After a very productive two month visit to the RbL lab at JQI, Russell Anderson of Monash University has returned home. Thanks for a great time Russ!

After a very productive two month visit to the RbL lab at JQI, Russell Anderson of Monash University has returned home. Thanks for a great time Russ!

We describe a Fourier transform spectroscopy technique for directly measuring band structures, and apply it to a spin-1 spin–orbit coupled Bose–Einstein condensate. In our technique, we suddenly change the Hamiltonian of the system by adding a spin–orbit coupling interaction and…

We observed a new mechanism for vortex nucleation in Bose–Einstein condensates (BECs) subject to synthetic magnetic fields. We made use of a strong synthetic magnetic field initially localized between a pair of merging BECs to rapidly create vortices in the…

The UMD team got together to celebrate our recent paper “Magnetic phases of spin-1 spin–orbit-coupled Bose gases;” for some reason we went to Town Hall a long-time College Park dive bar. Times were good! Ana, Erin and Dimi were in…

We theoretically explore a Rashba spin–orbit coupling scheme which operates entirely in the absolute ground state manifold of an alkali atom, thereby minimizing all inelastic processes. An energy gap between ground eigenstates of the proposed coupling can be continuously opened…

Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase transitions…

Dan defended this thesis titled “Engineered potentials in ultracold Bose-Einstein condensates” today. Way to go!

We explore the time evolution of two-component Bose-Einstein condensates (BECs), quasi one dimensional with respect to their spinor dynamics, following a quench from one component BECs with a U(1) order parameter into two-component condensates with a U(1)xZ2 order parameter. In…

Resonant absorption imaging is a common technique for detecting the two-dimensional column density of ultracold atom systems. In many cases, the system’s thickness along the imaging direction greatly exceeds the imaging system’s depth of field, making the identification of the…