placement of the coils in practice is

illustrated in the right panel of Fig. 3.11(b).

To keep things straight, we labelled the currents that go to the coils as: IA for the

set of coils which gave ∂Bz/∂x
′, IB for the set of coils which gave ∂Bz/∂y

′, and IC for

the anti-Helmholtz pair which gave ∂Bz/∂z
′. In the calibration of the compensation

gradient ∂Bz/∂x, we typically scanned IA or IB while keeping IA + IB constant to
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(Helmholtz coils for bias field)

Figure 3.11. Configuration of compensation coils used to cancel am-
bient magnetic field gradient ∇Bz. (a) Conceptual design of the com-
pensation coils. A pair of anti-Helmholtz coils (left) is used to cancel
∂Bz/∂z, while a set of four coils (right) is used to cancel ∂Bz/∂x or
∂Bz/∂y. (b) In practice, the placement must be adjusted and the coils
are deformed to meet the space constraints in the apparatus. IA, IB,
and IC are the currents on each set of the coils. (c) Photograph of the
gradient compensation coils in our apparatus.
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maintain a nominally constant value of ∂Bz/∂y. Similarly, for compensating the

gradient ∂Bz/∂y, we scanned IA or IB while keeping IA− IB constant so ∂Bz/∂x was

not changing. Compensation of the gradient ∂Bz/∂z was trivially done by scanning

the current IC .

In order to cancel the field gradient, we used the atoms to observe the stray

magnetic field gradient near the atoms’ location. The simplest method was to use the

compensation coils to apply Stern-Gerlach forces to the atoms during TOF imaging

(with gravity along y). Atoms with non-zero magnetic moment (mF 6= 0) would

have a shifted location after TOF and the strength of the field gradient from the

compensation coils could be calculated. The stray field gradient was cancelled if

atoms with different spin components fell on the same spot in the TOF camera,

independent of their mF spin state. This method was convenient to measure and

compensate the background gradients ∂Bz/∂x and ∂Bz/∂z, which were present in

our system. However, it was not very sensitive to ∂Bz/∂y along the TOF direction

itself, since the atoms had moved in the y−direction from their in situ trap location.

A more precise way to cancel the field gradient in situ was to measure the degree of

phase mixing in a spinor mixture of Bose gases inside the harmonic trap. For example,

the spinor condensates of 87Rb in the |F = 1,mF = 0〉 and |F = 1,mF = −1〉 states

were miscible if there was no field gradient in the system. To quantify the miscibility, I

introduce the variables n0 (r) and n−1 (r) to represent the spatial density distribution

of the mF = 0 and mF = −1 components, respectively. The degree of miscibility is
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Figure 3.12. Images of spinor Bose gases in |F = 1,mF = 0〉 and
|F = 1,mF = −1〉 in the xy−plane. The spatial density distributions
n0 (r) and n−1 (r) are overlapping when the stray field gradient is can-
celled. The degree of miscibility is parameterized by a dimensionless
metric η as in Eq. 3.4, which has a value η ≈ 1 if the two components
are almost perfectly overlapping (n0 (r) ∝ n−1 (r)).

parametrized by a dimensionless metric

η =
〈n0n−1〉√〈
n2

0n
2
−1

〉 , (3.4)

where the operator 〈. . .〉 =
´

(. . .) d3r gives the spatial average over the density prod-

ucts. The metric η takes the value η = 1 if the two spatial density distributions

are perfectly overlapping or n0 (r) ∝ n−1 (r), and η = 0 if the two components are

completely phase separated or n0 (r)n−1 (r) = 0.

Next, I scanned the currents of the compensation coils to optimize the degree of

miscibility η ≈ 1. The three-dimensional density distributions of the spin components

were obtained from images along two axes, i.e. along ex and ez. Figure 3.12 shows
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image examples in the xy−plane (image axis along ez) for spinor Bose gases inmF = 0

and mF = −1 states. If there was a small magnetic field gradient presence, the two

spin component were phase separated (η < 1). This method gave an error for the

compensated field gradient on the order of the spin-interaction energy scale over

the cloud size, i.e. µBgF b
′ . 7 Hz/10µm or b′ . 0.1 G/cm. Calibration of the

compensation coils gave me the currents needed to cancel the gradients as IA =

0.57(1) A, IB = 0.11(1) A, and IC = −3.18(1) A.

3.5.3. 60 Hz noise cancellation. The other main source of field noise in our

experiment is the power line hum, i.e. 60 Hz field noise and higher order harmon-

ics associated with the alternating current (AC) from the power line. In order to

compensate this AC field, we first used a Schmitt trigger [71] to synchronize our ex-

perimental sequences with the phase of the 60 Hz power line. This guaranteed our

hardware electronics worked at the same phase as the AC power for each cycle of the

experimental sequence.

Next, we used the atoms to measure the background 60 Hz noise. Spinor mixtures,

e.g. |F = 1,mF = 0〉 and |F = 1,mF = −1〉, were prepared with RF-sweep through

their Zeeman resonance to give nearly 50%/50% equal spin populations [116]. The

mixtures were held in their RF-dressed state for a specific duration before being

released from the trap and imaged in TOF. Any ambient 60 Hz noise would cause

the spin populations to oscillate around their balanced 50%/50% populations.
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Lastly, to compensate for the 60 Hz noise, we sent an additional oscillating current

to our z−bias coil with amplitude Iosc and phase φ to give a total AC magnetic field

Bac,tot = c · Iosc cos (φ+ 120πt) +Bbg cos (φbg + 120πt) , (3.5)

where c is the proportionality constant for the generated field, Bbg is the background

field amplitude and φbg is the phase of the AC magnetic field noise. We then inten-

tionally drove the quantization coil until they were in-phase with the ambient 60 Hz

field, φ ' φbg. We then gradually scanned the amplitude until it was of opposite

polarity to the background amplitude, i.e. c · Iosc ' −Bbg. This compensated the

60 Hz noise, where Btot ' 0. Although there are still higher order harmonics (at

frequencies of 120 Hz, 180 Hz, etc.), we were nevertheless able to bring the AC noise

RMS level down to > 100µG from typical levels of 1 mG.

3.5.4. Combined feedforward plus feedback control of the magnetic

field. A crucial step in conducting our experiments, especially for those requiring

hours of experimental cycles, was to counteract drifts in ambient DC magnetic field.

To do this we used a combined feedforward plus feedback control system to send

correction current to the power supply generating the bias field. The flowchart for

this control system is shown in Fig. 3.13.

To measure the ambient DC field, we used a pair of Stefan-Mayer FL-100 flux-

gate magnetometers, which had a sensitivity of 1 V/100 mG and a measurement range

of 1 G. Ideally, we would place two magnetometers on opposite sides of the glass
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Figure 3.13. Flowchart of the combined feedforward plus feedback
control system for the DC field.

“science” cell at the same distance from the atoms. The averaged reading of both

magnetometers gave the field measurement at the atoms’ location. However, due to

space constraints in our lab, we only used one magnetometer near the glass cell and

assumed the measured field was proportional to the field experienced by the atoms.

To reduce radiated noise from the fluxgate electronics and unwanted induced eddy

currents, we enclosed the sensors in custom-made aluminum shields.

The fluxgate readings provided measurement of the field disturbance in our sys-

tem, which was fed forward to the system as a correction to the desired input value.

We typically did this reading near the end of each experimental cycle by sending a

TTL signal to the fluxgates. Figure 3.14(a) shows how the magnetic field drifted over

hundreds of experimental runs, as measured by the magnetometer before the fed for-

ward control system was performed. Each experimental run took about 28 s and the

feed-forward signal was updated to the next run after 5 s delay time in programming

the next experiment sequence.
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Figure 3.14. Magnetic field measured by the magnetometer over
hours of experimental runs: (a) before the field control system was
in operation, and (b) while the field control system was in operation.

Besides using the magnetometer, we also measured the DC field “output” experi-

enced by the atoms with partial-transfer absorption imaging (PTAI) technique [142].

This technique compared the population of atoms transferred by the red- and blue-

detuned microwave pulses, a few ms right before the main sequence of our magnetic

field sensitive experiment was performed. The PTAI sensed the “output” field by

measuring the population difference of transferred atoms. This measurement took

about ∼ 10 ms and it was fed back to the field setpoint in the next experimental run.

The fluxgate readings were used to correct for long-term drift of ambient field

in the experiment, while the PTAI corrected for short-term errors within each ex-

perimental cycle. With both of these “sensors”, we thus did a combined feedforward

plus feedback control, giving a control of DC magnetic field with a variation of less

than ±200µG over the course of 10 hours of data taking. Figure 3.14(b) shows the

magnetic field variation while the field control system was in operation.
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CHAPTER 4

Optimally focused cold atom systems obtained using

density-density correlations

In our experiments, properties of ultracold atoms were generally measured with

absorption imaging after the atomic cloud was released during time-of-flight (TOF).

In this chapter, I discuss a systematic technique to determine the optimal focal plane

in absorption imaging of cold atoms, which is a reprint of my previous work published

in Ref. [140]. This work was originally initiated as we were studying domain formation

and coarsening [40] in spinor Bose gases (see Figs. 2.6-2.7), where we observed spu-

rious noise in the Fourier transform of the images. We eventually found this problem

was due to defocus in our imaging system. As the first author of the published work,

I developed theoretical models and performed simulations of diffraction-limited wave

propagation to quantify the optimal focus. Measurements and analysis of the imaging

data (taken by the group) confirmed the models. Accordingly we implemented this

technique to identify the optimal focus in our absorption imaging system.

4.1. Abstract

Resonant absorption imaging is a common technique for detecting the two-dimen-

sional column density of ultracold atom systems. In many cases, the system’s thick-

ness along the imaging direction greatly exceeds the imaging system’s depth of field,

85



4.2. Introduction

making the identification of the optimally focused configuration difficult. Here we

describe a systematic technique for bringing Bose-Einstein condensates (BECs) and

other cold-atom systems into an optimal focus even when the ratio of the thickness to

the depth of field is large: a factor of 8 in this demonstration with a BEC. This tech-

nique relies on defocus-induced artifacts in the Fourier-transformed density-density

correlation function (the power spectral density, PSD). The spatial frequency at which

these artifacts first appear in the PSD is maximized on focus; the focusing process

therefore both identifies and maximizes the range of spatial frequencies over which

the PSD is uncontaminated by finite-thickness effects.

4.2. Introduction

Since the most important technique for obtaining properties of ultracold atoms is

direct imaging, a well-designed and well-aligned imaging system is crucial for obtain-

ing high quality data which is valid at all length scales. While large scale properties

such as the system’s width or peak density can be obtained with little effort, significant

care must be taken for experiments requiring very good spatial resolution [13, 154], or

those studying correlations [47, 73]. It is difficult to bring objects extended along the

imaging axis, such as degenerate Fermi gases [56, 146], 3D Mott insulators [58], and

Bose-Einstein condensates (BECs) [7, 38], into focus particularly after time-of-flight

(TOF) expansion because their spatial thickness often exceeds the imaging system’s

depth of field. Even for such objects, a high degree of accuracy in focusing is required
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to minimize imaging artifacts. Understanding and minimizing these artifacts is par-

ticularly important when studying density-density correlations, where the artifacts

can be confused with the correlation signal under study [30, 40, 73, 92, 153]. Here we

describe a fairly generic technique for focusing on these extended objects which is far

more precise than simply optimizing the “sharpness” of imaged atom clouds.

Absorption imaging is a ubiquitous approach for measuring the density distribu-

tion of ultracold atom systems [81]. A probe beam illuminates the atomic system, and

the resulting shadow is imaged onto a scientific camera, typically a charge-coupled

device (CCD) or complementary metal-oxide-semiconductor (CMOS) detector. Ide-

ally, the fraction of light absorbed would be directly related to the two-dimensional

column density ρ2D(x, y) =
´

dz ρ(x, y, z) of the atoms along the imaging direction

ez, where ρ(x, y, z) is the density of atoms. If the thickness δz along ez exceeds the

imaging system’s depth of field, then some of the atomic distribution must necessarily

be out of focus, invalidating any simple relationship between absorption and column

density. Given this, it is a challenge to obtain the optimal focal plane of the extended

system that minimizes the artifacts resulting from this defocus, e.g., at the center of

a distribution symmetric along ez.

Typically a system is brought into a focus by minimizing the size or apparent

diffraction effects from a compact object such as a trapped BEC; in many cases, no

such compact reference at the desired image plane is available. In this paper, we

present a technique for determining the optimal focus of absorption-imaged extended

objects. Using this technique, we identify the focal plane within an accuracy of

87



4.3. Theory

2µm for a δz = 150µm thick object. Specifically, given an object with density-

density correlations [73] with a spatial correlation length `, we show that observations

of correlations in the optical absorption as a function of camera position allow us

to bring the object into focus to within a fraction of the depth of field associated

with `, even without knowing the details of the correlation function. This optimal

focus is the camera position where the imaged auto-correlation function (ACF) most

accurately reflects the atomic density-density correlations, minimizing both defocus-

induced artifacts and the resolution limiting effect of the system’s finite thickness

[40, 92].

In this work, we review the basic theoretical formulation required to understand

light propagating through an absorbing dielectric medium. We then consider several

example images created by different idealized objects, in each case noting how to

determine their optimal focus. Lastly, we experimentally apply this technique to

images of BECs after TOF.

4.3. Theory

Monochromatic light of free-space wavelength λ and wavenumber k0 = 2π/λ prop-

agating through an object with complex relative permittivity ε(r) = ε/ε0 and relative

susceptibility χ(r) = ε(r) − 1, where ε is the permittivity, and ε0 is the electric

constant, is described by the vectorial wave equation for the electric field E(r):

∇2E(r) + k2
0ε(r)E(r) = −∇ [E(r) · ∇ ln ε(r)] . (4.1)
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In a medium where ε(r) is slowly varying, the right-hand side (rhs) of Eq. 4.1 can

be neglected, reducing Eq. 4.1 to separate scalar wave equations

∇2E(r) + k2
0ε(r)E(r) = 0, (4.2)

for each vector component of E(r), e.g., we might have E(r) = E(r)ex for linearly

polarized light along ex.

4.3.1. Wavefield propagation. Here, we cast the above scalar wave equation

into the form

−∂
2E(r)

∂z2
=

[
∇2
⊥ + k2

0

]
E(r) + k2

0χ(r)E(r), (4.3)

suitable for light predominantly traveling along ez. For a known field configuration

at E(r) (such as the probe laser before it interacts with the atoms), Eq. 4.3 has the

formal solution

E (r + ∆zez) = exp

[
±i∆z

√
∇2
⊥ + k2

0 + k2
0χ(r)

]
E (r) , (4.4)

describing the field propagated a distance ∆z along ez.

Wave propagation in free space [i.e., χ(r) = 0 in Eq. 4.3] is solved exactly in the

angular spectrum representation [126]

Efs(r + ∆zez) = P(∆z)E(r) =

ˆ
d2k2D

[
P̃(k2D,∆z)Ẽ(k2D, z)

]
eik2D·r2D , (4.5)
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for a forward going wave, with the 2D position r2D = (x, y) and wavevector k2D =

(kx, ky); the Fourier-transformed wavefield Ẽ(k2D, z) =
´

d2r2D exp(−ik2D · r2D)E(r);

and the transfer function for propagating a distance ∆z in free space

P̃ (k2D,∆z) = exp
[
i∆z

(
k2

0 − k2
2D

)1/2
]
. (4.6)

The transfer function behaves differently in two regions of spatial frequencies: for

k2
2D < k2

0, P̃ is oscillatory (propagating regime), and for k2
2D > k2

0, it is exponentially

decaying (evanescent regime).

Meanwhile, considering only χ(r) [neglecting the first term in the rhs of Eq. 4.3],

the absorption and refraction of light traveling a distance ∆z is described by

EBL(r + ∆zez) = Q(∆z)E(r) = exp

[
ik0

ˆ z+∆z

z

dz
√
χ(r)

]
E(r). (4.7)

Unlike the usual Beer-Lambert (BL, discussed in Sec. 4.3.2), this expression alone

does not reflect a good approximation to beam propagation for systems of any signif-

icant thickness.

4.3.2. Beer-Lambert law and the paraxial approximation . To better un-

derstand the independent influence of the beam’s propagation and its interaction with

matter, we apply the paraxial approximation to Eq. 4.3, allowing us to draw an ana-

logue between the paraxial wave equation and the Schrödinger equation, which can

be solved numerically using a split-step Fourier method (SSFM) [76]. To understand

the difference between Eq. 4.7 and the usual BL law, we again turn to Eq. 4.3,
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now assuming that the electric field can be written as E(r) = exp (ik0z)E ′(r), where

E ′(r) is a slowly varying envelope along ez. Inserting this form into Eq. 4.3 gives the

paraxial wave equation

−2ik0
∂E ′(r)

∂z
= ∇2

⊥E
′(r) + k2

0χ(r)E ′(r), (4.8)

where the assumed weak z dependence of E ′(r) allowed us to drop ∂2
zE
′(r). Like

above, the spatial evolution of an initial E ′(r) can be partitioned into a spectral part

P̃′(k2D,∆z) and a coordinate part Q′(∆z), with

P̃′(k2D,∆z) = exp

(
−i
k2

2D

2k0

∆z

)
, (4.9)

Q′(∆z) = exp

[
i
k0

2

ˆ z+∆z

z

χ(r)dz

]
. (4.10)

For the paraxial approximation to be valid, the condition |χ(r)| � 1 must also hold:

otherwise the Q′(∆z) evolution would lead E ′(r) to depend strongly on z.

We numerically evolve the paraxial wave equation [Eq. 4.8] along ez using a

split-step Fourier method (SSFM) [46, 87], where the operators in the rhs of Eq. 4.8

are split into two: one operator represents wave propagation in a uniform medium

using Eq. 4.9 and the other operator takes into account the effect of refractive index

variation using Eq. 4.10. In the SSFM, we alternately apply the two evolution

operators with steps of size ∆z. For each step, the complex amplitude E ′(r) is
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propagated first by P′(∆z/2), then by Q′(∆z), and then again by P′(∆z/2). The

resulting symmetrized split evolution

E ′ (r + ∆zez) = P′ (∆z/2) Q′(∆z)P′ (∆z/2)E ′ (r) , (4.11)

has its first correction at order ∆z3.

The paraxial equations allow us to introduce the depth of field

ddof =
2k0

k2
max

=
l2min

πλ
, (4.12)

where k2
max is the largest k2D of interest and lmin = 2π/kmax is the corresponding min-

imum length scale [these might be specified by: the maximum significant wavevector

in χ(k2D, z); the resolution of the physical imaging system; or at most by k0].

We obtain the BL law by assuming that the system is thin along ez, i.e., both

δz � ddof , and P̃′(k2D,∆z) may be neglected. For purely absorbing materials where

χ(r) ∝ iσ0ρ(r), this gives the usual BL law

I(r + δzez) = exp

[
−σ0

ˆ z+δz

z

ρ(r)dz

]
I(r) (4.13)

describing the attenuation of the free space optical intensity I(r) = cε0 |E(r)|2 /2 by

absorbers of density ρ(r) and scattering cross-section σ0. This BL result can also

be obtained without the paraxial approximation by first neglecting the ∇2
⊥ term in

Eq. 4.3 (valid when kmaxδz � 1: a more strict requirement than in the paraxial
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approximation where we had δz � ddof) and again assuming |χ(r)| � 1, a small

relative susceptibility.1

In experiment, the BL law is generally applied by comparing the intensities I(r2D)

and I0(r2D) measured with and without atoms present, respectively. This relates the

optical depth

OD(r2D) ≡ − ln
I(r2D)

I0(r2D)
= σ0ρ2D(r2D) (4.14)

to the 2D column density. In cold atom experiments, this column density is the

primary observable in experiment.

4.3.3. Absorption imaging. Here we consider systems of ultracold atoms il-

luminated by laser light on a cycling transition, where the atom-light interaction is

described by a complex relative susceptibility

χ(r) =
σ0

k0

[
i− 2δ/Γ

1 + I/Isat + (2δ/Γ)2

]
ρ(r). (4.15)

ρ(r) is the atomic density; δ is the laser’s detuning from atomic resonance; σ0 = 6π/k2
0

is the resonant scattering cross-section; Γ is the atomic linewidth; and Isat is the

saturation intensity [81]. The standard BL law is valid for dilute (ρ� k3
0)

2, spatially

thin systems (k0δz � 1), illuminated by low intensity (I0 � Isat) probe beams.

1Moreover, the gradient term ∇ ln ε(r) in Eq. 4.1 cannot be safely neglected for systems where
|χ(r)| is large or sufficiently rapidly varying, although this would generally imply a breakdown of
the paraxial approximation as well.
2A dilute regime, with density ρ � k3

0, can be achieved by letting the atomic cloud to ballistically
expand.

93



4.3. Theory

The I0 � Isat requirement can be lifted by introducing the intensity-corrected

optical depth

ODcor(r2D) ≡ − ln
I(r2D)

I0(r2D)
+
I0(r2D)− I(r2D)

Isat

, (4.16)

which is related to the column density

ρ2D(r2D) =
ODcor(r2D)

σ0

, (4.17)

of dilute (ρ � k3
0), spatially thin systems (k0δz � 1). Due to the limited dynamic

range of the camera’s pixels [147] and the presence of background light, it is technically

difficult to reliably detect uncorrected optical depths, larger than ≈ 4. Thus, we

deliberately select I0 > Isat, saturating the transition with I0 such that ODcor < 3.

In addition, the spatial thickness of many cold atom systems exceed the depth

of field leaving parts of its distribution along imaging direction inevitably out of

focus, thereby invalidating Eq. 4.17. Even for dilute clouds (after sufficient TOF),

images taken an equal distance above and below the focal plane can differ. This lack

of symmetry makes a straightforward determination of the optimal focus difficult

(lensing effects from even slightly off-resonance imaging beams and aberrations in the

imaging system can complicate the situation further.)

To illustrate this difficulty, we consider images of BECs with the focal plane

displaced a distance d = −54µm, 0 µm, and 54µm from the BECs’ center (see Fig.

4.1). Because the BEC is thick compared to the depth of field, Eq. 4.17 does not

hold; in addition lensing effects cause the cloud’s peak ODcor to behave asymmetrically
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Figure 4.1. Dependence of BEC images on image plane position. (a)
Intensity corrected optical depth measured d = −54µm, 0 µm, and
54µm from the optimal focus: images (right) and line cuts at y = 0
(left). (b) The peak optical depth depends only weakly on d; is not
maximized at d = 0; and has no structure on the 2µm scale.
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4.3. Theory

when the focus is behind or in front of the cloud. In these images, there are no sharp

features that identify the optimal focus at the micron level. Owing to the weak

dependence of large-scale parameters such as peak-height or width on defocus, such

precise focusing is not required in many experiments. As we see below, experiments

that study correlations within such images are extremely sensitive to defocus and

new methods are required. Our technique brings images such as these into focus,

identifying an optimal focal plane at the ≈ 2µm level.

4.3.4. Modeling. To obtain a basic understanding of our approach, we first

consider the defocused image of a 1µm thick absorbing medium, inhomogeneous

ex-ey plane, bounded above and below by vacuum, with, χ(r) = ig(x, y) for z ∈

(−0.5µm, 0.5µm), where g(x, y) ≥ 0 is a Poisson distributed random variable. Like

atoms illuminated on resonance, this medium has a purely imaginary susceptibility.

The illuminating light is modeled by a plane wave with wavelength λ = 780 nm

suitable for imaging our 87Rb Bose-Einstein condensates.3 While this object has no

visible structure, by virtue of its spectrally flat density-density correlation function,

it can be brought into focus.

The imaged intensity pattern I(x, y) from this 1µm layer appears random at

various distances from focus, but its correlations become oscillatory. To reveal this

information, we turn to its spatial power spectral density: the magnitude squared of

I(x, y)’s Fourier transform.4 The power spectral density (PSD) is circularly symmetric

3In our SSFM simulation of light traversing this medium, we used a ∆z = 1µm step size.
4The Wiener-Khinchin theorem states that the spectral decomposition of the autocorrelation func-
tion is equal to the power spectral density.
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4.3. Theory

in the spatial frequency k2D = (kx, ky) plane. Fig. 4.2(a) shows the PSD in this

k = |k2D| “radial” direction as a function of distance from focus d. This PSD has a

fringe pattern; the wavevector of the first minimum exceeds the maximum imaged

wavevector only near the image’s focus at d = 0 µm.

The physical origin of this structure can be understood by turning to the parax-

ial wave equations [Eqs. 4.9 and 4.10], and by first studying a single absorber at

r = 0 illuminated by a plane wave E ′0(r2D, 0
−) = E0. Equation 4.10 shows that a

thin absorber simply changes the amplitude of the field, leaving its phase untouched,

and for simplicity, we assume this absorber has a Gaussian profile in the ex-ey plane

with width w0. Thus the electric field just following the absorber is changed by

δE ′(r2D, 0
+) = −δE exp [−r2/w2

0], with r2 = x2 + y2. The propagation of such a

gaussian mode by a distance d along ez can be solved exactly in the paraxial approx-

imation, and in the spectral basis this is

δẼ ′(k2D, d) = −πw2
0δE exp

[
−w

2
0k

2
2D

4

(
1 +

2i

w2
0k0

d

)]
. (4.18)

The total field from an absorber located at a different location r0 in the ex-ey plane

simply acquires an overall phase factor exp [−ik2D · r0]. We now compute the exper-

imentally relevant optical depth by taking the reverse Fourier transform of the full

electric field, computing the intensity, then the optical depth, and taking the Fourier
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Figure 4.2. (a) Spatial PSD of the intensity produced by 1µm thick
layer of randomly distributed scatterers showing that fringes diverge in
focus. (b) PSD produced by a 100µm thick sheet of random colum-
nar scatterers. (c) PSD produced by a 100µm thick sheet of random
scatterers. The dotted lines are functional forms of the lowest curved-
fringes, and in each case d is measured from the objects’ center.
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transform to obtain (retaining terms of order δE/E0)

ÕD =
2πw2

0δE

E0

exp

(
−w

2
0k

2
2D

4

)
cos

(
k2

2Dd

2k0

)
, (4.19)

with the same overall phase factor depending on the initial position. Averaging over

N randomly placed absorbers therefore gives an overall signal scaling as
√
N with a

random overall phase. Taking the magnitude squared gives the PSD

PSDthin = PSD0 × cos2

(
k2

2Dd

2k0

)
, (4.20)

with

PSD0 = N

(
2πw2

0δE

E0

)2

exp

(
−w

2
0k

2
2D

2

)
. (4.21)

This quantity has zeros located at kzero[n] =
√

2π(n+ 1/2)k0/d for integer n. In

our numerical simulation, the minima follow the functional form kzero[n] = A[n]|d|−1/2

as shown by the dotted lines in Fig. 4.2, with A[0] ≈ 5.08 and A[1] ≈ 8.76 for the

first and second zeros: the expected values for A[n]. Thus, for this thin apparently

structureless system, fringes in the PSD allow us to identify the focal plane.

To demonstrate the technique of finding optimal focus of an extended object, we

now consider a second disordered scattering potential with a columnar structure, now

100µm thick, i.e., χ(r) = ig(x, y) for z ∈ (−50µm, 50µm), where again g(x, y) ≥ 0 is

a Poisson distributed random variable. This object’s PSD is plotted as a function of

distance d from its center in Fig. 4.2(b); in addition to the same fringe pattern as for
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the 1µm thick case, the PSD now vanishes at specific spatial frequencies independent

of d. To model this, we note that the absorbers can now be located at a distance z

from the symmetry plane, so in Eq. 4.19, we replace d→ d− z and integrate z from

−δz/2 to δz/2, which ultimately gives the PSD

PSDcol = PSD0 × cos2

(
k2

2Dd

2k0

)
sinc2

(
k2

2Dδz

4k0

)
. (4.22)

This predicts the appearance of additional zeros located at k′zero[m] =
√

4πmk0/δz for

non-zero integerm (this is an artifact of the box-like density distribution of atoms, and

would be greatly softened in real systems where the density drops smoothly to zero).

In our example, the lowest order horizontal fringes is located at k′zero[1] = 1.00µm−1.

Here again, we easily determine the optimal focus, d = 0 µm, from the diverging

curved-fringes.

