Author: Ian Spielman

Brownian motion of solitons in a Bose–Einstein condensate

Solitons, spatially localized, mobile excitations resulting from an interplay between nonlinearity and dispersion, are ubiquitous in physical systems from water channels and oceans to optical fibers and Bose–Einstein condensates (BECs). From our pulse throbbing at our wrists to rapidly moving

Semisynthetic zigzag optical lattice for ultracold bosons

We propose a cold-atom realization of a zigzag ladder. The two legs of the ladder correspond to a “synthetic” dimension given by two internal (spin) states of the atoms, so that tunneling between them can be realized as a laser-assisted

Real-space mean-field theory of a spin-1 Bose gas in synthetic dimensions

The internal degrees of freedom provided by ultracold atoms provide a route for realizing higher dimensional physics in systems with limited spatial dimensions. Nonspatial degrees of freedom in these systems are dubbed “synthetic dimensions.” This connection is useful from an

21 Rules of Thumb for Shipping Great Software on Time: applied to physics research

12 years ago when I was a still graduate student, my wife — then a database developer — sent me a small article titled “21 Rules of Thumb for Shipping Great Software on Time” that were applied in managing the

Vortex nucleation in a Bose–Einstein condensate: from the inside out

We observed a new mechanism for vortex nucleation in Bose–Einstein condensates (BECs) subject to synthetic magnetic fields. We made use of a strong synthetic magnetic field initially localized between a pair of merging BECs to rapidly create vortices in the

Dr. Lauren M. Aycock defended her thesis today.

Lauren defended her thesis titled “Topological excitations in a Bose gas & sexual harassment reported by undergraduate physicists” today to a bumper audience in Ithaca.  And it rocked!

Tutorial: Synthetic gauge potentials for ultracold neutral atoms

Synthetic gauge fields for ultracold neutral atoms—engineered using the interaction between laser fields and the atoms’ internal ‘spin’ degrees of freedom—provide promising techniques for generating the large (synthetic) magnetic fields required to reach the fractional quantum Hall (FQH) limit in

Geometrical Pumping with a Bose-Einstein Condensate

We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice [JQI writeup]. Topological charge pumps in filled bands yield quantized pumping set by the global—topological—properties of the

Rockville Science day with Troop 1097

The boys of Boy Scout troop 1097 helped Ian out and presented experiments ranging from magnetism to superconductivity at the 2016 Rockville Science day! In the photo, Michael and Camden are explaining an electromagnet and induced currents!

Celebration of: Magnetic phases of spin-1 spin–orbit-coupled Bose gases

The UMD team got together to celebrate our recent paper “Magnetic phases of spin-1 spin–orbit-coupled Bose gases;” for some reason we went to Town Hall a long-time College Park dive bar. Times were good! Ana, Erin and Dimi were in