Next, we consider a scattering potential fully disordered in 3D, again with a 100µm

thickness, i.e., χ(r) = ig(x, y, z) for z ∈ (−50µm, 50µm), where g(x, y, z) ≥ 0 is a

Poisson distributed random variable. In this case, the independent random scatterers

along imaging direction causes the PSD to rapidly loose structure with increasing k2D

(see Fig.4.2(c)). Here too, our random scatter model can be applied, giving

PSDrnd = PSD0 ×
[

cos (k2
2Dd/k0) sinc (k2

2Dδz/2k0) + 1

2

]
. (4.23)

This reduces to our earlier result when δz → 0 for a thin system and shows that,

while the same fringes exist, they are rapidly attenuated for larger spatial frequencies,
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where the signal approaches a constant background value. However, in principle the

curved-fringes still allow the optimal focus to be identified.

4.4. Optimal focusing of elongated Bose-Einstein condensates

Using on our model, we now consider absorption imaged BECs and implement

the technique presented in Sec. 4.3 to find the optimal focus.

We prepared N = 7×105 atom 87Rb BECs in the
∣∣5S1/2, f = 1,mF = 0

〉
electronic

ground state in a crossed-dipole trap with frequencies ωx,y,z = 2π× (3.1, 135, 135) Hz.

In situ, the BECs were javelin shaped owing to the extremely anisotropic confining

potential. After a 17 ms to 21 ms TOF, we repumped into the f = 2 manifold, and

resonantly imaged on the
∣∣5S1/2, f = 2,mF = 2

〉
to
∣∣5P3/2, f = 3,mF = 3

〉
cycling

transition with a λ ≈ 780.2 nm probe laser.

The imaging system consisted of a CCD camera and two pairs of lenses functioning

as a compound microscope, magnifying the intensity pattern at the object by a factor

of ≈ 6 at the image plane. The first pair of objective lenses, with effective focal length

(efl) f̂1 = 53.6 mm, collimated the light diffracted by the cloud and were separated

by a distance D = f̂1 + f̂2 from a second pair of lenses with a f̂2 = 325 mm efl. The

resulting 0.23 numerical aperture implies that a 10.6µm diffraction-limited spot on

our CCD sensor is larger than its 5.6µm pixel size. The associated 1.7µm spot-size

on the cloud gives a ddof = 18.6µm depth of field in our imaging system [74].

Instead of varying the distance from focus by physically moving imaging lenses

or the CCD, we changed the time during which the BEC fell along ez and obtained
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absorption images with TOF times tTOF from 17.0 ms to 21.0 ms. At these TOFs, the

condensates’ radii were Ry,z ≈ 75(5)µm and Rx ≈ 210(10)µm. Initially, the cloud

was elongated in the harmonic trap with aspect ratio 43 to 1. The initial 43 : 1 aspect

ratio was reduced to 2.65 : 1 after TOF, and the transverse size of the cloud exceeded

the imaging depth of field by a factor of 8.

Figure 4.3(b) shows the 1D PSD of the atoms’ corrected optical depths along

ez, which is directly related to the absorption intensity through Eq. 4.16. The

fluctuations in the BEC’s density distribution behave like the randomly modulated

χ(r) in our example systems, creating a recurring fringe pattern in the PSD spectrum

as obtained in Fig. 4.3(c). The fringes are quite pronounced for quasi one-dimensional

BECs, where initial phase fluctuations map into pancake-shaped density fluctuations

arrayed along the initially long axis after TOF [42]. Despite the decreased contrast

at high spatial frequencies due to the BEC extent along ez, we clearly observe fringes

curving as a function of tTOF in Fig. 4.3(c). This allows us to determine the optimal

focus of the system.

From the above experimental data, we fit the two lowest order fringes to km×

[(d− z0)2/δz2 + 1]
−1/4, a peaked function with the expected d−1/2 behavior away

from z0. The fits give an optimal focus location of z0[0] = 1836(2)µm using the

zeroth order fringe or of z0[1] = 1837(2)µm using the first order fringe. These values

correspond to a TOF of 19.36(1) ms. We are thus able to determine the optimal focus

within ≈ 2µm or equivalently ≈ 10µs in TOF. Comparing the experimental data to

the theoretical forms, we notice that the fringes are slightly asymmetrical with their
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Figure 4.3. (a) Absorption imaged elongated BEC with density fluc-
tuations. (b) 1D PSD of column density along weakly trap direction ex
as a function of tTOF. (c) Values of k where the 1D PSD is minimum.
The two lowest such k-fringes are depicted. Symbols denote the fringe
locations extracted from (b) plotted along with Lorentzian fits (dotted
lines), determining the optimal focus. The solid curves depict theoreti-
cal functional forms for the two lowest order fringes. In (b) and (c) the
dashed line marks k = k′zero[1] = 0.82µm−1 for our condensate thick-
ness of 150µm; the dotted line marks k = k′zero[1]/

√
2, below which the

ACF of the focused images reliably reflects the ACF n2D(r2D).
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locations slightly below theoretical ones for larger TOF. Based on our simulations,

this likely results from the z dependent magnification of our imaging system, which

changes by about 10% as the atoms fall from 1420 µm to 2150 µm (17 ms to 21 ms

TOF).

4.5. Summary

We presented a systematic method to bring clouds of ultracold atoms, particularly

initially elongated BECs, into an optimal focus. The density fluctuations in the BECs

after TOF acted like random scatterers, creating diffraction pattern which changed

predictably as a function of distance from the optimal focus. Using TOF absorption

imaging, we demonstrated this method, pinpointing the optimal focus of the BEC to

within 2 µm for a 150µm thick BEC. This robust technique is easily implemented,

requires no hardware changes, and uses a minimum of computation.
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CHAPTER 5

Coherent manipulation of atoms with electromagnetic fields

Over the past decade, ultracold quantum gases have offered numerous examples

of new phases of matter. Control and manipulation have been primarily achieved

by coherent interaction between light and matter. Within the semi-classical regime,

the classical optical fields perturb the quantized atomic structure where the external

electromagnetic waves are treated using Maxwell equations and the atoms are treated

quantum mechanically. In this discussion, I consider the electromagnetic waves to be

monochromatic (single-frequency) and coherent (having a definite phase relation).1

Under the influence of light-matter interactions, the atoms behave coherently in a

sense that mechanisms which cause dephasing of the atomic wavefunctions can be

neglected. For this reason, quantum degenerate gases can have negligible fluctuations

in their collective atomic wavefunctions and this makes them potentially useful to

simulate various quantum phenomena.

In this chapter, I discuss the coherent manipulation of atoms with electromagnetic

waves from the radio-frequency (RF) range to the optical regime. Here, I discuss three

different regions of electromagnetic spectrum I used to engineer cold atom systems.

First, I used RF waves (with frequency ∼ 1 − 20 MHz) to transfer atoms between

1Quantization of the electromagnetic waves leads to the concept of optical “coherence” in quantum
optics. Interested readers may find Ref. [52] to be useful.

105



5.1. Adiabatic rapid passage with RF-dressing

different mF states within a specific F manifold. Next, I used microwave radiation

(with frequency ∼ 6.8 GHz) to transfer 87Rb atoms among the F = 1 and F = 2

manifolds of their 5S1/2 electronic ground states, enabling me to do minimally de-

structive partial transfer absorption imaging [142]. Third, I used light from lasers

operating in the optical frequency range (with frequency ∼ 380 THz). Exploiting the

vectorial light shift of the ac-Stark effect, I used two counter-propagating lasers to

create a spin-dependent lattice and spin-orbit coupling to the atomic Zeeman sub-

levels. This configuration allowed me to engineer various effective Hamiltonians with

minimal changes to the experimental setup. Lastly, I will discuss relevant calibration

techniques that I used to investigate the effective Hamiltonian under study.

5.1. Adiabatic rapid passage with RF-dressing

RF radiation with MHz frequencies are used to transfer different mF spin states

within the F = 1 (or F = 2) manifold of the 87Rb atoms electronic ground state.

The simplest method to transfer atoms to different states is to do a Rabi oscillation

where the atomic states evolve during the pulse duration. However, this approach is

very sensitive to detuning and phase noise in the system. A better way to transfer

atoms is using the adiabatic rapid passage (ARP) techniques [130, 171] based on the

Landau-Zener model [179].

Here, I give an overview of the ARP technique used in our lab to transfer 87Rb

atoms among their 5S1/2 electronic ground states. Within a two-level system, the
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Hamiltonian can be put in the form

Ĥ =



−δ (t)

2
Ω

Ω
δ (t)

2


 =



−λt Ω

Ω λt


 , (5.1)

where δ (t) is the detuning between the two states coupled by the RF field with

coupling strength Ω. The atoms are brought into RF-dressed states and the time

evolution is governed by the dynamics of the detuning. In the Landau-Zener model

[179], the detuning is ramped with a linear rate λ. The instantaneous eigenenergies

of the Hamiltonian in Eq. 5.1 are given by ξ(t) = ±
√
λ2t2 + Ω2. Diagonalization of

the Hamiltonian matrix in Eq. 5.1 leads to the adiabatic form

i~
∂

∂t
ΨA =

{
Û †HÛ − i~Û †

∂

∂t
Û

}
ΨA (t)

=







−ξ(t) 0

0 ξ(t)


+

~
2 (λ2t2 + Ω2)




0 −iλΩ

iλΩ 0








ΨA (t) (5.2)

where ΨA is the two-component wavefunction in the adiabatic basis. The measure of

adiabaticity is determined by comparing the off-diagonal coupling to the energy level

and requiring that

~λΩ

[2 (λ2t2 + Ω2)]3/2
� 1. (5.3)

Equation 5.3 guarantees the atomic states can “follow” the time changing Hamiltonian.

The ratio in Eq. 5.3 has its highest value at t = 0 and hence the condition ~λ/2Ω2 � 1

is met by selecting a strong coupling Ω and a low rate of the detuning ramp λ.
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Although it is non-trivial, the time-evolving Landau-Zener model in Eq. 5.2 is

exactly solvable. In the long time limit (starting from t → −∞), the probability for

the system to remain in its initial eigenstate is given by

Pinitial = exp (−πΛ) , (5.4)

where the adiabaticity parameter is Λ = Ω2/~λ. A full transfer between the two-

atomic states (Pinitial ' 0) thus is easily achievable by selecting large Λ. The adia-

baticity of the transfer is easily understood by comparing the bare uncoupled energies

±λt to the adiabatic energies ±ξ(t), as shown in Fig. 5.1(a). Although the bare en-

ergies have a cross over at t = 0, the coupled energies have an avoided crossing and

hence a small fractional population 1−Pinitial gets transferred to the others states, un-

less the ramping rate is very slow. Since the process of population transfer must occur

in a timescale shorter than the radiative lifetime of the excited state, this technique

is often known as “rapid” adiabatic passage as well.

In many practical cases, we would like to partially transfer atomic populations,

i.e. Pinitial ∼ 0.2 or Λ ∼ 0.5, while still satisfying the adiabaticity condition 1/Λ� 1.

To achieve this, we can apply specific sequences for the detuning ramp δ (t) and the

coupling strength Ω. In our experiment, we apply a half-Gaussian ramp to the detun-

ing parameter δ (t); this involves a slow ramp of δ (t) in the beginning, followed by a

speeding up near the avoided crossing to give enough population transfer, and finally

ending with a slow change in δ (t) to let the atoms follow the adiabatic eigenenergies.
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Figure 5.1. Transfer of atomic populations between the
|F = 1,mF = −1〉 and |F = 1,mF = 0〉 states with RF-dressing
at coupling strength Ω. (a) Avoided crossing in coupled two-level
system. (b) Experimental sequence to ramp the detuning δ (t) in time.
(c) Transferred population of the coupled two-level system.

For example, I consider ARP between the |F = 1,mF = −1〉 and |F = 1,mF = 0〉

states with RF-dressing at coupling strength Ω. The time sequence of the ARP is

shown in Fig. 5.1(b). To change the detuning δ (t) = µBdc (t) /~ − ωrf , we ramp

the bias field Bdc (t) instead of the RF frequency ωrf (t) . We operate at low field

Bdc . 20 G in the linear Zeeman regime where the magnetic moment of the state

under consideration is µ = 0.7 MHz/G. The sigmoid functional ramp in Bdc (t) to its

final value takes a duration of 15 ms; we hold the system in the RF-dressed state for

10 ms; and we finally turn off the RF-coupling and project the atoms to their bare

spin states. A “controlled” population transfer between the two states is then achieved

by controlling the final value in the detuning ramp δ (t→∞) = δf as displayed in

Fig. 5.1(c). I note this approach can be extended to three-level system as well [116],

such as coupling between the mF = −1, 0 and +1 states of the F = 1 manifold.
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5.2. Microwave-assisted partial-transfer absorption imaging

Electromagnetic radiation at ∼ 6.8 GHz can be used to transfer 87Rb atoms among

the F = 1 and F = 2 manifolds of their 5S1/2 electronic ground states, as shown in

Fig. 5.2(a). This radiation is in the microwave band. In our experiments, microwave

radiation is broadcast by an antenna horn. For details on the experimental setup of

the microwave source, see Ref. [131].

In this section, I discuss the application of microwave-assisted partial-transfer

absorption imaging (PTAI) to provide feedback in our dc magnetic field control. A

small fraction of atoms in the F = 1 manifold is transferred to the F = 2 manifold,

and the atoms are imaged in the cycling transition F = 2→ F ′ = 3 using absorption

imaging. This technique is non-destructive to the atoms in the initial F = 1 state

as they are unaffected by the imaging light [142]. If there is any detuning present

between the two successive microwave pulses being applied, there is imbalance in the

transferred populations of the atoms. Within an experimental cycle, we then use

two successive PTAIs to provide a real-time feedback of magnetic field error from the

setpoint.

To control the magnetic field to be better than mG precision, I transfer a small

fraction of 87Rb atoms from the ground state |1,−1〉 to the excited state |2,−2〉. I

use this transition since it has the highest sensitivity to the magnetic field.2 Pulsing

the microwave for a duration τ , I partially transfer the atoms to the mF ′ = −2

2The difference in the magnetic moment is maximum for either |1,−1〉 → |2,−2〉 or |1,+1〉 → |2,+2〉
transition with ∆µF /h = 2.1 MHz/G in the linear Zeeman regime.
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state. The coupling strength of the pulse was chosen to be Ω0 � 1/τ to guarantee

the Rabi evolution is less than a π/2 rotation on the Bloch sphere. I used two

subsequent microwave pulses with specific red- and blue-detuned frequencies ∓δ0

from the transition resonance (see Fig. 5.2(a)). The Rabi pulse between the two-level

system yields the fractional population being transferred as:3

P (∆±) =
Ω2

0

Ω2
0 + ∆2

±
sin2

(√
Ω2

0 + ∆2
±τ

2

)

=

(
Ω0τ

2

)2

sinc2

(
1

2π

√
Ω2

0 + ∆2
±τ

)
(5.5)

where ∆± = 2π (δDC ± δ0) is the combined detuning due to the magnetic field drift

δDC and intentionally chosen microwave detuning δ0. Figure 5.2(b) shows the frac-

tional population transfer for blue- and red-detuned pulses as a function of δDC.

I then measured the normalized population imbalance between the two successive

microwave-assisted PTAIs:

Nimb =
P (∆+)− P (∆−)

P (∆+) + P (∆−)
, (5.6)

which was converted to provide feedback correction to the bias field detuning δDC.

In my experiments, I used τ = 400µs and δ0 = 1.25 kHz (the combined blue- and

red-detunings are ∆±/2π = δDC ± δ0). Figure 5.2(c) shows experimental measure-

ments of P (∆±) and Nimb as a function of intentionally introduced field detuning

3The cardinal sine function has two definitions, the unnormalized sinc function sinc(x) = sin(x)/x
and the normalized sinc function sinc(x) = sin(πx)/πx. Here I use the latter definition as commonly
used in information theory [164].
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5.2. Microwave-assisted partial-transfer absorption imaging

Figure 5.2. Illustration of microwave-assisted PTAI to provide feed-
back correction to the field drift δDC. (a) Atoms are transferred with
red- and blue-detuned microwave pulses to the |2,−2〉 state and the
numbers are counted in absorption imaging. (b) Fractional population
transfer P (∆±) as given by Eq. 5.5 (top) and the normalized popula-
tion imbalance Nimb as given by Eq. 5.6 (bottom). (c) Experimental
measurements of P (∆±) and Nimb.
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δDC. With PTAIs, the measured population imbalance was fedback to the field con-

trol system to keep Nimb in the range of −0.75 < Nimb < 0.75. This gave corrections

to the drifting magnetic field in the range corresponding to −500 Hz to 500 Hz. I

note that the sensitivity to the field drift δDC is only determined by δ0, if δ0 ∼ 1/τ

and Ω0τ � 1 are satisfied. In practice this gave me a field control within the range

of ±200µG from the setpoint of the resonant field condition at 20 G (as previously

mentioned in Subsection 3.5.4).

5.3. The ac-Stark effect

The interaction between laser-light and atoms within the dipole approximation is

described by the ac Stark shift [163]. A coherent electromagnetic field E (r, t) with

frequency ω can be written as

E (r, t) := Ẽ (r;ω) e−iωt + Ẽ∗ (r;ω) e+iωt, (5.7)

where Ẽ (r;ω) and Ẽ∗ (r;ω) are the negative and positive frequency components of

the Fourier transform of E (r, t). Since the electric field is a real physical quantity,

Ẽ (r;ω) is the complex conjugate of Ẽ∗ (r;ω) and vice versa. In this representation,

the intensity of light is given by I = ε0c
〈
|E (r, t)|2

〉
t

= 2ε0c
∣∣∣Ẽ
∣∣∣
2

. The effective

Hamiltonian for the ac Stark shift is given by

ĤStark (F ;ω) = −α̂µν (F ;ω) Ẽ∗0µẼ0ν , (5.8)
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5.3. The ac-Stark effect

where the spherical tensor polarizability operator α̂µν is commonly written in its

irreducible components [163]

α̂µν (F ;ω) = α̂(0) (F ;ω) δµν + α̂(1) (F ;ω) iεσµν
Fσ
F

+α̂(2) (F ;ω)
3

F (2F − 1)

[
1

2
(FµFν + FνFµ)− 1

3
F2δµν

]
, (5.9)

where µ, ν are the indices for the chosen basis vectors and summation over the re-

peated indices is implied; F is the total angular momentum operator for the F hy-

perfine level; and σ is the quantization axis for the good quantum number mF . The

polarizabilities have scalar, vector, and tensor reduced components, which are re-

spectively α̂(0) (F ;ω), α̂(1) (F ;ω), and α̂(2) (F ;ω). In my work, the term α̂(2) (F ;ω)

is generally very small compared to the other terms and hence it can be neglected.

The scalar and vector components are discussed in the following subsections, where I

concentrate on the F = 1 manifold of the 87Rb 5S1/2 electronic ground states.

5.3.1. Scalar light shift. For most laser frequencies, the largest contribution

to the F = 1 hyperfine level is from the D1 and D2 transitions. For large laser

detunings compared to the hyperfine splittings, I can express α(0) (F ;ω) in terms of

the fine-structure dipole matrix elements |〈J ‖d‖ J ′〉|2 :

α(0) (F ;ω) ≈
∑

J ′

|〈J ‖d‖ J ′〉|2
3~

(
1

ω + ωJ ′J
− 1

ω − ωJ ′J

)
, (5.10)
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5.3. The ac-Stark effect

where ω is the laser frequency, and ωJ ′J are transition frequencies between the atomic

ground state J and the multiple excited states J ′. Replacing the reduced dipole matrix

element with the spontaneous decay rate ΓJJ ′ , I can write:

|〈J ‖d‖ J ′〉|2
3~

=
2J ′ + 1

2J + 1

πε0c
3

ω3
JJ ′

ΓJJ ′ . (5.11)

Equations 5.8-5.11 then give the scalar light shift for the F = 1 manifold as

∆E(0) (ω) = −πc
2I

2

[
2ΓD2

ω3
D2

(
1

ω + ωD2

− 1

ω − ωD2

)
+

ΓD1

ω3
D1

(
1

ω + ωD1

− 1

ω − ωD1

)]
,

(5.12)

where I is the laser intensity; ωD1 and ωD2 are the D1 and D2 transition frequencies;

ΓD1 and ΓD2 are the D1 and D2 transition linewidths.

In this calculation of the scalar light shift, I implicitly assumed α(0) (F ;ω) to

be real in Eq. 5.10. To include heating due to spontaneous decay, I can make a

substitution ωD → ωD + iΓDω
3/ω3

D to the D1 and D2 transition frequencies which

then gives the imaginary part of the polarizability [61]. Assuming there is no heating

due to the induced dipole fluctuations from gradients in the electric field, I obtain the

scattering rate (heating rate) as [54]

Γ (ω) =
πc2I

2~

[
2Γ2

D2ω
3

ω6
D2

(
1

ω + ωD2

− 1

ω − ωD2

)2

+
Γ2

D1ω
3

ω6
D1

(
1

ω + ωD1

− 1

ω − ωD1

)2
]
.

(5.13)

By tuning the laser frequency ω to be between the ωD1 and ωD2 transitions, I can

cancel the scalar light shift in Eq. 5.12. The scalar light shift plotted as a function of
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Figure 5.3. (a) Scalar light shift ∆E(0) and (b) scattering rate Γ for
wavelengths in between the D1 and D2 transitions of 87Rb atoms. The
scalar light shift is zeroed out at λzero = 790.027 nm and the heating
rate has a local minimum at λ = 788.43 nm. I use λzero to create our
engineered Hamiltonians with minimal heating.

λ = 2πc/ω is shown in Fig. 5.3(a). The wavelength λzero where ∆E(0) → 0 is called the

magic wavelength (or tune-out wavelength in some references [9]). Substituting the

relevant parameters for the D1 and D2 transitions (i.e. λD1 = 794.979 nm and λD2 =

780.241 nm) into Eq. 5.12 gives λzero = 790.027 nm. In engineering the Hamiltonians,

tuning to λzero is beneficial since then the atomic internal energy-level spacing is not

affected by the light intensity. Furthermore, the heating rate at the magic wavelength

is minimal (see Fig. 5.3(b)), allowing me to manipulate the atoms at the magic

wavelength for a few seconds before significant loss occurs.

In above, I discussed the scalar polarizability due to the induced dipole moment

by taking into account atom-light interaction with just the valence electron. However,

there are correction terms due to the contribution from the core electrons (in the inner

shell) and a core modification by the valence electron when the atoms are interacting
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5.3. The ac-Stark effect

with an ac electric field. Including these corrections give a more precise value for

the magic wavelength, λzero = 790.034(7) nm [9]. For this reason, I generally used

λzero = 790.034(4) nm in my experiments.

5.3.2. Light-induced effective magnetic field. I next consider the vectorial

light shift from the ac Stark effect to the F = 1 manifold. Recall that the hyperfine

Hamiltonian in the presence of an external magnetic field Bdc is given by

Ĥhfs,B = Ahfs
I · J
~2

+
µB
~

(gJJ + gII) ·Bdc, (5.14)

where Ahfs is the magnetic-dipole hyperfine constant, I is the nuclear spin operator,

J is the electron total angular momentum operator, gI and gJ are the g−factors of

the nuclear spin and the electron total angular momentum. The main idea of the

vectorial light shift is to treat the effect of the vectorial light polarizability α̂(1) (F ;ω)

as an effective magnetic field [53, 64]

Beff = − ~
µBgJ

iα̂(1) (J ;ω)
(
Ẽ∗ × Ẽ

)
, (5.15)

in the linear Zeeman regime. In this regime, the vectorial light shift is very small

compared to the Zeeman splitting (around 10’s of kHz compared to 10’s of MHz). I

can then treat the vectorial ac Stark shift as an effective perturbing Hamiltonian

Ĥeff =
µBgF
~

Beff · F (5.16)
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to the hyperfine structure governed by Ĥhfs,B. This effective Hamiltonian allowed me

to engineer various potentials in spinor condensates as described in the next section.

5.4. Engineered Hamiltonians in 87Rb Bose gases

I used different coupling schemes to create three specific engineered Hamiltonians.

Each scheme utilized two counter-propagating lasers at the magic wavelength λzero in

the cross-polarized (lin ⊥ lin) configuration, as depicted in Fig. 5.4. The vectorial

light shift from the two-photon Raman processes enabled me to generate an effective

magnetic field that perturbed the Zeeman structure in the F = 1 manifold of the

spinor Bose gases. I realized three different effective Hamiltonians by changing the

orientation of the quantizing bias field and adjusting the “colors” of the counter-

propagating lasers, as described below.

5.4.1. Spin-dependent lattice. The first case is shown in Fig. 5.4(a). In this

case there is a bias magnetic field Bdc = Bxx̂ that is parallel to the propagation

direction of the laser along x. The two lasers have the same frequency ω which

is tuned to the magic wavelength ω = ωzero with zero scalar light shift. The laser

propagating along êx is linearly polarized in the y−direction with field amplitude EA

and the laser propagating along −êx is linearly polarized in the z−direction with field

amplitude EB. The total electric field at the location of the atoms has the form

E (r, t) = êyEAeikRxe−iωt + êziEBe−i(kRx+φ)e−iωt + c.c., (5.17)
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5.4. Engineered Hamiltonians in 87Rb Bose gases

Figure 5.4. Three cases of engineered Hamiltonians: (a) spin-
dependent lattice, (b) spin-1/2 SOC, and (c) spin-1 SOC.

where kR = ω/c is the wavenumber of the laser and the phase difference between the

two lasers is chosen to be φ+ π/2. The cross product of the two mutually conjugate

Fourier components of the total field is

Ẽ∗ × Ẽ = EBEA
[
e−i(2kRx+φ) + ei(2kRx+φ)

]
êx = 2i cos(2kRx+ φ)EBEAêx. (5.18)

This produces an effective magnetic field of the form

Beff =
2~α̂(1) (J ;ω)EBEA

µBgJ
cos(2kRx)êx. (5.19)
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Without loss of generality, I have omitted the relative phase φ in Eq. 5.18 by appro-

priate choice of coordinate origin.

In this configuration, the spin quantization axis is along ex (defined by the bias

field Bxx̂) and the effective Hamiltonian can be written as

Ĥeff =
V0

2




cos (2kRx) 0 0

0 0 0

0 0 − cos (2kRx)



, (5.20)

where V0 = −4α(1) (gF/gJ)EBEA is the depth of the spin-dependent lattice. The

lattice depth V0 can be tuned by changing the geometric mean of the laser intensity

since V0 ∝
√
IAIB . The lattice potential only affects the spin components mF = −1

and mF = +1 (with anti-phase relation between them), while the spin state mF = 0

is unaffected by the coupling light. This scheme provides a way to create a spin-

dependent lattice in the F = 1 manifold.

5.4.2. Spin-1/2 spin-orbit coupling . In the second configuration, the two

Raman lasers have different frequencies ω+ and ω− (or different wavenumbers k+ =

ω+/c and k− = ω−/c), as shown in Fig. 5.4(b). Each laser frequency is tuned close to

the magic wavelength ω+, ω− ' ωzero with a small frequency difference |ω+ − ω−| �

ωzero. The value of δω = ω+ − ω− is adjusted to be close to the Zeeman split ωZ

introduced by the bias magnetic field Bdc = Bz ẑ. In my experiments, the typical

bias field strength is Bz . 20 G which corresponds to a linear Zeeman split of ωZ .
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2π · 14 MHz. A careful choice of δω ' ωz (δω/ωzero ∼ 10−8) allows me to couple two

specific Zeeman sublevels to create a spin-1/2 spin-orbit-coupled (SOC) Hamiltonian,

as described in more details below.

For this case, I can write the total electric field experienced by the atoms as

E (r, t) = eyEA exp[i(k+x− ω+t)] + eziEB exp[−i(k−x+ ω−t+ φ)] + c.c., (5.21)

and consequently

Ẽ∗ × Ẽ = iEAEB
{

ei(2kRx−δω t+φ) + c.c
}

ex

= 2iEAEB cos(2kRx− δω t+ φ)ex, (5.22)

where the single-photon recoil momentum is defined as kR = (k+ + k−) /2.

The effective Hamiltonian in our system then becomes

Heff =
√

2Ω cos(2kRx− δω t)Fx, (5.23)

where the spin-1 matrices are

Fx =
~√
2




0 1 0

1 0 1

0 1 0



, Fy =

~√
2




0 −i 0

i 0 −i

0 i 0



, Fz = ~




1 0 0

0 0 0

0 0 −1



,

(5.24)

and the Rabi coupling strength is Ω = α̂(1)
(√

2gF/gJ
)
EBEA ∝

√
IAIB.
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To get rid of the time dependence in the effective Hamiltonian (Eq. 5.23), I can

apply a unitary transformation Ût = e−iδω tFz/~ and make the rotating-wave approxi-

mation (RWA), where the term oscillating with frequency 2δω is omitted, to obtain

Û †tHeffÛt '
Ω√
2

cos(2kRx)Fx −
Ω√
2

sin(2kRx)Fy. (5.25)

The effective Hamiltonian in the rotating frame of the spin space, written in the

matrix representation of the F = 1 spin states, becomes [69]

ĥeff = Û †tHeffÛt − i~Û †t
∂Ût
∂t

= ~




δω
Ω

2
exp(i2kRx) 0

Ω

2
exp(−i2kRx) 0

Ω

2
exp(i2kRx)

0
Ω

2
exp(−i2kRx) −δω



. (5.26)

This effective Hamiltonian can be treated as a perturbation to the bare hyperfine spin

states, with the Zeeman eigenenergies are defined by the diagonal matrix

ĥhfs,B = Û †tHhfs,BÛt = ~




−ωZ + ε/2 0 0

0 0 0

0 0 ωZ + ε/2




+ ~
δ

2
Î. (5.27)

Here I have introduced the quadratic shift ε to take into account the slight asymmetry

between the linear Zeeman split ωZ and the zero energy reference, which is shifted by

δ/2. In other words, the energy levels of the mF = +1, 0, and mF = −1 states are
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chosen to be ~ (−ωZ + ε/2 + δ/2) , ~δ/2, and ~ (ωZ + ε/2 + δ/2), respectively. Choos-

ing the laser frequency difference to be δω = ωZ+δ+ε/2, the combined single particle

Hamiltonian becomes [103]

ĥhfs,B + ĥeff = ~




ε+ 3δ/2
Ω

2
exp(i2kRx) 0

Ω

2
exp(−i2kRx) δ/2

Ω

2
exp(i2kRx)

0
Ω

2
exp(−i2kRx) −δ/2



. (5.28)

The two spin states |↑〉 = |F = 1,mF = 0〉 and |↓〉 = |F = 1,mF = −1〉 can be cou-

pled together by tuning δ, e.g. δ = 0 will bring the two spin states into resonance. In

the case of ε� δ and ε� Ω, coupling to the |F = 1,mF = 1〉 state can be neglected

and I obtain the Raman coupled spin-1/2 Hamiltonian

ĥhfs,B + ĥeff = ~




δ/2
Ω

2
exp(i2kRx)

Ω

2
exp(−i2kRx) −δ/2


 . (5.29)

The off-diagonal terms in Eq. 5.29 are responsible for the “spin-momentum locking”

in this Raman coupling scheme, where any change in the spin state ∆mF = ±1 is

accompanied by a change in the momentum ∆k = ±2kR. In typical experiments, the

coupling strength Ω and detuning δ are on the order of a few kHz while the linear

Zeeman splitting is on the order of a few MHz. This justifies both the RWA and the

treatment of ĥeff as a perturbation to the spinor hyperfine structure.

I now include the kinetic energy of the atoms and consider only the motion along x.

I apply another unitary transform Ûk = eikRxσz to the Hamiltonian in Eq. 5.29, which
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acts as a momentum translation operator to the spin states in the initial lab frame

~χlab. In the new frame, the spin states become ~χ1/2
SO = ÛkÛt~χlab = ei(kRx−δω t)σz~χlab.

Finally, I arrive at the spin-1/2 SOC Hamiltonian

ĥ
1/2
SO =

~2

2m
(qx − kRσz)2 + ~

δ

2
σz + ~

Ω

2
σx (5.30)

where σx,y,z are the Pauli matrices for spin-1/2 system:

σx =




0 1

1 0


 , σy =




0 −i

i 0


 , σz =




1 0

0 −1


 . (5.31)

This configuration couples the bare atomic states |↑, kx = qx − kR〉 and |↓, kx = qx + kR〉,

realizing an SOC Hamiltonian in the quasi-momentum space qx [158].

5.4.3. Spin-1 spin-orbit coupling. In the third scenario, as shown in Fig.

5.4(c), I introduce bi-chromatic frequencies ω+
−1 and ω

+
+1 to the laser beam propagating

in the +x direction. This laser beam has wavenumbers k+
−1 = ω+

−1/c, k
+
+1 = ω+

+1/c,

and field amplitude EA . The other Raman laser propagating in the −x direction has a

single frequency ω−. This laser beam has wavenumber k− = ω−/c and field amplitude

EB. In order to characterize the beat-note frequency of the bi-chromatic laser, I define

new quantitites: the average wavenumber k+ =
(
k+
−1 + k+

+1

)
/2, the wavenumber

difference ∆k+ =
(
k+

+1 − k+
−1

)
/2, the average frequency ω+ =

(
ω+

+1 + ω+
−1

)
/2, and

the frequency difference ∆ω+ =
(
ω+

+1 − ω+
−1

)
/2.
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The total electric field for the counter-propagating laser geometry is given by

E =eyEA cos
(
∆k+x−∆ω+t

)
exp[i(k+x− ω+t)]

+ eziEB exp[−i(k−x+ ω−t+ φ)] + c.c., (5.32)

which gives rise to the time-dependent effective Zeeman coupling term

Ẽ∗ × Ẽ = iEAEB cos
(
∆k+x−∆ω+t

) {
ei(2kRx−δω t+φ) + c.c

}
ex

= 2iEAEB cos
(
∆k+x−∆ω+t

)
cos(2kRx− δω t+ φ)ex, (5.33)

where δω = ω+ − ω− and kR = (k+ + k−) /2. This gives an effective Hamiltonian

Ĥeff = 2Ω1 cos
(
∆k+x−∆ω+t

)
cos(2kRx− δω t)F̂x. (5.34)

To bring the three independent mF state into resonance to realize a spin-1 SOC

system, I choose the bi-chromatic laser frequencies to be ω+
+1 = ω− + ωZ + ε/2 and

ω+
−1 = ω−+ωZ−ε/2. The linear and quadratic Zeeman shifts, ΩZ and ε, are defined as

before in Eq. 5.27. For a typical bias field strength of Bz . 20 G, the quadratic shift

is ε . 2π ·100 kHz, which gives ∆ω+/2π ∼ 50 kHz and ∆k+/2π ∼ 10−4 m−1. Since the

size of the atoms is typically in the order of 10µm (and I am not interested in the short-

time dynamics of the Hamiltonian with time scale of . 10−13 s), I could safely neglect

the term ∆k+x inside the cosine function, where cos (∆k+x−∆ω+t) ' cos (∆ω+t).

The effective Hamiltonian in Eq. 5.34 then becomes
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Ĥeff = 2Ω1 cos
(
∆ω+t

)
cos(2kRx− δω t)F̂x. (5.35)

I apply a unitary transformation Ût = e−iδω tFz/~ (where δω = ωZ) to the Hamil-

tonian in Eq. 5.35 and make the RWA to obtain a time-harmonic Hamiltonian

ĥhfs,B + ĥeff = Ω1 cos
(
∆ω+ t

) [
cos (2kRx) F̂x − sin (2kRx) F̂y

]
+
ε

2

F̂ 2
z

~
. (5.36)

with ∆ω+ = ε/2. The Hamiltonian in Eq. 5.36 is a periodic function of time and can

be solved using Floquet theory, as discussed in Appendix D. Similar to the application

of Bloch’s theorem in position-momentum space, the Floquet theory leads to the

concept of “quasi-energy” εFloquet periodically defined within the first Brillouin zone

of the frequency space, i.e. 0 < εFloquet < ~∆ω. This allows the Hamiltonian in Eq.

5.36 to be cast into the same form as a spin-1 SOC system [22]

ĥ1
SO =

~2k2

2m
+ Ω1 [cos (2kRx) êx − sin (2kRx) êy] · F + Ω2F̂

(2)
zz , (5.37)

where the quadrupole tensor operator is given by F̂ (2)
zz /~ = F̂ 2

z /~2 − 2/3 and there

is an additional Zeeman-like tensor coupling with strength Ω2. Here Ω2 includes

the quadratic energy shift of the bare Zeeman sublevels and energy correction to

the lowest band of the Floquet quasi-energy spectrum. The Hamiltonian in Eq. 5.37

allows us to realize magnetic phases of spin-1 SOC Bose gases 5.36. This Hamiltonian

has a rich phase diagram as will be discussed in Chapter 6.
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In the above SOC systems, it is important to note the offset ±kR from the recoil

momentum in quasi-momentum space is equivalent to the presence of an artificial

gauge field. As in the quantization of electromagnetic field, the gauge field A is

responsible for the presence of magnetic and electric fields, for example B = ∇×A

and E = −∂A/∂t [100, 101]. Up to this point, I have treated the detuning δ in

the SOC Hamiltonian to be spatially uniform. Introducing a spatially dependent

detuning to the system δ (y), i.e. by applying a magnetic field gradient Bzêz →

(Bz + b′y) êz, a synthetic magnetic field can be realized. Different spin states of the

“neutral” atoms act like charged particles moving in the synthetic magnetic field. In

this scenario, we could create vortices in the condensate and the vortex nucleation

exhibits a structural phase transition above a threshold artificial field strength. [93,

101, 138]. Detailed discussions on the research work to explore vortex nucleation in a

non-uniform synthetic magnetic field can be found in my previous colleague’s (Ryan

Price) thesis [139] and his published work in Ref. [138].

5.5. Calibration techniques

5.5.1. Minimizing circular polarization of the optical light. The engi-

neered Hamiltonian schemes, as mentioned in the previous section, are realized using

the vectorial light shift governed by the term Ẽ∗ × Ẽ. It is thus important to make

certain on the degree of linear polarization of the light to produce the desired effective

magnetic field configuration.
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Figure 5.5. Alignment of the Raman quarter-wave plate angle θWP

for (a) Raman A and (b) Raman B laser beams. Vectorial light shift
from circularly polarized light causes a shift in the resonance condition
of the RF-dressed states with 0.5 fractional population. Observed data
(circles) are fitted to the logistic functions (solid curves) to determine
θWP which does not affect the resonance condition.

In order to minimize the circular polarization of the counter-propagating Raman

lasers, I make use of the vectorial light shift and measure the shift in the atomic reso-

nance condition in an RF-dressed state. I utilize a combination of half- and quarter-

wave plates to realize polarization in the lin ⊥ lin configuration for the aforementioned

engineered Hamiltonians. The orientation of the linear polarization is easily aligned

by using the half-wave plate to maximize the coupling strength experienced by the

atoms. To minimize any circularity in the laser polarization, the quarter-wave plate

is used to compensate any unwanted elliptical polarization introduced by the optical

components.

To align the quarter-wave plates, I prepared an equal 50%/50% population of

|F = 1,mF = −1〉 and |F = 1,mF = 0〉 atoms in the RF-dressed states. Any light

shift alters the resonance condition of the RF-dressed states. With bias field oriented
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along the laser propagation direction ex, I adiabatically turned on a single Raman

beam with its wavelength tuned to λzero = 790.034(4) nm. Next, I gradually tweaked

the quarter-wave plate angle θWP and monitored the shift in resonance due to the

vectorial light shift from circularly polarized light, as shown in Fig. 5.5. The circular

polarization was minimized when the atoms remained at resonance in the RF-dressed

state (with 0.5 fractional population) without being affected by the Raman beam.

This gave an accuracy within 1◦ on the quarter-wave plate reading.

5.5.2. Lattice depth calibration. To calibrate the lattice depth V0, I applied

a square pulse of standing-wave light with variable duration τ . The optical lattice

diffracts the condensate into multiple momentum orders ±2nkR, where n are integers

and kR = 2π/λ is the wavenumber of a single laser beam. The energy scale in this

system is set by the (single-photon) recoil energy ER = ~k2
R/2m. In pulsing the

lattice, I used a short interaction time τ � 1/ER to observe the Kapitza-Dirac effect

in the scattering of atoms by the standing-wave light [48, 55].

Time evolution of the condensate in the lattice can be modeled by solving the

single-particle Hamiltonian (neglecting mean-field interactions)

− i~
∂

∂t
ψ (x, t) =

[
− ~2

2m

∂2

∂x2
+ V0 cos2 (kRx)

]
ψ (x, t) , (5.38)

using the plane-wave basis ψ (x, t) =
∑

n cn (t) exp (i2nkRx). The highest momentum

order which can be populated is determined by the cutoff value nmax .
√
V0/4ER.

For a short pulsing duration τ � ~/
√

4V0ER [72], the fractional population Pn of the
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Figure 5.6. Time evolution of the 0-th momentum order P0 for lattice
depth V0 = 3ER (circles) and V0 = 40ER (crosses). Markers with dotted
lines are numerical solutions of Eq. 5.38. Solid lines are approximate
solutions based on Eqs. 5.39-5.40.

n-th diffracted order has the form [48]

Pn = |cn (τ)|2 ' J2
n

(
V0

2~
τ

)
, (5.39)

where Jn is the Bessel function of the first kind for an integer n. This approximation

is known as the Raman-Nath regime [48]. For shallow potentials V0 . 4ER, the time

evolution of the n = ±1 diffraction order has a sinusoidal form, similar to that of

Rabi oscillation in a two-level system. The Rabi-like solution of P±1 is given by

P±1 =
1

4

(
V0

~Ω

)2

sin2

(
Ω

2
τ

)
, (5.40)

where ~Ω =
√
V 2

0 /2 + 16E2
R, and the 0-th order fractional population satisfies P0 =

1− 2P±1.
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The time evolution of the 0-th momentum order is shown in Fig. 5.6. I determined

the lattice depth V0 by fitting the population in different n-th diffracted orders with

the numerical solution of Eq. 5.38.

5.5.3. Coupling strength and degenerate minima in an SOC system. To

calibrate the coupling strength for SOC cases, I applied a square pulse of the Raman

beams. The atoms then exhibit Rabi oscillation between the different coupled spin

states. For simplicity, I consider a spin-1/2 system in the following discussion. Since

a change in spin is always accompanied by a recoil momentum kick 2kR, I have

to include a factor of 4ER in the SOC energy dispersion during the Rabi pulsing,

as shown in Fig. 5.7(a). For an initial state |↓〉 = |mF = −1〉 prepared at rest,

corresponding to the quasi-momentum qx = −kR, this couples the bare atomic states

|↓, qx + kR〉 = |mF = −1, kx = 0〉 and |↑, qx − kR〉 = |mF = 0, kx = −2kR〉. It is then

trivial to obtain the Raman coupling strength Ω by fitting the Rabi evolution of the

two coupled states to the relation P↑ (t) = sin2 (Ωt/2).

Another important observation in the SOC system is the doubly-degenerate energy

minima. The energy dispersion in the quasi-momentum space qx (for zero detuning

δ = 0) has two local minima, as illustrated in Fig. 5.7(a). For coupling strength

Ω < 4ER, the energy dispersion consists of two degenerate minima located at

q0 = ±kR

√
1−

(
Ω

4ER

)2

. (5.41)
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Figure 5.7. (a) Energy dispersion of spin-1/2 SOC condensates for
Ω/ER = 0, 2, 4, and 6 (as indicated by the red, magenta, blue, and
cyan curves, respectively). (b) Example of absorption imaging where
the bare momentum and spin states are distinguished after TOF re-
lease while applying Stern-Gerlach gradient force. (c) Tracking the two
degenerate minima q0 of the Raman dressed states.

As Ω increases, the two dressed spin states merge into a single minimum at q0 = 0. To

observe the degenerate minima, I prepared atoms in the dressed state by adiabatically

increasing the coupling strength to a final value Ω (i.e. by ramping it up linearly

within 10’s of ms). I then abruptly (t < 1µs) turned off both the Raman lasers and

the dipole trap to project the cloud into the bare spin and momentum states. After

a few ms of time of flight (TOF), I did absorption imaging of the clouds to determine
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their locations and the corresponding minima location q0. The different spin states

are separated by applying Stern-Gerlach force during TOF, as shown in Fig. 5.7(b). I

note that the agreement between the imaging data and the expected minima location,

as depicted in Fig. 5.7(c), is consistent with the existence of SOC produced by the

Raman lasers.
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CHAPTER 6

Magnetic phases of spin-1 spin-orbit-coupled Bose gases

In this chapter, I present our observation of magnetic phases of spin-1 spin-orbit-

coupled Bose gases. This chapter is a reprint of our work published in Ref. [140]. As

one of the authors, I was involved with the data collection, analysis, and writing of the

manuscript. My particular role was to collect the data on the quenching dynamics

through the first-order transition from the unmagnetized phase to the magnetized

phase (shown in Fig 6.3 below). While analyzing the data for the measured phase

diagram, we found a mismatch between our theoretical prediction and experimental

results. It turned out that there was a mistake in our theoretical model. We forgot

to take into account the laser beat-note frequency which we used to realize the spin-1

spin-orbit coupling system. My other contribution was then to include this correction

and apply Floquet formalism to our model Hamiltonian. Our group effort eventually

obtained measurement and data analysis that were accurate and consistent.

6.1. Abstract

Phases of matter are characterized by order parameters describing the type and

degree of order in a system. Here we experimentally explore the magnetic phases

present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the
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6.2. Introduction

quantum phase transitions between these phases. We observe ferromagnetic and un-

polarized phases which are stabilized by spin-orbit coupling’s explicit locking between

spin and motion. These phases are separated by a critical curve containing both first-

and second-order transitions joined at a tricritical point. The first-order transition,

with observed width as small as h× 4 Hz, gives rise to long-lived metastable states.

These measurements are all in agreement with theory.

6.2. Introduction

Most magnetic systems are composed of localized particles such as electrons [3],

atomic nuclei [1], and ultracold atoms in optical lattices [57, 65, 89, 155], each with a

magnetic moment µ. By contrast, itinerant magnetism [133, 149] describes systems

where the magnetic particles, here ultracold neutral atoms, can themselves move

freely, and for which magnetism is generally weak. Our spin-orbit-coupled Bose-

Einstein condensates [66, 90, 103, 141] (BECs) constitute a magnetically ordered

itinerant system in which – unlike more conventional spinor BECs [159] – the atoms’

kinetic energy explicitly drives a phase transition between two different ordered phases

[90]. While the coupling between spin and momentum afforded by spin-orbit coupling

(SOC) is insufficient to stabilize ferromagnetism in itinerant fermionic systems [181],

in bosonic systems it leads to magnetic phases that are not present in spinor BECs

without SOC [66, 141].

Phase transitions can generally be described in terms of a free energy G(Mz) –

including the total internal energy along with thermodynamic contributions that are
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6.2. Introduction

negligible for our nearly zero temperature T = 0 system – that is minimized for an

equilibrium system. Here the magnetization Mz = 〈Ŝz〉/~ is an order parameter,

associated with the spin Ŝ, which changes abruptly as our system undergoes a phase

transition. Figure 6.1(c) shows typical T = 0 free energies: a first-order phase tran-

sition (top panel) occurs when the number of local minima in G(Mz) stays fixed, but

the identity of the global minima changes; and a second-order phase transition (bot-

tom panel) occurs when degenerate global minima merge or separate. These defining

features are true both for T > 0 thermal and T = 0 quantum phase transitions.

For spin-1/2 systems (i.e, total angular momentum, f = 1/2) like electrons, fer-

romagnetic order can be represented in terms of a magnetization vector M = 〈Ŝ〉/~.

This is rooted in the fact that the three components of the spin operator Ŝ transform

vectorially under rotation. More specifically, any Hamiltonian describing a two level

system may be expressed as H = ~Ω0 +Ω1·Ŝ, the sum of a scalar (rank-0 tensor) and

a vector (rank-1 tensor) contribution. The former, described by Ω0 gives an overall

energy shift, and the latter takes the form of the linear Zeeman effect from an effec-

tive magnetic field proportional to Ω1. Going beyond this, fully representing a spin-1

(total angular momentum f = 1 with three mF sublevels: |−1〉, |0〉, and |+1〉) Hamil-

tonian with angular momentum F̂ requires an additional five-component rank-2 tensor

operator – the quadrupole tensor – and therefore there exist “magnetization” order

parameters that are not simply associated with any spatial direction[16, 159, 165].

Pioneering studies in GaAs quantum wells [86, 160] showed that material sys-

tems with equal contributions of Rashba and Dresselhaus SOC described by the term
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Figure 6.1. Experimental system (a) Schematic and level diagram.
The |−1〉 ↔ |0〉 and |0〉 ↔ |+1〉 transitions of the f = 1 ground state
manifold of 87Rb were independently Raman coupled, giving experi-
mental control of Ω1 and Ω2. (b) Phase diagram. The ferromagnetic
order parameter |Mz| is plotted against Ω2 and Ω1. The solid (dashed)
red curve denotes the first-order (second-order) transition from the
magnetized phase. (c) Free energies. Top: near the first-order phase
transition at Ω1/ER = 1 for Ω2/ER = −0.35,−0.1 and 0.15 for the
black, blue and red traces respectively, as marked by the red flags in
(b). Bottom: near the second-order phase transition at Ω2/ER = −2.5
for Ω1/ER = 4.5, 5.5, and 6.5 for the black, blue and red traces respec-
tively.
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αkxF̂z, subject to a transverse magnetic field with Zeeman term Ω1F̂x, can equiva-

lently be described as a spatially periodic effective magnetic field. Our experiments

with spin-1 atomic systems use “Raman” lasers with wavelength λ to induce SOC

of this form [29, 49, 69, 103, 172, 173, 180] with strength α = 2~kR/m, where the

single-photon recoil energy and momentum are ER = ~2k2
R/2m and ~kR = 2π~/λ.

This atomic system can therefore be described by the magnetic Hamiltonian

Ĥ =
~2k2

2m
+ Ω1(x)·F̂ + Ω2F̂

(2)
zz , (6.1)

describing atoms with mass m and momentum ~k interacting with an effective Zee-

man magnetic field Ω1(x)/Ω1 = cos(2kRx)ex − sin(2kRx)ey helically precessing in

the ex-ey; and an additional Zeeman-like tensor coupling with strength Ω2. Here,

F̂
(2)
zz /~ = F̂ 2

z /~2−2/3 is an element of the quadrupole tensor operator. The competing

contributions between kinetic and magnetic ordering energies (interactions select be-

tween different nearly degenerate ground states, but only weakly perturb the location

of the phase transitions, see Methods) make ours an archetype system for studying

exotic magnetic order and understanding the associated quantum phase transitions,

of which both first- and second-order are present in our experiments (Fig.6.1(b)).

We can easily understand the first-order transition in the limit of infinitesimal Ω1

where the tensor field favors either: a polar BEC for Ω2 > 0 (mF = 0: unmagnetized,

Mz = 0), or a ferromagnetic BEC for Ω2 < 0 (mF = +1 or −1: magnetized, |Mz| =

1). As with spinor BECs [148], these phases are separated by a first-order phase
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transition at Ω2 = 0. The ferromagnetic phase spontaneously breaks the Z2 symmetry

associated with the Hamiltonian’s invariance under the exchange |−1〉 ↔ |+1〉. The

second-order transition can be intuitively understood by considering the large Ω1

limit where the system forms a spin helix BEC (with local magnetization antiparallel

to Ω1: unmagnetized, Mz = 0). This order increases the system’s kinetic energy,

leading to the second-order phase transition into the ferromagnetic phase shown in

Fig.6.1(b) as Ω1 decreases. Analogues to this second-order phase transition are present

in other systems with effective spin-degrees of freedom such as double-leg ladders [11]

or engineered optical lattices [128, 166].

These two extreme limits continuously connect at the point (Ω∗1,Ω
∗
2), the green star

in Fig. 6.1(b), where the small-Ω1 first-order phase transition gives way to the large-

Ω1 second-order transition, and together these regions constitute a curve of critical

points {(ΩC
1 ,Ω

C
2 )}. Here we realized spin-1 spin-orbit-coupled BECs and varied the

magnetic coupling fields using externally applied fields. By directly measuring the

system’s magnetization, we studied the associated quantum phase transitions present

in the phase diagram, all in quantitative agreement with theory.

6.3. Results

As shown in Fig. 6.1(a), we realized this magnetic system by illuminating 87Rb

BECs in the f = 1 ground state manifold with a pair of counter propagating and or-

thogonally polarized Raman lasers that coherently coupled the manifold’s mF states.

Physically, the spatial interference of the orthogonally polarized laser beams give rise
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to the helical effective magnetic field (see Methods) with period λ/2. As we first

showed [103] using effective f = 1/2 systems, this introduces both a spin-orbit and a

Zeeman term into the BEC’s Hamiltonian, equivalent to Eq. 6.1. Here the quadratic

Zeeman shift from a large bias magnetic field B0ez split the low-field degeneracy of the

|−1〉 ↔ |0〉 and |0〉 ↔ |+1〉 transitions, and we independently Raman coupled these

state-pairs with equal strength Ω1. We dynamically tuned the quadrupole tensor field

strength Ω2 by simultaneously adjusting the Raman frequency differences; as shown

in Fig. 6.1 we selected frequencies differences where the detuning from the |+1〉 to

|0〉 and |−1〉 to |0〉 were both equal to Ω2 (see Methods). Without this technique,

only the upper half-plane of the phase diagram (Fig. 6.1(b)) would be accessible:

containing only an unmagnetized phase, therefore lacking any phase transitions.

In each experiment, we first prepared BECs at a desired point in the phase dia-

gram, possibly having crossed the phase transition during preparation. A combination

of trap dynamics [100, 102] collisions, and evaporation [78] kept the system in or near

(local) thermal equilibrium. We then made magnetization measurements directly

from the Bose-condensed atoms measured in the spin resolved momentum distribu-

tion obtained using the time-of-flight (TOF) techniques described in Ref. [100].

6.3.1. Critical line of phase transitions. Our experiment first focused on

thermodynamic phase transitions. We made vertical (horizontal) scans through the

phase diagram by initializing the system in the unmagnetized phase at a desired value

of Ω1 (Ω2) with Ω2 & 0 (Ω1 . 10ER), and then ramping Ω2 (Ω1) through the transition
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region. (As discussed in the methods our nominally horizontal scans of Ω1 followed

slightly curved trajectories through the phase diagram, such as the red dashed curve

in Fig. 6.2(c)). Following such ramps, domains with both ±Mz can rapidly form,

and we therefore focus on the tensor magnetization Mzz = 〈F̂ (2)
zz 〉/~ + 2/3 which is

sensitive to this local magnetic order.

Using horizontal scans, we crossed through the second-order phase transition

(Ω2 < Ω∗2) where the free energy evolves continuously from having one minimum

(with Mzz = 0, for large Ω1) to having two degenerate minima (with Mzz > 0, for

smaller Ω1). As shown in Fig. 6.2(a), Mzz continuously increases with decreasing Ω1,

reaching its saturation value as Ω1 → 0. Repeating these processes for Ω∗2 < Ω2 < 0,

we found a sharp first-order transition. In each case, data is plotted along with theory

with no adjustable parameters. Using data of this type for a range of Ω2 and fitting

to numeric solutions of Eq. 6.1, we obtained the critical points plotted in Fig. 6.2(c).

Because horizontal cuts through the phase diagram are nearly tangent to the tran-

sition curve for small Ω2, this produced large uncertainties in ΩC
1 for the first-order

phase transition.

We studied the first-order phase transition with greater precision by ramping Ω2

through the transition at fixed Ω1 (Fig. 6.2(b)) and found near perfect agreement

with theory. For all the experimentally measured critical points, see Fig. 6.2(c)

top, separating the unmagnetized and ferromagnetic phase, we also measured the

corresponding transition width defined as the required interval for the curve to fall

from 50% to 20% of its full range. This width ∆ decreases sharply at Ω∗1, marking the
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Figure 6.2. Measured phase transition (a) Tensor magnetiza-
tion Mzz measured as a function of Ω1, showing both second-order
[Ω2(Ω1 = 0) = −3.7500(3)ER] and first-order [Ω2(Ω1 = 0) = −1.0ER]
phase transitions in comparison with theory. These curves followed the
nominally horizontal trajectories (see Methods) marked by red dashed
curves in (c). (b) Tensor magnetization measured as a function of Ω2 at
Ω1/ER = 1.86(6), 1.48(4), 1.01(3), 0.74(2), and 0.41(1), plotted along
with the predicted critical Ω2. In (a) and (b) the light-colored region
reflects the uncertainty in theory resulting from our ≈ 5% systematic
uncertainty in Ω1. (c), (d) Phase transition. Black (red) symbols de-
pict data obtained using vertical (nominally horizontal) cuts through
the phase diagram. (c) measured phase transitions plotted along with
theory: solid (phase transition), and green vertical line (tricritical point,
Ω∗1) Horizontal error bars correspond to one standard deviation on Ω1

and vertical error bars are the 95% confidence intervals from the fitting
function that determines the critical point.
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Figure 6.2. (Continued) (d) 20% to 50% transition width showing the
clear shift from first- to second-order with increasing Ω1. (e) Domain
formation for Ω1 = 0.74(2) showing interaction-driven spin structure
near the first-order phase transition. In all images, red corresponds to
spatial regions with local Mz ≈ −1, the green regions correspond to
Mz ≈ 0 and the blue regions correspond to Mz ≈ +1. In the polar
regime at Mzz = 0.12 only the mF = 0 cloud is visible; near the first-
order phase transition atMzz = 0.75 all three mF = 0 clouds are visible
and have partially phase separated; and in the ferromagnetic regime at
Mzz = 0.95 only mF ± 1 clouds are visible and they have completely
phase separated.

crossover between second- and first-order phase transitions (see Fig. 6.2(c) bottom).

In these data, the width of the first-order transition becomes astonishingly narrow: as

small as 0.0011(3)ER = h×4(1)Hz at Ω1 = 0.41(1). This narrowness results from the

energetic penalty associated with condensation into multiple modes for repulsively

interacting bosons. In addition we find that ramps through the 1st order transition

are hysteretic, and very slow ramps (See Methods) for the system to equilibrate.

During the long equilibration times required to study this transition, spin-domains

formed in our system, shown in Fig. 6.2(e). For Bose-condensed atoms, our TOF

procedure expanded the initial spin-distribution allowing us to reconstruct any in-

situ spin structure. Figure 6.2(e) shows that domains form as the systems enters into

the magnetized phase; these domains mark the role of interactions in spontaneously

breaking the Hamiltonian’s Z2 symmetry (see Methods for a comparison with sodium

where the sign of the spin-dependent interactions is reversed, and the Z2 symmetry

remains unbroken for a wide range of parameters). Figure 6.2(b) shows that additional

tripartite spin structure is present very near the first-order phase transition, which
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was not anticipated in our initial single-particle description. This tripartite mixture,

predicted in Ref. [125] is an in-plane ferromagnetic phase with no analogue in spinor

BECs or effective spin-1/2 SOC BECs.

6.3.2. Metastable states. We observed that scans crossing the second-order

transition typically required 50 ms to equilibrate, while for scans crossing the first-

order transitions we allowed as long as 1.5 s for equilibration. Systems taken through

a first-order phase transition can remain in long-lived metastable states. Here a

metastable state with Mz = 0 persists in the ferromagnetic phase, and a pair of

metastable states with Mz 6= 0 persists in the unmagnetized phase. We began our

study of this metastability by quenching through the first-order transition at Ω1 =

0.74(8)ER with differing rates from −0.5 to −0.2 ERs−1, as shown in Fig. 6.3. We

observed the transition width continuously decreases with decreasing absolute value

ramp rate (inset to Fig. 6.3), consistent with slow relaxation from a metastable initial

state.

We explored the full regime of metastability by initializing BECs in each of themF

states, at fixed Ω2, then rapidly ramping Ω1(t) from zero to its final value fast enough

that the system did not adiabatically follow into the true ground state, yet slow

enough that the quasi-equilibrium metastable state was left near its local equilibrium.

We found that the rate . 200ERs
−1 was a good compromise between these two

requirements. For points near the first-order phase transition three metastable states
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Figure 6.3. Quenching dynamics The system was prepared in the
unmagnetized phase with Ω1 = 0.74(8)ER and Ω2 was ramped through
the phase transition at ramp-rates dΩ2/dt = −0.2,−0.3,−0.4, and
−0.5ERs−1 (blue, black, red, and green symbols, respectively). The
curves are guides to the eye. The inset shows the decreasing width,
defined as the required interval for the curve to fall from 50% to 20%
of its full range, of the first-order transition as the ramp-rate decreases.
Vertical error bars correspond to one standard deviation of up to 10
measurements, and horizontal error bars correspond to a systematic
error of 0.005ER from fluctuations in the bias field. Error bars on the
inset panel correspond to the 95% confidence interval on the fitting
function of the quenching data.

exist (Fig. 6.4); near the second-order transition this count decreases, giving two

local minima which merge to a single minimum beyond the second-order transition.

We experimentally identified the number of metastable states by using Mz and

its higher moments, having started in each of the three mF initial states. A small

variance in Mz, less than 0.25, indicates the final states are clustered together –

associated with a single global minimum in the free energy G(Mz) – and it increases
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when metastable or degenerate ground states are present. We distinguished systems

with two degenerate magnetization states (Mz ≈ ±1) from those with three states

by the same method, since when Mz ≈ ±1, the variance of |Mz| is smaller than 0.25,

and it distinguishably increases beyond 0.25 as a third metastable state appears with

Mz = 0. In this way we fully mapped the system’s metastable states in agreement

with theory, as shown in Fig. 6.4

6.4. Discussion

We accurately measured the two-parameter phase diagram of a spin-1 BEC, con-

taining a ferromagnetic phase and an unmagnetized phase, continuously connecting

a polar spinor BEC to a spin-helix BEC. The ferromagnetic phase in this itinerant

system is stabilized by SOC, and vanishes as the SOC strength ~kR goes to zero.

Our observation of controlled quench dynamics through a first-order phase transition

opens the door for realizing Kibble-Zurek physics [84, 182] in this system, where the

relevant parameters can be controlled at the individual Hz level. The quadrupole

tensor field ∝ F̂
(2)
zz studied here is the q = 0 component of the rank-2 spherical tensor

operator F̂ (2)
q , with q ∈ {±2,±1, 0}. The physics of this system would be further

enriched by the addition of the remaining four tensor fields. The q = 0 term we

included is the most simple of the tensor fields to deploy, as it only required control

over frequencies. The q = ±1 components are relatively simple to incorporate by

rf-coupling the |mF = −1〉 to |mF = 0〉 and |mF = +1〉 to |mF = 0〉 transitions with

different phases. The q = ±2 components require direct coupling between |mF = +1〉
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Figure 6.4. Metastable states Top, Measured magnetization plot-
ted along with theory. The system was prepared at the desired
Ω2 = −2ER; Ω1(t) was then increased to its displayed final value; dur-
ing this ramp Ω2 also changed, and the system followed the curved
trajectory in the bottom panel. Each displayed data point is an av-
erage of up to 10 measurements, and the colored region reflects the
uncertainty in theory resulting from our ≈ 5% systematic uncertainty
in Ω1. Circles/crosses/stars represent data starting in mF = +1, 0, and
−1 respectively. Bottom, state diagram: theory and experiment. Blue:
two states; black: three states; white: one state. Colored areas denote
calculated regions where the color-coded number of stable/metastable
states are expected. Symbols are the outcome of experiment. Each
displayed data point is an average of up to 20 measurements.
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and |mF = −1〉 which is straightforward using two-photon microwave transitions, but

is challenging to include with significant strength.

6.5. Methods

6.5.1. System Preparation. We created N ≈ 4 × 105 atoms 87Rb BECs in

the ground electronic state |f = 1〉 manifold [104], confined in the locally harmonic

trapping potential formed at the intersection of two 1, 064 nm laser beams propagating

along ex and ey giving trap frequencies of (ωx, ωy, ωz)/2π = (33(2), 33(2), 145(5)) Hz.

The quadratic contribution to the B0 = 35.468(1) G magnetic field’s ≈ h× 25 MHz

Zeeman shift lifts the degeneracy between the |f = 1,mF = −1〉 ↔ |f = 1,mF = 0〉

and |f = 1,mF = 0〉 ↔ |f = 1,mF = 1〉 transitions, by ε = h × 90.417(1) kHz. We

denote the energy differences between these states as ~δω−1,0, ~δω0,+1, and ~δω−1,+1.

6.5.2. Frequency selective Raman coupling. We Raman-coupled the three

mF states using a pair of λ = 790.024(5) nm laser beams counter-propagating along

ex. The beam traveling along +ex had frequency components ω+
−1 and ω+

+1, while

the beam traveling along −ex contained the single frequency ω−. These beams were

linearly polarized along ez and ey respectively. The frequencies were chosen such

that the differences δω−1,0 ≈ ω−− ω+
−1 and δω0,+1 ≈ ω−− ω+

+1 independently Raman

coupled the |mF = −1, 0〉 and |mF = 0,+1〉 state-pairs, respectively. Furthermore

we selected 2ω− − (ω+
−1 + ω+

+1) = δω−1,+1 such that, after making the rotating wave

approximation (RWA) the |mF = ±1〉 states were energetically shifted by the same

Ω
(0)
2 = [(δω−1,0 − δω0,+1) + (ω+

−1 − ω+
+1)]/2 energy from |mF = 0〉, thereby yielding
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the frequency-tuned tensor energy shift depicted in Fig. 6.1(a). In addition, Ω2 in

Eq. 6.1 differs from Ω
(0)
2 by a small shift ∝ Ω2

1/ε resulting from off-resonant coupling

to transitions detuned by 2ε, which we computed directly using Floquet theory (see

Eq. 6.6 in Methods). This tensor contribution Ω2F̂
(2)
zz to the Hamiltonian might

equivalently be introduced by a quadratic Zeeman shift alone, giving Ω2 ∝ B2
0 > 0.

6.5.3. The physical basis for SOC using Raman lasers. As explained in

Ref. [80], the spin-dependent (vector) part of the light-matter interaction can be

written in terms of an effective Zeeman field

Ω = iuv(E
∗×E) (6.2)

with overall strength given by uv as defined in Ref. [80], where E is the total optical

electric field from the Raman lasers. This field then enters into the Hamiltonian as

an effective magnetic field

Hv = Ω · F̂. (6.3)

The electric field for the laser geometry depicted in Fig. 6.1(a) is E = E+ez exp[i(kRx−

ω+
−1t)] +E+ez exp[i(kRx−ω+

+1t)] + iE−ey exp[i(−kRx−ω−t)], giving rise to the time-

dependent effective Zeeman coupling term

Ω = uvE
+E−ex

{
e2ikRx

[
e−iδω−1t + e−iδω+1t

]
+ c.c

}
(6.4)

= 2Ω1 [cos(2kRx− δω−1t) + cos(2kRx− δω+1t)] ex (6.5)
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where we defined δω±1 = ω− − ω+
±1.

This gives the Hamiltonian term

Hv = 2Ω1 [cos(2kRx− δω−1t) + cos(2kRx− δω+1t)] F̂x. (6.6)

In our experiment the ωZ/2π ≈ 25 MHz linear Zeeman shift is large compared to all

other energy scales, so we make the rotating wave approximation (RWA) to arrive at

the low-frequency Hamiltonian

HRWA = Ω1 {cos[2kRx− (δω−1 − ωZ)t] + cos[2kRx− (δω+1 − ωZ)t]} F̂x

− Ω1 {sin[2kRx− (δω−1 − ωZ)t] + sin[2kRx− (δω+1 − ωZ)t]} F̂y. (6.7)

We selected our frequencies to be in four-photon resonance with the |−1〉 to |+1〉

transition, giving (δω−1 − ωZ) = −(δω+1 − ωZ), in which case the Hamiltonian is

time-periodic. Equation 6.1 in the manuscript is obtained by making independent

RWAs on the |−1〉 → |0〉 and |0〉 → |+1〉 transitions separately, giving the helically

precessing coupling described in the manuscript.

6.5.4. Floquet and polynomial shift. The frequency differences δω−1,0 ≈

ω− − ω+
−1 and δω0,+1 ≈ ω− − ω+

+1 nominally Raman dress both |−1, 0〉 and |0,+1〉

state pairs independently. In practice, the cross coupling may be substantial and

the adjusted eigenenergies may be computed exactly from Floquet theory. For our

ε + Ω0
2 = (δω−1,0 − δω0,+1)/2 separation between Floquet bands [in our experiment
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ε = h×90.417(1) kHz] we find the relationship between Ω1, Ω2 and Ω0
2 is well described

by the polynomial

Ω2

ER
=

Ω0
2

ER
+

(
Ω1

ER

)2 [
− 4.90× 10−2 + 1.56× 10−2

(
Ω1

ER

)
− 4.41× 10−3

(
Ω1

ER

)2

+ 5.80× 10−4

(
Ω1

ER

)3

− 2.76× 10−5

(
Ω1

ER

)4 ]
. (6.8)

6.5.5. Measurement details. In the horizontal scans in Fig. 6.1 of the manu-

script, we ramped Ω1 at a rate of ≈ −40ER/s, allowing the system to adiabatically

track the ground state, and allowed 50 ms for equilibration before the measurement

process. In contrast, for our vertical scans we found the system required between

0.2 ms and 2 s to equilibrate.

We studied the metastable states by performing three separate experiments for

each raw data point: one each for a system initially prepared in mF = 0,±1 state at

the desired value of Ω2. We then adiabatically ramped Ω1 from zero to its final value.

For each resulting (Ω1,Ω2) pair, we obtained the magnetization Mz for each initial

state. In all of the described procedures Ω1 was turned off immediately, at the start

of our 28 ms time-of-flight imaging process which included a Stern-Gerlach gradient

to separate the spin components.
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6.5.6. Operators. The total angular momentum f = 1 spin operators in Eq.

6.1 of the main manuscript take the explicit form

F̂x =
~√
2




0 1 0

1 0 1

0 1 0



, F̂y =

~√
2




0 −i 0

i 0 −i

0 i 0



, and F̂z = ~




1 0 0

0 0 0

0 0 −1




(6.9)

in the basis of the magnetic sublevels |−1〉, |0〉, and |+1〉; together these comprise the

vector operator F̂ = F̂xex + F̂yey + F̂zez. Likewise the quadrupole tensor operator is

expressed as

F̂zz = ~




1/3 0 0

0 −2/3 0

0 0 1/3



. (6.10)

In terms of these operators it is clear than any Hamiltonian involving only 1̂, F̂x, F̂y

and F̂zz is invariant under the transformation that swaps |+1〉 and |−1〉: a discrete

Z2 symmetry.

6.5.7. Wavefunctions. The wavefunctions in the polarized and unpolarized

regimes are qualitatively different. In the unpolarized regime the wavefunction takes

the general form |ψ〉 = A exp(2ikRx) |+1〉−
√

1− 2A2 |0〉+A exp(−2ikRx) |−1〉. The

value of A depends in detail on Ω1 and Ω2, but two limits are clear. Firstly, when

Ω1 = 0 and Ω2 > 0 the system forms a spinor BEC in the polar phase, with A = 0:

a BEC in mF = 0. Secondly, for Ω1 →∞ the local spin follows Ω giving A =
√

2/5.
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In the polarized regime the wavefunction has the general form

|ψ〉 =A+1 exp[i(k0 + 2kR)x] |+1〉 −
√

1− A2
+1 − A2

−1 exp[ik0x] |0〉

+ A−1 exp[i(k0 − 2kR)x] |−1〉 , (6.11)

but with constraints: firstly Mz = A2
+1 − A2

−1 (the definition of magnetization), and

secondly Mz = −k0/2kR (ensuring zero center-of-mass motion, see Ref. [100]). In

our experiment mF = ±1 are coupled at second order inΩ1, and for |Mz| . 1, these

states are ≈ 16ER detuned. Thus for Mz . +1, we have A−1 ≈ 0 with corrections at

order Ω2
1, giving the wavefunction |ψ〉 ≈ e−i2kRMzx

{√
Mze

i2kRx |+1〉 − √1−Mz |0〉
}

in terms of the magnetization.

6.5.8. Free energy and phase diagram. We obtained the free energy G(Mz)

as a function of the magnetizationMz by first numerically solving the system’s Hamil-

tonian given by Eq. 6.1, obtaining the eigenenergies Eσ(k) and state ψσ(k), each

identified by a momentum ~k and a “band” index σ ∈ {−1, 0,+1}. We then com-

puted Mz for each of these states (dependent on kx, but independent of ky and kz),

thereby obtaining the internal energy E(Mz) in the lowest band (σ = −1).

As our BEC is very near the ground state the free energy G(Mz) = E(Mz)− TS,

where T is the temperature and S is the entropy is well approximated by G(Mz) ≈

E(Mz), and it is this free energy which is plotted in Fig. 6.1(c). We then obtained

the phase diagram in Fig. 6.1(b) by numerically computing the free energy for each

pair Ω1, Ω2 and identifying its equilibrium magnetization.
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For non-interacting systems, we found that the curves defining the phase transi-

tions and also those bounding the region containing metastable states could all be

computed in closed form. Firstly, the critical point at which the first- and second-

order phase transitions meet is at

Ω∗1
ER

= 8

√
10
√

5− 22, and
Ω∗2
ER

= 52− 24
√

5. (6.12)

The curve defining the first-order phase transition (for 0 ≥ Ω2 ≥ Ω∗2) is given by

ΩC
1 (Ω2)

ER
= 2
√

2

√√√√
72 + 10

Ω2

ER
−
√(

Ω2

ER
+ 36

)2(
Ω2

ER
+ 4

)
, (6.13)

and the curve defining the second-order phase transition (for Ω∗2 ≥ Ω2) is given by

ΩC
1 (Ω2)

ER
=

1

2
√

2

√√√√−16−
(

Ω2

ER

)2

− 72
Ω2

ER
−
(

Ω2

ER
− 12

)√
Ω2

ER

(
Ω2

ER
− 88

)
− 112.

(6.14)

The upper boundary of the metastable regime (in the unmagnetized phase) is given

by

Ω+
1 (Ω2)

ER
=

(
2

3

)3/2
√

(4− Ω2/ER)3

4 + Ω2/ER
. (6.15)

and the lower boundary of the metastable regime (in the ferromagnetic phase) is given

by

Ω−1 (Ω2)

ER
=

1

2
√

2

√√√√−16−
(

Ω2

ER

)2

− 72
Ω2

ER
±
(

Ω2

ER
− 12

)√
Ω2

ER

(
Ω2

ER
− 88

)
− 112.

(6.16)
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This is the same equation defining the second-order phase transition with an added

±, the full curve defining the boundary of the metastable regime crosses over between

the + and − solutions at Ω2/ER = 4(11− 8
√

2).

6.5.9. Magnetic Fields. Because the free energy G(Mz) is sensitive to un-

wanted detuning δ from the four-photon resonance near the phase transitions which

contributes an added symmetry breaking field δF̂z to the Hamiltonian, controlling

the bias magnetic field and nulling its gradients is critical. A pair of flux-gate sen-

sors measuring the ambient magnetic field along ez, allowed us to compensate for

long-term field drifts. We compensated any field gradients using four pairs of anti-

Helmholtz coils in a clover leaf configuration [117], and a conventional anti-Helmholtz

pair, all aligned along ez.

6.5.10. Interactions. We studied the impact of interactions at the level of mean

field theory using a variational approach, assuming an infinite homogenous system.

For each point in the phase diagram labeled by (Ω1,Ω2), we first located the local

minima in the single-particle free energy described by the Hamiltonian Ĥ of Eq. 6.1

in the manuscript. The free energy had from one to three minima, with energies Ej

and eigenstates |ψj〉.

We then considered an infinite system and minimized the mean field energy density

E =
1

V

ˆ
d3xψ†(x)Ĥ(x)ψ(x) +

1

2V

ˆ
d3x

[
(c0 + c2)n2

T − c2n
2
0 − 4c2n+1n−1

]
(6.17)

155



6.5. Methods

0 1 2 3 4 5 6 7 8 9

Ω1/ ER

−4

−3

−2

−1

0

Ω
2
/E

R
(a) 87Rb

|Mz|

0.0 0.5 1.0 1.5 2.0

Ω1/ ER

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
3
×
(Ω

2
−
Ω
∗ 2)
/E

R

(b) 87Rb, expanded
|Mz|

0.0 0.5 1.0 1.5 2.0

Ω1/ ER

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
3
×
(Ω

2
−
Ω
∗ 2)
/E

R

(c) 87Rb, expanded

0 1 2 3 4 5 6 7 8 9

Ω1/ ER

−4

−3

−2

−1

0

Ω
2
/E

R

(d) 23Na
|Mz|

0.0 0.5 1.0 1.5 2.0

Ω1/ ER

−6

−5

−4

−3

−2

−1

0

1
10

3
×
(Ω

2
−
Ω
∗ 2)
/E

R
(e) 23Na, expanded

|Mz|

0.0 0.5 1.0 1.5 2.0

Ω1/ ER

−6

−5

−4

−3

−2

−1

0

1

10
3
×
(Ω

2
−
Ω
∗ 2)
/E

R

(f) 23Na, expanded

Figure 6.5. Mean field phase diagram (a)-(c) Rubidium. (d)-(f)
Sodium. In each panel, the red curve marks the location of the phase
transition as computed excluding interactions. Panels (b), (c), (e),
and (f) are all expanded views of the region around the critical curve.
Panels (a), (b), (d), and (e) plot the |Mz| order parameter: the plot is
dark blue when |Mz| = 1 and there is a continuous gradation to white
when |Mz| = 0. Panels (c) and (f) plot the fraction of the wavefunction
in mF = 0: similarly, black color indicates when all the atoms are in
mF = 0 and white when none of the atoms are in mF = 0.

for an arbitrary linear combination of these single particle states with amplitudes αj,

where nσ(x) is the local density in a given spin state σ; nT (x) is the total local density;

and c0 and c2 are the spin-independent and spin-dependent interactions respectively.

For 87Rb these have the ratio c2/c0 ≈ −0.005 and for 23Na they are c2/c0 ≈ +0.05.

In our minimization, we modeled our systems with a typical mean-field energy of

(c0 + c2)nT ≈ 1 kHz per particle.
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Figure 6.5 shows the result of this calculation both for rubidium and sodium. In

both cases the overall phase diagram (Fig. 6.5 (a),(d)) is shaped by the single-particle

Hamiltonian; at this coarse level the rubidium phase diagram is hardly different from

that predicted from single particle physics, but in the case of sodium a large swath of

the expected ferromagnetic phase remains symmetry unbroken. This phase continu-

ously connects to an equal superposition of |−1〉 and |+1〉 as Ω1 → 0.

The situation becomes more complex as we focus on Mz near the curve defining

the first-order phase transition (Fig. 6.5(b),(e)), for the case of rubidium a new

mixed phase appears at low Ω1 analogous to the striped phase in spin-1/2 systems,

but nothing new is apparent for sodium.

Lastly we consider the same region, but looking at the fraction of the variational

wavefunction in the mF = 0 spin state. For rubidium, this allows us to identify a

new state which is a three-way mixture of all three components considered in the

variational calculation (with no analogue in the Ω1 = 0 spinor limit), and we can see

the abrupt transition in sodium from a state connecting to the polar phase (Ω2 > 0)

and to the uniaxial nematic phase (Ω2 < 0). Each of these phases are as described in

Ref. [125].
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CHAPTER 7

Probing atomic structure with optical Bragg scattering

Bragg scattering is a useful method to probe crystal structure and magnetic (spin)

structure in many solid state systems. In atomic physics, optical Bragg diffraction

has provided crucial insights into the localization of atomic wavefunction arranged

in an optical lattice [17, 174]. Interference of coherent light scattered by spatially

periodic atoms enhances the angular distribution of the diffracted light in the direction

satisfying Bragg’s law. Recently, this method has been extended to probe quantum

phase transitions in various engineered quantum systems, including the superfluid

transition to the Mott-insulator regime in a three-dimensional optical lattice [120],

and antiferromagnetic correlations in the Hubbard model realized with a two-spin

component Fermi gas in an optical lattice [65].

Motivated by this work, I used optical Bragg scattering to map out the stripe

ordered phase in spin-orbit-coupled (SOC) Bose-Einstein condensates (BECs) realized

with two-photon Raman coupling scheme. Complementary to this work, Jun-Ru

Li et al. has also observed the stripe phase in SOC BECs realized with optical

superlattices [96], as published in Ref. [95]. Before presenting my observations of the

stripe-ordered phase in Chapter 8, I first give a physical explanation of optical Bragg

scattering. In this chapter, I review the theory of optical Bragg scattering and discuss
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real space
lattice vector

reciprocal lattice vector

Figure 7.1. Two-dimensional illustration of (a) real space lattice and
(b) reciprocal space scattering from periodic scatterers with direct lat-
tice vector Rn = n1a1 +n2a2. Bragg’s law is satisfied when the scatter-
ing wavevector q = ksc − kin follows the von Laue equation q = Gm in
the reciprocal space, where Gm = m1b1 +m2b2 is the reciprocal lattice
vector.

the characterization of the Bragg signal, with a focus on its geometrical properties.

In addition, I also present my observations of various atomic structures probed with

optical Bragg scattering.

7.1. Theory of optical Bragg scattering

Consider a system of scatterers arranged periodically with lattice vector Rn, where

the density distribution is a periodic function satisfying ρ (r) = ρ (r + Rn), as shown

in Fig. 7.1. The lattice vector describes the translational symmetry in the system:

Rn = n1a1 + n2a2 + n3a3, (7.1)
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where a1, a2, and a3 are the primitive translation vectors, which span the smallest

volume of the lattice cell, and (n1, n2, n3) are integers. The corresponding reciprocal

lattice vectors Gm are defined by the relation Gm ·Rn = 2πm where m are non-zero

integers. For an incoming wave with wavevector kin, the maximum intensity of the

scattered wave with wavevector ksc in the far-field limit occurs when the scattering

wavevector q = ksc − kin satisfies the von Laue equation q = Gm [10]. The Bragg’s

law is equivalent to the von Laue equation in the case of elastic scattering where

|ksc|2 = |kin|2, specifically

2kin ·Gm = G2
m (7.2)

2d sin θB = mλ, (7.3)

where d is the lattice spacing and θB is the angle between the incoming wavevector

and the lattice plane, as displayed in Fig. 7.1.

Needless to say, this textbook explanation of Bragg’s law assumes the scatterers

are arranged in a regular lattice. In this simple picture, the atomic distribution within

a lattice site is typically assumed to be a δ−function and there are an infinite number

of lattice sites. The resulting scattered Bragg signal has a very sharp angular distri-

bution and Eq. 7.3 determines the peak locations of the scattered signal. However,

in real atomic experiments, the finite size of the samples must be taken into account

and this broadens the angular spectrum of the observed Bragg signal. Moreover,

the nature of the atom-light interaction affecting the scattering properties has to be
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considered as well. In crystallography, one needs to include the interaction between

the crystalline matter with the scattered particles. This leads to the concept of the

atomic form factor [10].

To study Bragg scattering in more detail, I present an overview of the relevant

theory in the following subsections. I consider the Maxwell-Bloch equations [25] which

give a complete description of the atom-light interaction within the semi-classical

approach. With suitable approximations, I then derive a differential cross-section, as

commonly used in the scattering theory. Next, I discuss the quantized nature of the

light and how this affects the scattered Bragg signal.

7.1.1. The semi-classical approach. In the semi-classical treatment of light

scattering by atoms [119], the electric field E (r, t) is treated classically and governed

by Maxwell equations. For a system without free charges and free currents, Maxwell

equations lead to the general wave equation [25]:

[
∇2 − 1

c2
∂2
t

]
E (r, t) =

1

ε0

[
−∇ (∇· ) +

1

c2
∂2
t

]
P (r, t) , (7.4)

where the polarization density P (r, t) describes the “induced” density of charge and

current in the medium.

Here I assume the quantum mechanical model of an ensemble of identical atoms

and their behavior is governed by the master equation [12]:

d

dt
ρ (t) = L [ρ (t)]− i

~
[−d · E (R, t) , ρ (t)] , (7.5)
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where ρ (t) is the atomic density matrix, and L [ρ (t)] is the Liouville operator which

incorporates the atomic kinetic energy, internal energy, and radiative decays due to

spontaneous emission and/or collisions. The equations of motions derived from the

master equation is also known as the optical Bloch equations. In Eq. 7.5, I have made

the usual electric dipole approximation. The interaction between light and atoms is

described by the dipole interaction −d · E, where E (R, t) is the electric field at the

center of mass location of an individual atom and the field induces a dipole moment

d in the atom.

As a counterpart to Eq. 7.5, the induced dipole moment creates polarization

vector field which is governed by the relation

P (r, t) = N Tr [ρ (t) δ (r−R) d] = N Trint [〈r| ρ (t) |r〉d] , (7.6)

where N is the total number of atoms and the trace in Eq 7.6 is taken over the atomic

internal degrees of freedom.

The Eqs. 7.4-7.6 are the Maxwell-Bloch equations [25]. These coupled equations

can be solved in a self-consistent manner and the solution gives a comprehensive

picture of propagation of light through matter within the semi-classical approach.

For a physical understanding of Bragg’s law, I now consider a simplified version of

the Maxwell-Bloch equations. I assume the atomic system is illuminated by a weak

laser beam with a time-harmonic field of the form ~E (r, t) = < [ε̂E (r) exp (ik0r − iωt)].
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The wave equation then reduces to the scalar Helmholtz equation

∇2E (r) + k2
0E (r) = −U (r)E (r) , (7.7)

which describes wave propagation in a medium characterized by relative permittivity

ε (r). Here I have introduced the “scattering potential” U (r) = k2
0 [ε (r)− 1]. In the

limit of weak scattering, the scattered field in the far-field region behaves as

Esc (r) = F (q)
exp (ik0r)

r
, (7.8)

where the scattering wavevector is q = ksc − kin and the scattering amplitude F (q)

in the first Born approximation [34] is given by:

F (q) =
1

4π

ˆ
U (r′) e−iq·r′d3r′. (7.9)

In this approximation, the scattering is assumed to be elastic, where |ksc| ' |kin| = k0.

To find the scattering of light by a periodic array of atoms, I use the definition

of susceptibility χ (r) = ε (r) − 1 and write the scattering amplitude as F (q) =

(k2
0/4π)

´
χ (r′) e−iq·r′d3r′. At the detection point along the direction of the diffracted

wave vector k̂sc, the differential cross-section of the scattered light intensity is given

by [34]:

dP

dΩ
= |F (q)|2 =

∣∣∣∣
π

λ2
0

ˆ
d3r′ χ (r′) e−iq·r′

∣∣∣∣
2

. (7.10)
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Without loss of generality, I can express χ(r′) as a summation over each single lattice

site local distribution χj
(
r′j
)

χ(r′) =

NS∑

j=1

χj
(
r′j
)
, (7.11)

where the local coordinates of each j-th lattice site are r′j = r′ −Rj, the periodicity

of the system is described by the lattice vector Rj, and the atoms are spread over Ns

sites of the lattice within a finite size. I then write the scattering amplitude as

F (q) =
π

λ2
0

NS∑

j=1

e−iq·Rj χ̃j, (7.12)

where the Fourier transform of χj
(
r′j
)
is given by χ̃j =

´
d3r′j χj

(
r′j
)

exp
(
−iq · r′j

)
.

Based on the Heisenberg uncertainty principle, the atom’s location can be thought

of as having some fluctuations, i.e. r′j → r′j (t) = r′j + u (t). This effect can be

incorporated by including the time displacement u(t) with respect to the lattice site

into the exponential term

e−iq·Rj → e−iq·Rj
〈
eiq·u(t)

〉
τ
, (7.13)

and using the Taylor expansion for the exponential of an operator, I obtain:

〈
eiq·u(t)

〉
τ

= exp

[
−1

2

∑

i=x,y,z

q2
i

〈
u2
i

〉
τ

]
=
∏

i=x,y,z

exp

[
−1

2
q2
i

〈
u2
i

〉
τ

]
. (7.14)
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Taking into account the spatial fluctuations, the elastic scattered intensity IdΩ ∝

dP/dΩ of a finite-sized medium then becomes

IdΩ ∝ e−2Wq(τ)

NS∑

j,k

χ̃jχ̃
∗
ke
−iq·(Rj−Rk), (7.15)

where the Debye-Waller factor is defined by:

e−Wq(τ) =
∏

i=x,y,z

exp

[
−1

2
q2
i

〈
u2
i

〉
τ

]
. (7.16)

In the semi-classical treatment of Bragg scattering, the atomic structure is treated

with the quantum master equation and this leads to the optical Bloch equations [163].

For a two-level system in the steady-state, the susceptibility is proportional to the

atomic density ρat (r) and it can be written in the form [81]

χ (r) =
σ0

k0

[
i− 2∆

1 + s0 + 4∆2

]
ρat (r) , (7.17)

where ρat(r) is the atomic density, δ is the laser’s detuning from atomic resonance,

σ0 = 6π/k2
0 is the resonant scattering cross-section, Γ is the atomic linewidth, and s0

is the saturation parameter (as discussed previously in Chapter 4). Similar to Bragg

scattering in solid-state physics, I can now define the atomic form factor :

fj =

ˆ
d3r′j ρl

(
r′j
)

e−iq·r′j , (7.18)
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where ρl
(
r′j
)
is the local density distribution of the atomic electron cloud about

its center of mass located at the j−th lattice site. Substituting Eq. 7.17 for the

susceptibility into Eq. 7.15 gives

IdΩ ∝ e−2WQ(τ) 4∆2 + 1

(1 + s0 + 4∆2)2

NS∑

j,k

fjf
∗
k e−iq·(Rj−Rk). (7.19)

The properties of the scattered Bragg signal are governed by Eq. 7.19. It is useful

to define the static structure factor as

S (q) =
1∑NS

j=1 |fj|
2

NS∑

j,k

fjf
∗
k e−iq·(Rj−Rk) =

1

Natom

NS∑

j,k

fjf
∗
k e−iq·(Rj−Rk). (7.20)

For a Dirac-delta function in the atomic local density ρl
(
r′j
)

= δ
(
r′j
)
, the location

of the peak in the static structure factor coincides with that given by Bragg’s law

(Eq. 7.3) for an infinite number of scattering sites NS � 1. This is known as the

Kronig-Penney model [10].

In summary, Eqs. 7.19-7.20 describe the scattering from a periodic finite system

for a very-far detuned probe in the elastic Rayleigh scattering regime.1 The results

in this subsection are limited to two-level systems where the structure factor is only

sensitive to the periodic density modulation (crystal structure). For a multi-level

system with two-ground states |↑〉 and |↓〉, periodic spin structure could exist where

1Historically, Rayleigh scattering is named after the British physicist Lord Rayleigh, which is an
elastic scattering of light by particles much smaller than the wavelength of light (equivalent to the
dipole approximation) [169].

166



7.1. Theory of optical Bragg scattering

the internal structure of the atoms alternate between each lattice site, for example

due to the presence of a precessing magnetic field. Although there would be no spatial

modulation in the total atomic density, the spin structure or magnetic ordering could

lead to interference effects in the scattered signal [45].

7.1.2. Quantization of the electric field. In previous derivation of the Maxwell-

Bloch equations using a semi-classical treatment, the electric field was treated as an

expectation value of its corresponding quantum operator and any incoherent com-

ponent of the field due to radiative spontaneous decay was neglected. Although the

semi-classical approach has been successful in explaining many physical phenomena,

it does not account for radiative spontaneous emission due to atoms interacting with

electromagnetic vacuum fluctuations. To understand incoherent scattering due to

spontaneous emission processes, one must treat the field in a quantized manner [119].

Here, I review the calculation of Bragg scattering from atoms acting as independent

scatterers, where the electric field is quantized and treated as an operator. The theory

presented in this subsection is based on Refs. [45, 65].2

Consider an ensemble of two-level atoms with ground state |g〉, excited state |e〉,

dipole transition matrix element dge = 〈g|d |e〉, and transition linewidth Γ. When

being illuminated with a probe light at frequency ω0 and incoming wavevector kin,

2Correlations between the bosonic particles and multiple scattering in the atoms lead to a whole
new series of phenomena, such as superradiant effect and non-linear four wave mixing. However,
this treatment is beyond the scope of my work. Interested readers could consult the review article
in Ref. [82] and references therein.
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the electric dipole radiation emitted by an atom at a distance r is given by [35]

Ê+
j (r) =

1√
2ε0c

[
3

8π

~ckΓ

r2

]1/2

Λ exp [iq · r̂j] σ̂−j , (7.21)

where Ê+
j (r) is the positive frequency component of the electric field, q = ksc − kin

is the scattering wavevector, r̂j is the position operator of the j−th atom, Λ =

ksc × (ksc × dge) /k
2
sc |dge| is the polarization vector of the scattered field, and σ̂−j =

exp (iω0t) |g〉 〈e| is the off-diagonal matrix element of the atomic density matrix op-

erator.

To obtain the total scattered intensity, I sum the field contributions from each of

the individual atoms and square the total field to get

I (q) = 2ε0c 〈Ψ|
∑

j

Ê−j ·
∑

k

Ê+
k |Ψ〉

=
3

8π

~ckΓ

r2
|Λ|2

[ ∑

j,k;j 6=k
ρegj ρ

ge
k 〈u| e−iq·r̂j |u〉j 〈u| eiq·r̂k |u〉k +

∑

j

ρeej

]
. (7.22)

Here I have used the product state |Ψ〉 =
∏

j |u〉j |ψ〉j to describe the wavefunction

of the array of atoms, with |u〉j represents the center of mass state of the j−th atom

and |ψ〉j = c
(j)
g |g〉 + c

(j)
e |e〉 is the electronic states of the j−th atom. The density

matrix elements are represented by ρee, ρgg, ρeg and ρge.

I now define the translation vector Rj for each of the individual atom to describe

its center of mass, where the position operator satisfies 〈r̂j〉 = 0. The Debye-Waller
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factor is:

〈u| e−iq·r̂j |u〉j = e−iq·Rj

∏

i=x,y,z

exp

[
−1

2
q2
i

〈
u2
i

〉
τ

]
= e−iq·Rje−Wq(τ). (7.23)

Solving for the steady-state solutions of the density matrix elements governed by the

optical Bloch equations, I obtain the scattered intensity as [45]:

I (q)

A
= e−2Wq

∑

j,k;j 6=k

s0

2

(2∆j + i)(
1 + s0 + 4∆2

j

) (2∆k − i)

(1 + s0 + 4∆2
k)

e−iq·(Rj−Rk) +
∑

j

s0/2

1 + s0 + 4∆2
j

(7.24)

where A = 3~ckΓ |Λ|2 /8πr2, s0 is the on-resonance saturation parameter, and ∆ is

the probe detuning normalized to the linewidth Γ.

In light of the above derivation, it is helpful to make some comments on the

scattered intensity in Eq. 7.24.

• The last term in Eq. 7.24 captures the non-interfering parts of the intensity.

This term originates from radiative spontaneous emission and it becomes the

dominant term if the saturation parameter satisfies s0 � |∆|.3 I obtain the

same limit if the atomic sample has no correlation or no periodic behavior in

its spatial arrangement, i.e. the first term is negligible.

• The first term on the right-hand side of Eq. 7.24 captures the interference

from spatial ordering of the atoms. For atoms with multi-level ground states,

3Here, I have implicitly assumed the frequency spectrum of the radiative spontaneous decay is
dominated by that of the driving frequency ω0 (the coherent part). This subtlety originates from
the solutions of the optical Bloch equations where periodic harmonic functions with frequency ω0

are imposed on all of the time-dependent variables.
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the interfering part also includes “magnetic ordering” of the system – where

the atomic ground states are alternating in a spatially periodic way. For a

very large detuning ∆� s0 and ∆j ' ∆k = ∆, this term reduces to that of

Eq. 7.19 if I replace the individual atoms with a continuum model for the

atomic density.

• The non-interfering term scales as Natom, which describes the fluorescence

from spontaneous emission of the excited state. Meanwhile, the interfering

term scales as N2
atom, which can be interpreted as stimulated emission with

definite phase relations between the scattered photons.

• When using optical Bragg scattering to probe periodic structure of 87Rb

atoms, I typically used the D2 transition, which has a transition linewidth

of Γ = 6 MHz. For a far-detuned probe and weak enough probe intensity,

or specifically δ � Γ
√

1 + s0, the integrated scattered intensity depends

linearly on the probe pulse time τ . I observed the detected Bragg signal

did not saturate up to τ < 400µs for the parameter values δ/Γ ∼ −103

and s0 ∼ 10, and this was before the atoms heated up to the point where

they were not trapped anymore. The detected Bragg signal also had a linear

dependence on incoming probe intensity s0, and there was no saturation

effect for typical values of s0 < 100. Meanwhile, for near-resonant beam

with detuning δ < Γ
√

1 + s0, the Bragg signal started to saturate pretty

quickly, on a timescale of τ > 5µs for s0 ∼ 10.
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7.2. Geometrical properties of optical Bragg scattering

7.2.1. The static structure factor. The simplest optical lattice can be made

by retro-reflecting a single laser beam or interfering two counter-propagating lasers

at wavenumber kd = 2π/λd, forming a standing wave with periodicity of d = λd/2.

In this one-dimensional (1D) lattice, let the x−axis lie along the laser propagation

direction kd and the xz−plane be the observation plane for the Bragg scattering (see

Fig. 7.1). For an incoming Bragg probe with wavelength λ0, I write the incoming

wavevector kin and scattered wavevector ksc as

kin = k0 cos θiex + k0 sin θiez, and ksc = −k0 cos θsex + k0 sin θsez, (7.25)

where θi and θs are the incident and scattered angle with respect to the lattice axis

ex, and k0 = 2π/λ0 is the wavenumber of the Bragg probe. Here, I consider the probe

to be far-detuned with respect to the atomic transition and hence I am in the elastic

Rayleigh scattering regime where |ksc| ' |kin| = k0.

I now calculate the static structure factor of the finite-size 1D lattice. Assuming

the atomic form factor to be identical for each lattice site j located at Rj = jdex,

the structure factor has the form [156]

S (q) =
1

Natom

NS∑

j=1

NS∑

k=1

fjf
∗
ke
−iq·(Rj−Rk) =

1

Natom

∣∣∣∣∣
NS∑

j=1

e−iq·Rj

∣∣∣∣∣

2

|fj|2 . (7.26)
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The summation term in Eq. 7.26 gives [175]

|A|2 =
1

Natom

∣∣∣∣∣
NS∑

j=1

e−ijqxd

∣∣∣∣∣

2

=
1

Natom

sin2 (qxNsd/2)

sin2 (qxd/2)
=

1

Natom

sin2 [k0 (cos θs + cos θi)Nsd/2]

sin2 [k0 (cos θs + cos θi) d/2]
. (7.27)

I next assume the atomic density at each lattice site to have a Gaussian distribution

with identical sizes in y and z, i.e.:

ρl
(
r′j
)

= n0 exp

(
−x

2

σ2
x

)
exp

(
−y

2 + z2

σ2
r

)
, (7.28)

where n0 is the peak density, σx is the axial RMS width along x, and σr = σy = σz is

the radial RMS width along y and z. In the harmonic approximation of the trapping

potential with radial beam waist wd, the thermal RMS size of the atomic layers can be

related to the potential depth U0 and the temperature T , i.e. σx ≈ λd/2π ·
√
kBT/2U0

and σr ≈ wd/2 ·
√
kBT/2U0. Consequently, the magnitude squared of the atomic form

factor becomes

|fj|2 = n2
0 exp

[
−
(
q2
zσ

2
r + q2

yσ
2
r + q2

xσ
2
x

)]

= n2
0 exp

[
−k2

0 (sin θs − sin θi)
2 σ2

r − k2
0 (cos θs + cos θi)

2 σ2
x

]
, (7.29)

where qy = 0 with above choice of the plane of incidence (xz−plane). Note the

definition of the static structure factor S = |A|2 |fj|2 in Eq. 7.26 is normalized to the

total number atoms Natom, and hence S scales as S ∝ n2
0N

2
s /Natom ≈ Natom. This also
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Figure 7.2. Bragg signal as a function of the incident probe angle θi.
Here I show four different cases of ultracold atoms being loaded into
1D optical lattices and probed with optical Bragg scattering. (a) BEC
in a lattice with d = 395 nm, (b) BEC in a lattice with d = 405 nm, (c)
thermal clouds in a lattice with d = 395 nm, and (d) thermal clouds in
a lattice with d = 405 nm.

means that the Bragg intensity has a quadratic proportionality to either the number

of atoms N2
atom or the number of periodic layers N2

s .

Based on this model for the structure factor, I can now discuss my observations

of the scattered Bragg signal NBragg from atoms in 1D lattice. An example of the
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scattered Bragg signal (integrated over the numerical aperture of our imaging system)

as a function of the incoming angle θi is shown in Fig. 7.2. Here I consider the cases of

a thermal cloud above the transition temperature TC and of Bose-Einstein condensed

atoms below TC . I also compare the results for two different lattice periodicities,

d = 395 nm [see Figs. 7.2(a) and (c)] and d = 405 nm [see Figs. 7.2(b) and (d)] .

Our collection optics had a capture angle α ∼ arctan (25/40) = 0.56 rad, centered

on the optical axis (along the lattice direction). This allowed me to scan the incoming

angle to a maximum value of 0.28 rad. For comparison, the Bragg probe had a beam

waist diameter of 0.25 mm or 5.6 × 10−3 rad, two order of magnitude smaller than

the capture angle. Meanwhile, the lower limit of the incoming angle scan was set by

the edge of the D-shaped mirror which I used to send the Bragg probe. In Fig. 7.2,

notice there is a sudden drop in the Bragg signal at the start and end of the plots

(θi < 0.08 rad and θi > 0.28 rad). This was due to the probe being clipped by the

optics, indicated by the gray shaded area. In this region, the incoming angle was

outside the limit of my scanning ability.

I fit the observation results in Fig. 7.2 with the structure factor as given by

Eq. 7.26, as shown by the red curves in Fig. 7.2.4 The peak Bragg signal for the

particular case of infinite lattice is theoretically θB = arccos (λ0/2d). This gives peak

Bragg angle at θB = 0.16 rad and 0.27 rad for d = 395 nm and 405 nm, respectively.

However, due to the finite size of the atomic cloud I observed small shifts in the peak

4In the fitting, I have used θs = θi for the sake of simplicity. A more precise model is to integrate
θs within the capture angle of the collection optics and including the Gaussian spread of the Bragg
probe in θi.
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value of θB. My observations are consistent to the structure factor model in Eqs.

7.26-7.29, where lattices with larger periodicity d have a larger peak Bragg angle. In

the fit, I also find that the parameter σx . d strongly affects the asymmetrical shape

of the Bragg profile.

In the BEC regime with T < TC , the diffracted signal has a broader spread in

the angular distribution than that of the thermal atoms, as shown by Fig. 7.2. The

reason is because the BEC is more confined spatially, and consequently the diffracted

signal becomes broader in reciprocal k−space [156]. In contrast, the hotter thermal

clouds have larger spatial size, and the atoms occupy more lattice sites Ns. The Bragg

signal has a sharper angular spread with larger Q−factor for thermal clouds and it

approaches that of the infinite lattice case. For this reason, I typically used thermal

clouds loaded into the 1D lattice to optimize the alignment of the Bragg probe.

7.2.2. Beam waist of the Bragg probe. In the Bragg setup (see Section 3.3.2),

I designed the beam waist diameter of the Bragg probe to be about 2w0 = 250µm.

To verify the actual waist diameter, I measured the Bragg probe beam waist using

scattered light by the atoms. I first trapped Bose-condensed 87Rb atoms in the 1064

nm optical dipole trap and adiabatically turned on the 1D lattice to a lattice depth

V0 & 20ER. I then suddenly turned off the dipole trap to let the atoms fall due

to gravity and move through the lattice standing wave created by the two counter-

propagating lasers. I then pulsed the Bragg probe and measured the signal NBragg as

a function of the vertical displacement dTOF during the time-of-flight (TOF).

175



7.2. Geometrical properties of optical Bragg scattering

0 20 40 60 80 100 120 140

dTOF (µm)

0
5

10
15
20
25
30
35
40

N
B

ra
gg

 (
×1

04
 c

o
u

n
ts

)

Figure 7.3. Beam waist of the Bragg probe measured by releasing
87Rb atoms from the dipole trap while the lattice potential is kept on.

My observations are shown in Fig. 7.3, for dTOF up to 160µm (TOF duration

up to 5.6 ms). Since the atoms’ size (∼ 10µm) was small compared to the designed

Bragg probe beam waist (∼ 250µm), a change in the scattered Bragg signal NBragg

by the displaced atoms resembled a change in the intensity profile of the Bragg probe

Iprobe ∝ exp (−2r2/w2
0). This was within the assumption the atomic spatial dis-

tribution and coherence did not change as the atoms slide through the lattice po-

tential. Fitting the measured data to a Gaussian profile (red curve in Fig. 7.3)

NBragg = N0 exp (−d2
TOF/2σ

2
TOF) , I find that the width of the observed scattered in-

tensity is σTOF ' 65µm. Assuming that NBragg ∝ Iprobe, this implies a beam waist

diameter of 2w0 = 4σTOF ' 260µm which is close to the designed value.

Note this measurement is only an estimate in a sense that I did not include the

Gaussian profile of the lattice depth confinement from the interfering laser intensity.

In my estimate, I assume the atoms’ spatial size and density modulation stay the same

during TOF; where the amount of scattered Bragg signal determines the intensity
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profile of the Bragg probe. However, as the atoms slide through the lattice during

a few ms, the atomic spatial distribution and coherence might change as the lattice

depth gets weaker. For example, the product of the Bragg probe intensity with beam

waist w0 and the lattice laser intensity with beam waist wl gives a combined intensity

Itot with beam waist w2
tot = w2

0w
2
l / (w2

B + w2
l ). If the atoms follow the lattice depth

adiabatically NBragg ∝ Itot, I would then expect the observed Bragg signal in TOF to

have a smaller Gaussian RMS width since wtot < w0.

7.2.3. Angular width of the scattered Bragg signal. To measure the angu-

lar extent of the scattered Bragg signal, I used an adjustable mechanical slit placed

at a distance of L ∼ 9.5 cm in front of the EMCCD camera (see Fig 3.9) which

counted the number of scattered photons. The adjustable slit was a Thorlabs VA100

which gave 0.025” slit width adjustment per revolution of the micrometer drive. I

intentionally clipped the Bragg signal by closing the slit gradually, i.e. similar to the

knife-edge measurement to determine the beam waist of a laser beam. Figure 7.4

shows the measured Bragg signal NBragg as a function of the slit traveling distance d.

The data points (red markers) are fitted to a logistic function (blue curve)

f (d) =
A

1 + exp [−r (d− d0)]
+ c, (7.30)

where the fitting parameters are the function’s growth amplitude A, the offset c, the

steepness of the curve r, and the midpoint of the growth d0.
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Figure 7.4. Scattered Bragg signal as a function of the traveling dis-
tance of a slit placed in front of the EMCCD camera.

The observations gave a traveling distance of dm ∼ 1 mm at the image plane region

(with M = 3.9× magnification) before the Bragg signal was completely blocked.

This corresponded to an angular width of about θmeas = M · dm/L = 0.04 rad. For

comparison, the radial in situ cloud size was about D = 10µm and the Bragg probe

wavelength was λ = 780 nm. This gave a predicted value for the angular extent of

the scattered signal to be θ ∼ λ/2D = 0.04 rad.

7.3. Observations of optical Bragg scattering in engineered Hamiltonians

In this section, I present my measurements of optical Bragg scattering in 1D lattice

and spin-orbit-coupled (SOC) condensates. I created an optical lattice potential for

either |F = 1,mF = −1〉 or |F = 1,mF = +1〉 state using counter-propagating lasers

at the magic wavelength λzero = 790.034 nm with zero scalar light shift [9]. This

gave a periodicity of d = 395 nm in the atomic density distribution. I also examined
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spin-1/2 SOC condensates where I coupled the two states |F = 1,mF = −1〉 and

|F = 1,mF = 0〉 with Raman transitions.

For the data presented below, I chose the frequency of the Bragg probe to be nearly

resonant with the atomic transition 5S1/2, F = 1→ 5P3/2, F
′ = 0 where the detuning

was δ ' −13Γ and the saturation parameter was s0 ' 10. The Bragg scattering from

the optical lattice served as a calibration reference and the main measurements were

observations of the spin-helix phase [22, 53] in SOC condensates at high coupling

strength Ω ∼ 1−10ER. The near-resonant Bragg probe is spin-sensitive and it allows

me to measure the precessing effective magnetic field in the SOC condensates.

7.3.1. Probing atoms in a one-dimensional lattice. Condensed atoms loaded

into an optical lattice will exhibit periodic modulation in their density distribution. I

prepared Bose-condensed atoms in an optical dipole trap (at 1064 nm) and adiabati-

cally loaded them into the 1D lattice potential with lattice depth V0. In the case of a

1D optical lattice, the atoms retain their long-range phase coherence (a characteristic

of superfluidity) between different lattice sites even for large lattice depth V0 > 20ER

and there does not exist phase transition from the superfluid to the Mott-insulator

phase [77, 88]. Figure 7.5 shows the observed scattered Bragg signalNBragg counted by

the EMCCD camera. The signal increased monotonically for lattice depth V0 < 10ER

before it started to saturate at higher lattice depth confinement.

Based on Eq. 7.29 for the atomic form factor, I assumed the spatial extent of the

atomic wavefunction in a single lattice site scaled as σx ∝ 1/
√
V0 . I fit the observed
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Figure 7.5. Bragg signalNBragg as a function of lattice depth V0. Inset
shows the 68 pixels ROI for the Bragg signal imaged by the EMCCD
camera. Solid blue curve is a fit to Eq. 7.31, and the shaded gray line
shows the chosen threshold for a detectable Bragg signal (15% above
the offset value c obtained from the fitting).

Bragg signal with the function

NBragg (V0) = a exp (−b/V0) + c, (7.31)

where a, b, and c are the fitting parameters. The fit gave an offset value of c =

17.6× 103 for a total of 68 pixels region-of-interest (ROI) in the imaged Bragg signal.

Accordingly, I set the lowest limit for a detectable Bragg signal to be 15% above the

offset (background) value c obtained from the fitting, as shown by the gray line in

Fig. 7.5. This gave a detection threshold V0 ≥ 0.48(2)ER for the lattice depth. Based

on numerical simulations of the Gross-Pitaveskii equation [14, 15], this threshold

corresponded to ∼ 8% contrast in the density modulation for our typical 87Rb BEC

with 2.2 × 105 atoms prepared in a harmonic trap with frequencies (ωx, ωy, ωz) =
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2π (93, 64, 39) Hz. For comparison, my BEC had a chemical potential of µTF/h ≈

1.3 kHz and the lattice potential threshold in frequency unit was V0/h ≥ 1.8 kHz.

In order to probe the coherence properties of the atoms, I initially prepared the

atoms in an optical lattice with depth V0, turned off the lattice suddenly and let the

atoms expand for a duration of τ inside the harmonic dipole trap. I then used an

optical Bragg probe for a pulse time of ∼ 20µs. The expanding atomic wavefunction

from each lattice site interfered with each other and after a certain expansion time,

“rephasing” of the wavefunction yielded a maximum interference, similar to that of

the Talbot effect in optics [150, 168].

Figure 7.6 shows my observations of the atomic Talbot effect in a 1D lattice using

optical Bragg scattering [120]. The atoms were initially prepared in a 1D lattice with

V0 = 5ER, where ER = h2/2mλ2
d is the single photon recoil energy at wavelength

λd = 790.034 nm. The coherence revival was expected to occur once the width of

the atomic wavefunction expanded for a distance of d/2 = λd/4, or half of the lattice

spacing. Assuming the atoms expanded freely after being released from the lattice

potential, the revival period Trev was predicted to be [120, 150] 5

Trev =
md2

h
=

1

2
·
(

h

4ER

)
= 33.99µs. (7.32)

5The initial periodic density modulation d is recovered in the same spatial coordinates after 2Trev.
Meanwhile, maximum interference occurs after Trev to yield similar periodic structures which are
shifted by d/2. The Talbot time is defined as TTalbot = 2Trev [150].
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Figure 7.6. Coherence revival after the condensates are released from
the lattice potential at V0 = 5ER.

To obtain the revival period from the measurements displayed in Fig. 7.6, I fit these

data to the function

f (τ) = A exp (−λτ)
[
sin2 (2πτ/Trev + φ) + c

]
, (7.33)

where the term exp (−λτ) was introduced to include the Debye-Waller factor.

My observations yielded a revival period of Trev = 32.9 (4) µs, slightly shorter

than the predicted value. I attributed the smaller measured Trev to the presence of

the harmonic trap potential. This caused the collapse and revival dynamics of the

wavefunction to deviate from the predicted value in Eq. 7.32 [2]. In addition, due to

the interaction between particles, the collective atomic wavefunction has smaller effec-

tive mass. The energy dispersion ε (q) for repulsively interacting particles with g > 0

has smaller curvature (larger second derivative) compared to that of free particles with

no interaction g = 0. The effective mass is defined as 1/m∗ = (1/~2) [∂2ε (q) /∂q2].
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Figure 7.7. Optical Bragg scattering of atoms loaded into the 1D
optical lattice as a function of temperature. The temperature T was
measured using TOF release from the corresponding dipole trap with-
out the lattice potential. The shaded area corresponds to the transition
temperature TC = 381 (30) nK when the BEC starts to appear.

Consequently, the effective mass became smaller m∗ ≈ 0.97m and the measured Trev

was shorter than its predicted value for free particles [88, 132].

I next observed the dependence of the Bragg signal on the temperature of the

atoms, as displayed in Fig. 7.7. I prepared the atoms at temperature T by adjusting

the final power of the optical dipole trap (trap depth) after the evaporation stage.

The temperature T was measured using TOF release from the dipole trap (without

lattice). I then loaded the atoms adiabatically into the optical lattice with potential

V0 and probed them with the Bragg beam. For a small lattice depth V0 = 1.6ER,

I observed a distinct kink where the Bragg signal was maximum at the transition

temperature TC (see Fig. 7.7). This kink gradually disappeared as I increased the

lattice depth confinement.
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Figure 7.8. Coherence revival of atoms in optical lattice below and
above the transition temperature TC ≈ 380 nK. The atoms, initially
confined in a 1D lattice potential with V0 = 3.43ER, are released from
the lattice and let expand in the harmonic trap to exhibit the atomic
Talbot effect.

I attributed the decreasing Bragg signal for T < TC to the decreasing number of

atoms Natom and smaller size of the BEC cloud (fewer lattice sites Ns are occupied)

as they become colder. On the other hand, thermal atoms have relatively larger

fluctuations in the atomic wavefunction at temperature T > TC , and I still observed

a significant amount of Bragg signal. This was expected since Natom was bigger and

more lattice sites Ns were occupied, compared to the BEC case.

I also studied the coherence revival of the atomic wavefunction for T < TC and

for T > TC (see Fig. 7.8). The atoms were loaded into an optical lattice with

V0 = 3.43ER after being prepared at temperatures of T ∼ 340 nK and T ∼ 420 nK

(for the condensed and thermal phases, respectively). As before, I observed the atomic

Talbot effect for condensed atoms at T < TC , as shown by the blue triangles in Fig.

7.8. I fit the data to Eq. 7.33, as shown by the solid blue curve in Fig. 7.8. In
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contrast to the condensed case, the observed Bragg signal for the thermal clouds (red

circles in Fig. 7.8) decayed rapidly once the lattice potential V0 was turned off and

the atoms expanded in the dipole trap. This indicated that the thermal clouds had

strong fluctuations causing any initial phase coherence to decay rapidly.

Finally, I would like to make a few minor comments on some experimental details.

As described previously, I applied a bias field Bdc to create the spin-dependent lattice.

There were always transient eddy currents in the system when I turned off the biasing

field, and it took about 10− 100 ms before the bias field Bdc settled to a stable value.

For this reason, I chose to keep Bdc constant while performing Bragg scattering.

The bias field affected the resonance condition for the optimum Bragg signal and

I have found this to be spin-dependent as well. I measured a detuning value of

δ ' −80 MHz to give the maximum Bragg signal, for a bias field of Bdc ∼ 5 G along

ex and saturation parameter s0 ' 10. I did not observe any dependence on the

polarization of the Bragg probe. This was expected since I chose the near-resonant

transition to be 5S1/2, F = 1→ 5P3/2, F
′ = 0 (which has the same transition matrix

elements between the different sublevels mF = ±1, 0 → mF ′ = 0). To find the

optimum parameters for the detuning δ and s0 in a multi-level system theoretically,

I needed to solve the Maxwell-Bloch equations numerically. Instead, I chose the

parameter values which gave the optimum Bragg signal experimentally.

7.3.2. Precessing magnetic field in SOC condensates. In this subsection,

I discuss my observations of near-resonant optical Bragg scattering off of spin-1/2
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Figure 7.9. Bragg signal NBragg as a function of the Raman cou-
pling strength Ωf for loading rates of 0.23ER/ms, 0.11ER/ms and
0.08ER/ms. The dotted line shows NBragg is proportional to the trans-
verse spin polarization |〈σx〉| of the SOC system.

spin-orbit-coupling (SOC) condensates. I prepared 87Rb atoms in equal population

mixtures of spin-down |↓〉 = |F = 1,mF = −1〉 and spin-up |↑〉 = |F = 1,mF = 0〉

states. I dressed the SOC Hamiltonian by ramping up the Raman coupling strength Ω

gradually from 0 to its final value Ωf with a linear rate of dtΩ. For adiabatic dressing

of the atoms with dtΩ = 0.08ER/ms, I observed an increase of the Bragg signal as a

function of coupling strength, up to Ωf < 4ER. Beyond this point, the Bragg signal

started to saturate, as depicted in Fig. 7.9. I found the adiabaticity condition was

satisfied when the atoms were dressed with a rate below dtΩ . 0.1ER/ms.

In this engineered SOC Hamiltonian, the bias field Bdc = Bzez and the counter-

propagating lin ⊥ lin Raman lasers create an effective magnetic field of Beff ∝

Ω cos (2kRx− δω t) ex, where kR is the single-photon recoil momentum and δω is the

detuning between the Raman lasers (see Chapter 5). For coupling strength Ω < 4ER,
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the system has two degenerate minima located at q0 = ±kR
√

1− (Ω/4ER)2 and the

dressed eigenstates are [69, 98]

χ̃+ =




cos θ

− sin θ


 exp (iq0x) and χ̃− =




sin θ

− cos θ


 exp (−iq0x) . (7.34)

The spinor wavefunction of the system then becomes Ψ (x) = n (C1χ̃+ + C2χ̃−) which

has non-zero transverse spin polarization

〈σx〉 = −
√
k2
R − q2

0

kR
= − Ω

4ER
, for Ω < 4ER. (7.35)

Near-resonant optical Bragg scattering, which is spin-sensitive, probes the precess-

ing spin polarization. The precessing spin has a periodicity of dspin = π/kR = λzero/2,

identical to the density modulation in a periodic lattice case. For coupling strength

Ω ≥ 4ER, the minima merges at q0 = 0 and the spinor wavefunction is fully polarized

with 〈σx〉 = −1, causing the Bragg signal to saturate. I attributed the observed

dependency of NBragg as a function of Ωf to the existence of the transverse spin po-

larization 〈σx〉. For an adiabatic ramp, the measured NBragg is proportional to the

transverse spin polarization |〈σx〉|, as shown by the dotted line in Fig. 7.9. I noted

that the spin-sensitive Bragg signal ceased to exist as I detuned the Bragg probe

further away from the atomic transitions.

Figure 7.9 shows how the Bragg signal behaves as I shortened the loading duration

to be non-adiabatic, i.e. dtΩ = 0.11ER/ms and dtΩ = 0.23ER/ms. As I increased the
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Figure 7.10. Bragg signal NBragg from SOC condensates as a function
of revival time τ . (a) I observed the atomic Talbot effect for initial
dressing at coupling strength of Ω = 0.42ER and Ω = 1.39ER. (b)
The periodic coherence revival ceases for higher coupling strength at
Ω = 2.85ER, Ω = 4.40ER, and Ω = 6.02ER.

loading rate, the atoms did not have enough time to evolve and follow the minima

condition q0 adiabatically. This led to more dynamics in the Bragg signal.

I next measured the coherence revival in this Raman dressed system (see Fig.

7.10). After I loaded the atoms into the Raman dressed states, I quickly turned off the

Raman lasers and let the atoms expand in the harmonic dipole trap. I then used the

Bragg probe to observe the atomic Talbot effect for low coupling strength Ω = 0.42ER

and Ω = 1.39ER. In contrast to the previous case, I did not observe a clear signature

of periodic coherence revival for Ω = 2.85ER, Ω = 4.40ER, and Ω = 6.02ER. At

higher SOC coupling strengths, the dynamics of the different dressed spin states in

the harmonic dipole trap might cause degradation in the coherence properties of the

atoms. Although, the behavior shown in Fig. 7.10 was interesting, I did not make

further investigations of this effect.
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Figure 7.11. Bragg signal NBragg as a function of Rabi pulsing time
tpulse of the Raman lasers. I observe the Bragg signal (red, right y-axis)
to oscillate with twice the frequency of the Rabi oscillation (blue, left
y-axis) in the coupled atomic states.

On the other hand, I further confirmed the origin of the scattered Bragg signal

was due to the (precessing) magnetic field by performing Bragg scattering after doing

a Rabi pulse of the Raman coupling. Figure 7.11 shows Rabi oscillations of the SOC

states (indicated by circles) due to a square pulse with duration tpulse. The Bragg

signal (indicated by squares) oscillates with twice the frequency of the Rabi oscillation

between the coupled |↑〉 and |↓〉 states. Here I measured an optimum Bragg signal

for nearly equal mixtures of the |↑〉 and |↓〉 populations after Rabi pulsing. This

indicated the Bragg signal was related to the spin structure factor.

It is important to note here the angular alignment of the Bragg probe was opti-

mized with respect to the corresponding spin-dependent optical lattice at the same

laser wavelength λzero. I expected the spin structure in the SOC dressed system to

have the same periodicity d = λzero/2 to the spin-dependent lattice case. I did not
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find any spatially periodic structure corresponding to the minima in the SOC energy

dispersion, namely q0 = ±kR
√

1− (Ω/4ER)2. In other words, the atoms might have

a modulation with different periodicity of

d′ =
π

2q0

=
λzero

2

[
1−

(
Ω

4ER

)2
]−1/2

. (7.36)

However, within the range accessible to the the Bragg probe angle, I did not observe

any significant enhancement of the Bragg signal corresponding to the increasing peri-

odicity d′ as a function of Ω. Based on my observations in the optical lattice potential

with a fix periodicity d = λzero/2 , the density-modulated BEC atoms had a variation

of less than < 20% in the detected Bragg signal within the scan range of the probe

angle. In practice, I optimize the incoming Bragg probe angle with thermal clouds in

the corresponding lattice at periodicity d = λzero/2 and fix the Bragg angle in all of

the conducted measurements.

7.4. Summary

In this chapter, I present my measurements of various atomic structure using opti-

cal Bragg scattering. I discuss the static structure factor to describe geometrical prop-

erties of scattered Bragg signal due to periodic distribution of atoms. Measurements

of the Bragg counts as a function of the probe incident angle for different periodicities

(d = 395 nm and d = 405 nm) are in agreement with the model. Condensed atoms,

which have less number of spatially periodic atoms, give broader angular distribution
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in the scattered Bragg signal (more spread in the reciprocal k-space) compared to hot-

ter atoms, which occupy more space and have more number of periodic layers (less

spread in the reciprocal k-space). I also measured the beam diameter of the Bragg

probe 2w0 ' 260µm and angular width of the scattered Bragg signal θ ' 0.04 rad.

To calibrate the Bragg signal, I created spatial density ordering in the atoms by

loading them adiabatically into a 1D optical lattice potential. Based on the atomic

form factor, I observed the Bragg signal to scale as NBragg (V0) ∝ exp (−b/V0) with

respect to the lattice depth V0. To probe the phase coherence of the condensed atoms,

I demonstrated the atomic Talbot effect where the initial density modulation of the

atoms was recovered after a certain Talbot time.

I observed a peak in the scattered Bragg signal at the BEC transition temperature

TC . Unfortunately, I did not conduct further investigations on this behavior. I would

speculate this might be caused by increasing spatial correlation between the atomic

wavefunction as the atoms reached the BEC phase [122]. However, a more careful

calibration of the atoms’ number and their spatial distribution would need to be

performed before I could convincingly argue for the cause of this peculiar peak at TC .

Measurements of the atomic Talbot revival did confirm the atoms lost their coherence

properties as the temperature increased above TC .

The results being discussed here are for condensates in themF = −1 state affected

by the spin-dependent lattice potential. For a mixture of spinor Bose gases in the

F = 1 manifold, the mF = ±1 states are bounded to the lattice potential while

mF = 0 atoms are free. With optical Bragg scattering, I could measure how the energy
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exchange between atoms confined in a lattice potential coupled to an external bath of

lattice-free atom might affect the spatial density ordering of the atoms. Unfortunately,

I did not conduct such experiment due to my time constraints. The optical Bragg

scattering is promising to study thermalization between a lattice and free Bose gases,

complementary to the work done by McKay et al. [110, 111, 113].

With near-resonant Bragg scattering, I probed the precessing magnetic field that

exist in the SOC condensates as the atoms were loaded adiabatically into the SOC

dressed states. I showed the Bragg signal was proportional to the transverse magne-

tization of the SOC system. The Bragg signal was optimized when 50%/50% mixture

of the atoms existed in the two degenerate energy levels of the SOC system. As

the Raman coupling strength Ω was increased, the two degenerate minima of the

SOC energy dispersion merge to form a single minimum. Consequently, the inter-

ference of the two opposite momenta vanished and the observed Talbot revival be-

came weaker. The spin-structure ordering lost its coherence at high Raman coupling

strength Ω > 2.85ER, as confirmed by the Talbot revival data.

Besides loading the atoms adiabatically into the SOC dressed states, I also did a

short (Rabi) pulse of the Raman coupling strength and probed the atoms with near-

resonant Bragg scattering. The frequency of the observed Bragg signal was twice the

frequency of the Rabi oscillation since the Bragg signal was maximized at 50%/50%

mixture of the atoms, confirmed the origin of the scattered Bragg signal was due to

the precessing magnetic field in the SOC system.
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CHAPTER 8

Stripe-ordered phase in spin-orbit coupled condensates

Spinor Bose gases favoring the antiferromagnetic configuration (miscibility) [165]

in the presence of spin-orbit coupling exhibit three phases: the stripe-ordered phase,

the magnetized plane-wave phase and the zero-momentum phase [69, 98]. The stripe

phase occurs when each spin component, with two opposing momentum components

±q1, are interacting with each other due to the interatomic collisions. This results in

the formation of a spatial interference pattern with a period of π/q1.

The stripe-ordered phase has properties that are analogous to supersolidity, first

described by G. Martone and Y. Li et al. [97, 109] for atomic spin-orbit-coupled (SOC)

systems. Within the Bogoliubov theory [59], the excitation spectrum of the mean-

field energy in the stripe phase exhibit two gapless bands [97]. This gives a divergent

structure factor and static response function for wave vectors near the boundary of

the Brillouin zone. In addition, in the plane-wave phase of the SOC system, the

excitation spectrum is not symmetric and exhibits roton-maxon like structure where

the gap of the rotonic structure becomes smaller as one approaches transition to

the stripe phase [109]. The roton-mode softening is a precursor of a phase transition

which spontaneously breaks the continuous translational symmetry. This gives rise to
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a crystalline long-range phase order in a superfluid with weak short-range interaction.

This characteristic is a signature of “supersolid” phase of matter [136].

Most recently, Ji et al. [79] have observed roton-mode softening in the excitation

spectrum as the SOC Bose gas crosses the phase transition towards the stripe phase.

The roton-maxon excitation spectrum in the plane-wave phase was measured using

Bragg spectroscopy, and they found good agreement with theoretical predictions [109].

Besides in SOC Bose gases, the roton-maxon spectrum has also been observed in other

engineered ultracold atoms, such as in the shaken lattice [62], in BEC-cavity systems

[94, 123], and recently in dipolar quantum gases [31].

Another predicted feature of the stripe phase is the existence of spatial density

modulation. This is challenging to measure because the expected density contrast is

very low and the modulation periodicity is on the order of 0.4µm (or less). In the

initial work by Lin et al. [103], a signature of the stripe phase region was observed

indirectly using time-of-flight (TOF) imaging. Atoms in the dressed states were

projected into their bare spin and momentum states; the degree of phase-mixing

characterizes the region where stripe-ordered phase occurs.

Here I describe how I used optical Bragg scattering to detect the density modu-

lation. Recently, similar technique was used by Jun-Ru Li et al. [95] to detect the

stripe phase in SOC system realized in a superlattice potential [96]. So far, this has

been the only experimental work to directly observe the density modulation of the

stripe phase. Unfortunately, in the work of Jun-Ru Li et al., the existence of the den-

sity modulation was only demonstrated as a function of detuning δ between the two
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SOC states in a limited region of coupling strength Ω. It was unclear if the observed

density modulation appeared within the predicted two-dimensional (2D) parameter

space of the SOC system [108].

In this chapter, I report my observation of the full phase diagram of the stripe-

ordered phase. I realized an SOC system using two-photon Raman transitions for a

range of coupling strength Ω [67, 102, 103]. My measurements of the stripe-ordered

phase in (Ω, δ) phase space were in agreement with theoretical predictions [69, 98]. I

also investigated the metastable windows where the density modulation exists [103]

and observed the atomic Talbot effect in the time-evolution of the density modulation

[120, 150]. Finally, I explored the stripe-ordered phase in the finite temperature

parameter space of (Ω, T ) and my results were consistent with previous works [28,

78, 178].

8.1. Theory of the stripe-ordered phase

The single-particle Hamiltonian of an SOC Bose-Einstein condensate realized with

counter-propagating Raman lasers is given by [69, 103]:

hSO
0 =

~2

2m

[
(qx − kRσz)2 + k2

⊥
]

+ ~
δ

2
σz + ~

Ω

2
σx + Vext, (8.1)

where m is the atomic mass, kR is the single photon recoil momentum, k⊥ is the

linear momentum perpendicular to the SOC direction, δ is the effective detuning,

Ω is the Raman coupling strength, and Vext is the external potential. The term

−2qxkRσz is analogous to Rashba and Dresselhaus spin-orbit couplings (with equal
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linear contributions) in condensed matter physics [44, 103, 144]. The spin-1/2 system

is described by the Pauli matrices σx, σy, and σz, and the coupling between the two

different spin states are locked to the linear momentum in the quasi-momentum space

qx. The single photon recoil energy ER = ~2k2
R/2m of the Raman coupling sets the

energy scale of this Hamiltonian.

I now include many-body interactions in the s−wave channels of the atoms and

describe the mean-field energy functional of the system as

E [Ψ] =

ˆ
dr

[
Ψ†hSO

0 Ψ +
1

2

∑

α,β

gα,β
(
Ψ†PαΨ

) (
Ψ†PβΨ

)
]
, (8.2)

where Ψ = (ψ↑ ψ↓)
T is a two-component wavefunction representing the spin-1/2 sys-

tem; α, β are spin indices with projection operators to the two spin states given by

P↑ = (1 + σz) /2 and P↓ = (1− σz) /2; and gαβ = 4π~2aαβ/m are the two-body

interaction terms corresponding to the s−wave scattering lengths aαβ.

To determine the ground states of the mean-field energy, I used the variational

method as described in Ref. [98, 108]. I chose the ansatz for the spinor wavefunction

as [69, 98, 108]:

Ψ (r) =




ψ↑

ψ↓


 =

√
n̄


C+




cos θ+

− sin θ+


 eik+x + C−




sin θ−

− cos θ−


 e−ik−x


 . (8.3)

Here the variational parameters are C+, C−, k+,k−, θ+ and θ− , with n̄ is the atomic

density distribution. The parameter values for the lowest energy eigenstates were
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determined by minimizing the energy functional in Eq. 8.2 subject to the constraint
´

d3r Ψ†Ψ = N (or |C+|2 + |C−|2 = 1) where N is the total number of atoms.

I first consider a uniform system with zero trapping potential Vext = 0 and neglect

the perpendicular kinetic energy k⊥ = 0. In the variational method, minimization of

E [Ψ] with respect to θ± yields the relation 2θ± = arccos (k±/kR). Next, I consider

the special case of spin symmetric interaction g↑↑ = g↓↓ = g and zero detuning δ = 0,

which leads to the relation k+ = k− = q1. For miscible condensates (g > g↑↓) in the

low density limit gαβn̄� ER, the variational approach yields lowest energy eigenstates

which are compatible with the three following phases [98, 108]:

(1) The stripe-ordered or spin-mixed phase.

For small values of Raman coupling Ω, the ground state is a linear combi-

nation of the plane-wave states e±iq1x with equal weights |C+| = |C−| = 1/
√

2.

The magnetization of the system or the difference between the spin popula-

tion is given by 〈σz〉 = |ψ↑|2 − |ψ↓|2 = 0. The most striking feature of this

phase is the appearance of density modulations in the form of stripes:

n (r) = n̄

[
1 +

~Ω

(4ER +G1)
cos (2q1x+ φ)

]
, (8.4)

where φ is the relative phase between the complex variables C+ and C−. The

periodicity of the fringes π/q1 is determined by the wave vector

q1 = kR

√
1− ~2Ω2

(4ER +G1)2 , (8.5)

197



8.1. Theory of the stripe-ordered phase

with interaction parameter G1 = n̄ (g + g↑↓) /2.

(2) The plane-wave or magnetized phase.

For larger values of Raman coupling, the atoms condense into a single

plane-wave or magnetized state in either the momentum state q1 (C− = 0) or

−q1 (C+ = 0) where

q1 = kR

√
1− ~2Ω2

(4ER − 2G2)2 , (8.6)

with the interaction parameter G2 = n̄ (g − g↑↓) /2. In this phase, the density

is uniform n (r) = n̄ and the spin polarization is given by 〈σz〉 = ±q1/kR. The

ground state of the system is doubly degenerate, where the choice between

the two eigenstates at qx = ±q1 is determined by spontaneous spin symmetry

breaking (if δ = 0). However, any non-zero detuning δ breaks the degeneracy

of this magnetized phase.

In the low density limit G1,G2 � ER, the transition between the stripe-

and plane-wave phases occurs at

Ω1→2
c =

4ER
~

√
2G2

G1 + 2G2

. (8.7)

(3) The single momentum or “zero momentum” phase.

At sufficiently large values of Ω, the two-degenerate minima at ±q1 merge

and the system enters the single-minimum phase where qx = 0 and 〈σz〉 = 0.

In this phase the gas is fully polarized along the x−direction, i.e. 〈σx〉 = −1.
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8.1. Theory of the stripe-ordered phase

The transition between the plane-wave and the single-minimum phases is

second-order and it takes place at a critical value of Raman coupling:

Ω2→3
c =

1

~
(4ER − 2G2) . (8.8)

In Chapters 5 and 6, I discussed the transition between the plane-wave and single

momentum phases within the single-particle Hamiltonian hSO
0 . In this chapter, I focus

on the stripe-ordered phase. The existence of spin exchange due to the two-body

collisions gives rise to the stripe-ordered phase in the SOC system if the interaction

parameter G2 is positive or the miscibility condition g↑↑g↓↓ > g2
↑↓ is satisfied [98].

Now consider the two spin states |↑〉 = |mF = 0〉 and |↓〉 = |mF = −1〉 in the

F = 1 manifold of the 87Rb atoms’ 5S1/2 electronic ground states. The s-wave

scattering lengths between the different spin states are a↑↑ = 101.41aB and a↓↓ =

a↑↓ = 100.94aB where aB is the Bohr radius. In the presence of spin-asymmetric

interactions and non-zero detuning δ, I can extend the variational approach I used

above to include energy corrections from first order perturbation theory. For small

values of 0 < (g↑↑ − g↓↓) � g↑↑, the asymmetry in the intra-atomic interactions can

be compensated by the choice of detuning shift ~δcorr = −n̄ (g↑↑ − g↓↓) /2 [108].

Figure 8.1 shows theoretical prediction for the phase diagram of the stripe-ordered

phase in the (Ω, δ) parameter space. Here I consider 87Rb atoms with chemical po-

tential of µ ≈ g↑↑n̄ = 0.2ER. This corresponds to a uniform atomic density of
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8.1. Theory of the stripe-ordered phase

Figure 8.1. Theoretical prediction of stripe-ordered phase in (Ω, δ)
parameter space for an SOC 87Rb Bose gas (Vext = 0) with chemical
potential of µ = 0.2ER. Using variational method to solve the many-
body ground state, I obtain the phase diagram of (a) magnetization and
(b) density contrast of the stripe phase versus detuning ~δ and coupling
strength ~Ω. The stripe-ordered phase has non-polarized magnetization
and non-zero density contrast within the area bounded by the solid
curves.

n̄ = 0.94 × 1014 cm−3, a typical value for 87Rb condensates produced in our labora-

tory. Figure 8.1(a) shows mixing of the spin states in the stripe-ordered phase. This

leads to non-polarized magnetization −1 < 〈σz〉 < 1 within the detuning window

n̄ |g↑↑ − g↓↓| /h . 3.45 Hz for transition coupling strength Ω < Ω1→2
c . At the detuning

value δ = δcorr, the critical transition from stripe-ordered phase to plane-wave phase

occurs at the Raman coupling strength ~Ω1→2
c ' 4ER

√
(g↑↑ − g↑↓) /2g↑↑ = 0.19ER.

Figure 8.1(b) displays the density contrast of the stripe modulation, which scales as

∝ ~Ω/ (4ER + µ). The maximum density modulation of the stripe phase near the

critical transition point is then given by ∼ 0.19ER/ (4ER + µ) ' 0.045 or 4.5%.
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8.2. Experimental setup

8.2. Experimental setup

I realized a spin-1/2 SOC system by applying two counter-propagating lasers

in lin ⊥ lin configuration, as shown in Fig 8.2. The lasers induced two-photon

Raman transitions between the hyperfine states in the F = 1 manifold of 5S1/2

electronic ground states of 87Rb atoms. I tuned the Raman lasers’ wavelength to

cancel the scalar light shift at λzero = 790.034 nm [9], which gave a single pho-

ton recoil energy of ER = h × 3.678 kHz. For this coupling scheme, I applied a

bias field of Bdc = 19.8595(4) G. Following Subsection 5.4.2, this gave a linear

Zeeman split of ωZ/2π = 13.948 MHz and a quadratic shift of ε/2π = 56.7 kHz.

Coupling to the other state |F = 1,mF = 1〉 was neglected, as it was detuned by

56.7 kHz � ER/h. This setup realized the single-particle Hamiltonian hSO
0 between

the two states |↓〉 = |F = 1,mF = −1〉 and |↑〉 = |F = 1,mF = 0〉 as in Eq. 8.1. The

Raman laser frequencies were adjusted to control the detuning δ of the spin-1/2 SOC

system and the external potential Vext was the harmonic trapping potential.

The total mean-field energy of the system was given by

E [Ψ] =

ˆ
dr

[
Ψ†hSO

0 Ψ +
1

2
c0n

2
↑ +

1

2
(c0 + c2)n2

↓ + (c0 + c2)n↑n↓

]
. (8.9)

Here n↑ and n↓ are respectively the atomic densities of the spin-up and spin-down

states, and the interaction parameters are c0/h = 7.79 × 10−12 Hz · cm3 and c2/h =

−3.61×10−14 Hz · cm3. To allow comparison with the mean-field energy functional in

Eq. 8.2, I defined the interaction terms in Eq. 8.9 as g↑↓ = g↓↓ = c0 + c2 and g↑↑ = c0.
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Figure 8.2. (a) Experimental setup to detect scattered Bragg signal
from the stripe phase, showing counter-propagating Raman lasers, op-
tical Bragg probe, and a highly-sensitive camera. (b) Schematic to
realize the spin-1/2 SOC system with two-photon Raman transition.
(c) Calibration of the Bragg signal using a spin-dependent optical lat-
tice. Inset shows the region of interest for the Bragg signal imaged by
the camera.

In my experiments, I typically produced N ' 2.2 × 105 ± 15% condensed 87Rb

atoms in a harmonic trap with trapping frequencies (ωx, ωy, ωz) = 2π ·(105, 67, 40) Hz.

This corresponded to a chemical potential µ ' 1.45 kHz and a peak density n0 =

1.86 × 1014 cm3. The stripe phase is predicted to exist within the detuning width
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of δ/2π . |c2n0| /h ' 7 Hz for coupling strength values below ~Ω < 0.19ER. This

requires the ambient magnetic field to be controlled within < 10µG precision. Besides

the small detuning window, the stripe phase also has a very low density contrast, on

the order of . Ω/ (4ER + µ). In other words, a maximum of only 4.3% of the atoms

are expected to be contributing to the periodic density modulation.

In my measurements, I used fluxgate magnetometers to measure drifts in the

ambient magnetic field and used partial-transfer absorption imaging (PTAI) in each

experimental cycle to correct for magnetic field drifts in the system (as described in

Chapter 5). The combined feedforward plus PID feedback control system allowed me

to compensate field drift within < 400µG over hours of data taking. The PTAI also

served as a sensor of the bias field value and gave an accuracy of ∼ 40µG in the field

measurement. In terms of the Zeeman frequency detuning, this limited my resolution

to δ ≈ 30 Hz. To calibrate the coupling strength Ω, I applied a square pulse of the

Raman beams and obtained Ω from sinusoidal fit to the Rabi oscillation between

the different coupled spin states. I used highly sensitive and low-noise photodiodes

to measure the laser intensities in each experimental cycle. This gave a precision of

∼ 0.02ER in the determination of Ω.

As I have noted several times already, the predicted stripe phase exists within a

very small window of (Ω, δ) parameter space. In fact, the precision of the equipment

I used was barely sufficient. To overcome the aforementioned obstacles, I specifically

prepared the SOC dressed states to increase the detectable region of the stripe phase.

Based on our knowledge that the stripe-ordering is intertwined with the physics of
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spin-mixing, I first prepared the atoms in an equal population of spin |↑〉 and |↓〉

states. I then adiabatically loaded the phase-mixed spinor Bose gases into the SOC

Hamiltonian by increasing Ω linearly for 50 ms. Next, I held the system at constant

Ω for 1 s to reach a metastable equilibrium. Finally, I quickly ramped Ω up to > 6ER

within 200µs to map the dressed states of the system into well-defined momentum

states at ±kR. The resulting density modulations in the spatial coordinates were

amplified as the wave packet of the atoms were enhanced in the corresponding mo-

mentum states.

To probe density modulations in the stripe phase region, I used far-detuned optical

Bragg scattering in the elastic Rayleigh scattering regime. The experimental setup is

depicted in Fig. 8.2(a)-(b). Here, the Bragg beam with wavelength λB = 790.2 nm

was red-detuned by 6.34 GHz from the F = 1 → F ′ = 0 transition in the D2 line.

The atoms was polarization insensitive to the Bragg probe since its detuning is way

larger than the transition linewidth, 6.34 GHz � 6.06 MHz. In addition, I chose the

F = 1→ F ′ = 0 transition for a specific reason that the different magnetic sub-levels

mF = −1, 0, and 1 in the F = 1 ground state have the same transition strength to

the mF ′ = 0 excited state [124] (see Fig. 2.3).

In order to calibrate the Bragg signal, I modified my setup to create a 1D spin-

dependent lattice [110, 112] for spin |↓〉 state. To do this, I flipped the bias magnetic

field orientation to be along the laser propagation direction in ex and changed the

Raman laser frequencies to be identical ω+ = ω−. This allowed me to create density

modulation with periodicity λzero/2, similar to the stripe-ordered phase and on the
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same axis with the spin-orbit coupling direction, as mentioned previously in Section

5.4. Fig. 8.2(c) shows a typical Bragg signal from the 1D lattice system detected by

the electron-multiplying charge-coupled device (EMCCD) camera acting as photon

sensor in the relay imaging system. Empirical calibration using a 1D spin-dependent

lattice with similar parameters for the atoms gave a limit of 8% on the minimum

observable density modulation contrast.

For an infinite crystal structure, the lowest order Bragg’s condition is met at

an angle of θB = 0.16 rad with respect to the lattice axis. However, due to the

finite transverse size of the atoms and wide acceptance angle of our imaging setup

(numerical aperture of 0.3), the Bragg’s condition for the incoming angle was slightly

different and not very sharp. I observed a peak Bragg signal at an incoming angle of

θB ' 0.2 rad with a full-width at half maximum (FWHM) of 0.07 rad [156]. I could not

detect variations as small as 0.1% in the periodicity of the stripe-ordered phase density

modulation d = π/q1 as a function of Ω. Further, the Bragg scattering measurements

of the SOC states were limited to be within coupling strength of Ω < 0.65ER. I

did not observe significant deviations in the Bragg signal corresponding to spatial

structures with periodicities other than d ≈ π/kR.

During data collection, I pulsed the optical Bragg probe for a duration of 100µs;

the atoms were greatly disturbed for pulsing duration of > 250µs. I chose this value

because I did not observe any significant increase in the signal-to-noise ratio for a

longer pulsing duration. Further, the 100µs Bragg probe duration allowed me to

image the remaining atoms using TOF in the same experimental cycle. The TOF
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images gave me an additional observation on the magnetization 〈σz〉 of the prepared

SOC dressed states. This gave a benchmark for comparison to the Bragg signal as a

function of the detuning δ.

8.3. Observations of stripe-ordered phase in the full phase diagram

Figure 8.3 shows the observed Bragg counts NBragg in (Ω, δ) parameter space. For

this data, I initially prepared the atoms in an equal population of the two miscible spin

states. I then loaded the atoms into the Raman dressed states with frequency detuning

δ as discussed in the previous section. I found that the detection of the stripes was

possible for larger detuning window compared to the theoretically predicted value

because the population relaxation between the two miscible spin states is very slow.

The timescale for the initially phase-mixed spin states to eventually phase separate

in the magnetized state is estimated to be on the order of ∼ |δ/2π − c2n0/h|−1.

The scattered Bragg signal from the stripe phase region in the full-phase diagram

is shown in Fig. 8.3(a). Figure 8.3(b) shows a cut through Fig. 8.3(a) that displays

NBragg as a function of detuning δ for four different values of Ω. The Bragg signal

shows a distinct double-peak structure with a dip in the center at high coupling

strength Ω ≥ 0.3ER. The observed double-peak structure is consistent with Jun-

Ru Li et al.’s measurements in Ref. [95]. In their work, the inter-spin interaction

strength g↑↓ was engineered to yield a larger detuning region and they observed an

additional peak in the Bragg signal near δ ≈ 0 Hz. However, in my data, this feature

was not resolvable due to the limitation in our ability to scan δ/2π to better than
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Figure 8.3. Stripe-ordered phase in (Ω, δ) parameter space. (a) Phase
diagram of the stripe phase region in (Ω, δ) space, as observed by optical
Bragg scattering. (b) Bragg counts NBragg as a function of detuning δ
for various coupling strength Ω. Solid lines are fitting to the difference
of two Lorentzian distributions as in Eq. 8.10. (c) Fitted amplitude of
the Bragg signal as a function of coupling strength Ω. (d) The FWHM
obtained from fitting as a function of coupling strength Ω. The gray
area shows the predicted transition coupling strength Ωc = 0.19ER ±
15% from stripe-ordered phase to magnetized plane-wave phase.

30 Hz precision. The data in Fig 8.3(a)-(b) were taken with a step size of 35.8 Hz for

the detuning parameter δ/2π. Error bars in Fig. 8.3(b) represent 1σ standard error

of the mean with a sample size of 3 to 4 images. I note that the double-peak structure

might be blurred out for some values of Ω due to the noise in δ.
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I fit the observed signal NBragg (δ) at some constant value of Ω with the difference

of two Cauchy-Lorentz distributions (Lorentzian profiles)

f (δ) =
A0

1 + [(δ − δ0) /σ0]2
− A1

1 + [(δ − δ0) /σ1]2
+ c, (8.10)

with 6 fitting parameters: A0, A1, δ0, σ0, σ1 and c. The fitting function f (δ) is

depicted by the solid lines in Fig 8.3(b). The peak amplitude of the Bragg signal

Apeak was obtained from the maximum value of the fitting function. Figure 8.3(c)

shows Apeak to decay exponentially as a function of Ω. The fitted detuning FWHM of

the combined Lorentzian profiles as a function of Ω is shown in Fig. 8.3(d). I observed

a rapid decrease in the FWHM as a function of Ω below the critical transition coupling

strength ~Ωc ' 0.19ER. I note that there could be a case of overfitting NBragg (δ) to

the function f (δ) in Eq. 8.10; e.g. if there were only a few data points showing the

dip between two peaks centered around δ0. In this case, the observed data were closer

to a single Lorentzian distribution (A1 = 0). I attributed the double-peak structure

in the observed NBragg (δ) might be caused by the presence of a harmonic noise in

δ. Although I did not investigate this further, it would be interesting to develop a

numerical model to calculate NBragg (δ) and see how the density modulation in the

stripe phase was affected by the presence of a small ac component in δ during the

system preparation.

In an ideal scenario, the presence of detuning δ 6= 0 breaks the symmetry of the

two degenerate states in the plane-wave region for Ω > Ωc, where the clouds are
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spatially separated and exhibit no density modulation. However, due to the finite

spin healing length [27] of the condensates (even for δ 6= 0), there always exists a

region where the atoms occupy both spin states of the two local minima and they

are being phase mixed. The FWHM is largest for Ω < Ωc in the stripe phase region,

decreases as Ω approaches Ωc and it reaches an asymptotic value for Ω� Ωc. In Fig.

8.3(d), I fit the FWHM to the function FWHM(Ω) = A/Ω2 + c, and I obtained the

best fit values A = 6.32 Hz/E2
R and c = 215.99 Hz. I note that the results shown in

Fig. 8.3 demonstrate that my observations of the stripe phase using optical Bragg

scattering were consistent with previous measurements conducted in Ref. [103]. In

Ref. [103], the stripe phase region was characterized by the degree of phase separation

of the two-component condensates in the SOC dressed states.

The density modulation in the stripe phase existed if there was a mixing of the

two spin components. Any detuning noise would alter the population of the two spin

components and their degree of mixing. Instead of having δ as a parameter space,

I could choose the magnetization or population imbalance between the two spins

〈σz〉 = |ψ↑|2 − |ψ↓|2 as an equivalent parameter space. The magnetization 〈σz〉 was

obtained from TOF imaging of the remaining atoms after a 100µs Bragg pulse in the

same experimental cycle. Since the Bragg pulse induced transfer between the SOC

states, I corrected this by also measuring 〈σz〉 in identical SOC system without the

Bragg pulse being applied.

Figure 8.4(a) shows the corresponding magnetization 〈σz〉 in (Ω, δ) parameter

space. The Bragg counts NBragg as a function of 〈σz〉 for four different values of
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Figure 8.4. Stripe-ordered phase as functions of magnetization 〈σz〉
and coupling strength Ω. (a) Phase diagram of magnetization 〈σz〉
in (Ω, δ) space obtained from TOF imaging, complementary to Fig.
8.3(a). (b) Bragg countsNBragg as a function of 〈σz〉 for various coupling
strength Ω. Solid lines are fitting to a Gaussian distribution. (c) Fitted
amplitude of the Bragg signal as a function of coupling strength Ω.
(d) The gaussian width obtained from fitting as a function of coupling
strength Ω. The gray area shows the predicted transition coupling
strength Ωc = 0.19ER ± 15% from stripe-ordered phase to magnetized
plane-wave phase.

Ω is displayed in Fig. 8.4(b). I fit the observed NBragg as a function of 〈σz〉 with

a Gaussian distribution, as indicated by the solid lines in Fig. 8.4(b). Similar to

previous case where I analyzed the dependency of Apeak to the detuning δ (see Fig

8.3(c)), the Gaussian peak of the Bragg signal Agauss also decayed exponentially as
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a function of 〈σz〉 as shown in Fig. 8.4(c). Figure 8.4(d) shows the σ-width for the

Gaussian fitting σgauss as a function of Ω. Here, again, I observed σgauss to scale as

σgauss(Ω) = A/Ω2 + c as shown by the solid line in Fig, 8.4(d). These measurements

supported the argument that the stripe phase strongly favors phase-mixing between

the spinor components in the SOC system.

8.3.1. Metastability of the stripe-ordered phase. I next investigated the

metastability of the stripe-ordered phase. I adiabatically loaded the system into the

Raman dressed states by linearly increasing Ω for 50 ms (with δ ≈ 0). I held the

atoms for various hold times thold in the dressed states, and finally ramped up the

coupling strength Ω > 6ER in 200µs before doing the optical Bragg probing. Figure

8.5(a) shows NBragg in the (Ω, thold) parameter space, where each grid represents more

than 3 averaged data points. Figure 8.5(b) shows that the Bragg signal decays as a

function of hold time thold. I fit the data in Fig. 8.5(b) with an exponential function

NBragg = A exp (−thold/τ) + c, and plot the lifetime τ in Fig. 8.5(c).

In the data shown in Fig. 8.5(c), I observed a lifetime of τ & 180 ms for the

initially phase-mixed spin states in the stripe phase region Ω < Ωc, and a lifetime of

τ . 180 ms in the magnetized plane-wave states Ω > Ωc. The rate of change of τ

with respect to Ω changed significantly at the critical point Ω = Ωc. I characterized

this behavior by fitting the measurements of τ (Ω) to the function

τ (Ω) =





A exp (−b1Ω) , for Ω ≤ 0.19ER,

A exp (−b1 · 0.19ER) exp {−b2 (Ω− 0.19ER)} , for Ω > 0.19ER,

(8.11)
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Figure 8.5. Metastability of the stripe-ordered phase. (a) Bragg sig-
nal as functions of coupling strength Ω and hold time thold. (b) Bragg
counts NBragg as a function of hold time thold for various coupling
strength Ω. (c) Lifetime τ of the metastable stripe-ordered phase as a
function of Ω. The gray area shows the predicted transition coupling
strength Ωc = 0.19ER ± 15% from stripe-ordered phase to magnetized
plane-wave phase.

as indicated by the dashed line in Fig. 8.5(c). I obtained the best fit values A =

4.83 × 103 ms, b1 = 14.6E−1
R , and b2 = 3.6E−1

R . The lifetime rapidly decayed as Ω

approached the critical transition value Ωc, and it eventually settled to smaller values

for Ω� Ωc. Again, these measurements were consistent with Ref. [103] and showed
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that the metastable state of the stripe phase was a result of competing energy scale

between the SOC Hamiltonian and the spin-dependent interaction.

8.3.2. Coherence revival of the stripe-ordered phase. In order to confirm

the phase coherence of the stripe phase, I did a time revival scan of the observed

Bragg signal using Talbot interferometry, as in Refs. [120, 150]. After loading the

atoms (see Section 8.2), I turned off the Raman lasers, let the atoms expand in the

harmonic dipole trap potential for a duration of trev, and then probed the structure

with optical Bragg scattering. I expected the expanding coherent matter wave, which

initially had a periodic spatial pattern d, to interfere and exhibit the atomic Talbot

effect with a coherence revival period of Trev = md2/h.1

Figure 8.6 shows my measurements on the atomic Talbot effect. The observed

Bragg counts NBragg as functions of (Ω, trev) are displayed in Fig. 8.6(a), where each

data mesh element is an average of more than 5 realizations. Figure 8.6(b) shows a

horizontal cut through the phase diagram in Fig. 8.6(a); i.e. NBragg as a function

of trev. The plot shows a coherence revival of the detected signal. The maximum

interfering signal eventually decayed due to the Debye-Waller factor as the atoms

heated up and had more spatial fluctuations.

1The initial periodic density modulation d is recovered in the same spatial coordinates after 2Trev.
Meanwhile, maximum interference occurs every time period of Trev to yield similar periodic structures
which are shifted by d/2.
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Figure 8.6. Periodic revival of the scattered Bragg signal from the
stripe phase. (a) Observed Bragg signal as functions of (Ω, trev). (b)
Coherence revival of the Bragg signal for various coupling strength Ω
as a result of the atomic Talbot effect. (c) Revival amplitude A of
the Bragg signal as a function of Ω (as obtained from a fit to Eq.
8.12). The gray area shows the predicted transition coupling strength
Ωc = 0.19ER ± 15% from stripe-ordered phase to magnetized plane-
wave phase. (d) Period of coherence revival Trev as a function of Ω
(as obtained from a fit to Eq. 8.12). The dashed line shows the av-
erage value of observed Trev, while the solid line shows the theoretical
prediction of Tth (see Eq. 8.13).

I fit the time evolution of the Bragg counts to an exponentially decaying function

times the square of a sine:

f (trev) = A exp
(
−λt2rev

) [
sin2 (2πtrev/Trev + φ) + c

]
, (8.12)
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8.3. Observations of stripe-ordered phase in the full phase diagram

where A is the revival amplitude and Trev is the revival period. Figure 8.6(c) shows

the revival amplitude A of the Bragg signal as a function of Ω. The revival amplitude

decayed rapidly once the coupling strength crosses the transition at ~Ωc = 0.19ER.

Figure 8.6(d) shows that the observed revival period Trev = 33.0(3)µs does not depend

on the coupling strength Ω. This disagreed with the theoretically predicted value

(based on a single-particle model) which was given by

Tth =
m

h

(
π

q1

)2

' mλ2
zero

4h

(
1− ~2Ω2

16E2
R

)−1

(8.13)

The predicted revival period Tth was dependent on the coupling strength Ω, where

its values varied from Tth = 34.0µs to 35.1µs for ~Ω = 0ER to 0.7ER (see solid line

in Fig. 8.6(d)). I attributed this discrepancy due to the specific procedure I used to

create and measure the stripe phase. At the end of loading the atoms in the SOC

dressed states, I ramped Ω up to > 6ER to map the dressed states of the system

into well-defined momentum states at ±kR. Thus, I did not observe an increasing

trend in Trev as the period of the density modulation d = π/q1 increases for higher

coupling strength Ω. Moreover, the collapse and revival dynamics were affected by

the presence of harmonic potential and the spinor condensate interaction energy.

8.3.3. Stripe-ordered phase as functions of coupling strength Ω and

temperature T . In this subsection, I investigated the stripe-ordered phase as func-

tions of coupling strength Ω and temperature T . The atoms were first prepared in an

equal population of spin |↑〉 and |↓〉 states. I varied the initial temperature of the cold
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8.3. Observations of stripe-ordered phase in the full phase diagram

atoms by changing the final optical trap power in the evaporation stage. Next, the

phase-mixed spinor Bose gases were loaded into the SOC Hamiltonian by increasing Ω

linearly for 50 ms and the atoms were held at constant Ω for 1 s to reach a metastable

equilibrium. Finally, I ramped Ω up to > 6ER within 200µs and performed the Bragg

scattering measurements. The presence of the SOC energy dispersion affected the mo-

mentum distribution of the atom, and hence the temperature T was determined for

the SOC dressed system in the metastable equilibrium. For each Bragg scattering

measurement, I repeated identical experimental run without pulsing the Bragg probe

and measured T as described by Ref. [78]2.

The 2D density distribution of the atoms ρ2D in the bare states was measured

using absorption imaging after TOF expansion time τ . A Stern-Gerlach gradient

force was applied to separate the two spin components with a distance ±d/2 along

the z−direction. The temperature T of the system was obtained by fitting the 2D

density distribution to the function [78]

ρ2D (x, z, T, τ) = ρ2D,↑ (x, z, T, τ) + ρ2D,↓ (x, z, T, τ) , (8.14)

where

ρ2D,↑ (x, z, T, τ) = ρ
(+)
SOC

(
x− vRτ, z −

d

2
, T, τ

)
a2

(+)

(mx
~τ
− kR

)

+ ρ
(−)
SOC

(
x− vRτ, z −

d

2
, T, τ

)
a2

(−)

(mx
~τ
− kR

)
, (8.15)

2See Eqs. S.1-S.7 in the supplementary information of Ref. [78]
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ρ2D,↓ (x, z, T, τ) = ρ
(+)
SOC

(
x+ vRτ, z +

d

2
, T, τ

)
b2

(+)

(mx
~τ

+ kR

)

+ ρ
(−)
SOC

(
x+ vRτ, z +

d

2
, T, τ

)
b2

(−)

(mx
~τ

+ kR

)
. (8.16)

Here m is the atomic mass, kR is the single photon recoil momentum, and vR = kR/m

is the recoil velocity. The density distribution in the upper and lower branches of the

dressed state with quasi-momentum qx is given by

ρ
(±)
SOC (x′, z′, T, τ) = C g2





exp



µ− m (x′2 + z′2)

2τ 2
∓
√
m2v2

Rx
′2

τ 2
+

~2Ω2

4
kBT







, (8.17)

and the coefficients are given by

a2
(±) (qx) =

Ω

8

√(
~kRqx
m

)2

+
Ω2

4

Ω

√(

~kRqx
m

)2

+
Ω2

4
∓ ~kRqx

m



, (8.18)

b2
(±) (qx) =

√(
~kRqx
m

)2

+
Ω2

4
∓ ~kRqx

m

2

√(
~kRqx
m

)2

+
Ω2

4

. (8.19)

Figure 8.7(a) shows my measurements of the Bragg counts NBragg in the finite-

temperature phase diagram. Each data mesh element is an average of at least 4 data

points. Figure 8.7(b) shows slices of the Bragg counts as a function of Ω for various

temperature T . For the data presented in Fig. 8.7, the temperature T was varied

with a step size of 60 nK and the standard error of estimate from fitting was 30 nK.
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Figure 8.7. Stripe-ordered phase in (Ω, T ) parameter space. (a)
Phase diagram of observed scattered Bragg signal in the parameter
space of coupling strength and temperature (Ω, T ). (b) Bragg counts as
a function of Ω for various temperature T of the system. (c) Estimated
phase boundaries for the BEC transition temperature TC (shaded gray
area), and the critical coupling strength Ωc (shaded blue area) below
which I observed an enhancement in the Bragg signal associated with
the stripe-ordered phase.

The BEC transition temperature TC was determined from the data when a condensed

fraction of the Bose gas started to appear, as shown by the shaded gray area in Fig.

8.7(c). Despite the phase diagram measurements had a low resolution, I estimated the

phase boundary of the stripe phase as the critical coupling strength Ωc below which

I observed a monotonic increase in the Bragg signal as Ω became smaller, shown by
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8.3. Observations of stripe-ordered phase in the full phase diagram

the shaded blue area in Fig. 8.7(c). In this data, I observed the critical coupling

strength Ωc to be decreasing for higher temperature T of the SOC system. This is in

agreement with previous experimental and theoretical work [28, 78, 178].

In addition, I also observed an increase in the Bragg signal in a small transient

region in the (Ω, T ) phase space beyond Ω > 0.19ER (see Fig. 8.7(c)). I attributed this

increase in the Bragg signal as being due to the metastable nature of the phase-mixed

Bose gases, where thermal fluctuations at higher Raman coupling had a significant

role. Meanwhile, in the normal phase above the BEC transition temperature TC ,

I observed a small increase in the Bragg signal for higher coupling strength Ω. I

associated this increase to the substantially larger spatial correlations of the atomic

wavefunction. It might be of particular interest to study the observed Bragg signal

associated with the density correlations from quantum and thermal fluctuations in

the phase space of (Ω, T ). Nevertheless, careful calibrations of the Bragg signal are

important since, as I have noted previously, the thermal clouds in general have more

atoms and larger size compared to those of the BECs.
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CHAPTER 9

Conclusions and Outlook

9.1. Conclusions

The central thesis of my Ph.D. research work was to observe the stripe-ordered

phase in a spin-orbit coupled (SOC) Bose-Einstein condensate (BEC). A signature

of the stripe phase is the existence of density modulation. I prepared atoms in

metastable states to enhance the stripe phase region and probed the density modula-

tion using optical Bragg scattering. I was able to explore the full phase diagram of the

stripe phase, and my measurements of the phase boundaries were in good agreement

with theoretical predictions and previous experimental results [69, 78, 98, 103].

In Chapter 4, I demonstrated a systematic method to bring ultracold atoms into

optimal focus [140]. This technique relied on the behavior of the power spectral

density of the optical depth to eliminate defocus-induced artifacts. The density fluc-

tuations in BECs, are mapped from the phase fluctuations after time-of-flight release.

They act like random scatterers to create diffraction pattern which change as a func-

tion of distance from the optimal focus. Using this approach, I was able to pinpoint

the optimal focus of the BEC to within 2µm for a 150µm thick BEC cloud.

In Chapter 5, I showed the techniques I used to manipulated ultracold atoms with

electromagnetic waves, ranging from radio frequency (a few MHz’s) to the optical
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9.1. Conclusions

band (hundreds of THz). I explained the preparation methods for different mixtures

of the spinor F = 1 Bose gases and how I used microwave-assisted partial-transfer

absorption imaging to provide feedback for our DC magnetic field control. Further,

I exploited the vectorial light shift of the ac-Stark effect and used it to demonstrate

various engineered Hamiltonians [53]. This enabled me to realize spin-orbit coupling

using a two-photon transition Raman coupling scheme. With a few hardware changes,

I also created spin-dependent lattice [110] and used it to calibrate the optical Bragg

signal in later experiments.

In Chapter 6, I presented our measurements of the phase diagram of a spin-1 BEC,

containing a ferromagnetic phase and an unmagnetized phase [22]. We characterized

the first- and second-order phase transition from the ferromagnetic phase to the polar

spinor BEC and spin-helix BEC and our results were in agreement with theory. Our

observation of controlled quench dynamics through a first-order phase transition opens

the door for realizing Kibble-Zurek physics [84, 182] in this system.

In Chapter 7, I discussed my study of the optical Bragg scattering from ultra-

cold atom systems. I gave detailed explanations of the various contributions to the

scattered Bragg signal, which capture the non-interfering and interfering parts of the

atomic distribution [45]. I demonstrated a new experimental technique to character-

ize the scattered Bragg signal, focusing on its geometrical properties [156]. Optical

Bragg scattering from one-dimensional lattice was displayed as a function of lattice

depth and I investigated the atomic Talbot revival [120, 150] in this system. Finally,

I studied many physical phenomena using the Bragg scattering technique, including:
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• the Bragg counts show a peak near the BEC transition temperature TC at

low lattice depth,

• there is no atomic Talbot revival for temperature above TC , consistent with

the thermal clouds having no phase coherence on the length scale of the

lattice periodicity,

• for a near-resonant Bragg probe, the scattered Bragg signal was observed

from the spin-helix BEC in the SOC dressed states prepared both diabatically

and adiabatically,

• a Rabi pulse of the Raman coupling was applied to create an SOC system

and the following Bragg scattering showed similar oscillating behavior with

twice the Rabi frequency, which confirmed the presence of precessing spin

polarization in the SOC system.

These findings open up new prospects to study the behavior of quantum degenerate

gases which possess spatial density modulations.

Finally, I studied the long-sought stripe-ordered phase in SOC condensates. As

described in Chapter 8, I explored the parameter space of Raman coupling strength

Ω and detuning δ between the two coupled spin components. My observation of the

Bragg signal showed a double-peak structure with a dip in the center as a function of

detuning δ within the stripe phase region. The δ-width of the stripe phase decreases

as a function of Ω and it eventually reaches an asymptote above the critical transition

coupling strength ~Ωc ' 0.19ER. I examined the metastability condition of the stripe
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phase and confirmed previous work [69, 98, 103]. The stripe phase is claimed to have a

crystalline order with long-range phase order and exhibits roton-maxon like structure

analogous to supersolidity [97, 109]. Our measurements of atomic Talbot revival in

the stripe phase do indeed show the expected coherence behavior. Last but not least,

I studied the finite-temperature T phase diagram of the stripe-ordered phase. My

results in (Ω, T ) parameter space based on the scattered Bragg signal support recent

theoretical work [28, 178] and they are in agreement with previous measurements [78].

9.2. Outlook

In the process of conducting this research, I would like to mention two things

which can cause unnecessary problems. First, the definition of frequency and angular

frequency are often overlooked by atomic physicists where energy is often expressed

in terms of “frequency” (either the energy being divided by h or ~). I often found this

to be an unnecessary source of errors, which were time-consuming to hunt down. In

terms of technical issue in the laboratory, I found that the back-reflectance from the

vacuum glass cell is very annoying. The glass cell acted as a plane-parallel plate which

introduced coma (or comatic) aberration for an off-axis beam propagating through

it. It is often desired to send laser beams to the atoms in a normal direction since

spherical aberration by glass plate can be conveniently corrected with lenses, and

it eases optical alignment. However, undesired back-reflectance from the glass cell,

especially for near-resonant beams, causes an optical lattice potential from a normal
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angle beam. It is thus important to have a well-designed and well-coated glass cell to

reduce the back-reflectance as much as possible.

Regarding future outlook, optical Bragg scattering has proven to be useful to in-

vestigate density modulation present in quantum degenerate gases, particularly the

spatial correlations of the atomic collective wavefunction. The temperature depen-

dence shows a peculiar behavior near the threshold transition temperature of BEC

for low lattice depth. One question is whether it is possible to observe quantum sta-

tistical effects from the many-body atomic correlations as the atoms condense into

the degenerate energy level [122].

In the limit of weak elastic scattering, the optical Bragg probe maps the spatial

atomic distribution into Fourier space as the static structure factor. Hypothetically, if

we can scan the incoming Bragg angle and detect the scattered signal in all directions,

we could determine the atomic density in real space (extending the technique used in

X-ray crystallography to atomic physics).

In addition to the work presented in this dissertation, several other important

projects were going on in our laboratory. One project involved the production of

one-dimensional (1D) Bose gases using a tightly focused Laguerre-Gauss beam. The

realization of 1D Bose gases opens up new possibilities to study more elaborate engi-

neered many-body problems, such as 1D spin-orbit coupling in 1D Bose gases, using

optical Bragg scattering to study the 1D density-density correlations, and investigat-

ing the stripe phase in a (quasi) 1D system. In (quasi) 1D condensates, where the spin

healing length is larger than the transverse size of the clouds, magnetic domains only
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from in the longitudinal axis of the condensate. This should be readily observable

in absorption imaging. Another interesting topic is the formation of stripe-ordered

phase and its time-evolution in (quasi) 1D SOC condensates. One could use both

optical Bragg scattering and absorption imaging techniques to obtain information on

the density modulation and magnetic domains of such system simultaneously.
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APPENDIX A

Matrix elements of the hyperfine Hamiltonian in the presence

of a magnetic field

In cold atom experiments, it is common to modify the atomic structure with an

external dc bias field. Here I discuss the matrix elements of the hyperfine Hamiltonian

operator, where diagonalization of the matrix operator gives eigenenergies of the

atomic structure.

The atomic interaction with an external static magnetic field, where the bias field

quantization axis is chosen along ez, is given by [163]

HB =
µB
~

(gSSz + gLLz + gIIz)Bz, (A.1)

where gS, gL, and gI are respectively the electon spin, electron orbital, and nuclear

g−factors. In alkali atoms, the energy shift due to the magnetic field is commonly

small compared to the fine-structure splitting. This allows me to describe the in-

teraction Hamiltonian with the quantum number J of the electron’s total angular

momentum, namely

HB =
µB
~

(gJJz + gIIz)Bz, (A.2)

where the fine structure Lande g-factor is given by

gJ = gL
J (J + 1)− S (S + 1) + L (L+ 1)

2J (J + 1)
+ gS

J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)
.

(A.3)
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Table A.1. Magnetic interaction parameters for the D line transitions
of 87Rb.

Physical constants Values

Magnetic dipole constant, Ahf 5S1/2 h · 3417.34130545215(5) MHz
5P1/2 h · 407.25(63) MHz
5P3/2 h · 84.7185(20)MHz

Electric quadrupole constant, Bhf 5P3/2 h · 12.4965 (37)MHz
Fine structure Lande g-factor, gJ 5S1/2 2.00233113(20)

5P1/2 0.666

5P3/2 1.3362 (13)

Nuclear g-factor, gI −0.0009951414(10)

Electron spin g-factor, gS 2.0023193043622 (15)

Electron orbital g-factor, gL 0.99999369
87Rb nuclear spin, I 3/2
Bohr magneton, µB h · 1.399624604 (35)MHz/G

The hyperfine Hamiltonian in the presence of an external magnetic field becomes

Htot = Ahf
I · J
~2

+Bhf

3
~4 (I · J)2 + 3

2~2 I · J− I (I + 1) J (J + 1)

2I (2I − 1) J (2J − 1)
+
µB
~

(gJmJ + gImI)Bz.

(A.4)

Experimental values of Ahf , Bhf , and the g-factors for 87Rb atoms are given in Table

A.1.

In order to solve the eigenenergies of the Hamiltonian in Eq. A.4, it is natural

to choose the basis states as |J,mJ , I,mI〉 where the quantum numbers describe the

atomic total angular momentum consisting of nuclear spin and electron orbital angular

momentum. To simplify the notation in the remaining of this appendix, the basis

states |J,mJ , I,mI〉 are represented by |mJ ,mI〉. The Hamiltonian operator becomes

a square matrix with dimension (2I + 1) (2J + 1). The expressions for the matrix

elements can be calculated using properties of the angular momentum operators. I
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recall the angular momentum ladder operators are defined by

J+ = Jx + iJy and J− = Jx − iJy, (A.5)

which operations on a given angular momentum state |J,mJ〉 satisfy the relations

J+ |J,mJ〉 = ~
√

(J −mJ) (J +mJ + 1) |J,mJ + 1〉 , (A.6)

J− |J,mJ〉 = ~
√

(J +mJ) (J −mJ + 1) |J,mJ − 1〉 , (A.7)

for bounded values of −J ≤ mJ ≤ J .

With the definition of the ladder operators, I can express the magnetic dipole

term as

M :=
I · J
~2

=
1

~2
IzJz +

1

2~2
(I+J− + I−J+) . (A.8)

The relevant matrix elements for the first term on the right-hand side of Eq. A.4 are

consequently given by:

〈mJ ,mI |M|mJ ,mI〉 = mJmI , (A.9)

〈mJ ,mI |M|mJ + 1,mI − 1〉 =
1

2

√
(J −mJ) (J +mJ + 1) (I +mI) (I −mI + 1),

(A.10)

〈mJ ,mI |M|mJ − 1,mI + 1〉 =
1

2

√
(J +mJ) (J −mJ + 1) (I −mI) (I +mI + 1).

(A.11)

In a similar manner, I express the electric quadrupole term in Eq. A.4 as [143]

Q =
3

~4
(I · J)2 +

3

2~2
I · J− I (I + 1) J (J + 1) , (A.12)
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and obtain the following relevant matrix elements (non-zero for I 6= 1/2 or J 6= 1/2):

〈mJ ,mI |Q|mJ ,mI〉 =
1

2

[
3m2

I − I (I + 1)
] [

3m2
J − J (J + 1)

]
, (A.13)

〈mJ ,mI |Q|mJ − 1,mI + 1〉 =
3

4
(2mJ − 1) (2mI + 1)

√
(J +mJ) (J −mJ + 1) (I −mI) (I +mI + 1), (A.14)

〈mJ ,mI |Q|mJ + 1,mI − 1〉 =
3

4
(2mJ + 1) (2mI − 1)

√
(J −mJ) (J +mJ + 1) (I +mI) (I −mI + 1), (A.15)

〈mJ ,mI |Q|mJ − 2,mI + 2〉 =
3

4

√
(J +mJ) (J +mJ − 1) (J −mJ + 1) (J −mJ + 2)

√
(I −mI) (I −mI − 1) (I +mI + 1) (I +mI + 2), (A.16)

〈mJ ,mI |Q|mJ + 2,mI − 2〉 =
3

4

√
(J −mJ) (J −mJ − 1) (J +mJ + 1) (J +mJ + 2)

√
(I +mI) (I +mI − 1) (I −mI + 1) (I −mI + 2). (A.17)

A special case exists for J = 1/2 where the Hamiltonian in Eq. A.4 can be solved

analytically. The eigenenergies in this case are given by

E1/2,±1/2,I,mI
= − ∆Ehf

2 (2I + 1)
+

∆EhfgI
(
mI ± 1

2

)
x

(gJ − gI)
± ∆Ehf

2

√

1 +
4
(
mI ± 1

2

)
x

2I + 1
+ x2,

(A.18)

where ∆Ehf = Ahf (J + 1/2) and x = (gJ − gI)µBBz/∆Ehf . The solution in Eq. A.18

is also known as the Breit-Rabi formula which is particularly useful to describe the

hyperfine splitting of electronic structures in alkali atoms with J = 1/2 (i.e. the 5S1/2

electronic ground state and 5P1/2 excited state in the D1 line of 87Rb atoms).
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APPENDIX B

Gross-Pitaevskii equations for F = 1 spinor Bose-Einstein

condensates

I consider F = 1 spinor Bose-Einstein condensates (BECs) within s-wave scatter-

ing limit between the two-body collisions. In the following treatment, I assume the

atomic interactions do not change the rotational symmetry of the system, implying a

conservation of total angular momentum of the colliding pair of atoms. In the s−wave
channel, the relative center-of-mass orbital angular momentum of the two colliding

atoms (labelled by index i and j) is zero, and the total angular momentum of the

incoming state is simply the sum of the two atomic hyperfine spins Fij = Fi + Fj.

Exchange symmetry of the colliding two identical bosons then restricts the quantum

number Fij to be an even integer, or it can only take the values Fij ∈ {0, 2, . . . , 2F}
[159].

Within these assumptions, the two-body interaction is only applicable when the

outgoing state has the same total angular momentum with the incoming state, and

hence the collisional interaction can be described by the potential operator

V̂int =
1

2

∑

i,j

δ3(ri − rj)
∑

Fij

4π~2aFij

m
P̂Fij

, (B.1)

where the first summation term is taken over all colliding particle pairs; aFij
are the

scattering lengths for collisions between the pair (i, j) with total spin Fij; and P̂Fij
are

the projection operators which project the two-atom wave function into the subspace

with total angular momentum Fij. To eliminate the summation over the possible

collisional channels, I consider the outer product of identity operators for the two
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spin-1 particles

Îi ⊗ Îj =
∑

Fij=0,2

P̂Fij
= P̂0 + P̂2, (B.2)

and the composition of the F = 1 spin operators

Fi · Fj

~2
=

F2
ij − F2

i − F2
j

2~2
=
∑

Fij=0,2

[
Fij
2

(Fij + 1)− F (F + 1)

]
P̂Fij

= P̂2 − 2P̂0.

(B.3)

This allows me to rewrite the interaction potential as

V̂int =
1

2

∑

i,j

δ3(ri − rj)

{
c0Îi ⊗ Îj + c2

Fi · Fj

~2

}
, (B.4)

where the interactions are separated into the spin-independent part c0Îi⊗ Îj and spin-

dependent part c2Fi · Fj/~2. The coefficients c0 and c2 are related to the scattering

lengths a0 and a2 (for collision channels with total spin 0 and 2) via the equations

c0 =
4π~2

m

a0 + 2a2

3
, c2 =

4π~2

m

a2 − a0

3
. (B.5)

In the formalism of second quantization, the many-body Hamiltonian within the

s−wave interactions for F = 1 spinor BEC becomes

Ĥ =

ˆ
d3r

{
Ψ̂†α

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂α +

1

2
c0Ψ̂†αΨ̂†α′Ψ̂α′Ψ̂α

+
1

2
c2

(
Ψ̂†αFαβΨ̂β

)
·
(

Ψ̂†α′Fα′β′Ψ̂β′

)}
, (B.6)

where Vext(r) is an external scalar potential, the indices α, β, α′, β′ correspond to

the mF = −1, 0,+1 components of the F = 1 manifold, and repeated indices are

implicitly summed over. In Eq. B.6, I have simplified our notations by omitting the
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position and time dependence of the field operators Ψ̂α(r, t) in the writing.1 The

bosonic field operators satisfy the commutation relations

[
Ψ̂α(r, t), Ψ̂†β(r′, t)

]
= δαβδ(r− r′), (B.7)

[
Ψ̂α(r, t), Ψ̂β(r′, t)

]
=

[
Ψ̂†α(r, t), Ψ̂†β(r′, t)

]
= 0, (B.8)

and the spin-1 matrix operators are given by

Fx =
~√
2




0 1 0

1 0 1

0 1 0



, Fy =

~√
2




0 −i 0

i 0 −i

0 i 0



, Fz = ~




1 0 0

0 0 0

0 0 −1



. (B.9)

The explicit form of the total Hamiltonian in second-quantized form becomes

Ĥ =

ˆ
d3r

{(
~2

2m
∇Ψ̂†α · ∇Ψ̂α + V (r)Ψ̂†αΨ̂α

)

+

(
c0 + c2

2

)[
Ψ̂†1Ψ̂†1Ψ̂1Ψ̂1 + Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1 + 2Ψ̂†0Ψ̂0

(
Ψ̂†1Ψ̂1 + Ψ̂†−1Ψ̂−1

)]

+
c0

2
Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0 + (c0 − c2) Ψ̂†1Ψ̂†−1Ψ̂−1Ψ̂1 + c2

[
Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0 + c.c.

]
. (B.10)

In the mean-field approximation, I then replace the field operators by the complex

wave functions to describe the three-component spinor condensates:

Ψ̂(r, t) =




Ψ̂1(r, t)

Ψ̂0(r, t)

Ψ̂−1(r, t)



→ Ψ(r, t) =




ψ1(r, t)

ψ0(r, t)

ψ−1(r, t)



, (B.11)

1For a single (spin) component of interacting particles in the s−wave approximation, the many-body
Hamiltonian becomes Ĥ =

´
d3r

[
Ψ̂† {−~2∇2/2m+ Vext(r)

}
Ψ̂ + 1

2

´
d3r′Ψ̂†Ψ̂′†gδ3(r′ − r)Ψ̂′Ψ̂

]

since a = a0 = a2 and g = 4π~2a/m.
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with the normalization to the total number of atoms N is given by

ˆ
d3r Ψ †(r, t) · Ψ(r, t) = N. (B.12)

I obtain the Gross-Pitaevskii mean-field energy for F = 1 spinor BEC as

EGP =

ˆ
d3r ε =

ˆ
d3r

{(
~2

2m
∇ψ∗α · ∇ψα + V (r) |ψα|2

)

+

(
c0 + c2

2

)[
|ψ1|4 + |ψ−1|4

]
+
c0

2
|ψ0|4

+ (c0 − c2) |ψ1|2 |ψ−1|2 + (c0 + c2) |ψ0|2
[
|ψ1|2 + |ψ−1|2

]

+c2

[
ψ∗1ψ

∗
−1ψ

2
0 + c.c.

]}
, (B.13)

where ε is defined as the energy density functional . The right-hand side terms on the

first line of Eq. B.13 describe the single-particle physics of the system; the terms on

the second line describe the self-interaction or intra-state collisions between particles

of the same spin; the remaining terms describe the spin-exchange mechanism with

the third line representing the inter-state collisions between particles with different

spins, and the last term on the fourth line representing coherent spin mixing which

is responsible for the relaxation to the spinor ground state energy.

Next, I derive the time-evolution of the wave function Ψ(r, t) from the principle

of least action2. I define the action of the system as [132]

S [Ψ(r, t)] =

ˆ
dt

ˆ
d3r L

(
ψα, ψ

∗
α, ψ̇α, ψ̇

∗
α,∇ψα,∇ψ∗α

)
, (B.14)

and the Lagrangian is given by

L =
i~
2

[
ψ∗αψ̇α − ψ̇∗αψα

]
− ε. (B.15)

2Other derivation method is to use the Heisenberg representation i~∂Ψ̂(r, t)/∂t =
[
Ψ̂(r, t), Ĥ

]
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Using the variational principle method to find the extremum value of S, I obtain the

equation of motion:

− ∂

∂t

∂L
∂ψ̇∗α

+
∂L
∂ψ∗α

−∇ ·
(

∂L
∂∇ψ∗α

)
= 0, (B.16)

which can be expressed in terms of ε as

i~
∂ψα
∂t

=
δε

δψ∗α
=

∂ε

∂ψ∗α
−∇ ·

(
∂ε

∂∇ψ∗α

)
. (B.17)

Finally, I arrive at the time-dependent Gross-Pitaevskii equations (GPEs) describing

the F = 1 spinor condensate wave functions:

i~∂tψ1 =

{
− ~2

2m
∇2 + Vext + (c0 + c2)

[
|ψ1|2 + |ψ0|2

]
+ (c0 − c2) |ψ−1|2

}
ψ1

+c2ψ
∗
−1ψ

2
0, (B.18)

i~∂tψ0 =

{
− ~2

2m
∇2 + Vext + (c0 + c2)

[
|ψ1|2 + |ψ−1|2

]
+ c0 |ψ0|2

}
ψ0

+2c2ψ
∗
0ψ1ψ−1, (B.19)

i~∂tψ−1 =

{
− ~2

2m
∇2 + Vext + (c0 + c2)

[
|ψ−1|2 + |ψ0|2

]
+ (c0 − c2) |ψ1|2

}
ψ−1

+c2ψ
∗
1ψ

2
0. (B.20)

Note special cases exist in the dynamics of the spinor condensates if I only consider two

spin states. As an example, if there is no initial atoms in mF = 0 or ψ0 (r, 0) = 0, and

there is no spin coupling from the single-particle Hamiltonian and external potential,

the GPEs reduce to

i~∂tψ1 =

{
− ~2

2m
∇2 + Vext + (c0 + c2) |ψ1|2 + (c0 − c2) |ψ−1|2

}
ψ1, (B.21)

i~∂tψ−1 =

{
− ~2

2m
∇2 + Vext + (c0 + c2) |ψ−1|2 + (c0 − c2) |ψ1|2

}
ψ−1. (B.22)
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Despite their complexities, the set of coupled GPEs in Eqs. B.18-B.20 can be

further simplified and understood by drawing analogies to other physical systems. In

a specific condition where the available spin interaction energy |c2|n is less than that

required to create spatial spin structures in the condensates, or the spin healing length

scale ξs = h/
√

2m |c2|n is larger than the size of the condensate, I can separate the

spatial dynamics and the internal spinor dynamics. This is known as the single-mode

approximation (SMA) [26, 27]. Separation of variables for the spinor wave functions

lead to

Ψ(r, t) =




ψ1(r, t)

ψ0(r, t)

ψ−1(r, t)




=
√
Nφ (r) e−iµt/~




χ1(t)

χ0(t)

χ−1(t)



, (B.23)

where N is the total number of atoms, φ (r) is the common spatial mode function,

and χα (t) are the position-independent spinor wavefunctions with the normaliza-

tion
∑

α |χα (t)|2 = 1. The spatial mode function φ (r) describes the normalized

atomic density distribution |φ (r)|2 = n (r) and it satisfies the normalization con-

dition
´

d3r n (r) = 1. The chemical potential µ is determined by the stationary

spin-independent GPE for the spatial mode

µφ (r) =

[
− ~2

2m
∇2 + Vext + c0n (r)

]
φ (r) . (B.24)

In the SMA, the coupled spinor equations become

i~∂tχ1 = E1χ1 + c
[
(ρ1 + ρ0 − ρ−1)χ1 + χ2

0χ
∗
−1

]
, (B.25)

i~∂tχ0 = E0χ0 + c [(ρ1 + ρ−1)χ0 + 2χ1χ−1χ
∗
0] , (B.26)

i~∂tχ−1 = E−1χ−1 + c
[
(ρ−1 + ρ0 − ρ1)χ−1 + χ2

0χ
∗
1

]
, (B.27)
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where c = c2N
´

d3r n (r)2 is the integrated spin mean-field coefficient and ρα = |χα|2

is the spin fractional population. In above, I have included energy shifts from the

Zeeman hyperfine structure, where I parameterize the linear and quadratic Zeeman

effects respectively as η = (E−1 − E1) /2 and δ = (E−1 + E1 − 2E0) /2. Besides the

total number of atoms
∑

α ρα = 1 is conserved, the equations of motion within the

SMA also guarantee the magnetization M = ρ1 − ρ−1 to stay conserved.

In above, I have discussed the dynamics of spinor Bose condensates in the magnetic

hyperfine structure where atomic interactions are governed by the two-body collisions.

This treatment can be extended to other engineered physical systems, i.e. the so-

called “spin” states are realized in the optical lattice or double-well potential, and the

interactions can be tuned accordingly via laser-assisted tunneling [96].
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APPENDIX C

Machine drawing of camera mounts

In Bragg signal detection, I used an iXon Ultra 888 electron-multiplying charge-

coupled device (EMCCD) camera from Andor Technology. I designed custom-made

plates for mounting purpose and extra drift stability, which inspired by Fig. 3 in Ref.

[20]. The camera was mounted on two translation stages, as displayed in Fig. C.1.

Machine drawings of the mounting plates are shown in Figs. C.2-C.3.

Figure C.1. Andor EMCCD camera (iXon Ultra 888) mounted on
translational stages with custom-made plates.
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APPENDIX D

Floquet theory for periodic time-dependent Hamiltonian

In this appendix, I discuss the Floquet formalism to treat a time-periodic Hamil-

tonian [32, 60]. I am interested in a Hamiltonian with time periodicity T satisfying

the relation

Ĥ(r, t) = Ĥ(r, t+ T ), (D.1)

where the driving frequency of the system is defined by ω = 2π/T . Similar to the

application of Bloch’s theorem in a spatially periodic Hamiltonian, the application of

Floquet theory to the time-dependent Schrödinger equation

Ĥ(r, t)ψ(r, t) = i~
∂

∂t
ψ(r, t), (D.2)

gives solutions of the form

ψα(r, t) = exp (−iεαt/~)φα(r, t), where φα(r, t+ T ) = φα(r, t). (D.3)

This leads to the concept of quasi-energy εα which is a real parameter and is unique

within energy band ~ω (identical to the Brillouin zone in the Bloch’s theorem).

The eigenvalues of the quasi-energy is determined by the Hermitian operator Ĥ (t)

Ĥ (r, t)φα(r, t) =

[
Ĥ(r, t)− i~

∂

∂t

]
φα(r, t) = εαφα(r, t), (D.4)
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where the choice of the eigenvalues and eigenvectors are non-unique. Specifically, the

Floquet modes

φα′(r, t) = exp (imωt)φα(r, t), m ∈ integers, (D.5)

are also solutions to the eigenvalue problem in Eq. D.4 with shifted quasi-energy

εα′ = εα +m~ω. (D.6)

Consequently, I obtain a whole class of solutions indexed by α′ = (α,m) with m ∈ Z,

and the eigenvalues {εα} can be mapped into the first Brillouin zone defined by

−~ω/2 ≤ εα < ~ω/2.

It is then convenient to extend the initial Hilbert space R of square integrable

functions to the composite Hilbert space R ⊗ T , where I include the Fourier space

T of the time-periodic functions with period T describing the “band” index m. In the

initial Hilbert space R, the inner product of two square integrable functions f (r) and

g (r) is defined by

〈f |g〉 :=

∞̂

−∞

d3r f ∗ (r) g (r) , (D.7)

which form a complete set of orthonormal basis if the functions ϕα (r) and ϕβ (r)

satisfy the relation

〈ϕβ (r) |ϕα (r)〉 := δα,β. (D.8)

Meanwhile, in the Fourier space T , the temporal part is spanned by the orthonormal

set of Fourier vectors 〈t|m〉 = exp (imωt) which satisfy the inner product relation:

(n,m) =
1

T

T̂

0

dt exp [i (m− n)ωt] = δm,n. (D.9)
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In the extended Hilbert space, the eigenvectors of the operator Ĥ (t) with indices

α′ = (α,m) and β′ = (β, n) obey the orthonormality condition

〈
〈φα′|φβ′〉R

〉
T :=

1

T

T̂

0

dt

∞̂

−∞

d3r φ∗α′ (r, t) φ
∗
β′ (r, t) = δα′,β′ = δα,βδm,n, (D.10)

and fulfill the completeness relation

∑

α

∑

m

φ∗αm (r, t)φαn (r′, t′) = δ (r− r′) δ (t− t′) . (D.11)

Thus, the Floquet modes are mutually orthogonal for each instant of time and they

form a complete orthonormal set.

I now consider a total Hamiltonian given by the form1

Ĥ (r, t) = Ĥ0 (r) + V̂ (r, t) , (D.12)

where V̂ (r, t) = V̂ (r, t+ T ) is the periodic perturbation with monochromatic fre-

quency ω = 2π/T and the unperturbed Hamiltonian has a complete orthonormal set

of eigenfunctions:

Ĥ0 (r) |ϕα (r)〉 = E0
α |ϕα (r)〉 , (D.13)

with orthonormal relation satisfying Eq. D.8. I then expand the wavefunction as

ψα(r, t) = exp (−iεαt/~)φα(r, t) = exp (−iεαt/~)
∞∑

n=−∞

∑

α

cnα |ϕα (r)〉 e−inωt, (D.14)

where the expansion coefficients cnα are time-independent. Here I have two indices on

the cnα−coefficients:

(1) α from the initial Hamiltonian Ĥ0 (r) which sets the Hilbert space R, and

1Without losing any generality, I define our time t = 0 when the overall Hamiltonian is described
by Ĥ0 (r) and its eigenvectors set the completeness relation in the initial Hilbert space R.
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(2) n from the Fourier expansion of the time-periodic perturbation V̂ (r, t).

To solve for the quasi-energies of the periodic Hamiltonian, I use the matrix (linear

algebra) approach. Insertion of the expanded wavefunction in Eq. D.14 into the

Schrödinger equation in Eq. D.2 gives

∞∑

n=−∞

∑

α

[
Ĥ(t)− εα − n~ω

]
cnα |ϕα (r)〉 e−inωt = 0. (D.15)

Next, I multiply Eq. D.15 by 〈ϕβ (r)| eimωt and integrate over (1/T )
´ T

0
dt to obtain:

∞∑

n=−∞

∑

α


〈ϕβ|

1

T

T̂

0

dt Ĥ(t)ei(m−n)ωt |ϕα〉 − (εα + n~ω) δmnδαβ


 cnα = 0, (D.16)

∞∑

n=−∞

∑

α


(E0

α − n~ω
)
δαβδmn + 〈ϕβ|

1

T

T̂

0

dt Ŵ (t)ei(m−n)ωt |ϕα〉


 cnα = εβc

m
β . (D.17)

The above form in Eq. D.17 gives the explicit matrix elements for the eigenvalue

problem to find the quasi-energies.

For a perturbation with harmonic time dependence, i.e. Ŵ (t) = Ŵ0 cos (ωt), the

only surviving indices in the integral term of Eq. D.17 are (m− n) = ±1. The

eigenvalue problem in Eq. D.17 accordingly can be written in the matrix form as:

...

m = −1

m = 0

m = 1

...




. . .
... . .

.

E0 + ~ωI W 0

· · · W E0 W · · ·

0 W E0 − ~ωI

. .
. ...

. . .




· · · n = −1 n = 0 n = 1 · · ·

Φα = εαΦα, (D.18)
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where I have defined the eigenvectors as Φα = (. . . , c−2
α , c−1

α , c0
α, c

1
α . . .)

T . The diagonal

matrix E0 represents the eigenvalues of the unperturbed Hamiltonian and W repre-

sents the off-diagonal coupling with its matrix elements is given by 〈ϕβ| Ŵ0 |ϕα〉 /2.
Finally, I give an example of Floquet formalism to calculate the quasi-energies of

a time-periodic Hamiltonian. Here I consider our engineered Hamiltonian to realize a

spin-1 spin-orbit coupling system (see Subsection 5.4.3). The Hamiltonian operator

of our system after rotating-wave approximation consists of the terms

Ĥ0 → E0 = ~2




(q − 2kR)2

2m
+
εquad

~
0 0

0
q2

2m
0

0 0
(q + 2kR)2

2m
+
εquad

~



, (D.19)

Ŵ (t)→W =
1√
2




0 Ω1 0

Ω1 0 Ω1

0 Ω1 0



, (D.20)

where m is the atomic mass, kR is the single-photon recoil momentum, q is the quasi-

momentum space, εquad is the Zeeman quadratic shift, and Ω1 is the Raman coupling

strength. Substitution of Eqs. D.19-D.20 into Eq. D.18 gives me the explicit form of

the eigenvalue problem to be solved. I then solve the quasi-energies of the spin-orbit-

coupled (SOC) Hamiltonian ε (q) as a function of q.

Figure D.1 displays the quasi-energy dispersion relation ε(q) of the spin-1 SOC

Bose gases, where I set the energy scale in the units of ER = ~k2
R/2m. The frequency

of the time-periodic perturbation is equal to the quadratic Zeeman shift, i.e ~ω =

12.7ER, in our system. Here I consider the case where the coupling strength is

Ω1 = ER. I observe the band diagram to be repeating itself in each Brillouin zone

with a period of ~ω, as bounded by the shaded region in Fig. D.1.
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Figure D.1. Quasi-energy dispersion relation ε(q) of spin-1 SOC
Hamiltonian with coupling strength Ω1 = ER and periodic driving
~ω = 12.7ER.
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